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1.1: The Scientific Method and Physics

&b Learning Objectives

e Describe the scope of physics.

o Calculate the order of magnitude of a quantity.

o Compare measurable length, mass, and timescales quantitatively.
e Describe the relationships among models, theories, and laws.

Like all sciences, physics is devoted to the understanding natural phenomena. In particular, in physics, we try to understand all
physical phenomena from the world of the very small invisible subatomic particles to stars, galaxies and the entire universe.
Scientific findings whether they are just verified observations, laws or theories are just attempts to describe nature. Anyone can and
should challenge and improve these findings by performing experiments and collecting evidence.

1.1.1 The Scope of Physics

Figure 1.1.1: One of the first images captured by the James Webb Space Telescope (JWST), shows a group of five galaxies called

the Stephan's Quintet. The image reveals that two of the galaxies are currently merging with each other, giving us insights into

galactic interactions.
Take a look at the image of Stephan's Quintet in Figure 1.1.1. Each of the Galaxies contains billions of individual stars as well as
huge clouds of gas and dust. This pair of galaxies lies a staggering 290 million light-years away (=~1.7 x 10°! mi) from our
own Milky Way galaxy. The stars and planets that make up each of these galaxies might seem to be the furthest thing from most
people’s everyday lives, but the forces that cause the Galaxies to act as they do are thought to be the same forces we contend with
here on Earth. The gravity that causes the stars of a Galaxy to rotate and revolve is thought to be the same as what causes water to
flow over hydroelectric dams here on Earth. Through a study of physics, you gain a greater understanding of the
interconnectedness of everything we can see and know in this universe.

Think, now, about all the technological devices you use on a regular basis. Computers, smartphones, global positioning systems
(GPSs), MP3 players, and satellite radio might come to mind. Then, think about the most exciting modern technologies you have
heard about in the news, such as trains that levitate above tracks, “invisibility cloaks” that bend light around them, and microscopic
robots that fight cancer cells in our bodies. All these groundbreaking advances, commonplace or unbelievable, rely on the
principles of physics. Aside from playing a significant role in technology, professionals such as engineers, pilots, physicians,
physical therapists, electricians, and computer programmers apply physics concepts in their daily work. For example, a pilot must
understand how wind forces affect a flight path; a physical therapist must understand how the muscles in the body experience
forces as they move and bend. As you will learn in this text, the principles of physics are propelling new, exciting technologies, and
these principles are applied in a wide range of careers.

The underlying order of nature makes science in general, and physics in particular, interesting and enjoyable to study. For example,
what do a bag of chips and a car battery have in common? Both contain energy that can be converted to other forms. The law of
conservation of energy (which says that energy can change form but is never lost) ties together such topics as food calories,
batteries, heat, light, and watch springs. Understanding this law makes it easier to learn about the various forms energy takes and
how they relate to one another. Apparently unrelated topics are connected through broadly applicable physical laws, permitting an
understanding beyond just the memorization of lists of facts.
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Science consists of theories and laws that are the general truths of nature, as well as the body of knowledge they encompass.
Scientists are continuously trying to expand this body of knowledge and to perfect the expression of the laws that describe it.
Physics, which comes from the Greek phiisis, meaning “nature,” is concerned with describing the interactions of energy, matter,
space, and time to uncover the fundamental mechanisms that underlie every phenomenon. This concern for describing the basic
phenomena in nature essentially defines the scope of physics.

Physics aims to understand the world around us at the most basic level. It emphasizes the use of a small number of quantitative
laws to do this, which can be useful to other fields pushing the performance boundaries of existing technologies. Consider a
smartphone (Figure 1.1.1). Physics describes how electricity interacts with the various circuits inside the device. This knowledge
helps engineers select the appropriate materials and circuit layout when building a smartphone. Knowledge of the physics
underlying these devices is required to shrink their size or increase their processing speed. Or, think about a GPS. Physics describes
the relationship between the speed of an object, the distance over which it travels, and the time it takes to travel that distance. When
you use a GPS in a vehicle, it relies on physics equations to determine the travel time from one location to another.

Figure 1.1.2: The Apple iPhone is a common smartphone with a GPS function. Physics describes the way that electricity flows
through the circuits of this device. Engineers use their knowledge of physics to construct an iPhone with features that consumers
will enjoy. One specific feature of an iPhone is the GPS function. A GPS uses physics equations to determine the drive time
between two locations on a map.

(a)

Figure 1.1.3: (a) Using a scanning tunneling microscope, scientists can see the individual atoms (diameters around 1071 m) that
compose this sheet of gold. (b) Tiny phytoplankton swim among crystals of ice in the Antarctic Sea. They range from a few
micrometers (1 pm is 107 m) to as much as 2 mm (1 mm is 102 m) in length. (c) These two colliding galaxies, known as NGC
4676A (right) and NGC 4676B (left), are nicknamed “The Mice” because of the tail of gas emanating from each one. They are
located 300 million light-years from Earth in the constellation Coma Berenices. Eventually, these two galaxies will merge into one.
(credit a: modification of work by Erwinrossen; credit b: modification of work by Prof. Gordon T. Taylor, Stony Brook University;
NOAA Corps Collections; credit c: modification of work by NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. Clampin
(STScI), G. Hartig (STScI), the ACS Science Team, and ESA)

Knowledge of physics is useful in everyday situations as well as in nonscientific professions. It can help you understand how
microwave ovens work, why metals should not be put into them, and why they might affect pacemakers. Physics allows you to
understand the hazards of radiation and to evaluate these hazards rationally and more easily. Physics also explains the reason why a
black car radiator helps remove heat in a car engine, and it explains why a white roof helps keep the inside of a house cool.
Similarly, the operation of a car’s ignition system as well as the transmission of electrical signals throughout our body’s nervous
system are much easier to understand when you think about them in terms of basic physics.

Physics is a key element of many important disciplines and contributes directly to others. Chemistry, for example—since it deals
with the interactions of atoms and molecules—has close ties to atomic and molecular physics. Most branches of engineering are
concerned with designing new technologies, processes, or structures within the constraints set by the laws of physics. In
architecture, physics is at the heart of structural stability and is involved in the acoustics, heating, lighting, and cooling of buildings.
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Parts of geology rely heavily on physics, such as radioactive dating of rocks, earthquake analysis, and heat transfer within Earth.
Some disciplines, such as biophysics and geophysics, are hybrids of physics and other disciplines.

Physics has many applications in the biological sciences. On the microscopic level, it helps describe the properties of cells and their
environments. On the macroscopic level, it explains the heat, work, and power associated with the human body and its various
organ systems. Physics is involved in medical diagnostics, such as radiographs, magnetic resonance imaging, and ultrasonic blood
flow measurements. Medical therapy sometimes involves physics directly; for example, cancer radiotherapy uses ionizing
radiation. Physics also explains sensory phenomena, such as how musical instruments make sound, how the eye detects color, and
how lasers transmit information.

It is not necessary to study all applications of physics formally. What is most useful is knowing the basic laws of physics and
developing skills in the analytical methods for applying them. The study of physics also can improve your problem-solving skills.
Furthermore, physics retains the most basic aspects of science, so it is used by all the sciences, and the study of physics makes
other sciences easier to understand.

To accomplish your goals in any of the various fields within the natural sciences and engineering, a thorough grounding in the laws
of physics is necessary. The reason for this is simply that the laws of physics govern everything in the observable universe at all
measurable scales of length, mass, and time. Now, that is easy enough to say, but to come to grips with what it really means, we
need to get a little bit quantitative.

1.1.2 Laws, Models and Theories

In science discussions, you will encounter terms like hypothesis, law, model and theory. These are tools that humans have
developed in our quest to understand nature. Laws and theories are human statements of the underlying laws or rules that all natural
processes follow. Laws and theories are intrinsic to the universe; humans did not create them and cannot change them. We can only
discover and understand them. Their discovery is a very human endeavor, with all the elements of mystery, imagination, struggle,
triumph, and disappointment inherent in any creative effort. The cornerstone of discovering natural laws or theories is
observation and data; scientists must describe the universe as it is, not as we imagine it to be.

A hypothesis is an educated guess about an observation, finding, or data that that can be tested. It can be a proposed answer to a
scientific question, a prediction about the outcome of an experiment or an explanation for a natural phenomenon.

A law uses concise language to describe a generalized pattern in nature supported by scientific evidence and repeated experiments.
Often, a law can be expressed in the form of a single mathematical equation. Laws and theories are similar in that they are both
scientific statements that result from a tested hypothesis and are supported by scientific evidence. However, the designation law is
usually reserved for a concise and very general statement that describes phenomena in nature, such as the law that energy is
conserved during any process, or Newton’s second law of motion, which relates force (F), mass (m), and acceleration (a) by the

simple equation Y F =ma F = ma. More limited statements are usually called principles (such as Pascal’s principle, which is
applicable only in fluids), but the distinction between laws and principles often is not made carefully.

The word theory means something different to scientists than what is often meant when the word is used in everyday conversation.
In particular, to a scientist a theory is not the same as a “guess” or an “idea” or even a “hypothesis.” The phrase “it’s just a theory”
seems meaningless and silly to scientists because science is founded on the notion of theories. To a scientist, a theory is a testable
explanation for patterns in nature supported by scientific evidence and verified multiple times by various groups of researchers.
Some theories include models to help visualize phenomena whereas others do not. Newton’s theory of gravity, for example, does
not require a model or mental image, because we can observe the objects directly with our own senses. The kinetic theory of gases,
on the other hand, is a model in which a gas is viewed as being composed of atoms and molecules. Atoms and molecules are too
small to be observed directly with our senses—thus, we picture them mentally to understand what the instruments tell us about the
behavior of gases. A theory should describe all aspects of any system that falls within its domain of applicability. In particular, any
experimentally testable implication of a theory should be verified. If an experiment ever shows an implication of a theory to be
false, then the theory is either thrown out or modified suitably (for example, by limiting its domain of applicability). The biggest
difference between a law and a theory is that a theory is much more complex and dynamic. A law describes a single action whereas
a theory explains an entire group of related phenomena.

A model is a representation of something that is often too difficult (or impossible) to display directly. Although a model is justified
by experimental tests, it is only accurate in describing certain aspects of a physical system. An example is the Bohr model of
single-electron atoms, in which the electron is pictured as orbiting the nucleus, analogous to the way planets orbit the Sun (Figure
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1.1.4). We cannot observe electron orbits directly, but the mental image helps explain some of the observations we can make, such
as the emission of light from hot gases (atomic spectra). However, other observations show that the picture in the Bohr model is not
really what atoms look like. The model is “wrong,” but is still useful for some purposes. Physicists use models for a variety of
purposes. For example, models can help physicists analyze a scenario and perform a calculation or models can be used to represent
a situation in the form of a computer simulation. Ultimately, however, the results of these calculations and simulations need to be
double-checked by other means—namely, observation and experimentation. Moreover, due to various types of limitations or
requirements, we often use simple models to help describe intricate phenomena. For example, when investigating the trajectory of a
basket ball, for most practical purposes, it is sufficient to use a model that ignores the effects of air resistance.

n=3

n=2

:.4,53*:._1:

\ AE = hf

Figure 1.1.5: What is a model? The Bohr model of a single-electron atom shows the electron orbiting the nucleus in one of several

possible circular orbits. Like all models, it captures some, but not all, aspects of the physical system.
The models, theories, and laws we devise sometimes imply the existence of objects or phenomena that are as yet unobserved.
These predictions are remarkable triumphs and tributes to the power of science. It is the underlying order in the universe that
enables scientists to make such spectacular predictions. However, if experimentation does not verify our predictions, then the
theory or law is wrong, no matter how elegant or convenient it is. Laws can never be known with absolute certainty because it is
impossible to perform every imaginable experiment to confirm a law for every possible scenario. Physicists operate under the
assumption that all scientific laws and theories are valid until a counterexample is observed. If a good-quality, verifiable
experiment contradicts a well-established law or theory, then the law or theory must be modified or overthrown completely. The
study of science in general, and physics in particular, is an adventure much like the exploration of an uncharted ocean. Discoveries
are made; models, theories, and laws are formulated; and the beauty of the physical universe is made more sublime for the insights
gained.

v/ Example 1.1.1

Read the following statement then determine whether or not it is scientific.

Heaven is Hotter than Hell!
Published in Applied Optics II, A14 (1972) & Random Walk in Science

The temperature of Heaven can be rather accurately computed from available data. Our authority is the Bible: Isaiah 30:26
reads, Moreover the light of the Moon shall be as the light of the Sun and the light of the Sun shall be sevenfold, as the light of
seven days. Thus Heaven receives from the Moon as much radiation as we do from the Sun and in addition seven times seven
(forty-nine) times as much as the Earth does from the Sun, or fifty times in all. The light we receive from the Moon is a ten-
thousandth of the light we receive from the Sun, so we can ignore that. With these data we can compute the temperature of
Heaven. The radiation falling on Heaven will heat it to the point where the heat lost by radiation is just equal to the heat
received by radiation. In other words, Heaven loses fifty times as much heat as the Earth by radiation. Using the Stefan-
Boltzmann fourth-power law for radiation

(H/E)* =50
where E is the absolute temperature of the Earth-300K. This gives H as 798 K (525° C).
The exact temperature of Hell cannot be computed but it must be less than 444.6° C, the temperature at which brimstone or
sulfur changes from a liquid to a gas. Revelations 21: 8: But the fearful, and unbelieving... shall have their part in the lake
which burneth with fire and brimstone. A lake of molten brimstone means that its temperature must be below the boiling point,

which is 444.60C. (Above this point it would be a vapor, not a lake.)
We have, then, temperature of Heaven, 525° C. Temperature of Hell, less than 445° C. Therefore, Heaven is hotter than Hell.

Solution
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Think of the sources and data discussed in the article. Is any of them available for anyone, at anytime to verify?

Answer: No, it is not scientific since it does nto rely on data that can easily be verified.

1.1.3 Major Characteristics of scientific knowledge

Science is what humanity has developed and continue to develop in its quest to understand nature. Here are some of the
characteristics of science:

Verifiable — Based on data

Objective — avoid biases, prejudices, wishes, and beliefs

Reproducible/Reliable — the same results/findings can be reproduced.

Precise and Accurate — as apposed to social sciences which are not as easily quantifiable leading to less precise results

Universally Replicable

Universally observable

Malleable — evolves and changes based on new evidence

1.1.4 How Science Evolves

What was once believed to be true in science can be adjusted or rejected based on new evidence.

New findings cannot be rejected because it does not conform to current knowledge

A new finding is deemed valid only after thorough assessment.

Additional studies are needed following new to provide for a broad assessment of where the weight of evidence falls.
Over time, as additional data is gathered and verified,

Theories don't become laws and laws don't become theories

v/ Example 1.1.1

The following two images were posted in the media during the Covid epidemic. They are accusing Dr. Anthony Fauci of flip-
flopping when discussing preventive measures to avoid Covid.

Anthony Fauci
defends flip-flop accusations
after shifting mask guidance

Solution

>
The red line goes through the points C and F, so the line is C'F'.
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<
Answer: CF

1.1.5 Science is a Collective Human Endeavor

Science evolves - new technologies allow for new data that can confirm or dispute prior knowledge. New knowledge also allows us
to revisit some of our current understanding.

Scientific knowledge is a collective human endeavor. Individual scientist contributions cannot happen (would have not happened)
without the contribution of contemporary and prior scientists. In other words, Newton's findings or Einstein's findings would have
been found even if Einstein and Newton did not exist. While both were exceptional scientists, the evolution of scientific knowledge
would have happened with or without them.

Science is based on data and only data. Both laws and theories are supported by extensive reproducible data. If you cannot test it, it
is not science.

This page titled 1.1: The Scientific Method and Physics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

e 1.2: The Scope and Scale of Physics by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-

physics-volume-1.
e 1.1: Science and the Scientific Method by Ryan D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman is licensed CC BY-SA 4.0.
Original source: https://github.com/OSTP/PhysicsArtofModelling/blob/master/README.md.
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1.2: Thinking Like a Scientist

Fighting Intuition

It is important to remember to fight one’s intuition when applying the scientific method. Certain theories, such as Quantum
Mechanics, are very counter-intuitive. For example, in Quantum Mechanics, an object can be described as being in two locations at
the same time. In the Theory of Special Relativity, it is possible for two people to disagree on whether two events occurred at the
same time. These particular predictions from these theories have not been invalidated by any experiment.

There is no requirement in science that a theory be “pretty” or intuitive. The only requirement is that a theory describe experimental
data. One should then take care in not forcing one’s preconceived notions into interpreting a theory. For example, Quantum
Mechanics does not actually predict that objects can be in two locations at once, only that objects behave as if they were in two
locations at once. A famous example is Schrodinger’s cat, which can be modeled as being both alive and dead at the same time.
However, just because we model it that way does not mean that it really is alive and dead at the same time.

Thinking Like a Physicist

In a sense, physics can be thought of as the most fundamental of the sciences, as it describes the interactions of the smallest
constituents of matter. In principle, if one can precisely describe how protons, neutrons, and electrons interact, then one can
completely describe how a human brain thinks. In practice, the theories of particle physics lead to equations that are too difficult to
solve for systems that include as many particles as a human brain. In fact, they are too difficult to solve exactly for even rather
small systems of particles such as atoms bigger than helium (containing several protons, neutrons and electrons).

We have a number of other fields of science to cover complex systems of particles interacting. Chemistry can be used to describe
what happens to systems consisting of many atoms and molecules. In a living being, it is too difficult to keep track of systems of
atoms and molecules, so we use Biology to describe living systems.

One of the key qualities required to be an effective physicist is an ability to understand how to apply a theory and develop a model
to describe a phenomenon. Just like any other skill, it takes practice to become good at developing models. Students that graduate
with a physics degree are thus often sought for jobs that require critical thinking and the ability to develop quantitative models,
which covers many fields from outside of physics such as finance or Big Data.

This page titled 1.2: Thinking Like a Scientist is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Howard

Martin revised by Alan Ng.

e 1.2: The Scope and Scale of Physics by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-

physics-volume-1.

o 1.3: Fighting Intuition by Ryan D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman is licensed CC BY-SA 4.0. Original source:
https://github.com/OSTP/PhysicsArtofModelling/blob/master/README.md.

o 1.5: Thinking Like a Physicist by Ryan D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman is licensed CC BY-SA 4.0. Original
source: https://github.com/OSTP/PhysicsArtofModelling/blob/master/README.md.
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1.3: Measurements Uncertainty and Significant Figures

Learning Objectives

o Determine the correct number of significant figures for the result of a computation.

o Describe the relationship between the concepts of accuracy, precision, uncertainty, and discrepancy.

o Calculate the percent uncertainty of a measurement, given its value and its uncertainty.

o Determine the uncertainty of the result of a computation involving quantities with given uncertainties.

Science is based on data. That is evidence obtained from observation and experiments. Thus, it is important to have a clear, universal, thorough process and rules that we use when
collecting data —that is, when making measurements and when reporting those results.

1.3.1 Accuracy and Precision of a Measurement

Accuracy is how close a measurement is to the accepted reference value for that measurement. For example, let’s say we want to measure the length of standard printer paper. The
packaging in which we purchased the paper states that it is 11.0 in. long. We then measure the length of the paper three times and obtain the following measurements: 11.1 in., 11.2 in.,
and 10.9 in. These measurements are quite accurate because they are very close to the reference value of 11.0 in. In contrast, if we had obtained a measurement of 12 in., our
measurement would not be very accurate. Notice that the concept of accuracy requires that an accepted reference value be given.

2
€
g
o Reference value Reference value
2
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Value Value

Figure 1.3.1: A GPS attempts to locate a restaurant at the center of the bull’s-eye. The red dots represent each attempt to pinpoint the location of the restaurant. For the image on the left,

the dots are spread out quite far apart from one another, but they are rather close to the actual location of the restaurant, indicating high accuracy. For the image on the right dots are

spread out rather far away from the actual location of the restaurant, indicating low accuracy.
Let’s consider an example of a GPS attempting to locate the position of a restaurant in a city. Think of the restaurant location as existing at the center of a bull’s-eye target and think of
each GPS attempt to locate the restaurant as a red dot. On the left of Figure 1.3.1, we see the GPS measurements are spread out far apart from each other, but they are all relatively close
to the actual location of the restaurant at the center of the target. This indicates a high-accuracy measurement. However, in the image on the right, the GPS measurements are
concentrated closer to one another, but they are far away from the target location. This indicates a low-accuracy measuring system.

The precision of measurements refers to how close the agreement is between repeated independent measurements (which are repeated under the same conditions). Consider the example
of the paper measurements. The precision of the measurements refers to the spread of the measured values. One way to analyze the precision of the measurements is to determine the
range, or difference, between the lowest and the highest measured values. In this case, the lowest value was 10.9 in. and the highest value was 11.2 in. Thus, the measured values
deviated from each other by, at most, 0.3 in. These measurements were relatively precise because they did not vary too much in value. However, if the measured values had been 10.9
in., 11.1 in., and 11.9 in., then the measurements would not be very precise because there would be significant variation from one measurement to another. Notice that the concept of
precision depends only on the actual measurements acquired and does not depend on an accepted reference value.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not precise, or they are precise but not accurate. Referring back
to the GPS example, on the left of Figure 1.3.2in this case, we see the GPS measurements clustered close to each other, while far away from the target location. This indicates a high-
precision measurement even though the accuracy is low. For the image on the right, the GPS measurements are spread further apart from one another, they are still far away from the
target location. This indicates a low-precision and also a low-accuracy measurement.

Reference value

# measurements

+«———  Value <+—————— Value
Precision Precision

Figure 1.3.2: A GPS attempts to locate a restaurant at the center of the bull’s-eye. The red dots represent each attempt to pinpoint the location of the restaurant. For the image on the left,

the dots are spread out quite close to one another, indicating high precision. For the image on the right, the dots are spread out apart to one another, indicating low precision.
The precision of a measuring system is related to the uncertainty in the measurements whereas the accuracy is related to the discrepancy from the accepted reference value. uncertainty
is a quantitative measure of how much your measured values deviate from one another. Discrepancy is the difference between the measured value and a given standard or expected
value. If the measurements are not very precise, then the uncertainty of the values is high. If the measurements are not very accurate, then the discrepancy of the values is high.

Recall our example of measuring paper length; we obtained measurements of 11.1 in., 11.2 in., and 10.9 in., and the accepted value was 11.0 in. We might average the three
measurements to say our best guess is 11.1 in.; in this case, our discrepancy is 11.1 — 11.0 = 0.1 in., which provides a quantitative measure of accuracy. We might calculate the
uncertainty in our best guess by using the range of our measured values: 0.3 in. Then we would say the length of the paper is 11.1 in. plus or minus 0.3 in. The uncertainty in a
measurement, A, is often denoted as JA (read “delta A”), so the measurement result would be recorded as A + §A. Returning to our paper example, the measured length of the paper
could be expressed as 11.1 + 0.3 in. Since the discrepancy of 0.1 in. is less than the uncertainty of 0.3 in., we might say the measured value agrees with the accepted reference value to
within experimental uncertainty.

Some factors that contribute to uncertainty in a measurement include the following:
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o Limitations of the measuring device

o The skill of the person taking the measurement

o Irregularities in the object being measured

o Any other factors that affect the outcome (highly dependent on the situation)

In our example, such factors contributing to the uncertainty could be the smallest division on the ruler is 1/16 in., the person using the ruler has bad eyesight, the ruler is worn down on
one end, or one side of the paper is slightly longer than the other. At any rate, the uncertainty in a measurement must be calculated to quantify its precision. If a reference value is
known, it makes sense to calculate the discrepancy as well to quantify its accuracy.

1.3.2 Significant Figures

When we express measured values, we can only list as many digits as we measured initially with our measuring tool. For example, if we use a standard ruler to measure the length of a
stick, we may measure it to be 36.7 cm. We can’t express this value as 36.71 cm because our measuring tool is not precise enough to measure a hundredth of a centimeter. It should be
noted that the last digit in a measured value has been estimated in some way by the person performing the measurement. For example, the person measuring the length of a stick with a
ruler notices the stick length seems to be somewhere in between 36.6 cm and 36.7 cm, and he or she must estimate the value of the last digit. Using the method of significant figures,
the rule is that the last digit written down in a measurement is the first digit with some uncertainty. To determine the number of significant digits in a value, start with the first
measured value at the left and count the number of digits through the last digit written on the right. For example, the measured value 36.7 cm has three digits, or three significant figures.

Rules for Determining the number of significant figures

Here are some general rules for determining the number of significant figures:

o For experimental data the uncertainty in a quantity defines how many figures are significant.

o In general, the uncertainty in a measurement is equal to the estimated standard deviation for that measurement.

o The reading uncertainty is an estimate made by the experimenter
o In the case where the reading uncertainty in a measurement is larger than the estimated standard deviation, the reading uncertainty is the uncertainty in each individual

measurement.
o The reading uncertainty almost by definition has one and only one significant figure.
o Thus uncertainties are specified to one or at most two digits.

? Example 1.3.1

Express the following quantities to the correct number of significant figures:

(a) 29.625 +2.345
(b) 74 +7.136
(c) 84.26351 + 3

Strategy
First, remember that the uncertainty should be specified to one or at the most two digits.

Second, express the quantity with the same precision as the uncertainty.

Solution
Rounding the uncertainty to one digit:
(a) 29.625 £ 2
(b)74+7
(c) 84.26351 + 3
Rounding the quantity to the same precision as the uncertainty:
(@)30+2
(b)74+7
(c)84+3

Rules for Zeroes

Special consideration is given to zeros when counting significant figures. The zeros in 0.053 are not significant because they are placeholders that locate the decimal point. There
are two significant figures in 0.053. The zeros in 10.053 are not placeholders; they are significant. This number has five significant figures. The zeros in 1300 may or may not be
significant, depending on the style of writing numbers. They could mean the number is known to the last digit or they could be placeholders. So 1300 could have two, three, or four
significant figures. To avoid this ambiguity, we should write 1300 in scientific notation as 1.3 x 103, 1.30 x 103, or 1.300 x 103, depending on whether it has two, three, or four
significant figures. Zeros are significant except when they serve only as placeholders

When combining measurements with different degrees of precision, the number of significant digits in the final answer can be no greater than the number of significant digits in
the least-precise measured value. Here are the rules:

Rules for Manipulating Numbers
Rule 1: When multiplying or dividing, report the result with the same number of significant figures as the least certain value. For example:

11.5x21=24
11.5+21=55

because 2.1 has only two significant figures.
Rule 2: When adding or subtracting, the number of decimal places in the result should equal the smallest number of decimal places in any of the given terms. For example:

12.34+2.006-8.9=5.4
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because 8.9 has only one decimal place.
Rule 3: Numbers that are not measured may be considered exact. Irrational numbers such as m and e are known to many significant figures and do not limit your results. For
example:

(1/3)(4.56 ) = 4.78

is reported to three significant figures because neither 3 nor 1 is measured, and our answer is limited only by the three significant figures of 4.56.

Rule 4: It is best to use scientific notation because a zero that acts as a placeholder is not necessarily a significant figure. For example, h = 120 m may have two or three significant
figures. To avoid that ambiguity, you may add a decimal point; for example, h = 120. m has three significant figures. A better way to clarify the number of significant figures is to
use scientific notation: h = 1.20 x 10> m has three significant figures, and h = 1.2 x 10> m has two significant figures.

Rule 5: You should keep extra significant figures in intermediate steps when making a calculation, but you should round the final answer to the correct number of significant
figures. The extra significant figures in an intermediate result help avoid introducing an error due to rounding a number up or down. This step is particularly important if an
intermediate result is a number ending in 5

1.3.3 Precision of Measuring Tools and Significant Figures

As mentioned in the previous sections, an important factor in the precision of measurements involves the precision of the measuring tool. In general, a precise measuring tool is one that
can measure values in very small increments. For example, a standard ruler can measure length to the nearest millimeter whereas a caliper can measure length to the nearest 0.01 mm.
The caliper is a more precise measuring tool because it can measure extremely small differences in length. The more precise the measuring tool, the more precise the measurements.

The result of a single measurement should be reported in the format
(estimate) & (measurement uncertainty). (1.3.1)

The estimate is your best guess for the true value, while the measurement uncertainty states the range where the true value might lie. By convention, the estimate and measurement
uncertainty follow these rules :

1. The measurement uncertainty has one or two significant figures. We will use just one for the rest of this chapter.
2. The estimate has the same precision as the measurement uncertainty.

Suppose you use a digital multimeter to measure the current in a circuit, and the readout is stable (i.e., not fluctuating). Then you should report a result like this:

= (0.320+0.005) A

Why? According to the readout, the value is between 0.315 A (rounded up to 0.32 A) and 0.324999 . . . A(which is rounded down). So the measurement uncertainty is £0.005 A. Note
that the estimate is reported as 0.320 A to have the same precision as the uncertainty.

When using a device with hatch marks, such as a ruler or analog oscilloscope display, the measurement uncertainty is determined by the smallest markings. For example, if the smallest
markings on a ruler have 1 mm spacing, the measurement uncertainty is +0.5 mm, so a reading should be reported like this:

[
- = (6.60+0.05) cm

In more complicated situations, you must exercise your judgment. For instance, suppose you have a digital multimeter reading that is not stable: the last digit changes constantly, so that
the reading fluctuates between 0.32, 0.33, and 0.34 A. The value is between 0.315 A and 0.344999... A which is a range of £0.015 A. Since we use one significant figure for
uncertainty, the result is reported like this:

E 0384
: = = (0.33+0.02) A

Alternatively, suppose the last digit is changing so fast that you can’t make out its values at all. Then you can report the result like this:

?
_ (om0

Measurement uncertainties can also come from other aspects of an experiment. Suppose you use a ruler to measure the distance to an object, but the object wobbles by 42 mm, larger
than the 1 mm hatch marks of the ruler. In that case, you should report a measurement uncertainty of -2 mm, not +0.05 mm

1.3.4 Uncertainties in Calculations/Propagation of uncertainty of Precision

Often we have two or more measured quantities that we combine arithmetically to get some result. Examples include dividing a distance by a time to get a speed, or adding two lengths
to get a total length. Now that we have learned how to determine the uncertainty in the directly measured quantities we need to learn how these uncertainty propagate to an uncertainty
in the result.

We assume that the two directly measured quantities are  and Y, with uncertainty Az and Ay respectively.
The measurements « and y must be independent of each other.

The fractional uncertainty is the value of the uncertainty divided by the value of the quantity: %. The fractional uncertainty multiplied by 100 is the percentage uncertainty. Everything
is this section assumes that the uncertainty is "small" compared to the value itself, i.e. that the fractional uncertainty is much less than one.

For many situations, we can find the uncertainty in the result z using three simple rules:
1.34.1Rulel
Iffz=x+yorz=z—y

then:

Az= 1/A12+Ay2 (1.3.2)

In words, this says that the uncertainty in the result of an addition or subtraction is the square root of the sum of the squares of the uncertainty in the quantities being added or subtracted.
This mathematical procedure, also used in Pythagoras' theorem about right triangles, is called quadrature.
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1.3.4.2 Rule 2

If:z=zxy orz:i

then:

N ENEYS 0

In this case also the uncertainty are combined in quadrature, but this time it is the fractional uncertainty, i.e. the uncertainty in the quantity divided by the value of the quantity, that are
combined. Sometimes the fractional uncertainty is called the relative uncertainty.

1.3.43Rule 3
If: z=2a"
then:
Az=nz" DAz (1.3.4)
or equivalently:
Az:nz% (1.3.5)

For the square of a quantity, 2%, you might reason that this is just z times z and use Rule 2. This is wrong because Rules 1 and 2 are only for when the two quantities being combined, z
and y, are independent of each other. Here there is only one measurement of one quantity.

? Example 1.3.1
Calculate (1.23 + 0.03) + 7. (7 is the irrational number 3.14159265...)

Strategy

Rational numbers are considered precise. Thus, they don't affect the uncertainty in the reading.

Solution

(1.23 £ 0.03) + 7=((1.23+ ) + 0.03)=((1.23+3.14159265) + 0.03)=((4.37159265) + 0.03)=(4.37 + 0.03)

? Example 1.3.2
Calculate (1.23 + 0.03) x 7.

Strategy
We are essentially multiplying by a constant.

Solution

(1.23 £ 0.03) x=((1.23 x7) £ 0.03 x7))=((3.864) + 0.0942)=(3.86 + 0.09)

You may have noticed a useful property of quadrature while doing the above questions. Say one quantity has an uncertainty of 2 and the other quantity has an uncertainty of 1. Then the
uncertainty in the combination is the square root of 4 + 1 = 5, which to one significant figure is just 2. Thus if any uncertainty is equal to or less than one half of some other uncertainty,
it may be ignored in all uncertainty calculations. This applies for both direct uncertainty such as used in Rule 1 and for fractional or relative uncertainty such as in Rule 2.

Thus in many situations you do not have to do any uncertainty calculations at all if you take a look at the data and its uncertainty first.

1.3.5 Using Derivatives to Calculate Uncertainty

The three rules above handle most simple cases. The general case is where z = f(z). For Rule 1 the function f is addition or subtraction, while for Rule 2 it is multiplication or
division. Regardless of whatf is, the uncertainty in z is given by:

Az~ dz= f'(z)dz. (1.3.6)

In the next example, we look at how differentials can be used to estimate the uncertainty in calculating the volume of a box if we assume the measurement of the side length is made
with a certain amount of accuracy.

v Example 1.3.3: Volume of a Cube

Suppose the side length of a cube is measured to be 5 cm with an accuracy of 0.1 cm.
a. Use differentials to estimate the uncertainty in the computed volume of the cube.
b. Compute the volume of the cube if the side length is (i) 4.9 cm and (ii) 5.1 cm to compare the estimated uncertainty with the actual potential uncertainty.
Solution
a. The measurement of the side length is accurate to within £0.1 cm. Therefore,
—0.1 <dz <0.1.
The volume of a cube is given by V = 2% , which leads to
dV = 3z%dz.
Using the measured side length of 5 cm, we can estimate that
—3(5)%(0.1) <dV < 3(5)%(0.1).

Therefore,

—7.5<dV <7.5.
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b. If the side length is actually 4.9 cm, then the volume of the cube is

V(4.9) = (4.9)3 =117.649cm?.
If the side length is actually 5.1 cm, then the volume of the cube is

V(5.1) = (5.1)® = 132.651cm®.

Therefore, the actual volume of the cube is between 117.649and 132.651 Since the side length is measured to be 5 cm, the computed volume is V/(5) = 5% —=125.
Therefore, the uncertainty in the computed volume is

117.649 —125 < AV <132.651 —125.
That is,
—7.351 <AV < 7.651.

We see the estimated uncertainty dV is relatively close to the actual potential uncertainty in the computed volume.

? Example 1.3.4

Estimate the uncertainty in the computed volume of a cube if the side length is measured to be 6 cm with an accuracy of 0.2 cm.

Hint
dV = 322dz

Answer
The volume measurement is accurate to within 21.6 cm?
The above formula is also used to find the uncertainty for transcendental functions. For example:

? Example 1.3.5

Find the uncertainty for:

z=In(z)

Answer
e |20 |
dz x
? Example 1.3.6

Find the uncertainty for:

z=sin(z)
Answer

dsi
Az= L(av)Anr:‘ = |cos(z)Az|
dz

Note that in the above example Az must be in radians.

The measurement uncertainty dz (= Az) and the propagated uncertainty Ay are absolute uncertainty.

Sometimes, we are interested in the size of an uncertainty relative to the size of the quantity being measured or calculated. Given an absolute uncertainty Agq for a particular quantity, we
) . . A . . S . . .

define the relative uncertainty as Tq, where ¢ is the actual value of the quantity. The percentage uncertainty is the relative uncertainty expressed as a percentage. For example, if we

measure the height of a ladder to be 63 in. when the actual height is 62 in., the absolute uncertainty is 1 in. but the relative uncertainty is é =0.016, or 1.6%. By comparison, if we

measure the width of a piece of cardboard to be 8.25 in. when the actual width is 8 in., our absolute uncertainty is i in., whereas the relative uncertainty is % = %, or 3.1%.

Therefore, the percentage uncertainty in the measurement of the cardboard is larger, even though 0.25 in. is less than 1 in.

? Example 1.3.7: Relative and Percentage uncertainty

An astronaut using a camera measures the radius of Earth as 4000 mi with an uncertainty of +80 mi. Let’s use differentials to estimate the relative and percentage uncertainty of
using this radius measurement to calculate the volume of Earth, assuming the planet is a perfect sphere.
Solution:

If the measurement of the radius is accurate to within £80, we have

—80 <dr < 80.
Since the volume of a sphere is given by V = (% )7rr3, we have
dV = 4mridr.
Using the measured radius of 4000mi, we can estimate

—4m(4000)%(80) < dV < 4m(4000)2(80).

v
To estimate the relative uncertainty, consider v Since we do not know the exact value of the volume V', use the measured radius » = 4000 mi to estimate V. We obtain

V=~ (%)w(4000)3. Therefore the relative uncertainty satisfies
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which simplifies to

—47(4000)(80) < av < 47(4000)2(80)
47(4000)*/3 — VT 4m(4000)*/3

d
—0.06 < v <0.06.
14

The relative uncertainty is 0.06and the percentage uncertainty is 6 %.

? Example 1.3.8

Determine the percentage uncertainty if the radius of Earth is measured to be 3950 mi with an uncertainty of 100 mi.
Hint
Use the fact that dV = 47r2dr to find dV/V.

Answer
7.6%

When z = f(z,y), the uncertainty in z is given by:

3f (=, 2 Of(, 2
A2’ = (%Az) + (%Ay) (1.3.7)
If f is a function of three or more variables, z1, z2, 23, . .., then:
Of (1, 22,23, . ... ?
A2 =Y (%Awi) (1.3.8)

i
1.3.6 The uncertainty in the Mean
We have seen that when the data have uncertainty of precision we may only estimate the value of the mean. We are now ready to find the uncertainty in this estimate of the mean.

Recall that to calculate the estimated mean we use:

= (1.3.9)

Each individual measurement z; has the same uncertainty, Axz;, which is usually the estimated standard deviation.

To calculate the uncertainty in the numerator of the above equation, we use Rule 1 to write:

VAR + A2’ 4. .+ A2 = /NAz (1.3.10)

In words, we are combining N quantities Az in quadrature, whose result is the square root of N times Az.

When we divide the numerator by the denominator NV, Rule 2 tells us how to propagate those uncertainty. The denominator has an uncertainty of zero, and we have just calculated the
uncertainty in the numerator. Applying Rule 2, then, gives:

Az = (1.3.11)

Az
vVN
In words, the uncertainty in the estimated mean AZ is equal to the uncertainty in each individual measurement Az divided by the square root of the number of times the measurement
was repeated. Sometimes AZ is called the standard uncertainty of the mean.
Here is an example. We repeat the measurement of some quantity 4 times and get:

1.50

1.61

1.39

1.48

The estimated mean of these measurements is numerically 1.4950000 and the estimated standard deviation is numerically 0.0903696 (by numerically we mean the number that is
displayed by the calculator). Thus the uncertainty in the estimated mean is 0.0903696 divided by the square root of the number of repeated measurements, the square root of 4, which is
numerically 0.0451848. So we get:

Value = 1.495 + 0.045
or:
Value = 1.50 £ 0.05

The fact that the uncertainty in the estimated mean goes down as we repeat the measurements is exactly what should happen. If the uncertainty did not go down as N increases there is
no point in repeating the measurements at all since we are not learning anything about Xe, i.e. we are not reducing its uncertainty.

If you repeat a measurement 4 times, you reduce the uncertainty by a factor of two. Repeating the measurement 9 times reduces the uncertainty by a factor of three. To reduce the
uncertainty by a factor of four you would have to repeat the measurement 16 times. Thus there is a point of "diminishing returns" in repeating measurements. In simple situations,
repeating a measurement 5 or 10 times is usually sufficient.

? Example 1.3.9

You are determining the period of oscillation of a pendulum. One procedure would be to measure the time for 20 oscillations, t20, and repeat the measurement 5 times. Another
procedure would be to measure the time for 5 oscillations, t5, and repeat the measurement 20 times. Assume, reasonably, that the uncertainty in the determination of the time for 20
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oscillations is the same as the uncertainty in the determination of the time for 5 oscillations. Calculate the uncertainty in the period for both procedures to determine which will give
the smallest uncertainty in the value of the period?
Strategy

First, observe that the average value of the bag’s weight, A, is 5.1 Ib. The uncertainty in this value, §A, is 0.3 Ib. We can use the following equation to determine the percent
uncertainty of the weight:

Percent uncertainty = % x 100% (1.3.12)

Solution

Substitute the values into the equation:

6A 31
Percent uncertainty = —— x 100% = 0.3

A D x 100% =5.9% ~ 6% (1.3.13)
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1.4: Units and Standards

&b Learning Objectives

o Describe how SI base units are defined.
o Describe how derived units are created from base units.
o Express quantities given in SI units using metric prefixes.

1.4.1 Order of Magnitude

The order of magnitude of a number is the power of 10 that most closely approximates it. Thus, the order of magnitude refers to
the scale (or size) of a value. Each power of 10 represents a different order of magnitude. For example, 10!, 10%, 103, and so forth,
are all different orders of magnitude, as are 10° = 1, 1071, 1072, and 107%. To find the order of magnitude of a number, take the
base-10 logarithm of the number and round it to the nearest integer, then the order of magnitude of the number is simply the
resulting power of 10. For example, the order of magnitude of 800 is 10> because log;, 800 ~ 2.903, which rounds to 3. Similarly,
the order of magnitude of 450 is 10° because log;, 450 ~ 2.653, which rounds to 3 as well. Thus, we say the numbers 800 and 450
are of the same order of magnitude: 103. However, the order of magnitude of 250 is 10? because log;, 250 ~ 2.397, which rounds to
2.

An equivalent but quicker way to find the order of magnitude of a number is first to write it in scientific notation and then check to
see whether the first factor is greater than or less than 1/10 = 10%° ~ 3. The idea is that v/10 = 10°° is halfway between 1 = 10°
and 10 = 10! on a log base-10 scale. Thus, if the first factor is less than 4/10, then we round it down to 1 and the order of
magnitude is simply whatever power of 10 is required to write the number in scientific notation. On the other hand, if the first
factor is greater than v/10, then we round it up to 10 and the order of magnitude is one power of 10 higher than the power needed
to write the number in scientific notation. For example, the number 800 can be written in scientific notation as 8 x 10°. Because 8 is
bigger than /10 ~ 3, we say the order of magnitude of 800 is 10> * ' = 10%. The number 450 can be written as 4.5 x 10, so its
order of magnitude is also 10> because 4.5 is greater than 3. However, 250 written in scientific notation is 2.5 x 10% and 2.5 is less
than 3, so its order of magnitude is 10°.

The order of magnitude of a number is designed to be a ballpark estimate for the scale (or size) of its value. It is simply a way of
rounding numbers consistently to the nearest power of 10. This makes doing rough mental math with very big and very small
numbers easier. For example, the diameter of a hydrogen atom is on the order of 107'% m, whereas the diameter of the Sun is on the
order of 10° m, so it would take roughly 10%107'° = 10'® hydrogen atoms to stretch across the diameter of the Sun. This is much
easier to do in your head than using the more precise values of 1.06 x 107'°m for a hydrogen atom diameter and 1.39 x 10° m for
the Sun’s diameter, to find that it would take 1.31 x 10'° hydrogen atoms to stretch across the Sun’s diameter. In addition to being
easier, the rough estimate is also nearly as informative as the precise calculation.

1.4.2 Known Ranges of Length, Mass, and Time

The vastness of the universe and the breadth over which physics applies are illustrated by the wide range of examples of known
lengths, masses, and times (given as orders of magnitude) in Figure 1.4.3. Examining this table will give you a feeling for the range
of possible topics in physics and numerical values. A good way to appreciate the vastness of the ranges of values in Figure 1.4.3is
to try to answer some simple comparative questions, such as the following:

? Exercise 1.4.1

a. How many hydrogen atoms does it take to stretch across the diameter of the Sun?
b. How many protons are there in a bacterium?
c. How many floating-point operations can a supercomputer do in 1 day?
Answer a
10° m/107'% m = 10'® hydrogen atoms
Answer b

107'° kg/107%” kg = 10'2 protons

Answer c
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l 10° /1077 s = 10? floating-point operations

In studying Figure 1.4.3, take some time to come up with similar questions that interest you and then try answering them. Doing

this can breathe some life into almost any table of numbers.

Length in Meters {m)

Masses in Kilograms (kg)

Time in Seconds (s)

107 m = diameter of proton
1071 m = diameter of large nucleus
107 m = diameter of hydrogen atom
1077 m = diameter of typical virus
102 m = pinky fingernail width

10° m = height of 3

4 year old child ‘ 1

f
!
;
;
;
t

]

10° m = length of football field
10" m = diameter of Earth

10 m = diameter of solar system

1016 m = distance light travels
in a year (one light-year)

1021 m = Milky Way diameter

1076 m = distance to edge of

10730 kg = mass of electron
10?7 kg = mass of proton
1075 kg = mass of bacterium
107% kg = mass of mosquito

1072 kg = mass of hummingbird

10° kg = mass of
liter of water

iy
S

10° kg = mass of person

10 kg = mass of atmosphere

10%2 kg = mass of Moon

10%5 kg = mass of Earth

10°0 kg = mass of Sun

10°% kg = upper limit on mass of

10-22 5 = mean lifetime of very
unstable nucleus

10-17 5 = time for single floating-point
operation in a supercomputer

10715 5 = time for one oscillation of
visible light

10713 ¢ = time for one vibration of an
atom in a solid

103 s = duration of a nerve impulse

10° 5 = time for
one heartbeat

105 s = one day

107 s = one year

10° s = human lifetime

10 5 = recorded human history
107 5 = age of Earth

10%% 5 = age of the universe

observable universe known universe

Figure 1.4.3: This table shows the orders of magnitude of length, mass, and time.

The range of objects and phenomena studied in physics is immense. From the incredibly short lifetime of a nucleus to the age of
Earth, from the tiny sizes of subnuclear particles to the vast distance to the edges of the known universe, from the force exerted by
a jumping flea to the force between Earth and the Sun, there are enough factors of 10 to challenge the imagination of even the most
experienced scientist. Giving numerical values for physical quantities and equations for physical principles allows us to understand
nature much more deeply than qualitative descriptions alone. To comprehend these vast ranges, we must also have accepted units in
which to express them. We shall find that even in the potentially mundane discussion of meters, kilograms, and seconds, a profound
simplicity of nature appears: all physical quantities can be expressed as combinations of only seven base physical quantities.

1.4.3 Units and Standards

We define a physical quantity either by specifying how it is measured or by stating how it is calculated from other measurements.
For example, we might define distance and time by specifying methods for measuring them, such as using a meter stick and a
stopwatch. Then, we could define average speed by stating that it is calculated as the total distance traveled divided by time of
travel.

Measurements of physical quantities are expressed in terms of units, which are standardized values. For example, the length of a
race, which is a physical quantity, can be expressed in units of meters (for sprinters) or kilometers (for distance runners). Without
standardized units, it would be extremely difficult for scientists to express and compare measured values in a meaningful way
(Figure 1.4.1).
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1 wonder
how big
acable is?

Distances given in unknown units are maddeningly useless.

Figure 1.4.1: Distances given in unknown units are maddeningly useless.

Two major systems of units are used in the world: SI units (for the French Systéme International d’Unités), also known as the
metric system, and English units (also known as the customary or imperial system). English units were historically used in
nations once ruled by the British Empire and are still widely used in the United States. English units may also be referred to as the
foot—-pound-second (fps) system, as opposed to the centimeter—gram-second (cgs) system. You may also encounter the term
SAE units, named after the Society of Automotive Engineers. Products such as fasteners and automotive tools (for example,
wrenches) that are measured in inches rather than metric units are referred to as SAE fasteners or SAE wrenches.

Virtually every other country in the world (except the United States) now uses SI units as the standard. The metric system is also
the standard system agreed on by scientists and mathematicians.

1.4.4 S| Units: Base and Derived Units

In any system of units, the units for some physical quantities must be defined through a measurement process. These are called the
base quantities for that system and their units are the system’s base units. All other physical quantities can then be expressed as
algebraic combinations of the base quantities. Each of these physical quantities is then known as a derived quantity and each unit
is called a derived unit. The choice of base quantities is somewhat arbitrary, as long as they are independent of each other and all
other quantities can be derived from them. Typically, the goal is to choose physical quantities that can be measured accurately to a
high precision as the base quantities. The reason for this is simple. Since the derived units can be expressed as algebraic
combinations of the base units, they can only be as accurate and precise as the base units from which they are derived.

Based on such considerations, the International Standards Organization recommends using seven base quantities, which form the
International System of Quantities (ISQ). These are the base quantities used to define the SI base units. Table 1.4.1 lists these seven
ISQ base quantities and the corresponding SI base units.

Table 1.4.1: ISQ Base Quantities and Their SI Units

ISQ Base Quantity SI Base Unit
Length meter (m)
Mass kilogram (kg)
Time second (s)
Electrical Current ampere (A)
Thermodynamic Temperature kelvin (K)
Amount of Substance mole (mol)
Luminous Intensity candela (cd)

You are probably already familiar with some derived quantities that can be formed from the base quantities in Table 1.4.1. For
example, the geometric concept of area is always calculated as the product of two lengths. Thus, area is a derived quantity that can
be expressed in terms of SI base units using square meters (m x m = m?). Similarly, volume is a derived quantity that can be
expressed in cubic meters (m®). Speed is length per time; so in terms of SI base units, we could measure it in meters per second
(m/s). Volume mass density (or just density) is mass per volume, which is expressed in terms of SI base units such as kilograms per
cubic meter (kg/m?). Angles can also be thought of as derived quantities because they can be defined as the ratio of the arc length
subtended by two radii of a circle to the radius of the circle. This is how the radian is defined. Depending on your background and
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interests, you may be able to come up with other derived quantities, such as the mass flow rate (kg/s) or volume flow rate (m>/s) of
a fluid, electric charge (A * s), mass flux density [kg/(m? * s)], and so on. We will see many more examples throughout this text. For
now, the point is that every physical quantity can be derived from the seven base quantities in Table 1.4.1, and the units of every
physical quantity can be derived from the seven SI base units.

For the most part, we use SI units in this text. Non-SI units are used in a few applications in which they are in very common use,
such as the measurement of temperature in degrees Celsius (°C), the measurement of fluid volume in liters (L), and the
measurement of energies of elementary particles in electron-volts (eV). Whenever non-SI units are discussed, they are tied to SI
units through conversions. For example, 1 L is 1073 m3,

Check out a comprehensive source of information on SI units at the National Institute of Standards and Technology (NIST)
Reference on Constants, Units, and Uncertainty.

1.4.5 Units of Time, Length, and Mass: The Second, Meter, and Kilogram

The initial chapters in this textmap are concerned with mechanics, fluids, and waves. In these subjects all pertinent physical
quantities can be expressed in terms of the base units of length, mass, and time. Therefore, we now turn to a discussion of these
three base units, leaving discussion of the others until they are needed later.

1.4.5.1 The Second

The ST unit for time, the second (abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar day.
More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a nonvarying or constant
physical phenomenon (because the solar day is getting longer as a result of the very gradual slowing of Earth’s rotation). Cesium
atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967, the second
was redefined as the time required for 9,192,631,770 of these vibrations to occur (Figure 1.4.2). Note that this may seem like more
precision than you would ever need, but it isn’t—GPSs rely on the precision of atomic clocks to be able to give you turn-by-turn
directions on the surface of Earth, far from the satellites broadcasting their location.

Figure 1.4.2: An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a
microsecond per year. The fundamental unit of time, the second, is based on such clocks. This image looks down from the top of an
atomic fountain nearly 30 feet tall. (credit: Steve Jurvetson)

1.4.5.2 The Meter

The SI unit for length is the meter (abbreviated m); its definition has also changed over time to become more precise. The meter
was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This measurement was improved in
1889 by redefining the meter to be the distance between two engraved lines on a platinum—iridium bar now kept near Paris. By
1960, it had become possible to define the meter even more accurately in terms of the wavelength of light, so it was again redefined
as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was given its current definition (in part
for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second (Figure 1.4.3). This change came after
knowing the speed of light to be exactly 299,792,458 m/s. The length of the meter will change if the speed of light is someday
measured with greater accuracy.

== -

|a| 10 20 0 £ 50 0 ] a0 % m]

Light travels a distance of 1 meter
in 1/299,792, 458 seconds

Figure 1.4.3: The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is
speed multiplied by time.
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1.4.5.3 The Kilogram

The SI unit for mass is the kilogram (abbreviated kg); From 1795-2018 it was defined to be the mass of a platinum-iridium
cylinder kept with the old meter standard at the International Bureau of Weights and Measures near Paris. However, this cylinder
has lost roughly 50 micrograms since it was created. Because this is the standard, this has shifted how we defined a kilogram.
Therefore, a new definition was adopted in May 2019 based on the Planck constant and other constants which will never change in
value. We will study Planck’s constant in quantum mechanics, which is an area of physics that describes how the smallest pieces of
the universe work. The kilogram is measured on a Kibble balance (see 1.4.4). When a weight is placed on a Kibble balance, an
electrical current is produced that is proportional to Planck’s constant. Since Planck’s constant is defined, the exact current
measurements in the balance define the kilogram.

Figure 1.4.4: Redefining the SI unit of mass. The U.S. National Institute of Standards and Technology’s Kibble balance is a
machine that balances the weight of a test mass with the resulting electrical current needed for a force to balance it.

1.4.6 Metric Prefixes

SI units are part of the metric system, which is convenient for scientific and engineering calculations because the units are
categorized by factors of 10. Table 1.4.1 lists the metric prefixes and symbols used to denote various factors of 10 in SI units. For
example, a centimeter is one-hundredth of a meter (in symbols, 1 cm = 1072 m) and a kilometer is a thousand meters (1 km = 103
m). Similarly, a megagram is a million grams (1 Mg = 10° g), a nanosecond is a billionth of a second (1 ns = 109 s), and a
terameter is a trillion meters (1 Tm = 1012 m).

Table 1.4.2: Metric Prefixes for Powers of 10 and Their Symbols

Prefix Symbol Meaning Prefix Symbol Meaning
yotta- Y 10%* yocto- Y 1024
zetta- Z 102! zepto- Z 10
exa- E 10'® atto- E 10718
peta- P 101 femto- P 1071
tera- T 1012 pico- T 10712
giga- G 10° nano- G 107
mega- M 10% micro- M 106
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Prefix Symbol Meaning Prefix Symbol Meaning
kilo- k 10 milli- k 10°
hecto- h 102 centi- h 1072
deka- da 10t deci- da 10

The only rule when using metric prefixes is that you cannot “double them up.” For example, if you have measurements in
petameters (1 Pm = 10'° m), it is not proper to talk about megagigameters, although 10° x 10° = 10'°. In practice, the only time this
becomes a bit confusing is when discussing masses. As we have seen, the base SI unit of mass is the kilogram (kg), but metric
prefixes need to be applied to the gram (g), because we are not allowed to “double-up” prefixes. Thus, a thousand kilograms (103
kg) is written as a megagram (1 Mg) since

10% kg =103 x 103 g=10° g=1 Mg. (1.4.1)

Incidentally, 103 kg is also called a metric ton, abbreviated t. This is one of the units outside the SI system considered acceptable
for use with ST units.

As we see in the next section, metric systems have the advantage that conversions of units involve only powers of 10. There are
100 cm in 1 m, 1000 m in 1 km, and so on. In nonmetric systems, such as the English system of units, the relationships are not as
simple—there are 12 in in 1 ft, 5280 ft in 1 mi, and so on.

Another advantage of metric systems is that the same unit can be used over extremely large ranges of values simply by scaling it
with an appropriate metric prefix. The prefix is chosen by the order of magnitude of physical quantities commonly found in the task
at hand. For example, distances in meters are suitable in construction, whereas distances in kilometers are appropriate for air travel,
and nanometers are convenient in optical design. With the metric system there is no need to invent new units for particular
applications. Instead, we rescale the units with which we are already familiar.

v/ Example 1.4.1: Using Metric Prefixes

Restate the mass 1.93 x 1013 kg using a metric prefix such that the resulting numerical value is bigger than one but less than
1000.

Strategy

Since we are not allowed to “double-up” prefixes, we first need to restate the mass in grams by replacing the prefix symbol k
with a factor of 103 (Table 1.4.2). Then, we should see which two prefixes in Table 1.4.2 are closest to the resulting power of
10 when the number is written in scientific notation. We use whichever of these two prefixes gives us a number between one
and 1000.

Solution

Replacing the k in kilogram with a factor of 103, we find that
1.93 x 10" kg=1.93 x 10"3 x 10° g =1.93 x 10%6 g.

From Table 1.4.2 we see that 10 is between “peta-” (10'°) and “exa-" (10'®). If we use the “peta-” prefix, then we find
that 1.93 x 10'® g = 1.93 x 10" Pg, since 16 = 1 + 15. Alternatively, if we use the “exa-” prefix we find that 1.93 x 10'® g =
1.93x 1072 Eg, since 16 = -2 + 18. Because the problem asks for the numerical value between one and 1000, we use the
“peta-” prefix and the answer is 19.3 Pg.

Significance

It is easy to make silly arithmetic errors when switching from one prefix to another, so it is always a good idea to check that
our final answer matches the number we started with. An easy way to do this is to put both numbers in scientific notation
and count powers of 10, including the ones hidden in prefixes. If we did not make a mistake, the powers of 10 should match
up. In this problem, we started with 1.93 x 10'3 kg, so we have 13 + 3 = 16 powers of 10. Our final answer in scientific
notation is 1.93 x 10! Pg, so we have 1 + 15 = 16 powers of 10. So, everything checks out.
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If this mass arose from a calculation, we would also want to check to determine whether a mass this large makes any sense
in the context of the problem. For this, Figure 1.4 might be helpful.

? Exercises 1.4.1

Restate 4.79 x 10° kg using a metric prefix such that the resulting number is bigger than one but less than 1000.

Answer

Add texts here. Do not delete this text first.

This page titled 1.4: Units and Standards is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

e 1.3: Units and Standards by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
e 1.2: The Scope and Scale of Physics by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-

physics-volume-1.
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1.5: Unit Conversion

&b Learning Objectives

o Use conversion factors to express the value of a given quantity in different units.

It is often necessary to convert from one unit to another. For example, if you are reading a European cookbook, some quantities
may be expressed in units of liters and you need to convert them to cups. Or perhaps you are reading walking directions from one
location to another and you are interested in how many miles you will be walking. In this case, you may need to convert units of
feet or meters to miles.

1.5.1 Dimensional Homogeneity

All theoretically derived equations that describe physical phenomena must be dimensionally homogeneous. An equation is
dimensionally homogeneous if the dimensions of both sides of the equation are the same and all additive terms have the same
dimensions.

1.5.2 Converting Units

The most common errors in using units occur when converting a physical quantity from one set of units to another set. When you
convert units you are not changing the size of the physical quantity, only the numerical value associated with the units in which it is
measured.

The relationship between two units for the same dimension are typically found in a handbook as an equivalence relation, such as
1 ft =12 in. Note again that the unit symbols are mathematical entities and cannot be neglected.

The key to converting units is to recall that multiplying a mathematical expression by unity (1) does not change the magnitude of
the mathematical expression. A unit conversion factor equals unity and can be constructed from an equivalence relation. Example
B.1 shows how to convert equivalence statements into unit conversion factors.

v/ Example 1.5.1

Convert the given equivalence relations into unit conversion factors.

Solution

1f6=12in = 1=122

ft
Ib
1slug=32.1741bm = 1=232.174 ——
slug
kmol
1 mol =0.001kmol = 1=0.001
mol
INop em o kem
52 s2

The left-hand column shows the equivalence relations from a handbook and the right-hand column shows the resulting unit
conversion factors. Notice how it would be mathematically incorrect to just drop the unit symbols.

The following Example illustrates how to perform a simple unit conversion for pressure, now that we have the unit conversion
factors.

v/ Example 1.5.2

Given a pressure of 13.0 1bf /in? (a) convert the pressure to 1bf/ £t2. (b) Now convert the pressure value to N /m?.

Solution

a)
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Ibf Ibf in\? Ibf
p=13.0 = =13.0 — X <12 3) =1872.0 —

in2 in? ft ft

b)

Ibf N lin \?2 N
—13.0 — x [ 4.448 — — ) = 27 —
p 30inz ><( 81bf>x(0.0254m) 89,6 7m2

1 1

If done, correctly the intermediate units should cancel. Check this out by drawing lines through the units that cancel.

Let’s consider a simple example of how to convert units. Suppose we want to convert 80 m to kilometers. The first thing to do is to
list the units you have and the units to which you want to convert. In this case, we have units in meters and we want to convert to
kilometers. Next, we need to determine a conversion factor relating meters to kilometers. A conversion factor is a ratio that
expresses how many of one unit are equal to another unit. For example, there are 12 in. in 1 ft, 1609 m in 1 mi, 100 cm in 1 m, 60 s
in 1 min, and so on. In this case, we know that there are 1000 m in 1 km. Now we can set up our unit conversion. We write the
units we have and then multiply them by the conversion factor so the units cancel out, as shown:

1km
—F— =0. . 1.5.1
80 - x 1000 0.080 km (1.5.1)

Note that the unwanted meter unit cancels, leaving only the desired kilometer unit. You can use this method to convert between any
type of unit. Now, the conversion of 80 m to kilometers is simply the use of a metric prefix, as we saw in the preceding section, so
we can get the same answer just as easily by noting that

80 m =8.0 x 10" m =8.0 x 1072 km = 0.080 km, (1.5.2)

since “kilo-” means 10 and 1 = -2 + 3. However, using conversion factors is handy when converting between units that are not
metric or when converting between derived units, as the following examples illustrate.

v/ Example 1.5.3: Converting Nonmetric Units to Metric

The distance from the university to home is 10 mi and it usually takes 20 min to drive this distance. Calculate the average
speed in meters per second (m/s). (Note: Average speed is distance traveled divided by time of travel.)

Strategy

First we calculate the average speed using the given units, then we can get the average speed into the desired units by
picking the correct conversion factors and multiplying by them. The correct conversion factors are those that cancel the
unwanted units and leave the desired units in their place. In this case, we want to convert miles to meters, so we need to
know the fact that there are 1609 m in 1 mi. We also want to convert minutes to seconds, so we use the conversion of 60 s
in 1 min.

Solution

Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for
now. Average speed and other motion concepts are covered in later chapters.) In equation form,

Distance
Average speed = ———
Time
Substitute the given values for distance and time:
10 ms mi
Average speed = ———— =0.50 —.
20 min min

Convert miles per minute to meters per second by multiplying by the conversion factor that cancels miles and leave meters,
and also by the conversion factor that cancels minutes and leave seconds:

mHE L 1609m Lmini  (0.50)(1609)
min 1 mete 60s 60

0.50

m/s=13 m/s.
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Significance
Check the answer in the following ways:

Be sure the units in the unit conversion cancel correctly. If the unit conversion factor was written upside down, the units do
not cancel correctly in the equation. We see the “miles” in the numerator in 0.50 mi/min cancels the “mile” in the
denominator in the first conversion factor. Also, the “min” in the denominator in 0.50 mi/min cancels the “min” in the
numerator in the second conversion factor. Check that the units of the final answer are the desired units. The problem asked
us to solve for average speed in units of meters per second and, after the cancelations, the only units left are a meter (m) in
the numerator and a second (s) in the denominator, so we have indeed obtained these units.

v Example 1.5.4: Converting between Metric Units

The density of iron is 7.86 g/cm? under standard conditions. Convert this to kg/m3.

Strategy

We need to convert grams to kilograms and cubic centimeters to cubic meters. The conversion factors we need are 1 kg =
10% g and 1 cm = 107?m. However, we are dealing with cubic centimeters (cm® = cm x cm x cm), so we have to use the
second conversion factor three times (that is, we need to cube it). The idea is still to multiply by the conversion factors in
such a way that they cancel the units we want to get rid of and introduce the units we want to keep.

Solution
k c 3 7.86
7.86 }";/ X 103g)q/ X (10’_:{1%) = W kg/m® =17.86 x 10° kg/m?
C

Significance
Remember, it’s always important to check the answer.

Be sure to cancel the units in the unit conversion correctly. We see that the gram (“g”) in the numerator in 7.86 g/cm?
cancels the “g” in the denominator in the first conversion factor. Also, the three factors of “cm” in the denominator in 7.86
g/cm® cancel with the three factors of “cm” in the numerator that we get by cubing the second conversion factor. Check that
the units of the final answer are the desired units. The problem asked for us to convert to kilograms per cubic meter. After
the cancelations just described, we see the only units we have left are “kg” in the numerator and three factors of “m” in the

denominator (that is, one factor of “m” cubed, or “rn3”). Therefore, the units on the final answer are correct.

Unit conversions may not seem very interesting, but not doing them can be costly. One famous example of this situation was seen
with the Mars Climate Orbiter. This probe was launched by NASA on December 11, 1998. On September 23, 1999, while
attempting to guide the probe into its planned orbit around Mars, NASA lost contact with it. Subsequent investigations showed a
piece of software called SM_FORCES (or “small forces”) was recording thruster performance data in the English units of pound-
seconds (b * s). However, other pieces of software that used these values for course corrections expected them to be recorded in the
SI units of newton-seconds (N ¢ s), as dictated in the software interface protocols. This error caused the probe to follow a very
different trajectory from what NASA thought it was following, which most likely caused the probe either to burn up in the Martian
atmosphere or to shoot out into space. This failure to pay attention to unit conversions cost hundreds of millions of dollars, not to
mention all the time invested by the scientists and engineers who worked on the project.

Given that 1 Ib (pound) is 4.45 N, were the numbers being output by SM_FORCES too big or too small?

v/ Example 1.5.5

A tank contains 15 mol of an ideal gas. The pressure in the tank is 1500 kPa and the volume of the tank is 10 m®. The ideal
gas constant is 8.314 kJ /(kmol - K). Determine the temperature of the gas in the tank.
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Strategy
The ideal gas equationis pV =nRT.
We solve for T = i
nR
% (1500 kPa) x (10 m®) 15000 kPa - m? kJ
P T=— = - = 3 Pam? | 120.3 K
nB (15 kmol) x (8.314 ——— 12471 — L2
kmol - K K 1

Again, the check is to see if the appropriate units cancel out.

1.5.3 Weight and Mass

People frequently confuse the terms weight and mass. The weight of an object is the force exerted by the earth's gravitational field
on the object. Mathematically, W = mg, where m is the mass of the object and g is the local gravitational field strength. The local
gravitational field strength is also referred to as the local acceleration of gravity.

Standard values for the local gravitational field strength are
g=19.80665 N/kg = 32.174 1bf/slug = 1.000 1bf/1bm.
Standard values for the local acceleration of gravity are
g=9.80665 m/s” = 32.174ft/s>.

TEST YOURSELF: Why do these two interpretations for g come up with similar numbers but different units?

Much of the confusion about mass and weight can be directly attributed to the fact that the mass and force units in the American
Engineering System are both called "pounds." To eliminate this problem, it is highly recommended that you only talk about pound-
force (Ibf) or a pound-mass (Ibm). You would never confuse a newton with a kilogram, but then they have different names.
Unfortunately, you will still find "pound" and "1b" used frequently to mean both mass and weight. Always approach "pounds" with
caution when doing calculations. Remember that the weight of an object is always a function of the local gravitational field
strength, but its mass is independent of the gravitational field.

This page titled 1.5: Unit Conversion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

e 1.4: Unit Conversion by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.
e 9.2: Appendix B- Dimensions and Units has no license indicated.
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1.6: Dimensional Analysis

&b Learning Objectives

o Find the dimensions of a mathematical expression involving physical quantities.
e Determine whether an equation involving physical quantities is dimensionally consistent.

The dimension of any physical quantity expresses its dependence on the base quantities as a product of symbols (or powers of
symbols) representing the base quantities. Table 1.6.1 lists the base quantities and the symbols used for their dimension. For
example, a measurement of length is said to have dimension L or L', a measurement of mass has dimension M or M!, and a
measurement of time has dimension T or T!. Like units, dimensions obey the rules of algebra. Thus, area is the product of two
lengths and so has dimension L2, or length squared. Similarly, volume is the product of three lengths and has dimension L2, or
length cubed. Speed has dimension length over time, L/T or LT~ Volumetric mass density has dimension M/L3 or ML, or mass
over length cubed. In general, the dimension of any physical quantity can be written as

LM°TI1‘0° N’ J? (1.6.1)

for some powers a, b, ¢, d, e, f, and g. We can write the dimensions of a length in this form with a = 1 and the remaining six powers
all set equal to zero:

L} = L'MOT°1°@°N° J°, (1.6.2)

Any quantity with a dimension that can be written so that all seven powers are zero (that is, its dimension is L' M°T°1°@°N°J%)
is called dimensionless (or sometimes “of dimension 1,” because anything raised to the zero power is one). Physicists often call
dimensionless quantities pure numbers.

Table 1.6.1: Base Quantities and Their Dimensions

Base Quantity Symbol for Dimension
Length L
Mass M
Time T
Current I
Thermodynamic Temperature S}
Amount of Substance N
Luminous Intensity J

Physicists often use square brackets around the symbol for a physical quantity to represent the dimensions of that quantity. For
example, if r is the radius of a cylinder and h is its height, then we write [r] = L and [h] = L to indicate the dimensions of the radius
and height are both those of length, or L. Similarly, if we use the symbol A for the surface area of a cylinder and V for its volume,
then [A] = L2 and [V] = L3. If we use the symbol m for the mass of the cylinder and p for the density of the material from which
the cylinder is made, then [m] =M and [p] = ML3.

The importance of the concept of dimension arises from the fact that any mathematical equation relating physical quantities must
be dimensionally consistent, which means the equation must obey the following rules:

o Every term in an expression must have the same dimensions; it does not make sense to add or subtract quantities of differing
dimension (think of the old saying: “You can’t add apples and oranges™). In particular, the expressions on each side of the
equality in an equation must have the same dimensions.

e The arguments of any of the standard mathematical functions such as trigonometric functions (such as sine and cosine),
logarithms, or exponential functions that appear in the equation must be dimensionless. These functions require pure numbers
as inputs and give pure numbers as outputs.
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If either of these rules is violated, an equation is not dimensionally consistent and cannot possibly be a correct statement of physical
law. This simple fact can be used to check for typos or algebra mistakes, to help remember the various laws of physics, and even to
suggest the form that new laws of physics might take. This last use of dimensions is beyond the scope of this text, but is something
you will undoubtedly learn later in your academic career.

v/ Example 1.6.1: Using Dimensions to Remember an Equation

Suppose we need the formula for the area of a circle for some computation. Like many people who learned geometry too long
ago to recall with any certainty, two expressions may pop into our mind when we think of circles: 7w and 27r. One expression
is the circumference of a circle of radius r and the other is its area. But which is which?

Strategy

One natural strategy is to look it up, but this could take time to find information from a reputable source. Besides, even if
we think the source is reputable, we shouldn’t trust everything we read. It is nice to have a way to double-check just by
thinking about it. Also, we might be in a situation in which we cannot look things up (such as during a test). Thus, the
strategy is to find the dimensions of both expressions by making use of the fact that dimensions follow the rules of algebra.
If either expression does not have the same dimensions as area, then it cannot possibly be the correct equation for the area
of a circle.

Solution

We know the dimension of area is L2. Now, the dimension of the expression mr? is

[xr?] =[] [r] =1. L* = L?, (1.6.3)

since the constant 7 is a pure number and the radius r is a length. Therefore, 7% has the dimension of area. Similarly,
the dimension of the expression 277 is

[27r] = 2] [7) [] =1-1- L =L, (1.6.4)

since the constants 2 and 7 are both dimensionless and the radius r is a length. We see that 27rr has the dimension of
length, which means it cannot possibly be an area.

We rule out 277 because it is not dimensionally consistent with being an area. We see that w2 is dimensionally
consistent with being an area, so if we have to choose between these two expressions, 772 is the one to choose.

Significance

This may seem like kind of a silly example, but the ideas are very general. As long as we know the dimensions of the
individual physical quantities that appear in an equation, we can check to see whether the equation is dimensionally
consistent. On the other hand, knowing that true equations are dimensionally consistent, we can match expressions from
our imperfect memories to the quantities for which they might be expressions. Doing this will not help us remember
dimensionless factors that appear in the equations (for example, if you had accidentally conflated the two expressions
from the example into 2772, then dimensional analysis is no help), but it does help us remember the correct basic form
of equations.

v Example 1.6.2: Checking Equations for Dimensional Consistency

Consider the physical quantities s, v, a, and t with dimensions [s] = L, [v] = LT Y, [a] = LT 2, and [t] = T. Determine whether
each of the following equations is dimensionally consistent:

as=vt+ 0.5at2;
b. s = viZ + 0.5at; and

2
C. v =sin (%).

Strategy

By the definition of dimensional consistency, we need to check that each term in a given equation has the same dimensions
as the other terms in that equation and that the arguments of any standard mathematical functions are dimensionless.
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Solution

a. There are no trigonometric, logarithmic, or exponential functions to worry about in this equation, so we need only
look at the dimensions of each term appearing in the equation. There are three terms, one in the left expression and
two in the expression on the right, so we look at each in turn:

[s]=L (1.6.5)
[vt] =[v]- t] =LT 1 T=LT =L (1.6.6)
[0.5at?| = [a]- [t|* = LT 2-T*>=LT° = L. (1.6.7)

b. Again, there are no trigonometric, exponential, or logarithmic functions, so we only need to look at the dimensions
of each of the three terms appearing in the equation:

[s]=L (1.6.8)
[vt?] =[v]- [t]? =LT - T*=LT (1.6.9)
[at] =[a]- [t] = LT 2-T=LT" . (1.6.10)

None of the three terms has the same dimension as any other, so this is about as far from being dimensionally consistent
as you can get. The technical term for an equation like this is nonsense.

c¢. This equation has a trigonometric function in it, so first we should check that the argument of the sine function is
dimensionless:
la-[t)? LT2T? L

[‘%2]2 F— =7 =1 (1.6.11)

The argument is dimensionless. So far, so good. Now we need to check the dimensions of each of the two terms (that is,
the left expression and the right expression) in the equation:

[v] = LT ! (1.6.12)

o ()] - o

The two terms have different dimensions—meaning, the equation is not dimensionally consistent. This equation is
another example of “nonsense.”

Significance

If we are trusting people, these types of dimensional checks might seem unnecessary. But, rest assured, any textbook on
a quantitative subject such as physics (including this one) almost certainly contains some equations with typos.
Checking equations routinely by dimensional analysis save us the embarrassment of using an incorrect equation. Also,
checking the dimensions of an equation we obtain through algebraic manipulation is a great way to make sure we did
not make a mistake (or to spot a mistake, if we made one).

One further point that needs to be mentioned is the effect of the operations of calculus on dimensions. We have seen that
dimensions obey the rules of algebra, just like units, but what happens when we take the derivative of one physical quantity with
respect to another or integrate a physical quantity over another? The derivative of a function is just the slope of the line tangent to
its graph and slopes are ratios, so for physical quantities v and t, we have that the dimension of the derivative of v with respect to t
is just the ratio of the dimension of v over that of t:

[%} _ % (1.6.14)

Similarly, since integrals are just sums of products, the dimension of the integral of v with respect to t is simply the dimension of v
times the dimension of t:
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[/vdt] — o] 8. (1.6.15)

By the same reasoning, analogous rules hold for the units of physical quantities derived from other quantities by integration or
differentiation.

This page titled 1.6: Dimensional Analysis is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

e 1.5: Dimensional Analysis by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-

volume-1.
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1.7: How to Solve Problems in this Course

&b Learning Objectives

o Describe the process for developing a problem-solving strategy.
o Explain how to find the numerical solution to a problem.
e Summarize the process for assessing the significance of the numerical solution to a problem.

Problem-solving skills are clearly essential to success in a quantitative course in physics. More important, the ability to apply broad
physical principles—usually represented by equations—to specific situations is a very powerful form of knowledge. It is much
more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations
whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for
solving problems in this text and for applying physics in everyday life.

As you are probably well aware, a certain amount of creativity and insight is required to solve problems. No rigid procedure works
every time. Creativity and insight grow with experience. With practice, the basics of problem solving become almost automatic.
One way to get practice is to work out the text’s examples for yourself as you read. Another is to work as many end-of-section
problems as possible, starting with the easiest to build confidence and then progressing to the more difficult. After you become
involved in physics, you will see it all around you, and you can begin to apply it to situations you encounter outside the classroom,
just as is done in many of the applications in this text.

Although there is no simple step-by-step method that works for every problem, the following processes facilitates problem solving
and make it more meaningful. Two approaches are provided:

Physics Approach

For this approach, a three-stage process is usedl. The three stages are strategy, solution, and significance. This process is used in
examples throughout the book. Here, we look at each stage of the process in turn.

1.7.1 Strategy

Strategy is the beginning stage of solving a problem. The idea is to figure out exactly what the problem is and then develop a
strategy for solving it. Some general advice for this stage is as follows:

o Examine the situation to determine which physical principles are involved. It often helps to draw a simple sketch at the
outset. You often need to decide which direction is positive and note that on your sketch. When you have identified the physical
principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation
is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical
quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.

e Make a list of what is given or can be inferred from the problem as stated (identify the “knowns”). Many problems are
stated very succinctly and require some inspection to determine what is known. Drawing a sketch be very useful at this point as
well. Formally identifying the knowns is of particular importance in applying physics to real-world situations. For example, the
word stopped means the velocity is zero at that instant. Also, we can often take initial time and position as zero by the
appropriate choice of coordinate system.

o Identify exactly what needs to be determined in the problem (identify the unknowns). In complex problems, especially, it
is not always obvious what needs to be found or in what sequence. Making a list can help identify the unknowns.

o Determine which physical principles can help you solve the problem. Since physical principles tend to be expressed in the
form of mathematical equations, a list of knowns and unknowns can help here. It is easiest if you can find equations that contain
only one unknown—that is, all the other variables are known—so you can solve for the unknown easily. If the equation contains
more than one unknown, then additional equations are needed to solve the problem. In some problems, several unknowns must
be determined to get at the one needed most. In such problems it is especially important to keep physical principles in mind to
avoid going astray in a sea of equations. You may have to use two (or more) different equations to get the final answer.
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1.7.2 Solution

The solution stage is when you do the math. Substitute the knowns (along with their units) into the appropriate equation and
obtain numerical solutions complete with units. That is, do the algebra, calculus, geometry, or arithmetic necessary to find the
unknown from the knowns, being sure to carry the units through the calculations. This step is clearly important because it produces
the numerical answer, along with its units. Notice, however, that this stage is only one-third of the overall problem-solving process.

1.7.3 Significance

After having done the math in the solution stage of problem solving, it is tempting to think you are done. But, always remember
that physics is not math. Rather, in doing physics, we use mathematics as a tool to help us understand nature. So, after you obtain a
numerical answer, you should always assess its significance:

¢ Check your units. If the units of the answer are incorrect, then an error has been made and you should go back over your
previous steps to find it. One way to find the mistake is to check all the equations you derived for dimensional consistency.
However, be warned that correct units do not guarantee the numerical part of the answer is also correct.

¢ Check the answer to see whether it is reasonable. Does it make sense? This step is extremely important: —the goal of physics
is to describe nature accurately. To determine whether the answer is reasonable, check both its magnitude and its sign, in
addition to its units. The magnitude should be consistent with a rough estimate of what it should be. It should also compare
reasonably with magnitudes of other quantities of the same type. The sign usually tells you about direction and should be
consistent with your prior expectations. Your judgment will improve as you solve more physics problems, and it will become
possible for you to make finer judgments regarding whether nature is described adequately by the answer to a problem. This
step brings the problem back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper
understanding of physics than just being able to solve a problem mechanically.

o Check to see whether the answer tells you something interesting. What does it mean? This is the flip side of the question:
Does it make sense? Ultimately, physics is about understanding nature, and we solve physics problems to learn a little
something about how nature operates. Therefore, assuming the answer does make sense, you should always take a moment to
see if it tells you something about the world that you find interesting. Even if the answer to this particular problem is not very
interesting to you, what about the method you used to solve it? Could the method be adapted to answer a question that you do
find interesting? In many ways, it is in answering questions such as these science that progresses.

Engineering Approach
The engineering approach is not fundamentally different from the approach described above. In other words, either approach
works.

Engineering problem solving is based on the study of models that describe real systems. In every case, the real system must be
modeled by making simplifying assumptions before any mathematical or empirical analysis can be performed. Realistic and useful
answers can only be obtained if the modeling assumptions "catch" the important features of the problem. The behavior of any
model is constrained by the physical laws it incorporates and the modeling assumptions used in its development. Two different
models for the same system may behave in entirely different ways. The engineers' job is to develop the "best" model for the
problem at hand.

Because most mistakes are made in the process of developing the model it is essential that you learn to solve problems in a
methodical fashion that documents your solution process including your modeling assumptions. Engineering calculations are part
of the archival record of any engineering project and are frequently referred to years after the original work is completed. Many a
junior engineer begins a new job by reviewing engineering calculations performed by others.

To help you develop your engineering problem solving skills, a multi-step process is proposed to help you (1) organize your
thoughts, (2) document your solution, and (3) improve your ability to solve new problems. A summary of the steps is presented in
Figure A-1. A sample problem showing the format can be found at the end of this appendix. As with any heuristic, this one does
not guarantee a solution; however, its usefulness has been proven so frequently that we want you to use it in this course.
Figure A-1
SUMMARY OF PROBLEM SOLVING STEPS
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SUMMARY OF PROBLEM SOLVING STEPS

KNOWN: In your own words, state briefly what is known. (Step #1)
FIND: State concisely what you are trying to find. (Step #2)
GIVEN: Translate the problem word statement into sketches and symbolic notation. All pertinent information given explicitly in the
problem statement should be listed here. (Step #3)
ANALYSIS: Develop a model and solve for desired information.
e Develop a strategy. (STRATEGY) (Step #4)
e Make modeling assumptions. (Clearly identified.) (Step #5)
o Develop and solve the model. (Step #6)

o Develop symbolic solutions.

o Calculate numerical values.

o Check the reasonableness of your answers.
COMMENT: Discuss your results. (Step #7)

A more detailed discussion of each step is presented in the following sections. (Based on material in Fundamentals of Engineering
Thermodynamics by M. J. Moran and H. N. Shapiro, J. Wiley & Sons, Inc., New York, 1988.)

KNOWN: In your own words, state briefly what is known. Read the problem statement and think about what it says. Do not just
blindly copy the problem statement over again or list every detail of the problem. Construct a short sentence that summarizes the
situation.

FIND: State concisely what you are trying to find. (If you don't know what you are looking for, how do you know when you've
found it?) Do not just copy (a)...., (b)...., etc. from the problem and do not assume that you must find things in the order implied in
the problem statement.

GIVEN: Translate the word statement of the problem into engineering sketches and symbolic notation. When completed, you
should be able to throw away the original problem statement because you have recorded all of the pertinent information.

Draw and label a sketch of the physical system or device. (If you cannot visualize the problem, you probably can't solve it!) If you
anticipate using a conservation or accounting principle, identify the boundaries (control surfaces) of the system you select for your
analysis and identify the interactions between this system and the surroundings, e.g. forces, work, mass flow, etc.

Define symbols for the important variables and parameters of the problem. Record the numerical values given for the important
variables and parameters.

Label the diagram with all relevant information from the problem statement. This is where you record all of the information
explicitly given in the problem statement.

Be especially wary of making implicit assumptions as you prepare this section. Recognize the difference between information that
is given explicitly in the problem and your interpretation of the information.

ANALYSIS: It is in this section that an appropriate mathematical model is developed and used to find the desired information. As
you prepare this section, carefully annotate your solution with words that describe what you are doing. This commentary is
invaluable in exposing your thought processes and if need be in recreating it at a later time.

o Develop a strategy. Every solution should include some initial statements that reveal your plan for solving the problem. As a
starting point, clearly state what you believe to be the physical laws or concepts that will be important in solving this problem.
What's the property to be counted? What’s the appropriate system? What's the appropriate time period? What constitutive
relationships may be required?

Your initial strategy may not be the best approach or the only approach. It may not even be correct approach, but as you proceed
through the analysis process your plans may change. As they do just document them.

To stress the importance of consciously thinking about the problem, every analysis section should start with a brief subsection
labeled STRATEGY.

o Make modeling assumptions. Every problem solution requires that you make modeling assumptions. These assumptions are
based on the information given in the problem statement, your interpretation of the given information, and your understanding
of the underlying phenomena. Every model begins with universally accepted natural laws, and the assumptions provide the
traceable link between the fundamental laws and problem-specific model you have developed. All assumptions should be
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clearly identified as they are applied. You should be able to give a logical reason for every modeling assumption you make. If
you cannot, it probably is an incorrect assumption.

Some problem solving formats call for a separate section listing all assumptions before you begin your analysis. There are two
problems with this approach. First, experience shows that it is often difficult to know exactly what assumptions to make until
you are building the model. Secondly, separating the assumptions from their application in the model tends to hide how they
influence the modeling process. If a summary list is desired, it should be prepared after the analysis is completed.

¢ Develop symbolic solutions. Symbolic solutions are critical in engineering analysis and should always be developed and
examined before you insert numerical values. The physics is in the symbolic solution, not the numerical answer. If the symbolic
solution is incorrect, there’s no hope for the numbers. If possible, solve an equation for the unknown quantity and isolate it on
one side of the equal sign. It is desirable to work with symbolic equations as long as possible before substituting in numbers for
many reasons. Symbolic solutions are especially useful when you are looking for errors, for solving parametric problems where
certain parameters change, and are much easier to modify as your model develops. Look for groups of terms or ways to
rearrange you symbolic answer that simplify the equation and allow you to check for dimensional consistency. Groups of terms
with physical meaning or logical intermediate values should be assigned a unique symbol. Numerical values for these
intermediate answers can then be calculated and checked separately.

¢ Calculate numerical values. Examine your symbolic solution and see if it makes sense. Once you are satisfied with the
symbolic solution, substitute in the numbers and calculate the numerical answer. It is good practice to identify the source, e.g.
table, chart, or book, of all numerical data used in the solution, especially if it is not common knowledge. It is also good
practice to calculate intermediate or partial numerical answers when you are faced with a very long computation or complicated
equation. This prevents calculator errors from creeping into a problem and gives you an opportunity to check the answers
against your physical intuition.

o Check the reasonableness of your answers. Once you have a numerical answer, consider the magnitude and sign of all values
and decide whether they are reasonable. One way to do this is to compare your answer against the results of a simpler model or
models that would be expected to bracket your answer. Try different units for the answer, say gallons per minute instead of liters
per second, to match your experience.

As you prepare the analysis, do not waste time recopying the solution over again if you reach a dead end or make a mistake. Just
cross out the error, clearly identify the mistake, and keep going. Textbook examples and professors' notes give the mistaken
impression that problem solving is a linear process that follows a single path with no mistakes and no side trips. Everyone makes
mistakes, takes unexpected side trips, and forgets to make an important assumption.

Successful problem solvers acknowledge these diversions and learn from them. You should never start a problem more than once;
however, your solution may take several turns before you are satisfied with the answer. The record of your journey is important.
Don't "clean up" the solution. Clean up your standard problem solving method because a sloppy solution is usually the result of
sloppy thinking. Get in the habit of attacking every problem in the same way. Scrap paper is meant for doodles, not engineering
calculations.

COMMENTS: Discuss your results briefly. Comment on what you learned, identify key aspects of the solution, and indicate how
your model might be improved by changing assumptions. Consciously check the validity of your answer by considering simpler
models. Don't wait for someone else (like your boss or instructor) to find an error in your work by performing a five-minute "back-
of-the-envelope" calculation you could have performed before submitting your answer.

This page titled 1.7: How to Solve Problems in this Course is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

« 1.8: Solving Problems in Physics by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.

¢ 9.1: Appendix A- Solving Engineering Problems - A Problem-Solving Heuristic has no license indicated.
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1.E: Practice-

1.E.1 Conceptual Questions

1.E.1.1 The Scope and Scale of Physics

1. What is physics?

2. Some have described physics as a “search for simplicity.” Explain why this might be an appropriate description.

3. If two different theories describe experimental observations equally well, can one be said to be more valid than the other
(assuming both use accepted rules of logic)?

4. What determines the validity of a theory?

5. Certain criteria must be satisfied if a measurement or observation is to be believed. Will the criteria necessarily be as strict for
an expected result as for an unexpected result?

6. Can the validity of a model be limited or must it be universally valid? How does this compare with the required validity of a
theory or a law?

1.E.1.2 Units and Standards
7. Identify some advantages of metric units.
8. What are the SI base units of length, mass, and time?
9. What is the difference between a base unit and a derived unit? (b) What is the difference between a base quantity and a derived
quantity? (c) What is the difference between a base quantity and a base unit?

10. For each of the following scenarios, refer to Figure 1.4 and Table 1.2 to determine which metric prefix on the meter is most
appropriate for each of the following scenarios. (a) You want to tabulate the mean distance from the Sun for each planet in the
solar system. (b) You want to compare the sizes of some common viruses to design a mechanical filter capable of blocking the
pathogenic ones. (c) You want to list the diameters of all the elements on the periodic table. (d) You want to list the distances to
all the stars that have now received any radio broadcasts sent from Earth 10 years ago.

1.E.1.3 Significant Figures
11. (a) What is the relationship between the precision and the uncertainty of a measurement? (b) What is the relationship between
the accuracy and the discrepancy of a measurement?

1.E.1.4 Solving Problems in Physics
12. What information do you need to choose which equation or equations to use to solve a problem?
13. What should you do after obtaining a numerical answer when solving a problem?

1.E.2 Problems

1.E.2.1 The Scope and Scale of Physics
14. Find the order of magnitude of the following physical quantities.

a. The mass of Earth’s atmosphere: 5.1 x 1018 kg;
b. The mass of the Moon’s atmosphere: 25,000 kg;
c. The mass of Earth’s hydrosphere: 1.4 x 102 kg;
d. The mass of Earth: 5.97 x 1024 kg;

e. The mass of the Moon: 7.34 x 1022 kg;

f. The Earth-Moon distance (semi-major axis): 3.84 x 108 m;
g. The mean Earth-Sun distance: 1.5 x 101 m;

h. The equatorial radius of Earth: 6.38 x 105 m;

i. The mass of an electron: 9.11 x 10731 kg;

j. The mass of a proton: 1.67 x 10727 kg;

k. The mass of the Sun: 1.99 x 1030 kg.

15. Use the orders of magnitude you found in the previous problem to answer the following questions to within an order of
magnitude.

a. How many electrons would it take to equal the mass of a proton?
b. How many Earths would it take to equal the mass of the Sun?
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¢. How many Earth-Moon distances would it take to cover the distance from Earth to the Sun?
d. How many Moon atmospheres would it take to equal the mass of Earth’s atmosphere?

e. How many moons would it take to equal the mass of Earth?

f. How many protons would it take to equal the mass of the Sun?

For the remaining questions, you need to use Figure 1.4 to obtain the necessary orders of magnitude of lengths, masses, and times.

16. Roughly how many heartbeats are there in a lifetime?

17. A generation is about one-third of a lifetime. Approximately how many generations have passed since the year 0 AD?

18. Roughly how many times longer than the mean life of an extremely unstable atomic nucleus is the lifetime of a human?

19. Calculate the approximate number of atoms in a bacterium. Assume the average mass of an atom in the bacterium is 10 times
the mass of a proton.

20. (a) Calculate the number of cells in a hummingbird assuming the mass of an average cell is 10 times the mass of a bacterium.
(b) Making the same assumption, how many cells are there in a human?

21. Assuming one nerve impulse must end before another can begin, what is the maximum firing rate of a nerve in impulses per
second?

22. About how many floating-point operations can a supercomputer perform each year?

23. Roughly how many floating-point operations can a supercomputer perform in a human lifetime?

1.E.2.2 Units and Standards
24. The following times are given using metric prefixes on the base SI unit of time: the second. Rewrite them in scientific notation
without the prefix. For example, 47 Ts would be rewritten as 4.7 x 103 s.

a. 980 Ps;
b. 980 fs;
c. 17 ns;
d. 577 ps.
25. The following times are given in seconds. Use metric prefixes to rewrite them so the numerical value is greater than one but less
than 1000. For example, 7.9 x 1072 s could be written as either 7.9 cs or 79 ms.

a. 9.57 x 10°s;
b. 0.045 s;
€. 5.5%x1077s;
d. 3.16 x 107 s.
26. The following lengths are given using metric prefixes on the base SI unit of length: the meter. Rewrite them in scientific
notation without the prefix. For example, 4.2 Pm would be rewritten as 4.2 x 10> m.

a. 89 Tm;
b. 89 pm;
c. 711 mm;
d. 0.45 pm.
27. The following lengths are given in meters. Use metric prefixes to rewrite them so the numerical value is bigger than one but less
than 1000. For example, 7.9 x 1072 m could be written either as 7.9 cm or 79 mm.
a. 7.59 x 107 m;
b. 0.0074 m;
c. 8.8x10 11 m;
d. 1.63 x 1013 m.
28. The following masses are written using metric prefixes on the gram. Rewrite them in scientific notation in terms of the SI base
unit of mass: the kilogram. For example, 40 Mg would be written as 4 x 10% kg.

a. 23 mg;
b. 320 Tg;
c. 42 ng;
d 7g;

e. 9 Pg.
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29. The following masses are given in kilograms. Use metric prefixes on the gram to rewrite them so the numerical value is bigger
than one but less than 1000. For example, 7 x 10—4 kg could be written as 70 cg or 700 mg.
a. 3.8 x 10-5 kg;
b. 2.3 x 1017 kg;
c 2.4 x10-11 kg;
d. 8 x 1015 kg;
e. 4.2 x 10-3 kg.

1.E.2.3 Unit Conversion

30. The volume of Earth is on the order of 102! m3. (a) What is this in cubic kilometers (km3)? (b) What is it in cubic miles (mi3)?
(c) What is it in cubic centimeters (cm?3)?

31. The speed limit on some interstate highways is roughly 100 km/h. (a) What is this in meters per second? (b) How many miles
per hour is this?

32. A car is traveling at a speed of 33 m/s. (a) What is its speed in kilometers per hour? (b) Is it exceeding the 90 km/ h speed limit?

33. In SI units, speeds are measured in meters per second (m/s). But, depending on where you live, you’re probably more
comfortable of thinking of speeds in terms of either kilometers per hour (km/h) or miles per hour (mi/h). In this problem, you
will see that 1 m/s is roughly 4 km/h or 2 mi/h, which is handy to use when developing your physical intuition. More precisely,
show that (a) 1.0 m/s = 3.6 km/h and (b) 1.0 m/s = 2.2 mi/h.

34. American football is played on a 100-yd-long field, excluding the end zones. How long is the field in meters? (Assume that 1 m
=3.281 ft.)

35. Soccer fields vary in size. A large soccer field is 115 m long and 85.0 m wide. What is its area in square feet? (Assume that 1 m
=3.281 ft.)

36. What is the height in meters of a person who is 6 ft 1.0 in. tall?

37. Mount Everest, at 29,028 ft, is the tallest mountain on Earth. What is its height in kilometers? (Assume that 1 m = 3.281 ft.)

38. The speed of sound is measured to be 342 m/s on a certain day. What is this measurement in kilometers per hour?

39. Tectonic plates are large segments of Earth’s crust that move slowly. Suppose one such plate has an average speed of 4.0 cm/yr.
(a) What distance does it move in 1.0 s at this speed? (b) What is its speed in kilometers per million years?

40. The average distance between Earth and the Sun is 1.5 x 1011 m. (a) Calculate the average speed of Earth in its orbit (assumed
to be circular) in meters per second. (b) What is this speed in miles per hour?

41. The density of nuclear matter is about 1018 kg/m3. Given that 1 mL is equal in volume to cm3, what is the density of nuclear
matter in megagrams per microliter (that is, Mg/pL)?

42. The density of aluminum is 2.7 g/cm3. What is the density in kilograms per cubic meter?

43. A commonly used unit of mass in the English system is the pound-mass, abbreviated Ibm, where 1 Ibm = 0.454 kg. What is the
density of water in pound-mass per cubic foot?

44. A furlong is 220 yd. A fortnight is 2 weeks. Convert a speed of one furlong per fortnight to millimeters per second.

45. Tt takes 27 radians (rad) to get around a circle, which is the same as 360°. How many radians are in 1°?

46. Light travels a distance of about 3 x 108 m/s. A light-minute is the distance light travels in 1 min. If the Sunis 1.5 x 1011 m
from Earth, how far away is it in lightminutes?

47. A light-nanosecond is the distance light travels in 1 ns. Convert 1 ft to light-nanoseconds.

48. An electron has a mass of 9.11 x 10731 kg. A proton has a mass of 1.67 x 10727 kg. What is the mass of a proton in electron-
masses?

49. A fluid ounce is about 30 mL. What is the volume of a 12 fl-oz can of soda pop in cubic meters?

1.E.2.4 Dimensional Analysis

50. A student is trying to remember some formulas from geometry. In what follows, assume A is area, V is volume, and all other
variables are lengths. Determine which formulas are dimensionally consistent. (a) V = 7r2h; (b) A = 2712 4 27rh; (¢) V =
0.5bh; (d) V = 7d?; (e) V = 2L

51. Consider the physical quantities s, v, a, and t with dimensions [s] = L, [v] = LT, [a] = LT ™2, and [t] = T. Determine whether
each of the following equations is dimensionally consistent. (a) v2 = 2as; (b) s = vt2 + 0.5at%; (c) v = s/t; (d) a = v/t.

52. Consider the physical quantities m, s, v, a, and t with dimensions [m] = M, [s] = L, [v] = LT-1, [a] = LT 2, and [t] = T. Assuming
each of the following equations is dimensionally consistent, find the dimension of the quantity on the left-hand side of the
equation: (a) F = ma; (b) K = 0.5mv?2 ; (c) p = mv; (d) W = mas; (e) L = mvr.
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53. Suppose quantity s is a length and quantity t is a time. Suppose the quantities v and a are defined by v = ds/dt and a = dv/dt. (a)
What is the dimension of v? (b) What is the dimension of the quantity a? What are the dimensions of (c) f vdt, (d) f adt, and (e)
da/dt?

54. Suppose [V] = L3, [p] = ML, and [t] = T. (a) What is the dimension of f pdV ? (b) What is the dimension of dV/dt? (c) What
is the dimension of p(dV/dt)?

55. The arc length formula says the length s of arc subtended by angle © in a circle of radius r is given by the equation s = r©.
What are the dimensions of (a) s, (b) r, and (c) ©?

1.E.2.5 Significant Figures

66. Consider the equation 4000/400 = 10.0. Assuming the number of significant figures in the answer is correct, what can you say
about the number of significant figures in 4000 and 400?

67. Suppose your bathroom scale reads your mass as 65 kg with a 3% uncertainty. What is the uncertainty in your mass (in
kilograms)?

68. A good-quality measuring tape can be off by 0.50 cm over a distance of 20 m. What is its percent uncertainty?

69. An infant’s pulse rate is measured to be 130 + 5 beats/ min. What is the percent uncertainty in this measurement?

70. (a) Suppose that a person has an average heart rate of 72.0 beats/min. How many beats does he or she have in 2.0 years? (b) In
2.00 years? (c) In 2.000 years?

71. A can contains 375 mL of soda. How much is left after 308 mL is removed?

72. State how many significant figures are proper in the results of the following calculations: (a) (106.7)(98.2) / (46.210)(1.01); (b)
(18.7)%; (c) (1.60 x 10719)(3712)

73. (a) How many significant figures are in the numbers 99 and 100.? (b) If the uncertainty in each number is 1, what is the percent
uncertainty in each? (c) Which is a more meaningful way to express the accuracy of these two numbers: significant figures or
percent uncertainties?

74. (a) If your speedometer has an uncertainty of 2.0 km/h at a speed of 90 km/h, what is the percent uncertainty? (b) If it has the
same percent uncertainty when it reads 60 km/ h, what is the range of speeds you could be going?

75. (a) A person’s blood pressure is measured to be 120 + 2 mm Hg. What is its percent uncertainty? (b) Assuming the same
percent uncertainty, what is the uncertainty in a blood pressure measurement of 80 mm Hg?

76. A person measures his or her heart rate by counting the number of beats in 30 s. If 40 £ 1 beats are counted in 30.0 + 0.5 s, what
is the heart rate and its uncertainty in beats per minute?

77. What is the area of a circle 3.102 cm in diameter?

78. Determine the number of significant figures in the following measurements: (a) 0.0009, (b) 15,450.0, (c) 6x103, (d) 87.990,
and (e) 30.42.

79. Perform the following calculations and express your answer using the correct number of significant digits. (a) A woman has
two bags weighing 13.5 1b and one bag with a weight of 10.2 Ib. What is the total weight of the bags? (b) The force F on an
object is equal to its mass m multiplied by its acceleration a. If a wagon with mass 55 kg accelerates at a rate of 0.0255 m/s?,
what is the force on the wagon? (The unit of force is called the newton and it is expressed with the symbol N.)

1.E.3 Additional Problems

80. Consider the equation y = mt +b, where the dimension of y is length and the dimension of t is time, and m and b are constants.

What are the dimensions and SI units of (a) m and (b) b?

. . 12 j Spt 5 . . . . .
81. Consider the equation s = sg +vot + %T + ]OT + 20—4 + 1CtTo , where s is a length and t is a time. What are the dimensions

and ST units of (a) sg, (b) vo, (c) ap, (d) jo, (e) S, and (f) c?

82. (a) A car speedometer has a 5% uncertainty. What is the range of possible speeds when it reads 90 km/h? (b) Convert this range
to miles per hour. Note 1 km = 0.6214 mi.

83. A marathon runner completes a 42.188-km course in 2 h, 30 min, and 12 s. There is an uncertainty of 25 m in the distance
traveled and an uncertainty of 1 s in the elapsed time. (a) Calculate the percent uncertainty in the distance. (b) Calculate the
percent uncertainty in the elapsed time. (c) What is the average speed in meters per second? (d) What is the uncertainty in the
average speed?

84. The sides of a small rectangular box are measured to be 1.80 + 0.1 cm, 2.05 £ 0.02 cm, and 3.1 + 0.1 cm long. Calculate its
volume and uncertainty in cubic centimeters.

85. When nonmetric units were used in the United Kingdom, a unit of mass called the pound-mass (Ibm) was used, where 1 Ibm =
0.4539 kg. (a) If there is an uncertainty of 0.0001 kg in the pound-mass unit, what is its percent uncertainty? (b) Based on that
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percent uncertainty, what mass in pound-mass has an uncertainty of 1 kg when converted to kilograms?

86. The length and width of a rectangular room are measured to be 3.955 + 0.005 m and 3.050 + 0.005 m. Calculate the area of the
room and its uncertainty in square meters.

87. A car engine moves a piston with a circular cross-section of 7.500 £+ 0.002 cm in diameter a distance of 3.250 + 0.001 cm to
compress the gas in the cylinder. (a) By what amount is the gas decreased in volume in cubic centimeters? (b) Find the
uncertainty in this volume.

1.E.4 Challenge Problems

88. The first atomic bomb was detonated on July 16, 1945, at the Trinity test site about 200 mi south of Los Alamos. In 1947, the
U.S. government declassified a film reel of the explosion. From this film reel, British physicist G. I. Taylor was able to
determine the rate at which the radius of the fireball from the blast grew. Using dimensional analysis, he was then able to
deduce the amount of energy released in the explosion, which was a closely guarded secret at the time. Because of this, Taylor
did not publish his results until 1950. This problem challenges you to recreate this famous calculation.

a. Using keen physical insight developed from years of experience, Taylor decided the radius r of the fireball should depend
only on time since the explosion, t, the density of the air, p, and the energy of the initial explosion, E. Thus, he made the
educated guess that 7 = kE®p’t® for some dimensionless constant k and some unknown exponents a, b, and c. Given that
[E] = ML’T~2, determine the values of the exponents necessary to make this equation dimensionally consistent. (Hint:
Notice the equation implies that k = 7E~%p~¢~¢ and that [k] = 1.)

b. By analyzing data from high-energy conventional explosives, Taylor found the formula he derived seemed to be valid as
long as the constant k had the value 1.03. From the film reel, he was able to determine many values of r and the
corresponding values of t. For example, he found that after 25.0 ms, the fireball had a radius of 130.0 m. Use these values,
along with an average air density of 1.25 kg/m?, to calculate the initial energy release of the Trinity detonation in joules (J).
(Hint: To get energy in joules, you need to make sure all the numbers you substitute in are expressed in terms of SI base
units.) (c) The energy released in large explosions is often cited in units of “tons of TNT” (abbreviated “t TNT”), where 1 t
TNT is about 4.2 GJ. Convert your answer to (b) into kilotons of TNT (that is, kt TNT). Compare your answer with the
quick-and-dirty estimate of 10 kt TNT made by physicist Enrico Fermi shortly after witnessing the explosion from what was
thought to be a safe distance. (Reportedly, Fermi made his estimate by dropping some shredded bits of paper right before the
remnants of the shock wave hit him and looked to see how far they were carried by it.)

89. The purpose of this problem is to show the entire concept of dimensional consistency can be summarized by the old saying
“You can’t add apples and oranges.” If you have studied power series expansions in a calculus course, you know the standard
mathematical functions such as trigonometric functions, logarithms, and exponential functions can be expressed as infinite sums
of the form Z;’f:o a,T" = ag + a1 +ayx? +adx3+- -+, where the a, are dimensionless constants for alln =0, 1, 2, -++ and
x is the argument of the function. (If you have not studied power series in calculus yet, just trust us.) Use this fact to explain
why the requirement that all terms in an equation have the same dimensions is sufficient as a definition of dimensional
consistency. That is, it actually implies the arguments of standard mathematical functions must be dimensionless, so it is not
really necessary to make this latter condition a separate requirement of the definition of dimensional consistency as we have
done in this section.

1.E.5 Contributors and Attributions

Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

This page titled 1.E: Practice- is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

o 1.E: Units and Measurement (Exercises) has no license indicated. Original source: https://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-013-electromagnetics-and-applications-spring-2009.
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2.11.E: Practice

2.12: Math-vector basics and diffrential equations
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2.1: Introduction

You might well wonder why we start off a physics book with a chapter on mathematics. The thing is, the mathematics covered in
this chapter is mathematics you are supposed to already know. The problem is that you might be a little bit rusty with it. We don’t
want that rust to get in the way of your learning of the physics. So, we try to knock the rust off of the mathematics that you are
supposed to already know, so that you can concentrate on the physics. As much as we emphasize that this is a physics course rather
than a mathematics course, there is no doubt that you will advance your mathematical knowledge if you take this course seriously.
You will use mathematics as a tool, and as with any tool, the more you use it the better you get at using it. Some of the mathematics
in this book is expected to be new to you. The mathematics that is expected to be new to you will be introduced in recitation on an
as-needed basis. It is anticipated that you will learn and use some calculus in this course before you ever see it in a mathematics
course. (This book is addressed most specifically to students who have never had a physics course before and have never had a
calculus course before but are currently enrolled in a calculus course. If you have already taken calculus, physics, or both, then you
have a well earned advantage.) Two points of emphasis regarding the mathematical component of your solutions to physics
problems that have a mathematical component are in order:

1. You are required to present a clear and complete analytical solution to each problem. This means that you will be manipulating
symbols (letters) rather than numbers.

2. For any physical quantity, you are required to use the symbol which is conventionally used by physicists, and/or a symbol
chosen to add clarity to your solution. In other words, it is not okay to use the symbol x to represent every unknown.

Aside from the calculus, here are some of the kinds of mathematical problems you have to be able to solve:

The reciprocal of %—i—l is not  +y. Try it in the case of some simple numbers. Suppose =2 and y =4. Then

y
Tty =3ti=%+1= 2, and the reciprocal of 4is 2 which is clearly not 6 (which is what you obtain if you take the
reciprocal of % + i to be 2 +4). So what is the reciprocal of % + % ? The reciprocal of % + i is lil .

z Ty

2.1.1 Problems Involving Percent Change

A cart is traveling along a track. As it passes through a photogate! its speed is measured to be 3.40m/s. Later, at a second
photogate, the speed of the cart is measured to be 3.52m /s, Find the percent change in the speed of the cart.

The percent change in anything is the change divided by the original, all times 100%. (I’ve emphasized the word “original”
because the most common mistake in these kinds of problems is dividing the change by the wrong thing.) The change in a
quantity is the new value minus the original value. (The most common mistake here is reversing the order. If you forget
which way it goes, think of a simple problem for which you know the answer and see how you must arrange the new and
original values to make it come out right. For instance, suppose you gained 2 kg over the summer. You know that the change
in your mass is +2 kg. You can calculate the difference both ways—we’re talking trial and error with at most two trials.
You’ll quickly find out that it is “the new value minus the original value” a.k.a. “final minus initial” that yields the correct
value for the change.)

Okay, now let’s solve the given problem

change

%Change = 100% (2.1.1)

ginal
Recalling that the change is the new value minus the original value we have

new — original

%Change = 100% (2.1.2)

original
While it’s certainly okay to memorize this by accident because of familiarity with it, you should concentrate on being able to
derive it using common sense (rather than working at memorizing it). Substituting the given values for the case at hand we

obtain
3.522 —-3.402
%Change = ————=100% (2.1.3)
3.40%
%Change = 3.5% (2.1.4)
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2.1.2 Problems Involving Right Triangles

v/ Example 2.1.1:

The length of the shorter side of a right triangle is 2 and the length of the hypotenuse is r. Find the length of the longer side
and find both of the angles, aside from the right angle, in the triangle.

Solution

Draw the triangle such that it is obvious

® L
X

which side is the shorter side — P

Pythagorean Theorem — 72 = 2 4 32

Subtract \x/2 from both sides of the equation — r? —z? = y?

Swap sides — y? =12 —z?

Take the square root of both

sides of the equation — \(y=\sqrt{rA2-xA2})\)

By definition, the sine of 8 is the side

opposite 8 divided by the hypotenuse — sin9=£
7

Take the arcsine of both sides of the

x
equation in order to get 0 by itself — 0=sin"l—
7

By definition, the cosine of ¢ is the side

adjacent to ¢ divided by the hypotenuse — COS¢p= z
r
Take the arccosine of both sides of the
equation in order to get ¢ by itself — ¢=c051£
r

To solve a problem like the one above, you need to memorize the relations between the sides and the angles of a right triangle.
A convenient mnemonic? for doing so is “SOHCAHTOA ”

Hypotenuse
Opposite

7

Adjacent

pronounced as a single word.

Referring to the diagram above right:

it

SOH reminds us that:: sinf= M
Hypotenuse

Adj t
CAH reminds us that:: cose=ﬂ
Hypotenuse

Opposite

TOA ind that:: tanf=——"——

reminds us that:: tan Adhacent
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Points to remember:

1. The angle 0 is never the 90 degree angle.

2. The words “opposite” and “adjacent” designate sides relative to the angle. For instance,
the cosine of 0 is the length of the side adjacent to 0 divided by the length of the
hypotenuse.

You also need to know about the arcsine and the arccosine functions to solve the example problem above. The arcsine function
is the inverse of the sine function. The answer to the question, “What is the arcsine of 0.44?” is, “that angle whose sine is 0.44
.” There is an arcsine button on your calculator. It is typically labeled sin-1, to be read, “arcsine.” To use it you probably have
to hit the inverse button or the second function button on your calculator first.

The inverse function of a function undoes what the function does. Thus:
sin"!sin® =0
Furthermore, the sine function is the inverse function to the arcsine function and the cosine function is the inverse function to

the arccosine function. For the former, this means that:
sin(sin"'x)=x

2.1.3 Problems Involving the Quadratic Formula
First comes the quadratic equation, then comes the quadratic formula. The quadratic formula is the solution to the quadratic
equation:

az’ +bx+c=0 (2.1.5)
in which
x is the variable whose value is sought, and a, b, and c are constants
The goal is to find the value of x that makes the left side 0. That value is given by the quadratic formula:

. —b+vb% —4ac

o (2.1.6)

to be read/said:
‘X’ equals minus ‘b’, plus-or-minus the square root of ‘b’ squared minus four ‘a’ ‘c’, all over two ‘a’.

So, how do you know when you have to use the quadratic formula? There is a good chance that you need it when the square of the
variable for which you are solving, appears in the equation you are solving. When that is the case, carry out the algebraic steps
needed to arrange the terms as they are arranged in equation 1-8 above. If this is impossible, then the quadratic formula is not to be
used. Note that in the quadratic equation you have a term with the variable to the second power, a term with the variable to the first
power, and a term with the variable to the zeroth power (the constant term). If additional powers also appear, such as the one-half
power (the square root), or the third power, then the quadratic formula does not apply. If the equation includes additional terms in
which the variable whose value is sought appears as the argument of a special function such as the sine function or the exponential
function, then the quadratic formula does not apply. Now suppose that there is a square term and you can get the equation that you
are solving in the form of equation 1-8 above but that either b or c is zero. In such a case, you can use the quadratic formula, but it
is overkill. If b in equation 1-8 above is zero then the equation reduces to:

am2 +b$:0 (217)
The easy way to solve this problem is to recognize that there is at least one x in each term, and to factor the x out. This yields:
(az +b)z =0 (2.1.8)

Then you have to realize that a product of two multiplicands is equal to zero if either multiplicand is equal to zero. Thus, setting
either multiplicand equal to zero and solving for x yields a solution. We have two multiplicands involving X, so, there are two
solutions to the equation. The second multiplicand in the expression (az +b)z =0 is x itself, so

z=0 (2.1.9)

is a solution to the equation. Setting the first term equal to zero gives:

https://phys.libretexts.org/@go/page/76283


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/2.5/
https://phys.libretexts.org/@go/page/76283?pdf

LibreTextsm

az+b=0 (2.1.10)

ar =-b (2.1.11)
b

z=—= (2.1.12)

Now suppose the b in the quadratic equation az? + bz +¢ = 0 , equation 1-8, is zero. In that case, the quadratic equation reduces
to:

az’ +c=0 (2.1.13)

which can easily be solved without the quadratic formula as follows:

az’ = —c (2.1.14)
9 C
=—— 2.1.1
2’ = —— (2.1.15)
C
=+, /—— 2.1.1
@ - (2.1.16)

where we have emphasized the fact that there are two square roots to every value by placing a plus-or-minus sign in front of the
radical.

Now, if upon arranging the given equation in the form of the quadratic equation (equation 1-8):
ar’+bzr+c=0 (2.1.17)

you find that a, b, and c are all non-zero, then you should use the quadratic formula. Here we present an example of a problem
whose solution involves the quadratic formula:

v/ Example 2.1.1: Quadratic Formula Example Problem

Given
24
3 _ 2.1.18
te=—r ( )
find x.
Solution

At first glance, this one doesn’t look like a quadratic equation, but as we begin isolating x, as we always strive to do in solving
for x, (hey, once we have x all by itself on the left side of the equation, with no x on the right side of the equation, we have
indeed solved for x—that’s what it means to solve for x) we quickly find that it is a quadratic equation. Whenever we have the
unknown in the denominator of a fraction, the first step in isolating that unknown is to multiply both sides of the equation by
the denominator. In the case at hand, this yields:

(z+1)(z+3)=24 (2.1.19)
Multiplying through on the left we find
3z+3+al+x=24 (2.1.20)

At this point it is pretty clear that we are dealing with a quadratic equation so our goal becomes getting it into the standard
form of the quadratic equation, the form of equation 1-8, namely: az? + bz +c = 0 . Combining the terms involving x on the
left and rearranging we obtain

2 +4x+3=24 (2.1.21)
Subtracting 24 from both sides yields:
2’ +4x—-21=0 (2.1.22)

https://phys.libretexts.org/@go/page/76283
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which is indeed in the standard quadratic equation form. Now we just have to use inspection to identify which values in our
given equation are the a, b, and c that appear in the standard quadratic equation (equation 1-8) az? 4+ bz +c = 0 . Although it
is not written, the constant multiplying the %2, in the case at hand, is just 1. So we havea=1,b =4, and c = -21.

Substituting these values into the quadratic formula (equation 1-9):

—b++Vb2—4ac
r=—

2.1.23
on ( )
yields
—4+,/4% —4(1)(21)
= 2.1.24
which results in x=3,x=-7
as the solutions to the problem. As a quick check we substitute each of these values back into the original equation:
24
3 — 2.1.25
+x R ( )

and find that each substitution leads to an identity. (An identity is an equation whose validity is trivially obvious, such as 6 =
6.)

This chapter does not cover all the non-calculus mathematics you will encounter in this course. If you master the concepts in this
chapter (or re-master them if you already mastered them) you will be on your way to mastering all the non-calculus mathematics
you need for this course. Regarding reading it all: By the time you complete your physics course, you are supposed to have read
this book from cover to cover. Reading physics material that is new to you is supposed to be slow going. By the word reading in
this context, we really mean reading with understanding. Reading a physics text involves not only reading but taking the time to
make sense of diagrams, taking the time to make sense of mathematical developments, and taking the time to make sense of the
words themselves. It involves rereading. The method I use is to push my way through a chapter once, all the way through at a
novel-reading pace, picking up as much as I can on the way but not allowing myself to slow down. Then, I really read it. On the
second time through I pause and ponder, study diagrams, and ponder over phrases, looking up words in the dictionary and working
through examples with pencil and paper as I go. I try not to go on to the next paragraph until I really understand what is being said
in the paragraph at hand. That first read, while of little value all by itself, is of great benefit in answering the question, “Where is
the author going with this?”, while I am carrying out the second read.

This book is a physics book, not a mathematics book. One of your goals in taking a physics course is to become more proficient
at solving physics problems, both conceptual problems involving little to no math, and problems involving some mathematics.
In a typical physics problem you are given a description about something that is taking place in the universe and you are
supposed to figure out and write something very specific about what happens as a result of what is taking place. More
importantly, you are supposed to communicate clearly, completely, and effectively, how, based on the description and basic
principles of physics, you arrived at your conclusion. To solve a typical physics problem you have to: (1) form a picture based
on the given description, quite often a moving picture, in your mind, (2) concoct an appropriate mathematical problem based
on the picture, (3) solve the mathematical problem, and (4) interpret the solution of the mathematical problem. The physics
occurs in steps 1, 2, and 4. The mathematics occurs in step 3. It only represents about 25% of the solution to a typical physics
problem.

This page titled 2.1: Introduction is shared under a CC BY-NC-SA 2.5 license and was authored, remixed, and/or curated by Jeffrey W. Schnick
via source content that was edited to the style and standards of the LibreTexts platform.

o 1A: Mathematical Prelude by Jeffrey W. Schnick is licensed CC BY-SA 2.5. Original source: http://www.cbphysics.org.
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2.2: Geometrical Shapes

v Learning Objectives

o know what a polygon is

o know what perimeter is and how to find it

o know what the circumference, diameter, and radius of a circle is and how to find each one
e know the meaning of the symbol nrt and its approximating value

o know what a formula is and four versions of the circumference formula of a circle
o know the meaning and notation for area

o know the area formulas for some common geometric figures

o Dbe able to find the areas of some common geometric figures

o know the meaning and notation for volume

e know the volume formulas for some common geometric objects

e be able to find the volume of some common geometric objects

Polygons

We can make use of conversion skills with denominate numbers to make measurements of geometric figures such as rectangles,
triangles, and circles. To make these measurements we need to be familiar with several definitions.

# Definition: Polygon

A polygon is a closed plane (flat) figure whose sides are line segments (portions of straight lines).

Polygons
Not polygons
Perimeter

& Definition: Perimeter

The perimeter of a polygon is the distance around the polygon.

To find the perimeter of a polygon, we simply add up the lengths of all the sides.

v/ Sample Set A

Find the perimeter of each polygon.
5 cm
2em 2em
5cm
Solution
Perimeter = 2cm+5cm+2cm+5cm
= 1l4cm

https://phys.libretexts.org/@go/page/76284
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9.2cm

Solution

Perimeter = 3.1 mm
4.2 mm

4.3 mm

1.52 mm

5.4 mm

+ 9.2 mm

27.72 mm

v/ Sample Set A

2cm1

9cem

12 ecm

lcm' lllcm

lem

Solution

Our first observation is that three of the dimensions are missing. However, we can determine the missing measurements using
the following process. Let A, B, and C represent the missing measurements. Visualize

2

12

L1 c

1

A=12m-2m =10m
B=9m + 1m-2m =8m
C=12m-1m=11m
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Perimeter = 8 m

44 m

Practice Set A

Find the perimeter of each polygon.

8ft

Answer

20 ft

Practice Set A

58m
6.1 ﬂ/"\ﬂ m
L
8.6 m

Answer
26.8 m

Practice Set A

10.07 mi

3.11 mi 3.88 mi
4.54 mi
10.76 mi
492 mi

12.61 mi

Answer

49.89 mi

Circumference/Diameter/Radius

Diameter (d)
A diameter of a circle is any line segment that passes through the center of the circle and has its endpoints on the circle.
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Radius (r)

A radius of a circle is any line segment having as its endpoints the center of the circle and a point on the circle.

The radius is one half the diameter.

Circumference (C)
The circamference of a circle is the distance around the circle. It is given by C = wd = 27rr

Diameter

v/ Sample Set B

Find the circumference of the circle.

Solution

Use the formula C' = nd.
C=r-Tin.

By commutativity of multiplication,
C=Tin.-7

C = Trwin., exactly

This result is exact since 7 has not been approximated.

v/ Sample Set B

Find the perimeter of the figure.

Solution
‘We notice that we have two semicircles (half circles).
The larger radius is 6.2 cm.

The smaller radius is 6.2 cm - 2.0 cm = 4.2 cm.

The width of the bottom part of the rectangle is 2.0 cm.
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Perimeter = 2.0cm
5.1 cm
2.0 cm
5.1 cm
(0.5)-(2)-(3.14)- (6.2 com)
+ (0.5)-(2)-(3.14)- (4.2 com)

Perimeter =~ 2.0 cm
5.1 cm

2.0 cm

5.1 cm

19.468 cm

+13.188 cm

48.856 cm

Practice Set B

Find the outside perimeter of

1 16.2 mm

\. 1.8 mm
N
S

e

Answer

41.634 mm

Exercises

Circumference of outer semicircle.
Circumference of inner semicircle.
6.2cm-2.0cm=4.2cm

The 0.5 appears because we want the
perimeter of only half a circle.

Find each perimeter or approximate circumference. Use m = 3.14.

Exercise 2.2.1

2.3 em

8.6 cm

Answer

21.8 cm
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3.8 mm \Q’"“’
G

8 mun

i WY

Exercise 2.2.3

48 in. B o

\
16.11 in.
Answer
38.14 inches
Exercise 2.2.4
0.04 ft
0.04 it 0.07 ft
0.095 £

Exercise 2.2.5

/ 0.12m

031m

Answer

0.86 m

Exercise 2.2.6
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Exercise 2.2.10

3

1.1 mm

Exercise 2.2.12

Exercise 2.2.13

B

18 m

>
7
£
e

120.78 m

Exercise 2.2.14

4.1 in.

B

78 in.

Exercise 2.2.16
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Answer

43.7 mm

The Meaning and Notation for Area

The product (length unit) - (length unit) = (length unit)? , or, square length unit (sq length unit), can be interpreted physically
as the area of a surface.

Area
The area of a surface is the amount of square length units contained in the surface.

For example, 3 sq in. means that 3 squares, 1 inch on each side, can be placed precisely on some surface. (The squares may have to
be cut and rearranged so they match the shape of the surface.)

We will examine the area of the following geometric figures.

| w = width
{h = height l

b ="aso e = length ——

Triangles Rectangles

by = base 2
—————————

+————b; =base ] ——

-—— hb=base—

Trapezoids

Parallelograms

Circles

Area Formulas

We can determine the areas of these geometric figures using the following formulas.

Figure Area Formula Statement

https://phys.libretexts.org/@go/page/76284
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Triancl A 1 bk Area of a triangle is one half the
rian = —.b-
ange T2 base times the height.
Area of a rectangle is the length
Rectangle Ar=l-w times the width.
Area of a parallelogram is base
E Parallelogram Ap=b-h times the height.
1 Area of a trapezoid is one half
Trapezoid Afpp = 5" (b1+b2)-h the sum of the two bases times
the height.
. % Area of a circle is 7 times the
Circle A, =mr .
square of the radius.

Finding Areas of Some Common Geometric Figures

v/ Sample Set A

Find the area of the triangle.
|
|6 ft
I
20 ft
Solution
1
Ar = —-b-h
! 2
! 20-5sqft
— — o o S
D) q
= 10-6sqft
= 60sqft
= 60ft
The area of this triangle is 60 sq ft, which is often written as 60 ft2.

v/ Sample Set A

Find the area of the rectangle.

l lBin.
4ft2in.

Solution

12
Let's first convert 4 ft 2 in. to inches. Since we wish to convert to inches, we'll use the unit fraction since it has inches

11t

in the numerator. Then,
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4ft 12in.
1 1ft
4 12in.

1 1 f
= 48in.

Thus, 4 ft 2 in. =48 in. + 2 in. =50 in.

AR = l-w
50 in. - 8 in.
400 sq in.

The area of this rectangle is 400 sq in.

v/ Sample Set A
Find the area of the parallelogram.
/

| /
I
:6.2 cm
: /

[ ]

41t =

10.3 em
Solution
Ap = b-h
= 10.3cm-6.2cm
= 63.86sqcm

The area of this parallelogram is 63.86 sq cm.

v/ Sample Set A

Find the area of the trapezoid.

14.5 mm
4.1 mm
L
20.4 mm
Solution
1
ATrap = §(b1 +b2)h’
1
= g (14.5 mm + 20.4 mm) - (4.1 mm)
1
= 5 (34.9 mm) - (4.1 mm)
1
S e (143.09 sq mm)

= 71.545 sq mm
The area of this trapezoid is 71.545 sq mm.
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Find the approximate area of the circle.

il

;=168%
_______...-O""—‘
Solution
A, = w-r?

(3.14) - (16.8 ft)*
(3.14) - (282.24 sq ft)
888.23 sq ft

The area of this circle is approximately 886.23 sq ft.

Practice Set A

Find the area of each of the following geometric figures.

Q

Q

4 cm

|
.l

18 em

Answer

36 sq cm

Practice Set A

4.05 mm

9.26 mm

Answer
37.503 s mm

Practice Set A

5.1 in.

Answer

13.26 sq in.
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Practice Set A

17 mi

32 mi

Answer

367.5 sq mi

Practice Set A

&/
@
7/

(approximate)

Answer

452.16 sq ft

Practice Set A

<
&%
7 ecm
1
i
|
| |
g-\/_-’_'\/"_"
2cm 5cm
Answer
44.28 sq cm

The Meaning and Notation for Volume

The product (length unit)(length unit)(length unit) = (length unit) 3, or cubic length unit (cu length unit), can be interpreted
physically as the volume of a three-dimensional object.

Volume
The volume of an object is the amount of cubic length units contained in the object.

For example, 4 cu mm means that 4 cubes, 1 mm on each side, would precisely fill some three-dimensional object. (The cubes may
have to be cut and rearranged so they match the shape of the object.)
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l—t—/-

h = height
w = width
<+—— | =length —— ~ g P4
Rectangular solid Sphere Cylinder
r = radius
Cone
Volume Formulas
Figure Volume Formula Statement
) T = i
ectangular soli —  (ewonafiiesg)s (heigh% . i 1s. e leng .1mes e
idth times the height.
4
4 The volume of a sphere is 3
_ 3
Sphere Vs = 3T times 7 times the cube of the
radius.
. Vow = = - h The volume of a cylinder is 7
Cylinder ) )
= (areaof base) - (heigfimes the square of the radius
times the height.
1 The volume of a cone is 1
V; = —_ T 7-2 . h 3
Cone 3 _ times 7 times the square of the
= (areaof base)- (helghti‘?idius times the height.
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Finding Volumes of Some Common Geometric Objects

v/ Sample Set B

Find the volume of the rectangular solid.

3in.
10 in.
9in.

Solution
VR = l-w-h

= 9in.-10in.-3in.

= 270 cuin.

270 in.2

The volume of this rectangular solid is 270 cu in.

v Sample Set B

Find the approximate volume of the sphere.

Solution
4
Vs = 3 e
4 3
~ (g) -(3.14) - (6 cm)
4
(g) -(3.14) - (216 cu cm)
~ 904.32 cucm

The approximate volume of this sphere is 904.32 cu cm, which is often written as 904.32 cm?.

v/ Sample Set B

Find the approximate volume of the cylinder.

e
R
-

7.8 ft

LS
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Solution

chl = 7r~r2~h

(3.14) - (4.9 ft)2- (7.8 ft)
(3.14) - (24.01 sq ft) - (7.8 ft)
(3.14) - (187.278 cu ft)

~ 588.05292 cuft

The volume of this cylinder is approximately 588.05292 cu ft. The volume is approximate because we approximated 7 with
3.14.

v/ Sample Set B

Find the approximate volume of the cone. Round to two decimal places.

Q

Q

Q

‘/;:

~

)+ (3.14) - (2 mm)? - (5 mm)

)-(3.14) - (4 sq mm) - (5 mm)

Q

W= W= W]

(=)-(3.14) - (20 cu mm)

20.93 cu mm
20.93 cu mm

The volume of this cone is approximately 20.93 cu mm. The volume is approximate because we approximated 7 with 3.14.

Practice Set B

Find the volume of each geometric object. If 7 is required, approximate it with 3.14 and find the approximate volume.

Q

Q

3in.

———4 10 in.

9in.

Answer

21 cuin.
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Sphere

Answer
904.32 cu ft

Practice Set B
.2 m
Answer

157 cum

Practice Set B

Answer
0.00942 cu in.

Exercises

Find each indicated measurement.

Exercise 2.2.1

Area

BEm

Answer

16 sq m

https://phys.libretexts.org/@go/page/76284



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76284?pdf

LibreTextsw

Area

2.3 in.

4.1 in.

Exercise 2.2.3

Area

1.1 mm

Answer

1.21 sq mm

Exercise 2.2.4

Area

8 cm

|

I

|

[3 cm

|

|
Exercise 2.2.5

Area

4 in.

Answer

18 sq in.
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Area

%
(1]
B

20 ¢m

Exercise 2.2.7

Exact area

6 ft

22 it

Answer
(60.5m+132) sq ft

Exercise 2.2.8

Approximate area

Ié

Exercise 2.2.9

Area
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10.2 in.

Answer

40.8 sq in.

Exercise 2.2.10

Area

Tmm

e s s B

15 mm

Exercise 2.2.11

Approximate area

8.4 in.

Answer

31.0132 sq in.

Exercise 2.2.12

Exact area

https://phys.libretexts.org/@go/page/76284
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Exercise 2.2.13

Approximate area

Answer

158.2874 sq mm

Exercise 2.2.14

Exact area

19 em

Exercise 2.2.15

I

Approximate area

|3-21in, 9.4 in.

)

6.1 in.

Answer

64.2668 sq in.

Exercise 2.2.16

Area

1.741in| |1.61in.

4.83 1.

5.21 in.

https://phys.libretexts.org/@go/page/76284
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Approximate area

Answer

43.96 sq ft

Exercise 2.2.18

Volume

1 in.
2 in.
4 in.
Exercise 2.2.19
Volume
8 mm
8 mm
8 mm
Answer
512 cu cm

Exercise 2.2.20

Exact volume
o
3 in./

v
e |sphere

\_//
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Approximate volume

Answer

11.49 cu cm

Exercise 2.2.22

Approximate volume

Exercise 2.2.23

Exact volume

Answer

1024
7 cuft

Exercise 2.2.24

Approximate volume

9.2 in.

240 in.

e e

https://phys.libretexts.org/@go/page/76284



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76284?pdf

LibreTextsw

Exercise 2.2.25

Approximate volume

Answer

22.08 cu in.

Exercise 2.2.26

Approximate volume

|
I
13.0

— e —

8.1 ft

Exercises for Review

In the number 23,426, how many hundreds are there?

Answer

4
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Exercise 2.2.28

List all the factors of 32.

Exercise 2.2.29

3 5 2
Find the value of 4— — 3= +1—.
ind the value o 1 36+ 3
Answer
31 7

Exercise 2.2.30

1
54+

Find the value of

2 —
+15

Exercise 2.2.31

Find the perimeter.

8.3 m

Answer

27.9m

Area (A) is measured in square units, perimeter (P) is measured in units, and circumference (C) is measured in units.

Square
A
S
Figure 2.2.1
P =4s (2.2.1)
A=s? (2.2.2)
Rectangle
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-w
/

Figure 2.2.2
P=20+2w (2.2.3)
A=lw (2.2.4)
Parallelogram
-
b
Figure 2.2.3
P=2a+2b (2.2.5)
A=bh (2.2.6)
Trapezoid
o
-d
b
Figure 2.2.4
P=a+b+c+d (2.2.7)
A= %h(a—kb) (2.2.8)
Triangle
‘
b
Figure 2.2.5
P=a+b+c (2.2.9)
Az%bh (2.2.10)
Circle
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Figure 2.2.6
C=2r (2.2.11)
r=mr’ (2.2.12)

Volume (V) is measured in cubic units and surface area (SA) is measured in square units.

s
.
5

Cube

Figure 2.2.1
SA =6s* (2.2.13)
V=s (2.2.14)
Rectangular Solid
h
/
w
Figure 2.2.2
SA =2lw+2lh +2wh (2.2.15)
V =lwh (2.2.16)

Right Circular Cylinder

. |

Figure 2.2.3

SA =2mr* 4+ 27rh (2.2.17)
V =7r?h (2.2.18)
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Right Circular Cone

Figure 2.2.4
SA=nr? +mrs (2.2.19)
1
V= Em~2h (2.2.20)

Sphere

Figure 2.2.5

SA = 4mr? (2.2.21)
4

V= §7r1°3 (2.2.22)

This page titled 2.2: Geometrical Shapes is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Denny Burzynski
& Wade Ellis, Jr. (OpenStax CNX) .
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2.3: Triangles

6.1.2: Triangles

4b Learning Objectives

1. Identify equilateral, isosceles, scalene, acute, right, and obtuse triangles.
2. Identify whether triangles are similar, congruent, or neither.

3. Identify corresponding sides of congruent and similar triangles.

4. Find the missing measurements in a pair of similar triangles.

5. Solve application problems involving similar triangles

Introduction

Geometric shapes, also called figures, are an important part of the study of geometry. The triangle is one of the basic shapes in
geometry. It is the simplest shape within a classification of shapes called polygons. All triangles have three sides and three angles,
but they come in many different shapes and sizes. Within the group of all triangles, the characteristics of a triangle’s sides and
angles are used to classify it even further. Triangles have some important characteristics, and understanding these characteristics
allows you to apply the ideas in real-world problems.

Classifying and Naming Triangles

A polygon is a closed plane figure with three or more straight sides. Polygons each have a special name based on the number of
sides they have. For example, the polygon with three sides is called a triangle because “tri” is a prefix that means “three.” Its name
also indicates that this polygon has three angles. The prefix “poly” means many.

The table below shows and describes three classifications of triangles. Notice how the types of angles in the triangle are used to
classify the triangle.

Name of Triangle Picture of Triangle Description

Acute Triangle A triangle x.mth 3 acute angles (3 angles
measuring between 0° and 90°).

Obtuse Triangl A triangle with 1 obtuse angle (1 angle
use Triangle measuring between 90° and 180°).

A triangle containing one right angle (1
angle that measures 90°). Note that the right
angle is shown with a corner mark and does

not need to be labeled 90°.

Right Triangle

The sum of the measures of the three interior angles of a triangle is always 180°. This fact can be applied to find the measure of the
third angle of a triangle, if you are given the other two. Consider the examples below.
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A triangle has two angles that measure 35° and 75°. Find the measure of the third angle.

Solution
The sum of the three interior angles of a triangle is 180°.
35° + 75° + ¢ = 180°
Find the value of z.
110° + z = 180°
x =180° - 110°
x=70°

Answer: The third angle of the triangle measures 70°.

v/ Example 2.3.15

One of the angles in a right triangle measures 57°. Find the measurement of the third angle.

Solution
The sum of the three angles of a triangle is 180°. One of the angles has a measure of 90° as it is a right triangle.

57° +90° + x = 180°
Simplify.
147° + z = 180°
Find the value of z.
x =180° - 147°
T =33°

Answer: The third angle of the right triangle measures 33°.

There is an established convention for naming triangles. The labels of the vertices of the triangle, which are generally capital
letters, are used to name a triangle.

A

You can call this triangle ABC or AABC since A, B, and C are vertices of the triangle. When naming the triangle, you can begin
with any vertex. Then keep the letters in order as you go around the polygon. The triangle above could be named in a variety of
ways: AABC, or ACBA. The sides of the triangle are line segments AB, AC, and CB.

Just as triangles can be classified as acute, obtuse, or right based on their angles, they can also be classified by the length of their
sides. Sides of equal length are called congruent sides. While we designate a segment joining points A and B by the notation AB,
we designate the length of a segment joining points A and B by the notation AB without a segment bar over it. The length AB is a

number, and the segment AB is the collection of points that make up the segment.
Mathematicians show congruency by putting a hash mark symbol through the middle of sides of equal length. If the hash mark is

the same on one or more sides, then those sides are congruent. If the sides have different hash marks, they are not congruent. The
table below shows the classification of triangles by their side lengths.

Name of Triangle Picture of Triangle Description
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A triangle whose three sides have the same
Equilateral Triangle length. These sides of equal length are

called congruent sides.

Isosceles Triangle A triangle with exactly two congruent sides.

A triangle in which all three sides are a

Scalene Triangle different length.

/D>

To describe a triangle even more specifically, you can use information about both its sides and its angles. Consider this example.

v/ Example 2.3.16

Classify the triangle below.

7

Solution
Notice what kind of angles the triangle has. Since one angle is a right angle, this is a right triangle.

4

Notice the lengths of the sides. Are there congruence marks or other labels?

L

The congruence marks tell us there are two sides of equal length. So, this is an isosceles triangle.

Answer: This is an isosceles right triangle

Classify the given triangle.
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Identifying Congruent and Similar Triangles

Two triangles are congruent if they are exactly the same size and shape. In congruent triangles, the measures of corresponding
angles and the lengths of corresponding sides are equal. Consider the two triangles shown below:

A D
B
309
60°,
B \cC _ F

E

Since both £B and ZE are right angles, these triangles are right triangles. Let’s call these two triangles AABC and ADEF. These
triangles are congruent if every pair of corresponding sides has equal lengths and every pair of corresponding angles has the same
measure.

The corresponding sides are opposite the corresponding angles.
< means “corresponds to”
LB o~ LE
LA~ /LD
LC o~ LF
AB «~ DE
AC ~ DF
BC « EF
AABC and ADEF are congruent triangles as the corresponding sides and corresponding angles are equal.

Let’s take a look at another pair of triangles. Below are the triangles AABC and ARST.
R

-

B

These two triangles are surely not congruent because ARST is clearly smaller in size than AABC. But, even though they are not the
same size, they do resemble one another. They are the same shape. The corresponding angles of these triangles look like they might
have the same exact measurement, and if they did they would be congruent angles and we would call the triangles similar triangles.

Congruent angles are marked with hash marks, just as congruent sides are.
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Figure 2.3.6: Image showing angle measurements of both

triangles.
R
A
T
S
C
B

Figure 2.3.7: Image showing triangles ABC and RST using hash marks to show angle
congruency.

We can also show congruent angles by using multiple bands within the angle, rather than multiple hash marks on one band. Below
is an image using multiple bands within the angle.

R
Téd
S A
C‘d
B

Figure 2.3.8: Image showing triangles ABC and RST using bands to show angle congruency.

If the corresponding angles of two triangles have the same measurements they are called similar triangles. This name makes sense
because they have the same shape, but not necessarily the same size. When a pair of triangles is similar, the corresponding sides are
proportional to one another. That means that there is a consistent scale factor that can be used to compare the corresponding sides.
In the previous example, the side lengths of the larger triangle are all 1.4 times the length of the smaller. So, similar triangles are
proportional to one another.

Just because two triangles look similar does not mean they are similar triangles in the mathematical sense of the word. Checking
that the corresponding angles have equal measure is one way of being sure the triangles are similar.

Corresponding Sides of Similar Triangles

There is another method for determining similarity of triangles that involves comparing the ratios of the lengths of the
corresponding sides.

If the ratios of the pairs of corresponding sides are equal, the triangles are similar.

Consider the two triangles below.
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AABC is not congruent to ADEF because the side lengths of ADEF are longer than those of AABC. So, are these triangles similar?
If they are, the corresponding sides should be proportional.

Since these triangles are oriented in the same way, you can pair the left, right, and bottom sides: AB and ﬁ, BC and E—F, AC
and DF. (You might call these the two shortest sides, the two longest sides, and the two leftover sides and arrive at the same
ratios). Now we will look at the ratios of their lengths.
AB BC A4C
DE EF DF
Substituting the side length values into the proportion, you see that it is true:
3 4 6

9 12 18
If the corresponding sides are proportional, then the triangles are similar. Triangles ABC and DEF are similar, but not congruent.

Let’s use this idea of proportional corresponding sides to determine whether two more triangles are similar.

v/ Example 2.3.17

Determine if the triangles below are similar by seeing if their corresponding sides are proportional.

B

14

Solution
First determine the corresponding sides, which are opposite corresponding angles.
CA - FD
AB < DE
BC - EF
Write the corresponding side lengths as ratios.
CA 4B BO
FD DE EF
Substitute the side lengths into the ratios, and determine if the ratios of the corresponding sides are equivalent. They are, so the
triangles are similar.
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Answer: AABC and ADEF are similar.

The mathematical symbol ~ means “is similar to”. So, you can write AABC is similar to ADEF as AABC ~ ADEF.

& Try It Now 2

Determine whether the two triangles are similar, congruent, or neither.

B

Finding Missing Measurements in Similar Triangles
You can find the missing measurements in a triangle if you know some measurements of a similar triangle. Let’s look at an

example.

v/ Example 2.3.18

AABC and AXYZ are similar triangles. What is the length of side BC?

C

Solution
In similar triangles, the ratios of corresponding sides are proportional. Set up a proportion of two ratios, one that includes the

missing side.

BC AB
YZ XY
Substitute in the known side lengths for the side names in the ratio. Let the unknown side length be n.
n 6
215
Solve for n using cross multiplication.
2:6=15-n
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This process is fairly straightforward—but be careful that your ratios represent corresponding sides, recalling that corresponding
sides are opposite corresponding angles.

Solving Application Problems Involving Similar Triangles
Applying knowledge of triangles, similarity, and congruence can be very useful for solving problems in real life. Just as you can

solve for missing lengths of a triangle drawn on a page, you can use triangles to find unknown distances between locations or
objects.

Let’s consider the example of two trees and their shadows. Suppose the sun is shining down on two trees, one that is 6 feet tall and
the other whose height is unknown. By measuring the length of each shadow on the ground, you can use triangle similarity to find
the unknown height of the second tree.

First, let’s figure out where the triangles are in this situation. The trees themselves create one pair of corresponding sides. The
shadows cast on the ground are another pair of corresponding sides. The third side of these imaginary similar triangles runs from
the top of each tree to the tip of its shadow on the ground. This is the hypotenuse of the triangle.

If you know that the trees and their shadows form similar triangles, you can set up a proportion to find the height of the tree.

v/ Example 2.3.19

When the sun is at a certain angle in the sky, a 6-foot tree will cast a 4-foot shadow. How tall is a tree that casts an 8-foot
shadow?

Solution
The angle measurements are the same, so the triangles are similar triangles. Since they are similar triangles, you can use
proportions to find the size of the missing side.
Treel Shadow 1
Tree2 Shadow 2
Set up a proportion comparing the heights of the trees and the lengths of their shadows.

Substitute in the known lengths. Call the missing tree height h.

G_=2
h 8
Solve for h using cross-multiplication.
6-8=4h
48 =4h
12=nh
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l Answer: The tree is 12 feet tall.

Summary

Triangles are one of the basic shapes in the real world. Triangles can be classified by the characteristics of their angles and sides,
and triangles can be compared based on these characteristics. The sum of the measures of the interior angles of any triangle is 180°.
Congruent triangles are triangles of the same size and shape. They have corresponding sides of equal length and corresponding
angles of the same measurement. Similar triangles have the same shape, but not necessarily the same size. The lengths of their sides
are proportional. Knowledge of triangles can be a helpful in solving real-world problems.

d¥ Try It Now Answers

1. Obtuse scalene; this triangle has vertices P, Q, and R, one angle (angle Q) that is between 90° and 180°, and sides of three
different lengths.

2. AABC and ADEF are neither similar nor congruent; the corresponding angle measures are not known to be equal as shown

6.5 6.5 5
by the absence of congruence marks on the angles. Also, the ratios of the corresponding sides are not equal: =5 7%

6.1.3: Pythagorean Theorem

4) Learning Objectives

1. Use the Pythagorean Theorem to find the unknown side of a right triangle.
2. Solve application problems involving the Pythagorean Theorem.

Introduction

A long time ago, a Greek mathematician named Pythagoras discovered an interesting property about right triangles: the sum of
the squares of the lengths of each of the triangle’s legs is the same as the square of the length of the triangle’s hypotenuse. This
property—which has many applications in science, art, engineering, and architecture—is now called the Pythagorean Theorem.

Let’s take a look at how this theorem can help you learn more about the construction of triangles. And the best part—you don’t
even have to speak Greek to apply Pythagoras’ discovery.

The Pythagorean Theorem

Pythagoras studied right triangles, and the relationships between the legs and the hypotenuse of a right triangle, before deriving his
theory.

b C

leg hypotenuse

leg

# The Pythagorean Theorem

If a and b are the lengths of the legs of a right triangle and c is the length of the hypotenuse, then the sum of the squares of the
lengths of the legs is equal to the square of the length of the hypotenuse.
2

This relationship is represented by the formula: a? +b* = ¢
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In the box above, you may have noticed the word “square,” as well as the small 2s to the top right of the letters in a® +b% = ¢* . To
square a number means to multiply it by itself. So, for example, to square the number 5 you multiply 5-5, and to square the
number 12, you multiply 12 - 12. Some common squares are shown in the table below.

Number Number Times Itself Square
1 12=1-1 1
2 22 =2.2 4
3 32=3-3 9
4 42=4-4 16
5 52=5.5 25
10 102 =10-10 100

When you see the equation a? +b? = ¢2 , you can think of this as “the length of side a times itself, plus the length of side b times
itself is the same as the length of side c times itself.”

Let’s try out all of the Pythagorean Theorem with an actual right triangle.

a’+b’=c?
(3)°+(4)*=(5)?
9+16=25

b = c=5

leg hypotenuse

N

a=3
leg

This theorem holds true for this right triangle—the sum of the squares of the lengths of both legs is the same as the square of the
length of the hypotenuse. And, in fact, it holds true for all right triangles.

The Pythagorean Theorem can also be represented in terms of area. In any right triangle, the area of the square drawn from the
hypotenuse is equal to the sum of the areas of the squares that are drawn from the two legs. You can see this illustrated below in the
same 3-4-5 right triangle.

Note that the Pythagorean Theorem only works with right triangles.

Finding the Length of the Hypotenuse

You can use the Pythagorean Theorem to find the length of the hypotenuse of a right triangle if you know the length of the
triangle’s other two sides, called the legs. Put another way, if you know the lengths of a and b, you can find c.

@ 0 a @ 2.3.10 https://phys.libretexts.org/@go/page/76285


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/@go/page/76285?pdf

LibreTextsw

.

b=12

In the triangle above, you are given measures for legs a and b: 5 and 12, respectively. You can use the Pythagorean Theorem to find
a value for the length of c, the hypotenuse.
The Pythagorean Theorem.

a’?+b*=c?
Substitute known values for a and b.

(5)2+(12)2 =¢?

Evaluate.

25+ 144 = ¢?

Simplify. To find the value of c, think about a number that, when multiplied by itself, equals 169. Does 10 work? How about 11?
12? 13? (You can use a calculator to multiply if the numbers are unfamiliar.)

169 = ¢?
The square root of 169 is 13.
c=13
Using the formula, you find that the length of c, the hypotenuse, is 13.

In this case, you did not know the value of c—you were given the square of the length of the hypotenuse, and had to figure it out
from there. When you are given an equation like 169 = ¢* and are asked to find the value of c, this is called finding the square
root of a number. (Notice you found a number, ¢, whose square was 169.)

Finding a square root takes some practice, but it also takes knowledge of multiplication, division, and a little bit of trial and error.
Look at the table below.

Number y which, when multiplied by

Number 2 itself, equals number x Square Rooty
1 1-1 1
4 2-2 2
9 3-3 3
16 4-4 4
25 5-5 5
100 10- 10 10

It is a good habit to become familiar with the squares of the numbers from 0-10, as these arise frequently in mathematics. If you
can remember those square numbers—or if you can use a calculator to find them—then finding many common square roots will be
just a matter of recall.
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For which of these triangles is (3)2 +(3)%2 =72 ?

A) B)

Q) D)

Finding the Length of a Leg
You can use the same formula to find the length of a right triangle’s leg if you are given measurements for the lengths of the
hypotenuse and the other leg. Consider the example below.

v/ Example 2.3.20

Find the length of side a in the triangle below. Use a calculator to estimate the square root to one decimal place.

Solution
In this right triangle, you are given the measurements for the hypotenuse, c, and one leg, b. The hypotenuse is always opposite
the right angle and it is always the longest side of the triangle.

a="
b=6
c=7

To find the length of leg a, substitute the known values into the Pythagorean Theorem.
a+b2=c?
a’+62="7°
Solve for a?. Think: what number, when added to 36, gives you 49?
a® +36 =49
a’=13

Use a calculator to find the square root of 13. The calculator gives an answer of 3.6055..., which you can round to 3.6. (Since
you are approximating, you use the symbol ~.)
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Answer: a ~ 3.6

d Try It Now 2

Which of the following correctly uses the Pythagorean Theorem to find the missing side, x?

a~3.6

A) 8 +10° =a?
B)z+8=10

C) z? +8% =10
D) z? +10% = 82

Using the Pythagorean Theorem to Solve Real-world Problems

The Pythagorean Theorem is perhaps one of the most useful formulas you will learn in mathematics because there are so many
applications of it in real world settings. Architects and engineers use this formula extensively when building ramps, bridges, and
buildings. Look at the following examples.

v/ Example 2.3.21

The owners of a house want to convert a stairway leading from the ground to their back porch into a ramp. The porch is 3 feet
off the ground, and due to building regulations, the ramp must start 12 feet away from the base of the porch. How long will the
ramp be?

Use a calculator to find the square root, and round the answer to the nearest tenth.
Solution

To solve a problem like this one, it often makes sense to draw a simple diagram showing where the legs and hypotenuse of the
triangle lie.

porch

a=3 new ramp

ground

b=12

Identify the legs and the hypotenuse of the triangle. You know that the triangle is a right triangle since the ground and the
raised portion of the porch are perpendicular—this means you can use the Pythagorean Theorem to solve this problem. Identify
a, b, and c.

a=3

b=12
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c=7?
Use the Pythagorean Theorem to find the length of c.
a®+b2 =2
324122 =¢2
94144 = c?
153 =¢?
Use a calculator to find c.
124=¢2

The square root of 153 is 12.369..., so you can round that to 12.4.
Answer: The ramp will be 12.4 feet long.

v/ Example 2.3.22

A sailboat has a large sail in the shape of a right triangle. The longest edge of the sail measures 17 yards, and the bottom edge
of the sail is 8 yards. How tall is the sail?

Solution
Draw an image to help you visualize the problem. In a right triangle, the hypotenuse will always be the longest side, so here it
must be 17 yards. The problem also tells you that the bottom edge of the triangle is 8 yards.

Setup the Pythagorean Theorem.
a?+b2 =¢?
a?+8* =17
a? +64 =289
a? =225
15-15 =225, so

Answer: The height of the sail is 15 yards.

Summary

The Pythagorean Theorem states that in any right triangle, the sum of the squares of the lengths of the triangle’s legs is the same as
the square of the length of the triangle’s hypotenuse. This theorem is represented by the formula 222 abc + = . Put simply, if you
know the lengths of two sides of a right triangle, you can apply the Pythagorean Theorem to find the length of the third side.
Remember, this theorem only works for right triangles.
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1. B) Lo ; this is a right triangle; when you sum the squares of the lengths of the sides, you get the square of the

length of the hypotenuse.

2. C) 2 +8% =107 ; in this triangle, the hypotenuse has length 10, and the legs have length 8 and . Substituting into the
Pythagorean Theorem you have: z2 4+ 8% =107 ; this equation is the same as z* 464 =100, or 2> = 36. What number,
times itself, equals 36? That would make = = 6.

A triangle is formed when three straight line segments bound a portion of the plane. The line segments are called the sides of the
triangle. A point where two sides meet is called a vertex of the triangle, and the angle formed is called an angle of the triangle.

The symbol for triangle is A.
The triangle in Figure 2.3.1is denoted by AABC (or ABC A or AC AB, etc.).
o Its sides are AB, AC, and BC.

e Its vertices are A, B, and C.
o Its angles are LA, /B, and Z/C.

A B
Figure 2.3.1: Triangle ABC.

The triangle is the most important figure in plane geometry, This is because figures with more than three sides can always be
divided into triangles (Figure 2.3.2). If we know the properties of a triangle, we can extend this knowledge to the study of other

figures as well.

Figure 2.3.2: A closed figure formed by more than three straight lines can be divided into triangles.

A fundamental property of triangles is the following:

& Theorem 2.3.1

The sum of the angles of a triangle is 180°.

In AABC of Figure 2.3.1, /A+/B+/C =180° .
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Find ZC:
£,
40 €0°
B
Solution
LA+ /B+/C = 180°
40°+60°+ZC = 180°
100°+Z2C = 180°
/C = 180°—100°
ZC = 80°
Answer: ZC = 80°

Proof of Theorem 2.3.1: Through C draw DFE parallel to AB (see Figure 2.3.3). Note that we are using the parallel postulate here,
/1=/A and /3=/B ©because they are alternate interior angles of parallel lines, Therefore
A+ /B+/C=/1+/3+/2=180" .

A

Figure 2.3.3: Through C draw DFE parallel to AB.

We may verify Theorem 2.3.1 by measuring the angles of a triangle with a protractor and taking the sum, However no measuring
instrument is perfectly accurate, It is reasonable to expect an answer such as 179°, 182°, 180.5°, etc. The purpose of our
mathematical proof is to assure us that the sum of the angles of every triangle must be exactly \(180/ {\circ}\).

v/ Example 2.3.2

Find x:

Solution
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LA+/B+/C = 180°
2c+3x+4x = 180
9z = 180

z = 20

Check:

LA+ 2B+ 2C = 180°
2x + 3x + 4x
2(20) + 3(20) + 4(20)

40° + 60° + 80°

180°

Answer: x = 20.

v/ Example 2.3.3

Find y and z:
D
Solution
50+100+y = 180
150+y = 180
= 180-1
y 80150 (2.3.1)
y = 30
r = 180-30=150

Answer: y = 30, x = 150.

In Figure 2.3.4, Zx is called an exterior angle of AABC, /A, /B, and Zy are called the interior angles of AABC. /A and
/ B are said to be the interior angles remote from the exterior angle Zz.

B

X
Y .
A C D

Figure 2.3.4: Zz is an exterior angle of A ABC.

The results of Example 2.3.3 suggest the following theorem.
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& Theorem 2.3.2

An exterior angle is equal to the sum of the two remote interior angles,

In Figure 2.3.4, Lz = LA+ /B.

v/ Example 2.3.3 (repeated)

Find x:
0
Solution
Using Theorem 2.3.2, z° = 100° +50° = 150° .
Answer: x = 150.

Proof of Theorem 2.3.2: We present this proof in double-column form, with statements in the left column and the reason for each
statement in the right column. The last statement is the theorem we wish to prove.

Statements Reasons
1. LA+ 4B+ Zy = 180° 1. The sum of the angles of a triangle is 180°.
2. LA+ /B =180° — Ly 2. Subtract Zy from both sides of the equation, statement 1.
3. Lz =180° — ZLy. 3. Zz and Zy are supplementary.

4. Both Zz (statement 3) and LA+ ZB (statement 2) equal
180° — Zy.

4. Lx =LA+ /B .

v/ Example 2.3.4

Find z:

Solution

/BCD is an exterior angle with remote interior angles Z A and /B. By Theorem 2.3.2,
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/BCD = /A+/B
12 4 (2.3.2)
—z = —z4+x+2
5 3
The least common denominator (1, c, d) is 15.
3 3
12 4
—z = —az +(15)z + (15)(2)
(L) ¥ (L) ¥
36z = 20z+15z+30
36z = 35z+30
36z —352z = 30
z = 30

Check:

LBCD = A+ /B

-53 x % X ¥ x 42
2 (30 | (0)+30+2
72° 50° + 32°
72°

Answer: z = 30.

Our work on the sum of the angles of a triangle can easily be extended to other figures:

v/ Example 2.3.5

Find the sum of the angles of a quadrilateral (four sided figure),
Solution

Divide the quadrilateral into two triangles as illustrated,

LA+ /B+/C+ 4D = LA+Z14/43+2242442C
= 180°+180°
= 360°

Answer: 360°.
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Find the sum of the angles of a pentagon (five-sided figure).
Solution

Divide the pentagon into three triangles as illustrated, The sum is equal to the sum of the angles of the three triangle =
(3)(180°) =540°.

Answer: 540°.

There is one more simple principle which we will derive from Theorem 2.3.1, Consider the two triangles in Figure 2.3.5.

C

Figure 2.3.5: Each triangle has an angle of 60° and 40°.

We are given that /A = /D =60° and /B = /FE =40°. A short calculation shows that we must also have /C = /F = 80°.
This suggests the following theorem:

< Theorem 2.3.3

If two angles of one triangle are equal respectively to two angles of another triangle, then their remaining angles are also equal.

In Figure 2.3.6, if LZA = /D and /B = /FE then ZC = ZF.

Proof
/C=180°—(LA+£B)=180°— (4/D+/E)=/F
c

m

2
A B D E

Figure 2.3.6. /A= /D and /B=/E.
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Our Theorem 2.3.1, which states that the sum of the angles of a triangle is 180°, is one of the most important consequences of
the parallel postulate, Therefore, one way of testing the truth of the parallel postulate (see the Historical Note in ) is
to test the truth of Theorem 2.3.1, This was actually tried by the German mathematician, astronomer, and physicist, Karl
Friedrich Gauss (1777 - 1855). (This is the same Gauss whose name is used as a unit of measurement in the theory of
magnetism), Gauss measured the sum of the angles of the triangle formed by three mountain peaks in Germany, He found the
sum of the angles to be 14.85 seconds more than 180° (60 seconds 1 minute, 60 minutes = 1 degree). However this small
excess could have been due to experimental error, so the sum might actually have been 180°.

Aside from experimental error, there is another difficulty involved in verifying the angle sum theorem. According to the non-
Euclidean geometry of Lobachevsky, the sum of the angles of a triangle is always less than 180°. In the non-Euclidean
geometry of Riemann, the sum of the angles is always more than 180°, However in both cases the difference from 180° is
insignificant unless the triangle is very large, Neither theory tells us exactly how large such a triangle should be, Even if we
measured the angles of a very large triangle, like one formed by three stars, and found the sum to be indistinguishable from
180°, we could only say that the angle sum theorem and parallel postulate are apparently true for these large distances, These
distances still might be too small to enable us to determine whichgeometric system best describes the universe as a whole,

Problems

1-12. Find « and all the missing angles of each triangle:

(c
XD
50°
A
1.
B
xO
5% 20°
A C
3.
A —s
) c
XO
5. B
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c
2X
X ‘X
7. A B 8.
=
Ty &=
C 2
cX \\
\
& 2
[ 2X X 5 30° 20x \
A P A B
9. 10.
c
X-=lo
x X
*. 2 ,
A B
11. 12.

13- 14. Find z, y, and z:

13.
15 - 20. Find x:

0020
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0
/
C/) 3x+¢
//
///
/
F -
(%x 5 X
D A B
15. 16.
8
xl
13" / X
5 c A
17. 18 A
8
c
A
19. - 20.

21. Find the sum of the angles of a hexagon (6-sided figure).
22. Find the sum of the angles of an octagon (8-sided figure).

23 - 26. Find z:

23. 24.
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e p
X° X
/
F { X X"\} c
\ "/
X’ X/
A B

25. 26.

In a right triangle, the sides of the right angle are called the legs of the triangle and the remaining side is called the hypotenuse. In
Figure 2.3.1, side AC and BC are the legs and side AB is the hypotenuse.

o = leg

A = | e.fc} -
Figure 2.3.1: A right triangle.

The following is one of the most famous theorems in mathematics.

# Theorem 2.3.1: Pythagorean Theorem

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs. That is,

leg? +leg? = hypotenuse? (2.3.3)
Thus, for the sides of the triangle in Figure 2.3.1,
a®+bv:=¢?

Before we prove Theorem 2.3.1, we will give several examples.

v/ Example 2.3.1

Find x
B
X
3
‘.._.
A 4 C
Solution
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leg’ +leg> = hyp’
3¥+4 = 2?
9416 = 22
25 = g2
5 = =z
Check:
les2 + 1es2 - hyp2
32 + u_2 x2
9+16 | 5
25 25
Answer: z = 5.
v/ Example 2.3.2
Find z:
nd x: A
|C
5
A X c
Solution
leg’ +leg> = hyp’
52422 = 107
25+22 = 100
2 = 75
z = 75=+125vV3=5V3
Check:

leg® + leg® = hyp?
52 + % 10%
25 + (543)% | 100
25 + 254/9
25 + 25(3)

25+ 75

100
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l Answer: = 5+/3.

v/ Example 2.3.3

Find z:
=
id x:
5 5
A s B
Solution
leg” +leg® = hyp®
5°+5% = 2’
254+25 = g2
50 = zx2
z = 1/50=+25v2=5v2
Check:
1eg2 + leg2 = hypz
52 i 52 o
25 +25 | (5432)°
50 254
25(2)
50

Answer: z = 5+/2.

v/ Example 2.3.4

Find z
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We will now restate and prove Theorem 2.3.1:

& Theorem 2.3.1 Pythagorean Theorem

leg? + leg? = hypotenuse?.
In Figure 2.3.1,

a? + b =2

0020

L A
X ///‘
X+2
X
. []
B X+1 &
Solution
leg? + leg? hyp?
22+ (z+1)?2 = (z+2)2
22422 4+2x+1 = z?4+4x+4
22422 +2c+1—2%—4x—4 = 0
z2—2x—-3 = 0
(z—=3)(z+1) 0
z—3 = 0z+1 = 0
r = 3 r = -1
We reject ¢ = —1 because AC = x cannot be negative.
Check, z = 3:
leg2 + 1eg2 = hyp2
X% + (x+1)2 (x+2)2
F+@3+1)?2 | 3+2)7
9+4% | 5
9 + 16 25
25
Answer: z = 3.

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs. That is,
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A b c
Figure 2.3.2. Draw C'D perpendicular to AB.
Proof

In Figure 2.3.1 draw C'D perpendicular to AB. Let x = AD. Then BD =c—z (Figure 2.3.2. As in Example 2.3.3
section 4.2, AABC ~ AACD and AABC ~ ACBD. From these two similarities we obtain two proportions:

A ABC v~ AACD A ABC ™ ACBD
AB _ AC AB _ BC
AC AD CB RBD
c _ 2 C = 2

b X a c -X
ex = b c(e = x) = a®
2 2
¢ =¢Xx = a
> ¢ - b2 = a2

c2 - a2 " b2

The converse of the Pythagorean Theorem also holds:
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& Theorem 2.3.2 (converse of the Pythagorean Theorem).

In a triangle, if the square of one side is equal to the sun of the squares of the other two sides then the triangle is a right
triangle.

In Figure 2.3.3, if ¢ = a® +b® then A ABC is aright triangle with ZC = 90°.

B

T |
A b c
Figure 2.3.3: If ¢ = a® +b? then ZC = 90°.

Proof

Draw a new triangle, ADEF, so that /ZF =90°, d =a, and e=b (Figure 2.3.4. ADEF is a right triangle, so by
Theorem 2.3.1 f2=d*+e?. We have f2=d’+e®=a®+b*=c? and therefore f=c.  Therefore
AABC = ADEF because SSS = SSS. Therefore, Z/C + ZF =90° .

Cu

.
i

-+ b
i i

A b C D e 2

Figure 2.3.4: Given A ABC, draw ADEF'so that /F =90°,d =a ande = b.

v/ Example 2.3.5

Is AABC aright triangle?
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8
!
V130 g
A 7 <
Solution
AC* =7 =49
BC?>=9%=81
AB? = (y/130)% =130
49 +81 =130.
so by Theorem 2.3.2, AABC is aright triangle.
Answer: yes.
v/ Example 2.3.6
Find z and AB:
D 20 c
/
/
13 1 ‘
I
] N f“
A X E F
Solution
x? +12? 132
z?+144 = 169
z? = 169144
z2 = 25
3 5
CDEF is a rectangle so EF=CD=20 and CF=DE=12.

AB=AE+EF+FB=5+20+5=30
Answer: x =5, AB =30.

(/)

Therefore FB=5 and
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Find z, AC and BD:

Solution

6°+8 = 2’
36+64 = o
100 = a2
10 z

AC=8+8=16,BD=6+6 =12.
Answer: z =10, AC =16, BD =12.

v/ Example 2.3.8

is 15 feet from the building?

ABCD is a rhombus. The diagonals of a rhombus are perpendicular and bisect each other.

Answer: 36 feet.

/
/ In J
A IS C
Solution
leg® +leg’ hyp®
x? +152 392
z2 4225 1521
z? 1521 — 225
z? 1296
z v/1296 = 36

A ladder 39 feet long leans against a building, How far up the side of the building does the ladder reach if the foot of the ladder
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Pythagoras (c. 582 - 507 B.C.) was not the first to discover the theorem which bears his name. It was known long before his
time by the Chinese, the Babylonians, and perhaps also the Egyptians and the Hindus, According to tradition, Pythagoras was
the first to give a nroof of the theorem, His proof probably made use of areas, like the one suggested. In Figure 2.3.5 below,
(each square contains four congruent right triangles with sides of lengths a, b, and ¢, In addition the square on the left contains
a square with side a and a square with side b while the one on the right contains a square with side c.)

b a
J \
Q; e, |
| i
b 5 ib
|
I
b a

2

Figure 2.3.5: Pythagoras may have proved a? +b? = ¢? in this way.

Since the time of Pythagoras, at least several hundred different proofs of the Pythagorean Theorem have been proposed,
Pythagoras was the founder of the Pythagorean school, a secret religious society devoted to the study of philosophy,
mathematics, and science. Its membership was a select group, which tended to keep the discoveries and practices of the society
secret from outsiders. The Pythagoreans believed that numbers were the ultimate components of the universe and that all
physical relationships could be expressed with whole numbers, This belief was prompted in part by their discovery that the
notes of the musical scale were related by numerical ratios. The Pythagoreans made important contributions to medicine,

physics, and astronomy, In geometry, they are credited with the angle s

um theorem for triangles, the properties of parallel lines, and the theory of similar triangles and proportions.

Problems

1 - 10. Find z. Leave answers in simplest radical form.

1.
B
X
b
]
A g <
2.
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3.

@0

B
X
g
O
A & &
_ B
17
X
[]
A 15 C
B
25 LS
C
23
|
-
A c
($)(0)
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B
2
X
A X c
7.
B
2
X
A I &
8.
B
[
1
g
-
l
.
A X &
9.
C
3 3
A X 2]
10.
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C
~
A X B

11 - 14. Find  and all sides of the triangle:
11.

13.
Q
N\
X=2 X
R Xx-9 ¢
14.
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2

3%~
A
T
15 - 16. Find x:
15.

A 2 B
16.
D g €
. —
e ’
/ X //Y'L\b—
[
A a0 2
17. Find z and AB.
D /0 <
5/ |4 5
N R ]
A X E F B

18. Find x:
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10 X 10
|
n > l
A E F 8
e— 5 e

21. Find z and y:

D L0 c

1\
ALY E

22. Find z, AC and BD:
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D X c
7 71
5
A N X
E
A 4 6

23. Find z, AB and BD:

P &
| "\ ]

3
X L3

..

A Ax+2 B

24. Find ¢z, AB and AD:

%

25 -30. Is AABC aright triangle?

Val

25.
B
10
g
A G &
26.
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e
9 40
A & B8
27.
B
1 "
A s C
28.
B
2
Js2 "
AR—
A 4 c
29.
30.
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C

31. A ladder 25 feet long leans against a building, How far up the side of the building does the ladder reach if the foot of the ladder
is 7 feet from the building?

32. A man travels 24 miles east and then 10 miles north. At the end of his journey how far is he from his starting point?

33. Can a table 9 feet wide (with its legs folded) fit through a rectangular doorway 4 feet by 8 feet?

34. A baseball diamond is a square 90 feet on each side, Find the distance from home plate to second base (leave answer in
simplest radical form).

Home
Piote

This appendix contains some formulas and results from geometry that are important in the study of trigonometry.

For a circle with radius 7:

e Circumference: C = 27r
e Area: A =7r?
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# Triangles

o The sum of the measures of the three angles of a triangle is 180°.

A triangle in which each angle has a measure of less that 90° is called an acute triangle.

A triangle that has an angle whose measure is greater than 90° is called an obtuse triangle.

A triangle that contains an angle whose measure is 90° is called a right triangle. The side of a right triangle that is opposite
the right angle is called the hypotenuse, and the other two sides are called the legs.

An isosceles triangle is a triangle in which two sides of the triangle have equal length. In this case, the two angles across
from the two sides of equal length have equal measure.

An equilateral triangle is a triangle in which all three sides have the same length. Each angle of an equilateral triangle has
a measure of 60°.

# Right Triangles

o The sum of the measures of the two acute angles of a right triangle is 90°. In the diagram on the right, o + 3 = 90° .
o The Pythagorean Theorem. In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other
two sides. In the diagram on the right, ¢> = a® + b?

# Special Right Triangles

A right triangle in which both acute angles are 45°. For this type of right triangle, the lengths of the two legs are equal. So
if ¢ is the length of the hypotenuse and z is the length of each of the legs, then by the Pythagorean Theorem, ¢* = 2% + 22 .
Solving this equation for z, we obtain

2z% = 2 (2.3.4)
2
2’ = % (2.3.5)
2
z= % (2.3.6)
2
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A right triangle with acute angles of 30° and 60°.

We start with an equilateral triangle with sides of length c. By drawing an angle bisector at one of the vertices, we create two
congruent right triangles with acute angles of 30° and 60°.

This means that the third side of each of these right triangles will have a length of g If the length of the altitude is z, then

using the Pythagorean Theorem, we obtain

& =2 +(§)2 (2.3.8)
2
2 2 €
2 < 2.3.
2 =c —— (2.3.9)
2
2 =3 (2.3.10)
1
2
o o2 B8 (2.3.11)
4 2

# Similar Triangles

Two triangles are similar if the three angles of one triangle are equal in measure to the three angles of the other triangle. The
following diagram shows similar triangles A ABC and ADEF'. We write AABC ~ ADEF.

o B D ' E
A C B /

The sides of similar triangles do not have to have the same length but they will be proportional. Using the notation in the
diagram, this means that

(2.3.12)
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We use some properties of parallelograms in the study of vectors in Section 3.5. A parallelogram is a quadrilateral with two
pairs of parallel sides. We will use the diagram on the right to describe some properties of parallelograms.
D C
B o

o p
A B

o Opposite sides are equal in length. In the diagram, this means that
AB=DC and AD = BC (2.3.13)
e As shown in the diagram, opposite angles are equal. That is,
/DAB=/BCD and ZABC = ZCDA (2.3.14)
o The sum of two adjacent angles is 180°. In the diagram, this means that

a+p=180° (2.3.15)

This page titled 2.3: Triangles is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted Sundstrom &
Steven Schlicker (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform.

e 6.1: Basic Geometric Concepts and Figures by Darlene Diaz is licensed CC BY-NC-SA 4.0. Original source:
https://www.sccollege.edu/OER/Documents/MATH 105/Math For Liberal Art Students (2017).pdf.

o 1.5: Triangles by Henry Africk is licensed CC BY-NC-SA 4.0. Original source: https://academicworks.cuny.edu/ny_oers/44.

¢ 4.4: Pythagorean Theorem by Henry Africk is licensed CC BY-NC-SA 4.0. Original source: https://academicworks.cuny.edu/ny_oers/44.

« 6: Some Geometric Facts about Triangles and Parallelograms by Ted Sundstrom & Steven Schlicker is licensed CC BY-NC-SA 3.0.
Original source: https://scholarworks.gvsu.edu/books/12.
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2.4: The Rectangular Coordinate Systems and Graphs

&b Learning Objectives

o Plot ordered pairs in a Cartesian coordinate system.
o Graph equations by plotting points.

o Graph equations with a graphing utility.

o Find z-intercepts and y-intercepts.

o Use the distance formula.

o Use the midpoint formula.

Plotting Ordered Pairs in the Cartesian Coordinate System

The Cartesian coordinate system, also called the rectangular coordinate system, is based on a two-dimensional plane consisting of
the x-axis and the y-axis. Perpendicular to each other, the axes divide the plane into four sections. Each section is called a
quadrant; the quadrants are numbered counterclockwise as shown in Figure 2.4.2.

y—a}xis
Quadrant Il Quadrant |
- = Xx-axis
Quadrant 11 Quadrant IV
|
Figure 2.4.2

The center of the plane is the point at which the two axes cross. It is known as the origin, or point (0, 0). From the origin, each axis
is further divided into equal units: increasing, positive numbers to the right on the x-axis and up the y-axis; decreasing, negative
numbers to the left on the z-axis and down the y-axis. The axes extend to positive and negative infinity as shown by the
arrowheads in Figure 2.4.3.
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Figure 2.4.3

Each point in the plane is identified by its z-coordinate, or horizontal displacement from the origin, and its y-coordinate, or vertical
displacement from the origin. Together, we write them as an ordered pair indicating the combined distance from the origin in the
form (z, y). An ordered pair is also known as a coordinate pair because it consists of z- and y-coordinates. For example, we can
represent the point (3, —1) in the plane by moving three units to the right of the origin in the horizontal direction, and one unit
down in the vertical direction. See Figure 2.4.4.

Figure 2.4.4

When dividing the axes into equally spaced increments, note that the x-axis may be considered separately from the y-axis. In other
words, while the z-axis may be divided and labeled according to consecutive integers, the y-axis may be divided and labeled by
increments of 2, or 10, or 100. In fact, the axes may represent other units, such as years against the balance in a savings account, or
quantity against cost, and so on. Consider the rectangular coordinate system primarily as a method for showing the relationship
between two quantities.

X cCartesian Coordinate System

A two-dimensional plane where the

e z-axis is the horizontal axis
e y-axis is the vertical axis

A point in the plane is defined as an ordered pair, (z,y), such that z is determined by its horizontal distance from the origin
and y is determined by its vertical distance from the origin.
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v Example 2.4.1: Plotting Points in a Rectangular Coordinate System

Plot the points (—2,4), (3, 3), and (0, —3) in the plane.
Solution

To plot the point (—2, 4), begin at the origin. The z-coordinate is —2, so move two units to the left. The y-coordinate is 4, so
then move four units up in the positive y direction.

To plot the point (3, 3), begin again at the origin. The z-coordinate is 3, so move three units to the right. The y-coordinate is
also 3, so move three units up in the positive y direction.

To plot the point (0, —3), begin again at the origin. The z-coordinate is 0. This tells us not to move in either direction along the
x-axis. The y-coordinate is — 3, so move three units down in the negative y direction. See the graph in Figure 2.4.5.

(=2, 4)
3,3

Ul R S
.

(0, -3)

Figure 2.4.5
Analysis

Note that when either coordinate is zero, the point must be on an axis. If the z-coordinate is zero, the point is on the y-axis. If
the y-coordinate is zero, the point is on the z-axis.

Graphing Equations by Plotting Points

We can plot a set of points to represent an equation. When such an equation contains both an x variable and a y variable, it is called
an equation in two variables. Its graph is called a graph in two variables. Any graph on a two-dimensional plane is a graph in
two variables.

Suppose we want to graph the equation y = 22 — 1. We can begin by substituting a value for z into the equation and determining
the resulting value of y. Each pair of z- and y-values is an ordered pair that can be plotted. Table 2.4.1lists values of  from -3 to
3 and the resulting values for y.

Table 2.4.1
z y=2c—1 (z,y)

3 y=2(-3)—1=—7 (=3,-7)
9 y=2(-2)—1=—5 (=2,-5)
-1 y=2(-1)—1=-3 (—1,-3)
0 y=2(0)—1=—1 (0, 1)
1 y=2(1)—1=1 (1,1)
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e y=2z—1 (z,y)
2 y=2(2)-1=3 (2,3)
3 y=2(3)-1=5 (3,5)

We can plot the points in the table. The points for this particular equation form a line, so we can connect them (Figure 2.4.6). This
is not true for all equations.

(3:5)
(2:3)

(1)

1 2 3 4 5 6 7 8
140, -1

Figure 2.4.6

Note that the x-values chosen are arbitrary, regardless of the type of equation we are graphing. Of course, some situations may
require particular values of x to be plotted in order to see a particular result. Otherwise, it is logical to choose values that can be
calculated easily, and it is always a good idea to choose values that are both negative and positive. There is no rule dictating how
many points to plot, although we need at least two to graph a line. Keep in mind, however, that the more points we plot, the more
accurately we can sketch the graph.

X Howto: Given an equation, graph by plotting points

1. Make a table with one column labeled z, a second column labeled with the equation, and a third column listing the
resulting ordered pairs.

2. Enter x-values down the first column using positive and negative values. Selecting the z-values in numerical order will
make the graphing simpler.

3. Select x-values that will yield y-values with little effort, preferably ones that can be calculated mentally.

4. Plot the ordered pairs.

5. Connect the points if they form a line.

v/ Example 2.4.2: Graphing an Equation in Two Variables by Plotting Points

Graph the equation y = —z + 2 by plotting points.
Solution

First, we construct a table similar to Table 2.4.2. Choose x values and calculate y.

Table 2.4.2
z y=-z+2 (z,9)
5 y=—(-5)+2=7 (=5,7)
3 y=—(-3)+2=5 (=3,5)
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T y=—c+2 (z,y)
-1 y=—(-1)+2=3 (-1,3)
0 y=—(0)+2=2 (0,2)
1 y=-(1)+2=1 (1,1)
3 y=—(3)+2=—1 (3,-1)
5 y=—(5)+2=-3 (5,—3)

Now, plot the points. Connect them if they form a line. See Figure 2.4.7.

y
[

ANGED

6% 4 5 % 10

Figure 2.4.7
? Exercise 2.4.1
Construct a table and graph the equation by plotting points: y = %m +2.

Answer

Please see Table 2.4.3and graph below.

Table 2.4.3
z y=12z+2 (z,v)
-2 y=12(-2)+2=1 (—2,1)
-1 y=12(-1)+2=32 (—1,32)
0 y=12(0)+2=2 (0,2)
1 y=12(1)+2 =52 (1,52)
2 y=12(2)+2=3 (2,3)
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Figure 2.4.8

Finding x-intercepts and y-intercepts

The intercepts of a graph are points at which the graph crosses the axes. The z-intercept is the point at which the graph crosses the
\(x\)-axis. At this point, the y-coordinate is zero. The y-intercept is the point at which the graph crosses the y-axis. At this point, the
z-coordinate is zero.

To determine the x-intercept, we set y equal to zero and solve for . Similarly, to determine the y-intercept, we set z equal to zero
and solve for y. For example, lets find the intercepts of the equationy =3z —1.

To find the z-intercept, set y = 0.

y=3z—1
0=3z—-1
1=3z
1 pr—
3 =2
. 1
z—Intercept: (g, 0)
To find the y-intercept, set z = 0.
y=3z—-1
y=3(0)—1
y=-1

y—intercept: (0,-1)

We can confirm that our results make sense by observing a graph of the equation as in Figure 2.4.12 Notice that the graph crosses
the axes where we predicted it would.
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y=3x—-1
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Figure 2.4.12

X Howto: GIVEN AN EQUATION, FIND THE INTERCEPTS

1. Find the z-intercept by setting y = 0 and solving for z.
2. Find the y-intercept by setting £ = 0 and solving for y.

v/ Example 2.4.4: Finding the Intercepts of the Given Equation

Find the intercepts of the equation y = —3x — 4. Then sketch the graph using only the intercepts.

Solution

Set y = 0 to find the x-intercept.

y=—-3z—4
0=-3z—-4
4=-3z
4 x
7=
. 4
z-intercept: (.0
Set = 0 to find the y-intercept.
y=-3zx—4
y =—3(0)—4
y=—4

y—intercept: (0, —4)

Plot both points, and draw a line passing through them as in Figure 2.4.13
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0. —4)

Figure 2.4.13
? Exercise 2.4.2
. . . 3

Find the intercepts of the equation and sketch the graph: y = — Zaf: +3.

Answer

z-intercept is (4, 0); y-intercept is (0, 3)

| t : + t ! t + =X
4 -3 2 10 1 2 3 w
l__

Figure 2.4.14

Using the Distance Formula

Derived from the Pythagorean Theorem, the distance formula is used to find the distance between two points in the plane. The
Pythagorean Theorem, a2 +b2 = ¢2 , is based on a right triangle where a and b are the lengths of the legs adjacent to the right

angle, and c is the length of the hypotenuse. See Figure 2.4.15
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e —xl=a

01 2 3 4 5 6 1"

Figure 2.4.15
The relationship of sides |z3 — 21| and |y2 —y1| to side d is the same as that of sides a and b to side c¢. We use the absolute value
symbol to indicate that the length is a positive number because the absolute value of any number is positive. (For example,
| —3| =3.) The symbols |z2 — 1| and |y, —y;| indicate that the lengths of the sides of the triangle are positive. To find the
length c, take the square root of both sides of the Pythagorean Theorem.

A =d>+b >c=1/a’+b? (2.4.1)

It follows that the distance formula is given as

f==@2—wﬂz+(w—y02—+d=x/@z—wﬂ2+(w—gﬂ2 (2.4.2)

We do not have to use the absolute value symbols in this definition because any number squared is positive.

X distance between two points

Given endpoints (z1,y;) and (z2,y2), the distance between two points is given by

d=1/@—2)" + e -9’ (24.3)

v Example 2.4.5: Finding the Distance between Two Points

Find the distance between the points (—3, —1) and (2, 3).

Solution
Let us first look at the graph of the two points. Connect the points to form a right triangle as in Figure 2.4.16

y
o

2.3)

N\

— / : X
4 3,2 10 1 2 3 4
/ =3
(-3, 1) 2 -1

-2l
9

Figure 2.4.16

Then, calculate the length of d using the distance formula.
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d=1/(z2—1)%+ (y2 — 1)

2-(=3)"+(3—(-1))

2

= <

(
(

I
N~
(2] N,
q\f\:
=

&

|
<

? Exercise 2.4.3

Find the distance between two points: (1,4) and (11, 9).

Answer

V125=5+/5

Using the Midpoint Formula

When the endpoints of a line segment are known, we can find the point midway between them. This point is known as the midpoint
and the formula is known as the midpoint formula. Given the endpoints of a line segment, (z1,y;) and (z3,y2), the midpoint
formula states how to find the coordinates of the midpoint M.

M= (Btm nty (2.4.4)
2 2
A graphical view of a midpoint is shown in Figure 2.4.18 Notice that the line segments on either side of the midpoint are
congruent.
y
(x2, y2)
(Xl TX Y1t )’2)
2 72
(X1, 1)
0 t + + -X

Figure 2.4.18

v Example 2.4.7: Finding the Midpoint of the Line Segment

Find the midpoint of the line segment with the endpoints (7, —2) and (9, 5).
Solution

Use the formula to find the midpoint of the line segment.

Ti+Ts ity [ 7T+9 —2+5
2 72 o 2 7 2
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Find the midpoint of the line segment with endpoints (—2, —1) and (-8, 6).

Answer
5
(-+:3)
v Example 2.4.8: Finding the Center of a Circle

The diameter of a circle has endpoints (—1, —4) and (5, —4). Find the center of the circle.

Solution

The center of a circle is the center, or midpoint, of its diameter. Thus, the midpoint formula will yield the center point.
Tt® yty ) (145 44,
2 72 N 2 72

(53

—(2,4)

Access these online resources for additional instruction and practice with the Cartesian coordinate system.
1. Plotting points on the coordinate plane

2. Find x and y intercepts based on the graph of a line

Key Concepts

e We can locate, or plot, points in the Cartesian coordinate system using ordered pairs, which are defined as displacement from
the z-axis and displacement from the y-axis. See

o An equation can be graphed in the plane by creating a table of values and plotting points. See

o Using a graphing calculator or a computer program makes graphing equations faster and more accurate. Equations usually have
to be entered in the form y = . See

o Finding the x- and y-intercepts can define the graph of a line. These are the points where the graph crosses the axes. See

e The distance formula is derived from the Pythagorean Theorem and is used to find the length of a line segment. See

and .
o The midpoint formula provides a method of finding the coordinates of the midpoint dividing the sum of the z-coordinates and
the sum of the y-coordinates of the endpoints by 2. See and

This page titled 2.4: The Rectangular Coordinate Systems and Graphs is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

e 2.1: The Rectangular Coordinate Systems and Graphs by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/precalculus.
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2.5: Finding Angle Measurements

Angles

Lines, line segments, points, and rays are the building blocks of other figures. For example, two rays with a common endpoint
make up an angle. The common endpoint of the angle is called the vertex.

The angle ABC is shown below. This angle can also be called ZABC, £ZCBA or simply ZB. When you are naming angles, be
careful to include the vertex (here, point B) as the middle letter.

A
B
C
The image below shows a few angles on a plane. Notice that the label of each angle is written “point-vertex-point,” and the

geometric notation is in the form Z ABC.
L
M .LMN Q R

:SRQ
G B
H
D
<GHI c
.BCD

Sometimes angles are very narrow; sometimes they are very wide. When people talk about the “size” of an angle, they are referring
to the arc between the two rays. The length of the rays has nothing to do with the size of the angle itself. Drawings of angles will
often include an arc (as shown above) to help the reader identify the correct ‘side’ of the angle.

Think about an analog clock face. The minute and hour hands are both fixed at a point in the middle of the clock. As time passes,
the hands rotate around the fixed point, making larger and smaller angles as they go. The length of the hands does not impact the
angle that is made by the hands.

An angle is measured in degrees, represented by the symbol °. A circle is defined as having 360°. (In skateboarding and basketball,
“doing a 360” refers to jumping and doing one complete body rotation.

A right angle is any degree that measures exactly 90°. This represents exactly one-quarter of the way around a circle. Rectangles
contain exactly four right angles. A corner mark is often used to denote a right angle, as shown in right angle DCB below.

Angles that are between 0° and 90° (smaller than right angles) are called acute angles. Angles that are between 90° and 180° (larger
than right angles and less than 180°) are called obtuse angles. And an angle that measures exactly 180° is called a straight angle
because it forms a straight line.
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M Q 45°

Acute angle R

Acute angle

G B
H o
108° 20
D {
C
Obtuse angle | Right angle
x 18077

Straight angle ¥

Figure 2.5.5: Examples of Angles

v/ Example 2.5.4

Label each angle below as acute, right, or obtuse.

L. .
\

Solution
You can start by identifying any right angles.

£ GFl is a right angle, as indicated by the corner mark at vertex F.

Acute angles will be smaller than Z GFI (or less than 90°). This means that ZDAB and ZMLN are acute.
£ TQS is larger than Z GF]I, so it is an obtuse angle.

Answer: ZDAB and ZMLN are acute angles. Z GFI is a right angle. ZTQS is an obtuse angle.

v/ Example 2.5.5

Identify each point, ray, and angle in the picture below.
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_n
3]

Solution
Begin by identifying each point in the figure. There are 4: E, F, G, and J.

E

_n
(9]

Now find rays. A ray begins at one point, and then continues through another point towards infinity (indicated by an arrow).
— — —
Three rays start at point J: JE, JF', and JG. But also notice that a ray could start at point F and go through J and G, and

— —
another could start at point G and go through J and F. These rays can be represented by GF' and F'G.

"ﬁ
-
[ XS]

E
Obtuse
F Acute G

Answer: Points: E, F, G, J

— — — — —
Rays: JE, JG, JF,GF, FG

Angles: ZEJG, LEJF, LFIG

d Try It Now 2

Identify the acute angles in the given image:

Finding Angle Measurements

Understanding how parallel and perpendicular lines relate can help you figure out the measurements of some unknown angles. To
start, all you need to remember is that perpendicular lines intersect at a 90° angle and that a straight angle measures 180°.

The measure of an angle such as Z A is written as mZ A. Look at the example below. How can you find the measurements of the
unmarked angles?
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Find the measurement of ZIJF.

H J F
M

Solution
Only one angle, ZHJM, is marked in the image. Notice that it is a right angle, so it measures 90°. ZHJM is formed by the

> < >
intersection of lines IM and HF'. Since I M is a line, ZIJM is a straight angle measuring 180°.

H 180°§ J F
p——o—>

90°

You can use this information to find the measurement of ZHJI :
mZHM +mZHIJI=m/ZIIM
90° + mZ HJI = 180°

mZ HJI = 90°
|
[ ]
90°
H J F
p———»
90°
M
[ ]

> —
Now use the same logic to find the measurement of ZIJF. Z1JF is formed by the intersection of lines IM and HF'. Since

—
HF isaline, ZHJF will be a straight angle measuring 180°.
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You know that Z HJI measures 90°. Use this information to find the measurement of ZIJF:
mZHM + mZ1JF =mZHIJF
90° + mZIJF = 180°

mZUF = 90°
|
90° | 90°
- o J_F.
90°
M

Answer: mZIJF = 90°

In this example, you may have noticed that angles ZHJI, ZIJF, and ZHJM are all right angles. (If you were asked to find the
measurement of ZFJM, you would find that angle to be 90°, too.) This is what happens when two lines are perpendicular—the four
angles created by the intersection are all right angles.

Not all intersections happen at right angles, though. In the example below, notice how you can use the same technique as shown
above (using straight angles) to find the measurement of a missing angle.

v/ Example 2.5.9

Find the measurement of ZDAC.

135°

Solution

— —
This image shows the line BC' and the ray AD intersecting at point A. The measurement of ZBAD is 135°. You can use
straight angles to find the measurement of ZDAC.
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£/ BAC is a straight angle, so it measures 180°.

180° A

Use this information to find the measurement of ZDAC.
mZBAD + mZDAC =mZBAC
135° + mZDAC = 180°

mZDAC =45°
D
135°
B 45° C
- *—
180° A
Answer: mZDAC = 45°
D
B 45° C
- *—»
A
& Try It Now 2
Find the measurement of Z CAD.
C
B 43° D
A

Supplementary and Complementary

In the example above, mZBAC and mZDAC add up to 180°. Two angles whose measures add up to 180° are called
supplementary angles. There’s also a term for two angles whose measurements add up to 90°, they are called complementary
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angles.

One way to remember the difference between the two terms is that “corner” and “complementary” each begin with ¢ (a 90° angle
looks like a corner), while straight and “supplementary” each begin with s (a straight angle measures 180°).

If you can identify supplementary or complementary angles within a problem, finding missing angle measurements is often simply
a matter of adding or subtracting.

v/ Example 2.5.10

Two angles are supplementary. If one of the angles measures 48°, what is the measurement of the other angle?
Solution
Two supplementary angles make up a straight angle, so the measurements of the two angles will be 180°.
mZA +mZ4B =180°
You know the measurement of one angle. To find the measurement of the second angle, subtract 48° from 180°.
48°+ m4B = 180°
mZB = 180° - 48°

m4B=132°
Answer: The measurement of the other angle is 132°
v/ Example 2.5.11
Find the measurement of Z AXZ.
Z
A
30°
A B
Y

Solution

— >
This image shows two intersecting lines, AB and Y Z. They intersect at point X, forming four angles. Angles ZAXY and
£ AXZ are supplementary because together they make up the straight angle Z YXZ.

Use this information to find the measurement of Z AXZ.
mZLAXY + mLAXZ =mALYXZ
30°+ mZLAXZ = 180°

mZ AXZ = 150°
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150°

30°

Answer: mZ AXZ = 150°

v/ Example 2.5.12

Find the measurement of ZBAC.

Solution

> — —
This image shows the line C'F' and the rays AB and AD, all intersecting at point A. Angle ZBAD is a right angle. Angles
£ BAC and £ CAD are complementary because together they create ZBAD.

Use this information to find the measurement of ZBAC .
mZBAC + mZCAD =mZBAD
mZBAC + 50° =90°

mZBAC = 40°
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Answer: mZBAC = 40°

v/ Example 2.5.13

Find the measurement of ZCAD.

Solution
You know the measurements of two angles here: ZCAB and ZDAE. You also know that mZ BAE = 180°.

Use this information to find the measurement of ZCAD.
mZBAC + mZCAD + mZDAE = mZBAE
25°+mZ CAD + 75° = 180°
mZ CAD + 100° = 180°
mZ CAD = 80°

Answer: mZ CAD = 80°
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Which pair of angles is complementary?

A) £PKO and ZMKN
B) £PKO and ZPKM
C) LLKP and ZLKN
D) £ZLKM and ZMKN

Summary

Parallel lines do not intersect, while perpendicular lines cross at a 90° angle. Two angles whose measurements add up to 180° are
said to be supplementary, and two angles whose measurements add up to 90° are said to be complementary. For most pairs of
intersecting lines, all you need is the measurement of one angle to find the measurements of all other angles formed by the
intersection.

¥ Try It Now Answers

1. C) FH || EG; both EG and FH are marked with >> on each line, and those markings mean they are parallel.

2.137° £BAD is a straight angle measuring 180°. Since Z BAC measures 43°, the measure of ZCAD must be 180° —43° =
137°.

3. D) £LLKM and £ MKN; the measurements of two complementary angles will add up to 90°. ZLKP is a right angle, so
Z LKN must be a right angle as well. ZLKM + ZMKN = £ZLKN, so ZLKM and ZMKN are complementary.
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T is along the vertical
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0]

g |sf
ol 0
I
: : 0
Pink arrow is tangent to the curve
Red arrow is along the radius v

Y-axis is tangent to the curve
X-axis is along the radius

4

Two lines are parallel if they do not meet, no matter how far they are extended. The symbol for parallel is ||. In Figure 2.5.1, AB
<

|| CD. The arrow marks are used to indicate the lines are parallel.

A " B
r 4
c
N D
<~ —
Figure 2.5.1: AB and C D are parallel.They do not meet no matter how far they are
extended.
G e
E H

s ps
Figure 2.5.1: EF and GH are not parallel. They meet at
point P.
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We make the following assumption about parallel lines, called the parallel postulate.

<& Theorem 2.5.1: Parallel Postulate

The probabilities assigned to events by a distribution function on a sample space are given by

Through a point not on a given line one and only one line can be drawn parallel to the given line. So in Figure 2.5.3, there is

H
exactly one line that can be drawn through C that is parallel to AB.

i

e
A 5
Loy

—
Figure 2.5.3: There is exactly one line that can be drawn through C parallel to AB.

b

>
Figure 2.5.4: E'F is a transversal.

s
A transversal is a line that intersects two other lines at two distinct points. In Figure 2.5.4, EF' is a transversal. /x and /z’ are
called alternate interior angles of lines AB and C'D. The word "alternate," here, means that the angles are on different sides of

— —
the transversal, one angle formed with AB and the other formed with C'D. The word "interior" means that they are between the
two lines. Notice that they form the letter "Z." (Figure 2.5.5). Zy and £y’ are also alternate interior angles. They also form a "Z"
though It is stretched out and backwards. Viewed from the side, the letter "Z" may also look like an "N."

Figure 2.5.5: Alternate interior form the letters "Z" or "IN". The letter may be stretched out or backwards.

Alternate interior angles are important because of the following theorem:
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& Theorem 2.5.1 The "Z" Theorem

If two lines are parallel then their alternate interior angles are equal, If the alternate interior angles of two lines are equal then
the lines must 'oe parallel,

— =
In Figure 2.5.6, AB must be parallel to C'D because the alternate interior angles are both 30°. Notice that the other pair of
alternate interior angles, Zy and /4, are also equal. They are both 150°. In Figure 2.5.7, the lines are not parallel and none of the
alternate interior angles are equal.

A
H/
N
'70/ no° %
c ! Q‘f\/@(f D
/G
/
/'E

Figure 2.5.7: The lines are not parallel and their alternate interior angles are not equal.

The Proof of Theorem 2.5.1 is complicated and will be deferred to the appendix.

v/ Example 2.5.1

Find 2, yand z:

L

Solution

>
AB||CD since the arrows indicate parallel lines. z° =40° because alternate interior angles of parallel lines are equal.
y° =2z° =180° —40° =140° .

Answer: x =40,y = 140, z = 140.
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Corresponding angles of two lines are two angles which are on the same side of the two lines and the same side of the transversal,
—> >
In Figure 2.5.8, Zwand Zw’ are corresponding angles of lines AB and C D. They form the letter "F." Zz and Zz’, Zy and £/,

— “—
and Zz and ZZ' are other pairs of corresponding angles of AB and C'D. They all form the letter "F", though it might be a
backwards or upside down "F" (Figure 2.5.9).

Figure 2.5.9: Corresponding angles form the letter "F'," though it may be a backwards or upside down "F'."

Corresponding angles are important because of the following theorem:

& Theorem 2.5.2: The "F" Theorem

If two lines are parallel then their corresponding angles are equal. If the corresponding angles of two lines are equal then the
lines must be parallel.

v/ Example 2.5.2

Find z:
"/
A H / AB
’ 1o°
C . G 0
: X .
E - - .
Solution
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—
The arrow indicate AB||C D. Therefore z° =110° because z° and 110° are the measures of corresponding angles of the
—
parallel lines AB and CD.

Answer: x = 110.

F/
//cc / o)
AL /1) 70° B
g
o
no_/ .
£ 5 6/ 70 %
10 ”Oo
3

Figure PageIndexz10: Each pair of corresponding angles is equal.

Notice that we can now find all the other angles in Example Pagelndex2. Each one is either supplementary to one of the 110°
angles or forms equal vertical angles with one of them (Figure PagelIndex10). Therefore all the corresponding angles are equal,
Also each pair of alternate interior angles is equal. It is not hard to see that if just one pair of corresponding angles or one pair of
alternate interior angles are equal then so are all other pairs of corresponding and alternate interior angles.

Proof of Theorem 2.5.2: The corresponding angles will be equal if the alternate interior angles are equal and vice versa. Therefore
Theorem 2.5.2 follows directly from Therorem 2.5.1.

In Figure 2.5.11, Zz and Zz' are called interior angles on the same side of the transversal.(In some textbooks, interior angles
on the same sdie of the transversal are called cointerior angles.) Zy and Z%' are also interior angles on the same side of the
transversal, Notice that each pair of angles forms the letter "C'." Compare Figure 2.5.11 with Figure 10 and also with Example
2.5.1, The following theorem is then apparent:

Figure 2.5.11: Interior angles on the same side of the transversal form the letter "C". It may also be a backwards "C."

& Theorem 2.5.3:The "C" Theorem

If two lines are parallel then the interior angles on the same side of the transversal are supplementary (they add uP to 180°). If
the interior angles of two lines on the same side of the transversal are supplementary then the lines must be parallel.

v/ Example 2.5.3

Find z and the marked angles:
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Solution

The lines are parallel so by Theorem 2.5.3 the two labelled angles must be supplementary.

x+2x+30 = 180
3z+30 = 180
3z = 180-30 (2.5.1)
3z = 150
x = b0

/CHG =z =50°
/AGH =2z +30=2(50)+30=100+30=130" .
Check:

x +2x +3x = 180°
50 + 2(50) + 30
50 + 130

180

Answer: x =50, /CHG =50°, ZAGHa = 130°.

v/ Example 2.5.4

Find « and the marked angles:

Y

AX+5C

" £
A Sxeyod B
G

/BEF =3z +40° because vertical angles are equal. /BEF and /DFE are interior angles on the same side of the
transversal, and therefore are supplementary because the lines are parallel.

Solution
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3z +40+2x 450 = 180
524+90 = 180
5z = 180—-90 (2.5.2)
5z = 90
r = 18

/AEC =3z +40 =3(18) +40 =54 +40 = 94°
/DFE =2z +50=2(18)+50 =36 + 50 = 86°
Check:

3x + 40 + 2x + 50 = 180
3(18) + 40 + 2(18) + 50
54 4+ 40 + 36 + 50
oh + 86

180

Answer: x =18, ZAEG =94°, /DFE = 86°.

v/ Example 2.5.5

— —
List all pairs of alternate interior angles in the diagram, (The single arrow indicates AB is parallel to C'D and the double arrow

— —
indicates AD is parallel to BC'.

LN

Solution

We see if a letter Z or N can be formed using the line segments in the diagram (Figure 2.5.12),

D

A 5

— —
Answer: Z/DC A and ZC AB are alternate interior angles of lines AB and CD. ZDAC and ZACB are alternate interior
— —
angles of lines AD and BC
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star can be seen in the eyepiece E?

Solution

angle of incidence is equal to the angle of reflection. Therefore

r+70+2x 180
2z +70 = 180
2z = 110
T 55
Answer: 55°
SUMMARY
=
~
et g

Alternate interior angles of paralle lines are equal. They form the letter "Z."

A telescope is pointed at a star 70° above the horizon, What angle z° must the mirror BD make with the horizontal so that the

— S
x° = /BCE because they are alternate interior angles of parallel lines AB and CE. /DCF = /BCE = x° because the

(2.5.3)
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Y

WV

Corresponding angles of parallel lines are equal. They form the letter "F."

N

—
YV

Interior angles on the same sides of the transversal of parallel lines are supplementary. They form the letter "G."

X Historical Note

The parallel postulate given earlier in this section is the equivalent of the fifth postulate of Euclid's Elements. Euclid was
correct in assuming it as a postulate rather than trying to prove it as a theorem, However this did not become clear to the
mathematical world until the nineteenth century, 2200 years later, In the interim, scores of prominent mathematicians
attempted unsuccessfully to give a satisfactory proof of the parallel postulate. They felt that it was not as self-evident as a
postulate should be, and that it required some formal justification,

In 1826, N, I, Lobachevsky, a Russian mathematician, presented a system of geometry based on the assumption that through a
given point more than one straight line can be drawn parallel to a given line (Figure 2.5.13). In 1854, the German
mathematician Georg Bernhard Riemann proFosed a system of geometriJ in which there are no parallel lines at all, A gecmetry
in which the parallel postulate has been replaced by some other postulate is called a non-Euclidean geometry. The existence of
these geometries shows that the parallel postulate need not necessarily be true. Indeed Einstein used the geometry of Riemann
as the basis for his theory of relativity.

i

A B

Figure PagelIndex13: In the geometry of Lobachevsky, more than one line can be drawn through C' parallel to AB.
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Of course our original parallel postulate makes the most sense for ordinary applications, and we use it throughout this book,
However, for applications where great distances are involved, such as in astronomy, it may well be that a non-Euclidean
geometry gives a better approximation of physical reality.

Problems

For each of the following, state the theorem(s) used in obtaining your answer (for example, "alternate interior angles of parallel
lines are equal™). Lines marked with the same arrow are assumed to be parallel,

1-2.Find 2, y, and z:

g
F
A H N .B A > = g
5’00 - ° ’350 Xo
p N A

>
P>
No
o
(6
S
Vv
oo

.
Vv
'
I
N/

5-10. Find x:
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> Fo
X° A X A
c
c 56\, . D . H 2
H\f\ /#0°
7 F 8. F
F'
H / B G D
130° E x° 120 F
9, E 10. A &

11 - 18. Find « and the marked angles:

F ch.
¢ H/> . A6 . P
/QX“'15° /vg’x 31!
C  ocANX . D < HP 2%+ . D
11. E 12. A
/¢
; P s
)
E 3%-50 =

3X-

> "
M\
=<
=z
9,
A
= oy
e
r>\0
y
]

13. 14.
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F /
A
f\ H/B/ 8 o L K 7
> X e
/ﬁgr * i ‘
e < D c A 7 A 3% >
jo el e
£
5. 16.
d E
A \ B E
X
‘ s c H\
c D
\F F

18.

Y

Y

17.

19 - 26. For each of the following, list all pairs of alternate interior angles and corresponding angles, If there are none, then list all
pairs of interior angles on the same side of the transversal. Indicate the parallel lines which form each pair of angles.

NC ZZD \:; |
19.A . 8 ZO.A B
 oF
/\ 8 £
o/ o \& M
/ —\ C
Ny
A B A D
> \ A S
624.

21.

23.
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c
) c . £
/
0
A 7 y; A T F B
25. 26.

27. A telescope is pointed at a star 50° above the horizon. What angle z° must the mirror BD make wiht the horizontal so that the

star can be seen in the eyepiece E?

8 A

28. A periscope is used by sailors in a submarine to see objects on the surface of the water, If ZEC'F = 90°, what angle z° does
the mirror BD make with the horizontal?

This page titled 2.5: Finding Angle Measurements is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Henry Africk (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of
the LibreTexts platform.

e 6.1: Basic Geometric Concepts and Figures by Darlene Diaz is licensed CC BY-NC-SA 4.0. Original source:

https://www.sccollege.edu/OER/Documents/MATH 105/Math For Liberal Art Students (2017).pdf.
o 1.4: Parallel Lines by Henry Africk is licensed CC BY-NC-SA 4.0. Original source: https://academicworks.cuny.edu/ny oers/44.
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2.6: Parallel and Perpendicular Lines

6.1.1: Properties of Angles

4} Learning Objectives

1. Identify parallel and perpendicular lines.
2. Find measures of angles.
3. Identify complementary and supplementary angles.

Introduction

Imagine two separate and distinct lines on a plane. There are two possibilities for these lines: they will either intersect at one point,
or they will never intersect. When two lines intersect, four angles are formed. Understanding how these angles relate to each other
can help you figure out how to measure them, even if you only have information about the size of one angle.

Parallel and Perpendicular

Parallel lines are two or more lines that never intersect. Likewise, parallel line segments are two line segments that never intersect
even if the line segments were turned into lines that continued forever. Examples of parallel line segments are all around you, in the
two sides of this page and in the shelves of a bookcase. When you see lines or structures that seem to run in the same direction,
never cross one another, and are always the same distance apart, there’s a good chance that they are parallel.

Perpendicular lines are two lines that intersect at a 90° (right) angle. And perpendicular line segments also intersect at a 90° (right)
angle. You can see examples of perpendicular lines everywhere as well—on graph paper, in the crossing pattern of roads at an
intersection, to the colored lines of a plaid shirt. In our daily lives, you may be happy to call two lines perpendicular if they merely
seem to be at right angles to one another. When studying geometry, however, you need to make sure that two lines intersect at a 90°
angle before declaring them to be perpendicular.

The image below shows some parallel and perpendicular lines. The geometric symbol for parallel is ||, so you can show that AB ||
CD. Parallel lines are also often indicated by the marking >> on each line (or just a single > on each line). Perpendicular lines are

S
indicated by the symbol L, so you can write WX 1 YZ.

If two lines are parallel, then any line that is perpendicular to one line will also be perpendicular to the other line. Similarly, if two
lines are both perpendicular to the same line, then those two lines are parallel to each other. Let’s take a look at one example and
identify some of these types of lines.
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Identify a set of parallel lines and a set of perpendicular lines in the image below.

Solution
— —>
Parallel lines never meet, and perpendicular lines intersect at a right angle. AB and C'D do not intersect in this image, but if

you imagine extending both lines, they will intersect soon. So, they are neither parallel nor perpendicular.
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— >
Answer: WX || YZ

S = =
AB1 WX, AB1YZ

& Try It Now 1

Which statement most accurately represents the image below?

A)EF || GH
B) AB L EG
C)FH| EG
D) AB || FH

&) Learning Objectives

o Determine the slopes of parallel and perpendicular lines.
o Find equations of parallel and perpendicular lines

Definition of Parallel and Perpendicular

Parallel lines are lines in the same plane that never intersect. Two nonvertical lines in the same plane, with slopes m; and ms, are
parallel if their slopes are the same, m; = mg . Consider the following two lines:

Consider their corresponding graphs:
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e - - =)

S

Figure 2.6.1

Both lines have a slope m = % and thus are parallel.
Perpendicular lines are lines in the same plane that intersect at right angles (90 degrees). Two nonvertical lines in the same plane,
with slopes m; and my, are perpendicular if the product of their slopes is —1 : m1-m2 = —1. We can solve for m; and obtain
m; = ;l—t . In this form, we see that perpendicular lines have slopes that are negative reciprocals, or opposite reciprocals. For
example, if given a slope
—_3

m=-g

then the slope of a perpendicular line is the opposite reciprocal:

m, = 5
The mathematical notation m; reads “m perpendicular.” We can verify that two slopes produce perpendicular lines if their product
is —1.

—_5.8__40 _ _
mom, =—g-g=—r=-1 V

Geometrically, we note that if a line has a positive slope, then any perpendicular line will have a negative slope. Furthermore, the
rise and run between two perpendicular lines are interchanged.
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Figure 2.6.2

Perpendicular lines have slopes that are opposite reciprocals, so remember to find the reciprocal and change the sign. In other
words,

b
Ifm=%,thenm; =—+

Determining the slope of a perpendicular line can be performed mentally. Some examples follow

Table 2.6.1
Given slope Slope of perpendicular line
m= % m; =—2
m=—3 my =4
m=3 m, = _%
m=—4 m, = i
Determine the slope of a line parallel to y = —5z + 3.
Solution:
Since the given line is in slope-intercept form, we can see that its slope is m = —5. Thus the slope of any line parallel to the
given line must be the same, m = —5. The mathematical notation 772 reads “m parallel.”
Answer:
my=-—5
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Determine the slope of a line perpendicular to 3z — 7y = 21.

Solution:

First, solve for y and express the line in slope-intercept form.

In this form, we can see that the slope of the given line is m = %, and thus m; = —% .
Answer:

7
mJ_:—E

? Exercise 2.6.1

Find the slope of the line perpendicular to 152 + 5y = 20.

Answer

1
mJ_—g

Finding Equations of Parallel and Perpendicular Lines

We have seen that the graph of a line is completely determined by two points or one point and its slope. Often you will be asked to
find the equation of a line given some geometric relationship—for instance, whether the line is parallel or perpendicular to another
line.

v/ Example 2.6.3

Find the equation of the line passing through (6, —1) and parallel to y = %w +2

Solution

Here the given line has slope m = %, and the slope of a line parallel is m; = % . Since you are given a point and the slope, use
the point-slope form of a line to determine the equation.

Point  Slope
(6,-1) my=3
Answer:

yz%x—4

It is important to have a geometric understanding of this question. We were asked to find the equation of a line parallel to
another line passing through a certain point.
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b

Figure 2.6.3

Through the point (6, —1) we found a parallel line, y = %w —4, shown dashed. Notice that the slope is the same as the given
line, but the y-intercept is different. If we keep in mind the geometric interpretation, then it will be easier to remember the
process needed to solve the problem.

v/ Example 2.6.4

Find the equation of the line passing through (—1, —5) and perpendicular to y = — im +2.

Solution:

1

The given line has slope m = — 7,

and thusm = +% =4 . Substitute this slope and the given point into point-slope form.
Point Slope
(-1,-5) m, =4
Answer:
y=4zr -1

Geometrically, we see that the line y =4z — 1, shown dashed below, passes through (—1,—5) and is perpendicular to the
given line.
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l Figure 2.6.4

It is not always the case that the given line is in slope-intercept form. Often you have to perform additional steps to determine the
slope. The general steps for finding the equation of a line are outlined in the following example.

v/ Example 2.6.5

Find the equation of the line passing through (8, —2) and perpendicular to 6z +3y = 1.

Solution:

Step 1: Find the slope m. First, find the slope of the given line. To do this, solve for y to change standard form to slope-
intercept form, y = mx +b.

643y =1
6x+3y—6x =162
Jy=—6z+1
3y —6z+1
3 3
bz 1
V=73 *3
_ opi L
Y T 3
In this form, you can see that the slope ism = —2 = —% ,and thus m; = :—; = +% .

Step 2: Substitute the slope you found and the given point into the point-slope form of an equation for a line. In this case, the
slope ism | = % and the given point is (8, —2).

Y-y Zm(fﬂ—ﬂh)

y=(-2) =59
Step 3: Solve for y.
Answer:
Y= %.’c —6

v/ Example 2.6.6

Find the equation of the line passing through (%, 1) and parallel to 2z + 14y = 7.
Solution:

Find the slope m by solving for y.

20 +14y =7
2¢ +14y—2x =72z
14y =—2x+7
14y 2z +7
14 T 14
2z 7
VIRV
1 1
y="7tt3
The given line has the slope m = —% ,and so m) = —% . We use this and the point (%, 1) in point-slope form.
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Answer:

<
Il
|
|
8
+
vl

? Exercise 2.6.2

Find the equation of the line perpendicular to z — 3y = 9 and passing through (— %, 2).

Answer

y=-3z+1

When finding an equation of a line perpendicular to a horizontal or vertical line, it is best to consider the geometric interpretation.

v/ Example 2.6.7

Find the equation of the line passing through (—3, —2) and perpendicular to y = 4.

Solution:

We recognize that y = 4 is a horizontal line and we want to find a perpendicular line passing through (—3, —2).
y

-~

.'?-
6F
...... ] y:4
< + >
..... ..3-
2-
l_
< L L 4 . . . L L L . . - X
= W A0 Wy §8e. S Bl [k I 150 B85 JOSH-
© -2}
-(_35_2) -3t

Figure 2.6.5

If we draw the line perpendicular to the given horizontal line, the result is a vertical line.
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.1.
-~
x=-3 all
A
Ry
| 51 y=4
: < J < > s
I
I 3r
I 2}
I
| tr
_: 1 L 1 L 1 ! L 1 1 L 1 : r
-8 -7 -6 -5 -4 B -2 —1_}_ | 2 3
I
) ® -2f
(_39_ ) 1 -
* Y
Figure 2.6.6
Equations of vertical lines look like = k. Since it must pass through (—3, —2), we conclude that x = —3 is the equation. All
ordered pair solutions of a vertical line must share the same z-coordinate.
Answer:
z=-3

We can rewrite the equation of any horizontal line, y = k, in slope-intercept form as follows:
y=0z+k

Written in this form, we see that the slope is m =0 = % . If we try to find the slope of a perpendicular line by finding the opposite

reciprocal, we run into a problem: m, = —% , which is undefined. This is why we took care to restrict the definition to two

nonvertical lines. Remember that horizontal lines are perpendicular to vertical lines.

Key Takeaways

o Parallel lines have the same slope.

o Perpendicular lines have slopes that are opposite reciprocals. In other words, if m = %, thenm, = —% .

¢ To find an equation of a line, first use the given information to determine the slope. Then use the slope and a point on the line to
find the equation using point-slope form.

o Horizontal and vertical lines are perpendicular to each other.

? Exercise 2.6.3 Parallel and Perpendicular Lines

Determine the slope of parallel lines and perpendicular lines.
Ly=—2z+8
2.y= %a: -3
Jy=4x+4
4y=-3x+7
5= ——m—1
by=1z+2
7.y=9x —25
8.y=—-10z +15
9.9y=5

10. z = —12
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11l.z—y=0

122 z+y=0

13. 4z +3y =0
14. 3z —5y =10
15. 2z +7y =14
16. —m—yz%
17. %a;—%giz—l
18. —sz+7y=38
19. 2z—%y=%0
20. —%m—2y=7

Answer
__3 _4
1mH— 1 I:ll'ld'md_—3
3.my =4 andmL:—%
5.m =-3 andmlzﬁ

8 5

7.m =9 andmlz—%

9.m| =0 and m, undefined

M.m;=1andm,; =-1

13. my z—é andmL:%
15.mH Z% andmlz—%
17.mH 2% andml:—é

19.m =10 and m =—%

? Exercise 2.6.4 Parallel and Perpendicular Lines

Determine if the lines are parallel, perpendicular, or neither.
2
y=—-z+3
1 3
’ 2
—=z=3
Y %m
y=-z—1
9 4
: 4
Y= §x+3
y=—2x+1
38 1
y=5 +f
4. { y=3z—5
y=3z+2
y=>5
5.
{ T =-2
y="1
6. 1
y=7
7 3z —5y =15
"5z +3y =
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8 z—y =7
13z +3y =2

9{2m—6y:4
| —z+3y=-2

—4z 42y =3
10.

{ 6 —3y =3
11, z+3y =

2x+3y =6
12§ ¥710=0

z—10 =

y+2 =0
13.

{2y—10=
14‘{3w+2y:

2243y =6
LS. —bz +4y =20

10x —8y =16

1m—1y—
16. % i’

— —y =—2

6:L'+4y
Answer

1. Parallel

3. Perpendicular
5. Perpendicular
7. Perpendicular
9. Parallel

11. Neither

13. Parallel

15. Parallel

? Exercise 2.6.5 Equations in Point-Slope Form

Find the equation of the line

1. Parallel to y = %a: +2 and passing through (6, —1).
2. Parallel to y = —%w — 3 and passing through (-8, 2).

3. Perpendicular to y = 3z — 1 and passing through (—3, 2).
4. Perpendicular to y = —%m +2 and passing through (4, —3).
5. Perpendicular to y = —2 and passing through (—1, 5).

6. Perpendicular to x = % and passing through (5, —3).
7. Parallel to y = 3 and passing through (2, 4).
8. Parallel to = 2 and passing through (7, —3)\).
9. Perpendicular to y = x and passing through (7, —13).
10. Perpendicular to y = 2z +9 and passing through (3, —1).

1
12. Parallel to y = —3z +1 and passing through (4, 1).

13. Parallel to 2z — 3y = 6 and passing through (6, —2).

14. Parallel to —z +y =4 and passing through (9, 7).

15. Perpendicular to 5z — 3y = 18 and passing through (-9, 10).

[

. Parallel to y = iw —5 and passing through (—2,1).
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16. Perpendicular to z —y = 11 and passing through (6, —8).

17. Parallel to %a: — éy = 2 and passing through (—15, 6).

18. Parallel to —10x — 2y = 12 and passing through (-1, 1).

19. Perpendicular to %a: — %y =1 and passing through (—10, 3).
20. Perpendicular to —5x +y = —1 and passing through (—4, 0).
21. Parallel to z + 4y = 8 and passing through (—1, —2).

22. Parallel to 7z — 5y = 35 and passing through (2, —3).

23. Perpendicular to 6z + 3y =1 and passing through (8, —2).

24. Perpendicular to —4z — 5y = 1 and passing through (—1, —1).
25. Parallel to —5z — 2y =4 and passing through (§, —1).
26. Parallel to 6x — %y =9 and passing through (%, %)

27. Perpendicular to y —3 = 0 and passing through (—6, 12).
28. Perpendicular to z +7 = 0 and passing through (5, —10).

Answer
l.y:%x—4
3.y:—%m+1
5.z=-1
7.y=4
9. y=—z—6
ly=2izg+3
13.y:%x—6

15.y=—3z+2

17.y=32z+15
19.y:—§m—13—1
21.y:—im—%
23.y=%w—6
25.y=-3z+1
27. ¢ = —6

This page titled 2.6: Parallel and Perpendicular Lines is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Anonymous.

e 6.1: Basic Geometric Concepts and Figures by Darlene Diaz is licensed CC BY-NC-SA 4.0. Original source:
https://www.sccollege.edu/OER/Documents/MATH 105/Math For Liberal Art Students (2017).pdf.

o 3.6: Parallel and Perpendicular Lines by Anonymous is licensed CC BY-NC-SA 3.0. Original source:
https://2012books.lardbucket.org/books/beginning-algebra.
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SECTION OVERVIEW

2.7: Solving Linear Equations and Inequalities
2.7.1: Solving Linera Equations

2.7.2: Solving Inequalities

2.7.3: Solving Quadratic Equations

2.7.4: Solving a System of Linear Equations

2.7.5: Solving a System of Linear Equations with Cramer's Rule

This page titled 2.7: Solving Linear Equations and Inequalities is shared under a CC BY-NC-SA license and was authored, remixed, and/or

curated by OpenStax.
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2.7.1: Solving Linera Equations

4b Learning Objectives

By the end of this section, you will be able to:

e Solve equations using a general strategy

It is time now to lay out one overall strategy that can be used to solve any linear equation. Some equations we solve will not require
all these steps to solve, but many will.

Beginning by simplifying each side of the equation makes the remaining steps easier.

? Exercise 2.7.1.1: How to Solve Linear Equations Using the General Strategy

Solve: —6(z +3) =24.

Answer

Use the Distributive Property. -B(x + 3)=24

Notice that each side of the equation —6x-18=24
is simplified as much as possible.

Nothing to do - all x's are on the
left side.

To get constants only on the right, —6x-18+18=24+18
add 18 to each side.

Simplify. —6x=42
Divide each side by 6. —6x _ 42

26 <6
Simplify. x=-7
Letx=-7 Check:

—6(x + 3) =24

Simplify. —6(7+3)L24
Multiply. —6(-4)2 24

24=24/

? Exercise 2.7.1.2
Solve: 5(z +3) =35

Answer

r=4

? Exercise 2.7.1.3

Solve: 6(y —4) = —18

Answer
=1

<
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X GENERAL STRATEGY FOR SOLVING LINEAR EQUATIONS.

1. Simplify each side of the equation as much as possible.
Use the Distributive Property to remove any parentheses.
Combine like terms.

2. Collect all the variable terms on one side of the equation.
Use the Addition or Subtraction Property of Equality.

3. Collect all the constant terms on the other side of the equation.
Use the Addition or Subtraction Property of Equality.

4. Make the coefficient of the variable term to equal to 1.
Use the Multiplication or Division Property of Equality.
State the solution to the equation.

5. Check the solution. Substitute the solution into the original equation to make sure the result is a true statement.

? Exercise 2.7.1.4
Solve: —(y+9) =38

Answer
-(y+9)=8

Simplify each side of the equation as much as possible by distributing. ¥-9=8
The only y term is on the left side, so all variable terms are on the left side of the
equation.
Add 9 to both sides to get all constant terms on the right side of the equation. ¥-9+9=8+9
Simplify. ¥=17
Rewrite —y as —1y. -1y=17
Make the coefficient of the variable term to equal to 1 by dividing both sides by —1. -_‘f_‘[y = %
Simplify. [
Check: -y+9)=8
Let y=—17. (17+9)28

<88

8=8v

? Exercise 2.7.1.5

Solve: —(y +8) = —2

Answer

y=—6

? Exercise 2.7.1.6

Solve: —(z+4) = —12

Answer

https://phys.libretexts.org/@go/page/76289
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| z=28
? Exercise 2.7.1.7

Solve: 5(a—3)+5=—10

Answer
=3
Simplify each side of the equation as much as possible.
Distribute. @
Combine like terms. 5¢-10=-10
The only a term is on the left side, so all variable terms are on one side of the
equation.
Add 10 to both sides to get all constant terms on the other side of the equation. 50-10+10=-10+10
Simplify. S5a=0
Make the coefficient of the variable term to equal to 11 by dividing both sides by 5a_0
55. e
Simplify. a=0
Check: 5(@-3)+5=-10
Let a=0. 5(0-3)+52-10
5(-3)+ 52 -10
~15+52-10
-10=-10v/

? Exercise 2.7.1.8

Solve: 2(m —4)+3=-1

Answer

m=2

? Exercise 2.7.1.9
Solve:7(n—3) -8 =-15

Answer

n=2

? Exercise 2.7.1.10

Solve: 2(6m —3) =8 —m

Answer
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%{6m—3)=8—m

Distribute. am-2=8-m
Add m to get the variables only to the left. 4m+m-2=8-m+m
Simplify. 5m-2=8
Add 2 to get constants only on the right. 5m-2+2=8+2
Simplify. 5m=10
. e 10
Divide by 5. 5 3
Simplify. m=2
Check: %{Em -3)=8-m
Let m=2. 26-2-3)28-2
2 2
302-3)%6
292
5026
6=6v

? Exercise 2.7.1.11
Solve: %(6u+3) =7—u

Answer

S
Il
o

? Exercise 2.7.1.12
Solve: %(93) —12)=8+2z

Answer

? Exercise 2.7.1.13

8
Il
=

Solve: 8 —2(3y+5) =0

Answer
8-2(3y+5)=0
Simplify—use the Distributive Property. 8-6y-10=0
Combine like terms. -6y-2=0
Add 2 to both sides to collect constants on the right. -by-2+2=0+2
Simplify. -6y=2
Divide both sides by —6-6. %’ = %
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Simplify.

Check: Let y=-13.
8-2(3y+5)=0

3-2[3 (—%)+5}=u
8-2-1+5)Z0
s-24o0

8-820

? Exercise 2.7.1.14

o
o
<,

Solve: 12 —3(4j+3) =—17
Answer

i=3

I

2 Exercise 2.7.1.15
Solve: —6 —8(k—2) =—10

Answer

_ 5
k=3

? Exercise 2.7.1.16
Solve: 4(z —1) —2 =5(2z+3) +6

Answer

Distribute.

Combine like terms.

Subtract 4x to get the variables only on the right side since 10 > 4.
Simplify.

Subtract 21 to get the constants on left.

Simplify.

Divide by 6.

Simplify.

Check: =

o5-)-2242( oo

Ax-1)-2=52x+3)+6
4x-4-2=10x+15+6

dx-6=10x+ 21

—-6=06x+21
—-6-21=6x+21-21

-27 =6x

27 _6x
6 6
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4(-151)-2 25(9+3)+6
22-2256)+6
242 30+6
24=-24v
? Exercise 2.7.1.17
Solve: 6(p —3) —7=>5(4p+3) —12
Answer
p=-2
Solve: 8(¢+1)—5=3(2¢—4)—1
Answer
q=—-8
? Exercise 2.7.1.19
Solve: 10[3 —8(2s —5)] =15(40 — 55)
Answer
Simplify from the innermost parentheses first.
Combine like terms in the brackets.
Distribute.
Add 160s to get the s’s to the right.
Simplify.
Subtract 600 to get the constants to the left.
Simplify.
Divide.
Simplify.
Check: 10[3 - 8(2s - 5)] = 15(40 - 5s)
Substitute s=—2. 10[3 - 8(2(-2) - 5)] 2 15(40 - 5(-2))
10[3 - 8(-4 - 511 Z 15(40 + 10)
10[3 - 8(=9)] £ 15(50)
103+ 7212 750
1017512 750

10[3 - 8(2s — 5)] = 15(40 - 5s)
10[3 - 165 + 40] = 15(40 - 5s)
10[43 - 165] = 15(40 - 55)
430 - 160s = 600 - 755
430 - 160s + 160s = 600 — 75s + 160s
430 = 600 + 855
430 - 600 = 600 + 85s — 600

-170 = 855
-170 _ 85s

85 85

2=5
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| 750=750¢
? Exercise 2.7.1.20
Solve: 6[4 —2(7y —1)] =8(13 —8y) .
Answer
y=—7%
? Exercise 2.7.1.21
Solve: 12[1 —5(4z—1)] =3(24+112) .
Answer
z=0
Solve: 0.36(100n +5) = 0.6(30n + 15).
Answer
0.36(100n + 5) = 0.6(30n + 15)
Distribute. 36n+1.8=18n+9
Subtract 18n to get the variables to the left. 36n-18n+1.8=18n-18n+9
Simplify. 18n+1.8=9
Subtract 1.8 to get the constants to the right. 18n+1.8-18=9-18
Simplify. 18n=7.2
Divide. % = %
Simplify. n=04
Check: 0.36(100n + 5) = 0.6(30n + 15)
Let n=0.4. 0.36(100(0.4) + 5) £ 0.6(30(0.4) + 15)
0.36(40 + 5) < 0.6(12 + 15)
0.36(45) £ 0.6(27)
16.2=16.2/
? Exercise 2.7.1.23
Solve: 0.55(100n +8) = 0.6(85n + 14).
Answer
n=1
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? Exercise 2.7.1.24

Solve: 0.15(40m — 120) = 0.5(60m + 12).

Answer

m=—1

Key Concepts
o General Strategy for Solving Linear Equations

1. Simplify each side of the equation as much as possible.
Use the Distributive Property to remove any parentheses.
Combine like terms.

2. Collect all the variable terms on one side of the equation.
Use the Addition or Subtraction Property of Equality.

3. Collect all the constant terms on the other side of the equation.
Use the Addition or Subtraction Property of Equality.

4. Make the coefficient of the variable term to equal to 1.
Use the Multiplication or Division Property of Equality.
State the solution to the equation.

5. Check the solution.

Substitute the solution into the original equation.

Practice Makes Perfect

In the following exercises, solve each linear equation.

15(y —9) = —60

21(y—5) =—42
Answer

y=3
—-9(2n+1) =36

? Exercise 2.7.1.4

~16(3n+4) = 32

Answer

n=-2

8(22+11r)=0

https://phys.libretexts.org/@go/page/76289



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76289?pdf

LibreTextsw

? Exercise 2.7.1.6

5(8+6p) =0

Answer

4
p=—=2

—(w—12) =30

? Exercise 2.7.1.8

—(t—19) =28

Answer

t=-9

? Exercise 2.7.1.9

9(6a+8)+9 =281

? Exercise 2.7.1.10

8(9b—4) —12 =100

Answer

b=2

32+3(z+4) =41

21+2(m—4)=25

51+5(4—q) =56

? Exercise 2.7.1.14

—6+6(5—k) =15
Answer

3
k=3
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2(9s—6)—62=16

? Exercise 2.7.1.16

8(6t—5)—35 = —27

Answer

t=1

3(10 —2z)+54 =0

? Exercise 2.7.1.18

—2(11—T7z)+54 =14

Answer

? Exercise 2.7.1.20
2 (102 —5) =27

Answer

=25

$(15c+10) =c+7

+(20d+12) =d+7

Answer

d=1

18 — (97 +7) = —16
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? Exercise 2.7.1.24

15— (3r+8) =28

Answer

r=-7

5—(n—1)=19

? Exercise 2.7.1.26

-3—-(m—-1)=13

Answer

m=—15

11—4(y—8) =43

? Exercise 2.7.1.28

18 —2(y —3) = 32

Answer

y=—4

? Exercise 2.7.1.29

24 —8(3v+6) =0

? Exercise 2.7.1.30

35— 5(2w+8) =—10

Answer

—

w=5
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2(5 —u) = —3(2u +6)

? Exercise 2.7.1.34

3(4n—1)—2=8n+3

? Exercise 2.7.1.36

9(2m —3)—8=4m+7

Answer

m=3

1242(5—3y) = —9(y —1) —2

? Exercise 2.7.1.38

—15+4(2—-5y)=—-T(y—4)+4

Answer

y=-3

? Exercise 2.7.1.39

8(x—4)—Tz=14

? Exercise 2.7.1.40

5(x—4)—4z =14

Answer

=34

? Exercise 2.7.1.41

5+6(3s—5)=-3+2(8s—1)
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? Exercise 2.7.1.42

—12+48(z —5) = —4+3(5z —2)

Answer

z=-—6

? Exercise 2.7.1.43

4(u—1)—8=6(3u—2)—7

? Exercise 2.7.1.44

7(2n—5)=8(4n—1)—9

Answer

n=-1

? Exercise 2.7.1.45

4(p—4)—(p+7)=5(p—3)

? Exercise 2.7.1.46

? Exercise 2.7.1.47

—(9y+5)-(By—7)
=16 — (4y —2)

? Exercise 2.7.1.48

—(Tm+4) — (2m —5)

=14—(5m—3)
Answer
m=—4

? Exercise 2.7.1.49

4[5 —8(4c—3)]
—12(1—13¢) -8

? Exercise 2.7.1.50

5(9 —2(6d —1)]
=11(4—10d) — 139

https://phys.libretexts.org/@go/page/76289



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76289?pdf

LibreTextsw

Answer
d=-3

3[—9+8(4h — 3)]
—=2(5—12h) —19

? Exercise 2.7.1.52

3[—14 +2(15k — 6)]
—8(3—5k) —24

Answer

3
k=13

5[2(m +4) +8(m —7)]
=2[3(5+m) — (21— 3m)]

? Exercise 2.7.1.54

10[5(n+1) +4(n—1)]
= 11[7(5 +n) — (25 — 3n)]

Answer

n=-5

5(1.2u—4.8) = —12

? Exercise 2.7.1.56

4(2.50—0.6) = 7.6

Answer

v=1

0.25(q—6) =0.1(g+18)

? Exercise 2.7.1.58

0.2(p—6)=0.4(p+14)

Answer

p=-34
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? Exercise 2.7.1.59

0.2(30n +50) = 28

? Exercise 2.7.1.60

0.5(16m +34) = —15

Answer

m=—4

Classify Equations

In the following exercises, classify each equation as a conditional equation, an identity, or a contradiction and then state the
solution.

? Exercise 2.7.1.61

232+19=23(52—9) +82+46

? Exercise 2.7.1.62

15y +32 =2(10y —7) — 5y + 46

Answer

identity; all real numbers

? Exercise 2.7.1.63

5(b—9)+4(3b+9) = 6(4b—5) — 7b+21

? Exercise 2.7.1.64

9(a—4)+3(2a+5)=7(3a—4)—6a+7

Answer

identity; all real numbers

? Exercise 2.7.1.65

18(5j—1) 429 =47

? Exercise 2.7.1.66

24(3d —4) +100 = 52

Answer

conditional equation; d = %
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? Exercise 2.7.1.67

22(3m —4) = 8(2m +9)

? Exercise 2.7.1.68

30(2n = 1) = 5(10n +8)
Answer

conditional equation; n =7

? Exercise 2.7.1.69

Tv+42 = 11(3v+8) —2(13v—1)

? Exercise 2.7.1.70

18u —51 = 9(4u +5) — 6(3u — 10)

Answer

contradiction; no solution

3(6q—9)+7(qg+4)=5(6q+8)—5(g+1)

5(p+4)+8(2p—1)=93p—5)—6(p—2)
Answer

contradiction; no solution

12(6h —1) = 8(8h +5) —4

? Exercise 2.7.1.74

9(4k—7)=11(3k+1)+4

Answer

conditional equation; k = 26

45(3y —2) = 9(15y — 6)
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? Exercise 2.7.1.76

60(2z —1) = 15(8z +5)

Answer

contradiction; no solution

16(6n+ 15) = 48(2n +5)

? Exercise 2.7.1.78

36(4m+5) =12(12m +15)

Answer

identity; all real numbers

? Exercise 2.7.1.79

9(14d+9)+4d =13(10d+6)+3

? Exercise 2.7.1.80

11(8c+5) — 8¢ = 2(40c +25) +5

Answer

identity; all real numbers

Everyday Math

? Exercise 2.7.1.81

Fencing Micah has 44 feet of fencing to make a dog run in his yard. He wants the length to be 2.5 feet more than the width.
Find the length, L, by solving the equation 2L+2(L.—2.5)=44.

? Exercise 2.7.1.82

Coins Rhonda has $1.90in nickels and dimes. The number of dimes is one less than twice the number of nickels. Find the
number of nickels, n, by solving the equation 0.05n +0.10(2n — 1) = 1.90.

Answer

8 nickels

Writing Exercises

? Exercise 2.7.1.83

Using your own words, list the steps in the general strategy for solving linear equations.

https://phys.libretexts.org/@go/page/76289



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76289?pdf

LibreTextsm

Explain why you should simplify both sides of an equation as much as possible before collecting the variable terms to one side
and the constant terms to the other side.

Answer

Answers will vary.

? Exercise 2.7.1.85

What is the first step you take when solving the equation 3 —7(y —4) = 38?7 Why is this your first step?

? Exercise 2.7.1.86

Solve the equation %(89: +20) =3z —4 explaining all the steps of your solution as in the examples in this section.

Answer

Answers will vary.

Use the Distance, Rate, and Time Formula

One formula you will use often in algebra and in everyday life is the formula for distance traveled by an object moving at a
constant rate. Rate is an equivalent word for “speed.” The basic idea of rate may already familiar to you. Do you know what
distance you travel if you drive at a steady rate of 60 miles per hour for 2 hours? (This might happen if you use your car’s cruise
control while driving on the highway.) If you said 120 miles, you already know how to use this formula!

X DISTANCE, RATE, AND TIME

For an object moving at a uniform (constant) rate, the distance traveled, the elapsed time, and the rate are related by the

formula:
d=rt where d = distance
r = rate (2.7.1.1)
t = time

We will use the Strategy for Solving Applications that we used earlier in this chapter. When our problem requires a formula, we
change Step 4. In place of writing a sentence, we write the appropriate formula. We write the revised steps here for reference.

X SOLVE AN APPLICATION (WITH A FORMULA).

1. Read the problem. Make sure all the words and ideas are understood.

2. Identify what we are looking for.

3. Name what we are looking for. Choose a variable to represent that quantity.

4. Translate into an equation. Write the appropriate formula for the situation. Substitute in the given information.
5. Solve the equation using good algebra techniques.

6. Check the answer in the problem and make sure it makes sense.

7. Answer the question with a complete sentence.

You may want to create a mini-chart to summarize the information in the problem. See the chart in this first example.

https://phys.libretexts.org/@go/page/76289
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Jamal rides his bike at a uniform rate of 12 miles per hour for 3% hours. What distance has he traveled?

Answer

Step 1. Read the problem.

Step 2. Identify what you are looking for. distance traveled
Step 3. Name. Choose a variable to represent it. Let d = distance.
Step 4. Translate: Write the appropriate formula. d=rt

d=7?

r=12mph

t =317 hours
Substitute in the given information. d=12- 3%
Step 5. Solve the equation. d = 42 miles
Step 6. Check
Does 42 miles make sense?
Jamal rides:
12 miles in 1 hour,
24 miles in 2 hours,
36 miles in 3 hours, 42 miles in 315 hours is reasonable
48 miles in 4 hours.
Step 7. Answer the question with a complete sentence. Jamal rode 42 miles.

? Exercise 2.7.1.2
Lindsay drove for 5% hours at 60 miles per hour. How much distance did she travel?

Answer

330 miles

? Exercise 2.7.1.3

Trinh walked for 2% hours at 3 miles per hour. How far did she walk?

Answer

7 miles

? Exercise 2.7.1.4

Rey is planning to drive from his house in San Diego to visit his grandmother in Sacramento, a distance of 520 miles. If he can
drive at a steady rate of 65 miles per hour, how many hours will the trip take?

Answer

Step 1. Read the problem.
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Step 2. Identify what you are looking for. How many hours (time)
Step 3. Name.
P am.e . Let t = time.
Choose a variable to represent it.
d =520 miles
r=65 mph
t=7? hours
Step 4. Translate. d—rt
Write the appropriate formula.
Substitute in the given information. 520 = 65t
Step 5. Solve the equation. t=28

Step 6. Check. Substitute the numbers into
the formula and make sure the result is a
true statement.

d = 7t
520 ~= 65-8
520 = 520¢

Step 7. Answer the question with a complete sentence. Rey’s trip will take 8 hours.

? Exercise 2.7.1.5

Lee wants to drive from Phoenix to his brother’s apartment in San Francisco, a distance of 770 miles. If he drives at a steady
rate of 70 miles per hour, how many hours will the trip take?

Answer

11 hours

? Exercise 2.7.1.6

Yesenia is 168 miles from Chicago. If she needs to be in Chicago in 3 hours, at what rate does she need to drive?

Answer

56 mph

Solve a Formula for a Specific Variable

You are probably familiar with some geometry formulas. A formula is a mathematical description of the relationship between
variables. Formulas are also used in the sciences, such as chemistry, physics, and biology. In medicine they are used for
calculations for dispensing medicine or determining body mass index. Spreadsheet programs rely on formulas to make calculations.
It is important to be familiar with formulas and be able to manipulate them easily.

In Exercise 2.7.1.1 and Exercise 2.7.1.4 we used the formula d = r¢. This formula gives the value of d, distance, when you
substitute in the values of r and t, the rate and time. But in Exercise 2.7.1.4 we had to find the value of t. We substituted in values
of d and r and then used algebra to solve for tt. If you had to do this often, you might wonder why there is not a formula that gives
the value of t when you substitute in the values of d and r. We can make a formula like this by solving the formula d = r¢ fort.

To solve a formula for a specific variable means to isolate that variable on one side of the equals sign with a coefficient of 1. All
other variables and constants are on the other side of the equals sign. To see how to solve a formula for a specific variable, we will
start with the distance, rate and time formula.
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Solve the formula d=rt for t:
1. when d=520 and r=65
2. in general
Answer
We will write the solutions side-by-side to demonstrate that solving a formula in general uses the same steps as when we

have numbers to substitute.

1. when d=520 and r=65 2. in general
Write the formula. d=rt Write the formula. d=rt

Substitute. 520 = 65t

20 _ 6ot

Divide, to isolate t. = =T

Divide, to isolate tt.

Simplify. 8=t Simplify.

We say the formula ¢t = % is solved for t.

? Exercise 2.7.1.8

Solve the formula d = rt forr:
1. when d=180 and t=4

2. in general

Answer

1.r=45

—4a
2.r—t

? Exercise 2.7.1.9

Solve the formula d = rt forr:

1. when d=780 and t=12
2. in general

Answer

1.r=65
2. \(r = \frac{d}{rt\)

? Exercise 2.7.1.10

Solve the formula A = %bh for h:

1. when A =90 and b =15
2. in general

Answer

1. when A =90 and b= 15 2. in general

1
Write the formula. A= Sbh Write the formula. A= Sbh
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1
Substitute. 90=5-15+h
1 1
Clear the fractions. 2-90=2--15h Clear the fractions. 2+A=2-=bh
Simplify. 180 =15h Simplify. 24=bh
2A
Solve for h. 12=h Solve for hh. S

We can now find the height of a triangle, if we know the area and the base, by using the formula h = %

? Exercise 2.7.1.11

Solve the formula A = 1bh for h:

1.when A =170 and b =17
2. in general

Answer
1. h=20
2.h=24
: b

? Exercise 2.7.1.12

Solve the formula A = 1bh for h:

1. when A =62 and h = 31
2. in general

Answer
1.b=4
_ 24
2.b= -

The formula I = Prt is used to calculate simple interest, I, for a principal, P, invested at rate, r, for t years.

? Exercise 2.7.1.13

Solve the formula I=Prt to find the principal, P:
1. when 1=$5,600, r=4% ,t=7years
2. in general
Answer
1. 1=$5,600, r=4% ,t=7years 2. in general
Write the formula. I=Prt Write the formula. I="Prt
Substitute. 5600 = P(0.04)(7)
Simplify. 5600 = P(0.28) Simplify. I=P(rt)
Divide, to isolate P. %= % Divide, to isolate P. [
Simplify. 20,000 =P Simplify. E"= p
The principal is $20,000 p= rti
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? Exercise 2.7.1.14

Solve the formula I=Prt to find the principal, P:

1. when 1=$2160, r=6% ,t=3 years
2. in general

Answer
1. $12000
1
2. P= s

? Exercise 2.7.1.15

Solve the formula I=Prt to find the principal, P:

1. when I=$5400, r= 12% ,t=5 years
2. in general

Answer
1. $9000
2P==1

Later in this class, and in future algebra classes, you’ll encounter equations that relate two variables, usually x and y. You might be
given an equation that is solved for y and need to solve it for x, or vice versa. In the following example, we’re given an equation
with both x and y on the same side and we’ll solve it for y.

? Exercise 2.7.1.16

Solve the formula 3x+2y=18 for y:

1. when x=4
2. in general

Answer
1. when x=4 2. in general
3x+2y=18 3x+2y=18
Substitute. 34 +2y=18
Subtract to isolate the 12-12+2y=18-12 Subtract to isolate the X3+ 2y =18 3x
y-term. y-term.
2y 6 2y _ 18 _ 3x
Divide. 22 Divide. e
Simplif y=3 Simplif y=-2+9
plity. plity. 5

? Exercise 2.7.1.17

Solve the formula 3x+4y=10 for y:

1. when z = 1?4

2. in general

Answer
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? Exercise 2.7.1.18

Solve the formula 5x+2y=18 for y:

1.whenx =4
2. in general

Answer
l.y=-1
2. y= 18—5x

2

In Exercise 2.7.1.7through Exercise 2.7.1.18we used the numbers in part 1 as a guide to solving in general in part 2. Now we will
solve a formula in general without using numbers as a guide.

? Exercise 2.7.1.19
Solve the formula P=a+b+c for a.

Answer
We will isolate aa on one side of the equation. P=a+b+c

Both b and c are added to a, so we subtract them from both
P-b-c=a+b+c-b-c
sides of the equation.

P-b-c=a

implify.
Simplity. a=P-b-c

? Exercise 2.7.1.20

Solve the formula P=a+b+c for b.

Answer

b=P-a-c

? Exercise 2.7.1.21

Solve the formula P=a+b+c for c.

Answer

c=P-a-b

? Exercise 2.7.1.22
Solve the formula 6x+5y=13 for y.

Answer

6x+5y=13

Subtract 6x from both sides to isolate the term with y. 6x - 6x + 5y =13 -6x

https://phys.libretexts.org/@go/page/76289



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76289?pdf

LibreTextsm

Simplify. Sy=13-6x
5y _ 13-6x

Divide by 5 to make the coefficient 1. T~ g
_13-6x
Simplify. y=—"5

The fraction is simplified. We cannot divide 13—6x by 5.

? Exercise 2.7.1.23

Solve the formula 4x+7y=9 for y.

Answer

_ 94z
y=—=

? Exercise 2.7.1.24

Solve the formula 5x+8y=1 for y.

Answer
1-5x

8

Key Concepts
o To Solve an Application (with a formula)

1. Read the problem. Make sure all the words and ideas are understood.
2. Identify what we are looking for.
3. Name what we are looking for. Choose a variable to represent that quantity.
4. Translate into an equation. Write the appropriate formula for the situation. Substitute in the given information.
5. Solve the equation using good algebra techniques.
6. Check the answer in the problem and make sure it makes sense.
7. Answer the question with a complete sentence.
« Distance, Rate and Time
For an object moving at a uniform (constant) rate, the distance traveled, the elapsed time, and the rate are related by the
formula: d=rt where d = distance, r = rate, t = time.
o To solve a formula for a specific variable means to get that variable by itself with a coefficient of 1 on one side of the
equation and all other variables and constants on the other side.

This page titled 2.7.1: Solving Linera Equations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

e 2.4: Use a General Strategy to Solve Linear Equations by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/elementary-algebra-2e.

o 2.4E: Exercises by OpenStax has no license indicated. Original source: https://openstax.org/details/books/elementary-algebra-2e.

e 2.6: Solve a Formula for a Specific Variable by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/elementary-algebra-2e.
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2.7.2: Solving Inequalities

€0 Learning Objectives

By the end of this section, you will be able to:

e Solve inequalities using the Subtraction and Addition Properties of inequality

e Solve inequalities using the Division and Multiplication Properties of inequality
e Solve inequalities that require simplification

o Translate to an inequality and solve

Solve Inequalities using the Subtraction and Addition Properties of Inequality

The Subtraction and Addition Properties of Equality state that if two quantities are equal, when we add or subtract the same amount
from both quantities, the results will be equal.

X PROPERTIES OF EQUALITY

Subtraction Property of Equality Addition Property of Equality

For any numbers a, b, and ¢, For any numbers a, b, and ¢
. . (2.7.2.1)
if a=0>, if a=b
thena—c=b—c. thena+c=b+c
Similar properties hold true for inequalities.
Table 2.7.2.1
For example, we know that —4 is less than 2. 4«2
If we subtract 5 from both quantities, is the left side still less than e —
the right side? '
We get —9 on the left and —3 on the right. -97-3
And we know -9 is less than —3. -9<-3
The inequality sign stayed the same.
Similarly we could show that the inequality also stays the same for addition.
This leads us to the Subtraction and Addition Properties of Inequality.
X PROPERTIES OF INEQUALITY
Subtraction Property of Inequality Addition Property of Inequality
For any numbers a, b, and ¢, For any numbers a, b, and ¢
if a<b if a<b
thena —c <b—c. thena+c<b+c (2.7.2.2)
if a>b if a>b
thena—c>b—c. thena+c>b+c

We use these properties to solve inequalities, taking the same steps we used to solve equations. Solving the inequality  +5 > 9,
the steps would look like this:
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z+5 > 9
Subtract 5 from both sides to isolatez. z+5-5 > 9-5 (2.7.2.3)
z > 4

Any number greater than 4 is a solution to this inequality.

? Exercise 2.7.2.7

Solve the inequality n — % < % , graph the solution on the number line, and write the solution in interval notation.

Answer

]
Ne— <=2
258

Add X to both sides of the i lit PR I e

> to both sides of the inequality. st5<gt3
9
Simplify. L

_‘I 17 | | >
Graph the solution on the number line. 6 _;; é _;,

Write the solution in interval notation.

? Exercise 2.7.2.8

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

_3>1
P=4=%
Answer
11
P21—
| | | |
| "[\ 1 1 >
0 129 2 3 4
1
[ﬁ, )

? Exercise 2.7.2.9

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

_ 1l T
r—3<1;

Answer

(=]
i
N
W
~

Solve Inequalities using the Division and Multiplication Properties of Inequality

The Division and Multiplication Properties of Equality state that if two quantities are equal, when we divide or multiply both
quantities by the same amount, the results will also be equal (provided we don’t divide by 0).
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X PROPERTIES OF EQUALITY

Division Property of Equality MUltiplication Property of Equality
For any numbers a, b, c,andc#0 For any numbers a, b, ¢

if a=b if a=b

then == % then ac=bc

(2.7.2.4)

Are there similar properties for inequalities? What happens to an inequality when we divide or multiply both sides by a constant?

Consider some numerical examples.

Table 2.7.2.2
10<15 10<15
- . 10 , 15 ) )
Divide both sides by 5. < % Multiply both sides by 5. 10(5) 7 15(5)
Simplify. 2?73 50?75
Fill in the inequality signs. 2<3 50<75
The inequality signs stayed the same.
Does the inequality stay the same when we divide or multiply by a negative number?
Table 2.7.2.3
10<15 1M0<15
o . 10 , 15 . .
Divide both sides by -5. 5 Multiply both sides by -5. 10(-5) 7 15(-5)
Simplify. -27-3 -50?-75
Fill in the inequality signs. -2>-3 -50>-75

The inequality signs reversed their direction.

When we divide or multiply an inequality by a positive number, the inequality sign stays the same. When we divide or multiply an
inequality by a negative number, the inequality sign reverses.

Here are the Division and Multiplication Properties of Inequality for easy reference.

X DIVISION AND MULTIPLICATION PROPERTIES OF INEQUALITY

For any real numbers a,b,c

ifa <bandc > 0, then %<%andac<bc

ifa >bandc > 0, then %>%andac>bc (2.7.2.5)
ifa <bandc <0, then %>gandac>bc o
ifa >bandc <0, then %<%andac<bc

When we divide or multiply an inequality by a:

e positive number, the inequality stays the same.
¢ negative number, the inequality reverses.
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Solve the inequality 7y < 42, graph the solution on the number line, and write the solution in interval notation.
Answer
Ty <42

Divide both sides of the inequality by 7. Ty 42

Since 7 > 0, the inequality stays the same. 7 7

Simplify. y<6

‘l 1 | ——
Graph the solution on the number line. 4'1 :'5 "6 l?
Write the solution in interval notation. (o0, 6)

? Exercise 2.7.2.11

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

9c > 72
Answer
c>8
—
6 7 8 o 10
(8,00)

? Exercise 2.7.2.12

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

12d <60
Answer
d<5
~——————
3 4 5 5 7
(=00, 5]

? Exercise 2.7.2.13

Solve the inequality —10a > 50, graph the solution on the number line, and write the solution in interval notation.
Answer
-10a = 50
Divide both sides of the inequality by —10. -10a _ 50
Since —10 < 0, the inequality reverses. =10 210
Simplify. a<-5
| | il : .
o g 1 | 4 =
Graph the solution on the number line. 7 % 5 )
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Write the solution in interval notation. {~c0, -5]

? Exercise 2.7.2.14

Solve each inequality, graph the solution on the number line, and write the solution in interval notation.

—8q < 32
Answer
qg>—4
i ——f—t—i—
-6 =5 -4 -3 )
(4, o)

? Exercise 2.7.2.15

Solve each inequality, graph the solution on the number line, and write the solution in interval notation.

—Tr < -70

Answer

X SOLVING INEQUALITIES

Sometimes when solving an inequality, the variable ends up on the right. We can rewrite the inequality in reverse to get the
variable to the left.

x > a has the same meaning asa < x (2.7.2.6)

Think about it as “If Xavier is taller than Alex, then Alex is shorter than Xavier.”

? Exercise 2.7.2.16

Solve the inequality —20 < %u, graph the solution on the number line, and write the solution in interval notation.

Answer

4
20<—u
g

Multiply both sides of the inequality by % .
Since % > 0, the inequality stays the same.

Simplify. 25<u
Rewrite the variable on the left. u>-25

Graph the solution on the number line.

Write the solution in interval notation. (=25, )
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Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

24 < %m
Answer
m= 64
] L | ]
T T T 1 *
63 64 65 66 67
[64, o)

? Exercise 2.7.2.18

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

—24<3n
Answer
n>-18
il | L |
T \ 3 T F
=20 -19 -18 -17 -16
(-18, o)

? Exercise 2.7.2.19

Solve the inequality %2 > 8, graph the solution on the number line, and write the solution in interval notation.

Answer

Multiply both sides of the inequality by —2.
Since —2 < 0, the inequality reverses.

Simplify. t<-16

;|
q q 1 | ] I
Graph the solution on the number line. 18 17 16 15

Write the solution in interval notation. (o0, -16]

? Exercise 2.7.2.20

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

k
—12 <15
Answer

k= -180

| i | |

T T T ; F

-181 -180 -179 -178 177

[-180, o)
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Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

K3
- > -—16
Answer
u< 64
4 I 1 ] |
I 1 I |
62 63 64 65 66
{~o0, 64]

Solve Inequalities That Require Simplification

Most inequalities will take more than one step to solve. We follow the same steps we used in the general strategy for solving linear
equations, but be sure to pay close attention during multiplication or division.

? Exercise 2.7.2.22

Solve the inequality 4m < 9m + 17, graph the solution on the number line, and write the solution in interval notation.

Answer
dm<9m+17

Subtract 9m from both sides to collect the variables on the
Am-9m<9m-9m+ 17

left.
Simplify. -Sm<17
Divide both sides of the inequality by —5, and reverse the -5m _ 17
inequality. =3
Simplify. m2z ‘g
" | |
Graph the solution on the number line. _5 _4 —g_é _é
. L . 17
Write the solution in interval notation. [—T- °°)

? Exercise 2.7.2.23

Solve the inequality 3q > 7q — 23, graph the solution on the number line, and write the solution in interval notation.

Answer

? Exercise 2.7.2.24

Solve the inequality 6z < 10z + 19, graph the solution on the number line, and write the solution in interval notation.

Answer
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? Exercise 2.7.2.25

notation.

Answer
Simplify each side as much as possible.
Distribute.
Combine like terms.
Subtract 7p from both sides to collect the variables on the left.
Simplify.
Add 36 to both sides to collect the constants on the right.
Simplify.

Divide both sides of the inequality by 4; the inequality stays
the same.

Simplify.
Graph the solution on the number line.

Write the solution in interval notation.

? Exercise 2.7.2.26

notation.

Answer

Solve the inequality 8p+ 3(p —12) > 7p — 28 graph the solution on the number line, and write the solution in interval

8p+3(p—12)>7p-28
8p+3p—36>7p—28
11p—-36>7p-28
11p—36-7p>7p—28-7p
4p—36>-28
4p—36+36>-28+36

4p>8

Solve the inequality 9y + 2(y +6) > 5y — 24 , graph the solution on the number line, and write the solution in interval

? Exercise 2.7.2.27

notation.

Answer

Solve the inequality 6w+ 8(w —1) > 10w+ 32, graph the solution on the number line, and write the solution in interval

https://phys.libretexts.org/@go/page/76290
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Just like some equations are identities and some are contradictions, inequalities may be identities or contradictions, too. We
recognize these forms when we are left with only constants as we solve the inequality. If the result is a true statement, we have an
identity. If the result is a false statement, we have a contradiction.

? Exercise 2.7.2.28

Solve the inequality 8z —2(5 —z) < 4(xz +9) + 6z , graph the solution on the number line, and write the solution in interval

notation.

Answer
Simplify each side as much as possible.
Distribute.
Combine like terms.

Subtract 10x from both sides to collect the variables on the
left.

Simplify.

The xx’s are gone, and we have a true statement.

Graph the solution on the number line.

Write the solution in interval notation.

? Exercise 2.7.2.29

notation.

Answer

8x—2(5-x)<4(x+9)+6x
8x—-10+2x<4x+36+6x

10x-10<10x+36
10x-10-10x<10x+36-10x

-10<36
The inequality is an identity.
The solution is all real numbers.

e I : H—
=1 0 1 2

(_Oo’ oo)

Solve the inequality 4b —3(3 —b) > 5(b—6) + 2b , graph the solution on the number line, and write the solution in interval

Identity

? Exercise 2.7.2.30

interval notation.

Answer

—

Solve the inequality 9h —7(2 —h) < 8(h+11)+8h , graph the solution on the number line, and write the solution in

Identity

? Exercise 2.7.2.31

Answer

—

Solve the inequality %a = %a > 25—4a + % , graph the solution on the number line, and write the solution in interval notation.
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1 1 5 3
Ea—§a>ﬂa+z

Multiply both sides by the LCD, 24, to clear the fractions. 24 (% e %") > 24 (% a+ %)
Simplify. 80-3a>5a+18
Combine like terms. Sa>5a+18
Subtract 5a from both sides to collect the variables on the left. S5a-5a>5a-5a+18
Simplify. 0>18

The statement is false! The inequality is a contradiction.

There is no solution.

Graph the solution on the number line. 1 0 1 2
Write the solution in interval notation. There is no solution.

? Exercise 2.7.2.32
Solve the inequality i:z: — %w > %:v + % , graph the solution on the number line, and write the solution in interval notation.

Answer

Contradiction

No solution

? Exercise 2.7.2.33

Solve the inequality %z = %z < 11—52 = % , graph the solution on the number line, and write the solution in interval notation.

Answer

Contradiction

No solution

Translate to an Inequality and Solve

To translate English sentences into inequalities, we need to recognize the phrases that indicate the inequality. Some words are easy,
like ‘more than’ and ‘less than’. But others are not as obvious.

Think about the phrase ‘at least’ — what does it mean to be ‘at least 21 years old’? It means 21 or more. The phrase ‘at least’ is the
same as ‘greater than or equal to’.

Table 2.7.2.4shows some common phrases that indicate inequalities.

Table 2.7.2.4

> <

A%
IN

" data-valign="middle"
class="lt-math-15134">is is greater than or equal to is less than is less than or equal to
greater than
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>

A%

" data-valign="middle"
class="1t-math-15134">is more
than

is at least

" data-valign="middle"
class="lt-math-15134">is larger is no less than
than

" data-valign="middle"
class="1t-math-15134">exceeds

? Exercise 2.7.2.34

is the minimum

Twelve times c is no more than 96.
Answer

Translate.

Solve—divide both sides by 12.
Simplify.

Write in interval notation.

Graph on the number line.

? Exercise 2.7.2.35

Twenty times y is at most 100

Answer

? Exercise 2.7.2.36

Nine times z is no less than 135

Answer

is smaller than is at most

has fewer than is no more than

is lower than is the maximum

Translate and solve. Then write the solution in interval notation and graph on the number line.

Twelve times c is no more than 96
12c <96

12¢ _96

12 —12

Translate and solve. Then write the solution in interval notation and graph on the number line.

20y =100
¥ys5

£

|

|

5 6 7 8
(—o0 5]

Translate and solve. Then write the solution in interval notation and graph on the number line.

9z > 135
zZ15
| £ | |
T r T T >
14 15 16 17 18
[15, oo)

https://phys.libretexts.org/@go/page/76290


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76290?pdf

LibreTextsm

Translate and solve. Then write the solution in interval notation and graph on the number line.

Thirty less than x is at least 45.

Answer
Thirty less than x is at least 45.
Translate. x-30> 45
Solve—add 30 to both sides. x-30+30>45+30
Simplify. X275
Write in interval notation. [75, =)

Graph on the number line.

? Exercise 2.7.2.38

Translate and solve. Then write the solution in interval notation and graph on the number line.

Nineteen less than p is no less than 47

Answer
p-19247
p2 66
| [ | |
T T T ; F
65 66 67 68 69
[66, oo)

? Exercise 2.7.2.39

Translate and solve. Then write the solution in interval notation and graph on the number line.

Four more than a is at most 15.

Answer
a+4<15
a1
-+t
10 1 12 13 14
(~o0, 1]
Key Concepts

¢ Subtraction Property of Inequality
For any numbers a, b, and c,
if a<b then a—c<b—c and
if a>b then a—c>b—c.

¢ Addition Property of Inequality
For any numbers a, b, and c,
if a<b then a+c<b+c and
if a>b then a+c>b+c.

o Division and Multiplication Properties of Inequality
For any numbers a, b, and c,
if a<b and c>0, then ac<bc and ac>bc.
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if a>b and c>0, then ac>bc and ac>bc.
if a<b and c<0, then ac>bc and ac>bc.
if a>b and c<0, then ac<bc and ac<bc.
e When we divide or multiply an inequality by a:
o positive number, the inequality stays the same.
o negative number, the inequality reverses.

Practice Makes Perfect

Everyday Math

Safety A child’s height, h, must be at least 57 inches for the child to safely ride in the front seat of a car. Write this as an
inequality.

? Exercise 2.7.2.76

Fighter pilots The maximum height, h, of a fighter pilot is 77 inches. Write this as an inequality.

Answer

h <77

Elevators The total weight, w, of an elevator’s passengers can be no more than 1,200 pounds. Write this as an inequality.

? Exercise 2.7.2.78

Shopping The number of items, n, a shopper can have in the express check-out lane is at most 8. Write this as an inequality.

Answer

n<8

Writing Exercises

? Exercise 2.7.2.79

Give an example from your life using the phrase ‘at least’.

? Exercise 2.7.2.80

Give an example from your life using the phrase ‘at most’.

Answer

Answers will vary.

? Exercise 2.7.2.81

Explain why it is necessary to reverse the inequality when solving —5z > 10
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? Exercise 2.7.2.82

Explain why it is necessary to reverse the inequality when solving & <12

Answer

Answers will vary.

Self Check
(@ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.
Ican... Confidently Mt#eslgme N‘;éﬂ'::" t

graph inequalities on the number line.

solve inequalities using the Subtraction and
Addition Properties of Inequality.

solve inequalities using the Division and
Multiplication Properties of Inequality.

solve inequalities that require simplification.
translate to an inequality and solve.

(® What does this checklist tell you about your mastery of this section? What steps will you take to improve?

This page titled 2.7.2: Solving Inequalities is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.
2.7: Solve Linear Inequalities by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/elementary-algebra-

2e.
2.7E: Exercises by OpenStax has no license indicated. Original source: https://openstax.org/details/books/elementary-algebra-2e.
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2.7.3: Solving Quadratic Equations

&b Learning Objectives

By the end of this section, you will be able to:

¢ Solve quadratic equations using the Quadratic Formula
e Use the discriminant to predict the number and type of solutions of a quadratic equation
o Identify the most appropriate method to use to solve a quadratic equation

Before you get started, take this readiness quiz.

1. Evaluate b2 —4ab whena =3 and b = —2.
2. Simplify 1/108.
3. Simplify /50.

Solve Quadratic Equations Using the Quadratic Formula

When we solved quadratic equations in the last section by completing the square, we took the same steps every time. By the end of
the exercise set, you may have been wondering ‘isn’t there an easier way to do this?’ The answer is ‘yes’. Mathematicians look for
patterns when they do things over and over in order to make their work easier. In this section we will derive and use a formula to

find the solution of a quadratic equation.

We have already seen how to solve a formula for a specific variable ‘in general’, so that we would do the algebraic steps only once,
and then use the new formula to find the value of the specific variable. Now we will go through the steps of completing the square
using the general form of a quadratic equation to solve a quadratic equation for x.

We start with the standard form of a quadratic equation and solve it for by completing the square.

ar’?+bzx+c=0, a#0

Isolate the variable terms on one side. az’+bz =-—c
- ) . az? b c
Make the coefficient of 2 equal to 1, by dividing by a. = 4+ 2z =-=
a a a

Simplify. 24—z =— &

a a

1 b\?
To complete the square, find (5 . —) and add it to both sides

a
of the equation.
16\> # 2 b, c
=— )= —— -+ —=——+—
2a 4a? a 4a? a  4a®
L _ b\> ¢ B
The left side is a perfect square, factor it. r+—) =—=—4 —
2a a  4a?
Find the common denominator of the right side and write b2 b? c-4a
. . . . T+— ) =——
equivalent fractions with the common denominator. 2a 40?2 a-4a
b\? B dac
Simplify. I R
Py (m 2a ) 402  4a?
2 2 4
Combine to one fraction. T+ i = b—ac
2a 4a?
Use the square root property. T+ b =+ b” —dac
2a 4a?
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2 _

Simplify the radical. z+ i =L —b e
2a 2a
b 2 _

Add ——— to both sides of the equation. r=— i + M
2a 2a 2a

— /b2 —
Combine the terms on the right side. - bt Vb —dac
2a

The final equation is called the "Quadratic Formula."

# Definition 2.7.3.1: Quadratic Formula

The solutions to a quadratic equation of the form az? + bz +c =0 , where a # 0 are given by the formula:

—b++/b2 —4dac
r=———-"

o (2.7.3.1)

To use the Quadratic Formula, we substitute the values of a, b, and ¢ from the standard form into the expression on the right side
of the formula. Then we simplify the expression. The result is the pair of solutions to the quadratic equation.

Notice the Quadratic Formula (Equation 2.7.3.1) is an equation. Make sure you use both sides of the equation.

v/ Example 2.7.3.1 How to Solve a Quadratic Equation Using the Quadratic Formula

Solve by using the Quadratic Formula: 222 +92 —5 =0 .

Solution:

ar® +br+c=0
This equation is in standard form. 222+ 92 —5=0
a=2,b=9,c=-5

—b++/b% —dac
Step 2: Write the quadratic formula. Then = 2a

. . Substitute ina = 2,b=9,c= —5 5
substitute in the values of a, b, c. —9+4/9°—4.2.(-5)

Step 1: Write the quadratic equation in
standard form. Identify the a, b, ¢ values.

2-2
—94 /81— (—40)
Tr=
4
-9+ 121
rT=——
4
—9+11
Step 3: Simplify the fraction, and solve T= 1
for z. —94+11 —9-11
xr = xr =
4 4
_ 2 _ —-20
T Ty
1
T=— z=-5
2
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202 +9z—5 =
1)? 1
2( = 9-——5 =0
(3) 3
1 1 ?
2:—=+0-—-5 =0
4 * 2
2.1 49.2 5 2o
1
=4 2 -5 ; 0
Put each answer in the original equation 2 2
Step 4: Check the solutions. ) 1 10 520
to check. Substitute z = 3 andz = —5. 2
5-520
0=0
202 +9z—5=0

2(—5)24+9(~5)—5=0
2.95-45-520
50— 45— 5=0

0=0

? Exercise 2.7.3.1
Solve by using the Quadratic Formula: 3y?> —5y+2 =0 .

Answer

y=Ly=z

? Exercise 2.7.3.2
Solve by using the Quadratic Formula: 422 +2z—6 =0 .

Answer

X HowTo: Solve a Quadratic Equation Using the Quadratic Formula

1. Write the quadratic equation in standard form, az? 4+ bz 4 ¢ = 0 . Identify the values of a, b, and c.
2. Write the Quadratic Formula. Then substitute in the values of a, b, and c.

3. Simplify.

4. Check the solutions.

If you say the formula as you write it in each problem, you’ll have it memorized in no time! And remember, the Quadratic Formula
is an EQUATION. Be sure you start with “z =".

v/ Example 2.7.3.2

Solve by using the Quadratic Formula: 2% — 6z = —5 .

Solution:

22 —6z=-5
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Write the equation in standard form by adding 5 to each side. 22 —6z+5=0
2 b —
This equation is now in standard form. a; tbz+c=0
z°—6x+5=0
Identify the values of o, b, c. ,b=—6,c=5
_ 2 _
Write the Quadratic Formula. o= b+ \/ b° —4dac
2a
—(— —6)2—-4.1-
Then substitute in the values of a, b, c. = (6)£V(-6)?—4-1-(5)
9.
_ 6+£+36—20
B 2
Simplify. = 6+ 2\/ 16
6+4
rT=—"0
2
Rewrite to show two solutions. z= %, z= %
- 10 2
Simplify. e=4, z=2
z=5 z=1
Check:
X¥-6x+5=0 X-6x+5=0
5-6+5+520 17-6+1+5%0
25-30+520 1-6+520
0=0v 0=0v

? Exercise 2.7.3.3

Solve by using the Quadratic Formula: a? —2a = 15 .

Answer

a=-3,a=5

? Exercise 2.7.3.4
Solve by using the Quadratic Formula: * +24 = —10b.

Answer

b=—6,b=—4

When we solved quadratic equations by using the Square Root Property, we sometimes got answers that had radicals. That can

happen, too, when using the Quadratic Formula. If we get a radical as a solution, the final answer must have the radical in its
simplified form.

v/ Example 2.7.3.3

Solve by using the Quadratic Formula: 22> +10z +11 =0.

Solution:

2¢+10x+11=0

q . .. @t + bx + ¢ =0
This equation is in standard form. 2¢+10x+11=0
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Identify the values of a, band c. b=10,
_ P A
Write the Quadratic Formula. = b+ \/b° —4dac
2a
. . 2 ey L] -
Then substitute in the values of a, b, and c. x= 10 ﬂmg}‘ 4 ()
Simplify. - —10+ \/100 — 88
P 10++/12
B 4
Simplify the radical. o= —10 :Z 2v/3
I C-FLE))
=T 1
Factor out the common factor in the numerator. 2o 5+ \/E)
r= ——
4
Remove the common factors. = —5:; V3
Rewrite to show two solutions. = _5"2‘ V3 . z= —5; V3

Check:
We leave the check for you!

? Exercise 2.7.3.5

Solve by using the Quadratic Formula: 3m? +12m 47 =0.

Answer

—6-++/15 —6—+/15
wETe e T

? Exercise 2.7.3.6

Solve by using the Quadratic Formula: 5n% +4n—4=0 .

Answer

2126  —2-2./6
T " s

When we substitute a,b, and ¢ into the Quadratic Formula and the radicand is negative, the quadratic equation will have
imaginary or complex solutions. We will see this in the next example.

v/ Example 2.7.3.4

Solve by using the Quadratic Formula: 3p> +2p+9 =0.
Solution:
Table 9.3.5

c=0
This equation is in standard form. 3p*+2p+9=0
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Identify the values of a, b, c. b=2,

_ -b +v/b* - 4ac

Write the Quadratic Formula. p g

p= R VOF-2- ()

Then substitute in the values of a, b, c.

p
Simplify. p=2EVE-18

-2 +1/-104

p — T

Simplify the radical using complex numbers. p= -2¢—6104.'

Simplify the radical. p= %@

Factor the common factor in the numerator. p= 2(_1% '26’)
Remove the common factors. p= _1%\/2_6”
Rewrite in standard a + bi form. p= —1§ +- gG :
1 2610 2610

Write as two solutions. p=-Z+

? Exercise 2.7.3.7

Solve by using the Quadratic Formula: 4a®> —2a+8 =0 .

Answer

1
T4 4
? Exercise 2.7.3.8

Solve by using the Quadratic Formula: 5b* +2b+4 =0 .

Answer

1 1 1 1

5 5 5 5

Remember, to use the Quadratic Formula, the equation must be written in standard form, az® +bz +c=0 . Sometimes, we will
need to do some algebra to get the equation into standard form before we can use the Quadratic Formula.

v/ Example 2.7.3.5

Solve by using the Quadratic Formula: z(z +6)+4 =0 .
Solution:
Our first step is to get the equation in standard form.
Table 9.3.6
Xx(x+6)+4=0

Distribute to get the equation in standard form. X+6x+4=0
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bx + ¢ =0
This equation is now in standard form. f::_t 6x _T_ 4c 0
Identify the values of a, b, c. b=,
Write the Quadratic Formula. x=2xVb-dac u2ba-4n*c
L N O TIE
Then substitute in the values of a, b, c. x= 1=V 2] . )
Simplify. X= 0y 6 16 '236_16
-6 +4/20
X=—1r
2
Simplify the radical. x= _GiTNg
Factor the common factor in the numerator. X= %
Remove the common factors. x=-3x2\/5
Write as two solutions. x=-3+25, x=-3-2¢/5

Check:
We leave the check for you!

? Exercise 2.7.3.9

Solve by using the Quadratic Formula: z(z +2) —5=0.

Answer

? Exercise 2.7.3.10

Solve by using the Quadratic Formula: 3y(y —2) —3 =0 .

Answer

When we solved linear equations, if an equation had too many fractions we cleared the fractions by multiplying both sides of the
equation by the LCD. This gave us an equivalent equation—without fractions— to solve. We can use the same strategy with
quadratic equations.

v/ Example 2.7.3.6

Solve by using the Quadratic Formula: %uZ + %u = % .
Solution:
Our first step is to clear the fractions.
Table 9.3.7
%w + %u = 15
Multiply both sides by the LCD, 6, to clear the fractions. 5(%“2 + %“) = 5(%)
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Multiply. 30+ 4u=2
Subtract 2 to get the equation in standard form. ;f,z .T. 4bL N 5 - 3
Identify the values of a, b, and c. b=4,
Write the Quadratic Formula. u= W

Then substitute in the values of a, b, and c.

Var—a ()
PR RO e )

-4 1 24

Simplify. Pt \/56 +
—4 /40
U=

6
Simplify the radical. u=2x 62\/ 10
Factor the common factor in the numerator. U= 2(—2% V/10)
Remove the common factors. u=_2 =3V 10
Rewrite to show two solutions. u="2 +3V 1 0, y="2 -3\/10
Check:

We leave the check for you!

? Exercise 2.7.3.11

1 1 1
Solve by using the Quadratic Formula: Zcz — §C =13
Answer
2+4/7 27
c= , c=
3 3

? Exercise 2.7.3.12

1 1 1
Solve by using the Quadratic Formula: §d2 = Ed =3
Answer
9+4/33 9—4/33
i=—3 9="

Think about the equation (z —3)2 = 0. We know from the Zero Product Property that this equation has only one solution,
z=3.

We will see in the next example how using the Quadratic Formula to solve an equation whose standard form is a perfect square
trinomial equal to 0 gives just one solution. Notice that once the radicand is simplified it becomes 0, which leads to only one
solution.
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Solve by using the Quadratic Formula: 422 — 20z = —25.

Solution:
Table 9.3.8
4x* — 20x =-25
axt + bx + ¢ =0
Add 25 to get the equation in standard form. A —20x+25=0
Identify the values of a, b, and c. b =-20,
Write the quadratic formula. x= bz Vb -dac \’;’0—4“
Then substitute in the values of a, b, and c. x= 1202 {;2?) S )
; ; 20 + v400 - 400
Simplify. x=SEVEETTS
x=20£V0
8
L . - 20
Simplify the radical. x=1%
Simplify the fraction. Xx= %

Check:
We leave the check for you!

Did you recognize that 4x2 —20x +25 is a perfect square trinomial. It is equivalent to (2z —5)2? If you solve
422 — 20z +25 =0 by factoring and then using the Square Root Property, do you get the same result?

? Exercise 2.7.3.13
Solve by using the Quadratic Formula: r? + 107 +25 =0 .

Answer

r=-5
? Exercise 2.7.3.14

Solve by using the Quadratic Formula: 25¢> — 40t = —16.
Answer

4
t=—
5

Use the Discriminant to Predict the Number and Type of Solutions of a Quadratic Equation

When we solved the quadratic equations in the previous examples, sometimes we got two real solutions, one real solution, and
sometimes two complex solutions. Is there a way to predict the number and type of solutions to a quadratic equation without
actually solving the equation?

Yes, the expression under the radical of the Quadratic Formula makes it easy for us to determine the number and type of solutions.
This expression is called the discriminant.
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Discriminant

In the Quadratic Formula, x = —1317 ‘;_405
a

the quantity b* — 4ac is called the discriminant.

Figure 9.3.85

1

Let’s look at the discriminant of the equations in some of the examples and the number and type of solutions to those quadratic

equations.
Table 9.3.9
uadratic Equation (in
Q q ( Discriminat b> — 4ac Value of the Discriminant Number and Type of Solutions
standard form)
2
222 + 9z —5=10 9°—4-2(-5) + 2 real
121
—20)>—4-4-25
4z®> — 20z +25=10 (=20) 0 0 1 real
3P +2p+9=0 2 -4:3.9 — 2 complex
/4 p = _104 p
When the discriminant is positive, the quadratic o
equation has 2 real solutions. ="3a
When the discriminant is zero, the quadratic equation -b++/0
has 1 real solution. X=—a
When the discriminant is negative, the quadratic b+
equation has 2 complex solutions. L 7
Figure 9.3.86

Using the Discriminant b2 — 4ac, to Determine the Number and Type of Solutions of a Quadratic Equation
For a quadratic equation of the form az® +bz +¢c=0 ,a #0,

e Ifb2 —4ac > 0, the equation has 2 real solutions.
e if b2 —4ac = 0, the equation has 1 real solution.
e if b2 —4ac < 0, the equation has 2 complex solutions.

v/ Example 2.7.3.8

Determine the number of solutions to each quadratic equation.

a3z2+7x—-9=0
b.5n?4+n+4=0
c9y* —6y+1=0

Solution:

To determine the number of solutions of each quadratic equation, we will look at its discriminant.

d.

322472 -9=0

The equation is in standard form, identify a, b, and c.

Write the discriminant.
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b% —4ac
Substitute in the values of a, b, and c.
(7)* —4-3-(-9)
Simplify.
49 +108
157

Since the discriminant is positive, there are 2 real solutions to the equation.
b.
5n24+n+4=0

The equation is in standard form, identify a, b, and c.

Write the discriminant.

b* —4ac
Substitute in the values of a, b, and c.
(1)2—4-5-4
Simplify.
1-80
—79

Since the discriminant is negative, there are 2 complex solutions to the equation.
c.
9y —6y+1=0

The equation is in standard form, identify a, b, and c.

Write the discriminant.

b% —4ac
Substitute in the values of a, b, and c.
(—6)2—4-9-1
Simplify.
36 — 36
0

Since the discriminant is 0, there is 1 real solution to the equation.

? Exercise 2.7.3.15

Determine the number and type of solutions to each quadratic equation.
a8m?—-3m+6=0
b.5224+62—2=0
c 9w? 424w +16 =0

Answer

a. 2 complex solutions
b. 2 real solutions
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| c. 1 real solution

? Exercise 2.7.3.16

Determine the number and type of solutions to each quadratic equation.
ab®+7b—13=0
b.5a® —6a+10 =0
c. 4r* —207r+25 =0

Answer
a. 2 real solutions
b. 2 complex solutions
c. 1 real solution

Identify the Most Appropriate Method to Use to Solve a Quadratic Equation

We summarize the four methods that we have used to solve quadratic equations below.

Methods for Solving Quadratic Equations

1. Factoring

2. Square Root Property

3. Completing the Square

4. Quadratic Formula
Given that we have four methods to use to solve a quadratic equation, how do you decide which one to use? Factoring is often the
quickest method and so we try it first. If the equation is az? = k or a(z —h)? =k we use the Square Root Property. For any other
equation, it is probably best to use the Quadratic Formula. Remember, you can solve any quadratic equation by using the Quadratic
Formula, but that is not always the easiest method.

What about the method of Completing the Square? Most people find that method cumbersome and prefer not to use it. We needed
to include it in the list of methods because we completed the square in general to derive the Quadratic Formula. You will also use
the process of Completing the Square in other areas of algebra.

Identify the Most Appropriate Method to Solve a Quadratic Equation
1. Try Factoring first. If the quadratic factors easily, this method is very quick.
2. Try the Square Root Property next. If the equation fits the form az® = k or a(z —h)? =k, it can easily be solved by using
the Square Root Property.
3. Use the Quadratic Formula. Any other quadratic equation is best solved by using the Quadratic Formula.

The next example uses this strategy to decide how to solve each quadratic equation.

v/ Example 2.7.3.9

Identify the most appropriate method to use to solve each quadratic equation.

a 522 =17

b.4z? 12z +9=0
c 8u?+46u=11
Solution:
a.

522 =17
Since the equation is in the az? = k, the most appropriate method is to use the Square Root Property.

b.
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422 —122+9=0

We recognize that the left side of the equation is a perfect square trinomial, and so factoring will be the most appropriate
method.

c.
8u? +6u =11
Put the equation in standard form.
8u? +6u—11=0

While our first thought may be to try factoring, thinking about all the possibilities for trial and error method leads us to choose
the Quadratic Formula as the most appropriate method.

? Exercise 2.7.3.17

Identify the most appropriate method to use to solve each quadratic equation.

az?+6x+8=0

b. (n—3)2 =16
c.5p? —6p=9
Answer

a. Factoring
b. Square Root Property
¢. Quadratic Formula

? Exercise 2.7.3.18
Identify the most appropriate method to use to solve each quadratic equation.
a8a?+3a-9=0

b. 462 +4b+1=0
c. 5c2 =125

Answer
a. Quadratic Formula
b. Factoring or Square Root Property
c. Square Root Property

Practice Makes Perfect

? Solve Quadratic Equations of the Form az? = k Using the Square Root Property

In the following exercises, solve each equation.

1.a%2 =49
2.12-24=0
3.u2—300=0
4. 4m? = 36

5. %wz =48
6.2 +25=0
7.2>4+63=0
8. 522 +2=110
9.242+3=11
10. 7p® +10 =26
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11.5y2 —7=25

Answer

l.a==7
.r=+2V6
.u==+103
.m =233

. = 16

. x = +51
.z =137
. x =19
9.a=+42V5

10.p=:|:%
11..1;::|:4—\>/52

O N U WN

? Solve Quadratic Equations Using the Quadratic Formula

In the following exercises, solve by using the Quadratic Formula.

12.4m> +m—-3=0
13.2p ~Tp+3=0
14.p> +Tp+12=0
15. 72 — 8r =133
16. 3u? +7u—2=0
17. 242 —6a+3 =0
18. 224+ 8z —4=0
19.3y% +5y—2=0
20. 222 +32x+3=0
21. 822 —62+2=0
22. (v+1)(v—5)—4=0
1
24.16¢% +24¢+9=0

25. 25¢% +30g+9 =0
Answer

12.m:1—1,m:Z
Bp=—,p=3
p 217
14.p=—-4,p=-3
15.r=-3,r=11

_ —TEVT3

i
17.a:¥

18. 2 = -4+25

16. u

1
19.y=—,y=—-2

3
3 V15,
20$——Zﬂ:T'L
=3+ YT
8 8
22.v=2++v13
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B.m=1,m=—
m m 3

24. c=—

oo ] w

25.q=—

?

2 Use the Discriminant to Predict the Number of Real Solutions of a Quadratic Equation

28. In the following exercises, determine the number of real solutions for each quadratic equation.
a 4z? -5z +16 =0
b. 36y% 436y +9 =0
c 6m?+3m—5=0

Answer

28. a. no real solutions b. 1 c. 2

29. In the following exercises, determine the number of real solutions for each quadratic equation.
ar’+12r+36=0
b. 8t —11t+5=0
c 30> —5v—-1=0

Answer

29. a. 1 b. no real solutions c. 2

Key Concepts

e Quadratic Formula

o The solutions to a quadratic equation of the form az? + bz +c =0,a #0 are given by the formula:

_ —b= Vb2 —4dac
r= 2a
e How to solve a quadratic equation using the Quadratic Formula.
1. Write the quadratic equation in standard form, az? + bz +c¢ = 0 . Identify the values of a, b, c.
2. Write the Quadratic Formula. Then substitute in the values of a, b, c.
3. Simplify.
4. Check the solutions.
o Using the Discriminant, b — 4ac, to Determine the Number and Type of Solutions of a Quadratic Equation
o For a quadratic equation of the form az? +bz +c=0,a #0 ,
» Ifb% —4ac >0, the equation has 2 real solutions.
» If b —4ac =0, the equation has 1 real solution.
= If b —4ac < 0, the equation has 2 complex solutions.
e Methods to Solve Quadratic Equations:
o Factoring
o Square Root Property
o Completing the Square
o Quadratic Formula
e How to identify the most appropriate method to solve a quadratic equation.

1. Try Factoring first. If the quadratic factors easily, this method is very quick.

2. Try the Square Root Property next. If the equation fits the form az® = k or a(z —h)? = k , it can easily be solved by
using the Square Root Property.
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3. Use the Quadratic Formula. Any other quadratic equation is best solved by using the Quadratic Formula.

Glossary

discriminant

In the Quadratic Formula, x = , the quantity b? — 4ac is called the discriminant.

—b+ /b2 —4ac
2a

This page titled 2.7.3: Solving Quadratic Equations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.
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2.7.4: Solving a System of Linear Equations

&b Learning Objectives

e Solve a system of equations using the substitution method.
e Recognize systems of equations that have no solution or an infinite number of solutions.
e Solve application problems using the substitution method.

Using Substitution to Solve a System of Equations

In the substitution method, you solve for one variable and then substitute that expression into the other equation. The important
thing here is that you are always substituting values that are equivalent.

For example:
Sean is 5 years older than four times his daughter’s age. His daughter is 7. How old is Sean?

You might do this problem in your head. Sean’s daughter is 7, so “four times his daughter’s age” is 28, and 5 years added to that is
33. Sean is 33.

If you solved the problem like that, you used a simple substitution—you substituted in the value “7” for “his daughter’s age.” You
learned in the second part of the problem that “his daughter is 7.” So substituting in a value of “7” for “his daughter’s age” in the
first part of the problem was okay, because you knew these two quantities were equal.

Let’s look at a simple system of equations that can be solved using substitution.

v/ Example

Find the value of z for this system.

Equation A: 4 43y = —14

EquationB: y =2

Solution
Azt 3y — —14 The problem asks to solve for z.

oy : 9 Equation B gives you the value of y, y=2, so you can
y= substitute 2 into Equation A for y.
4r+3(2)=-14 Substituting y = 2 into Equation A.
dr+6=-14
4r = —20 Simplify and solve the equation for x.
z=-5
z=-5

You can substitute a value for a variable even if it is an expression. Here’s an example.

v/ Example

Solve for « and y.
EquationA: y+x =3
EquationB: x =y+5

Solution
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y+x=3
T=y+5
y+z=3
y+(y+5 =3
2y+5 = 3
—5 -5
2y -2
y =-1
y+x 3
—1+z = 3
+1 +1
x = 4
y+z=3
-1+4=3
3=3
TRUE
z=4and y=—1

rT=y+5

4=-1+5

4=1
TRUE

The goal of the substitution method is to rewrite one of the
equations in terms of a single variable. Equation B tells us that
x = y+ 5, so it makes sense to substitute that y+ 5 into
Equation A for x.

Substitute y+ 5 into Equation A for z and you get
y+(y+5)=3.

Simplify and solve the equation to get y = —1.

To now find z, substitute this value for y into either equation
and solve for . We will use Equation A here to get = =4.

Finally, check the solution z =4, y = —1 by substituting
these values into each of the original equations.

The solution is (4, —1).

Remember, a solution to a system of equations must be a solution to each of the equations within the system. The ordered pair
(4, —1) works for both equations, so you know that it is a solution to the system as well.

Let’s look at another example whose substitution involves the distributive property.

v/ Example

Solve for « and y.

y=3r+6
—2x+4y=4
Solution
y=3x+6
—2zx+4y=4
—2x+4y=4
—22+4(3z+6) =4
—2z+12z+24 = 4
10z +24 = 4
—24 —24
10z = =20
T = =2

Choose an equation to use for the substitution.

The first equation tells you how to express y in terms of x, so
it makes sense to substitute 3z + 6 into the second equation for
Y.

Substitute 3z + 6 for y into the second equation.

Simplify and solve the equation for x.
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y=3z+6
y=3(—2)+6 To find y, substitute this value for z back into one of the
y=—6+6 original equations.
y=0
y=3z+6 —2z+4y=4
0=3(-2)+6 —2(—2) +4(0) — 4
0=—-6+6 4+0=4 Check the solution & = —2, y = 0 by substituting them into
0=0 4=4 each of the original equations.
TRUE TRUE
z=-2and y=0.
The solution is (-2, 0).

In the examples above, one of the equations was already given to us in terms of the variable z or y. This allowed us to quickly
substitute that value into the other equation and solve for one of the unknowns.

Sometimes you may have to rewrite one of the equations in terms of one of the variables first before you can substitute. Look at the
example below.

v/ Example

Solve for « and y.
2z +3y =22
3z +y=19
Solution
Choose an equation to use for the substitution. The second
20+ 3y =22 . . . .
equation, 3z + y = 19, can easily be rewritten in terms of y,
3z+y=19 .
so it makes sense to start there.
Sety=19 Rewrite 3z 4y =19 in terms of y.
y=19—-3z
2z + 3y =22 Substitute 19 — 3z for y in the other equation as
20+ 3(19—3z) =22 2¢+3(19-3z) =22 .
22+ 57— 9z = 22
— =22
Te+ 67 Simplify and solve the equation for x.
—Tx=—-35
=5
3z+y=19
3(5 =19
(5)+y Substitute z =5 back into one of the original equations to
15+y=19
solve for y.
y=19-15
y=4
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2z 4+ 3y =22
3r+y =19
2(5) +3(4) =22 3(5‘§+Z 1o
10412 =22 19— 19 Check both solutions by substituting them into each of the
22=22 original equations.
TRUE TRUE
z=>5and y=4
The solution is (5, 4).
Solve the system for = and y.
2y=x+48
2y—10 =22
A z=-3,y=2
B.z=-2,y=3
C.x=-5,y=2
D. z=0,y=-5
Answer
A. Incorrect. If you substitute the values x = —3 and y = 2 into the first equation, you get a false statement:
2(2) = —3+9 . To solve this system, try rewriting the first equation as = = 2y — 8 . Then substitute 2y — 8 in for z
in the second equation, and solve for y. The correct answeris z = —2, y = 3.
B. Correct. Substituting these values into either equation results in a true statement: 2(3) = —248, and
2(3)—10=2(-2).
C. Incorrect. If you substitute the values x = —5 and y =2 into the second equation, you get a false statement:
2(2) —10 =2(—5) . To solve this system, try rewriting the first equation as & = 2y — 8 . Then substitute 2y — 8 in
for z in the second equation, and solve for y. The correct answeris * = -2,y =3.
D. Incorrect. If you substitute the values * =0 and y = —5 into the second equation, you get a false statement:
2(—5) —10 =2(0) . To solve this system, try rewriting the first equation as & = 2y — 8 . Then substitute 2y —8 in
for z in the second equation, and solve for y. The correct answeris € = -2,y =3.

Special Situations

There are some cases where using the substitution method will yield results that, at first, do not make sense. Let’s take a look at
some of these and figure out what is going on.

v/ Example

Solve for « and y.
y=>5z+4
10z —2y =4
Solution
y=>5x+4

10z —2y=14
10z — 2(5z+4) =4

Since the first equation is y = 5z 44 , you can substitute
5z +4 in for y in the second equation.

10z — 10z —8 =14 Expand the expression on the left.
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0—-8=4 Combine like terms on the left side of equation.
—8=4 10z — 10z = 0 , so you are left with —8=4.

The statement —8 =4 is false, so there is no solution.

You get the false statement — 8 =4 . What does this mean? The graph of this system sheds some light on what is happening.

«f

10x -2y=4

The lines are parallel. They never intersect and there is no solution to this system of linear equations. Note that the result —8 =4
is not a solution. It is simply a false statement and it indicates that there is no solution.

Now take this problem, which is interesting as well.

Solve for x and y.

y=—0.52
9y = —4.5z
Substituting — 0.5z for y in the second equation, you find the following:
9y = —4.5z
9(—0.5z) = —4.5z
—4.5z = —4.5z
This time, you get a true statement: —4.5z = —4.5z. But what does this type of answer mean? Again, graphing can help you

make sense of this system.
4

3

Jy = -4.5x
y = -0.5x

-4

This system consists of two equations that both represent the same line; the two lines are collinear. Every point along the line will
be a solution to the system, and that’s why the substitution method yields a true statement. In this case, there are an infinite number
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of solutions.

? Exercise

Aubrey is using the substitution method to solve the following system of equations:

y—zr =21
2y =2z +16

She arrives at an answer of 8 =21. She thinks that this answer means that the lines are parallel and that the system has no
solution.

Aubrey wants to check her answer. Which of the following actions will best help her find out whether the two equations in the
system are, in fact, parallel?

A. Check to see whether the slopes of both lines are the same, and the y-intercepts are different.
B. Check to see whether either line goes through the origin.

C. Check to see whether the lines have the same y-intercept.

D. Check to see whether both lines go through the point (8, 21).

Answer

A. Correct. Parallel lines have the same slope, but she also has to check whether they have different y-intercepts because
the lines could be collinear (remember that 2 collinear lines are the same line). If Aubrey finds that the slopes of the
lines are the same and the y-intercepts are different, then she can be confident that her answer is correct.

B. Incorrect. The origin has no bearing on whether two lines are parallel. In the case of this system, neither line goes
through the origin, but the lines are still parallel. If Aubrey finds that the slopes of the lines are the same and the y-
intercepts are different, then she can be confident that her answer is correct.

C. Incorrect. It is true that lines with the same y-intercept are never parallel, because parallel lines can never intersect. But
just checking that the y-intercepts aren’t the same is not enough. To be parallel, lines also must have the same slope. If
Aubrey finds that the slopes of the lines are the same and the y-intercepts are different, then she can be confident that
her answer is correct.

D. Incorrect. Although she arrived at an answer of 8 = 21, this does not mean that the lines themselves intersect at the
point (8,21). If Aubrey finds that the slopes of the lines are the same and the y-intercepts are different, then she can be
confident that her answer is correct.

Solving Application Problems Using Substitution

Systems of equations are a very useful tool for modeling real-life situations and answering questions about them. If you can
translate the application into two linear equations with two variables, then you have a system of equations that you can solve to find
the solution. You can use any method to solve the system of equations. Use the substitution method in this topic.

In order to sell more of its produce, a local farm sells bags of apples in two sizes: medium and large. A medium bag contains 4
Macintosh and 1 Granny Smith apples and costs $2.80. A large bag contains 8 Macintosh and 4 Granny Smith apples and costs
$7.20. The price of one Granny Smith apple is the same in the medium bag as it is in the large bag. The price of one Macintosh
apple is the same in the medium bag as it is in the large bag. What is the price of each kind of apple?

Let’s start by creating a system of equations that represents what is happening in the problem. There are two types of apples and
two sizes of bags. You can let m represent the cost of a Macintosh apple and g represent the cost of a Granny Smith apple. Let’s
make a table and see what is known.

Cost of Macintosh Cost of Granny
+ . = Total cost of bag
apples Smith apples
Medium dm + g = $2.80
Large 8m + 4q = $7.20
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Now that you have two equations in the same variables, you can solve the system. You will use substitution. The steps are shown in
the example below:

v/ Example

Solve for g and m using the substitution method.
4m+g=2.80
8m+49g="7.20
Solution
dm+g=2.80 First, rewrite one of the equations in terms of one of the
g=2.80—4m variables.
8m +4g="7.20
8m + 4(2.80 — 4m) = 7.20
8m+ 11.20 — 16m = 7.20 Substitute (2.80 —4m) for g in the second equation and solve
8m — 16m = 7.20 — 11.20 for m.
—8m = —4.00
m = 0.50
dm+g=2.80
4(0.5) + g =2.80 . . -
Substitute the value of m, 0.50, into one of the original
2+9g=2.280 .
equations to solve for g.
g=2.80—2
g=10.80
dm+g =2.80
4(.50) + .80 = 2.80 Check both equations by substituting in the values of g and m.
2.80 = 2.80
8m+4g =17.20
8(.50) +4(.80) =17.20
4.00+3.20 = 7.20
7.20="7.20
One Granny Smith apple costs $0.80 and one Macintosh apple costs $0.50.

Using the substitution method can be an effective approach to solving geometric problems.

v/ Example

The perimeter of a rectangle is 60 inches. If the length is 10 inches longer than the width, find the dimensions using the
substitution method.

Solution
21+ 2w =60 Use the information provided to write a system of equations. Let
l=w+10 l = length and w = width .
2l +2w = 60
2(w+10)+2w = 60
2w +20 +2w = 60
4w +20 = 60 Substitute w4+ 10 for [ in the first equation and solve for w.
—20 —20
dw = 40
w = 10
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l=w+10 . . . .
To find [, substitute 10 for w in one of the equations and solve
l=10+10
for I.
=20
[=wtll Check both solutions by substituting them into the t
20 — 10+ 10 ec. oth solutions by substituting them into the two
equations.
20 =20
20+ 2w = 60
2(2 2(10) =
(20) +2(10) = 60 Both of them are true, so this is a correct solution.
40420 = 60
60 = 60
The length of the rectangle is 20 inches.
The width of the rectangle is 10 inches.

Summary

The substitution method is one way of solving systems of equations. To use the substitution method, use one equation to find an
expression for one of the variables in terms of the other variable. Then substitute that expression in place of that variable in the
second equation. You can then solve this equation as it will now have only one variable. Solving using the substitution method will
yield one of three results: a single value for each variable within the system (indicating one solution), an untrue statement
(indicating no solutions), or a true statement (indicating an infinite number of solutions).

4) Learning Objectives

e Solve a system of equations when no multiplication is necessary to eliminate a variable.
o Solve a system of equations when multiplication is necessary to eliminate a variable.

o Recognize systems that have no solution or an infinite number of solutions.

e Solve application problems using the elimination method.

Introduction

The elimination method for solving systems of linear equations uses the addition property of equality. You can add the same value
to each side of an equation.

So if you have a system: € —y =—6 and x+y =28, you can add = +y to the left side of the first equation and add 8 to the
right side of the equation. And since x 4y = 8, you are adding the same value to each side of the first equation.
Using Addition to Eliminate a Variable

If you add the two equations, £ —y = —6 and z +y = 8 together, as noted above, watch what happens.

z—y= —6
T+y= 8
2z +0= 2

You have eliminated the y term, and this equation can be solved using the methods for solving equations with one variable.

Let’s see how this system is solved using the elimination method.

Use elimination to solve the system.

z—y=—6
z+y=28
Solution
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z—y= —6
+ zty= 8 Add the equations.
2z = 2
2w =2 Solve for z.
z=1
z+y=38
1+y=28 Substitute =1 into one of the original equations and solve
y=8-1 for y.
y="1
z—y=—6 T+y =28
6= 6 8§—8 Be sure to check your answer in both equations!
The answers check.
TRUE TRUE
The solution is (1, 7).

Unfortunately, not all systems work out this easily. How about a system like 22 +y =12 and —3x +y =2 ? If you add these
two equations together, no variables are eliminated.

2¢ +y =12
—3z+y =2
—z+2y =14
But you want to eliminate a variable. So let’s add the opposite of one of the equations to the other equation.
20 4+y=12 — 2z4+y=12 — 2z +y= 12
-3z+y=2 — —(3z+y)=—(2) — 3z —y=-2
5z +0y= 10

You have eliminated the y variable, and the problem can now be solved. See the example below.

v/ Example

Use elimination to solve the system.
20 +y =12
—3r+y =2
Solution
2z +y =12 You can eliminate the y-variable if you add the opposite of one
—3r+y=2 of the equations to the other equation.
;w Ty i 122 Rewrite the second equation as its opposite.
A Add.
5z =10
=2 Solve for x.
2(2)+y=12 . . . .
Substitute = 2 into one of the original equations and solve
4+y=12
for y.
y=38
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The solution is (2, 8).

2¢+y =12 —3r+y=2
2(2) +8 =12 —3(2)+8=2
44+8=12 —6+8=2 Be sure to check your answer in both equations!
12=12 2=2 The answers check.
TRUE TRUE

The following are two more examples showing how to solve linear systems of equations using elimination.

v/ Example

Use elimination to solve the system.

—2z4+3y =-1
2z 45y =25
Solution
Notice the coefficients of each variable in each equation. If you
—2r+4+3y =-1 . . . .
add these two equations, the = term will be eliminated since
2z +5y =25
—2x4+2x=0 .
—2z+3y= -1
2 +5y= 25
z+oy Add and solve for y.
8y= 24
y= 3
2z +5y =25
2¢+5(3) =25
2x+15 =25 Substitute y = 3 into one of the original equations.
2z =10
rx=25
—2zx+3y=-1 2z +5y =25
-2(5)+3(3) =-1 2(5)+5(3) =25
-10+9 =-1 10+15=25 Check solutions.
—1=-1 256=25 The answers check.
TRUE TRUE

The solution is (5, 3)(5, 3).

v/ Example

Use elimination to solve for « and y.

Solution
A+ 2 — 14 Notice the coefficients of each variable in each equation. You
Bt 23 ; 16 will need to add the opposite of one of the equations to eliminate

the variable y, as 2y+ 2y = 4y, but 2y+ (—2y) =0.
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dr+2y = 14
—5r—2y= —16 Change one of the equations to its opposite, add and solve for
T = 2
dr+2y =14
42)+2y=14
(2)+2y Substitute z = 2 into one of the original equations and solve
8+2y=14
for y.
2y =6
y=3
The solution is (2, 3).

Go ahead and check this last example—substitute (2, 3) into both equations. You get two true statements: 14 =14 and 16 = 16!

Notice that you could have used the opposite of the first equation rather than the second equation and gotten the same result.

Using Multiplication and Addition to Eliminate a Variables

Many times, adding the equations or adding the opposite of one of the equations will not result in eliminating a variable. Look at
the system below.

3x+4y =52
5z +y =30
If you add the equations above, or add the opposite of one of the equations, you will get an equation that still has two variables. So

let’s now use the multiplication property of equality first. You can multiply both sides of one of the equations by a number that will
result in the coefficient of one of the variables being the opposite of the same variable in the other equation.

This is where multiplication comes in handy. The first equation contains the term 4y and the second equation contains the term y.
If you multiply the second equation by -4, when you add both equations, the y variables will add up to 0.

3z+dy=52 = 3z+dy=52 — 3z 44y =52
—17z +0y = —68

See the example below.

v/ Example

Solve for « and y.
Equation A: 3z 44y =52
Equation B: 5 +y =30
Solution

3z + 4y = 52 Look for terms that can be eliminated. The equations do not

5S¢+ y=30 have any z or y terms with the same coefficients.

3z 44y =52 Multiply the second equation by -4 so they have the same
—4(5z+y) = —4(30) coefficient.
Sz +4y = 52 . .
Rewrite the system, and add the equations.
—20z —4y= —120
~ 17z = —68 Solve for x.
=4
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3z + 4y =52
3(4) +4y =52
124+ 4y =52 Substitute = = 4 into one of the original equations to find y.
4y =40
y=10
3z +4y =52 5z +y =30
3(4) +4(10) =52 5(4) +10 = 30
12440 =52 20+10 =30 Check your answer.
52 =52 30=30 The answers check.
TRUE TRUE

The solution is (4, 10).

There are other ways to solve this system. Instead of multiplying one equation in order to eliminate a variable when the equations
were added, you could have multiplied both equations by different numbers.

Let’s remove the variable « this time. Multiply Equation A by 5 and Equation B by -3.

v/ Example

Solve for « and y.

3x +4y =52

5+ y=30

Solution
3z 4 4y = 52 Look for terms that can be eliminated. The equations do not
5c+ y=30 have any z and y terms with the same coefficient.
5(3z +4y) = 5(52) In order to use the elimination method, you have to create
1 55m+—|—2 Oy - 2% 0 variables that have the same coefficient—then you can eliminate

T Yy = . .
5z+y =30 them. Multiply the top equation by 5.

152 + 20y = 260
—3(5z+ y) = —3(30)
150 +20y= 260
—15z— 3y= —90

Now multiply the bottom equation by -3.

1562 +20y = 4260
—15z— 3y = —90
17y = 170

y = 10

Next add the equations, and solve for y.

3z 44y =52
3z +4(10) = 52
3x+40 =52 Substitute y = 10 into one of the original equations to find x.
3z =12
=4

The solution is (4, 10). You arrive at the same solution as before.

These equations were multiplied by 5 and -3 respectively, because that gave you terms that would add up to 0. Be sure to multiply
all of the terms of the equation.
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Felix needs to find « and y in the following system.
Equation A: 7y —4z =5
Equation B: 3y 44z =25

If he wants to use the elimination method to eliminate one of the variables, which is the most efficient way for him to do so?

A. Add Equation A and Equation B

B. Add 4z to both sides of Equation A
C. Multiply Equation A by 5

D. Multiply Equation B by -1

Answer

A. Correct. If Felix adds the two equations, the terms 4z and — 4z will cancel out, leaving 10y = 30. Felix will then
easily be able to solve for y.

B. Incorrect. Adding 4z to both sides of Equation A will not change the value of the equation, nor will it help eliminate
either of the variables—Felix will end up with the rewritten equation 7y =5 + 4z . The correct answer is to add
Equation A and Equation B.

C. Incorrect. Multiplying Equation A by 5 yields 35y — 202 = 25, which does not help Felix eliminate any of the
variables in the system. Felix may notice that now both equations have a constant of 25, but subtracting one from
another is not an efficient way of solving this problem. Instead, it would create another equation where both variables
are present. The correct answer is to add Equation A and Equation B.

D. Incorrect. Multiplying Equation B by -1 yields — 3y —4x = —25 , which does not help Felix eliminate any of the
variables in the system. Felix may notice that now both equations have a term of — 4z , but adding them would not
eliminate them, it would give him a — 8z . The correct answer is to add Equation A and Equation B.

Special Situations

Just as with the substitution method, the elimination method will sometimes eliminate both variables, and you end up with either a
true statement or a false statement. Recall that a false statement means that there is no solution.

Let’s look at an example.

v/ Example

Solve for « and y.

—rz—y=-4
x+y=2
Solution
—z—y = —4
zt+y = 2 Add the equations to eliminate the x-term.
0 = -2

There is no solution.

Graphing these lines shows that they are parallel lines and as such do not share any point in common, verifying that there is no
solution.
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-4

If both variables are eliminated and you are left with a true statement, this indicates that there are an infinite number of ordered
pairs that satisfy both of the equations. In fact, the equations are the same line.

v/ Example

Solve for « and y.

z+y = 2
—x—y = —2
Solution
zty = 2
—rz—y = -2 Add the equations to eliminate the x-term.
0 = 0

There are an infinite number of solutions.

Graphing these two equations will help to illustrate what is happening.
4

3-

-4

Solving Application Problems Using the Elimination Method

The elimination method can be applied to solving systems of equations that model real situations. Two examples of using the
elimination method in problem solving are shown below.
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The sum of two numbers is 10. Their difference is 6. What are the two numbers?

Solution
o4 — 10 Write a system of equations to model the situation.
y : 6 z=one number
Ty o= y=the other number
z+y = 10
t 2 —2y = 12 Add the equations to eliminate the y-term and then solve for z.
ay =
z = 8
T+ = 10
y Substitute the value for « into one of the original equations to
8+y = 10 find y
Y 2
z+y=10 T—y==6
8+2=10 8-2=6 Check your answer by substituting = =8 and y =2 into the
10=10 6=6 original system.
TRUE TRUE The answers check.

The numbers are 8 and 2.

v/ Example

A theater sold 800 tickets for Friday night’s performance. One child ticket costs $4.50 and one adult ticket costs $6.00.
The total amount collected was $4,500. How many of each type of ticket were sold?

Solution

The total number of tickets sold is 800.
a+c= 800

The amount of money collected is $4, 500
6a + 4.5¢ = 4, 500

System of equations:

a+c= 800

6a + 4.5¢ = 4, 500

6(a + c) = 6(800)

6a + 4.5¢ = 4, 500 NV . . .
6a -+ 6c — 4. 800 Use multiplication to re-write the first equation.

6a + 4.5¢ = 4, 500

Write a system of equations to model the ticket sale situation.
a=number of adult tickets sold
c=number of child tickets sold

6a+6c = 4,800
—6a —4.5¢c = —4,500 Add the opposite of the second equation to eliminate a term and
1.5¢ = 300 solve for c.
c=200
a+200 = 800
—200 —200 Substitute 200 in for c in one of the original equations.
a = 600

https://phys.libretexts.org/@go/page/76292


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76292?pdf

LibreTextsw

6a+4.5¢ = 4,500

600 fz‘;g = 288 6(600) + 4.5(200) = 4,500 . .
200 ; 500 3,600 + 900 — 4, 500 Check your answer by substituting a = 600 and c¢= 200 into

4500 = 4,500 the original system.

The answers check.
TRUE TRUE

600 adult tickets and 200 child tickets were sold.

Summary

Combining equations is a powerful tool for solving a system of equations. Adding or subtracting two equations in order to
eliminate a common variable is called the elimination (or addition) method. Once one variable is eliminated, it becomes much
easier to solve for the other one. Multiplication can be used to set up matching terms in equations before they are combined. When
using multiplication in the elimination method, it is important to multiply all the terms on both sides of the equation—not just the
one term you are trying to eliminate.

4) Learning Objectives

¢ Solve a system of equations when no multiplication is necessary to eliminate a variable.
e Solve a system of equations when multiplication is necessary to eliminate a variable.

e Solve application problems that require the use of this method.

o Recognize systems that have no solution or an infinite number of solutions.

Introduction

Equations can have more than one or two variables. You are going to look at equations with three variables. Equations with one
variable graph on a line. Equations with two variables graph on a plane. Equations with three variables graph in a 3-dimensional
space.

Equations with one variable require only one equation to have a unique (one) solution. Equations with two variables require two
equations to have a unique solution (one ordered pair). So it should not be a surprise that equations with three variables require a
system of three equations to have a unique solution (one ordered triplet).

Solving A System of Three Variables

Just as when solving a system of two equations, there are three possible outcomes for the solution of a system of three variables.
Let’s look at this visually, although you will not be graphing these equations.

Case 1: There is one solution. In order for three equations with three variables to have one solution, the planes must intersect in a
single point.

Case 2: There is no solution. The three planes do not have any points in common. (Note that two of the equations may have points
in common with each other, but not all three.) Below are examples of some of the ways this can happen.
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Case 3: There are an infinite number of solutions. This occurs when the three planes intersect in a line. And this can also occur
when the three equations graph as the same plane.

"

Let’s start by looking at Case 1, where the system has a unique (one) solution. This is the case that you are usually most interested
in.

Here is a system of linear equations. There are three variables and three equations.

3x+4y—2=38
bz —2y+z2=4
20 —2y+z2=1

You know how to solve a system with two equations and two variables. For the first step, use the elimination method to remove one
of the variables. In this case, z can be eliminated by adding the first and second equations.

3z +4y—z = 8
S5x —2y+=z 4
8z +2y =12

To solve the system, though, you need two equations using two variables. Adding the first and third equations in the original system
will also give an equation with  and y but not z.

3z +4y—2=8
20 —2y+z=1
5+ 2y =9

Now you have a system of two equations and two variables.

8z +2y =12
S5z +2y =9

Solve the system using elimination again. In this case, you can eliminate y by adding the opposite of the second equation:

8x+ 2y = 12
—br+—-2y = -9
3z = 3

Solve the resulting equation for the remaining variable.
3x =3
r=1

Now you use one of the equations in the two-variable system to find y.
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5z +2y=9
5(1)+2y =9
5+2y=9
2y =14
y=2
Finally, use any equation from the first system, along with the values already found, to solve for the last variable.
20 —2y+z=1
2(1)-2(2)+2=1
2—4+z=1
—2+42z=1
z=3
Be sure to check your answer. With this many steps, there are a lot of places to make a simple error!
3x+4y—2=38
3(1)+4(2)—3=38
3+8-3=28
11-3=28
8=28
TRUE
S5z —2y+z2=4
5(1)—2(2)+3=4
5—4+3=4
1+3=4
4=4
TRUE
20 - 2y+z=1
2(1)-2(2)+3=1
2-4+3=1
—-243=1
1=1
TRUE

Since £ =1, y=2, and z=3 is a solution for all three equations, it’s the solution for the system of equations. Just as two
values can be written as an ordered pair, three values can be written as an ordered triplet: .

X Solving a system of three variables

1. Choose two equations and use them to eliminate one variable.

2. Choose another pair of equations and use them to eliminate the same variable.

3. Use the resulting pair of equations from steps 1 and 2 to eliminate one of the two remaining variables.

4. Solve the final equation for the remaining variable.

5. Find the value of the second variable. Do this by using one of the resulting equations from steps 1 and 2 and the value of
the found variable from step 4.

6. Find the value of the third variable. Do this by using one of the original equations and the values of the found variables
from steps 4 and 5.

7. Check your answer in all three equations!
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Solve for f, g, and h.
f+g+h = 13
f—-h = =2
—2f+g = 3
Solution
h = 13
T+g+ ho_ 9 Step 1: Choose two equations and eliminate a variable. The first
/ — — two equations can be added to eliminate h.
2f +g = 11
2 + -~ 1 Step 2: The third equation has no A variable, so there’s nothing
9f g : 3 to eliminate! You have a system of two equations and two
tg = variables.
2f + = 11
2f g _ 3 Step 3: Eliminate a second variable. These equations can be
—2+g = added to eliminate f.
29 = 14
29g=14
8 7 Step 4: Solve the resulting equation for the remaining variable.
g =
2f + = 11
2';: +i _ 1 Step 5: Use that value and one of the equations from the system
of : 4 in step 3 that involves just two variables, one of which was g
f B 5 that you already know. Solve for the second variable.
h=13
';+ ‘(;_I— h—13 Step 6: Use the two found values and one of the original
+ 9+ h: 13 equations that had all three variables to solve for the third
th= variable.
h= 4
f+g+h=13
2+7+4=13
9+4=13
13=13
TRUE
f—h=-2
2—4=-2
_9_ _9 Step 7: Check your answer.
TRUE
—2f+g=3
-2(2)+7=3
—4+7=3
3=3
TRUE
The solution is (f,g,h) =(2,7,4).

As with systems of two equations with two variables, you may need to add the opposite of one of the equations or even multiply
one of the equations before adding in order to eliminate one of the variables.
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Solve for x, y, and =z.
3z —2y+ z= 12
z+3y+ z=—4
2042y —4z= 6

Solution
3z—2+z — 12 i;ella .l:lFlr}?t, choos; two e.qua];mni anddellimme:its j':l Van;lblfc?.
t t! t -1, t ttot t
(a4 3y+z) = —1(—4) u 1Py e.seC(.)n e.qu.alon y -1, and then add it to the firs
equation. This will eliminate z.
2z+2y—4z = 6 Step 2: Next, combine the third equation and one of the first two
Yz+3y+z) = 4(-49) to eliminate z again. However, the third equation has a
2c+ 2y—4z = 6 coefficient of -4 on 2z while the coefficients in the first two
dz+12y+4z = —16 equations are both 1. So, multiply the second equation by 4 and
6z + 14y = -10 add.
Step 3: Eliminate a second variable using the equations from
2z — 5y = 16 steps 1 and 2. Again, they cannot be added as they are. Look at
6z+14dy = -10 the coefficients on «. If you multiply the equation from step 1

by -3, the z terms will have the same coefficient.

—3(2z — 5y) = —3(16)

6z+14y= —10
—6z+ 15y= —48 Multiply and then add. Be careful of the signs!
6z+ 14y= -—-10
29y= —58
2 = -
% 52 Step 4: Solve the resulting equation for the remaining variable.
y = -
2z — 5y =16
2z —5(—2) =16 Step 5: Use that value and one of the equations from the system
2z +10 =16 in step 3, that involves just two variables, one of which was y.
2r =6 Solve for the second variable.
z=3
z+3y+z=—4

3+3(-2)+2z=-4
3+(—6)+z=—4
—34+z=—-4
z=-1

Step 6: Use the two found values and one of the original
equations to solve for the third variable.

https://phys.libretexts.org/@go/page/76292



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76292?pdf

LibreTextsw

3z —2y+2=12
3(3)—2(—2)+(-1) =12
9+4-1=12
13-1=12
12=12
TRUE
z+3y+z=—4
3+3(—2)+(-1)=—4
3+(—6)+(—-1)=—4
-3+ (-1)=-4
—4=-4
TRUE
2c+2y—42=06
2(3)+2(—2)—4(-1)=6
6+ (—4)+4=6
2+4=6
6=06
TRUE

The solution is (z,y, z) = (3, —2, —1).

These systems can be helpful for solving real-world problems.

v/ Example

Solution

S=number of small photos sold

M =number of medium photos sold
L=number of large photos sold
10S5=money received for small photos
15M =money received for medium photos
40L=money received for large photos

108 + 15M + 40L = 300
S=M+L
M =2L

105 + 15M + 40L = 300

S—M-L=0
M—2L=0

10S+15M +40L = 300

S— M— L = 0

105+ 15M +40L = 300

~10(S— M- L) 10(0)

Step 7: Check your answer.

Andrea sells photographs at art fairs. She prices the photos according to size: small photes cost $10, medium photos
cost $15, and large photos cost $40. She usually sells as many small photos as medium and large photos combined. She
also sells twice as many medium photos as large. A booth at the art fair costs $300.

If her sales go as usual, how many of each size photo must she sell to pay for the booth?

To set up the system, first choose the variables. In this case the
unknown values are the number of small, medium, and large
photos.

The total of her sales must be $300 to pay for the booth.

The number of small photos is the same as the total of medium
and large photos.
She sells twice as many medium photos as large photos.

To make things easier, rewrite the equations to be in the same
format, with all variables on the left side of the equal sign and
only a constant number on the right.

Now solve the system.

Step 1: First choose two equations and eliminate a variable.
Since one equation has no S variable, it may be helpful to use
the other two equations and eliminate the S variable from them.
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10S+15M +40L = 300
—10S+10M +10L = 0
25M + 50L 300

M—-2L=0

25M +50L = 300

M- 2L = 0
M+2L =12

M-2L =0

2M =12

2M =12

M=6

M=2L

6=2L

=L

S=M+L

S=6+3

§=9

She usually sells as many small photos as medium and large
photos combined.

Medium and large photos combined
the number of small photos.

=6+3=9, which is

She also sells twice as many medium photos as large.
Medium photos is 6, which is twice the number of large photos

Q).

A booth at the art fair costs $300. Andrea receives $10(9) or
$90 for the 9 small photos, $15(6) or $90 for the 6 medium
photos, and $40(3) or $120 for the large photos.

$90 + $90 + $120 = $300 .

Multiply the second equation by -10 and add.

Step 2: The second equation for our two-variable system will be
the remaining equation (that has no S variable).

Step 3: Eliminate a second variable using the equations from
steps 1 and 2.

While you could multiply the second equation by 25 to eliminate
L, the numbers will be easier to work with if you divide the
first equation by 25. Don’t forget to be careful of the signs!

Step 4: Solve the resulting equation for the remaining variable.

Step 5: Use that value and one of the equations containing just
two variables, one of those variables being L, that you
already know, to solve for the second

variable.ts best to use one of the original equations—in case
an error was made in multiplication.

Step 6: Use the two found values and one of the original
equations to solve for the third variable.

You can even use one of the equations before you rewrote it for
the system.

Step 7: Check your answer.

With application problems, it’s sometimes easier (and better) to
use the original wording of the problem rather than the equations
you write.

If Andrea sells small photos, medium photos, and large photos, she’ll receive exactly the amount of money needed to pay for

the booth.

? Exercise

In the solution to this system, what is the value of z?
Tex —4y+32=28
3z+3y— 2=19
3z +2y+ z=16

A.5
B. 16
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C.-31
D.1

Answer

A. Correct. Eliminate z by adding the last two equations together to get 6z + 5y = 35. Now, multiply the second
equation by 3 and add it to the first equation to get 16x + 5y = 85. This creates a smaller system of two equations and
two variables: 6z 4+ 5y =35 and 16x + 5y = 85. Multiply 6z +5y =35 by —1 to create —6x —5y = —35 and
now add this to 16x + 5y = 85. This eliminates y, giving 10z = 50,50 z =5.

B. Incorrect. Eliminate z by adding the last two equations together, to get 6z + 5y = 35. Now, multiply the second
equation by 3 and add it to the first equation to get 16z + 5y = 85. This creates a smaller system of two equations and
two variables: 6z 4+ 5y =35 and 16x + 5y = 85. Multiply 6x +5y =35 by —1 to create —6xz —5y = —35 and
now add this to 16« + 5y = 85. This eliminates y, giving 102z =50,s0 z =5.

C. Incorrect. Eliminate z by adding the last two equations together, to get 6z + 5y = 35. Now, multiply the second
equation by 3 and add it to the first equation to get 16z + 5y = 85. This creates a smaller system of two equations and
two variables: 6z 4+ 5y =35 and 16x + 5y = 85. Multiply 6z +5y =35 by —1 to create —6x —5y = —35 and
now add this to 16x + 5y = 85. This eliminates y, giving 102z =50,s0 z =5.

D. Incorrect. Eliminate z by adding the last two equations together, to get 6z + 5y = 35. Now, multiply the second
equation by 3 and add it to the first equation to get 16z + 5y = 85. This creates a smaller system of two equations and
two variables: 6z 4+ 5y =35 and 16x + 5y = 85. Multiply 6x +5y =35 by —1 to create —6x —5y = —35 and
now add this to 16z + 5y = 85. This eliminates y, giving 102z =50,s0 z =5.

Systems with No Solutions or an Infinite Number of Solutions
Now let’s look at Case 2 (no solution) and Case 3 (an infinite number of solutions).

Since you will not graph these equations, as it is difficult to graph in three dimensions on a 2-dimensional sheet of paper, you will
look at what happens when you try to solve systems with no solutions or an infinite number of solutions.

Let’s look at a system that has no solutions.
5z —2y+ z= 3
4 —4y—8z= 2
—x+ y+2z=-3

Suppose you wanted to solve this system, and you started with the last two equations. Multiply the third equation by 4 and add it to
the second equation to eliminate x.

4xr —4y —8z = 2

4(—z+ y+2z) =4(-3)
dr —4y—8z= 2
—4x +4y+8z=—12
0=-10

In this case, the result is a false statement. This means there are no solutions to the two equations and therefore there can be no
solutions for the system of three equations. If this occurs for any two of the three equations, then there is no solution for the system
of equations.

Now let’s look at a system that has an infinite number of solutions.
r—2y+ z= 3
—3x+6y—3z2=-9
4 —8y+4z= 12

For the first step, you would choose two equations and combine them to eliminate a variable. You can eliminate = by multiplying
the first equation by 3 and adding to the second equation.
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3(x —2y+2)= 3(3)
—3x+6y—3z= —9

3z —6y+3z= 9
-3z +6y—3z=-9
0= 0

Notice that when the two equations are added, all variables are eliminated! The final equation is a true statement: 0 =0.

When this happens, it’s because the two equations are equivalent. These two equations would graph as the same plane. But in order
for the solution to the system of three equations to be infinite, you need to continue to check with the third equation.

Since the first two equations are equivalent, the system of equations could be written with only two equations. Continue as before.
Multiply the first equation by -4 and add the third equation.

dr —8y+4z=—12

—4xr+8y—4z= —12
4 —8y+4z= 12
0= 0

Again, the final equation is the true statement 0 = 0. So the third equation is the same plane as the first two. Now you can confirm
that there are an infinite number of solutions—all of the points that are on the plane that these three equations each describe.

This is one type of situation where there are an infinite number of solutions. There are others, which you will not examine at this
time.

v/ Example

How many solutions does the following system of equations have?
c+y+z=2
2 +2y+2z=4
—3x—3y—32=—6

Solution
—2(z+y+2z)=-2(2) Multiply the first equation by -2 and then add that resulting
20+ 2y+2z= 4 equation to the second equation.
0 = 0 is a true statement, which leads us to believe that you
—2r—2y—2z=—4 may have an infinite number of solutions. This outcome
2c+2y+2z= 4 indicates that the first pair of equations is really the same

0= 0 equation. The values of x, y, and z that will make the first
equation work will also work for the second.

3z+y+2) = 3(2)

Now add the third equation with the first.
—3r—3y—3z= —6

3z+3y+32= 6 Again, the result is another true statement. The first and third
—3z—3y—3z=—6 equations are the same. So you have three equations that will all
0= 0 graph as the same plane.

There are an infinite number of solutions to this system.
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Solve the following system of equations.
r—y—2z=4
de —4dy—2=2
—T+y+2z=-3
Solution
Az —y—22) = —4(4) Compare the coefficients on the x terms. Multiply the first
equation by -4 and then add that resulting equation to the second
dr —4y— 8z = 2 .
equation.
—4z+4y+ 8z = —16 Notice that a false statement is produced: 0 = —14. This means
dr—4y—8z= 2 that there is no solution to this system of equations; you do not
0=-14 have to complete any further steps.
The system has no solutions.
? Exercise
How many solutions does this system have?
6z +4y+2z=32
3z —3y— 2=19
3z +2y+ 2=32
A. No solutions
B. One
C. An infinite number of solutions
Answer
A. Correct. Multiply the last equation by -2 to get — 6z —4y —2z = —64 . If you add this equation to the first one, you
will get 0 = —32, a false statement. This means that this system has no solutions.
B. Incorrect. If you multiply the last equation by -2 and then add it to the first equation, you get 0 = —32, a false
statement. This system has no solutions.
C. Incorrect. If you multiply the last equation by -2 and then add it to the first equation, you get 0 = —32, a false
statement. This system has no solutions.

Summary

Combining equations is a powerful tool for solving a system of equations, including systems with three equations and three
variables. Sometimes, you must multiply one of the equations before you add so that you can eliminate a variable. You continue the
process of combining equation and eliminating variables until you have found the value of all of the variables. Occasionally this
process leads to all of the variables being eliminated (eliminated not solved for). When all the variables are eliminated by
combining equations, if it leads to a false statement, then the system will have no solutions. When all the variables are eliminated
by combining equations, if one of the resulting equations is true, the system may have an infinite number of solutions. However, all
the equations must be compared and found to true for there to be an infinite number of solutions, not just two of the three
equations.

This page titled 2.7.4: Solving a System of Linear Equations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by The NROC Project via source content that was edited to the style and standards of the LibreTexts platform.

o 14.2.1: The Substitution Method by The NROC Project is licensed CC BY-NC-SA 4.0. Original source:
https://content.nroc.org/DevelopmentalMath. HTML5/Common/toc/toc_en.html.
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e 14.2.2: The Elimination Method by The NROC Project is licensed CC BY-NC-SA 4.0. Original source:
https://content.nroc.org/DevelopmentalMath. HTML5/Common/toc/toc_en.html.

e 14.3.1: Solving Systems of Three Variables by The NROC Project is licensed CC BY-NC-SA 4.0. Original source:
https://content.nroc.org/DevelopmentalMath. HTML5/Common/toc/toc_en.html.
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2.7.5: Solving a System of Linear Equations with Cramer's Rule

&b Learning Objectives

o Evaluate 2 x 2 determinants.

e Use Cramer’s Rule to solve a system of equations in two variables.

o Evaluate 3 x 3 determinants.

e Use Cramer’s Rule to solve a system of three equations in three variables.
¢ Know the properties of determinants.

We have learned how to solve systems of equations in two variables and three variables, and by multiple methods: substitution,
addition, Gaussian elimination, using the inverse of a matrix, and graphing. Some of these methods are easier to apply than others
and are more appropriate in certain situations. In this section, we will study two more strategies for solving systems of equations.

Evaluating the Determinant of a 2 x 2 Matrix

A determinant is a real number that can be very useful in mathematics because it has multiple applications, such as calculating area,
volume, and other quantities. Here, we will use determinants to reveal whether a matrix is invertible by using the entries of a square
matrix to determine whether there is a solution to the system of equations. Perhaps one of the more interesting applications,
however, is their use in cryptography. Secure signals or messages are sometimes sent encoded in a matrix. The data can only be
decrypted with an invertible matrix and the determinant. For our purposes, we focus on the determinant as an indication of the
invertibility of the matrix. Calculating the determinant of a matrix involves following the specific patterns that are outlined in this
section.

X FIND THE DETERMINANT OF A 2 x 2 MATRIX

The determinant of a 2 x 2 matrix, given

is defined as
a. _b
det(A) = =ad—cb
@) ‘ch‘

Notice the change in notation. There are several ways to indicate the determinant, including det(A) and replacing the brackets
in a matrix with straight lines, | A|.

v/ Example 2.7.5.1: Finding the Determinant of a 2 x 2 Matrix

Find the determinant of the given matrix.

A 5 2]
|—6 3
Solution
5 2
det(A) =
aita)=| ° 2
=5(3) —(-6)(2)
=27

Using Cramer’s Rule to Solve a System of Two Equations in Two Variables

We will now introduce a final method for solving systems of equations that uses determinants. Known as Cramer’s Rule, this
technique dates back to the middle of the 18th century and is named for its innovator, the Swiss mathematician Gabriel Cramer
(1704-1752), who introduced it in 1750 in Introduction a I'Analyse des lignes Courbes algébriques. Cramer’s Rule is a viable and
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efficient method for finding solutions to systems with an arbitrary number of unknowns, provided that we have the same number of
equations as unknowns.

Cramer’s Rule will give us the unique solution to a system of equations, if it exists. However, if the system has no solution or an
infinite number of solutions, this will be indicated by a determinant of zero. To find out if the system is inconsistent or dependent,
another method, such as elimination, will have to be used.

To understand Cramer’s Rule, let’s look closely at how we solve systems of linear equations using basic row operations. Consider a
system of two equations in two variables.

a1 —|—b1y ch(l) (2751)
axz + by =c3(2) (2.7.5.2)

We eliminate one variable using row operations and solve for the other. Say that we wish to solve for x. If Equation 2.7.5.2is
multiplied by the opposite of the coefficient of y in Equation 2.7.5.1, Equation 2.7.5.1 is multiplied by the coefficient of y in
Equation 2.7.5.2 and we add the two equations, the variable y will be eliminated.

b2a1.’13 + bzbly = b201 Multiply R1 by b2
— b1a2m — b1 b2y = —b1 C2 Multiply Rg by - b1

bgal.’B — blan = b2€1 — b162

Now, solve for .

b2a1:c —b1a2m :b201 —b102
m(bgal —b1a2) = b261 —b102
(] b1
_ bieg—bicy [Cz 52]

T = =
brar —bias [al by ]
a b2

Similarly, to solve for y,we will eliminate .

a201 + a2b1y = ascy Multiply R; by as
—a1a2% —a1boy = —aicy Multiply Rs by —ay

a2biy —arbyy = azc; —ajcy
Solving for y gives

asb1y —a1byy =azc; —aico
y(agbi —a1bs) =azei —aicp

o ]
0201 —0a1C2 A1C3 —Aa2C1 | G2 C2
asbi —aiby  aiby —aghy [al bl]
a9 b2

Notice that the denominator for both  and y is the determinant of the coefficient matrix.
We can use these formulas to solve for = and y, but Cramer’s Rule also introduces new notation:

e D:determinant of the coefficient matrix
e D, :determinant of the numerator in the solution of =

D,
=— 2.7.5.
) (2.7.5.3)
e D,:determinant of the numerator in the solution of y
D,
=— 2.7.5.4
y=7 (2.7.5.4)
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The key to Cramer’s Rule is replacing the variable column of interest with the constant column and calculating the determinants.
We can then express z and y as a quotient of two determinants.

X CRAMER'S RULE FOR 2 x 2 SYSTEMS

Cramer’s Rule is a method that uses determinants to solve systems of equations that have the same number of equations as
variables.
Consider a system of two linear equations in two variables.
az+by =c;
asz+byy =cy
The solution using Cramer’s Rule is given as
e, by ]
2 c2 by
T =—=—"""->=,D#0 2.7.5.5
o =T (27.5.5)
Laz b2 ]
o o
D, az C
y=—=—"-—=—,D#0 2.7.5.6
B =T (27.5.6)
Laz b2 ]
If we are solving for z, the  column is replaced with the constant column. If we are solving for ¥, the y column is replaced
with the constant column.

v/ Example 2.7.5.2: Using Cramer’s Rule to Solve a 2 x 2 System

Solve the following 2 x 2 system using Cramer’s Rule.
12z +3y =15
2z —3y =13
Solution
Solve for x.
x = D,
D
{15 3 ]
113 -3
B {12 3 ]
203
~ —45-39
- —36-6
84
42
=)
Solve for y.
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D,
V=7

12 15
B [2 13}
S [12 3

2
15630

—-36—6
126
T4
=3

The solution is (2, —3).

? Exercise 2.7.5.1

Use Cramer’s Rule to solve the 2 x 2 system of equations.
z+2y =—-11
—2zx+y =-13

Answer

(3’ _7)

Evaluating the Determinant of a 3 x 3 Matrix

Finding the determinant of a 2x2 matrix is straightforward, but finding the determinant of a 3x3 matrix is more complicated. One
method is to augment the 3x3 matrix with a repetition of the first two columns, giving a 3x5 matrix. Then we calculate the sum of
the products of entries down each of the three diagonals (upper left to lower right), and subtract the products of entries up each of
the three diagonals (lower left to upper right). This is more easily understood with a visual and an example.

Find the determinant of the 3x3 matrix.

a b o
A=lay by o
a3 b3 c3

1. Augment A with the first two columns.

ay b1 C1 | a1 bl
det(A) =1 a2 b2 Cy | Q2 b2
as b3 C3 | ag b3

2. From upper left to lower right: Multiply the entries down the first diagonal. Add the result to the product of entries down the

second diagonal. Add this result to the product of the entries down the third diagonal.
3. From lower left to upper right: Subtract the product of entries up the first diagonal. From this result subtract the product of
entries up the second diagonal. From this result, subtract the product of entries up the third diagonal.

a; by ¢y la; by

det(A) = & b,
&z bs ¢z |az bs

The algebra is as follows:

|A| =ai1bycg +bicsag +crasbs —agbacy —bzcsar — csagby
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v/ Example 2.7.5.3: Finding the Determinant of a 3 x 3 Matrix

Find the determinant of the 3 x 3 matrix given

0 2 1
A=|(3 -1 1
4 0 1

Solution

Augment the matrix with the first two columns and then follow the formula. Thus,

0 2 1]o 2
Aj=3 -1 1|3 -1
4 0 1[4 0
=0(-1)(1)+2(1)(4) +1(3)(0) —4(-1)(1) —0(1)(0) — 1(3)(2)

+8+0+4—-0-6

=6

? Exercise 2.7.5.2

Find the determinant of the 3 x 3 matrix.

1 -3 7

det(A) =1 1 1

1 -2 3
Answer
—10

X Q&A: Can we use the same method to find the determinant of a larger matrix?

No, this method only works for 2 x 2 and 3 x 3 matrices. For larger matrices it is best to use a graphing utility or computer

software.

Using Cramer’s Rule to Solve a System of Three Equations in Three Variables

Now that we can find the determinant of a 3 X 3 matrix, we can apply Cramer’s Rule to solve a system of three equations in three
variables. Cramer’s Rule is straightforward, following a pattern consistent with Cramer’s Rule for 2 x 2 matrices. As the order of
the matrix increases to 3 X 3, however, there are many more calculations required.

When we calculate the determinant to be zero, Cramer’s Rule gives no indication as to whether the system has no solution or an
infinite number of solutions. To find out, we have to perform elimination on the system.

Consider a 3 x 3 system of equations.

a1m+b1y+c1z =d; (2757)
a2t +boy+coz =ds (2.7.5.8)
asr +bsy+csz =ds (2.7.5.9)
Dz Dy -Dz
= N = ——— B = — > D 0
r=pvT=p it P
where

aj bl C1 d1 b1 (] aj d1 C1 ai bl d1
D= a9 b2 Cy| Dz = d2 b2 Ca| » Dy =la2 d2 Ca | .Dz =|as b2 d2 (2.7.5.10)

as by c3 d; b3 c3 as d3 c3 as by ds
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If we are writing the determinant D, we replace the z column with the constant column. If we are writing the determinant D,,we

replace they y column with the constant column. If we are writing the determinant D,,we replace the z column with the constant
column. Always check the answer.

v/ Example 2.7.5.4: Solving a 3 x 3 System Using Cramer’s Rule

Find the solution to the given 3 x 3 system using Cramer’s Rule.

r+y—z =6
3r—2y+2z=-5
z+3y—2z =14

Solution

Use Cramer’s Rule.

1 1 -1 6 1 -1 6 -1 1 1 6
D=|3 -2 1|,D,=|-5 -2 1|,D,=[3 -5 1/|,D.=|3 -2 -5
1 3 -2 14 3 -2 1 14 -2 1 3 14
Then,
D, -3
= — _—=1
=D 3
D, 9
=D "0
D, 6
= — :—:—2
=D —3

The solution is (1, 3, —2).

? Exercise 2.7.5.3

Use Cramer’s Rule to solve the 3 x 3 matrix.

x—3y+72 =13
z+y+z=1
T—2y+3z =4

Answer

v/ Example 2.7.5.5A: Using Cramer’s Rule to Solve an Inconsistent System

Solve the system of equations using Cramer’s Rule.

3z —2y =4 (2.7.5.11)
6z —4y =0 (2.7.5.12)
Solution
We begin by finding the determinants D, D,,and D,.
3 -2

D:} ':3(—4)—6(—2):0

6 —4

We know that a determinant of zero means that either the system has no solution or it has an infinite number of solutions. To
see which one, we use the process of elimination. Our goal is to eliminate one of the variables.

1. Multiply Equation 2.7.5.11by —2.
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2. Add the result to Equation 2.7.5.12
—6x+4y =-8
6z —4y =0
0=-8

We obtain the equation 0 = —8, which is false. Therefore, the system has no solution. Graphing the system reveals two
parallel lines. See Figure 2.7.5.1

Figure 2.7.5.1

v/ Example 2.7.5.5B: Use Cramer’s Rule to Solve a Dependent System

Solve the system with an infinite number of solutions.

z—2y+3z=0 (2.7.5.13)
3z +y—22=0 (2.7.5.14)
2z —4y+62z =0 (2.7.5.15)

Solution
Let’s find the determinant first. Set up a matrix augmented by the first two columns.
1 -2 3 |1 -2
3 1 —-2(3 1
2 -4 6 (2 —4
Then,
L(1)(6) +(=2)(=2)(2) +3(3)(—4) —2(1)(3) — (—4)(=2)(1) —=6(3)(-2) = 0

As the determinant equals zero, there is either no solution or an infinite number of solutions. We have to perform elimination to
find out.

1. Multiply Equation 2.7.5.13by —2 and add the result to Equation 2.7.5.15
—2r+4y—62 =0
2¢ —4y+62=0
0=0

2. Obtaining an answer of 0 = 0, a statement that is always true, means that the system has an infinite number of solutions.
Graphing the system, we can see that two of the planes are the same and they both intersect the third plane on a line. See
Figure 2.7.5.2
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X—2¢y+3z=0
2 — 4y +62=10

X +y+2z=0

Figure 2.7.5.2

Understanding Properties of Determinants

There are many properties of determinants. Listed here are some properties that may be helpful in calculating the determinant of a

matrix.

X PROPERTIES OF DETERMINANTS

1. If the matrix is in upper triangular form, the determinant equals the product of entries down the main diagonal.
2. When two rows are interchanged, the determinant changes sign.

3. If either two rows or two columns are identical, the determinant equals zero.

4. If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.

5. The determinant of an inverse matrix A~! is the reciprocal of the determinant of the matrix A.

6. If any row or column is multiplied by a constant, the determinant is multiplied by the same factor.

v/ Example 2.7.5.6: lllustrating Properties of Determinants

Ilustrate each of the properties of determinants.

Solution

Property 1 states that if the matrix is in upper triangular form, the determinant is the product of the entries down the main

diagonal.
1 2 3
A= 2 1
0 0 -1
Augment A with the first two columns.
1 2 3 (1 2
A= 2 1|0 2
00 -1]0 O
Then
det(4) =1(2)(—1) +2(1)(0) +3(0)(0) —0(2)(3) —0(1)(1) +1(0)(2)
=-2
Property 2 states that interchanging rows changes the sign. Given
A= [—1 5 ]
4 -3
det(4) = (=1)(=3) - (4)(5)
=3-20
=-17
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32[4 —3]
-1 5
det(B) = (4)(5) = (-1)(=3)
=20-3
17

Property 3 states that if two rows or two columns are identical, the determinant equals zero.

1 2 2|1 2
A=| 2 2 2|2 2
-1 2 2[-1 2

det(4) =1(2)(2) +2(2)(-1) +2(2)(2) +1(2)(2) - 2(2)(1) - 2(2)(2)
=4-4+8+4—4-8

=0
Property 4 states that if a row or column equals zero, the determinant equals zero. Thus,
A::[1 2]
0 0
det(4) =1(0) —2(0)
=0

Property 5 states that the determinant of an inverse matrix A~! is the reciprocal of the determinant A. Thus,

o

det(A) =1(4) —3(2)

=2
-2 1
At=13 1
2 2
1 3
det(A )y =—2(-=])-=(1
a(a) =2 (-3 ) - 30
_ X
2
Property 6 states that if any row or column of a matrix is multiplied by a constant, the determinant is multiplied by the same
factor. Thus,
A [1 2]
3 4

det(A) = 1(4) —2(3)

v Example 2.7.5.7: Using Cramer’s Rule and Determinant Properties to Solve a System

Find the solution to the given 3 X 3 system.

2 +4y+4z =2 (2.7.5.16)
3z +Ty+72 =-5 (2.7.5.17)
z+2y+2z =4 (2.7.5.18)
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Solution

Using Cramer’s Rule, we have

2 4 4
D=3 7 7
1 2 2

Notice that the second and third columns are identical. According to Property 3, the determinant will be zero, so there is either
no solution or an infinite number of solutions. We have to perform elimination to find out.

1. Multiply Equation 2.7.5.18by —2 and add the result to Equation 2.7.5.16
—2z —4y—4x =-8
2z +4y+4z =2
0=-6

Obtaining a statement that is a contradiction means that the system has no solution.

Access these online resources for additional instruction and practice with Cramer’s Rule.

e Solve a System of Two Equations Using Cramer's Rule
e Solve a Systems of Three Equations using Cramer's Rule

Key Concepts

e The determinant for [a

b
d] is ad —bc . See Example 2.7.5.1
c

D D
o Cramer’s Rule replaces a variable column with the constant column. Solutions are = Fw’ Y= fy . See Example 2.7.5.2
o To find the determinant of a 3 x 3 matrix, augment with the first two columns. Add the three diagonal entries (upper left to

lower right) and subtract the three diagonal entries (lower left to upper right). See Example 2.7.5.3
o To solve a system of three equations in three variables using Cramer’s Rule, replace a variable column with the constant column

D g D Y
f h desired solution: £ = —, y = —,
or each desired solution: z = —=, y =
o Cramer’s Rule is also useful for finding the solution of a system of equations with no solution or infinite solutions. See Example
2.7.5.5and Example 2.7.5.6

o Certain properties of determinants are useful for solving problems. For example:

D
z= fz . See Example 2.7.5.4

o If the matrix is in upper triangular form, the determinant equals the product of entries down the main diagonal.
o When two rows are interchanged, the determinant changes sign.

o If either two rows or two columns are identical, the determinant equals zero.
o If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.
o The determinant of an inverse matrix A~! is the reciprocal of the determinant of the matrix A.

o If any row or column is multiplied by a constant, the determinant is multiplied by the same factor. See Example 2.7.5.7and
Example 2.7.5.8

This page titled 2.7.5: Solving a System of Linear Equations with Cramer's Rule is shared under a CC BY 4.0 license and was authored, remixed,
and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

o 11.8: Solving Systems with Cramer's Rule by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/precalculus.
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2.8: Functions

&b Learning Objectives

o Use functional notation to evaluate a function.

e Determine the domain and range of a function.

e Draw the graph of a function.

o Find the zeros of a function.

o Make new functions from two or more given functions.

o Describe the symmetry properties of a function.

o Determine the conditions for when a function has an inverse.

o Use the horizontal line test to recognize when a function is one-to-one.
o Find the inverse of a given function.

e Draw the graph of an inverse function.

Functions

Given two sets A and B a set with elements that are ordered pairs (x,y) where z is an element of A and y is an element of B, is a
relation from A to B. A relation from A to B defines a relationship between those two sets. A function is a special type of relation
in which each element of the first set is related to exactly one element of the second set. The element of the first set is called the
input; the element of the second set is called the output. Functions are used all the time in mathematics to describe relationships
between two sets. For any function, when we know the input, the output is determined, so we say that the output is a function of the
input. For example, the area of a square is determined by its side length, so we say that the area (the output) is a function of its side
length (the input). The velocity of a ball thrown in the air can be described as a function of the amount of time the ball is in the air.
The cost of mailing a package is a function of the weight of the package. Since functions have so many uses, it is important to have
precise definitions and terminology to study them.

Input . e . Output
X ()

Figure 2.8.1: A function can be visualized as an input/output device

# Definition: Functions

A function f consists of a set of inputs, a set of outputs, and a rule for assigning each input to exactly one output. The set of
inputs is called the domain of the function. The set of outputs is called the range of the function.

Domain Range

Figure 2.8.2: A function maps every element in the domain to exactly one element in the range. Although each input can be sent to
only one output, two different inputs can be sent to the same output.

For example, consider the function f, where the domain is the set of all real numbers and the rule is to square the input. Then, the
input 2 = 3 is assigned to the output 3> = 9.

Since every nonnegative real number has a real-value square root, every nonnegative number is an element of the range of this
function. Since there is no real number with a square that is negative, the negative real numbers are not elements of the range. We
conclude that the range is the set of nonnegative real numbers.
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For a general function f with domain D, we often use z to denote the input and y to denote the output associated with . When
doing so, we refer to  as the independent variable and y as the dependent variable, because it depends on z. Using function
notation, we write y = f(x), and we read this equation as “y equals f of z.” For the squaring function described earlier, we write

f(z) =22

Algebraic Formulas

Sometimes we are given a function in an explicit formula. Formulas arise in many applications. For example, the area of a circle of
radius 7 is given by the formula A(r) = 7r2. When an object is thrown upward from the ground with an initial velocity vy ft/s, its
height above the ground from the time it is thrown until it hits the ground is given by the formula s(t) = —16¢2 +vot . When P
dollars are invested in an account at an annual interest rate » compounded continuously, the amount of money after ¢ years is given
by the formula A(t) = Pe™ . Algebraic formulas are important tools to calculate function values. Often we also represent these
functions visually in graph form.

Given an algebraic formula for a function f, the graph of f is the set of points (z, f(z)), where z is in the domain of f and f(z) is
in the range. To graph a function given by a formula, it is helpful to begin by using the formula to create a table of inputs and
outputs. If the domain of f consists of an infinite number of values, we cannot list all of them, but because listing some of the
inputs and outputs can be very useful, it is often a good way to begin.

When creating a table of inputs and outputs, we typically check to determine whether zero is an output. Those values of  where
f(z) =0 are called the zeros of a function. For example, the zeros of f(z) = 2> —4 are = +2. The zeros determine where the
graph of f intersects the x-axis, which gives us more information about the shape of the graph of the function. The graph of a
function may never intersect the z-axis, or it may intersect multiple (or even infinitely many) times.

Another point of interest is the y -intercept, if it exists. The y-intercept is given by (0, £(0)).

Since a function has exactly one output for each input, the graph of a function can have, at most, one y-intercept. If = 0 is in the
domain of a function f, then f has exactly one y-intercept. If x = 0 is not in the domain of f, then f has no y-intercept. Similarly,
for any real number ¢, if ¢ is in the domain of f, there is exactly one output f(c), and the line = ¢ intersects the graph of f
exactly once. On the other hand, if ¢ is not in the domain of f, f(c) is not defined and the line = ¢ does not intersect the graph of
f. This property is summarized in the vertical line test.

X \Vertical Line Test

Given a function f, every vertical line that may be drawn intersects the graph of f no more than once. If any vertical line
intersects a set of points more than once, the set of points does not represent a function.

We can use this test to determine whether a set of plotted points represents the graph of a function (Figure 2.8.7).

y Y
y = f(x) y #£09
\ R i
@ (b)

Figure 2.8.7: (a) The set of plotted points represents the graph of a function because every vertical line intersects the set of points,
at most, once. (b) The set of plotted points does not represent the graph of a function because some vertical lines intersect the set of
points more than once.
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v/ Example 2.8.3: Finding Zeros and y-Intercepts of a Function

Consider the function f(z) = —4z + 2.

a. Find all zeros of f.
b. Find the y-intercept (if any).
c. Sketch a graph of f.

Solution
1.To find the zeros, solve f(x) = —4x 42 = 0 . We discover that f has one zero at x = 1/2.
2. The y-intercept is given by (0, f(0)) = (0, 2).

3. Given that f is a linear function of the form f(z)=ma +b that passes through the points (1/2,0) and (0, 2), we can
sketch the graph of f (Figure 2.8.8).

yi

Trog = —ax + 2

0,2)

Figure 2.8.8: The function f(z) = —4z + 2 is a line with z-intercept (1/2,0) and y-intercept (0, 2).

v Example 2.8.4: Using Zeros and y-Intercepts to Sketch a Graph

Consider the function f(z) =+vz +3 +1.

a. Find all zeros of f.
b. Find the y-intercept (if any).
c. Sketch a graph of f.

Solution

1.To find the zeros, solve v/ +3 +1 =0 . This equation implies v/ +3 = —1. Since v/ +3 >0 for all z, this equation
has no solutions, and therefore f has no zeros.

2.The y-intercept is given by (0, f(0)) = (0,+/3+1).

3.To graph this function, we make a table of values. Since we need z +3 > 0, we need to choose values of z > —3. We
choose values that make the square-root function easy to evaluate.

T -3 -2 1

f(z) 1 2 3

Making use of the table and knowing that, since the function is a square root, the graph of f should be similar to the graph of
y = 4/, we sketch the graph (Figure 2.8.9).
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Figure 2.8.9: The graph of f(z) = +/z +3 + 1 has a y-intercept but no z-intercepts.

? Exercise 2.8.4

Find the zeros of f(z) =z —5z% + 6z.
Hint
Factor the polynomial.

Answer

z=0,2,3

v Example 2.8.5: Finding the Height of a Free-Falling Object

If a ball is dropped from a height of 100 ft, its height s at time ¢ is given by the function s(t) = —16t> +100, where s is
measured in feet and ¢ is measured in seconds. The domain is restricted to the interval [0, c], where ¢ = 0 is the time when the
ball is dropped and ¢ = c is the time when the ball hits the ground.

a. Create a table showing the height s(t) when¢ =0, 0.5, 1, 1.5, 2,and 2.5. Using the data from the table, determine the
domain for this function. That is, find the time ¢ when the ball hits the ground.
b. Sketch a graph of s.

Solution
t 0 0.5 1 1.5 2 2.5

s(t) 100 96 84 64 36 0

Since the ball hits the ground when ¢ = 2.5, the domain of this function is the interval [0, 2.5]
2.
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Time (s)
Figure 2.8.8, the values of f(z) are getting smaller as z is getting larger. A function with this property is said to be decreasing.
On the other hand, for the function f(z) = +/z +3 + 1 graphed in Figure 2.8.9, the values of f(z) are getting larger as the
values of = are getting larger. A function with this property is said to be increasing. It is important to note, however, that a
function can be increasing on some interval or intervals and decreasing over a different interval or intervals. For example,
using our temperature function plotted above, we can see that the function is decreasing on the interval (0, 4), increasing on the
interval (4, 14), and then decreasing on the interval (14,23). We make the idea of a function increasing or decreasing over a
particular interval more precise in the next definition.

# Definition: Increasing and Decreasing on an Interval

We say that a function f is increasing on the interval I if for all z1, x5 € I,
f(z1) < f(z2) when z; < zs.
We say f is strictly increasing on the interval [ if for all 21, s € I,
f(z1) < f(z2) when z; < .
We say that a function f is decreasing on the interval I if for all 21, x5 € I,
f(z1) > f(z2) if &1 < zo.

We say that a function f is strictly decreasing on the interval I if for all 1,z € I,

f(d,'l) > f(.’L'z) if 1 < 3.

For example, the function f(z) = 3z is increasing on the interval (—oo, 00) because 3z; < 3z2 whenever z; < z3 . On the other
hand, the function f(x) = —x3 is decreasing on the interval (—o0, co) because —a3 > —z3 whenever z; <z, (Figure 2.8.10).
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f(x) = 3x

Fo) = —x2

(@ (b)

Figure 2.8.10: (a) The function f(z) = 3z is increasing on the interval (—oco, oc). (b) The function f(x) = —z° is decreasing on
the interval (—o0, 00).

Combining Functions

Now that we have reviewed the basic characteristics of functions, we can see what happens to these properties when we combine
functions in different ways, using basic mathematical operations to create new functions. For example, if the cost for a company to
manufacture z items is described by the function C'(z) and the revenue created by the sale of x items is described by the function
R(z), then the profit on the manufacture and sale of z items is defined as P(z) = R(z) — C(z). Using the difference between
two functions, we created a new function.

2

Alternatively, we can create a new function by composing two functions. For example, given the functions f(z)==z* and

g(z) =3z +1, the composite function f o g is defined such that

(fog)(z) = f(g(z)) = (9(z))* = (3= +1).
The composite function go f is defined such that

(90 f)(z) = 9(f(2)) =3f(z) +1=32" + 1.
Note that these two new functions are different from each other.

Combining Functions with Mathematical Operators

To combine functions using mathematical operators, we simply write the functions with the operator and simplify. Given two
functions f and g, we can define four new functions:

(f+9)(x) = f(z) + g(z) Sum

(f—9)(z) = f(z) — g(=) Difference
(f-9)(z) = f(z)g(x) Product

($)(@) = £2 forg(z) # 0 i
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v/ Example 2.8.6: Combining Functions Using Mathematical Operations

Given the functions f(z) =2z — 3 and g(xz) = 2% — 1, find each of the following functions and state its domain.

a (f+g)(z)
b. (f —g)(z)
c (f-9)()

Solution

L(f+9)(z)=2z—3)+ (2> —1) =z +2z—4.
The domain of this function is the interval (—oo, 00).
2(f-g)(z)=(22—-3)— (22 —1) = —z2 + 2z — 2.
The domain of this function is the interval (—oo, 00).
3.(f-9)(z) = (2z — 3)(x? — 1) = 223 — 322 — 2z + 3.

The domain of this function is the interval (—oo, 00).

a. (i) (@) =23

g 2 -1
The domain of this function is {z |  # £1}.

? Exercise 2.8.6

For f(z) =2® +3 and g(z) = 2z — 5, find (f/g)(z) and state its domain.

Hint

The new function (f/g)(z) is a quotient of two functions. For what values of z is the denominator zero?

Answer

(5) (z) = ngg The domain is {z | z # 2}.

Function Composition

When we compose functions, we take a function of a function. For example, suppose the temperature 7" on a given day is described
as a function of time ¢ (measured in hours after midnight) as in Table 2.8.1. Suppose the cost C, to heat or cool a building for 1
hour, can be described as a function of the temperature 7'. Combining these two functions, we can describe the cost of heating or
cooling a building as a function of time by evaluating C(T'(t)). We have defined a new function, denoted C o T, which is defined
such that (C o T)(t) = C(T'(t)) for all ¢ in the domain of T'. This new function is called a composite function. We note that since
cost is a function of temperature and temperature is a function of time, it makes sense to define this new function (C o T)(¢). It
does not make sense to consider (T o C')(t), because temperature is not a function of cost.

# Definition: Composite Functions

Consider the function f with domain A and range B, and the function g with domain D and range E. If B is a subset of D,
then the composite function (go f)(z) is the function with domain A such that

(g0 f)(z) = 9(f(=))

A composite function go f can be viewed in two steps. First, the function f maps each input z in the domain of f to its output
f(z) in the range of f. Second, since the range of f is a subset of the domain of g, the output f(z) is an element in the domain of
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g, and therefore it is mapped to an output g(f(z)) in the range of g. In Figure 2.8.11, we see a visual image of a composite
function.

Domain Domain of g
of f

g  Rangeofg

Domain
Range of
of g

gof gof gef
Figure 2.8.11: For the composite function g o f, we have (go f)(1) =4, (go f)(2) =5,and (go f)(3) =4

Range of f

v/ Example 2.8.7: Compositions of Functions Defined by Formulas

Consider the functions f(z) =z? +1 and g(z) = 1/=.

a. Find (go f)(z) and state its domain and range.

b. Evaluate (go f)(4), (go f)(—1/2).
c. Find (f o g)(x) and state its domain and range.

d. Evaluate (f o g)(4), (fog)(—1/2).

Solution

1. We can find the formula for (go f)(x) in two different ways. We could write

9 1
(90 H)@) =9(f(@) = 9(@*+1) = 5
Alternatively, we could write
1 1
(9° @) =9f@) = F5 =757

Since > +1 #0 for all real numbers x, the domain of (go f)(z) is the set of all real numbers. Since 0 < 1/(z>+1) <1,
the range is, at most, the interval (0, 1]. To show that the range is this entire interval, we let y = 1/(z%+1) and solve this
equation for  to show that for all y in the interval (0, 1], there exists a real number x such that y = 1/(z2 + 1) . Solving this
equation for x, we see that 2 +1 =1 /y , which implies that

— 1_
r==% m 1

If y is in the interval (0, 1], the expression under the radical is nonnegative, and therefore there exists a real number z such that
1/(z® +1) =y . We conclude that the range of go f is the interval (0, 1].

2. (90 f)(4) =g(f(4)) =9(4* +1) =9(17) =
(9o H)(=3)=9(f(-3))=9((-3)*+1)=9(3) =3
3. We can find a formula for (f o g)(x) in two ways. First, we could write
(Fog)@)=f(g(@))=f(3)=(3)*+1.
Alternatively, we could write
(fog)(@)=F(9(2)) = (g(=))* +1=(3)* +1.

The domain of fo g is the set of all real numbers « such that  # 0. To find the range of f, we need to find all values y for
which there exists a real number  # 0 such that

2
1
(—) +1=y.
z

Solving this equation for x, we see that we need z to satisfy
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which simplifies to

1
—=+x,/y—1
T
Finally, we obtain
1
=t
y—1

Since 1/4/y —1 is a real number if and only if y > 1, the range of f is the set {y |y > 1}.
4(fo)a) = Flo(®) = F(}) = (1) +1= 1
(fog)(=3)=flg(=3)) = f(-2)=(-2)*+1=5

In Example 2.8.7, we can see that (f o g)(z) # (go f)(x) . This tells us, in general terms, that the order in which we compose
functions matters.

? Exercise 2.8.7

Let f(z) =2 —b5z. Let g(z) = 1/z. Find (f o g)(z).

Solution

(fog)(®)=2-5Va.

Symmetry of Functions

The graphs of certain functions have symmetry properties that help us understand the function and the shape of its graph. For
example, consider the function f(z) = z* —22% —3 shown in Figure 2.8.12a. If we take the part of the curve that lies to the right
of the y-axis and flip it over the y-axis, it lays exactly on top of the curve to the left of the y-axis. In this case, we say the function
has symmetry about the y-axis. On the other hand, consider the function f(z) = x> — 4z shown in Figure 2.8.12h If we take the
graph and rotate it 180 ° about the origin, the new graph will look exactly the same. In this case, we say the function has symmetry
about the origin.

yi yi

fo)=xt—2x2 -3 _f(x)=x3—4x

>
b

(a) Symmetry about the y-axis (b) Symmetry about the origin
Figure 2.8.12: (a) A graph that is symmetric about the y-axis. (b) A graph that is symmetric about the origin.

If we are given the graph of a function, it is easy to see whether the graph has one of these symmetry properties. But without a
graph, how can we determine algebraically whether a function f has symmetry? Looking at Figure 2.8.12a again, we see that since
f is symmetric about the y-axis, if the point (z,y) is on the graph, the point (—z,y) is on the graph. In other words,
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f(==z) = f(z). If a function f has this property, we say f is an even function, which has symmetry about the y-axis. For example,
f(z) = z? is even because

f(==z) =(-z)* =2* = f().
In contrast, looking at Figure 2.8.12bagain, if a function f is symmetric about the origin, then whenever the point (z, y) is on the
graph, the point (—z, —y) is also on the graph. In other words, f(—z) = —f(z). If f has this property, we say f is an odd
function, which has symmetry about the origin. For example, f(z) = z* is odd because

f(=z) = (-2)* = —2® = —f(x).

# Definition: Even and Odd Functions

e If f(z) = f(—=z) for all z in the domain of f, then f is an even function. An even function is symmetric about the y-axis.
e If f(—z) = —f(z) for all z in the domain of £, then f is an odd function. An odd function is symmetric about the origin.

v Example 2.8.10: Even and Odd Functions

Determine whether each of the following functions is even, odd, or neither.
a. f(z)=—5z*+7z% -2
b. f(z) =2z° — 4z +5

¢ fla) = =

Solution

To determine whether a function is even or odd, we evaluate f(—z) and compare it to f(z) and — f(z).
1 f(—z)=—5(—2)* +7(—z)?> -2 = 52 + 722 —2 = f(x). Therefore, f is even.

2.f(—z) =2(—x)® —4(—z) +5=—22° +4z +5. Now,  f(—z)# f(z). Furthermore, noting that
—f(x) = —22° + 4z — 5 , we see that f(—z) # —f(x). Therefore, f is neither even nor odd.

3.f(—z) =3(—z)/((—%)2 +1)= -3z /(z* + 1) = —[3z/(2? + 1)] = — f(x). Therefore, f is odd.

? Exercise 2.8.10

Determine whether f(z) = 42® — 5z is even, odd, or neither.
Hint

Compare f(—z) with f(z) and —f(z).
Answer

f(z) is odd.

One symmetric function that arises frequently is the abselute value function, written as |z |. The absolute value function is defined
as
f(z) = —z, ifz <0
Tz, ifz>0
Some students describe this function by stating that it “makes everything positive.” By the definition of the absolute value function,
we see that if £ <0, then |x| = —z >0, and if > 0, then |z| =z > 0. However, for =0, |z| =0. Therefore, it is more
accurate to say that for all nonzero inputs, the output is positive, but if z = 0, the output |z| = 0. We conclude that the range of the

absolute value function is {y | y > 0}. In Figure 2.8.13 we see that the absolute value function is symmetric about the y-axis and
is therefore an even function.
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109 =

Figure 2.8.13: The graph of f(z) = |z| is symmetric about the y-axis.

v Example 2.8.11: Working with the Absolute Value Function

Find the domain and range of the function f(z) = 2|z — 3| +4.
Solution

Since the absolute value function is defined for all real numbers, the domain of this function is (—oo, 00). Since | —3| >0
for all z, the function f(z) = 2|z — 3| +4 >4 . Therefore, the range is, at most, the set {y | y > 4}. To see that the range is,
in fact, this whole set, we need to show that for y > 4 there exists a real number x such that

2]z —3|+4=y
A real number z satisfies this equation as long as
lz—3|=3(y—4)

Since y > 4, we know y —4 > 0, and thus the right-hand side of the equation is nonnegative, so it is possible that there is a
solution. Furthermore,

o J(x=3), ifz<3
Z 3|_{:1:—3, ifz >3

Therefore, we see there are two solutions:
z=+1(y—4)+3.
The range of this function is {y | y > 4}.

? Exercise 2.8.11: Domain and Range

For the function f(z) = |z +2| —4, find the domain and range.
Hint
|z +2| >0 for all real numbers .

Answer

Domain = (—o0, 00) , range = {y | y > —4}.

Inverse Functions

An inverse function reverses the operation done by a particular function. In other words, whatever a function does, the inverse
function undoes it. In this section, we define an inverse function formally and state the necessary conditions for an inverse function
to exist. We examine how to find an inverse function and study the relationship between the graph of a function and the graph of its
inverse. Then we apply these ideas to define and discuss properties of the inverse trigonometric functions.
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Existence of an Inverse Function

We begin with an example. Given a function f and an output y = f(z), we are often interested in finding what value or values z
were mapped to y by f. For example, consider the function f(z)=x3+4. Since any output y = z3 +4 , we can solve this
equation for 2 to find that the input is = \/y — 4 . This equation defines z as a function of y. Denoting this function as f !, and
writing z = f 1 (y) = \/y — 4 , we see that for any z in the domain of f, f 1 f(z)) = f (23 +4) = z . Thus, this new function,
f~1, “undid” what the original function f did. A function with this property is called the inverse function of the original function.

# Definition: Inverse Functions

Given a function f with domain D and range R, its inverse function (if it exists) is the function f ' with domain R and range
D such that 7! (y) = z if and only if f(x) = y. In other words, for a function f and its inverse f~?,

7 (f) ==

for all  in D and

W)=y

for all y in R.

Note that f ! is read as “f inverse.” Here, the —1 is not used as an exponent so
1
f(z)

Figure 2.8.1shows the relationship between the domain and range of f and the domain and range of f~!.

f() #

Domain of f f1 Range of f

Range of 1 Domain of f~1

Figure 2.8.1: Given a function f and its inverse f~!, f~!(y) = z if and only if f(z) = y. The range of f becomes the domain of

£~ and the domain of f becomes the range of f~1.
Recall that a function has exactly one output for each input. Therefore, to define an inverse function, we need to map each input to
exactly one output. For example, let’s try to find the inverse function for f(z) = z2. Solving the equation y = z2 for z, we arrive
at the equation z = +, /y. This equation does not describe z as a function of y because there are two solutions to this equation for
every y > 0. The problem with trying to find an inverse function for f(z) = x? is that two inputs are sent to the same output for
each output g > 0. The function f(z) =z +4 discussed earlier did not have this problem. For that function, each input was sent
to a different output. A function that sends each input to a different output is called a one-to-one function.

& Definition: One-to-One functions

We say a function f is a one-to-one function if f(z1) # f(z2) when z; # z5 .

One way to determine whether a function is one-to-one is by looking at its graph. If a function is one-to-one, then no two inputs can
be sent to the same output. Therefore, if we draw a horizontal line anywhere in the 2y-plane, according to the horizontal line test,
it cannot intersect the graph more than once. We note that the horizontal line test is different from the vertical line test. The vertical
line test determines whether a graph is the graph of a function. The horizontal line test determines whether a function is one-to-one
(Figure 2.8.2).

X Horizontal Line Test

A function f is one-to-one if and only if every horizontal line intersects the graph of f no more than once.
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b f(x) = X

=N W s

(@)

(b)

Figure 2.8.2: (a) The function f(z) = z? is not one-to-one because it fails the horizontal line test. (b) The function f(z) = =% is

one-to-one because it passes the horizontal line test.

v/ Example 2.8.1: Determining Whether a Function Is One-to-One

a)

For each of the following functions, use the horizontal line test to determine whether it is one-to-one.

b)

Solution

a) Since the horizontal line y = n for any integer n > 0 intersects the graph more than once, this function is not one-to-one.
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b) Since every horizontal line intersects the graph once (at most), this function is one-to-one.

Yi

) = 5

? Exercise 2.8.1
Is the function f graphed in the following image one-to-one?

yp o 0 =x-x

Solution

Use the horizontal line test.

Answer

No
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Finding a Function’s Inverse

We can now consider one-to-one functions and show how to find their inverses. Recall that a function maps elements in the domain
of f to elements in the range of f. The inverse function maps each element from the range of f back to its corresponding element
from the domain of f. Therefore, to find the inverse function of a one-to-one function f, given any y in the range of f, we need to
determine which z in the domain of f satisfies f(z) = y. Since f is one-to-one, there is exactly one such value z. We can find that
value z by solving the equation f(z) =y for . Doing so, we are able to write = as a function of y where the domain of this
function is the range of f and the range of this new function is the domain of f. Consequently, this function is the inverse of f, and
we write z = f~1(y). Since we typically use the variable z to denote the independent variable and y to denote the dependent
variable, we often interchange the roles of z and y, and write y = f ~!(z). Representing the inverse function in this way is also
helpful later when we graph a function f and its inverse f ! on the same axes.

X Problem-Solving Strategy: Finding an Inverse Function

1. Solve the equation y = f(z) for .
2. Interchange the variables = and y and write y = f 1 ().

v Example 2.8.2: Finding an Inverse Function

Find the inverse for the function f(z)=3xz —4. State the domain and range of the inverse function. Verify that
FHf(@) ==

Solution

Follow the steps outlined in the strategy.

Step 1. If y =3x —4, then 3z =y+4 and z = §y+ %.

Step 2. Rewrite as y = 2z + 3 and lety = f ' (z).Therefore, f~!(z) = 2+ 73 .

Since the domain of £ is (—o0, 00), the range of f~! is (—oo, 00). Since the range of f is (—o0, 00), the domain of f~! is
(—o00, 00).

You can verify that f~1(f(z)) = = by writing
FUE)=F1Be—4)=(Bs—4)+ =24+ § =a.

Note that for £ ~!(z) to be the inverse of f(z), both f~(f(z)) = and f(f *(z)) = z for all z in the domain of the inside
function.

? Exercise 2.8.2

Find the inverse of the function f(z) = 3z /(x — 2). State the domain and range of the inverse function.

Hint

Use the Problem-Solving Strategy for finding inverse functions.

Answer

2
fiz)= % . The domain of f ! is {x | z # 3}. The range of f ' is {y |y # 2}

Graphing Inverse Functions

Let’s consider the relationship between the graph of a function f and the graph of its inverse. Consider the graph of f shown in
Figure 2.8.3 and a point (a, b) on the graph. Since b = f(a), then f~1(b) = a. Therefore, when we graph f~!, the point (b, a) is
on the graph. As a result, the graph of f~1 is a reflection of the graph of f about the line y = z.
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yi
y = 1fx)
(a b)
. x
(a) (b)

Figure 2.8.3: (a) The graph of this function f shows point (a,b) on the graph of f. (b) Since (a, b) is on the graph of f, the point
(b, a) is on the graph of f~!. The graph of £~ is a reflection of the graph of f about the line y = z.

v Example 2.8.3: Sketching Graphs of Inverse Functions

For the graph of f in the following image, sketch a graph of f ! by sketching the line y = z and using symmetry. Identify the
domain and range of f 1.

yi

2-/

-2 -1 9

LS
Y

Solution

Reflect the graph about the line y = . The domain of f~! is [0, o). The range of f~! is [—2, 00). By using the preceding
strategy for finding inverse functions, we can verify that the inverse function is £~ (z) = 2 — 2, as shown in the graph.

yi
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Sketch the graph of f(z) =2z + 3 and the graph of its inverse using the symmetry property of inverse functions.
Hint
The graphs are symmetric about the line y = x

Answer

fx) = 2x + 3 .

Restricting Domains

As we have seen, f(z) = 22 does not have an inverse function because it is not one-to-one. However, we can choose a subset of
the domain of f such that the function is one-to-one. This subset is called a restricted domain. By restricting the domain of f, we
can define a new function g such that the domain of g is the restricted domain of f and g(z) = f(z) for all  in the domain of g.
Then we can define an inverse function for g on that domain. For example, since f(z) = z? is one-to-one on the interval [0, c0),
we can define a new function g such that the domain of g is [0, 00) and g(z) = z* for all z in its domain. Since g is a one-to-one
function, it has an inverse function, given by the formula g ! (z) = y/z. On the other hand, the function f(z) = z? is also one-to-
one on the domain (—o0,0]. Therefore, we could also define a new function h such that the domain of h is (—o0,0] and
h(z) = z? for all z in the domain of h. Then A is a one-to-one function and must also have an inverse. Its inverse is given by the
formula h ™! (z) = —/z (Figure 2.8.4).

y X) = x2 y
Y4 9 . Y4 p
't' .h(x) S X2 'r'
44 ’l’ 4t ’I’
’l "
3 '4‘ 3 'l'
l’ "
24 Pid 2+ e
r'a Ld
- rd
1 g Hx) = AP
, '
Jl i N f’ N
—2 -1 9 1 2 3 4 5% —2 -1 N1 2 3 4 5%
-1 -1 h=1(x) = —x
24 —2
(@) (b)

v/ Example 2.8.4: Restricting the Domain

Consider the function f(z) = (z +1)2.

a. Sketch the graph of f and use the horizontal line test to show that f is not one-to-one.
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b. Show that f is one-to-one on the restricted domain [—1, 00). Determine the domain and range for the inverse of f on this
restricted domain and find a formula for f~!.

Solution

a) The graph of f is the graph of y = 22 shifted left 1 unit. Since there exists a horizontal line intersecting the graph more than
once, f is not one-to-one.

¥y 1) = (x + 172
X

b) On the interval [—1, 00), f is one-to-one.

YA f(x) = (x + 1)?

J

The domain and range of ! are given by the range and domain of £, respectively. Therefore, the domain of f~! is [0, c0)
and the range of f~! is [—1, 00). To find a formula for f~!, solve the equation y = (z +1)? for z. If y = (z +1)?, then
r=—-1%+ \/ﬂ Since we are restricting the domain to the interval where z > —1, we need j:\/ﬂ > 0. Therefore,
x = —1+/y . Interchanging = and y, we write y = —1 4/ and conclude that f ! (z) = -1 +/z .

? Exercise 2.8.4

Consider f(z) =1/z? restricted to the domain (—oo, 0). Verify that f is one-to-one on this domain. Determine the domain
and range of the inverse of f and find a formula for f~!.

Hint
The domain and range of f ! is given by the range and domain of £, respectively. To find f !, solve y = 1/ for .
Answer

The domain of f! is (0,00). The range of f~! is (—o0,0). The inverse function is given by the formula

@) =-1/yz.
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Key Concepts

o For a function to have an inverse, the function must be one-to-one. Given the graph of a function, we can determine whether the
function is one-to-one by using the horizontal line test.

o If a function is not one-to-one, we can restrict the domain to a smaller domain where the function is one-to-one and then define
the inverse of the function on the smaller domain.

« For a function f and its inverse f 1, f(f!(z)) = z for all z in the domain of ™! and f~(f(x)) = z for all z in the domain

of f.
o Since the trigonometric functions are periodic, we need to restrict their domains to define the inverse trigonometric functions.
o The graph of a function f and its inverse f ! are symmetric about the line y = z.

Key Equations

¢ Inverse function

fH(f(z)) ==z forallz in D, and f(f!(y)) =y forall y in R.

Glossary

horizontal line test
a function f is one-to-one if and only if every horizontal line intersects the graph of f, at most, once

inverse function
for a function £, the inverse function f ! satisfies f ! (y) =z if f(z) =y

inverse trigonometric functions
the inverses of the trigonometric functions are defined on restricted domains where they are one-to-one functions

one-to-one function
a function f is one-to-one if f(x1) # f(z2) if 1 # 2

restricted domain
a subset of the domain of a function f

Key Concepts

¢ A function is a mapping from a set of inputs to a set of outputs with exactly one output for each input.

o If no domain is stated for a function y = f(z), the domain is considered to be the set of all real numbers z for which the
function is defined.

o When sketching the graph of a function f, each vertical line may intersect the graph, at most, once.

¢ A function may have any number of zeros, but it has, at most, one y-intercept.

o To define the composition go f, the range of f must be contained in the domain of g.

o Even functions are symmetric about the y-axis whereas odd functions are symmetric about the origin.

Key Equations

o Composition of two functions

(g0 f)(z) = g(f(z))

o Absolute value function

f(m):{—x, ifx <0

x, ifz>0
Glossary

absolute value function

—z, ifx<0
f(x):{ ifz >0

T,
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composite function
given two functions f and g, a new function, denoted go f, such that (go f)(z) = g(f(z))

decreasing on the interval I
a function decreasing on the interval [ if, for all z1, zg € I, f(z1) > f(z2) if 1 < 29

dependent variable
the output variable for a function

domain
the set of inputs for a function

even function
a function is even if f(—z) = f(z) for all z in the domain of f

function
a set of inputs, a set of outputs, and a rule for mapping each input to exactly one output

graph of a function
the set of points (z, y) such that z is in the domain of f and y = f(z)

increasing on the interval I
a function increasing on the interval I if for all ¢y, x5 € I, f(z1) < f(z2) if 1 <z2

independent variable
the input variable for a function

odd function
a function is odd if f(—z) = —f(z) for all z in the domain of f

range
the set of outputs for a function

symmetry about the origin
the graph of a function f is symmetric about the origin if (—z, —y) is on the graph of f whenever (z, y) is on the graph

symmetry about the y-axis
the graph of a function f is symmetric about the y-axis if (—z, y) is on the graph of f whenever (z, y) is on the graph

table of values
a table containing a list of inputs and their corresponding outputs

vertical line test
given the graph of a function, every vertical line intersects the graph, at most, once

zeros of a function
when a real number z is a zero of a function f, f(z) =0

This page titled 2.8: Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Edwin “Jed” Herman &
Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

e 1.1: Review of Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

o 1.4: Inverse Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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2.8.1: Basic Functions

&b Learning Objectives

o Calculate the slope of a linear function and interpret its meaning.

¢ Recognize the degree of a polynomial.

e Find the roots of a quadratic polynomial.

e Describe the graphs of basic odd and even polynomial functions.

e Identify a rational function.

o Describe the graphs of power and root functions.

o Explain the difference between algebraic and transcendental functions.

o Graph a piecewise-defined function.

o Sketch the graph of a function that has been shifted, stretched, or reflected from its initial graph position.

We have studied the general characteristics of functions, so now let’s examine some specific classes of functions. We begin by
reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By
combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental
functions we examine later in this chapter. We finish the section with examples of piecewise-defined functions and take a look at
how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.

Linear Functions and Slope

The easiest type of function to consider is a linear function. Linear functions have the form f(z) =az +b, where a and b are
constants. In Figure 2.8.1.1, we see examples of linear functions when a is positive, negative, and zero. Note that if @ > 0, the
graph of the line rises as z increases. In other words, f(z) =ax +b is increasing on (—o0, 00). If @ < 0, the graph of the line
falls as z increases. In this case, f(z) = axz +b is decreasing on (—o0, 00). If a = 0, the line is horizontal.

Yi

I ‘ I ‘ ‘ "X
/ 1 h(x) = 3%

Figure 2.8.1.1: These linear functions are increasing or decreasing on (0o, c0) and one function is a horizontal line.

As suggested by Figure 2.8.1.1, the graph of any linear function is a line. One of the distinguishing features of a line is its slope.
The slope is the change in y for each unit change in z. The slope measures both the steepness and the direction of a line. If the
slope is positive, the line points upward when moving from left to right. If the slope is negative, the line points downward when
moving from left to right. If the slope is zero, the line is horizontal. To calculate the slope of a line, we need to determine the ratio
of the change in y versus the change in z. To do so, we choose any two points (z1,y;) and (z2,y2) on the line and calculate
Y2 — Y1

T2 — 1

. In Figure 2.8.1.2 we see this ratio is independent of the points chosen.
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AR

Figure 2.8.1.2: For any linear function, the slope (y» —y;) /(22 — 1) is independent of the choice of points (z1,y;) and (z2,y2)
on the line.

# Definition: Slope of a Linear Function

Consider line L passing through points (z1,y:) and (z2,y2). Let Ay =y, —y; and Az =3 —z; denote the changes in y
and z,respectively. The slope of the line is

Y-y Ay

Ty — T Az

We now examine the relationship between slope and the formula for a linear function. Consider the linear function given by the
formula f(z) = ax +b. As discussed earlier, we know the graph of a linear function is given by a line. We can use our definition
of slope to calculate the slope of this line. As shown, we can determine the slope by calculating (y2 —y1)/(z2 — 1) for any
points (z1,y1) and (z3, y2) on the line. Evaluating the function f at z = 0, we see that (0, b) is a point on this line. Evaluating this
function at z = 1, we see that (1, a+b) is also a point on this line. Therefore, the slope of this line is

(a+b)—b
1-0

We have shown that the coefficient a is the slope of the line. We can conclude that the formula f(z) = az +b describes a line with
slope a. Furthermore, because this line intersects the y-axis at the point (0, b), we see that the y-intercept for this linear function is
(0, ). We conclude that the formula f(z) = ax +b tells us the slope, a, and the y-intercept, (0, b), for this line. Since we often
use the symbol m to denote the slope of a line, we can write

f(z)=mzx+b

slope-intercept form

to denote the slope-intercept form of a linear function.

Sometimes it is convenient to express a linear function in different ways. For example, suppose the graph of a linear function
passes through the point (x1,y;) and the slope of the line is m. Since any other point (z, f(x)) on the graph of f must satisfy the
equation

_ f(@)—n

r— I

this linear function can be expressed by writing

f@)—y=m(z—=1).

point-slope equation
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We call this equation the point-slope equation for that linear function.

Since every nonvertical line is the graph of a linear function, the points on a nonvertical line can be described using the slope-
intercept or point-slope equations. However, a vertical line does not represent the graph of a function and cannot be expressed in
either of these forms. Instead, a vertical line is described by the equation z = k for some constant k. Since neither the slope-
intercept form nor the point-slope form allows for vertical lines, we use the notation

axr +by=c,

standard form

where a, b are both not zero, to denote the standard form of a line.

# Definition: Point-Slope Equation, and the Slope-Intercept Form and Standard Form of the Equation of a Line

Consider a line passing through the point (1, y1 ) with slope m. The equation
y—y1 =m(z—z1)

is the point-slope equation for that line.

Consider a line with slope m and y-intercept (0, b). The equation
y=mz+b

is an equation for that line in slope-intercept form.

The standard form of a line is given by the equation
ax +by =c,

where @ and b are both not zero. This form is more general because it allows for a vertical line, z = k.

v Example 2.8.1.1: Finding the Slope and Equations of Lines

Consider the line passing through the points (11, —4) and (—4, 5), as shown in Figure 2.8.1.3
y

(11, —4)

Figure 2.8.1.3: Finding the equation of a linear function with a graph that is a line between two given points.

1. Find the slope of the line.
2. Find an equation for this linear function in point-slope form.
3. Find an equation for this linear function in slope-intercept form.

Solution

1. The slope of the line is

_yp—y 5—(—4) 9 3
Cxg—m —-4-11 15 5’
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2. To find an equation for the linear function in point-slope form, use the slope m = —3/5 and choose any point on the line. If
we choose the point (11, —4), we get the equation

fl@)+4= —%(w _11).

3. To find an equation for the linear function in slope-intercept form, solve the equation in part b. for f(z). When we do this,
we get the equation

? Exercise 2.8.1.1
Consider the line passing through points (—3, 2) and (1, 4).
a. Find the slope of the line.
b. Find an equation of that line in point-slope form.
c. Find an equation of that line in slope-intercept form.
Hint
The slope m = Ay/Az.

Answer a
m=1/2.

Answer b
1
The point-slope form is y —4 = 5(:1: -1) .
Answer c

1 7
The slope-intercept form is y = 5:1: T=q

2
v/ Example 2.8.1.2:

Jessica leaves her house at 5:50 a.m. and goes for a 9-mile run. She returns to her house at 7:08 a.m. Answer the following
questions, assuming Jessica runs at a constant pace.

a. Describe the distance D (in miles) Jessica runs as a linear function of her run time ¢ (in minutes).
b. Sketch a graph of D.
c. Interpret the meaning of the slope.

Solution

a. At time ¢ =0, Jessica is at her house, so D(0) = 0. At time ¢ = 78 minutes, Jessica has finished running 9 mi, so
D(78) = 9. The slope of the linear function is

9-0 3
m= =—.
78—0 26
The y-intercept is (0, 0), so the equation for this linear function is

3
D(t) = 55t.

b. To graph D, use the fact that the graph passes through the origin and has slope m = 3/26.
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y (78,9)
E _ o
> D(t) = 5
<
=
=
)
[a] —~
t
Time (min)

c. The slope m = 3/26 =~ 0.115 describes the distance (in miles) Jessica runs per minute, or her average velocity.

Polynomials

A linear function is a special type of a more general class of functions: polynomials. A polynomial function is any function that can
be written in the form

f(l') = anwn +an_11’n_1 +...+a1x+aqg

for some integer n > 0 and constants a,,, @,_1, - - - , a9, where a,, # 0. In the case when n =0, we allow for ay =0; if ag =0,
the function f(z) =0 is called the zero function. The value n is called the degree of the polynomial; the constant a,, is called the
leading coefficient. A linear function of the form f(xz) = max +b is a polynomial of degree 1 if m # 0 and degree 0 if m =0. A
polynomial of degree 0 is also called a constant function. A polynomial function of degree 2 is called a quadratic function. In
particular, a quadratic function has the form

f(z) = az® + bz +c,

where a # 0. A polynomial function of degree 3 is called a cubic function.

Power Functions

Some polynomial functions are power functions. A power function is any function of the form f(z) = ax®, where a and b are any
real numbers. The exponent in a power function can be any real number, but here we consider the case when the exponent is a
positive integer. (We consider other cases later.) If the exponent is a positive integer, then f(z) = az™ is a polynomial. If n is even,
then f(z) =az™ is an even function because f(—z)=a(—z)" =az" if n is even. If n is odd, then f(z)=az" is an odd
function because f(—z) = a(—z)" = —az™ if n is odd (Figure 2.8.1.4).
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Yi flx) = x* y f(x) = x®
fx) = x2 f(x) = x3
"X X
(@ (b)
Figure 2.8.1.4: (a) For any even integer n,f(z) = az" is an even function. (b) For any odd integer n,f(z) = az” is an odd

function.

Behavior at Infinity

To determine the behavior of a function f as the inputs approach infinity, we look at the values f(z) as the inputs, z, become
larger. For some functions, the values of f(x) approach a finite number. For example, for the function f(z) =241/, the values
1 /2 become closer and closer to zero for all values of x as they get larger and larger. For this function, we say “f(x) approaches
two as x goes to infinity,” and we write f(z) — 2 as £ — oo. The line y =2 is a horizontal asymptote for the function
f(z) =2+1/z because the graph of the function gets closer to the line as  gets larger.

For other functions, the values f(x) may not approach a finite number but instead may become larger for all values of z as they get
larger. In that case, we say “f(z) approaches infinity as = approaches infinity,” and we write f(z) — oo as £ — oco. For example,
for the function f(z)=3z2, the outputs f(z) become larger as the inputs = get larger. We can conclude that the function
flz)= 32 approaches infinity as & approaches infinity, and we write 322 — oo as & — co. The behavior as z — —oco and the
meaning of f(z) — —oo as x — 0o or £ — —oo can be defined similarly. We can describe what happens to the values of f(z) as
z — 0o and as * — —oo as the end behavior of the function.

To understand the end behavior for polynomial functions, we can focus on quadratic and cubic functions. The behavior for higher-
degree polynomials can be analyzed similarly. Consider a quadratic function f(z)=ax?+bx+c. If a >0, the values
f(z) = o0 asz — +oo. If a <0, the values f(z) — —oo as ¢ — Fo0. Since the graph of a quadratic function is a parabola, the
parabola opens upward if a > 0 .; the parabola opens downward if a < 0 (Figure 2.8.1.5q).

Now consider a cubic function f(z) = az® +bx* +cx +d .Ifa >0, then f(x) — oo as x — oo and f(z) — —oo as x — —oo0.
If a <0, then f(z) - —o0 as ¢ — oo and f(z) — oo as ¢ — —oo. As we can see from both of these graphs, the leading term of
the polynomial determines the end behavior (Figure 2.8.1.55).
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yi f(x) =22 — 12x + 18 y
| f)=-x-32+x+3

t e t t t t t t % + \‘/ 1 t X
f(x) = X2 — 4x — 4 /(
(b)

()
Figure 2.8.1.5: (a) For a quadratic function, if the leading coefficient a > 0,the parabola opens upward. If @ < 0, the parabola
opens downward. (b) For a cubic function f, if the leading coefficient a > 0, the values f(z) — oo as z — oo and the values
f(z) = —o0 as & — —oo. If the leading coefficient a < 0, the opposite is true.

Zeros of Polynomial Functions

Another characteristic of the graph of a polynomial function is where it intersects the z-axis. To determine where a function f
intersects the z-axis, we need to solve the equation f(z) =0 for z. In the case of the linear function f(z)=mx +b, the z-
intercept is given by solving the equation mz +b = 0. In this case, we see that the z-intercept is given by (—b/m, 0). In the case
of a quadratic function, finding the z-intercept(s) requires finding the zeros of a quadratic equation: az? + bz +c =0 . In some
cases, it is easy to factor the polynomial az? +bx + ¢ to find the zeros. If not, we make use of the quadratic formula.

X The Quadratic Formula

Consider the quadratic equation
az’ +bz +c= 0,

where a # 0. The solutions of this equation are given by the quadratic formula

_ Vb2 —
z= #. (2.8.1.1)

If the discriminant > —4ac > 0, Equation 2.8.1.1 tells us there are two real numbers that satisfy the quadratic equation. If
b2 —4ac =0, this formula tells us there is only one solution, and it is a real number. If b2 —4ac < 0, no real numbers satisfy
the quadratic equation.

In the case of higher-degree polynomials, it may be more complicated to determine where the graph intersects the z-axis. In some
instances, it is possible to find the z-intercepts by factoring the polynomial to find its zeros. In other cases, it is impossible to
calculate the exact values of the x-intercepts. However, as we see later in the text, in cases such as this, we can use analytical tools
to approximate (to a very high degree) where the z-intercepts are located. Here we focus on the graphs of polynomials for which
we can calculate their zeros explicitly.

v/ Example 2.8.1.3: Graphing Polynomial Functions

For the following functions,

a f(z)=-222+4z -1
b. f(z) = 2% —3z? — 4z

i. describe the behavior of f(z) as « — o0,
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ii. find all zeros of f, and
iii. sketch a graph of f.

Solution
1. The function f(z) = —2x2 4+ 4z — 1 is a quadratic function.
1. Because a = —2 < 0, as ¢ — o0, f(z) = —o0.
2. To find the zeros of f, use the quadratic formula. The zeros are
AP -4-2(-) 4r 8 4422 2442
2(-2) —4 —4 2

3. To sketch the graph of f,use the information from your previous answers and combine it with the fact that the
graph is a parabola opening downward.

xr =

fix)y= —2x2+4x - 1

02929, 0)| / "\ 7071, 0)
[

2. The function f(z) = 2 — 32 — 4z is a cubic function.
1.Becausea=1>0,as z — 0o, f(z) = 00. Asz — —o0, f(z) — —o0.
2. To find the zeros of f, we need to factor the polynomial. First, when we factor  out of all the terms, we find
f(z) =z(x? -3z —14).
Then, when we factor the quadratic function 22 — 3z —4, we find
f(@)=z(z—4)(z+1).
Therefore, the zeros of f are x = 0,4, —1.

3. Combining the results from parts i. and ii., draw a rough sketch of f.
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Y f(x) = x® - 3x? - 4x

? Exercise 2.8.1.2

Consider the quadratic function f(z) = 32> — 6x +2. Find the zeros of f. Does the parabola open upward or downward?
Hint
Use the quadratic formula.

Answer

The zeros are x = 1 ++/3/3 . The parabola opens upward.

Algebraic Functions

By allowing for quotients and fractional powers in polynomial functions, we create a larger class of functions. An algebraic
function is one that involves addition, subtraction, multiplication, division, rational powers, and roots. Two types of algebraic
functions are rational functions and root functions.

Just as rational numbers are quotients of integers, rational functions are quotients of polynomials. In particular, a rational function
is any function of the form f(z) = p(z)/q(x),where p(z) and g(z) are polynomials. For example,

3z —1 4
= d =
f@) =5 9@ = 5

are rational functions. A root function is a power function of the form f(z) = 2!/™, where n is a positive integer greater than one.
For example, f(z) = /2 = /z is the square-root function and g(z) = z/* = {/z is the cube-root function. By allowing for
compositions of root functions and rational functions, we can create other algebraic functions. For example, f(z) =+/4 — 2 is an
algebraic function.

v/ Example 2.8.1.5: Finding Domain and Range for Algebraic Functions

For each of the following functions, find the domain and range.
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Solution
1. It is not possible to divide by zero, so the domain is the set of real numbers x such that  # —2/5. To find the range, we
need to find the values y for which there exists a real number x such that
3z —1
- o5z +2
When we multiply both sides of this equation by 5z + 2, we see that  must satisfy the equation

Y

5zy +2y =3z — 1.
From this equation, we can see that z must satisfy

2y+1=1z(3—5y).
If y=3 /5, this equation has no solution. On the other hand, as long as y # 3/5,

2y+1
rT=—
3—5y

satisfies this equation. We can conclude that the range of fis {y |y # 3/5}.

2. To find the domain of f, we need 4 —z2 > 0. When we factor, we write 4 —z? = (2 —z)(2+z) >0 . This inequality
holds if and only if both terms are positive or both terms are negative. For both terms to be positive, we need to find « such
that

2—x>0and2+z >0.

These two inequalities reduce to 2 >z and = > —2. Therefore, the set {z | —2 <z <2} must be part of the domain. For
both terms to be negative, we need

2—xz<0and2+z <0.

These two inequalities also reduce to 2 < 2 and < —2. There are no values of 2 that satisfy both of these inequalities. Thus,
we can conclude the domain of this function is {z | —2 <z < 2}.

If -2 <z <2,then0 <4 —x2 <4 . Therefore, 0 < /4 —22 <2, and the range of fis {y|0 <y < 2}.

? Exercise 2.8.1.3

Find the domain and range for the function f(z) = (5z +2)/(2z —1).
Hint

The denominator cannot be zero. Solve the equation y = (5 +2)/(2z —1) for z to find the range.
Answer

The domain is the set of real numbers z such that  # 1/2. The range is the set {y |y # 5/2}

The root functions f(z) = z!/™ have defining characteristics depending on whether n is odd or even. For all even integers n > 2,
the domain of f(x) = '/ is the interval [0, co). For all odd integers n > 1, the domain of f(z)=z'/" is the set of all real
numbers. Since /™ = (—z)'/™ for odd integers n, f(z) = /™ is an odd function ifr. is odd. See the graphs of root functions for
different values of n in Figure 2.8.1.7.
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Y yi

fa(x) =3

f,00 =2

(a) (b)
Figure 2.8.1.7: (a) If n is even, the domain of f(z) = y/z is [0,00). (b) If n is odd, the domain of f(z) = {/z is (—o0,00) and
the function f(z) = /z is an odd function.

v/ Example 2.8.1.6: Finding Domains for Algebraic Functions

For each of the following functions, determine the domain of the function.

3
d. f(llf)_ m2_1

9 +5
b fle)= 3;214

d f(z) =2z -1
Solution

a. You cannot divide by zero, so the domain is the set of values « such that -1 = 0 . Therefore, the domain is
{z|z #+1}

b. You need to determine the values of z for which the denominator is zero. Since 3z% +4 > 4 for all real numbers z, the
denominator is never zero. Therefore, the domain is (—oo, 00).

c. Since the square root of a negative number is not a real number, the domain is the set of values x for which4 —3z > 0.
Therefore, the domain is {z |z <4/3}.

d. The cube root is defined for all real numbers, so the domain is the interval (—oo, 00).

? Exercise 2.8.1.4

Find the domain for each of the following functions: f(z) = (5 —2z)/(2*+2) and g(z) = v/5x — 1 .

Hint
Determine the values of = when the expression in the denominator of f is nonzero, and find the values of = when the
expression inside the radical of g is nonnegative.

Answer

The domain of f is (—o0, 00) . The domain of g is {z |z >1/5}.

Transcendental Functions

Thus far, we have discussed algebraic functions. Some functions, however, cannot be described by basic algebraic operations.
These functions are known as transcendental functions because they are said to “transcend,” or go beyond, algebra. The most
common transcendental functions are trigonometric, exponential, and logarithmic functions. A trigonometric function relates the
ratios of two sides of a right triangle. They are sinz, cosx,tanz, cot z,secx, and cscx.(We discuss trigonometric functions
later in the chapter.) An exponential function is a function of the form f(x) = b", where the base b >0, b # 1. A logarithmic
function is a function of the form f(x) =log,(z) for some constant b > 0, b # 1, where log, () =y if and only if ¥ = z. (We
also discuss exponential and logarithmic functions later in the chapter.)
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v/ Example 2.8.1.7: Classifying Algebraic and Transcendental Functions

Classify each of the following functions, a. through c., as algebraic or transcendental.

VE
a f(z)= 4z +2
b. f(z) =2*
¢ f(z) =sin(2z)

Solution

a. Since this function involves basic algebraic operations only, it is an algebraic function.

b. This function cannot be written as a formula that involves only basic algebraic operations, so it is transcendental. (Note that
algebraic functions can only have powers that are rational numbers.)

c. As in part b, this function cannot be written using a formula involving basic algebraic operations only; therefore, this
function is transcendental.

? Exercise 2.8.1.5:

Is f(xz) =z /2 an algebraic or a transcendental function?

Answer

Algebraic

Piecewise-Defined Functions

Sometimes a function is defined by different formulas on different parts of its domain. A function with this property is known as a
piecewise-defined function. The absolute value function is an example of a piecewise-defined function because the formula
changes with the sign of x:

==z, ifz<0
f(x)_{a:, ifz>0"
Other piecewise-defined functions may be represented by completely different formulas, depending on the part of the domain in
which a point falls. To graph a piecewise-defined function, we graph each part of the function in its respective domain, on the same
coordinate system. If the formula for a function is different for < a and z > a, we need to pay special attention to what happens
at x = a when we graph the function. Sometimes the graph needs to include an open or closed circle to indicate the value of the
function at * = a. We examine this in the next example.

v Example 2.8.1.8: Graphing a Piecewise-Defined Function

Sketch a graph of the following piecewise-defined function:

_Jz+3, ifr<1
f(”’)_{ (z—2)2, ifz>1

Solution

Graph the linear function y = = + 3 on the interval (—oo, 1) and graph the quadratic function y = (z —2)? on the interval
[1, 00). Since the value of the function at z =1 is given by the formula f(z) = (z —2)?, we see that f(1) = 1. To indicate
this on the graph, we draw a closed circle at the point (1, 1). The value of the function is given by f(z) =z +3 forall z < 1,
but not at z = 1. To indicate this on the graph, we draw an open circle at (1, 4).

https://phys.libretexts.org/@go/page/76295



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76295?pdf

LibreTextsm

fix) = (x - 2)*
forx =1

I’

Figure 2.8.1.8: This piecewise-defined function is linear for z < 1 and quadratic for z > 1.
2) Sketch a graph of the function
2—x, ifx<2
f("”)_{:c+2, ifz>2°

Solution:

fix)=x+2
forx =2

v/ Example 2.8.1.9: Parking Fees Described by a Piecewise-Defined Function

In a big city, drivers are charged variable rates for parking in a parking garage. They are charged $10 for the first hour or any
part of the first hour and an additional $2 for each hour or part thereof up to a maximum of $30 for the day. The parking garage
is open from 6 a.m. to 12 midnight.

a. Write a piecewise-defined function that describes the cost C' to park in the parking garage as a function of hours parked z.
b. Sketch a graph of this function C'(z).

Solution

1.Since the parking garage is open 18 hours each day, the domain for this function is {z | 0 < < 18}. The cost to park a car
at this parking garage can be described piecewise by the function

(10, for0<z <1
12, forl<z <2
14, for2<z<3

C(z) = 16, for3 <z <4

30, forl0 <z <18

2.The graph of the function consists of several horizontal line segments.
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? Exercise 2.8.1.6

The cost of mailing a letter is a function of the weight of the letter. Suppose the cost of mailing a letter is 49¢ for the first ounce
and 21¢ for each additional ounce. Write a piecewise-defined function describing the cost C' as a function of the weight x for
0 <z < 3, where C is measured in cents and z is measured in ounces.

Hint
The piecewise-defined function is constant on the intervals (0, 1], (1,2], ....
Answer

49,0<z <1
Cx)=< 70,1<x<2
91,2<z <3

Transformations of Functions

We have seen several cases in which we have added, subtracted, or multiplied constants to form variations of simple functions. In
the previous example, for instance, we subtracted 2 from the argument of the function y = z? to get the function f(z) = (z —2)2.
This subtraction represents a shift of the function y =z two units to the right. A shift, horizontally or vertically, is a type of
transformation of a function. Other transformations include horizontal and vertical scalings, and reflections about the axes.

A vertical shift of a function occurs if we add or subtract the same constant to each output y. For ¢ > 0, the graph of f(z)+c is a
shift of the graph of f(z) up c units, whereas the graph of f(z) —c is a shift of the graph of f(z) down ¢ units. For example, the
graph of the function f(x) =3 +4 is the graph of y = z® shifted up 4 units; the graph of the function f(z) =2z —4 is the
graph of y = 23 shifted down 4 units (Figure 2.8.1.9.
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fix) = x2 + 4

(a) (b)
Figure 2.8.1.9: (a) For ¢ > 0, the graph of y = f(z) + ¢ is a vertical shift up c units of the graph of y = f(z). (b) For ¢ > 0, the
graph of y = f(z) — c is a vertical shift down c units of the graph of y = f(z).
A horizontal shift of a function occurs if we add or subtract the same constant to each input x. For ¢ > 0, the graph of f(z +c¢) isa
shift of the graph of f() to the left ¢ units; the graph of f(x — ¢) is a shift of the graph of f(z) to the right ¢ units. Why does the
graph shift left when adding a constant and shift right when subtracting a constant? To answer this question, let’s look at an
example.

Consider the function f(z)= |z +3| and evaluate this function at # — 3. Since f(z —3) =|z| and z —3 <, the graph of
f(z) = |z +3| is the graph of y = |x| shifted left 3 units. Similarly, the graph of f(z) = |z — 3| is the graph of y = || shifted
right 3 units (Figure 2.8.1.10).

o) = Ix + 3|

|
w
x¥

(a) (b)

Figure 2.8.1.10: (a) For ¢ > 0, the graph of y = f(z +¢) is a horizontal shift left ¢ units of the graph of y = f(z). (b) For ¢ > 0,

the graph of y = f(x — ¢) is a horizontal shift right ¢ units of the graph of y = f(z).
A vertical scaling of a graph occurs if we multiply all outputs y of a function by the same positive constant. For ¢ > 0, the graph of
the function cf(z) is the graph of f(x) scaled vertically by a factor of c. If ¢ > 1, the values of the outputs for the function cf(z)
are larger than the values of the outputs for the function f(z); therefore, the graph has been stretched vertically. If 0 < ¢ < 1, then
the outputs of the function c¢f(z) are smaller, so the graph has been compressed. For example, the graph of the function
f(z) = 3z? is the graph of y = z? stretched vertically by a factor of 3, whereas the graph of f(z) = /3 is the graph of y = x>
compressed vertically by a factor of 3 (Figure 2.8.1.11).
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f(x) = 3x?
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!

(&) (b)

Figure 2.8.1.11: (a) If ¢ > 1, the graph of y = cf(z) is a vertical stretch of the graph of y = f(z). (b) If 0 < ¢ < 1, the graph of

y = cf(x) is a vertical compression of the graph of y = f(z).
The horizontal scaling of a function occurs if we multiply the inputs a by the same positive constant. For ¢ > 0, the graph of the
function f(cx) is the graph of f(z) scaled horizontally by a factor of c. If ¢ > 1, the graph of f(cz) is the graph of f(z)
compressed horizontally. If 0 < ¢ < 1, the graph of f(cz) is the graph of f(z) stretched horizontally. For example, consider the
function f(z) = v/2z and evaluate f at z/2. Since f(z/2) = \/z, the graph of f(z) = +/2z is the graph of y = \/z compressed
horizontally. The graph of y = \/372 is a horizontal stretch of the graph of y = /= (Figure 2.8.1.12).

)’_ )’__
f(x) = 2x
flx) = \x __
/00 = X ST 7
i T X x
(a) (b)

Figure 2.8.1.12: (a) If ¢ > 1, the graph of y = f(cz) is a horizontal compression of the graph of y = f(z). (b)) If 0 < ¢ < 1, the

graph of y = f(cx) is a horizontal stretch of the graph of y = f(z).
We have explored what happens to the graph of a function f when we multiply f by a constant ¢ > 0 to get a new function cf(z).
We have also discussed what happens to the graph of a function fwhen we multiply the independent variable = by ¢ > 0 to get a
new function f(cz). However, we have not addressed what happens to the graph of the function if the constant ¢ is negative. If we
have a constant ¢ < 0, we can write ¢ as a positive number multiplied by —1; but, what kind of transformation do we get when we
multiply the function or its argument by —1?7 When we multiply all the outputs by —1, we get a reflection about the x-axis. When
we multiply all inputs by —1, we get a reflection about the y-axis. For example, the graph of f(x) = —(z®+1) is the graph of
y = (z® +1) reflected about the z-axis. The graph of f(z) = (—z)3 +1 is the graph of y =z +1 reflected about the y-axis

(Figure 2.8.1.13.
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) =x+ 1

1100 = -03 + 1) fool= (-xpP + 1

(@ (b)
Figure 2.8.1.13: (a) The graph of y = — f(z) is the graph of y = f(z) reflected about the z-axis. (b) The graph of y = f(—z) is
the graph of y = f(z) reflected about the y-axis.
If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph in the
correct order. Given a function f(z), the graph of the related function y = cf(a(z +b)) +d can be obtained from the graph of

y = f(x)by performing the transformations in the following order.

« Horizontal shift of the graph of y = f(z). If b > 0, shift left. If b < 0 shift right.
« Horizontal scaling of the graph of y = f(x +b) by a factor of |a|. If a < 0, reflect the graph about the y-axis.

e Vertical scaling of the graph of y = f(a(x +b)) by a factor of |¢|. If ¢ < 0, reflect the graph about the z -axis.

e Vertical shift of the graph of y = c¢f(a(z +b)). If d > 0, shift up. If d < 0, shift down.

We can summarize the different transformations and their related effects on the graph of a function in the following table.
Effect of the graph of f

Transformation of f(c > 0)
Vertical shift up c units

fl@)+e
flz)—c Vertical shift down c units
flz+o) Shift left by c units
flz—c¢) Shift right by c units
Vertical stretch if ¢ > 1;
cf(z) : .
vertical compression if 0 < ¢ < 1
f(cz) Horizontal stretchif 0 < ¢ < 1;
horizontal compression if ¢ > 1
—f(z) Reflection about the z-axis
f(—z) Reflection about the y-axis

v Example 2.8.1.10: Transforming a Function
For each of the following functions, a. and b., sketch a graph by using a sequence of transformations of a well-known function.

a f(z)=—|z+2|-3
b. f(z) =vz+1

Solution
1.Starting with the graph of y = |z|, shift 2 units to the left, reflect about the z-axis, and then shift down 3 units.
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1%

Starting function

Transformed function |

Figure 2.8.1.14: The function f(z) = —|z +2|—3 can be viewed as a sequence of three transformations of the function
y=lzl.

2. Starting with the graph of y = sqrtz, reflect about the y-axis, stretch the graph vertically by a factor of 3, and move up 1
unit.

Transformed function

o
—

—

/ﬁmwmr_; functior

X

Figure 2.8.1.15: The function f(z) = 1/ + 1can be viewed as a sequence of three transformations of the function y = /.

? Exercise 2.8.1.7

Describe how the function f(z)=—(z+1)2 -4 can be graphed using the graph of y=z> and a sequence of
transformations

Answer

Shift the graph y = z2 to the left 1 unit, reflect about the z-axis, then shift down 4 units.

Key Concepts

o The power function f(z) = 2" is an even function if n is even and n # 0, and it is an odd function if  is odd.

o The root function f(x) = /™ has the domain [0, c0) if n is even and the domain (—o0, 00) if 7 is odd. If n is odd, then
f(z) = z'/™ is an odd function.

 The domain of the rational function f(z) = p(z)/q(x), where p(z) and g(z) are polynomial functions, is the set of z such that
q(z) #0.

o Functions that involve the basic operations of addition, subtraction, multiplication, division, and powers are algebraic functions.

All other functions are transcendental. Trigonometric, exponential, and logarithmic functions are examples of transcendental
functions.
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« A polynomial function f with degree n > 1 satisfies f(z) — o0 as  — +00. The sign of the output as  — oo depends on
the sign of the leading coefficient only and on whether n is even or odd.

e Vertical and horizontal shifts, vertical and horizontal scalings, and reflections about the x- and y-axes are examples of
transformations of functions.

Key Equations
o Point-slope equation of a line
y—y =m(z —z1)

¢ Slope-intercept form of a line

y=mx+b
o Standard form of a line

ax+by=c
¢ Polynomial function

f(@) =ana" +ap 12"+ + a1z +ag
Glossary

algebraic function
a function involving any combination of only the basic operations of addition, subtraction, multiplication, division, powers, and
roots applied to an input variable &

cubic function
a polynomial of degree 3; that is, a function of the form f(z) = az® +bz? +cx +d , where a # 0

degree
for a polynomial function, the value of the largest exponent of any term

linear function
a function that can be written in the form f(z) =mz +b

logarithmic function
a function of the form f(x) =log,(x) for some base b > 0, b # 1 such that y = log, () if and only if ¥ =z

mathematical model
A method of simulating real-life situations with mathematical equations

piecewise-defined function
a function that is defined differently on different parts of its domain

point-slope equation
equation of a linear function indicating its slope and a point on the graph of the function

polynomial function
a function of the form f(z) = a,z" +a, 12" ' +... + a1z +aq

power function
a function of the form f(z) = 2" for any positive integer n > 1

quadratic function
a polynomial of degree 2; that is, a function of the form f(z) = az?® + bz +c where a # 0
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rational function
a function of the form f(z) = p(x)/q(z) , where p(x) and g(z) are polynomials

root function

a function of the form f(z) = 2'/" for any integer n. > 2

slope
the change in y for each unit change in

slope-intercept form
equation of a linear function indicating its slope and y-intercept

transcendental function
a function that cannot be expressed by a combination of basic arithmetic operations

transformation of a function
a shift, scaling, or reflection of a function

This page titled 2.8.1: Basic Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Edwin “Jed”
Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

o 1.2: Basic Classes of Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:

https://openstax.org/details/books/calculus-volume-1.
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2.8.2: Trigonometric Functions

&b Learning Objectives

o Convert angle measures between degrees and radians.

e Recognize the triangular and circular definitions of the basic trigonometric functions.
o Write the basic trigonometric identities.

o Identify the graphs and periods of the trigonometric functions.

o Describe the shift of a sine or cosine graph from the equation of the function.

Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical
current, and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some combination of
trigonometric functions. In this section, we define the six basic trigonometric functions and look at some of the main identities
involving these functions.

Radian Measure

To use trigonometric functions, we first must understand how to measure the angles. Although we can use both radians and
degrees, radians are a more natural measurement because they are related directly to the unit circle, a circle with radius 1. The
radian measure of an angle is defined as follows. Given an angle 6, let s be the length of the corresponding arc on the unit circle
(Figure 2.8.2.1). We say the angle corresponding to the arc of length 1 has radian measure 1.

Figure 2.8.2.1: The radian measure of an angle  is the arc length s of the associated arc on the unit circle.

Since an angle of 360° corresponds to the circumference of a circle, or an arc of length 27, we conclude that an angle with a degree
measure of 360° has a radian measure of 27. Similarly, we see that 180° is equivalent to 7 radians. Table 2.8.2.1 shows the
relationship between common degree and radian values.

Table 2.8.2.1: Common Angles Expressed in Degrees and Radians

Degrees Radians Degrees Radians
0 0 120 27/3
30 /6 135 3m/4
45 /4 150 57/6
60 /3 180 ™
90 w/2

v Converting between Radians and Degrees

a. Express 225° using radians.
b. Express 57 /3 rad using degrees.

Solution

Use the fact that 180° is equivalent to 7 radians as a conversion factor (Table 2.8.2.1):
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1= mrad B 180°
" 180°  wrad’

a 225° = 225° . (1;05) - (57‘”) rad

57 57 180°
b 2L rad = 2.
3 %€= g

=300°

? Exercise 2.8.2.1
a. Express 210 ° using radians.
b. Express 117 /6rad using degrees.
Hint

7 radians is equal to 180°

Answer

a 7m/6
b. 330°

The Six Basic Trigonometric Functions

Trigonometric functions allow us to use angle measures, in radians or degrees, to find the coordinates of a point on any circle—not
only on a unit circle—or to find an angle given a point on a circle. They also define the relationship between the sides and angles of
a triangle.

To define the trigonometric functions, first consider the unit circle centered at the origin and a point P = (x, y) on the unit circle.
Let @ be an angle with an initial side that lies along the positive z-axis and with a terminal side that is the line segment OP. An
angle in this position is said to be in standard position (Figure 2.8.2.2). We can then define the values of the six trigonometric
functions for € in terms of the coordinates x and y.

P=(xy)

Figure 2.8.2.2: The angle 6 is in standard position. The values of the trigonometric functions for  are defined in terms of the
coordinates z and y.

# Definition: Trigonometric functions

Let P = (z, y) be a point on the unit circle centered at the origin O. Let 6 be an angle with an initial side along the positive z-
axis and a terminal side given by the line segment OP. The trigonometric functions are then defined as

1

sinf=y cscf = —
Yy

1

cosf==z secld = —
T

T

1;;111(9:2 cotfd=—
T Y
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l If z =0, sec # and tan 6§ are undefined. If y = 0, then cot 6 and csc 6 are undefined.

We can see that for a point P = (z, y) on a circle of radius r with a corresponding angle 6, the coordinates z and y satisfy

cosf :% (2.8.2.1)
x =rcosf (2.8.2.2)
and
sinf :% (2.8.2.3)
y =rsin. (2.8.2.4)

The values of the other trigonometric functions can be expressed in terms of x, v, and r (Figure 2.8.2.3.

P = (x,y) = (r cos@, r sinf)

(]

‘/1)( r x

Figure 2.8.2.3: For a point P = (z,y) on a circle of radius r, the coordinates z and y satisfy z = rcos § and y = rsin 6.

A"

Table 2.8.2.2shows the values of sine and cosine at the major angles in the first quadrant. From this table, we can determine the
values of sine and cosine at the corresponding angles in the other quadrants. The values of the other trigonometric functions are
calculated easily from the values of sinf and cos 6.

Table 2.8.2.2: Values of sin 6 and cos 6 at Major Angles @ in the First Quadrant

(7] sin@ cos @
0 0 1
us 1 V3
6 2 2
™ V2 V2
4 2 2
T V3 1
3 9 2
™

— 1 0
2

v/ Example 2.8.2.2: Evaluating Trigonometric Functions

Evaluate each of the following expressions.

a. si 2m
. SIn| —
3

Solution:
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5 L
b) An angle = — ry corresponds to a revolution in the negative direction, as shown. Therefore,

X
(_ﬁ _
2 1
157 s . . .
¢) An angle 9=T=27T+T. Therefore, this angle corresponds to more than one revolution, as shown. Knowing the fact that
T . 2 2
an angle of e corresponds to the point (T’ —T), we can conclude that
157 Y
G — | ===-1.
an( 1 ) .

y
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Evaluate cos(37/4)and sin(—7/6).
Hint
Look at angles on the unit circle.
Answer
cos(3m/4) = —+/2/2
sin(—w/6) =—-1/2

As mentioned earlier, the ratios of the side lengths of a right triangle can be expressed in terms of the trigonometric functions
evaluated at either of the acute angles of the triangle. Let 6 be one of the acute angles. Let A be the length of the adjacent leg, O be
the length of the opposite leg, and H be the length of the hypotenuse. By inscribing the triangle into a circle of radius H, as shown
in Figure 2.8.2.4 we see that A, H, and O satisfy the following relationships with 6:

0] H
sinGZE csc€:6
H

cost% seCHZZ
O A
tan@:z COt0=6

Figure 2.8.2.4: By inscribing a right triangle in a circle, we can express the ratios of the side lengths in terms of the trigonometric
functions evaluated at 6.

v/ Example 2.8.2.3: Constructing a Wooden Ramp

A wooden ramp is to be built with one end on the ground and the other end at the top of a short staircase. If the top of the

staircase is 4 ft from the ground and the angle between the ground and the ramp is to be 10°, how long does the ramp need to
be?

Solution

Let z denote the length of the ramp. In the following image, we see that = needs to satisfy the equation sin(10°) =4/z.
Solving this equation for z, we see that z = 4/ sin(10° )}~23.035ft.

X 4 feet
7 - 10°
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A house painter wants to lean a 20-ft ladder against a house. If the angle between the base of the ladder and the ground is to be
60°, how far from the house should she place the base of the ladder?

Hint
Draw a right triangle with hypotenuse 20.

Answer

10 ft

Trigonometric ldentities

A trigonometric identity is an equation involving trigonometric functions that is true for all angles 6 for which the functions are
defined. We can use the identities to help us solve or simplify equations. The main trigonometric identities are listed next.

X Trigonometric Identities

Reciprocal identities

sinf
tanf =
an cosf
cosf
cotd = sinf
cscl = .1
sin
1
sec = pv
Pythagorean identities
sin?@+cos’ 0 =1 (2.8.2.5)
1+tan?@ =sec’ (2.8.2.6)
1+cot?f =csc?6 (2.8.2.7)

Addition and subtraction formulas
sin(a = 8) =sina cos B £ cosasin 8
cos(a+ ) =cosacosf Fsinasinj
Double-angle formulas
sin(260) =2 sinfcosf (2.8.2.8
cos(26) =2cos?6—1 (2.8.2.9
—=1—2sin?0 (2.8.2.10
= cos® § —sin® 0 (2.8.2.11

~_— — ~— ~—

v/ Example 2.8.2.4: Solving Trigonometric Equations

For each of the following equations, use a trigonometric identity to find all solutions.

a. 1+ cos(26) = cosf
b. sin(26) = tané

Solution
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a) Using the double-angle formula for cos(26), we see that 6 is a solution of
1+ cos(26) = cosf
if and only if
1+2cos?0—1 = cosb,
which is true if and only if
2 cos® —cosf = 0.

To solve this equation, it is important to note that we need to factor the left-hand side and not divide both sides of the
equation by cos 6. The problem with dividing by cos# is that it is possible that cos is zero. In fact, if we did divide
both sides of the equation by cos 6, we would miss some of the solutions of the original equation. Factoring the left-hand
side of the equation, we see that  is a solution of this equation if and only if

cosf(2cosf—1)=0.

Since cosf = 0 when

T ™
0:575 :|:7T,5:|:27l',...,
and cos@ =1/2 when
Ozg,gi%r,...orﬂz—%,—%i%ﬂ---,

we conclude that the set of solutions to this equation is
0 :% +nm, 0 :g +2nm
and
™
0=—§+2n7r, n=0,£1,42,....
b) Using the double-angle formula for sin(26) and the reciprocal identity for tan(f), the equation can be written as

2sinfcosf = sinf

cos@

To solve this equation, we multiply both sides by cos# to eliminate the denominator, and say that if 6 satisfies this
equation, then @ satisfies the equation

2sinfcos’ 6 —sind = 0.

However, we need to be a little careful here. Even if 6 satisfies this new equation, it may not satisfy the original equation
because, to satisfy the original equation, we would need to be able to divide both sides of the equation by cos#.
However, if cos @ = 0, we cannot divide both sides of the equation by cos 8. Therefore, it is possible that we may arrive
at extraneous solutions. So, at the end, it is important to check for extraneous solutions. Returning to the equation, it is
important that we factor siné out of both terms on the left-hand side instead of dividing both sides of the equation by
sin 6. Factoring the left-hand side of the equation, we can rewrite this equation as

sinf(2cos’>§—1) =0.

Therefore, the solutions are given by the angles 6 such that sinf = 0 or cos? § = 1/2. The solutions of the first equation
are §=0,+m,+2x,.... The solutions of the second equation are 6 =m/4, (w/4) £ (7w/2),(w/4)£m,.... After
checking for extraneous solutions, the set of solutions to the equation is

0=nm

and
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withn =0, £1, 42, . ...

? Exercise 2.8.2.4
Find all solutions to the equation cos(26) = sin6.
Hint
Use the double-angle formula for cosine (Equation 2.8.2.9.
Answer
= 3T o, T onm, 2Z Lo

2 6 6
forn=0,+1,42,....

v/ Example 2.8.2.5: Proving a Trigonometric ldentity

Prove the trigonometric identity 1 4 tan? 6 = sec? 6.
Solution:
We start with the Pythagorean identity (Equation 2.8.2.5)
sin? 0+ cos® 6 = 1.
Dividing both sides of this equation by cos? §, we obtain

sin? 0 1

cos? 0  cos26’
Since sinf/ cosf =tané and 1/ cosf = sec §, we conclude that

tan? 0+ 1 = sec? 4.

? Exercise 2.8.2.5

Prove the trigonometric identity 1 4 cot? § = csc? 6.

Answer

Divide both sides of the identity sin® @ +cos?§ =1 by sin? 6.

Graphs and Periods of the Trigonometric Functions

We have seen that as we travel around the unit circle, the values of the trigonometric functions repeat. We can see this pattern in the
graphs of the functions. Let P = (z, y) be a point on the unit circle and let § be the corresponding angle . Since the angle 6 and
0+ 27 correspond to the same point P, the values of the trigonometric functions at € and at # + 27 are the same. Consequently,
the trigonometric functions are periodic functions. The period of a function f is defined to be the smallest positive value p such
that f(z +p) = f(z) for all values z in the domain of f. The sine, cosine, secant, and cosecant functions have a period of 2.
Since the tangent and cotangent functions repeat on an interval of length m, their period is 7 (Figure 2.8.2.5).

https://phys.libretexts.org/@go/page/76296



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76296?pdf

LibreTextsm

vk 7
1_ f(x) = sin(x) 21 #60 = cost)
/NN DN
ol ol
Period = 27 Period = 27
109 = csc() ¥} . . . Y100 = sec)
L1 DLV L 4
— — ; — ; ; ;
AT A AT e
N N AT NI}
Period = 27 Period = 27
f(x) = tan(x) A3 . . 4] f(x) = cot(x)
i) AU A
VA ; ! — ; ; ; ?
o fr -t e A 2N\ N\ N\
T N Y . AT P\
Period = 7 Period = 7

Figure 2.8.2.5: The six trigonometric functions are periodic.
Just as with algebraic functions, we can apply transformations to trigonometric functions. In particular, consider the following
function:

f(z) = Asin(B(z —a)) +C.

In Figure 2.8.2.6 the constant « causes a horizontal or phase shift. The factor B changes the period. This transformed sine
function will have a period 27 /| B| The factor A results in a vertical stretch by a factor of |A|. We say | A| is the “amplitude of f.”
The constant C' causes a vertical shift.
f(x) = Asin(B(x — a)) + C
yi
amplitude = A

S VANVAN YA
Vertical C_k/ \/ U

shift f
Pt X
Period
: 27/
Horizontal
shift

Figure 2.8.2.6: A graph of a general sine function.

Notice in Figure 2.8.2.6that the graph of y = cosz is the graph of y = sinz shifted to the left 7r/2 units. Therefore, we can write
cosz = sin(z +m/2).

Similarly, we can view the graph of y=sinz as the graph of y=cosz shifted right w/2 units, and state that
sinz = cos(z —/2).
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A shifted sine curve arises naturally when graphing the number of hours of daylight in a given location as a function of the day of
the year. For example, suppose a city reports that June 21 is the longest day of the year with 15.7 hours and December 21 is the
shortest day of the year with 8.3 hours. It can be shown that the function

. 2
h(t)=3.7 sm(ﬁ(w —80.5)) +12

is a model for the number of hours of daylight A as a function of day of the year ¢ (Figure 2.8.2.7).

hi
20+
4 - .
- i
z h() = 3.7sin 3z (¢ - 80.5)) +12
F—
=
£
2
s
_tg 10+
b
(=]
™
]
£
£
=
=
0 60 120 180 240 300 360t

Day of the year
Figure 2.8.2.7: The hours of daylight as a function of day of the year can be modeled by a shifted sine curve.

v/ Example 2.8.2.6: Sketching the Graph of a Transformed Sine Curve
Sketch a graph of f(z) = 3sin(2(z — %)) + 1.
Solution

This graph is a phase shift of y =sin(z) to the right by /4 units, followed by a horizontal compression by a factor of 2, a
vertical stretch by a factor of 3, and then a vertical shift by 1 unit. The period of f is .

fx) = 3sin(2(x — )} + 1

yi
54

? Exercise 2.8.2.6

Describe the relationship between the graph of f(z) = 3 sin(4z) —5 and the graph of y = sin(z).

Hint
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The graph of f can be sketched using the graph of y = sin(z) and a sequence of three transformations.

Answer
To graph f(z) =3sin(4z) —5, the graph of y =sin(z) needs to be compressed horizontally by a factor of 4, then
stretched vertically by a factor of 3, then shifted down 5 units. The function f will have a period of 7r/2 and an amplitude

of 3.

Inverse Trigonometric Functions

The six basic trigonometric functions are periodic, and therefore they are not one-to-one. However, if we restrict the domain of a
trigonometric function to an interval where it is one-to-one, we can define its inverse. Consider the sine function. The sine function

is one-to-one on an infinite number of intervals, but the standard convention is to restrict the domain to the interval [—%, g] . By

doing so, we define the inverse sine function on the domain [—1, 1] such that for any z in the interval [—1, 1], the inverse sine

function tells us which angle € in the interval [—%,ﬂ satisfies sinf = . Similarly, we can restrict the domains of the other

trigonometric functions to define inverse trigonometric functions, which are functions that tell us which angle in a certain interval

has a specified trigonometric value.

# Definition: inverse trigonometric functions

The inverse sine function, denoted sin™' or arcsin, and the inverse cosine function, denoted cos™' or arccos, are defined on

the domain D = {z| —1 <z <1} as follows:

sin”!(z) =y

>

[NTE]

o ifandonly if sin(y) =z and -5 <y <
cos7i(z) =y
o if and only if cos(y) =z and 0 <y <.

The inverse tangent function, denoted tan~! or arctan, and inverse cotangent function, denoted cot™! or arccot, are defined

on the domain D = {z| — oo < & < 0o} as follows:

tan~!(z) =y
o ifand only if tan(y) = z and —§ <y <3 ;

cot™ (z)

Y

o if and only if cot(y) =z and 0 <y < 7.
The inverse cosecant function, denoted csc™! or arcesc, and inverse secant function, denoted sec ™! or arcsec, are defined on
the domain D = {z | |z| > 1} as follows:
cscl(z) =y
o ifandonlyif csc(y) =z and —5 <y <37,y #0;

sec l(z) =y

e ifandonlyifsec(y) =z and0 <y <, y #m/2.

To graph the inverse trigonometric functions, we use the graphs of the trigonometric functions restricted to the domains defined

earlier and reflect the graphs about the line y = z (Figure 2.8.2.5).
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Yi Yi Yi
a1
= cos—1 = tan-1
| 0 = sin 1) f(x) = cos™(x) ) f(x) = tan~(x)
=2~ T 2| —
-1 1 X -1 9 1 X X
L e e
Y y yi
————————— P ———— T
f(x) = cot™*(x) fix) = sec 1(x)
\ | f(x) = csc1(x)
2 X R e it
0 X 4 0 1 X _i 0 1 X
7

Figure 2.8.2.5: The graph of each of the inverse trigonometric functions is a reflection about the line y = « of the corresponding
restricted trigonometric function.

When evaluating an inverse trigonometric function, the output is an angle. For example, to evaluate cos ™' (%), we need to find an
angle 6 such that cos 0 = % . Clearly, many angles have this property. However, given the definition of cos™!, we need the angle 6

that not only solves this equation, but also lies in the interval [0, ). We conclude that cos™* (3) =2

We now consider a composition of a trigonometric function and its inverse. For example, consider the two expressions
. . -1 \/5 e 1.
sm(sm (T)) and sin™" (sin(7)).

For the first one, we simplify as follows:
sin( sin? V2 —sin(w) = V2
2 B 4) 27

sin* (sin(7)) =sin"*(0) = 0.

For the second one, we have

The inverse function is supposed to “undo” the original function, so why isn’t sin”! (sin(m)) = w7 Recalling our definition of
inverse functions, a function f and its inverse f ! satisfy the conditions f(f*(y)) =v for all y in the domain of f~! and
f'(f(z)) =z for all z in the domain of f, so what happened here? The issue is that the inverse sine function, sin~!, is the
inverse of the restricted sine function defined on the domain [—%,%] Therefore, for x in the interval [—%,%], it is true that
sin~!(sinz) = . However, for values of z outside this interval, the equation does not hold, even though sin~! (sinz) is defined
for all real numbers z.

What about sin(sin ! y)? Does that have a similar issue? The answer is no. Since the domain of sin~? is the interval [—1, 1], we
conclude that sin(sin’1 y) =y if —1 <y <1 and the expression is not defined for other values of y. To summarize,

sin(sin"ly) =y if -1 <y <1

and
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Similarly, for the cosine function,

sin"!(sinz) =z if I <z<

[NIE

cos(cos ty)=yif -1 <y <1
and
cos t(cosz) =z if 0 <z <.

Similar properties hold for the other trigonometric functions and their inverses.

v Example 2.8.2.5: Evaluating Expressions Involving Inverse Trigonometric Functions

Evaluate each of the following expressions.

b. tan(tan_l (—ﬁ))
c. cos ' (cos(2))
d.sin™! (cos(2F))

Solution

a. Evaluating sin~! (—+/3/2) is equivalent to finding the angle 6 such that sin = —/3/2 and —m/2 < § < 7/2. The angle
= —m /3 satisfies these two conditions. Therefore, sin ' (—/3/2) = —7/3.

b. First we use the fact that tan—*(—1/+/3) = —/6. Then tan(—=/6) = —1/+/3. Therefore,
tan(tan™'(—1/4/3)) = —1/+/3.

c. To evaluate cos ™! (cos(57/4) ) first use the fact that cos(57/4) = —+/2/2. Then we need to find the angle 6 such that
cos(f) = —v/2/2 and 0 < 0 < 7. Since 37 /4satisfies both these conditions, we have
cos ™ (cos(57/4)) = cos ™} (—+/2/2)) = 3 /4.

d. Since cos(27/3) = —1/2, we need to evaluate sin~! (—1/2). That is, we need to find the angle @ such that sin(§) = —1/2
and —7/2 <0 < 7/2. Since — /6 satisfies both these conditions, we can conclude that
sin!(cos(27/3)) =sin~'(-1/2) = -7 /6.

X The Maximum Value of a Function

In many areas of science, engineering, and mathematics, it is useful to know the maximum value a function can obtain, even if
we don’t know its exact value at a given instant. For instance, if we have a function describing the strength of a roof beam, we
would want to know the maximum weight the beam can support without breaking. If we have a function that describes the
speed of a train, we would want to know its maximum speed before it jumps off the rails. Safe design often depends on
knowing maximum values.

This project describes a simple example of a function with a maximum value that depends on two equation coefficients. We
will see that maximum values can depend on several factors other than the independent variable z.

1. Consider the graph in Figure 2.8.2.6 of the function y = sinz + cosz. Describe its overall shape. Is it periodic? How do
you know?
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2Ty = sinx + cosx

ESEY SRENRL

Figure 2.8.2.6: The graph of y =sinz 4 cos z .

Using a graphing calculator or other graphing device, estimate the x- and y-values of the maximum point for the graph (the
first such point where z > 0). It may be helpful to express the x-value as a multiple of 7.

2. Now consider other graphs of the form y = Asinz + Bcosz for various values of A and B. Sketch the graph when A =2
and B=1, and find the z- and y-values for the maximum point. (Remember to express the z-value as a multiple of m, if
possible.) Has it moved?

3. Repeat for A =1, B = 2. Is there any relationship to what you found in part (2)?

4. Complete the following table, adding a few choices of your own for A and B :

A B x Yy A B T Yy
0 1 3 4

1 0 4 3

1 1 V3 1

1 2 1 V3

2 1 12 5

2 2 5 12

5. Try to figure out the formula for the y-values.

6. The formula for the z-values is a little harder. The most helpful points from the table are (1,1), (1,4/3), (+/3,1). (Hint:
Consider inverse trigonometric functions.)

7. If you found formulas for parts (5) and (6), show that they work together. That is, substitute the z-value formula you found into
y = Asinz + Bcosz and simplify it to arrive at the y-value formula you found.

Key Concepts
¢ Radian measure is defined such that the angle associated with the arc of length 1 on the unit circle has radian measure 1. An
angle with a degree measure of 180° has a radian measure of 7 rad.

o For acute angles 8,the values of the trigonometric functions are defined as ratios of two sides of a right triangle in which one of
the acute angles is 6.

o For a general angle 8, let (z, y) be a point on a circle of radius r corresponding to this angle 6. The trigonometric functions can
be written as ratios involving z, y, and 7.

o The trigonometric functions are periodic. The sine, cosine, secant, and cosecant functions have period 2. The tangent and
cotangent functions have period 7.

Key Equations

¢ Generalized sine function

f(z)=Asin(B(z —a))+C
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Glossary

periodic function
a function is periodic if it has a repeating pattern as the values of £ move from left to right

radians
for a circular arc of length s on a circle of radius 1, the radian measure of the associated angle 8 is s

trigonometric functions
functions of an angle defined as ratios of the lengths of the sides of a right triangle

trigonometric identity
an equation involving trigonometric functions that is true for all angles € for which the functions in the equation are defined

This page titled 2.8.2: Trigonometric Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Edwin
“Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

o 1.3: Trigonometric Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

o 1.4: Inverse Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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2.8.3: Exponential_and_Logarithmic_Functions

&b Learning Objectives

o Identify the form of an exponential function.

o Explain the difference between the graphs of z° and b*.

e Recognize the significance of the number e.

o Identify the form of a logarithmic function.

o Explain the relationship between exponential and logarithmic functions.
o Describe how to calculate a logarithm to a different base.

In this section we examine exponential and logarithmic functions. We use the properties of these functions to solve equations
involving exponential or logarithmic terms, and we study the meaning and importance of the number e. We also define hyperbolic
and inverse hyperbolic functions, which involve combinations of exponential and logarithmic functions. (Note that we present
alternative definitions of exponential and logarithmic functions in the chapter Applications of Integrations, and prove that the
functions have the same properties with either definition.)

Exponential Functions

Recall the properties of exponents: If x is a positive integer, then we define * =b-b---b (with = factors of b). If z is a negative
integer, then o = —y for some positive integer y, and we define b* =b7¥ =1/b¥. Also, b° is defined to be 1. If z is a rational

number, then = p/q, where p and g are integers and b* = b/ = \/bP . For example, 93/2 = /9% = (\/ﬁ)3 =27 . However,
how is ® defined if  is an irrational number? For example, what do we mean by 2V2? This is too complex a question for us to
answer fully right now; however, we can make an approximation.

Table 2.8.3.2: Values of 2% for a List of Rational Numbers Approximating /2
T 1.4 1.41 1.414 1.4142 1.41421 1.414213

27 2.639 2.65737 2.66475 2.665119 2.665138 2.665143

In Table 2.8.3.2 we list some rational numbers approaching v/2, and the values of 2% for each rational number z are presented as
well. We claim that if we choose rational numbers z getting closer and closer to /2, the values of 2% get closer and closer to some

number L. We define that number L to be 2‘/5.

v Example 2.8.3.1: Bacterial Growth

Suppose a particular population of bacteria is known to double in size every 4 hours. If a culture starts with 1000 bacteria, the
number of bacteria after 4 hours is 7(4) = 1000 - 2. The number of bacteria after 8 hours is 7(8) = n(4) -2 = 1000 - 2® . In
general, the number of bacteria after 4m hours is n(4m) = 1000 - 2™. Letting ¢ = 4m, we see that the number of bacteria
after t hours is n(¢) = 1000 - 2/4 . Find the number of bacteria after 6 hours, 10 hours, and 24 hours.

Solution

The number of bacteria after 6 hours is given by
n(6) = 1000 - 2’4 ~ 2828 bacteria.
The number of bacteria after 10 hours is given by
n(10) = 1000 - 2'%/* ~ 5657 bacteria.
The number of bacteria after 24 hours is given by n(24) = 1000 - 26 = 64, 000 bacteria.
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Given the exponential function f(z) = 100 - 3%/2, evaluate f(4) and f(10).
Answer

£(4) =900

£(10) = 24, 300

Graphing Exponential Functions

For any base b > 0, b # 1, the exponential function f(z) =b" is defined for all real numbers z and * > 0. Therefore, the domain
of f(z) =b" is (—o00,00) and the range is (0, 00). To graph b”, we note that for b > 1, b* is increasing on (—oo, 00) and
b” — 00 as & — 0o, whereas b — 0 as * — —o00. On the other hand, if 0 <b <1, f(x) =b" is decreasing on (—oo, c0) and
b® — 0 as x — oo whereas b® — oo as ¢ — —oo (Figure 2.8.3.2.

= '%-"yg_ f(x) = 4~

__ ) = 2
1) = (3)

-1 1 X
Figure 2.8.3.2: If b > 1, then b” is increasing on (—o0,00). If 0 < b < 1, then b” is decreasing on (—00, 00).

Note that exponential functions satisfy the general laws of exponents. To remind you of these laws, we state them as rules.

X |aws of Exponents

For any constants a > 0, b > 0, and for all z and y,

1. b” - bY = b*tY
2. b_w — Y
by b
3. ®*)Y =™
4. (ab)® = a®b®
5 a®  ra\?
7~ (3)

v/ Example 2.8.3.2: Using the Laws of Exponents

Use the laws of exponents to simplify each of the following expressions.
952/3)3
o LG
(42-1/3)2
(1:3 y—l )2
(zy?)?
Soution
a. We can simplify as follows:
(22%/3)3 93 (z2/3)3 812 2222/3  p8/3

(4z-1/3)2  g2(g-1/3)2 16223 2 2
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b. We can simplify as follows:

@y ') _ @2 )’ 2%y

— — 6220204 — 2842
(zy?)2 z2(y?)2 o2y vy Y

? Exercise 2.8.3.2

Use the laws of exponents to simplify

342
12z 4y5"
Hint

.’Ea/l'b — wa—b

Answer
z/(2y*)

The Number e

A special type of exponential function appears frequently in real-world applications. To describe it, consider the following example
of exponential growth, which arises from compounding interest in a savings account. Suppose a person invests P dollars in a
savings account with an annual interest rate r, compounded annually. The amount of money after 1 year is

AQl)=P+rP=P(1+r) .
The amount of money after 2 years is
A@2)=AQ1)+rA(1)=P(1+r)+rP(l+7)=P(1+r)?
More generally, the amount after ¢ years is
At)=P(1+r).

If the money is compounded 2 times per year, the amount of money after half a year is

1 T r
A(E) =P+(5)P=P(1+(3))
The amount of money after 1 year is

1 r 1 r r r 7 2
A<1)—A(§)+(§)A<§) =P(1+g)+3((Pa+z)) =P(1+3)
After t years, the amount of money in the account is

A(t):P(l—i—%)Zt.

More generally, if the money is compounded n times per year, the amount of money in the account after ¢ years is given by the
function

r nt
Ay =p(1+2)
n
What happens as n — co? To answer this question, we let m = n/r and write
P\ nt 1 mrt
(1+2)" = <1+—) :
n m
and examine the behavior of (1 +1/m)™ as m — oo, using a table of values (Table 2.8.3.3).

m

1
Table 2.8.3.3: Values of (1 + E) asm — oo

m 10 100 1000 10,000 100,000 1,000,000
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1 m
(1 + E) 2.5937 2.7048 2.71692 2.71815 2.718268 2.718280

Looking at this table, it appears that (1 +1/m)™ is approaching a number between 2.7 and 2.8 as m — oo. In fact, (1 +1/m)™
does approach some number as m — oo. We call this number e. To six decimal places of accuracy,

e~ 2.718282.

X | eonhard Euler

The letter e was first used to represent this number by the Swiss mathematician Leonhard Euler during the 1720s. Although
Euler did not discover the number, he showed many important connections between e and logarithmic functions. We still use
the notation e today to honor Euler’s work because it appears in many areas of mathematics and because we can use it in many
practical applications.

Returning to our savings account example, we can conclude that if a person puts P dollars in an account at an annual interest rate
7, compounded continuously, then A(t) = Pe™ . This function may be familiar. Since functions involving base e arise often in
applications, we call the function f(z) = e” the natural exponential function. Not only is this function interesting because of the
definition of the number e, but also, as discussed next, its graph has an important property.

Since e > 1, we know f(z)=e€" is increasing on (—o00,c0). In Figure 2.8.3.3 we show a graph of f(z)=¢€" along with a
tangent line to the graph of f at x = 0. We give a precise definition of tangent line in the next chapter; but, informally, we say a
tangent line to a graph of f at z = a is a line that passes through the point (a, f(a)) and has the same “slope” as f at that point .
The function f(z) = €” is the only exponential function b* with tangent line at = 0 that has a slope of 1. As we see later in the
text, having this property makes the natural exponential function the most simple exponential function to use in many instances.

v
f(x) = e~

J slope = 1

-1 1 X
Figure 2.8.3.3: The graph of f(z) = e” has a tangent line with slope 1 at z = 0.

Logarithmic Functions

Using our understanding of exponential functions, we can discuss their inverses, which are the logarithmic functions. These come
in handy when we need to consider any phenomenon that varies over a wide range of values, such as the pH scale in chemistry or
decibels in sound levels.

The exponential function f(z) =b" is one-to-one, with domain (—o0, 00) and range (0, co). Therefore, it has an inverse function,
called the logarithmic function with base b. For any b > 0, b # 1, the logarithmic function with base b, denoted log, has domain
(0, 00) and range (—o0, 00),and satisfies

logy(z) =y
if and only if b¥ = .
For example,

log,(8) =3

1
log, [ — ) = —2
810 ( 100)

since 2% =8,
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log,(1)=0
since b° = 1 for any base b > 0.

Furthermore, since y = log,(z) and y =" are inverse functions,

log, (b%) =z
and

pon(s) — o

The most commonly used logarithmic function is the function log,. Since this function uses natural e as its base, it is called the
natural logarithm. Here we use the notation In(x) or In z to mean log, (). For example,

In(e) =log.(e) =1
In(e®) =log,(e*) =3
In(1) =log.(1) =0.
Since the functions f(z) = €® and g(x) = In(z) are inverses of each other,
In(e®) =z and e*® =z,
and their graphs are symmetric about the line y = x (Figure 2.8.3.4).
yi

Figure 2.8.3.4: The functions y = €® and y = In(z) are inverses of each other, so their graphs are symmetric about the line y = .

T

In general, for any base b > 0, b # 1, the function g(x) = logy(x) is symmetric about the line y = z with the function f(z) ="b".
Using this fact and the graphs of the exponential functions, we graph functions log, for several values of b > 1 ( Figure 2.8.3.5).

yi

y = logz(x)
y = In(x)
¥ = logs(x)

a1 / T

Figure 2.8.3.5: Graphs of y = log, (z) are depicted for b =2, e, 10.

Before solving some equations involving exponential and logarithmic functions, let’s review the basic properties of logarithms.
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If a, b, ¢ >0, b# 1, and r is any real number, then
e Product property
logy (ac) =1logy(a) +1ogy(c) (2.8.3.1)
¢ Quotient property
10&(%) — log,(a) —log,(c) (2.8.3.2)
o Power property
log;(a") = rlogy(a) (2.8.3.3)

v/ Example 2.8.3.4: Solving Equations Involving Exponential Functions

Solve each of the following equations for x.

a. 5’ =2
b.e* +6e % =5

Solution

a. Applying the natural logarithm function to both sides of the equation, we have

In5* =In2.
Using the power property of logarithms,
zInb =1n2.
Therefore,
,_ o2
In5"

b. Multiplying both sides of the equation by e”,we arrive at the equation
e 1 6 =be® .
Rewriting this equation as
e’ _5e*+6=0,

we can then rewrite it as a quadratic equation in e”:

(e®)> —5(e*) +6 =0.
Now we can solve the quadratic equation. Factoring this equation, we obtain

(e* —3)(e* —2)=0.

Therefore, the solutions satisfy e®* =3 and e® =2. Taking the natural logarithm of both sides gives us the solutions
z=1n3,In2.

? Exercise 2.8.3.4
Solve
¥ /(34+€e*)=1/2.

Hint

First solve the equation for e?®

Answer
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v Example 2.8.3.5: Solving Equations Involving Logarithmic Functions

Solve each of the following equations for x.

1
a. ln(—) =4

T
b. 10g10 \/E“‘Ioglo r = 2
c. In(2z) —31In(z?) =0

Solution

a. By the definition of the natural logarithm function,

1
o ifandonlyife* = —.
z
Therefore, the solution is z = 1/e?.

b. Using the product (Equation 2.8.3.1) and power (Equation 2.8.3.39) properties of logarithmic functions, rewrite the left-hand
side of the equation as

logy /T +logygz =loggz\/T

=logyy z*/?
= Elogm z.
2
Therefore, the equation can be rewritten as
glogw z=2
or
logpxz = 4 .
3

The solution is = = 10*/® = 10+/10.
c. Using the power property (Equation 2.8.3.9) of logarithmic functions, we can rewrite the equation as In(2z) —In(z%) = 0.

Using the quotient property (Equation 2.8.3.2), this becomes

2
ln(g) =0

Therefore, 2 /x5 = 1, which implies = /2. We should then check for any extraneous solutions.

? Exercise 2.8.3.5
Solve In(z3) —41n(z) =1.
Hint
First use the power property, then use the product property of logarithms.
Answer

1
B==
e
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When evaluating a logarithmic function with a calculator, you may have noticed that the only options are log; or log, called the
common logarithm, or In, which is the natural logarithm. However, exponential functions and logarithm functions can be
expressed in terms of any desired base b. If you need to use a calculator to evaluate an expression with a different base, you can
apply the change-of-base formulas first. Using this change of base, we typically write a given exponential or logarithmic function
in terms of the natural exponential and natural logarithmic functions.

X Rule: Change-of-Base Formulas

Leta>0,b>0,anda#1,b#1.

1. a® =b*'°%? for any real number .

If b = e, this equation reduces to a® = gtlog.a — crlna

logy
2.log, z = for any real number z > 0.

logy a

1
If b = e, this equation reduces to log, * = =z

lna’
v/ Example 2.8.3.6: Changing Bases

Use a calculating utility to evaluate log, 7 with the change-of-base formula presented earlier.

Solution

In7
Use the second equation witha =3 and b =e:logy 7 = 11;—3 ~1.77124.

? Exercise 2.8.3.6

Use the change-of-base formula and a calculating utility to evaluate log, 6.

Hint
Use the change of base to rewrite this expression in terms of expressions involving the natural logarithm function.

Answer

In6
log, 6 = —— ~ 1.29248
0840 =104

v Example 2.8.3.7: The Richter Scale for Earthquakes

In 1935, Charles Richter developed a scale (now known as the Richter scale) to measure the magnitude of an earthquake. The
scale is a base-10 logarithmic scale, and it can be described as follows: Consider one earthquake with magnitude R; on the
Richter scale and a second earthquake with magnitude Ry on the Richter scale. Suppose R; > R, which means the
earthquake of magnitude R; is stronger, but how much stronger is it than the other earthquake?

Figure 2.8.3.6: (credit: modification of work by Robb Hannawacker, NPS)

A way of measuring the intensity of an earthquake is by using a seismograph to measure the amplitude of the earthquake
waves. If A; is the amplitude measured for the first earthquake and A is the amplitude measured for the second earthquake,
then the amplitudes and magnitudes of the two earthquakes satisfy the following equation:

Al
R1 _R2 = logm (E) o
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Consider an earthquake that measures 8 on the Richter scale and an earthquake that measures 7 on the Richter scale. Then,

Al
8 -7 zloglo(ﬂ) o

Al
loglo E = 1,

which implies A; /A; =10 or A; = 10A,. Since A; is 10 times the size of Ay, we say that the first earthquake is 10 times as
intense as the second earthquake. On the other hand, if one earthquake measures 8 on the Richter scale and another measures 6,
then the relative intensity of the two earthquakes satisfies the equation

Al
].Ogl()(E) =8—-6=2.

Therefore, A; = 100A,.That is, the first earthquake is 100 times more intense than the second earthquake.

Therefore,

How can we use logarithmic functions to compare the relative severity of the magnitude 9 earthquake in Japan in 2011 with the
magnitude 7.3 earthquake in Haiti in 2010?

Solution

To compare the Japan and Haiti earthquakes, we can use an equation presented earlier:

Al
9 —73 =10g10 (E) .

Therefore, A; /Ay =10'7, and we conclude that the earthquake in Japan was approximately 50 times more intense than the
earthquake in Haiti.

? Exercise 2.8.3.7

Compare the relative severity of a magnitude 8.4 earthquake with a magnitude 7.4 earthquake.
Hint
Answer

The magnitude 8.4 earthquake is roughly 10 times as severe as the magnitude 7.4 earthquake.

Key Concepts

 The exponential function y = b” is increasing if b > 1 and decreasing if 0 < b < 1. Its domain is (—o00, 00) and its range is
(0, 00).

e The logarithmic function y = logy () is the inverse of y = b® . Its domain is (0, co) and its range is (—o00, ).

o The natural exponential function is y = €® and the natural logarithmic function is y =Inz =log, =.

o Given an exponential function or logarithmic function in base a, we can make a change of base to convert this function to any
base b > 0, b ## 1. We typically convert to base e.

Glossary

base

the number b in the exponential function f(z) = b and the logarithmic function f(z) = log, =

exponent

the value z in the expression b*

natural exponential function
the function f(z) =€®
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natural logarithm
the function Inz =log, x

number e

as m gets larger, the quantity (14 (1/m)™ gets closer to some real number; we define that real number to be e; the value of e
is approximately 2.718282

This page titled 2.8.3: Exponential_and_Logarithmic_Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Edwin “Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts
platform.

o 1.5: Exponential and Logarithmic Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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2.8.4: Properties_of Logarithms

&b Learning Objectives

By the end of this section, you will be able to:

e Use the properties of logarithms
e Use the Change of Base Formula

Before you get started, take this readiness quiz.

1. Evaluate: a. a® b. al.

If you missed this problem, review Example 5.14.
2. Write with a rational exponent: m

If you missed this problem, review Example 8.27.
3. Round to three decimal places: 2.5646415

If you missed this problem, review Example 1.34.

Use the Properties of Logarithms

Now that we have learned about exponential and logarithmic functions, we can introduce some of the properties of logarithms.
These will be very helpful as we continue to solve both exponential and logarithmic equations.

The first two properties derive from the definition of logarithms. Since a® =1, we can convert this to logarithmic form and get
log, 1 =0. Also, since a' =a, we getlog,a=1.

& Definition 2.8.4.1

Properties of Logarithms

log,1=0 log,a=1

In the next example we could evaluate the logarithm by converting to exponential form, as we have done previously, but
recognizing and then applying the properties saves time.

v/ Example 2.8.4.1

Evaluate using the properties of logarithms:

a. logg1
b. logg 6
Solution:
a.
logg 1
Use the property, log, 1 =0.
0 loggl=0
b.
logg 6
Use the property, log, a =1.
1 logs6=1
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Evaluate using the properties of logarithms:

d. 10g13 1
b.logy 9

Answer

a0
b. 1

? Exercise 2.8.4.2

Evaluate using the properties of logarithms:

a. log; 1
b.log, 7

Answer

a0
b. 1

The next two properties can also be verified by converting them from exponential form to logarithmic form, or the reverse.

The exponential equation a'°%® =z converts to the logarithmic equation log, = log, x, which is a true statement for positive
values for z only.

The logarithmic equation log, a® = = converts to the exponential equation a® = a®, which is also a true statement.

These two properties are called inverse properties because, when we have the same base, raising to a power “undoes” the log and
taking the log “undoes” raising to a power. These two properties show the composition of functions. Both ended up with the
identity function which shows again that the exponential and logarithmic functions are inverse functions.

# Definition 2.8.4.2

Inverse Properties of Logarithms
Fora >0,z >0 anda #1,

a°%? =2 log,a® ==z

In the next example, apply the inverse properties of logarithms.

v/ Example 2.8.4.2

Evaluate using the properties of logarithms:

a. 4loe?d
b. log; 3°
Solution:
a.
glog; 9
Use the property, a'°% % = z.
9 4loz9 _g
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Use the property, a'°%% = z.

log, 3°

5 log;3°=5

? Exercise 2.8.4.3

Evaluate using the properties of logarithms:
a 510g5 15
b. log; 7*

Answer

a. 15
b. 4

? Exercise 2.8.4.4

Evaluate using the properties of logarithms:
a 210g2 8
b. log, 21°

Answer

a. 8
b. 15

There are three more properties of logarithms that will be useful in our work. We know exponential functions and logarithmic
function are very interrelated. Our definition of logarithm shows us that a logarithm is the exponent of the equivalent exponential.
The properties of exponents have related properties for exponents.

In the Product Property of Exponents, a™ - a™ = a™"™ , we see that to multiply the same base, we add the exponents. The Product
Property of Logarithms, log, M - N =log, M +log, N tells us to take the log of a product, we add the log of the factors.

& Definition 2.8.4.3

Product Property of Logarithms
If M >0,N >0,a>0 and a # 1, then
log,(M - N) =1log, M +log, N

The logarithm of a product is the sum of the logarithms.

We use this property to write the log of a product as a sum of the logs of each factor.

v/ Example 2.8.4.3

Use the Product Property of Logarithms to write each logarithm as a sum of logarithms. Simplify, if possible:

a. logs 7z
b. log, 642y

Solution:
a.

logs 7x
Use the Product Property, log (M - N) =log, M +log, N .
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log; 7+1logs

logs 7z =logz 7 +logs

b.
log, 642y

Use the Product Property, log, (M - N) =log, M +log, N .

log, 64 +logy x +1log, y
Simplify be evaluating, log, 64.

3 +log, z +log, y

log, 64zy = 3 +log, = +log, y

? Exercise 2.8.4.5

Use the Product Property of Logarithms to write each logarithm as a sum of logarithms. Simplify, if possible:

a. logz 3z
b. log, 8zy

Answer

a. l+logzx
b. 3 +1log, z +1logy y

? Exercise 2.8.4.6

Use the Product Property of Logarithms to write each logarithm as a sum of logarithms. Simplify, if possible:

a. logg 9z
b. log; 27zy

Answer

a 1l+logyzx
b. 3 +logs z +logz y

Similarly, in the Quotient Property of Exponents, Z—: =a™ ", we see that to divide the same base, we subtract the exponents. The
Quotient Property of Logarithms, log, % =log, M —log, N tells us to take the log of a quotient, we subtract the log of the

numerator and denominator.

& Definition 2.8.4.4

Quotient Property of Logarithms

If M >0,N >0,a>0 and a # 1, then
loga%:logaM—logaN

The logarithm of a quotient is the difference of the logarithms.

Note that log, M =log, N #log,(M —N) .
We use this property to write the log of a quotient as a difference of the logs of each factor.
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Use the Quotient Property of Logarithms to write each logarithm as a difference of logarithms. Simplify, if possible.

a log; 2

b. log 105
Solution:
a.

logs %
Use the Quotient Property, log, %I =log, M —log, N .
logs 5 —logs 7
Simplify.
1—logs 7
log; % =1—logs 7

b.

log 755
Use the Quotient Property, log, % =log, M —log, N .
log z —1og 100
Simplify.
logx —2

logﬁ =logz—2

? Exercise 2.8.4.7

Use the Quotient Property of Logarithms to write each logarithm as a difference of logarithms. Simplify, if possible.

a. logy %
b. log ﬁ
Answer
a log,3 -1
b.logz —3

? Exercise 2.8.4.8

Use the Quotient Property of Logarithms to write each logarithm as a difference of logarithms. Simplify, if possible.

a. log21%
b. log m
Answer
a. log, 5 —2
b.1—logy

The third property of logarithms is related to the Power Property of Exponents, (a™)" = a™", we see that to raise a power to a
power, we multiply the exponents. The Power Property of Logarithms, log, M? = plog, M tells us to take the log of a number
raised to a power, we multiply the power times the log of the number.
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# Definition 2.8.4.5

Power Property of Logarithms
If M >0,a>0,a%#1 and p is any real number then,
log, M? =plog, M

The log of a number raised to a power as the product product of the power times the log of the number.

We use this property to write the log of a number raised to a power as the product of the power times the log of the number. We
essentially take the exponent and throw it in front of the logarithm.

v/ Example 2.8.4.5

Use the Power Property of Logarithms to write each logarithm as a product of logarithms. Simplify, if possible.

a. log; 4°
b. log z*°
Solution:
a.
log; 43
Use the Power Property, log, M? =plog, M.
3logs 4
log; 43 =3 logy 4
b.
log z'°
Use the Power Property, log, M? =plog, M.
10logx

logz'® =10log x

? Exercise 2.8.4.9

Use the Power Property of Logarithms to write each logarithm as a product of logarithms. Simplify, if possible.

a. log; 5
b. log 200

Answer

a. 4log; 5
b. 100-log

? Exercise 2.8.4.10

Use the Power Property of Logarithms to write each logarithm as a product of logarithms. Simplify, if possible.

a. log, 37
b. log z%°

Answer

a. 7logy 3
b. 20-logx

https://phys.libretexts.org/@go/page/76298



https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76298?pdf

LibreTextsm

We summarize the Properties of Logarithms here for easy reference. While the natural logarithms are a special case of these
properties, it is often helpful to also show the natural logarithm version of each property.

Properties of Logarithms

If M >0,a>0,a#1 and p is any real number then,

Table 10.4.1
Property Base a Base e
log,1=0 In1=0
log,a=1 Ine=1
. alogat = g ez — 4
Inverse Properties
log, a® =z Ine* =z
Product Property of Logarithms log, (M- N) =log, M +log, N In(M-N)=InM+1InN
Quotient Property of Logarithms log, % = log, M —log, N In¥ =InM-InN
Power Property of Logarithms log, M? = plog, M In M?P =pln M

Now that we have the properties we can use them to “expand” a logarithmic expression. This means to write the logarithm as a sum
or difference and without any powers.

We generally apply the Product and Quotient Properties before we apply the Power Property.

v/ Example 2.8.4.6

Use the Properties of Logarithms to expand the logarithm logy (2z3y2). Simplify, if possible.
Solution:

Use the Product Property, log, M - N =log, M +1log, N .

Use the Power Property, log, M? = plog, M, on the last two terms. Simplify.

? Exercise 2.8.4.11

Use the Properties of Logarithms to expand the logarithm log;, (5z4y2). Simplify, if possible.

Answer

logy, 5+4logy z +2logy y

? Exercise 2.8.4.12

Use the Properties of Logarithms to expand the logarithm log; (7m5y3). Simplify, if possible.

Answer

log; 7+51logs z +3logz y

When we have a radical in the logarithmic expression, it is helpful to first write its 