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1.1: The Scientific Method and Physics

Describe the scope of physics.
Calculate the order of magnitude of a quantity.
Compare measurable length, mass, and timescales quantitatively.
Describe the relationships among models, theories, and laws.

Like all sciences, physics is devoted to the understanding natural phenomena. In particular, in physics, we try to understand all
physical phenomena from the world of the very small invisible subatomic particles to stars, galaxies and the entire universe.
Scientific findings whether they are just verified observations, laws or theories are just attempts to describe nature. Anyone can and
should challenge and improve these findings by performing experiments and collecting evidence.

1.1.1 The Scope of Physics

Figure : One of the first images captured by the James Webb Space Telescope (JWST), shows a group of five galaxies called
the Stephan's Quintet. The image reveals that two of the galaxies are currently merging with each other, giving us insights into
galactic interactions.

Take a look at the image of Stephan's Quintet in Figure . Each of the Galaxies contains billions of individual stars as well as
huge clouds of gas and dust. This pair of galaxies lies a staggering 290 million light-years away ( 1.7 x 10 mi) from our
own Milky Way galaxy. The stars and planets that make up each of these galaxies might seem to be the furthest thing from most
people’s everyday lives, but the forces that cause the Galaxies to act as they do are thought to be the same forces we contend with
here on Earth. The gravity that causes the stars of a Galaxy to rotate and revolve is thought to be the same as what causes water to
flow over hydroelectric dams here on Earth. Through a study of physics, you gain a greater understanding of the
interconnectedness of everything we can see and know in this universe.

Think, now, about all the technological devices you use on a regular basis. Computers, smartphones, global positioning systems
(GPSs), MP3 players, and satellite radio might come to mind. Then, think about the most exciting modern technologies you have
heard about in the news, such as trains that levitate above tracks, “invisibility cloaks” that bend light around them, and microscopic
robots that fight cancer cells in our bodies. All these groundbreaking advances, commonplace or unbelievable, rely on the
principles of physics. Aside from playing a significant role in technology, professionals such as engineers, pilots, physicians,
physical therapists, electricians, and computer programmers apply physics concepts in their daily work. For example, a pilot must
understand how wind forces affect a flight path; a physical therapist must understand how the muscles in the body experience
forces as they move and bend. As you will learn in this text, the principles of physics are propelling new, exciting technologies, and
these principles are applied in a wide range of careers.

The underlying order of nature makes science in general, and physics in particular, interesting and enjoyable to study. For example,
what do a bag of chips and a car battery have in common? Both contain energy that can be converted to other forms. The law of
conservation of energy (which says that energy can change form but is never lost) ties together such topics as food calories,
batteries, heat, light, and watch springs. Understanding this law makes it easier to learn about the various forms energy takes and
how they relate to one another. Apparently unrelated topics are connected through broadly applicable physical laws, permitting an
understanding beyond just the memorization of lists of facts.

 Learning Objectives

1.1.1
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Science consists of theories and laws that are the general truths of nature, as well as the body of knowledge they encompass.
Scientists are continuously trying to expand this body of knowledge and to perfect the expression of the laws that describe it.
Physics, which comes from the Greek phúsis, meaning “nature,” is concerned with describing the interactions of energy, matter,
space, and time to uncover the fundamental mechanisms that underlie every phenomenon. This concern for describing the basic
phenomena in nature essentially defines the scope of physics.

Physics aims to understand the world around us at the most basic level. It emphasizes the use of a small number of quantitative
laws to do this, which can be useful to other fields pushing the performance boundaries of existing technologies. Consider a
smartphone (Figure ). Physics describes how electricity interacts with the various circuits inside the device. This knowledge
helps engineers select the appropriate materials and circuit layout when building a smartphone. Knowledge of the physics
underlying these devices is required to shrink their size or increase their processing speed. Or, think about a GPS. Physics describes
the relationship between the speed of an object, the distance over which it travels, and the time it takes to travel that distance. When
you use a GPS in a vehicle, it relies on physics equations to determine the travel time from one location to another.

Figure : The Apple iPhone is a common smartphone with a GPS function. Physics describes the way that electricity flows
through the circuits of this device. Engineers use their knowledge of physics to construct an iPhone with features that consumers
will enjoy. One specific feature of an iPhone is the GPS function. A GPS uses physics equations to determine the drive time
between two locations on a map.

Figure : (a) Using a scanning tunneling microscope, scientists can see the individual atoms (diameters around 10  m) that
compose this sheet of gold. (b) Tiny phytoplankton swim among crystals of ice in the Antarctic Sea. They range from a few
micrometers (1 μm is 10  m) to as much as 2 mm (1 mm is 10  m) in length. (c) These two colliding galaxies, known as NGC
4676A (right) and NGC 4676B (left), are nicknamed “The Mice” because of the tail of gas emanating from each one. They are
located 300 million light-years from Earth in the constellation Coma Berenices. Eventually, these two galaxies will merge into one.
(credit a: modification of work by Erwinrossen; credit b: modification of work by Prof. Gordon T. Taylor, Stony Brook University;
NOAA Corps Collections; credit c: modification of work by NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. Clampin
(STScI), G. Hartig (STScI), the ACS Science Team, and ESA)

Knowledge of physics is useful in everyday situations as well as in nonscientific professions. It can help you understand how
microwave ovens work, why metals should not be put into them, and why they might affect pacemakers. Physics allows you to
understand the hazards of radiation and to evaluate these hazards rationally and more easily. Physics also explains the reason why a
black car radiator helps remove heat in a car engine, and it explains why a white roof helps keep the inside of a house cool.
Similarly, the operation of a car’s ignition system as well as the transmission of electrical signals throughout our body’s nervous
system are much easier to understand when you think about them in terms of basic physics.

Physics is a key element of many important disciplines and contributes directly to others. Chemistry, for example—since it deals
with the interactions of atoms and molecules—has close ties to atomic and molecular physics. Most branches of engineering are
concerned with designing new technologies, processes, or structures within the constraints set by the laws of physics. In
architecture, physics is at the heart of structural stability and is involved in the acoustics, heating, lighting, and cooling of buildings.

1.1.1
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Parts of geology rely heavily on physics, such as radioactive dating of rocks, earthquake analysis, and heat transfer within Earth.
Some disciplines, such as biophysics and geophysics, are hybrids of physics and other disciplines.

Physics has many applications in the biological sciences. On the microscopic level, it helps describe the properties of cells and their
environments. On the macroscopic level, it explains the heat, work, and power associated with the human body and its various
organ systems. Physics is involved in medical diagnostics, such as radiographs, magnetic resonance imaging, and ultrasonic blood
flow measurements. Medical therapy sometimes involves physics directly; for example, cancer radiotherapy uses ionizing
radiation. Physics also explains sensory phenomena, such as how musical instruments make sound, how the eye detects color, and
how lasers transmit information.

It is not necessary to study all applications of physics formally. What is most useful is knowing the basic laws of physics and
developing skills in the analytical methods for applying them. The study of physics also can improve your problem-solving skills.
Furthermore, physics retains the most basic aspects of science, so it is used by all the sciences, and the study of physics makes
other sciences easier to understand.

To accomplish your goals in any of the various fields within the natural sciences and engineering, a thorough grounding in the laws
of physics is necessary. The reason for this is simply that the laws of physics govern everything in the observable universe at all
measurable scales of length, mass, and time. Now, that is easy enough to say, but to come to grips with what it really means, we
need to get a little bit quantitative.

1.1.2 Laws, Models and Theories

In science discussions, you will encounter terms like hypothesis, law, model and theory. These are tools that humans have
developed in our quest to understand nature. Laws and theories are human statements of the underlying laws or rules that all natural
processes follow. Laws and theories are intrinsic to the universe; humans did not create them and cannot change them. We can only
discover and understand them. Their discovery is a very human endeavor, with all the elements of mystery, imagination, struggle,
triumph, and disappointment inherent in any creative effort. The cornerstone of discovering natural laws or theories is
observation and data; scientists must describe the universe as it is, not as we imagine it to be.

A hypothesis is an educated guess about an observation, finding, or data that that can be tested. It can be a proposed answer to a
scientific question, a prediction about the outcome of an experiment or an explanation for a natural phenomenon.

A law uses concise language to describe a generalized pattern in nature supported by scientific evidence and repeated experiments.
Often, a law can be expressed in the form of a single mathematical equation. Laws and theories are similar in that they are both
scientific statements that result from a tested hypothesis and are supported by scientific evidence. However, the designation law is
usually reserved for a concise and very general statement that describes phenomena in nature, such as the law that energy is
conserved during any process, or Newton’s second law of motion, which relates force (F), mass (m), and acceleration (a) by the
simple equation  F = ma. More limited statements are usually called principles (such as Pascal’s principle, which is
applicable only in fluids), but the distinction between laws and principles often is not made carefully.

The word theory means something different to scientists than what is often meant when the word is used in everyday conversation.
In particular, to a scientist a theory is not the same as a “guess” or an “idea” or even a “hypothesis.” The phrase “it’s just a theory”
seems meaningless and silly to scientists because science is founded on the notion of theories. To a scientist, a theory is a testable
explanation for patterns in nature supported by scientific evidence and verified multiple times by various groups of researchers.
Some theories include models to help visualize phenomena whereas others do not. Newton’s theory of gravity, for example, does
not require a model or mental image, because we can observe the objects directly with our own senses. The kinetic theory of gases,
on the other hand, is a model in which a gas is viewed as being composed of atoms and molecules. Atoms and molecules are too
small to be observed directly with our senses—thus, we picture them mentally to understand what the instruments tell us about the
behavior of gases. A theory should describe all aspects of any system that falls within its domain of applicability. In particular, any
experimentally testable implication of a theory should be verified. If an experiment ever shows an implication of a theory to be
false, then the theory is either thrown out or modified suitably (for example, by limiting its domain of applicability). The biggest
difference between a law and a theory is that a theory is much more complex and dynamic. A law describes a single action whereas
a theory explains an entire group of related phenomena.

A model is a representation of something that is often too difficult (or impossible) to display directly. Although a model is justified
by experimental tests, it is only accurate in describing certain aspects of a physical system. An example is the Bohr model of
single-electron atoms, in which the electron is pictured as orbiting the nucleus, analogous to the way planets orbit the Sun (Figure 

∑ = mF ⃗  a⃗ 
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). We cannot observe electron orbits directly, but the mental image helps explain some of the observations we can make, such
as the emission of light from hot gases (atomic spectra). However, other observations show that the picture in the Bohr model is not
really what atoms look like. The model is “wrong,” but is still useful for some purposes. Physicists use models for a variety of
purposes. For example, models can help physicists analyze a scenario and perform a calculation or models can be used to represent
a situation in the form of a computer simulation. Ultimately, however, the results of these calculations and simulations need to be
double-checked by other means—namely, observation and experimentation. Moreover, due to various types of limitations or
requirements, we often use simple models to help describe intricate phenomena. For example, when investigating the trajectory of a
basket ball, for most practical purposes, it is sufficient to use a model that ignores the effects of air resistance.

Figure : What is a model? The Bohr model of a single-electron atom shows the electron orbiting the nucleus in one of several
possible circular orbits. Like all models, it captures some, but not all, aspects of the physical system.

The models, theories, and laws we devise sometimes imply the existence of objects or phenomena that are as yet unobserved.
These predictions are remarkable triumphs and tributes to the power of science. It is the underlying order in the universe that
enables scientists to make such spectacular predictions. However, if experimentation does not verify our predictions, then the
theory or law is wrong, no matter how elegant or convenient it is. Laws can never be known with absolute certainty because it is
impossible to perform every imaginable experiment to confirm a law for every possible scenario. Physicists operate under the
assumption that all scientific laws and theories are valid until a counterexample is observed. If a good-quality, verifiable
experiment contradicts a well-established law or theory, then the law or theory must be modified or overthrown completely. The
study of science in general, and physics in particular, is an adventure much like the exploration of an uncharted ocean. Discoveries
are made; models, theories, and laws are formulated; and the beauty of the physical universe is made more sublime for the insights
gained.

Read the following statement then determine whether or not it is scientific.

Heaven is Hotter than Hell! 
Published in Applied Optics II, A14 (1972) & Random Walk in Science

The temperature of Heaven can be rather accurately computed from available data. Our authority is the Bible: Isaiah 30:26
reads, Moreover the light of the Moon shall be as the light of the Sun and the light of the Sun shall be sevenfold, as the light of
seven days. Thus Heaven receives from the Moon as much radiation as we do from the Sun and in addition seven times seven
(forty-nine) times as much as the Earth does from the Sun, or fifty times in all. The light we receive from the Moon is a ten-
thousandth of the light we receive from the Sun, so we can ignore that. With these data we can compute the temperature of
Heaven. The radiation falling on Heaven will heat it to the point where the heat lost by radiation is just equal to the heat
received by radiation. In other words, Heaven loses fifty times as much heat as the Earth by radiation. Using the Stefan-
Boltzmann fourth-power law for radiation

where E is the absolute temperature of the Earth-300K. This gives H as 798 K (525º C). 
The exact temperature of Hell cannot be computed but it must be less than 444.6º C, the temperature at which brimstone or
sulfur changes from a liquid to a gas. Revelations 21: 8: But the fearful, and unbelieving... shall have their part in the lake
which burneth with fire and brimstone. A lake of molten brimstone means that its temperature must be below the boiling point,
which is 444.60C. (Above this point it would be a vapor, not a lake.) 
We have, then, temperature of Heaven, 525º C. Temperature of Hell, less than 445º C. Therefore, Heaven is hotter than Hell.

Solution

1.1.4

1.1.5

 Example 1.1.1

(H/E = 50)4
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Think of the sources and data discussed in the article. Is any of them available for anyone, at anytime to verify?

Answer: No, it is not scientific since it does nto rely on data that can easily be verified.

1.1.3 Major Characteristics of scientific knowledge

Science is what humanity has developed and continue to develop in its quest to understand nature. Here are some of the
characteristics of science: 
Verifiable – Based on data 
Objective – avoid biases, prejudices, wishes, and beliefs 
Reproducible/Reliable – the same results/findings can be reproduced. 
Precise and Accurate – as apposed to social sciences which are not as easily quantifiable leading to less precise results 
Universally Replicable
Universally observable 
Malleable – evolves and changes based on new evidence

1.1.4 How Science Evolves
What was once believed to be true in science can be adjusted or rejected based on new evidence. 
New findings cannot be rejected because it does not conform to current knowledge 
A new finding is deemed valid only after thorough assessment. 
Additional studies are needed following new to provide for a broad assessment of where the weight of evidence falls. 
Over time, as additional data is gathered and verified,

Theories don't become laws and laws don't become theories

The following two images were posted in the media during the Covid epidemic. They are accusing Dr. Anthony Fauci of flip-
flopping when discussing preventive measures to avoid Covid.

Solution

The red line goes through the points C and F, so the line is .

 Example 1.1.1

CF
←→
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Answer: 

1.1.5 Science is a Collective Human Endeavor

Science evolves - new technologies allow for new data that can confirm or dispute prior knowledge. New knowledge also allows us
to revisit some of our current understanding.

Scientific knowledge is a collective human endeavor. Individual scientist contributions cannot happen (would have not happened)
without the contribution of contemporary and prior scientists. In other words, Newton's findings or Einstein's findings would have
been found even if Einstein and Newton did not exist. While both were exceptional scientists, the evolution of scientific knowledge
would have happened with or without them.

Science is based on data and only data. Both laws and theories are supported by extensive reproducible data. If you cannot test it, it
is not science.

This page titled 1.1: The Scientific Method and Physics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

1.2: The Scope and Scale of Physics by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
1.1: Science and the Scientific Method by Ryan D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman is licensed CC BY-SA 4.0.
Original source: https://github.com/OSTP/PhysicsArtofModelling/blob/master/README.md.
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1.2: Thinking Like a Scientist

Fighting Intuition

It is important to remember to fight one’s intuition when applying the scientific method. Certain theories, such as Quantum
Mechanics, are very counter-intuitive. For example, in Quantum Mechanics, an object can be described as being in two locations at
the same time. In the Theory of Special Relativity, it is possible for two people to disagree on whether two events occurred at the
same time. These particular predictions from these theories have not been invalidated by any experiment.

There is no requirement in science that a theory be “pretty” or intuitive. The only requirement is that a theory describe experimental
data. One should then take care in not forcing one’s preconceived notions into interpreting a theory. For example, Quantum
Mechanics does not actually predict that objects can be in two locations at once, only that objects behave as if they were in two
locations at once. A famous example is Schrödinger’s cat, which can be modeled as being both alive and dead at the same time.
However, just because we model it that way does not mean that it really is alive and dead at the same time.

Thinking Like a Physicist
In a sense, physics can be thought of as the most fundamental of the sciences, as it describes the interactions of the smallest
constituents of matter. In principle, if one can precisely describe how protons, neutrons, and electrons interact, then one can
completely describe how a human brain thinks. In practice, the theories of particle physics lead to equations that are too difficult to
solve for systems that include as many particles as a human brain. In fact, they are too difficult to solve exactly for even rather
small systems of particles such as atoms bigger than helium (containing several protons, neutrons and electrons).

We have a number of other fields of science to cover complex systems of particles interacting. Chemistry can be used to describe
what happens to systems consisting of many atoms and molecules. In a living being, it is too difficult to keep track of systems of
atoms and molecules, so we use Biology to describe living systems.

One of the key qualities required to be an effective physicist is an ability to understand how to apply a theory and develop a model
to describe a phenomenon. Just like any other skill, it takes practice to become good at developing models. Students that graduate
with a physics degree are thus often sought for jobs that require critical thinking and the ability to develop quantitative models,
which covers many fields from outside of physics such as finance or Big Data.

This page titled 1.2: Thinking Like a Scientist is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Howard
Martin revised by Alan Ng.

1.2: The Scope and Scale of Physics by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
1.3: Fighting Intuition by Ryan D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman is licensed CC BY-SA 4.0. Original source:
https://github.com/OSTP/PhysicsArtofModelling/blob/master/README.md.
1.5: Thinking Like a Physicist by Ryan D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman is licensed CC BY-SA 4.0. Original
source: https://github.com/OSTP/PhysicsArtofModelling/blob/master/README.md.
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1.3: Measurements Uncertainty and Significant Figures

Determine the correct number of significant figures for the result of a computation.
Describe the relationship between the concepts of accuracy, precision, uncertainty, and discrepancy.
Calculate the percent uncertainty of a measurement, given its value and its uncertainty.
Determine the uncertainty of the result of a computation involving quantities with given uncertainties.

Science is based on data. That is evidence obtained from observation and experiments. Thus, it is important to have a clear, universal, thorough process and rules that we use when
collecting data —that is, when making measurements and when reporting those results.

1.3.1 Accuracy and Precision of a Measurement
Accuracy is how close a measurement is to the accepted reference value for that measurement. For example, let’s say we want to measure the length of standard printer paper. The
packaging in which we purchased the paper states that it is 11.0 in. long. We then measure the length of the paper three times and obtain the following measurements: 11.1 in., 11.2 in.,
and 10.9 in. These measurements are quite accurate because they are very close to the reference value of 11.0 in. In contrast, if we had obtained a measurement of 12 in., our
measurement would not be very accurate. Notice that the concept of accuracy requires that an accepted reference value be given.

Figure : A GPS attempts to locate a restaurant at the center of the bull’s-eye. The red dots represent each attempt to pinpoint the location of the restaurant. For the image on the left,
the dots are spread out quite far apart from one another, but they are rather close to the actual location of the restaurant, indicating high accuracy. For the image on the right dots are
spread out rather far away from the actual location of the restaurant, indicating low accuracy.

Let’s consider an example of a GPS attempting to locate the position of a restaurant in a city. Think of the restaurant location as existing at the center of a bull’s-eye target and think of
each GPS attempt to locate the restaurant as a red dot. On the left of Figure , we see the GPS measurements are spread out far apart from each other, but they are all relatively close
to the actual location of the restaurant at the center of the target. This indicates a high-accuracy measurement. However, in the image on the right, the GPS measurements are
concentrated closer to one another, but they are far away from the target location. This indicates a low-accuracy measuring system.

The precision of measurements refers to how close the agreement is between repeated independent measurements (which are repeated under the same conditions). Consider the example
of the paper measurements. The precision of the measurements refers to the spread of the measured values. One way to analyze the precision of the measurements is to determine the
range, or difference, between the lowest and the highest measured values. In this case, the lowest value was 10.9 in. and the highest value was 11.2 in. Thus, the measured values
deviated from each other by, at most, 0.3 in. These measurements were relatively precise because they did not vary too much in value. However, if the measured values had been 10.9
in., 11.1 in., and 11.9 in., then the measurements would not be very precise because there would be significant variation from one measurement to another. Notice that the concept of
precision depends only on the actual measurements acquired and does not depend on an accepted reference value.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not precise, or they are precise but not accurate. Referring back
to the GPS example, on the left of Figure  in this case, we see the GPS measurements clustered close to each other, while far away from the target location. This indicates a high-
precision measurement even though the accuracy is low. For the image on the right, the GPS measurements are spread further apart from one another, they are still far away from the
target location. This indicates a low-precision and also a low-accuracy measurement.

Figure : A GPS attempts to locate a restaurant at the center of the bull’s-eye. The red dots represent each attempt to pinpoint the location of the restaurant. For the image on the left,
the dots are spread out quite close to one another, indicating high precision. For the image on the right, the dots are spread out apart to one another, indicating low precision.

The precision of a measuring system is related to the uncertainty in the measurements whereas the accuracy is related to the discrepancy from the accepted reference value. uncertainty
is a quantitative measure of how much your measured values deviate from one another. Discrepancy is the difference between the measured value and a given standard or expected
value. If the measurements are not very precise, then the uncertainty of the values is high. If the measurements are not very accurate, then the discrepancy of the values is high.

Recall our example of measuring paper length; we obtained measurements of 11.1 in., 11.2 in., and 10.9 in., and the accepted value was 11.0 in. We might average the three
measurements to say our best guess is 11.1 in.; in this case, our discrepancy is 11.1 – 11.0 = 0.1 in., which provides a quantitative measure of accuracy. We might calculate the
uncertainty in our best guess by using the range of our measured values: 0.3 in. Then we would say the length of the paper is 11.1 in. plus or minus 0.3 in. The uncertainty in a
measurement, A, is often denoted as A (read “delta A”), so the measurement result would be recorded as A ± A. Returning to our paper example, the measured length of the paper
could be expressed as 11.1 ± 0.3 in. Since the discrepancy of 0.1 in. is less than the uncertainty of 0.3 in., we might say the measured value agrees with the accepted reference value to
within experimental uncertainty.

Some factors that contribute to uncertainty in a measurement include the following:

 Learning Objectives
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Limitations of the measuring device
The skill of the person taking the measurement
Irregularities in the object being measured
Any other factors that affect the outcome (highly dependent on the situation)

In our example, such factors contributing to the uncertainty could be the smallest division on the ruler is 1/16 in., the person using the ruler has bad eyesight, the ruler is worn down on
one end, or one side of the paper is slightly longer than the other. At any rate, the uncertainty in a measurement must be calculated to quantify its precision. If a reference value is
known, it makes sense to calculate the discrepancy as well to quantify its accuracy.

1.3.2 Significant Figures

When we express measured values, we can only list as many digits as we measured initially with our measuring tool. For example, if we use a standard ruler to measure the length of a
stick, we may measure it to be 36.7 cm. We can’t express this value as 36.71 cm because our measuring tool is not precise enough to measure a hundredth of a centimeter. It should be
noted that the last digit in a measured value has been estimated in some way by the person performing the measurement. For example, the person measuring the length of a stick with a
ruler notices the stick length seems to be somewhere in between 36.6 cm and 36.7 cm, and he or she must estimate the value of the last digit. Using the method of significant figures,
the rule is that the last digit written down in a measurement is the first digit with some uncertainty. To determine the number of significant digits in a value, start with the first
measured value at the left and count the number of digits through the last digit written on the right. For example, the measured value 36.7 cm has three digits, or three significant figures.

Rules for Determining the number of significant figures
Here are some general rules for determining the number of significant figures:

For experimental data the uncertainty in a quantity defines how many figures are significant.
In general, the uncertainty in a measurement is equal to the estimated standard deviation for that measurement.
The reading uncertainty is an estimate made by the experimenter
In the case where the reading uncertainty in a measurement is larger than the estimated standard deviation, the reading uncertainty is the uncertainty in each individual
measurement.
The reading uncertainty almost by definition has one and only one significant figure.
Thus uncertainties are specified to one or at most two digits.

Express the following quantities to the correct number of significant figures:

(a) 29.625 ± 2.345 
(b) 74 ± 7.136 
(c) 84.26351 ± 3

Strategy

First, remember that the uncertainty should be specified to one or at the most two digits.

Second, express the quantity with the same precision as the uncertainty.

Solution

Rounding the uncertainty to one digit:

(a) 29.625 ± 2 
(b) 74 ± 7 
(c) 84.26351 ± 3

Rounding the quantity to the same precision as the uncertainty:

(a) 30 ± 2 
(b) 74 ± 7 
(c) 84 ± 3

Rules for Zeroes
Special consideration is given to zeros when counting significant figures. The zeros in 0.053 are not significant because they are placeholders that locate the decimal point. There
are two significant figures in 0.053. The zeros in 10.053 are not placeholders; they are significant. This number has five significant figures. The zeros in 1300 may or may not be
significant, depending on the style of writing numbers. They could mean the number is known to the last digit or they could be placeholders. So 1300 could have two, three, or four
significant figures. To avoid this ambiguity, we should write 1300 in scientific notation as 1.3 x 10 , 1.30 x 10 , or 1.300 x 10 , depending on whether it has two, three, or four
significant figures. Zeros are significant except when they serve only as placeholders

 When combining measurements with different degrees of precision, the number of significant digits in the final answer can be no greater than the number of significant digits in
the least-precise measured value. Here are the rules:

Rules for Manipulating Numbers
Rule 1: When multiplying or dividing, report the result with the same number of significant figures as the least certain value. For example:

11.5 x 2.1 = 24

11.5 ÷ 2.1 = 5.5 

because 2.1 has only two significant figures. 
Rule 2: When adding or subtracting, the number of decimal places in the result should equal the smallest number of decimal places in any of the given terms. For example:

12.34+2.006-8.9=5.4

 Example 1.3.1

3 3 3
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because 8.9 has only one decimal place. 
Rule 3: Numbers that are not measured may be considered exact. Irrational numbers such as π and e are known to many significant figures and do not limit your results. For
example:

(1/3)(4.56 π) = 4.78

is reported to three significant figures because neither 3 nor π is measured, and our answer is limited only by the three significant figures of 4.56. 
Rule 4: It is best to use scientific notation because a zero that acts as a placeholder is not necessarily a significant figure. For example, h = 120 m may have two  or three significant
figures. To avoid that ambiguity, you may add a decimal point; for example, h = 120.  m has three significant figures. A better way to clarify the number of significant figures is to
use scientific notation: h = 1.20 x 10   m has three significant figures, and h = 1.2 x 10   m has two significant figures. 
Rule 5: You should keep extra significant figures in intermediate steps when making a calculation, but you should round the final answer to the correct number of significant
figures. The extra significant figures in an intermediate result help avoid introducing an error due to rounding a number up or down. This step is particularly important if an
intermediate result is a number ending in 5

1.3.3 Precision of Measuring Tools and Significant Figures

As mentioned in the previous sections, an important factor in the precision of measurements involves the precision of the measuring tool. In general, a precise measuring tool is one that
can measure values in very small increments. For example, a standard ruler can measure length to the nearest millimeter whereas a caliper can measure length to the nearest 0.01 mm.
The caliper is a more precise measuring tool because it can measure extremely small differences in length. The more precise the measuring tool, the more precise the measurements.

The result of a single measurement should be reported in the format

The estimate is your best guess for the true value, while the measurement uncertainty states the range where the true value might lie. By convention, the estimate and measurement
uncertainty follow these rules :

1. The measurement uncertainty has one or two significant figures. We will use just one for the rest of this chapter.
2. The estimate has the same precision as the measurement uncertainty.

Suppose you use a digital multimeter to measure the current in a circuit, and the readout is stable (i.e., not fluctuating). Then you should report a result like this:

 

Why? According to the readout, the value is between  (rounded up to ) and  (which is rounded down). So the measurement uncertainty is . Note
that the estimate is reported as  to have the same precision as the uncertainty.

When using a device with hatch marks, such as a ruler or analog oscilloscope display, the measurement uncertainty is determined by the smallest markings. For example, if the smallest
markings on a ruler have  spacing, the measurement uncertainty is , so a reading should be reported like this:

In more complicated situations, you must exercise your judgment. For instance, suppose you have a digital multimeter reading that is not stable: the last digit changes constantly, so that
the reading fluctuates between , , and . The value is between  and , which is a range of . Since we use one significant figure for
uncertainty, the result is reported like this:

Alternatively, suppose the last digit is changing so fast that you can’t make out its values at all. Then you can report the result like this:

Measurement uncertainties can also come from other aspects of an experiment. Suppose you use a ruler to measure the distance to an object, but the object wobbles by , larger
than the  hatch marks of the ruler. In that case, you should report a measurement uncertainty of , not .

1.3.4 Uncertainties in Calculations/Propagation of uncertainty of Precision

Often we have two or more measured quantities that we combine arithmetically to get some result. Examples include dividing a distance by a time to get a speed, or adding two lengths
to get a total length. Now that we have learned how to determine the uncertainty in the directly measured quantities we need to learn how these uncertainty propagate to an uncertainty
in the result.

We assume that the two directly measured quantities are  and Y, with uncertainty  and  respectively.

The measurements  and  must be independent of each other.

The fractional uncertainty is the value of the uncertainty divided by the value of the quantity: . The fractional uncertainty multiplied by 100 is the percentage uncertainty. Everything
is this section assumes that the uncertainty is "small" compared to the value itself, i.e. that the fractional uncertainty is much less than one.

For many situations, we can find the uncertainty in the result  using three simple rules:

1.3.4.1 Rule 1

If:  or 

then:

In words, this says that the uncertainty in the result of an addition or subtraction is the square root of the sum of the squares of the uncertainty in the quantities being added or subtracted.
This mathematical procedure, also used in Pythagoras' theorem about right triangles, is called quadrature.

2 2

(estimate) ± (measurement uncertainty). (1.3.1)

= (0.320 ±0.005) A

0.315 A 0.32 A 0.324999 … A ±0.005 A
0.320 A

1 mm ±0.5 mm

= (6.60 ±0.05) cm

0.32 0.33 0.34 A 0.315 A 0.344999 … A ±0.015 A

= (0.33 ±0.02) A

= (0.35 ±0.05) A

±2 mm
1 mm ±2 mm ±0.05 mm

x Δx Δy

x y

Δx
x

z

z = x+y z = x−y

Δz = Δ +Δx2 y2
− −−−−−−−−

√ (1.3.2)
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1.3.4.2 Rule 2

If:  or 

then:

In this case also the uncertainty are combined in quadrature, but this time it is the fractional uncertainty, i.e. the uncertainty in the quantity divided by the value of the quantity, that are
combined. Sometimes the fractional uncertainty is called the relative uncertainty.

1.3.4.3 Rule 3

If: 

then:

or equivalently:

For the square of a quantity, , you might reason that this is just  times  and use Rule 2. This is wrong because Rules 1 and 2 are only for when the two quantities being combined, 
and , are independent of each other. Here there is only one measurement of one quantity.

Calculate (1.23 ± 0.03) + . (  is the irrational number 3.14159265…)

Strategy

Rational numbers are considered precise. Thus, they don't affect the uncertainty in the reading.

Solution

(1.23 ± 0.03) + =((1.23+ ) ± 0.03)=((1.23+3.14159265) ± 0.03)=((4.37159265) ± 0.03)=(4.37 ± 0.03)

Calculate (1.23 ± 0.03) × .

Strategy
We are essentially multiplying by a constant.

Solution

(1.23 ± 0.03) =((1.23 ) ± 0.03 ))=((3.864) ± 0.0942)=(3.86 ± 0.09)

You may have noticed a useful property of quadrature while doing the above questions. Say one quantity has an uncertainty of 2 and the other quantity has an uncertainty of 1. Then the
uncertainty in the combination is the square root of 4 + 1 = 5, which to one significant figure is just 2. Thus if any uncertainty is equal to or less than one half of some other uncertainty,
it may be ignored in all uncertainty calculations. This applies for both direct uncertainty such as used in Rule 1 and for fractional or relative uncertainty such as in Rule 2.

Thus in many situations you do not have to do any uncertainty calculations at all if you take a look at the data and its uncertainty first.

1.3.5 Using Derivatives to Calculate Uncertainty

The three rules above handle most simple cases. The general case is where . For Rule 1 the function  is addition or subtraction, while for Rule 2 it is multiplication or
division. Regardless of what  is, the uncertainty in  is given by:

In the next example, we look at how differentials can be used to estimate the uncertainty in calculating the volume of a box if we assume the measurement of the side length is made
with a certain amount of accuracy.

Suppose the side length of a cube is measured to be  cm with an accuracy of  cm.

a. Use differentials to estimate the uncertainty in the computed volume of the cube.
b. Compute the volume of the cube if the side length is (i)  cm and (ii)  cm to compare the estimated uncertainty with the actual potential uncertainty.

Solution

a. The measurement of the side length is accurate to within  cm. Therefore,

The volume of a cube is given by , which leads to

Using the measured side length of  cm, we can estimate that

Therefore,

z = x×y z = x
y

Δz = z +( )
Δx

x

2

( )
Δy

y

2
− −−−−−−−−−−−−−−−

√ (1.3.3)

z = xn

Δz = n Δxx(n−1) (1.3.4)

Δz = nz
Δx

x
(1.3.5)

x2 x x x

y

 Example 1.3.1

π π

π π

 Example 1.3.2

π

×π ×π ×π

z = f(x) f

f z

Δz ≈ dz = (x)dx.f ′ (1.3.6)

 Example : Volume of a Cube1.3.3

5 0.1

4.9 5.1

±0.1

−0.1 ≤ dx ≤ 0.1.

V = x3

dV = 3 dx.x2

5

−3(5 (0.1) ≤ dV ≤ 3(5 (0.1).)2 )2

−7.5 ≤ dV ≤ 7.5.
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b. If the side length is actually  cm, then the volume of the cube is

If the side length is actually  cm, then the volume of the cube is

Therefore, the actual volume of the cube is between  and . Since the side length is measured to be 5 cm, the computed volume is 
Therefore, the uncertainty in the computed volume is

That is,

We see the estimated uncertainty  is relatively close to the actual potential uncertainty in the computed volume.

Estimate the uncertainty in the computed volume of a cube if the side length is measured to be  cm with an accuracy of  cm.

Hint

Answer

The volume measurement is accurate to within .

The above formula is also used to find the uncertainty for transcendental functions. For example:

Find the uncertainty for:

Answer

Find the uncertainty for:

Answer

Note that in the above example  must be in radians.

The measurement uncertainty  and the propagated uncertainty  are absolute uncertainty.

Sometimes, we are interested in the size of an uncertainty relative to the size of the quantity being measured or calculated. Given an absolute uncertainty  for a particular quantity, we
define the relative uncertainty as , where  is the actual value of the quantity. The percentage uncertainty is the relative uncertainty expressed as a percentage. For example, if we
measure the height of a ladder to be  in. when the actual height is  in., the absolute uncertainty is 1 in. but the relative uncertainty is , or . By comparison, if we
measure the width of a piece of cardboard to be  in. when the actual width is  in., our absolute uncertainty is  in., whereas the relative uncertainty is , or 
Therefore, the percentage uncertainty in the measurement of the cardboard is larger, even though  in. is less than  in.

An astronaut using a camera measures the radius of Earth as  mi with an uncertainty of  mi. Let’s use differentials to estimate the relative and percentage uncertainty of
using this radius measurement to calculate the volume of Earth, assuming the planet is a perfect sphere.

Solution:

If the measurement of the radius is accurate to within  we have

Since the volume of a sphere is given by  we have

Using the measured radius of  mi, we can estimate

To estimate the relative uncertainty, consider . Since we do not know the exact value of the volume , use the measured radius  mi to estimate . We obtain 

. Therefore the relative uncertainty satisfies

4.9

V (4.9) = (4.9 = 117.649 .)3 cm3

5.1

V (5.1) = (5.1 = 132.651 .)3 cm3

117.649 132.651 V (5) = = 125.53

117.649 −125 ≤ ΔV ≤ 132.651 −125.

−7.351 ≤ ΔV ≤ 7.651.

dV

 Example 1.3.4

6 0.2

dV = 3 dxx2

21.6 cm3

 Example 1.3.5

z = ln(x)

Δz = Δx =
∣

∣
∣
d ln(x)

dx

∣

∣
∣

∣
∣
∣
Δx

x

∣
∣
∣

 Example 1.3.6

z = sin(x)

Δz = Δx = |cos(x)Δx|
∣

∣
∣
d sin(x)

dx

∣

∣
∣

Δx

dx (= Δx) Δy

Δq
Δq

q q

63 62 = 0.0161
62

1.6%

8.25 8 1
4

=0.25
8

1
32

3.1%.

0.25 1

 Example : Relative and Percentage uncertainty1.3.7

4000 ±80

±80,

−80 ≤ dr ≤ 80.

V = ( )π ,4
3

r3

dV = 4π dr.r2

4000

−4π(4000 (80) ≤ dV ≤ 4π(4000 (80).)2 )2

dV

V
V r = 4000 V

V ≈ ( )π(40004
3

)3
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which simplifies to

The relative uncertainty is  and the percentage uncertainty is .

Determine the percentage uncertainty if the radius of Earth is measured to be  mi with an uncertainty of  mi.

Hint

Use the fact that  to find .

Answer

When , the uncertainty in  is given by:

If  is a function of three or more variables,  , then:

1.3.6 The uncertainty in the Mean
We have seen that when the data have uncertainty of precision we may only estimate the value of the mean. We are now ready to find the uncertainty in this estimate of the mean.

Recall that to calculate the estimated mean we use:

Each individual measurement  has the same uncertainty, , which is usually the estimated standard deviation.

To calculate the uncertainty in the numerator of the above equation, we use Rule 1 to write:

In words, we are combining  quantities  in quadrature, whose result is the square root of  times .

When we divide the numerator by the denominator , Rule 2 tells us how to propagate those uncertainty. The denominator has an uncertainty of zero, and we have just calculated the
uncertainty in the numerator. Applying Rule 2, then, gives:

In words, the uncertainty in the estimated mean  is equal to the uncertainty in each individual measurement  divided by the square root of the number of times the measurement
was repeated. Sometimes  is called the standard uncertainty of the mean.

Here is an example. We repeat the measurement of some quantity 4 times and get:

The estimated mean of these measurements is numerically 1.4950000 and the estimated standard deviation is numerically 0.0903696 (by numerically we mean the number that is
displayed by the calculator). Thus the uncertainty in the estimated mean is 0.0903696 divided by the square root of the number of repeated measurements, the square root of 4, which is
numerically 0.0451848. So we get:

Value = 1.495 ± 0.045

or:

Value = 1.50 ± 0.05

The fact that the uncertainty in the estimated mean goes down as we repeat the measurements is exactly what should happen. If the uncertainty did not go down as N increases there is
no point in repeating the measurements at all since we are not learning anything about X , i.e. we are not reducing its uncertainty.

If you repeat a measurement 4 times, you reduce the uncertainty by a factor of two. Repeating the measurement 9 times reduces the uncertainty by a factor of three. To reduce the
uncertainty by a factor of four you would have to repeat the measurement 16 times. Thus there is a point of "diminishing returns" in repeating measurements. In simple situations,
repeating a measurement 5 or 10 times is usually sufficient.

You are determining the period of oscillation of a pendulum. One procedure would be to measure the time for 20 oscillations, t20, and repeat the measurement 5 times. Another
procedure would be to measure the time for 5 oscillations, t5, and repeat the measurement 20 times. Assume, reasonably, that the uncertainty in the determination of the time for 20

≤ ≤ ,
−4π(4000 (80))2

4π(4000 /3)3

dV

V

4π(4000 (80))2

4π(4000 /3)3

−0.06 ≤ ≤ 0.06.
dV

V

0.06 6%

 Example  1.3.8

3950 ±100

dV = 4π drr2 dV /V

7.6%

z = f(x, y) z

Δ = +z2 ( Δx)
∂f(x, y)

∂x

2

( Δy)
∂f(x, y)

∂y

2

(1.3.7)

f , , , . . .x1 x2 x3

Δ =z2 ∑
i

( Δ )
∂f( , , , . . . )x1 x2 x3

∂xi
xi

2

(1.3.8)

=x̄

∑
i=1

N

xi

N
(1.3.9)

xi Δxi

= ΔxΔ +Δ +. . . +Δx2 x2 x2− −−−−−−−−−−−−−−−−−
√ N

−−
√ (1.3.10)

N Δx N Δx

N

Δ =x̄
Δx

N
−−

√
(1.3.11)

Δx̄ Δx

Δx̄

1.50
1.61

1.39
1.48

est

 Example 1.3.9
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oscillations is the same as the uncertainty in the determination of the time for 5 oscillations. Calculate the uncertainty in the period for both procedures to determine which will give
the smallest uncertainty in the value of the period?

Strategy

First, observe that the average value of the bag’s weight, A, is 5.1 lb. The uncertainty in this value, A, is 0.3 lb. We can use the following equation to determine the percent
uncertainty of the weight:

Solution

Substitute the values into the equation:

1.3: Measurements Uncertainty and Significant Figures is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

1.7: Significant Figures by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.
1.1: Measurement Error by Y. D. Chong is licensed CC BY-SA 4.0. Original source: http://www1.spms.ntu.edu.sg/~ydchong/teaching.html.
4.2: Linear Approximations and Differentials by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source: https://openstax.org/details/books/calculus-volume-1.

δ

Percent uncertainty = ×100%
δA

A
(1.3.12)

Percent uncertainty = ×100% = ×100% = 5.9% ≈ 6%
δA

A

0.3 lb

5.1 lb
(1.3.13)
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1.4: Units and Standards

Describe how SI base units are defined.
Describe how derived units are created from base units.
Express quantities given in SI units using metric prefixes.

1.4.1 Order of Magnitude
The order of magnitude of a number is the power of 10 that most closely approximates it. Thus, the order of magnitude refers to
the scale (or size) of a value. Each power of 10 represents a different order of magnitude. For example, 10 , 10 , 10 , and so forth,
are all different orders of magnitude, as are 10  = 1, 10 , 10 , and 10 . To find the order of magnitude of a number, take the
base-10 logarithm of the number and round it to the nearest integer, then the order of magnitude of the number is simply the
resulting power of 10. For example, the order of magnitude of 800 is 10  because log  800 ≈ 2.903, which rounds to 3. Similarly,
the order of magnitude of 450 is 10  because log  450 ≈ 2.653, which rounds to 3 as well. Thus, we say the numbers 800 and 450
are of the same order of magnitude: 10 . However, the order of magnitude of 250 is 10  because log 250 ≈ 2.397, which rounds to
2.

An equivalent but quicker way to find the order of magnitude of a number is first to write it in scientific notation and then check to
see whether the first factor is greater than or less than  = 10  ≈ 3. The idea is that  = 10  is halfway between 1 = 10
and 10 = 10  on a log base-10 scale. Thus, if the first factor is less than , then we round it down to 1 and the order of
magnitude is simply whatever power of 10 is required to write the number in scientific notation. On the other hand, if the first
factor is greater than , then we round it up to 10 and the order of magnitude is one power of 10 higher than the power needed
to write the number in scientific notation. For example, the number 800 can be written in scientific notation as 8 x 10 . Because 8 is
bigger than  ≈ 3, we say the order of magnitude of 800 is 10  = 10 . The number 450 can be written as 4.5 x 10 , so its
order of magnitude is also 10 because 4.5 is greater than 3. However, 250 written in scientific notation is 2.5 x 10  and 2.5 is less
than 3, so its order of magnitude is 10 .

The order of magnitude of a number is designed to be a ballpark estimate for the scale (or size) of its value. It is simply a way of
rounding numbers consistently to the nearest power of 10. This makes doing rough mental math with very big and very small
numbers easier. For example, the diameter of a hydrogen atom is on the order of 10  m, whereas the diameter of the Sun is on the
order of 10  m, so it would take roughly 10 /10 = 10  hydrogen atoms to stretch across the diameter of the Sun. This is much
easier to do in your head than using the more precise values of 1.06 x 10 m for a hydrogen atom diameter and 1.39 x 10 m for
the Sun’s diameter, to find that it would take 1.31 x 10  hydrogen atoms to stretch across the Sun’s diameter. In addition to being
easier, the rough estimate is also nearly as informative as the precise calculation.

1.4.2 Known Ranges of Length, Mass, and Time
The vastness of the universe and the breadth over which physics applies are illustrated by the wide range of examples of known
lengths, masses, and times (given as orders of magnitude) in Figure . Examining this table will give you a feeling for the range
of possible topics in physics and numerical values. A good way to appreciate the vastness of the ranges of values in Figure  is
to try to answer some simple comparative questions, such as the following:

a. How many hydrogen atoms does it take to stretch across the diameter of the Sun?
b. How many protons are there in a bacterium?
c. How many floating-point operations can a supercomputer do in 1 day?

Answer a

10  m/10  m = 10 hydrogen atoms

Answer b

10  kg/10  kg = 10 protons

Answer c

 Learning Objectives
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10  s/10  s = 10  floating-point operations

In studying Figure , take some time to come up with similar questions that interest you and then try answering them. Doing
this can breathe some life into almost any table of numbers.

Figure : This table shows the orders of magnitude of length, mass, and time.

The range of objects and phenomena studied in physics is immense. From the incredibly short lifetime of a nucleus to the age of
Earth, from the tiny sizes of subnuclear particles to the vast distance to the edges of the known universe, from the force exerted by
a jumping flea to the force between Earth and the Sun, there are enough factors of 10 to challenge the imagination of even the most
experienced scientist. Giving numerical values for physical quantities and equations for physical principles allows us to understand
nature much more deeply than qualitative descriptions alone. To comprehend these vast ranges, we must also have accepted units in
which to express them. We shall find that even in the potentially mundane discussion of meters, kilograms, and seconds, a profound
simplicity of nature appears: all physical quantities can be expressed as combinations of only seven base physical quantities.

1.4.3 Units and Standards

We define a physical quantity either by specifying how it is measured or by stating how it is calculated from other measurements.
For example, we might define distance and time by specifying methods for measuring them, such as using a meter stick and a
stopwatch. Then, we could define average speed by stating that it is calculated as the total distance traveled divided by time of
travel.

Measurements of physical quantities are expressed in terms of units, which are standardized values. For example, the length of a
race, which is a physical quantity, can be expressed in units of meters (for sprinters) or kilometers (for distance runners). Without
standardized units, it would be extremely difficult for scientists to express and compare measured values in a meaningful way
(Figure ).
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Figure : Distances given in unknown units are maddeningly useless.

Two major systems of units are used in the world: SI units (for the French Système International d’Unités), also known as the
metric system, and English units (also known as the customary or imperial system). English units were historically used in
nations once ruled by the British Empire and are still widely used in the United States. English units may also be referred to as the
foot–pound–second (fps) system, as opposed to the centimeter–gram–second (cgs) system. You may also encounter the term
SAE units, named after the Society of Automotive Engineers. Products such as fasteners and automotive tools (for example,
wrenches) that are measured in inches rather than metric units are referred to as SAE fasteners or SAE wrenches.

Virtually every other country in the world (except the United States) now uses SI units as the standard. The metric system is also
the standard system agreed on by scientists and mathematicians.

1.4.4 SI Units: Base and Derived Units
In any system of units, the units for some physical quantities must be defined through a measurement process. These are called the
base quantities for that system and their units are the system’s base units. All other physical quantities can then be expressed as
algebraic combinations of the base quantities. Each of these physical quantities is then known as a derived quantity and each unit
is called a derived unit. The choice of base quantities is somewhat arbitrary, as long as they are independent of each other and all
other quantities can be derived from them. Typically, the goal is to choose physical quantities that can be measured accurately to a
high precision as the base quantities. The reason for this is simple. Since the derived units can be expressed as algebraic
combinations of the base units, they can only be as accurate and precise as the base units from which they are derived.

Based on such considerations, the International Standards Organization recommends using seven base quantities, which form the
International System of Quantities (ISQ). These are the base quantities used to define the SI base units. Table  lists these seven
ISQ base quantities and the corresponding SI base units.

Table : ISQ Base Quantities and Their SI Units

ISQ Base Quantity SI Base Unit

Length meter (m)

Mass kilogram (kg)

Time second (s)

Electrical Current ampere (A)

Thermodynamic Temperature kelvin (K)

Amount of Substance mole (mol)

Luminous Intensity candela (cd)

You are probably already familiar with some derived quantities that can be formed from the base quantities in Table . For
example, the geometric concept of area is always calculated as the product of two lengths. Thus, area is a derived quantity that can
be expressed in terms of SI base units using square meters (m x m = m ). Similarly, volume is a derived quantity that can be
expressed in cubic meters (m ). Speed is length per time; so in terms of SI base units, we could measure it in meters per second
(m/s). Volume mass density (or just density) is mass per volume, which is expressed in terms of SI base units such as kilograms per
cubic meter (kg/m ). Angles can also be thought of as derived quantities because they can be defined as the ratio of the arc length
subtended by two radii of a circle to the radius of the circle. This is how the radian is defined. Depending on your background and
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interests, you may be able to come up with other derived quantities, such as the mass flow rate (kg/s) or volume flow rate (m /s) of
a fluid, electric charge (A • s), mass flux density [kg/(m • s)], and so on. We will see many more examples throughout this text. For
now, the point is that every physical quantity can be derived from the seven base quantities in Table , and the units of every
physical quantity can be derived from the seven SI base units.

For the most part, we use SI units in this text. Non-SI units are used in a few applications in which they are in very common use,
such as the measurement of temperature in degrees Celsius (°C), the measurement of fluid volume in liters (L), and the
measurement of energies of elementary particles in electron-volts (eV). Whenever non-SI units are discussed, they are tied to SI
units through conversions. For example, 1 L is 10  m .

Check out a comprehensive source of information on SI units at the National Institute of Standards and Technology (NIST)
Reference on Constants, Units, and Uncertainty.

1.4.5 Units of Time, Length, and Mass: The Second, Meter, and Kilogram
The initial chapters in this textmap are concerned with mechanics, fluids, and waves. In these subjects all pertinent physical
quantities can be expressed in terms of the base units of length, mass, and time. Therefore, we now turn to a discussion of these
three base units, leaving discussion of the others until they are needed later.

1.4.5.1 The Second

The SI unit for time, the second (abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar day.
More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a nonvarying or constant
physical phenomenon (because the solar day is getting longer as a result of the very gradual slowing of Earth’s rotation). Cesium
atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967, the second
was redefined as the time required for 9,192,631,770 of these vibrations to occur (Figure ). Note that this may seem like more
precision than you would ever need, but it isn’t—GPSs rely on the precision of atomic clocks to be able to give you turn-by-turn
directions on the surface of Earth, far from the satellites broadcasting their location.

Figure : An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a
microsecond per year. The fundamental unit of time, the second, is based on such clocks. This image looks down from the top of an
atomic fountain nearly 30 feet tall. (credit: Steve Jurvetson)

1.4.5.2 The Meter

The SI unit for length is the meter (abbreviated m); its definition has also changed over time to become more precise. The meter
was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This measurement was improved in
1889 by redefining the meter to be the distance between two engraved lines on a platinum–iridium bar now kept near Paris. By
1960, it had become possible to define the meter even more accurately in terms of the wavelength of light, so it was again redefined
as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was given its current definition (in part
for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second (Figure ). This change came after
knowing the speed of light to be exactly 299,792,458 m/s. The length of the meter will change if the speed of light is someday
measured with greater accuracy.

Figure : The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is
speed multiplied by time.
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1.4.5.3 The Kilogram

The SI unit for mass is the kilogram (abbreviated kg); From 1795–2018 it was defined to be the mass of a platinum–iridium
cylinder kept with the old meter standard at the International Bureau of Weights and Measures near Paris. However, this cylinder
has lost roughly 50 micrograms since it was created. Because this is the standard, this has shifted how we defined a kilogram.
Therefore, a new definition was adopted in May 2019 based on the Planck constant and other constants which will never change in
value. We will study Planck’s constant in quantum mechanics, which is an area of physics that describes how the smallest pieces of
the universe work. The kilogram is measured on a Kibble balance (see ). When a weight is placed on a Kibble balance, an
electrical current is produced that is proportional to Planck’s constant. Since Planck’s constant is defined, the exact current
measurements in the balance define the kilogram.

Figure : Redefining the SI unit of mass. The U.S. National Institute of Standards and Technology’s Kibble balance is a
machine that balances the weight of a test mass with the resulting electrical current needed for a force to balance it.

1.4.6 Metric Prefixes
SI units are part of the metric system, which is convenient for scientific and engineering calculations because the units are
categorized by factors of 10. Table  lists the metric prefixes and symbols used to denote various factors of 10 in SI units. For
example, a centimeter is one-hundredth of a meter (in symbols, 1 cm = 10  m) and a kilometer is a thousand meters (1 km = 10
m). Similarly, a megagram is a million grams (1 Mg = 10  g), a nanosecond is a billionth of a second (1 ns = 10  s), and a
terameter is a trillion meters (1 Tm = 10  m).

Table : Metric Prefixes for Powers of 10 and Their Symbols

Prefix Symbol Meaning Prefix Symbol Meaning

yotta- Y 10 yocto- Y 10

zetta- Z 10 zepto- Z 10

exa- E 10 atto- E 10

peta- P 10 femto- P 10

tera- T 10 pico- T 10

giga- G 10 nano- G 10

mega- M 10 micro- M 10

1.4.4

1.4.4

1.4.1
–2 3

6 –9

12

1.4.2

24 -24

21 -21

18 -18

15 -15

12 -12

9 -9

6 -6

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/77294?pdf


1.4.6 https://phys.libretexts.org/@go/page/77294

Prefix Symbol Meaning Prefix Symbol Meaning

kilo- k 10 milli- k 10

hecto- h 10 centi- h 10

deka- da 10 deci- da 10

The only rule when using metric prefixes is that you cannot “double them up.” For example, if you have measurements in
petameters (1 Pm = 10  m), it is not proper to talk about megagigameters, although 10  x 10  = 10 . In practice, the only time this
becomes a bit confusing is when discussing masses. As we have seen, the base SI unit of mass is the kilogram (kg), but metric
prefixes need to be applied to the gram (g), because we are not allowed to “double-up” prefixes. Thus, a thousand kilograms (10
kg) is written as a megagram (1 Mg) since

Incidentally, 10  kg is also called a metric ton, abbreviated t. This is one of the units outside the SI system considered acceptable
for use with SI units.

As we see in the next section, metric systems have the advantage that conversions of units involve only powers of 10. There are
100 cm in 1 m, 1000 m in 1 km, and so on. In nonmetric systems, such as the English system of units, the relationships are not as
simple—there are 12 in in 1 ft, 5280 ft in 1 mi, and so on.

Another advantage of metric systems is that the same unit can be used over extremely large ranges of values simply by scaling it
with an appropriate metric prefix. The prefix is chosen by the order of magnitude of physical quantities commonly found in the task
at hand. For example, distances in meters are suitable in construction, whereas distances in kilometers are appropriate for air travel,
and nanometers are convenient in optical design. With the metric system there is no need to invent new units for particular
applications. Instead, we rescale the units with which we are already familiar.

Restate the mass 1.93 x 10  kg using a metric prefix such that the resulting numerical value is bigger than one but less than
1000.

Strategy

Since we are not allowed to “double-up” prefixes, we first need to restate the mass in grams by replacing the prefix symbol k
with a factor of 10  (Table ). Then, we should see which two prefixes in Table  are closest to the resulting power of
10 when the number is written in scientific notation. We use whichever of these two prefixes gives us a number between one
and 1000.

Solution

Replacing the k in kilogram with a factor of 10 , we find that

From Table , we see that 10  is between “peta-” (10 ) and “exa-” (10 ). If we use the “peta-” prefix, then we find
that 1.93 × 10  g = 1.93 × 10  Pg, since 16 = 1 + 15. Alternatively, if we use the “exa-” prefix we find that 1.93 x 10  g =
1.93 x 10 Eg, since 16 = −2 + 18. Because the problem asks for the numerical value between one and 1000, we use the
“peta-” prefix and the answer is 19.3 Pg.

Significance

It is easy to make silly arithmetic errors when switching from one prefix to another, so it is always a good idea to check that
our final answer matches the number we started with. An easy way to do this is to put both numbers in scientific notation
and count powers of 10, including the ones hidden in prefixes. If we did not make a mistake, the powers of 10 should match
up. In this problem, we started with 1.93 x 10  kg, so we have 13 + 3 = 16 powers of 10. Our final answer in scientific
notation is 1.93 x 10  Pg, so we have 1 + 15 = 16 powers of 10. So, everything checks out.
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If this mass arose from a calculation, we would also want to check to determine whether a mass this large makes any sense
in the context of the problem. For this, Figure 1.4 might be helpful.

Restate 4.79 x 10  kg using a metric prefix such that the resulting number is bigger than one but less than 1000.

Answer

Add texts here. Do not delete this text first.

This page titled 1.4: Units and Standards is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

1.3: Units and Standards by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
1.2: The Scope and Scale of Physics by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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1.5: Unit Conversion

Use conversion factors to express the value of a given quantity in different units.

It is often necessary to convert from one unit to another. For example, if you are reading a European cookbook, some quantities
may be expressed in units of liters and you need to convert them to cups. Or perhaps you are reading walking directions from one
location to another and you are interested in how many miles you will be walking. In this case, you may need to convert units of
feet or meters to miles.

1.5.1 Dimensional Homogeneity
All theoretically derived equations that describe physical phenomena must be dimensionally homogeneous. An equation is
dimensionally homogeneous if the dimensions of both sides of the equation are the same and all additive terms have the same
dimensions.

1.5.2 Converting Units

The most common errors in using units occur when converting a physical quantity from one set of units to another set. When you
convert units you are not changing the size of the physical quantity, only the numerical value associated with the units in which it is
measured.

The relationship between two units for the same dimension are typically found in a handbook as an equivalence relation, such as 
. Note again that the unit symbols are mathematical entities and cannot be neglected.

The key to converting units is to recall that multiplying a mathematical expression by unity (1) does not change the magnitude of
the mathematical expression. A unit conversion factor equals unity and can be constructed from an equivalence relation. Example
B.1 shows how to convert equivalence statements into unit conversion factors.

Convert the given equivalence relations into unit conversion factors.

Solution

The left-hand column shows the equivalence relations from a handbook and the right-hand column shows the resulting unit
conversion factors. Notice how it would be mathematically incorrect to just drop the unit symbols.

The following Example illustrates how to perform a simple unit conversion for pressure, now that we have the unit conversion
factors.

Given a pressure of , (a) convert the pressure to . (b) Now convert the pressure value to .

Solution

a)

 Learning Objectives

1 ft = 12 in

 Example 1.5.1

1 ft = 12 in

1 slug = 32.174 lbm

1 mol = 0.001 kmol

1N = 1 
kg ⋅ m

s2

⇒ 1 = 12 
in

ft

⇒ 1 = 32.174 
lbm

slug

⇒ 1 = 0.001 
kmol

mol

⇒ 1 = 1 
kg ⋅ m

s2

 Example 1.5.2

13.0 lbf/in2 lbf/ft2 N/m2
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b)

If done, correctly the intermediate units should cancel. Check this out by drawing lines through the units that cancel.

Let’s consider a simple example of how to convert units. Suppose we want to convert 80 m to kilometers. The first thing to do is to
list the units you have and the units to which you want to convert. In this case, we have units in meters and we want to convert to
kilometers. Next, we need to determine a conversion factor relating meters to kilometers. A conversion factor is a ratio that
expresses how many of one unit are equal to another unit. For example, there are 12 in. in 1 ft, 1609 m in 1 mi, 100 cm in 1 m, 60 s
in 1 min, and so on. In this case, we know that there are 1000 m in 1 km. Now we can set up our unit conversion. We write the
units we have and then multiply them by the conversion factor so the units cancel out, as shown:

Note that the unwanted meter unit cancels, leaving only the desired kilometer unit. You can use this method to convert between any
type of unit. Now, the conversion of 80 m to kilometers is simply the use of a metric prefix, as we saw in the preceding section, so
we can get the same answer just as easily by noting that

since “kilo-” means 10  and 1 = −2 + 3. However, using conversion factors is handy when converting between units that are not
metric or when converting between derived units, as the following examples illustrate.

The distance from the university to home is 10 mi and it usually takes 20 min to drive this distance. Calculate the average
speed in meters per second (m/s). (Note: Average speed is distance traveled divided by time of travel.)

Strategy

First we calculate the average speed using the given units, then we can get the average speed into the desired units by
picking the correct conversion factors and multiplying by them. The correct conversion factors are those that cancel the
unwanted units and leave the desired units in their place. In this case, we want to convert miles to meters, so we need to
know the fact that there are 1609 m in 1 mi. We also want to convert minutes to seconds, so we use the conversion of 60 s
in 1 min.

Solution
Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for
now. Average speed and other motion concepts are covered in later chapters.) In equation form,

Substitute the given values for distance and time:

Convert miles per minute to meters per second by multiplying by the conversion factor that cancels miles and leave meters,
and also by the conversion factor that cancels minutes and leave seconds:

p = 13.0  = 13.0  × = 1872.0 
lbf

in2

lbf

in2
(12  )

in

ft

2
lbf

ft2

p = 13.0  × × = 89, 627 
lbf

in2
(4.448  )

N

lbf
  

1

( )
1 in

0.0254 m

2

  
1

N

m2

80 × = 0.080 km.m
1 km

1000 m
(1.5.1)

80 m = 8.0 × m = 8.0 × km = 0.080 km,101 10−2 (1.5.2)

3

 Example : Converting Nonmetric Units to Metric1.5.3

Average speed = .
Distance

T ime

Average speed = = 0.50 .
10 mi

20 min

mi

min

0.50 × × = m/s = 13 m/s.
mile

min

1609 m

1 mile

1 min

60 s

(0.50)(1609)

60
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Significance

Check the answer in the following ways:

Be sure the units in the unit conversion cancel correctly. If the unit conversion factor was written upside down, the units do
not cancel correctly in the equation. We see the “miles” in the numerator in 0.50 mi/min cancels the “mile” in the
denominator in the first conversion factor. Also, the “min” in the denominator in 0.50 mi/min cancels the “min” in the
numerator in the second conversion factor. Check that the units of the final answer are the desired units. The problem asked
us to solve for average speed in units of meters per second and, after the cancelations, the only units left are a meter (m) in
the numerator and a second (s) in the denominator, so we have indeed obtained these units.

The density of iron is 7.86 g/cm  under standard conditions. Convert this to kg/m .

Strategy

We need to convert grams to kilograms and cubic centimeters to cubic meters. The conversion factors we need are 1 kg =
10  g and 1 cm = 10 m. However, we are dealing with cubic centimeters (cm  = cm x cm x cm), so we have to use the
second conversion factor three times (that is, we need to cube it). The idea is still to multiply by the conversion factors in
such a way that they cancel the units we want to get rid of and introduce the units we want to keep.

Solution

Significance

Remember, it’s always important to check the answer.

Be sure to cancel the units in the unit conversion correctly. We see that the gram (“g”) in the numerator in 7.86 g/cm
cancels the “g” in the denominator in the first conversion factor. Also, the three factors of “cm” in the denominator in 7.86
g/cm  cancel with the three factors of “cm” in the numerator that we get by cubing the second conversion factor. Check that
the units of the final answer are the desired units. The problem asked for us to convert to kilograms per cubic meter. After
the cancelations just described, we see the only units we have left are “kg” in the numerator and three factors of “m” in the
denominator (that is, one factor of “m” cubed, or “m ”). Therefore, the units on the final answer are correct.

Unit conversions may not seem very interesting, but not doing them can be costly. One famous example of this situation was seen
with the Mars Climate Orbiter. This probe was launched by NASA on December 11, 1998. On September 23, 1999, while
attempting to guide the probe into its planned orbit around Mars, NASA lost contact with it. Subsequent investigations showed a
piece of software called SM_FORCES (or “small forces”) was recording thruster performance data in the English units of pound-
seconds (lb • s). However, other pieces of software that used these values for course corrections expected them to be recorded in the
SI units of newton-seconds (N • s), as dictated in the software interface protocols. This error caused the probe to follow a very
different trajectory from what NASA thought it was following, which most likely caused the probe either to burn up in the Martian
atmosphere or to shoot out into space. This failure to pay attention to unit conversions cost hundreds of millions of dollars, not to
mention all the time invested by the scientists and engineers who worked on the project.

Given that 1 lb (pound) is 4.45 N, were the numbers being output by SM_FORCES too big or too small?

A tank contains  of an ideal gas. The pressure in the tank is  and the volume of the tank is . The ideal
gas constant is . Determine the temperature of the gas in the tank.

 Example : Converting between Metric Units1.5.4

3 3

3 −2 3

7.86 × × = kg/ = 7.86 × kg/
g

cm3

kg

103 g
( )

cm

m10−2

3
7.86

( )( )103 10−6
m3 103 m3

3

3

3

 Exercise 1.5.3

 Example 1.5.5

15 mol 1500 kPa 10 m3

8.314 kJ/(kmol ⋅ K)
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Strategy

Again, the check is to see if the appropriate units cancel out.

1.5.3 Weight and Mass
People frequently confuse the terms weight and mass. The weight of an object is the force exerted by the earth's gravitational field
on the object. Mathematically, , where  is the mass of the object and  is the local gravitational field strength. The local
gravitational field strength is also referred to as the local acceleration of gravity.

Standard values for the local gravitational field strength are

Standard values for the local acceleration of gravity are

TEST YOURSELF: Why do these two interpretations for  come up with similar numbers but different units?

Much of the confusion about mass and weight can be directly attributed to the fact that the mass and force units in the American
Engineering System are both called "pounds." To eliminate this problem, it is highly recommended that you only talk about pound-
force  or a pound-mass . You would never confuse a newton with a kilogram, but then they have different names.
Unfortunately, you will still find "pound" and " " used frequently to mean both mass and weight. Always approach "pounds" with
caution when doing calculations. Remember that the weight of an object is always a function of the local gravitational field
strength, but its mass is independent of the gravitational field.

This page titled 1.5: Unit Conversion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

1.4: Unit Conversion by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.
9.2: Appendix B- Dimensions and Units has no license indicated.

The ideal gas equation is pV = n T .R̄

We solve for T =
pV

nR̄

∴ T = = = × = 120.3 K
pV

nR̄

(1500 kPa) ×(10 ) m3

(15 kmol) ×(8.314  )
kJ

kmol ⋅ K

15000 kPa ⋅ m3

124.71 
kJ

K

[ ]
kJ

kPa ⋅ m3

  
1

W = mg m g

g = 9.80665 N/kg = 32.174 lbf/slug = 1.000 lbf/lbm.

g = 9.80665 m/ = 32.174ft/ .s2 s2

g

(lbf) (lbm)

lb
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1.6: Dimensional Analysis

Find the dimensions of a mathematical expression involving physical quantities.
Determine whether an equation involving physical quantities is dimensionally consistent.

The dimension of any physical quantity expresses its dependence on the base quantities as a product of symbols (or powers of
symbols) representing the base quantities. Table  lists the base quantities and the symbols used for their dimension. For
example, a measurement of length is said to have dimension L or L , a measurement of mass has dimension M or M , and a
measurement of time has dimension T or T . Like units, dimensions obey the rules of algebra. Thus, area is the product of two
lengths and so has dimension L , or length squared. Similarly, volume is the product of three lengths and has dimension L , or
length cubed. Speed has dimension length over time, L/T or LT . Volumetric mass density has dimension M/L  or ML , or mass
over length cubed. In general, the dimension of any physical quantity can be written as

for some powers a, b, c, d, e, f, and g. We can write the dimensions of a length in this form with a = 1 and the remaining six powers
all set equal to zero:

Any quantity with a dimension that can be written so that all seven powers are zero (that is, its dimension is )
is called dimensionless (or sometimes “of dimension 1,” because anything raised to the zero power is one). Physicists often call
dimensionless quantities pure numbers.

Table : Base Quantities and Their Dimensions

Base Quantity Symbol for Dimension

Length L

Mass M

Time T

Current I

Thermodynamic Temperature

Amount of Substance N

Luminous Intensity J

Physicists often use square brackets around the symbol for a physical quantity to represent the dimensions of that quantity. For
example, if r is the radius of a cylinder and h is its height, then we write [r] = L and [h] = L to indicate the dimensions of the radius
and height are both those of length, or L. Similarly, if we use the symbol A for the surface area of a cylinder and V for its volume,
then [A] = L  and [V] = L . If we use the symbol m for the mass of the cylinder and  for the density of the material from which
the cylinder is made, then [m] = M and [ ] = ML .

The importance of the concept of dimension arises from the fact that any mathematical equation relating physical quantities must
be dimensionally consistent, which means the equation must obey the following rules:

Every term in an expression must have the same dimensions; it does not make sense to add or subtract quantities of differing
dimension (think of the old saying: “You can’t add apples and oranges”). In particular, the expressions on each side of the
equality in an equation must have the same dimensions.
The arguments of any of the standard mathematical functions such as trigonometric functions (such as sine and cosine),
logarithms, or exponential functions that appear in the equation must be dimensionless. These functions require pure numbers
as inputs and give pure numbers as outputs.

 Learning Objectives

1.6.1
1 1

1

2 3

–1 3 –3

LaM bT cI dΘeN fJ g (1.6.1)

= .L1 L1M 0T 0I 0Θ0N 0J 0 (1.6.2)

L0M 0T 0I 0Θ0N 0J 0

1.6.1

Θ

2 3 ρ

ρ −3
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If either of these rules is violated, an equation is not dimensionally consistent and cannot possibly be a correct statement of physical
law. This simple fact can be used to check for typos or algebra mistakes, to help remember the various laws of physics, and even to
suggest the form that new laws of physics might take. This last use of dimensions is beyond the scope of this text, but is something
you will undoubtedly learn later in your academic career.

Suppose we need the formula for the area of a circle for some computation. Like many people who learned geometry too long
ago to recall with any certainty, two expressions may pop into our mind when we think of circles:  and . One expression
is the circumference of a circle of radius r and the other is its area. But which is which?

Strategy

One natural strategy is to look it up, but this could take time to find information from a reputable source. Besides, even if
we think the source is reputable, we shouldn’t trust everything we read. It is nice to have a way to double-check just by
thinking about it. Also, we might be in a situation in which we cannot look things up (such as during a test). Thus, the
strategy is to find the dimensions of both expressions by making use of the fact that dimensions follow the rules of algebra.
If either expression does not have the same dimensions as area, then it cannot possibly be the correct equation for the area
of a circle.

Solution

We know the dimension of area is L . Now, the dimension of the expression  is

since the constant  is a pure number and the radius r is a length. Therefore,  has the dimension of area. Similarly,
the dimension of the expression  is

since the constants 2 and  are both dimensionless and the radius r is a length. We see that  has the dimension of
length, which means it cannot possibly be an area.

We rule out  because it is not dimensionally consistent with being an area. We see that  is dimensionally
consistent with being an area, so if we have to choose between these two expressions,  is the one to choose.

Significance

This may seem like kind of a silly example, but the ideas are very general. As long as we know the dimensions of the
individual physical quantities that appear in an equation, we can check to see whether the equation is dimensionally
consistent. On the other hand, knowing that true equations are dimensionally consistent, we can match expressions from
our imperfect memories to the quantities for which they might be expressions. Doing this will not help us remember
dimensionless factors that appear in the equations (for example, if you had accidentally conflated the two expressions
from the example into , then dimensional analysis is no help), but it does help us remember the correct basic form
of equations.

Consider the physical quantities s, v, a, and t with dimensions [s] = L, [v] = LT , [a] = LT , and [t] = T. Determine whether
each of the following equations is dimensionally consistent:

a. s = vt + 0.5at ;
b. s = vt  + 0.5at; and
c. v = sin ( ).

Strategy

By the definition of dimensional consistency, we need to check that each term in a given equation has the same dimensions
as the other terms in that equation and that the arguments of any standard mathematical functions are dimensionless.

 Example : Using Dimensions to Remember an Equation1.6.1

πr2 2πr

2 πr2

[π ] = [π]⋅ [r = 1⋅ = ,r2 ]2 L2 L2 (1.6.3)

π πr2

2πr

[2πr] = [2]⋅ [π]⋅ [r] = 1⋅ 1⋅L = L, (1.6.4)

π 2πr

2πr πr2

πr2

2πr2

 Example : Checking Equations for Dimensional Consistency1.6.2

−1 −2

2

2

at2

s
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Solution

a. There are no trigonometric, logarithmic, or exponential functions to worry about in this equation, so we need only
look at the dimensions of each term appearing in the equation. There are three terms, one in the left expression and
two in the expression on the right, so we look at each in turn:

b. Again, there are no trigonometric, exponential, or logarithmic functions, so we only need to look at the dimensions
of each of the three terms appearing in the equation:

None of the three terms has the same dimension as any other, so this is about as far from being dimensionally consistent
as you can get. The technical term for an equation like this is nonsense.

c. This equation has a trigonometric function in it, so first we should check that the argument of the sine function is
dimensionless:

The argument is dimensionless. So far, so good. Now we need to check the dimensions of each of the two terms (that is,
the left expression and the right expression) in the equation:

The two terms have different dimensions—meaning, the equation is not dimensionally consistent. This equation is
another example of “nonsense.”

Significance

If we are trusting people, these types of dimensional checks might seem unnecessary. But, rest assured, any textbook on
a quantitative subject such as physics (including this one) almost certainly contains some equations with typos.
Checking equations routinely by dimensional analysis save us the embarrassment of using an incorrect equation. Also,
checking the dimensions of an equation we obtain through algebraic manipulation is a great way to make sure we did
not make a mistake (or to spot a mistake, if we made one).

One further point that needs to be mentioned is the effect of the operations of calculus on dimensions. We have seen that
dimensions obey the rules of algebra, just like units, but what happens when we take the derivative of one physical quantity with
respect to another or integrate a physical quantity over another? The derivative of a function is just the slope of the line tangent to
its graph and slopes are ratios, so for physical quantities v and t, we have that the dimension of the derivative of v with respect to t
is just the ratio of the dimension of v over that of t:

Similarly, since integrals are just sums of products, the dimension of the integral of v with respect to t is simply the dimension of v
times the dimension of t:

[s] = L (1.6.5)

[vt] = [v]⋅ [t] = L ⋅T = L = LT −1 T 0 (1.6.6)

[0.5a ] = [a]⋅ [t = L ⋅ = L = L.t2 ]2 T −2 T 2 T 0 (1.6.7)

[s] = L (1.6.8)

[v ] = [v]⋅ [t = L ⋅ = LTt2 ]2 T −1 T 2 (1.6.9)

[at] = [a]⋅ [t] = L ⋅T = L .T −2 T −1 (1.6.10)

[ ] = = = = 1.
at2

s

[a]⋅ [t]2

[s]

L ⋅T −2 T 2

L

L

L
(1.6.11)

[v] = LT −1 (1.6.12)

[sin( )] = 1.
at2

s
(1.6.13)

[ ] = .
dv

dt

[v]

[t]
(1.6.14)
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By the same reasoning, analogous rules hold for the units of physical quantities derived from other quantities by integration or
differentiation.

This page titled 1.6: Dimensional Analysis is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

1.5: Dimensional Analysis by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.

[∫ vdt] = [v]⋅ [t]. (1.6.15)
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1.7: How to Solve Problems in this Course

Describe the process for developing a problem-solving strategy.
Explain how to find the numerical solution to a problem.
Summarize the process for assessing the significance of the numerical solution to a problem.

Problem-solving skills are clearly essential to success in a quantitative course in physics. More important, the ability to apply broad
physical principles—usually represented by equations—to specific situations is a very powerful form of knowledge. It is much
more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations
whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for
solving problems in this text and for applying physics in everyday life.

As you are probably well aware, a certain amount of creativity and insight is required to solve problems. No rigid procedure works
every time. Creativity and insight grow with experience. With practice, the basics of problem solving become almost automatic.
One way to get practice is to work out the text’s examples for yourself as you read. Another is to work as many end-of-section
problems as possible, starting with the easiest to build confidence and then progressing to the more difficult. After you become
involved in physics, you will see it all around you, and you can begin to apply it to situations you encounter outside the classroom,
just as is done in many of the applications in this text.

Although there is no simple step-by-step method that works for every problem, the following processes facilitates problem solving
and make it more meaningful. Two approaches are provided:

Physics Approach
For this approach, a three-stage process is usedl. The three stages are strategy, solution, and significance. This process is used in
examples throughout the book. Here, we look at each stage of the process in turn.

1.7.1 Strategy
Strategy is the beginning stage of solving a problem. The idea is to figure out exactly what the problem is and then develop a
strategy for solving it. Some general advice for this stage is as follows:

Examine the situation to determine which physical principles are involved. It often helps to draw a simple sketch at the
outset. You often need to decide which direction is positive and note that on your sketch. When you have identified the physical
principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation
is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical
quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.
Make a list of what is given or can be inferred from the problem as stated (identify the “knowns”). Many problems are
stated very succinctly and require some inspection to determine what is known. Drawing a sketch be very useful at this point as
well. Formally identifying the knowns is of particular importance in applying physics to real-world situations. For example, the
word stopped means the velocity is zero at that instant. Also, we can often take initial time and position as zero by the
appropriate choice of coordinate system.
Identify exactly what needs to be determined in the problem (identify the unknowns). In complex problems, especially, it
is not always obvious what needs to be found or in what sequence. Making a list can help identify the unknowns.
Determine which physical principles can help you solve the problem. Since physical principles tend to be expressed in the
form of mathematical equations, a list of knowns and unknowns can help here. It is easiest if you can find equations that contain
only one unknown—that is, all the other variables are known—so you can solve for the unknown easily. If the equation contains
more than one unknown, then additional equations are needed to solve the problem. In some problems, several unknowns must
be determined to get at the one needed most. In such problems it is especially important to keep physical principles in mind to
avoid going astray in a sea of equations. You may have to use two (or more) different equations to get the final answer.

 Learning Objectives
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1.7.2 Solution
The solution stage is when you do the math. Substitute the knowns (along with their units) into the appropriate equation and
obtain numerical solutions complete with units. That is, do the algebra, calculus, geometry, or arithmetic necessary to find the
unknown from the knowns, being sure to carry the units through the calculations. This step is clearly important because it produces
the numerical answer, along with its units. Notice, however, that this stage is only one-third of the overall problem-solving process.

1.7.3 Significance

After having done the math in the solution stage of problem solving, it is tempting to think you are done. But, always remember
that physics is not math. Rather, in doing physics, we use mathematics as a tool to help us understand nature. So, after you obtain a
numerical answer, you should always assess its significance:

Check your units. If the units of the answer are incorrect, then an error has been made and you should go back over your
previous steps to find it. One way to find the mistake is to check all the equations you derived for dimensional consistency.
However, be warned that correct units do not guarantee the numerical part of the answer is also correct.
Check the answer to see whether it is reasonable. Does it make sense? This step is extremely important: –the goal of physics
is to describe nature accurately. To determine whether the answer is reasonable, check both its magnitude and its sign, in
addition to its units. The magnitude should be consistent with a rough estimate of what it should be. It should also compare
reasonably with magnitudes of other quantities of the same type. The sign usually tells you about direction and should be
consistent with your prior expectations. Your judgment will improve as you solve more physics problems, and it will become
possible for you to make finer judgments regarding whether nature is described adequately by the answer to a problem. This
step brings the problem back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper
understanding of physics than just being able to solve a problem mechanically.
Check to see whether the answer tells you something interesting. What does it mean? This is the flip side of the question:
Does it make sense? Ultimately, physics is about understanding nature, and we solve physics problems to learn a little
something about how nature operates. Therefore, assuming the answer does make sense, you should always take a moment to
see if it tells you something about the world that you find interesting. Even if the answer to this particular problem is not very
interesting to you, what about the method you used to solve it? Could the method be adapted to answer a question that you do
find interesting? In many ways, it is in answering questions such as these science that progresses.

Engineering Approach
The engineering approach is not fundamentally different from the approach described above. In other words, either approach
works.

Engineering problem solving is based on the study of models that describe real systems. In every case, the real system must be
modeled by making simplifying assumptions before any mathematical or empirical analysis can be performed. Realistic and useful
answers can only be obtained if the modeling assumptions "catch" the important features of the problem. The behavior of any
model is constrained by the physical laws it incorporates and the modeling assumptions used in its development. Two different
models for the same system may behave in entirely different ways. The engineers' job is to develop the "best" model for the
problem at hand.

Because most mistakes are made in the process of developing the model it is essential that you learn to solve problems in a
methodical fashion that documents your solution process including your modeling assumptions. Engineering calculations are part
of the archival record of any engineering project and are frequently referred to years after the original work is completed. Many a
junior engineer begins a new job by reviewing engineering calculations performed by others.

To help you develop your engineering problem solving skills, a multi-step process is proposed to help you (1) organize your
thoughts, (2) document your solution, and (3) improve your ability to solve new problems. A summary of the steps is presented in
Figure A-1. A sample problem showing the format can be found at the end of this appendix. As with any heuristic, this one does
not guarantee a solution; however, its usefulness has been proven so frequently that we want you to use it in this course.

Figure A-1

SUMMARY OF PROBLEM SOLVING STEPS
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SUMMARY OF PROBLEM SOLVING STEPS

KNOWN: In your own words, state briefly what is known. (Step #1)
FIND: State concisely what you are trying to find. (Step #2)
GIVEN: Translate the problem word statement into sketches and symbolic notation. All pertinent information given explicitly in the
problem statement should be listed here. (Step #3)
ANALYSIS: Develop a model and solve for desired information.

Develop a strategy. (STRATEGY) (Step #4)
Make modeling assumptions. (Clearly identified.) (Step #5)
Develop and solve the model. (Step #6)

Develop symbolic solutions.
Calculate numerical values.
Check the reasonableness of your answers.

COMMENT: Discuss your results. (Step #7)

A more detailed discussion of each step is presented in the following sections. (Based on material in Fundamentals of Engineering
Thermodynamics by M. J. Moran and H. N. Shapiro, J. Wiley & Sons, Inc., New York, 1988.)

KNOWN: In your own words, state briefly what is known. Read the problem statement and think about what it says. Do not just
blindly copy the problem statement over again or list every detail of the problem. Construct a short sentence that summarizes the
situation.

FIND: State concisely what you are trying to find. (If you don't know what you are looking for, how do you know when you've
found it?) Do not just copy (a)...., (b)...., etc. from the problem and do not assume that you must find things in the order implied in
the problem statement.

GIVEN: Translate the word statement of the problem into engineering sketches and symbolic notation. When completed, you
should be able to throw away the original problem statement because you have recorded all of the pertinent information.

Draw and label a sketch of the physical system or device. (If you cannot visualize the problem, you probably can't solve it!) If you
anticipate using a conservation or accounting principle, identify the boundaries (control surfaces) of the system you select for your
analysis and identify the interactions between this system and the surroundings, e.g. forces, work, mass flow, etc.

Define symbols for the important variables and parameters of the problem. Record the numerical values given for the important
variables and parameters.

Label the diagram with all relevant information from the problem statement. This is where you record all of the information
explicitly given in the problem statement.

Be especially wary of making implicit assumptions as you prepare this section. Recognize the difference between information that
is given explicitly in the problem and your interpretation of the information.

ANALYSIS: It is in this section that an appropriate mathematical model is developed and used to find the desired information. As
you prepare this section, carefully annotate your solution with words that describe what you are doing. This commentary is
invaluable in exposing your thought processes and if need be in recreating it at a later time.

Develop a strategy. Every solution should include some initial statements that reveal your plan for solving the problem. As a
starting point, clearly state what you believe to be the physical laws or concepts that will be important in solving this problem.
What's the property to be counted? What’s the appropriate system? What's the appropriate time period? What constitutive
relationships may be required? 
Your initial strategy may not be the best approach or the only approach. It may not even be correct approach, but as you proceed
through the analysis process your plans may change. As they do just document them. 
To stress the importance of consciously thinking about the problem, every analysis section should start with a brief subsection
labeled STRATEGY.
Make modeling assumptions. Every problem solution requires that you make modeling assumptions. These assumptions are
based on the information given in the problem statement, your interpretation of the given information, and your understanding
of the underlying phenomena. Every model begins with universally accepted natural laws, and the assumptions provide the
traceable link between the fundamental laws and problem-specific model you have developed. All assumptions should be
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clearly identified as they are applied. You should be able to give a logical reason for every modeling assumption you make. If
you cannot, it probably is an incorrect assumption. 
Some problem solving formats call for a separate section listing all assumptions before you begin your analysis. There are two
problems with this approach. First, experience shows that it is often difficult to know exactly what assumptions to make until
you are building the model. Secondly, separating the assumptions from their application in the model tends to hide how they
influence the modeling process. If a summary list is desired, it should be prepared after the analysis is completed.
Develop symbolic solutions. Symbolic solutions are critical in engineering analysis and should always be developed and
examined before you insert numerical values. The physics is in the symbolic solution, not the numerical answer. If the symbolic
solution is incorrect, there’s no hope for the numbers. If possible, solve an equation for the unknown quantity and isolate it on
one side of the equal sign. It is desirable to work with symbolic equations as long as possible before substituting in numbers for
many reasons. Symbolic solutions are especially useful when you are looking for errors, for solving parametric problems where
certain parameters change, and are much easier to modify as your model develops. Look for groups of terms or ways to
rearrange you symbolic answer that simplify the equation and allow you to check for dimensional consistency. Groups of terms
with physical meaning or logical intermediate values should be assigned a unique symbol. Numerical values for these
intermediate answers can then be calculated and checked separately.
Calculate numerical values. Examine your symbolic solution and see if it makes sense. Once you are satisfied with the
symbolic solution, substitute in the numbers and calculate the numerical answer. It is good practice to identify the source, e.g.
table, chart, or book, of all numerical data used in the solution, especially if it is not common knowledge. It is also good
practice to calculate intermediate or partial numerical answers when you are faced with a very long computation or complicated
equation. This prevents calculator errors from creeping into a problem and gives you an opportunity to check the answers
against your physical intuition.
Check the reasonableness of your answers. Once you have a numerical answer, consider the magnitude and sign of all values
and decide whether they are reasonable. One way to do this is to compare your answer against the results of a simpler model or
models that would be expected to bracket your answer. Try different units for the answer, say gallons per minute instead of liters
per second, to match your experience.

As you prepare the analysis, do not waste time recopying the solution over again if you reach a dead end or make a mistake. Just
cross out the error, clearly identify the mistake, and keep going. Textbook examples and professors' notes give the mistaken
impression that problem solving is a linear process that follows a single path with no mistakes and no side trips. Everyone makes
mistakes, takes unexpected side trips, and forgets to make an important assumption.

Successful problem solvers acknowledge these diversions and learn from them. You should never start a problem more than once;
however, your solution may take several turns before you are satisfied with the answer. The record of your journey is important.
Don't "clean up" the solution. Clean up your standard problem solving method because a sloppy solution is usually the result of
sloppy thinking. Get in the habit of attacking every problem in the same way. Scrap paper is meant for doodles, not engineering
calculations.

COMMENTS: Discuss your results briefly. Comment on what you learned, identify key aspects of the solution, and indicate how
your model might be improved by changing assumptions. Consciously check the validity of your answer by considering simpler
models. Don't wait for someone else (like your boss or instructor) to find an error in your work by performing a five-minute "back-
of-the-envelope" calculation you could have performed before submitting your answer.

This page titled 1.7: How to Solve Problems in this Course is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

1.8: Solving Problems in Physics by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
9.1: Appendix A- Solving Engineering Problems - A Problem-Solving Heuristic has no license indicated.
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1.E: Practice-

1.E.1 Conceptual Questions

1.E.1.1 The Scope and Scale of Physics
1. What is physics?
2. Some have described physics as a “search for simplicity.” Explain why this might be an appropriate description.
3. If two different theories describe experimental observations equally well, can one be said to be more valid than the other

(assuming both use accepted rules of logic)?
4. What determines the validity of a theory?
5. Certain criteria must be satisfied if a measurement or observation is to be believed. Will the criteria necessarily be as strict for

an expected result as for an unexpected result?
6. Can the validity of a model be limited or must it be universally valid? How does this compare with the required validity of a

theory or a law?

1.E.1.2 Units and Standards
7. Identify some advantages of metric units.
8. What are the SI base units of length, mass, and time?
9. What is the difference between a base unit and a derived unit? (b) What is the difference between a base quantity and a derived

quantity? (c) What is the difference between a base quantity and a base unit?
10. For each of the following scenarios, refer to Figure 1.4 and Table 1.2 to determine which metric prefix on the meter is most

appropriate for each of the following scenarios. (a) You want to tabulate the mean distance from the Sun for each planet in the
solar system. (b) You want to compare the sizes of some common viruses to design a mechanical filter capable of blocking the
pathogenic ones. (c) You want to list the diameters of all the elements on the periodic table. (d) You want to list the distances to
all the stars that have now received any radio broadcasts sent from Earth 10 years ago.

1.E.1.3 Significant Figures
11. (a) What is the relationship between the precision and the uncertainty of a measurement? (b) What is the relationship between

the accuracy and the discrepancy of a measurement?

1.E.1.4 Solving Problems in Physics
12. What information do you need to choose which equation or equations to use to solve a problem?
13. What should you do after obtaining a numerical answer when solving a problem?

1.E.2 Problems

1.E.2.1 The Scope and Scale of Physics
14. Find the order of magnitude of the following physical quantities.

a. The mass of Earth’s atmosphere: 5.1 × 10  kg;
b. The mass of the Moon’s atmosphere: 25,000 kg;
c. The mass of Earth’s hydrosphere: 1.4 × 10  kg;
d. The mass of Earth: 5.97 × 10  kg;
e. The mass of the Moon: 7.34 × 10  kg;
f. The Earth–Moon distance (semi-major axis): 3.84 × 10 m;
g. The mean Earth–Sun distance: 1.5 × 10 m;
h. The equatorial radius of Earth: 6.38 × 10 m;
i. The mass of an electron: 9.11 × 10  kg;
j. The mass of a proton: 1.67 × 10  kg;
k. The mass of the Sun: 1.99 × 10  kg.

15. Use the orders of magnitude you found in the previous problem to answer the following questions to within an order of
magnitude.
a. How many electrons would it take to equal the mass of a proton?
b. How many Earths would it take to equal the mass of the Sun?
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c. How many Earth–Moon distances would it take to cover the distance from Earth to the Sun?
d. How many Moon atmospheres would it take to equal the mass of Earth’s atmosphere?
e. How many moons would it take to equal the mass of Earth?
f. How many protons would it take to equal the mass of the Sun?

For the remaining questions, you need to use Figure 1.4 to obtain the necessary orders of magnitude of lengths, masses, and times.

16. Roughly how many heartbeats are there in a lifetime?
17. A generation is about one-third of a lifetime. Approximately how many generations have passed since the year 0 AD?
18. Roughly how many times longer than the mean life of an extremely unstable atomic nucleus is the lifetime of a human?
19. Calculate the approximate number of atoms in a bacterium. Assume the average mass of an atom in the bacterium is 10 times

the mass of a proton.
20. (a) Calculate the number of cells in a hummingbird assuming the mass of an average cell is 10 times the mass of a bacterium.

(b) Making the same assumption, how many cells are there in a human?
21. Assuming one nerve impulse must end before another can begin, what is the maximum firing rate of a nerve in impulses per

second?
22. About how many floating-point operations can a supercomputer perform each year?
23. Roughly how many floating-point operations can a supercomputer perform in a human lifetime?

1.E.2.2 Units and Standards
24. The following times are given using metric prefixes on the base SI unit of time: the second. Rewrite them in scientific notation

without the prefix. For example, 47 Ts would be rewritten as 4.7 × 10  s.
a. 980 Ps;
b. 980 fs;
c. 17 ns;
d. 577 µs.

25. The following times are given in seconds. Use metric prefixes to rewrite them so the numerical value is greater than one but less
than 1000. For example, 7.9 × 10  s could be written as either 7.9 cs or 79 ms.

a. 9.57 × 10  s;
b. 0.045 s;
c. 5.5 × 10  s;
d. 3.16 × 10  s.

26. The following lengths are given using metric prefixes on the base SI unit of length: the meter. Rewrite them in scientific
notation without the prefix. For example, 4.2 Pm would be rewritten as 4.2 × 10 m.
a. 89 Tm;
b. 89 pm;
c. 711 mm;
d. 0.45 µm.

27. The following lengths are given in meters. Use metric prefixes to rewrite them so the numerical value is bigger than one but less
than 1000. For example, 7.9 × 10  m could be written either as 7.9 cm or 79 mm.
a. 7.59 × 10 m;
b. 0.0074 m;
c. 8.8 × 10 m;
d. 1.63 × 10 m.

28. The following masses are written using metric prefixes on the gram. Rewrite them in scientific notation in terms of the SI base
unit of mass: the kilogram. For example, 40 Mg would be written as 4 × 10  kg.
a. 23 mg;
b. 320 Tg;
c. 42 ng;
d. 7 g;
e. 9 Pg.
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29. The following masses are given in kilograms. Use metric prefixes on the gram to rewrite them so the numerical value is bigger
than one but less than 1000. For example, 7 × 10−4 kg could be written as 70 cg or 700 mg.
a. 3.8 × 10−5 kg;
b. 2.3 × 1017 kg;
c. 2.4 × 10−11 kg;
d. 8 × 1015 kg;
e. 4.2 × 10−3 kg.

1.E.2.3 Unit Conversion
30. The volume of Earth is on the order of 10  m . (a) What is this in cubic kilometers (km )? (b) What is it in cubic miles (mi )?

(c) What is it in cubic centimeters (cm )?
31. The speed limit on some interstate highways is roughly 100 km/h. (a) What is this in meters per second? (b) How many miles

per hour is this?
32. A car is traveling at a speed of 33 m/s. (a) What is its speed in kilometers per hour? (b) Is it exceeding the 90 km/ h speed limit?
33. In SI units, speeds are measured in meters per second (m/s). But, depending on where you live, you’re probably more

comfortable of thinking of speeds in terms of either kilometers per hour (km/h) or miles per hour (mi/h). In this problem, you
will see that 1 m/s is roughly 4 km/h or 2 mi/h, which is handy to use when developing your physical intuition. More precisely,
show that (a) 1.0 m/s = 3.6 km/h and (b) 1.0 m/s = 2.2 mi/h.

34. American football is played on a 100-yd-long field, excluding the end zones. How long is the field in meters? (Assume that 1 m
= 3.281 ft.)

35. Soccer fields vary in size. A large soccer field is 115 m long and 85.0 m wide. What is its area in square feet? (Assume that 1 m
= 3.281 ft.)

36. What is the height in meters of a person who is 6 ft 1.0 in. tall?
37. Mount Everest, at 29,028 ft, is the tallest mountain on Earth. What is its height in kilometers? (Assume that 1 m = 3.281 ft.)
38. The speed of sound is measured to be 342 m/s on a certain day. What is this measurement in kilometers per hour?
39. Tectonic plates are large segments of Earth’s crust that move slowly. Suppose one such plate has an average speed of 4.0 cm/yr.

(a) What distance does it move in 1.0 s at this speed? (b) What is its speed in kilometers per million years?
40. The average distance between Earth and the Sun is 1.5 × 10 m. (a) Calculate the average speed of Earth in its orbit (assumed

to be circular) in meters per second. (b) What is this speed in miles per hour?
41. The density of nuclear matter is about 10  kg/m . Given that 1 mL is equal in volume to cm , what is the density of nuclear

matter in megagrams per microliter (that is, Mg/µL)?
42. The density of aluminum is 2.7 g/cm . What is the density in kilograms per cubic meter?
43. A commonly used unit of mass in the English system is the pound-mass, abbreviated lbm, where 1 lbm = 0.454 kg. What is the

density of water in pound-mass per cubic foot?
44. A furlong is 220 yd. A fortnight is 2 weeks. Convert a speed of one furlong per fortnight to millimeters per second.
45. It takes  radians (rad) to get around a circle, which is the same as 360°. How many radians are in 1°?
46. Light travels a distance of about 3 × 10 m/s. A light-minute is the distance light travels in 1 min. If the Sun is 1.5 × 10 m

from Earth, how far away is it in lightminutes?
47. A light-nanosecond is the distance light travels in 1 ns. Convert 1 ft to light-nanoseconds.
48. An electron has a mass of 9.11 × 10  kg. A proton has a mass of 1.67 × 10  kg. What is the mass of a proton in electron-

masses?
49. A fluid ounce is about 30 mL. What is the volume of a 12 fl-oz can of soda pop in cubic meters?

1.E.2.4 Dimensional Analysis
50. A student is trying to remember some formulas from geometry. In what follows, assume A is area, V is volume, and all other

variables are lengths. Determine which formulas are dimensionally consistent. (a) V = ; (b) A = ; (c) V =
0.5bh; (d) V =  ; (e) V = 

51. Consider the physical quantities s, v, a, and t with dimensions [s] = L, [v] = LT , [a] = LT , and [t] = T. Determine whether
each of the following equations is dimensionally consistent. (a) v  = 2as; (b) s = vt  + 0.5at ; (c) v = s/t; (d) a = v/t.

52. Consider the physical quantities m, s, v, a, and t with dimensions [m] = M, [s] = L, [v] = LT , [a] = LT , and [t] = T. Assuming
each of the following equations is dimensionally consistent, find the dimension of the quantity on the left-hand side of the
equation: (a) F = ma; (b) K = 0.5mv  ; (c) p = mv; (d) W = mas; (e) L = mvr.
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53. Suppose quantity s is a length and quantity t is a time. Suppose the quantities v and a are defined by v = ds/dt and a = dv/dt. (a)
What is the dimension of v? (b) What is the dimension of the quantity a? What are the dimensions of (c) vdt, (d) adt, and (e)
da/dt?

54. Suppose [V] = L3 , [ρ] = ML , and [t] = T. (a) What is the dimension of dV ? (b) What is the dimension of dV/dt? (c) What
is the dimension of (dV/dt)?

55. The arc length formula says the length s of arc subtended by angle  in a circle of radius r is given by the equation s = r .
What are the dimensions of (a) s, (b) r, and (c) ?

1.E.2.5 Significant Figures
66. Consider the equation 4000/400 = 10.0. Assuming the number of significant figures in the answer is correct, what can you say

about the number of significant figures in 4000 and 400?
67. Suppose your bathroom scale reads your mass as 65 kg with a 3% uncertainty. What is the uncertainty in your mass (in

kilograms)?
68. A good-quality measuring tape can be off by 0.50 cm over a distance of 20 m. What is its percent uncertainty?
69. An infant’s pulse rate is measured to be 130 ± 5 beats/ min. What is the percent uncertainty in this measurement?
70. (a) Suppose that a person has an average heart rate of 72.0 beats/min. How many beats does he or she have in 2.0 years? (b) In

2.00 years? (c) In 2.000 years?
71. A can contains 375 mL of soda. How much is left after 308 mL is removed?
72. State how many significant figures are proper in the results of the following calculations: (a) (106.7)(98.2) / (46.210)(1.01); (b)

(18.7)  ; (c) (1.60 × 10 )(3712)
73. (a) How many significant figures are in the numbers 99 and 100.? (b) If the uncertainty in each number is 1, what is the percent

uncertainty in each? (c) Which is a more meaningful way to express the accuracy of these two numbers: significant figures or
percent uncertainties?

74. (a) If your speedometer has an uncertainty of 2.0 km/h at a speed of 90 km/h, what is the percent uncertainty? (b) If it has the
same percent uncertainty when it reads 60 km/ h, what is the range of speeds you could be going?

75. (a) A person’s blood pressure is measured to be 120 ± 2 mm Hg. What is its percent uncertainty? (b) Assuming the same
percent uncertainty, what is the uncertainty in a blood pressure measurement of 80 mm Hg?

76. A person measures his or her heart rate by counting the number of beats in 30 s. If 40 ± 1 beats are counted in 30.0 ± 0.5 s, what
is the heart rate and its uncertainty in beats per minute?

77. What is the area of a circle 3.102 cm in diameter?
78. Determine the number of significant figures in the following measurements: (a) 0.0009, (b) 15,450.0, (c) 6×103 , (d) 87.990,

and (e) 30.42.
79. Perform the following calculations and express your answer using the correct number of significant digits. (a) A woman has

two bags weighing 13.5 lb and one bag with a weight of 10.2 lb. What is the total weight of the bags? (b) The force F on an
object is equal to its mass m multiplied by its acceleration a. If a wagon with mass 55 kg accelerates at a rate of 0.0255 m/s ,
what is the force on the wagon? (The unit of force is called the newton and it is expressed with the symbol N.)

1.E.3 Additional Problems
80. Consider the equation y = mt +b, where the dimension of y is length and the dimension of t is time, and m and b are constants.

What are the dimensions and SI units of (a) m and (b) b?

81. Consider the equation , where s is a length and t is a time. What are the dimensions
and SI units of (a) s , (b) v , (c) a , (d) j , (e) S , and (f) c?

82. (a) A car speedometer has a 5% uncertainty. What is the range of possible speeds when it reads 90 km/h? (b) Convert this range
to miles per hour. Note 1 km = 0.6214 mi.

83. A marathon runner completes a 42.188-km course in 2 h, 30 min, and 12 s. There is an uncertainty of 25 m in the distance
traveled and an uncertainty of 1 s in the elapsed time. (a) Calculate the percent uncertainty in the distance. (b) Calculate the
percent uncertainty in the elapsed time. (c) What is the average speed in meters per second? (d) What is the uncertainty in the
average speed?

84. The sides of a small rectangular box are measured to be 1.80 ± 0.1 cm, 2.05 ± 0.02 cm, and 3.1 ± 0.1 cm long. Calculate its
volume and uncertainty in cubic centimeters.

85. When nonmetric units were used in the United Kingdom, a unit of mass called the pound-mass (lbm) was used, where 1 lbm =
0.4539 kg. (a) If there is an uncertainty of 0.0001 kg in the pound-mass unit, what is its percent uncertainty? (b) Based on that
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percent uncertainty, what mass in pound-mass has an uncertainty of 1 kg when converted to kilograms?
86. The length and width of a rectangular room are measured to be 3.955 ± 0.005 m and 3.050 ± 0.005 m. Calculate the area of the

room and its uncertainty in square meters.
87. A car engine moves a piston with a circular cross-section of 7.500 ± 0.002 cm in diameter a distance of 3.250 ± 0.001 cm to

compress the gas in the cylinder. (a) By what amount is the gas decreased in volume in cubic centimeters? (b) Find the
uncertainty in this volume.

1.E.4 Challenge Problems
88. The first atomic bomb was detonated on July 16, 1945, at the Trinity test site about 200 mi south of Los Alamos. In 1947, the

U.S. government declassified a film reel of the explosion. From this film reel, British physicist G. I. Taylor was able to
determine the rate at which the radius of the fireball from the blast grew. Using dimensional analysis, he was then able to
deduce the amount of energy released in the explosion, which was a closely guarded secret at the time. Because of this, Taylor
did not publish his results until 1950. This problem challenges you to recreate this famous calculation.
a. Using keen physical insight developed from years of experience, Taylor decided the radius r of the fireball should depend

only on time since the explosion, t, the density of the air, ρ, and the energy of the initial explosion, E. Thus, he made the
educated guess that  for some dimensionless constant k and some unknown exponents a, b, and c. Given that
[E] = ML T , determine the values of the exponents necessary to make this equation dimensionally consistent. (Hint:
Notice the equation implies that  and that [k] = 1.)

b. By analyzing data from high-energy conventional explosives, Taylor found the formula he derived seemed to be valid as
long as the constant k had the value 1.03. From the film reel, he was able to determine many values of r and the
corresponding values of t. For example, he found that after 25.0 ms, the fireball had a radius of 130.0 m. Use these values,
along with an average air density of 1.25 kg/m , to calculate the initial energy release of the Trinity detonation in joules (J).
(Hint: To get energy in joules, you need to make sure all the numbers you substitute in are expressed in terms of SI base
units.) (c) The energy released in large explosions is often cited in units of “tons of TNT” (abbreviated “t TNT”), where 1 t
TNT is about 4.2 GJ. Convert your answer to (b) into kilotons of TNT (that is, kt TNT). Compare your answer with the
quick-and-dirty estimate of 10 kt TNT made by physicist Enrico Fermi shortly after witnessing the explosion from what was
thought to be a safe distance. (Reportedly, Fermi made his estimate by dropping some shredded bits of paper right before the
remnants of the shock wave hit him and looked to see how far they were carried by it.)

89. The purpose of this problem is to show the entire concept of dimensional consistency can be summarized by the old saying
“You can’t add apples and oranges.” If you have studied power series expansions in a calculus course, you know the standard
mathematical functions such as trigonometric functions, logarithms, and exponential functions can be expressed as infinite sums
of the form  where the a  are dimensionless constants for all n = 0, 1, 2, ⋯ and
x is the argument of the function. (If you have not studied power series in calculus yet, just trust us.) Use this fact to explain
why the requirement that all terms in an equation have the same dimensions is sufficient as a definition of dimensional
consistency. That is, it actually implies the arguments of standard mathematical functions must be dimensionless, so it is not
really necessary to make this latter condition a separate requirement of the definition of dimensional consistency as we have
done in this section.

1.E.5 Contributors and Attributions

Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

This page titled 1.E: Practice- is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

1.E: Units and Measurement (Exercises) has no license indicated. Original source: https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-013-electromagnetics-and-applications-spring-2009.
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2.1: Introduction
You might well wonder why we start off a physics book with a chapter on mathematics. The thing is, the mathematics covered in
this chapter is mathematics you are supposed to already know. The problem is that you might be a little bit rusty with it. We don’t
want that rust to get in the way of your learning of the physics. So, we try to knock the rust off of the mathematics that you are
supposed to already know, so that you can concentrate on the physics. As much as we emphasize that this is a physics course rather
than a mathematics course, there is no doubt that you will advance your mathematical knowledge if you take this course seriously.
You will use mathematics as a tool, and as with any tool, the more you use it the better you get at using it. Some of the mathematics
in this book is expected to be new to you. The mathematics that is expected to be new to you will be introduced in recitation on an
as-needed basis. It is anticipated that you will learn and use some calculus in this course before you ever see it in a mathematics
course. (This book is addressed most specifically to students who have never had a physics course before and have never had a
calculus course before but are currently enrolled in a calculus course. If you have already taken calculus, physics, or both, then you
have a well earned advantage.) Two points of emphasis regarding the mathematical component of your solutions to physics
problems that have a mathematical component are in order:

1. You are required to present a clear and complete analytical solution to each problem. This means that you will be manipulating
symbols (letters) rather than numbers.

2. For any physical quantity, you are required to use the symbol which is conventionally used by physicists, and/or a symbol
chosen to add clarity to your solution. In other words, it is not okay to use the symbol x to represent every unknown.

Aside from the calculus, here are some of the kinds of mathematical problems you have to be able to solve:

The reciprocal of  is not . Try it in the case of some simple numbers. Suppose  and . Then 
, and the reciprocal of is  which is clearly not 6 (which is what you obtain if you take the

reciprocal of  to be ). So what is the reciprocal of  ? The reciprocal of  is .

2.1.1 Problems Involving Percent Change
A cart is traveling along a track. As it passes through a photogate  its speed is measured to be . Later, at a second
photogate, the speed of the cart is measured to be . Find the percent change in the speed of the cart.

The percent change in anything is the change divided by the original, all times 100%. (I’ve emphasized the word “original”
because the most common mistake in these kinds of problems is dividing the change by the wrong thing.) The change in a
quantity is the new value minus the original value. (The most common mistake here is reversing the order. If you forget
which way it goes, think of a simple problem for which you know the answer and see how you must arrange the new and
original values to make it come out right. For instance, suppose you gained 2 kg over the summer. You know that the change
in your mass is +2 kg. You can calculate the difference both ways—we’re talking trial and error with at most two trials.
You’ll quickly find out that it is “the new value minus the original value” a.k.a. “final minus initial” that yields the correct
value for the change.)

Okay, now let’s solve the given problem

Recalling that the change is the new value minus the original value we have

While it’s certainly okay to memorize this by accident because of familiarity with it, you should concentrate on being able to
derive it using common sense (rather than working at memorizing it). Substituting the given values for the case at hand we
obtain
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x+y x = 2 y = 4

+ = + = + =1
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1
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3
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3
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1
4

2 +4 +1
x

1
y

+1
x

1
y

1

+
1
x

1
y

1 3.40m/s
3.52m/s

%Change = 100%
change

original
(2.1.1)

%Change = 100%
new−original

original
(2.1.2)

%Change = 100%
3.52 −3.40m

s
m
s

3.40 m
s

(2.1.3)

%Change = 3.5% (2.1.4)
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2.1.2 Problems Involving Right Triangles

The length of the shorter side of a right triangle is  and the length of the hypotenuse is . Find the length of the longer side
and find both of the angles, aside from the right angle, in the triangle.

Solution

Draw the triangle such that it is obvious 

which side is the shorter side → 

Pythagorean Theorem → 

Subtract \x^2 from both sides of the equation → 

Swap sides → 

Take the square root of both 

sides of the equation → \(y=\sqrt{r^2-x^2})\)

By definition, the sine of θ is the side 

opposite θ divided by the hypotenuse → sinθ=

 
Take the arcsine of both sides of the 

equation in order to get θ by itself → θ=sin

By definition, the cosine of ϕ is the side 

adjacent to ϕ divided by the hypotenuse → cosϕ= 

Take the arccosine of both sides of the 

equation in order to get ϕ by itself → ϕ=cos

To solve a problem like the one above, you need to memorize the relations between the sides and the angles of a right triangle.
A convenient mnemonic  for doing so is “SOHCAHTOA ” 

pronounced as a single word. 

Referring to the diagram above right:

SOH reminds us that:: sinθ=

CAH reminds us that:: cosθ=  

TOA reminds us that:: tanθ=

 Example :2.1.1

x r

= +r2 x2 y2

− =r2 x2 y2

= −y2 r2 x2

x

r

-1 x

r

x

r

1 x

r

2

Opposite

Hypotenuse

Adjacent

Hypotenuse
Opposite

Adhacent
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Points to remember: 
1. The angle θ is never the 90 degree angle. 
2. The words “opposite” and “adjacent” designate sides relative to the angle. For instance, 
the cosine of θ is the length of the side adjacent to θ divided by the length of the 
hypotenuse.

You also need to know about the arcsine and the arccosine functions to solve the example problem above. The arcsine function
is the inverse of the sine function. The answer to the question, “What is the arcsine of 0.44?” is, “that angle whose sine is 0.44
.” There is an arcsine button on your calculator. It is typically labeled sin-1, to be read, “arcsine.” To use it you probably have
to hit the inverse button or the second function button on your calculator first.

The inverse function of a function undoes what the function does. Thus:

sin sinθ =θ

Furthermore, the sine function is the inverse function to the arcsine function and the cosine function is the inverse function to
the arccosine function. For the former, this means that: 
sin(sin x)=x

2.1.3 Problems Involving the Quadratic Formula
First comes the quadratic equation, then comes the quadratic formula. The quadratic formula is the solution to the quadratic
equation:

in which

x is the variable whose value is sought, and a, b, and c are constants

The goal is to find the value of x that makes the left side 0. That value is given by the quadratic formula:

to be read/said:

‘x’ equals minus ‘b’, plus-or-minus the square root of ‘b’ squared minus four ‘a’ ‘c’, all over two ‘a’.

So, how do you know when you have to use the quadratic formula? There is a good chance that you need it when the square of the
variable for which you are solving, appears in the equation you are solving. When that is the case, carry out the algebraic steps
needed to arrange the terms as they are arranged in equation 1-8 above. If this is impossible, then the quadratic formula is not to be
used. Note that in the quadratic equation you have a term with the variable to the second power, a term with the variable to the first
power, and a term with the variable to the zeroth power (the constant term). If additional powers also appear, such as the one-half
power (the square root), or the third power, then the quadratic formula does not apply. If the equation includes additional terms in
which the variable whose value is sought appears as the argument of a special function such as the sine function or the exponential
function, then the quadratic formula does not apply. Now suppose that there is a square term and you can get the equation that you
are solving in the form of equation 1-8 above but that either b or c is zero. In such a case, you can use the quadratic formula, but it
is overkill. If b in equation 1-8 above is zero then the equation reduces to:

The easy way to solve this problem is to recognize that there is at least one x in each term, and to factor the x out. This yields:

Then you have to realize that a product of two multiplicands is equal to zero if either multiplicand is equal to zero. Thus, setting
either multiplicand equal to zero and solving for x yields a solution. We have two multiplicands involving x, so, there are two
solutions to the equation. The second multiplicand in the expression  is x itself, so

is a solution to the equation. Setting the first term equal to zero gives:

-1

-1

a +bx+c = 0x2 (2.1.5)

x =
−b± −4acb2

− −−−−−−
√

2a
(2.1.6)

a +bx = 0x2 (2.1.7)

(ax+b)x = 0 (2.1.8)

(ax+b)x = 0

x = 0 (2.1.9)
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Now suppose the b in the quadratic equation , equation 1-8, is zero. In that case, the quadratic equation reduces
to:

which can easily be solved without the quadratic formula as follows:

where we have emphasized the fact that there are two square roots to every value by placing a plus-or-minus sign in front of the
radical.

Now, if upon arranging the given equation in the form of the quadratic equation (equation 1-8):

you find that a, b, and c are all non-zero, then you should use the quadratic formula. Here we present an example of a problem
whose solution involves the quadratic formula:

Given

find x.

Solution

At first glance, this one doesn’t look like a quadratic equation, but as we begin isolating x, as we always strive to do in solving
for x, (hey, once we have x all by itself on the left side of the equation, with no x on the right side of the equation, we have
indeed solved for x—that’s what it means to solve for x) we quickly find that it is a quadratic equation. Whenever we have the
unknown in the denominator of a fraction, the first step in isolating that unknown is to multiply both sides of the equation by
the denominator. In the case at hand, this yields:

Multiplying through on the left we find

At this point it is pretty clear that we are dealing with a quadratic equation so our goal becomes getting it into the standard
form of the quadratic equation, the form of equation 1-8, namely: . Combining the terms involving x on the
left and rearranging we obtain

Subtracting 24 from both sides yields:

ax+b = 0 (2.1.10)

ax = −b (2.1.11)

x = −
b

a
(2.1.12)

a +bx+c = 0x2

a +c = 0x2 (2.1.13)

a = −cx2 (2.1.14)

= −x2 c

a
(2.1.15)

x = ± −
c

a

− −−
√ (2.1.16)

a +bx+c = 0x2 (2.1.17)

 Example : Quadratic Formula Example Problem2.1.1

3 +x =
24

x+1
(2.1.18)

(x+1)(x+3) = 24 (2.1.19)

3x+3 + +x = 24x2 (2.1.20)

a +bx+c = 0x2

+4x+3 = 24x2 (2.1.21)

+4x−21 = 0x2 (2.1.22)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/2.5/
https://phys.libretexts.org/@go/page/76283?pdf


2.1.5 https://phys.libretexts.org/@go/page/76283

which is indeed in the standard quadratic equation form. Now we just have to use inspection to identify which values in our
given equation are the a, b, and c that appear in the standard quadratic equation (equation 1-8) . Although it
is not written, the constant multiplying the x , in the case at hand, is just 1. So we have a = 1, b = 4, and c = −21.

Substituting these values into the quadratic formula (equation 1-9):

yields

which results in x=3,x=-7

as the solutions to the problem. As a quick check we substitute each of these values back into the original equation:

and find that each substitution leads to an identity. (An identity is an equation whose validity is trivially obvious, such as 6 =
6.)

This chapter does not cover all the non-calculus mathematics you will encounter in this course. If you master the concepts in this
chapter (or re-master them if you already mastered them) you will be on your way to mastering all the non-calculus mathematics
you need for this course. Regarding reading it all: By the time you complete your physics course, you are supposed to have read
this book from cover to cover. Reading physics material that is new to you is supposed to be slow going. By the word reading in
this context, we really mean reading with understanding. Reading a physics text involves not only reading but taking the time to
make sense of diagrams, taking the time to make sense of mathematical developments, and taking the time to make sense of the
words themselves. It involves rereading. The method I use is to push my way through a chapter once, all the way through at a
novel-reading pace, picking up as much as I can on the way but not allowing myself to slow down. Then, I really read it. On the
second time through I pause and ponder, study diagrams, and ponder over phrases, looking up words in the dictionary and working
through examples with pencil and paper as I go. I try not to go on to the next paragraph until I really understand what is being said
in the paragraph at hand. That first read, while of little value all by itself, is of great benefit in answering the question, “Where is
the author going with this?”, while I am carrying out the second read.

This book is a physics book, not a mathematics book. One of your goals in taking a physics course is to become more proficient
at solving physics problems, both conceptual problems involving little to no math, and problems involving some mathematics.
In a typical physics problem you are given a description about something that is taking place in the universe and you are
supposed to figure out and write something very specific about what happens as a result of what is taking place. More
importantly, you are supposed to communicate clearly, completely, and effectively, how, based on the description and basic
principles of physics, you arrived at your conclusion. To solve a typical physics problem you have to: (1) form a picture based
on the given description, quite often a moving picture, in your mind, (2) concoct an appropriate mathematical problem based
on the picture, (3) solve the mathematical problem, and (4) interpret the solution of the mathematical problem. The physics
occurs in steps 1, 2, and 4. The mathematics occurs in step 3. It only represents about 25% of the solution to a typical physics
problem.

This page titled 2.1: Introduction is shared under a CC BY-NC-SA 2.5 license and was authored, remixed, and/or curated by Jeffrey W. Schnick
via source content that was edited to the style and standards of the LibreTexts platform.

1A: Mathematical Prelude by Jeffrey W. Schnick is licensed CC BY-SA 2.5. Original source: http://www.cbphysics.org.

a +bx+c = 0x2

2

x =
−b± −4acb2

− −−−−−−
√

2a
(2.1.23)

x =
−4 ± −4(1)(21)42

− −−−−−−−−−−
√

2(1)
(2.1.24)

3 +x =
24

x+1
(2.1.25)

 Note
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2.2: Geometrical Shapes

know what a polygon is
know what perimeter is and how to find it
know what the circumference, diameter, and radius of a circle is and how to find each one
know the meaning of the symbol ππ and its approximating value
know what a formula is and four versions of the circumference formula of a circle
know the meaning and notation for area
know the area formulas for some common geometric figures
be able to find the areas of some common geometric figures
know the meaning and notation for volume
know the volume formulas for some common geometric objects
be able to find the volume of some common geometric objects

Polygons
We can make use of conversion skills with denominate numbers to make measure ments of geometric figures such as rectangles,
triangles, and circles. To make these measurements we need to be familiar with several definitions.

A polygon is a closed plane (flat) figure whose sides are line segments (portions of straight lines).

Polygons

Not polygons

Perimeter

The perimeter of a polygon is the distance around the polygon.

To find the perimeter of a polygon, we simply add up the lengths of all the sides.

Find the perimeter of each polygon.

Solution

 Learning Objectives

 Definition: Polygon

 Definition: Perimeter

 Sample Set A

Perimeter =

=

2 cm + 5 cm + 2 cm + 5 cm

14 cm
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Solution

Solution

Our first observation is that three of the dimensions are missing. However, we can determine the missing measurements using
the following process. Let A, B, and C represent the missing measurements. Visualize

 
 

 Sample Set A

Perimeter = 3.1 mm

4.2 mm

4.3 mm

1.52 mm

5.4 mm

+ 9.2 mm
– –––––––––
27.72 mm

 Sample Set A

A = 12m - 2m = 10m

B = 9m + 1m - 2m = 8m

C = 12m - 1m = 11m
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Find the perimeter of each polygon.

Answer

20 ft

Answer

26.8 m

Answer

49.89 mi

Circumference/Diameter/Radius
Diameter (d) 
A diameter of a circle is any line segment that passes through the center of the circle and has its endpoints on the circle.

Perimeter = 8 m

10 m

2 m

2 m

9 m

11 m

1 m

+ 1 m
– –––––

44 m

Practice Set A

Practice Set A

Practice Set A
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Radius (r) 
A radius of a circle is any line segment having as its endpoints the center of the circle and a point on the circle. 
The radius is one half the diameter.

Circumference (C) 
The circumference of a circle is the distance around the circle. It is given by  

Find the circumference of the circle.

Solution

Use the formula .

By commutativity of multiplication,

, exactly

This result is exact since  has not been approximated.

Find the perimeter of the figure.

Solution

We notice that we have two semicircles (half circles).

The larger radius is 6.2 cm.

The smaller radius is 

The width of the bottom part of the rectangle is 2.0 cm.

C = πd = 2πr

 Sample Set B

C = πd

C = π ⋅ 7 in.

C = 7 in. ⋅π

C = 7πin.

π

 Sample Set B

6.2 cm - 2.0 cm = 4.2 cm.
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Find the outside perimeter of

Answer

41.634 mm

Exercises

Find each perimeter or approxi mate circumference. Use .

Answer

21.8 cm

Perimeter =

  +

2.0 cm

5.1 cm

2.0 cm

5.1 cm

(0.5) ⋅ (2) ⋅ (3.14) ⋅ (6.2 com)

(0.5) ⋅ (2) ⋅ (3.14) ⋅ (4.2 com)
– ––––––––––––––––––––––––––

Circumference of outer semicircle.

Circumference of inner semicircle.

6.2 cm - 2.0 cm = 4.2 cm

The 0.5 appears because we want the

perimeter of only half a circle.

Perimeter ≈ 2.0 cm

5.1 cm

2.0 cm

5.1 cm

19.468 cm

+13.188 cm
– –––––––––––

48.856 cm

Practice Set B

π = 3.14

Exercise 2.2.1

https://libretexts.org/
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Answer

38.14 inches

Answer

0.86 m

Exercise 2.2.2

Exercise 2.2.3

Exercise 2.2.4

Exercise 2.2.5

Exercise 2.2.6

https://libretexts.org/
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Answer

120.78 m

Exercise 2.2.10

Exercise 2.2.12

Exercise 2.2.13

Exercise 2.2.14

Exercise 2.2.16
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Answer

43.7 mm

The Meaning and Notation for Area

The product , or, square length unit (sq length unit), can be interpreted physically
as the area of a surface.

Area 
The area of a surface is the amount of square length units contained in the surface.

For example, 3 sq in. means that 3 squares, 1 inch on each side, can be placed precisely on some surface. (The squares may have to
be cut and rearranged so they match the shape of the surface.)

We will examine the area of the following geometric figures.

 

 

Area Formulas
We can determine the areas of these geometric figures using the following formulas.

 Figure Area Formula Statement

Exercise 2.2.17

(length unit) ⋅ (length unit) = (length unit) 2
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Triangle
Area of a triangle is one half the
base times the height.

Rectangle
Area of a rectangle is the length
times the width.

Parallelogram
Area of a parallelogram is base
times the height.

Trapezoid
Area of a trapezoid is one half
the sum of the two bases times
the height.

Circle
Area of a circle is  times the
square of the radius.

Finding Areas of Some Common Geometric Figures

Find the area of the triangle.

Solution

The area of this triangle is 60 sq ft, which is often written as 60 .

Find the area of the rectangle.

Solution

Let's first convert 4 ft 2 in. to inches. Since we wish to convert to inches, we'll use the unit fraction  since it has inches

in the numerator. Then,

= ⋅ b ⋅ hAT

1

2

= l ⋅ wAR

= b ⋅ hAP

= ⋅ ( + ) ⋅ hATrap

1

2
b1 b2

= πAc r2 π

 Sample Set A

AT =

=

=

=

=

⋅ b ⋅h
1

2

⋅ 20 ⋅ 5 sq ft
1

2
10 ⋅ 6 sq ft

60 sq ft

60 ft2

ft2

 Sample Set A

12 in.

1 ft

https://libretexts.org/
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Thus, 

The area of this rectangle is 400 sq in.

Find the area of the parallelogram.

Solution

The area of this parallelogram is 63.86 sq cm.

Find the area of the trapezoid.

Solution

The area of this trapezoid is 71.545 sq mm.

4 ft =

=

=

⋅
4 ft

1

12 in.

1 ft

⋅
4  ft

1

12 in.

1  ft

48 in.

4 ft 2 in. = 48 in. + 2 in. = 50 in.

AR =

=

=

l ⋅w

50 in. ⋅ 8 in.

400 sq in.

 Sample Set A

AP =

=

=

b ⋅h

10.3 cm ⋅ 6.2 cm

63.86 sq cm

 Sample Set A

ATrap =

=

=

=

=

⋅ ( + ) ⋅h
1

2
b1 b2

⋅ (14.5 mm + 20.4 mm) ⋅ (4.1 mm)
1

2

⋅ (34.9 mm) ⋅ (4.1 mm)
1

2

⋅ (143.09 sq mm)
1

2
71.545 sq mm
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Find the approximate area of the circle.

Solution

The area of this circle is approximately 886.23 sq ft.

Find the area of each of the following geometric figures.

Answer

36 sq cm

Answer

37.503 sq mm

Answer

13.26 sq in.

 Sample Set A

Ac =

≈

≈

≈

π ⋅ r2

(3.14) ⋅ (16.8 ft)2

(3.14) ⋅ (282.24 sq ft)

888.23 sq ft

Practice Set A

Practice Set A

Practice Set A
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Answer

367.5 sq mi

Answer

452.16 sq ft

Answer

44.28 sq cm

The Meaning and Notation for Volume

The product , or cubic length unit (cu length unit), can be interpreted
physically as the volume of a three-dimensional object.

Volume 
The volume of an object is the amount of cubic length units contained in the object.

For example, 4 cu mm means that 4 cubes, 1 mm on each side, would precisely fill some three-dimensional object. (The cubes may
have to be cut and rearranged so they match the shape of the object.)

Practice Set A

Practice Set A

Practice Set A

(length unit)(length unit)(length unit) = (length unit)
3
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Volume Formulas
 Figure Volume Formula Statement

Rectangular solid
The volume of a rectangular
solid is the length times the
width times the height.

Sphere
The volume of a sphere is 

times  times the cube of the
radius.

Cylinder

 
The volume of a cylinder is 
times the square of the radius
times the height.

Cone
The volume of a cone is 

times  times the square of the
radius times the height.

VR =

=

l ⋅ w ⋅ h

(area of base) ⋅ (height)

= ⋅ π ⋅Vs
4

3
r3

4

3
π

VCyl =

=

π ⋅ ⋅ hr2

(area of base) ⋅ (height)

π

Vc =

=

⋅ π ⋅ ⋅ h
1

3
r2

(area of base) ⋅ (height)

1

3
π
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Finding Volumes of Some Common Geometric Objects

Find the volume of the rectangular solid.

Solution

The volume of this rectangular solid is 270 cu in.

Find the approximate volume of the sphere.

Solution

The approximate volume of this sphere is 904.32 cu cm, which is often written as 904.32 cm .

Find the approximate volume of the cylinder.

 Sample Set B

VR =

=

=

=

l ⋅w ⋅h

9 in. ⋅ 10 in. ⋅ 3 in.

270 cu in.

270 in.3

 Sample Set B

VS =

≈

≈

≈

⋅ π ⋅
4

3
r3

( ) ⋅ (3.14) ⋅
4

3
(6 cm)3

( ) ⋅ (3.14) ⋅ (216 cu cm)
4

3
904.32 cu cm

3

 Sample Set B
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Solution

The volume of this cylinder is approximately 588.05292 cu ft. The volume is approximate because we approximated  with
3.14.

Find the approximate volume of the cone. Round to two decimal places.

Solution

The volume of this cone is approximately 20.93 cu mm. The volume is approximate because we approximated  with 3.14.

Find the volume of each geometric object. If  is required, approximate it with 3.14 and find the approximate volume.

Answer

21 cu in.

VCyl =

≈

≈

≈

≈

π ⋅ ⋅hr2

(3.14) ⋅ (4.9 ft ⋅ (7.8 ft))2

(3.14) ⋅ (24.01 sq ft) ⋅ (7.8 ft)

(3.14) ⋅ (187.278 cu ft)

588.05292 cu ft

π

 Sample Set B

Vc =

≈

≈

≈

≈

≈

⋅ π ⋅ ⋅h
1

3
r2

( ) ⋅ (3.14) ⋅ (2 mm ⋅ (5 mm)
1

3
)2

( ) ⋅ (3.14) ⋅ (4 sq mm) ⋅ (5 mm)
1

3

( ) ⋅ (3.14) ⋅ (20 cu mm)
1

3

20.9  cu mm3¯̄̄

20.93 cu mm

π

Practice Set B

π
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Sphere

Answer

904.32 cu ft

Answer

157 cu m

Answer

0.00942 cu in.

Exercises
Find each indicated measurement.

Area

Answer

16 sq m

Practice Set B

Practice Set B

Practice Set B

Exercise 2.2.1
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Area

Area

Answer

1.21 sq mm

Area

Area

Answer

18 sq in.

Exercise 2.2.2

Exercise 2.2.3

Exercise 2.2.4

Exercise 2.2.5
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Area

Exact area

Answer

Approximate area

Area

Exercise 2.2.6

Exercise 2.2.7

(60.5π+132) sq ft

Exercise 2.2.8

Exercise 2.2.9
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Answer

40.8 sq in.

Area

Approximate area

Answer

31.0132 sq in.

Exact area

Exercise 2.2.10

Exercise 2.2.11

Exercise 2.2.12
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Approximate area

Answer

158.2874 sq mm

Exact area

Approximate area

Answer

64.2668 sq in.

Area

Exercise 2.2.13

Exercise 2.2.14

Exercise 2.2.15

Exercise 2.2.16
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Approximate area

Answer

43.96 sq ft

Volume

Volume

Answer

512 cu cm

Exact volume

Exercise 2.2.17

Exercise 2.2.18

Exercise 2.2.19

Exercise 2.2.20
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Approximate volume

Answer

11.49 cu cm

Approximate volume

Exact volume

Answer

Approximate volume

Exercise 2.2.21

Exercise 2.2.22

Exercise 2.2.23

π cu ft
1024

3

Exercise 2.2.24
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Approximate volume

Answer

22.08 cu in.

Approximate volume

Exercises for Review

In the number 23,426, how many hundreds are there?

Answer

4

Exercise 2.2.25

Exercise 2.2.26

Exercise 2.2.27

https://libretexts.org/
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List all the factors of 32.

Find the value of .

Answer

Find the value of .

Find the perimeter.

Answer

27.9m

Area (A) is measured in square units, perimeter (P) is measured in units, and circumference (C) is measured in units.

Square

Figure 

Rectangle

Exercise 2.2.28

Exercise 2.2.29

4 −3 +1
3

4

5

6

2

3

= 2 = 2.58
31

12

7

12

Exercise 2.2.30

5 +
1

3

2 +
2

15

Exercise 2.2.31

2.2.1

P = 4s (2.2.1)

A = s2 (2.2.2)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76284?pdf


2.2.25 https://phys.libretexts.org/@go/page/76284

Figure 

Parallelogram

Figure 

Trapezoid

Figure 

Triangle

Figure 

Circle

2.2.2

P = 2l+2w (2.2.3)

A = lw (2.2.4)

2.2.3

P = 2a+2b (2.2.5)

A = bh (2.2.6)

2.2.4

P = a+b+c+d (2.2.7)

A = h(a+b)
1

2
(2.2.8)

2.2.5

P = a+b+c (2.2.9)

A = bh
1

2
(2.2.10)
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Figure 

Volume (V) is measured in cubic units and surface area (SA) is measured in square units.

Cube

Figure 

Rectangular Solid

Figure 

Right Circular Cylinder

Figure 

2.2.6

C = 2π (2.2.11)

r = πr2 (2.2.12)

2.2.1

SA = 6s2 (2.2.13)

V = s3 (2.2.14)

2.2.2

SA = 2lw+2lh+2wh (2.2.15)

V = lwh (2.2.16)

2.2.3

SA = 2π +2πrhr2 (2.2.17)

V = π hr2 (2.2.18)
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Right Circular Cone

Figure 

Sphere

Figure 

This page titled 2.2: Geometrical Shapes is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Denny Burzynski
& Wade Ellis, Jr. (OpenStax CNX) .

2.2.4

SA = π +πrsr2 (2.2.19)

V = π h
1

3
r2 (2.2.20)

2.2.5

SA = 4πr2 (2.2.21)

V = π
4

3
r3 (2.2.22)
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2.3: Triangles

6.1.2: Triangles

1. Identify equilateral, isosceles, scalene, acute, right, and obtuse triangles.
2. Identify whether triangles are similar, congruent, or neither.
3. Identify corresponding sides of congruent and similar triangles.
4. Find the missing measurements in a pair of similar triangles.
5. Solve application problems involving similar triangles

Introduction

Geometric shapes, also called figures, are an important part of the study of geometry. The triangle is one of the basic shapes in
geometry. It is the simplest shape within a classification of shapes called polygons. All triangles have three sides and three angles,
but they come in many different shapes and sizes. Within the group of all triangles, the characteristics of a triangle’s sides and
angles are used to classify it even further. Triangles have some important characteristics, and understanding these characteristics
allows you to apply the ideas in real-world problems.

Classifying and Naming Triangles

A polygon is a closed plane figure with three or more straight sides. Polygons each have a special name based on the number of
sides they have. For example, the polygon with three sides is called a triangle because “tri” is a prefix that means “three.” Its name
also indicates that this polygon has three angles. The prefix “poly” means many.

The table below shows and describes three classifications of triangles. Notice how the types of angles in the triangle are used to
classify the triangle.

Name of Triangle Picture of Triangle Description

Acute Triangle
A triangle with 3 acute angles (3 angles

measuring between 0° and 90°).

Obtuse Triangle
A triangle with 1 obtuse angle (1 angle

measuring between 90° and 180°).

Right Triangle

A triangle containing one right angle (1
angle that measures 90°). Note that the right
angle is shown with a corner mark and does

not need to be labeled 90°.

The sum of the measures of the three interior angles of a triangle is always 180°. This fact can be applied to find the measure of the
third angle of a triangle, if you are given the other two. Consider the examples below.

 Learning Objectives
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A triangle has two angles that measure 35° and 75°. Find the measure of the third angle.

Solution
The sum of the three interior angles of a triangle is 180°.

35° + 75° +  = 180°

Find the value of .

110º +  = 180º

 = 180° ‒ 110º

 = 70°

Answer: The third angle of the triangle measures 70°.

One of the angles in a right triangle measures 57º. Find the measurement of the third angle.

Solution
The sum of the three angles of a triangle is 180°. One of the angles has a measure of 90° as it is a right triangle.

57° + 90° +  = 180°

Simplify.

147º +  = 180°

Find the value of .

 = 180º - 147º

 = 33º

Answer: The third angle of the right triangle measures 33°.

There is an established convention for naming triangles. The labels of the vertices of the triangle, which are generally capital
letters, are used to name a triangle.

You can call this triangle ABC or ∆ABC since A, B, and C are vertices of the triangle. When naming the triangle, you can begin
with any vertex. Then keep the letters in order as you go around the polygon. The triangle above could be named in a variety of
ways: ∆ABC, or ∆CBA. The sides of the triangle are line segments AB, AC, and CB.

Just as triangles can be classified as acute, obtuse, or right based on their angles, they can also be classified by the length of their
sides. Sides of equal length are called congruent sides. While we designate a segment joining points A and B by the notation ,
we designate the length of a segment joining points A and B by the notation AB without a segment bar over it. The length AB is a
number, and the segment  is the collection of points that make up the segment.

Mathematicians show congruency by putting a hash mark symbol through the middle of sides of equal length. If the hash mark is
the same on one or more sides, then those sides are congruent. If the sides have different hash marks, they are not congruent. The
table below shows the classification of triangles by their side lengths.

Name of Triangle Picture of Triangle Description

 Example 2.3.14

x

x

x

x

x

 Example 2.3.15

x

x

x

x

x

AB
¯ ¯¯̄¯̄¯̄

AB
¯ ¯¯̄¯̄¯̄
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Equilateral Triangle
A triangle whose three sides have the same

length. These sides of equal length are
called congruent sides.

Isosceles Triangle A triangle with exactly two congruent sides.

Scalene Triangle
A triangle in which all three sides are a

different length.

To describe a triangle even more specifically, you can use information about both its sides and its angles. Consider this example.

Classify the triangle below.

Solution
Notice what kind of angles the triangle has. Since one angle is a right angle, this is a right triangle.

Notice the lengths of the sides. Are there congruence marks or other labels?

The congruence marks tell us there are two sides of equal length. So, this is an isosceles triangle.

Answer: This is an isosceles right triangle

Classify the given triangle.

 Example 2.3.16

 Try It Now 1
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Identifying Congruent and Similar Triangles

Two triangles are congruent if they are exactly the same size and shape. In congruent triangles, the measures of corresponding
angles and the lengths of corresponding sides are equal. Consider the two triangles shown below:

Since both ∠B and ∠E are right angles, these triangles are right triangles. Let’s call these two triangles ∆ABC and ∆DEF. These
triangles are congruent if every pair of corresponding sides has equal lengths and every pair of corresponding angles has the same
measure.

The corresponding sides are opposite the corresponding angles.

↔ means “corresponds to”

∠B ↔ ∠E

∠A ↔ ∠D

∠C ↔ ∠F

 ↔ 

 ↔ 

 ↔ 

∆ABC and ∆DEF are congruent triangles as the corresponding sides and corresponding angles are equal.

Let’s take a look at another pair of triangles. Below are the triangles ∆ABC and ∆RST.

These two triangles are surely not congruent because ∆RST is clearly smaller in size than ∆ABC. But, even though they are not the
same size, they do resemble one another. They are the same shape. The corresponding angles of these triangles look like they might
have the same exact measurement, and if they did they would be congruent angles and we would call the triangles similar triangles.

Congruent angles are marked with hash marks, just as congruent sides are.

AB
¯ ¯¯̄¯̄¯̄

DE
¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

DF
¯ ¯¯̄¯̄¯̄

BC
¯ ¯¯̄¯̄¯̄

EF
¯ ¯¯̄¯̄¯̄
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Figure : Image showing angle measurements of both
triangles.

Figure : Image showing triangles ABC and RST using hash marks to show angle
congruency.

We can also show congruent angles by using multiple bands within the angle, rather than multiple hash marks on one band. Below
is an image using multiple bands within the angle.

Figure : Image showing triangles ABC and RST using bands to show angle congruency.

If the corresponding angles of two triangles have the same measurements they are called similar triangles. This name makes sense
because they have the same shape, but not necessarily the same size. When a pair of triangles is similar, the corresponding sides are
proportional to one another. That means that there is a consistent scale factor that can be used to compare the corresponding sides.
In the previous example, the side lengths of the larger triangle are all 1.4 times the length of the smaller. So, similar triangles are
proportional to one another.

Just because two triangles look similar does not mean they are similar triangles in the mathematical sense of the word. Checking
that the corresponding angles have equal measure is one way of being sure the triangles are similar.

Corresponding Sides of Similar Triangles

There is another method for determining similarity of triangles that involves comparing the ratios of the lengths of the
corresponding sides.

If the ratios of the pairs of corresponding sides are equal, the triangles are similar.

Consider the two triangles below.

2.3.6

2.3.7

2.3.8
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∆ABC is not congruent to ∆DEF because the side lengths of ∆DEF are longer than those of ∆ABC. So, are these triangles similar?
If they are, the corresponding sides should be proportional.

Since these triangles are oriented in the same way, you can pair the left, right, and bottom sides:  and ,  and , 
and . (You might call these the two shortest sides, the two longest sides, and the two leftover sides and arrive at the same
ratios). Now we will look at the ratios of their lengths.

Substituting the side length values into the proportion, you see that it is true:

If the corresponding sides are proportional, then the triangles are similar. Triangles ABC and DEF are similar, but not congruent.

Let’s use this idea of proportional corresponding sides to determine whether two more triangles are similar.

Determine if the triangles below are similar by seeing if their corresponding sides are proportional.

Solution
First determine the corresponding sides, which are opposite corresponding angles.

 ↔ 

 ↔ 

 ↔ 

Write the corresponding side lengths as ratios.

Substitute the side lengths into the ratios, and determine if the ratios of the corresponding sides are equivalent. They are, so the
triangles are similar.

AB
¯ ¯¯̄¯̄¯̄

DE
¯ ¯¯̄¯̄¯̄

BC
¯ ¯¯̄¯̄¯̄

EF
¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

DF
¯ ¯¯̄¯̄¯̄

= =
AB
¯ ¯¯̄¯̄¯̄

DE
¯ ¯¯̄¯̄¯̄

BC
¯ ¯¯̄¯̄¯̄

EF
¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

DF
¯ ¯¯̄¯̄¯̄

= =
3

9

4

12

6

18

 Example 2.3.17

CA
¯ ¯¯̄¯̄¯̄

FD
¯ ¯¯̄¯̄¯̄

AB
¯ ¯¯̄¯̄¯̄

DE
¯ ¯¯̄¯̄¯̄

BC
¯ ¯¯̄¯̄¯̄

EF
¯ ¯¯̄¯̄¯̄

= =
CA
¯ ¯¯̄¯̄¯̄

FD¯ ¯¯̄¯̄¯̄

AB
¯ ¯¯̄¯̄¯̄

DE¯ ¯¯̄¯̄¯̄

BC
¯ ¯¯̄¯̄¯̄

EF¯ ¯¯̄¯̄¯̄
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Answer: ∆ABC and ∆DEF are similar.

The mathematical symbol ~ means “is similar to”. So, you can write ∆ABC is similar to ∆DEF as ∆ABC ~ ∆DEF.

Determine whether the two triangles are similar, congruent, or neither.

Finding Missing Measurements in Similar Triangles

You can find the missing measurements in a triangle if you know some measurements of a similar triangle. Let’s look at an
example.

∆ABC and ∆XYZ are similar triangles. What is the length of side BC?

Solution
In similar triangles, the ratios of corresponding sides are proportional. Set up a proportion of two ratios, one that includes the
missing side.

Substitute in the known side lengths for the side names in the ratio. Let the unknown side length be n.

Solve for n using cross multiplication.

= =
10

5

6

3

14

7

2 = 2 = 2

 Try It Now 2

 Example 2.3.18

=
BC

Y Z

AB

XY

=
n

2

6

1.5

2 ⋅ 6 = 1.5 ⋅n
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This process is fairly straightforward—but be careful that your ratios represent corresponding sides, recalling that corresponding
sides are opposite corresponding angles.

Solving Application Problems Involving Similar Triangles

Applying knowledge of triangles, similarity, and congruence can be very useful for solving problems in real life. Just as you can
solve for missing lengths of a triangle drawn on a page, you can use triangles to find unknown distances between locations or
objects.

Let’s consider the example of two trees and their shadows. Suppose the sun is shining down on two trees, one that is 6 feet tall and
the other whose height is unknown. By measuring the length of each shadow on the ground, you can use triangle similarity to find
the unknown height of the second tree.

First, let’s figure out where the triangles are in this situation. The trees themselves create one pair of corresponding sides. The
shadows cast on the ground are another pair of corresponding sides. The third side of these imaginary similar triangles runs from
the top of each tree to the tip of its shadow on the ground. This is the hypotenuse of the triangle.

If you know that the trees and their shadows form similar triangles, you can set up a proportion to find the height of the tree.

When the sun is at a certain angle in the sky, a 6-foot tree will cast a 4-foot shadow. How tall is a tree that casts an 8-foot
shadow?

Solution
The angle measurements are the same, so the triangles are similar triangles. Since they are similar triangles, you can use
proportions to find the size of the missing side.

Set up a proportion comparing the heights of the trees and the lengths of their shadows.

Substitute in the known lengths. Call the missing tree height h.

Solve for h using cross-multiplication.

12 = 1.5n

8 = n

 Example 2.3.19

=
Tree 1

Tree 2

Shadow 1

Shadow 2

=
6

h

4

8

6 ⋅ 8 = 4h

48 = 4h

12 = h
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Answer: The tree is 12 feet tall.

Summary

Triangles are one of the basic shapes in the real world. Triangles can be classified by the characteristics of their angles and sides,
and triangles can be compared based on these characteristics. The sum of the measures of the interior angles of any triangle is 180º.
Congruent triangles are triangles of the same size and shape. They have corresponding sides of equal length and corresponding
angles of the same measurement. Similar triangles have the same shape, but not necessarily the same size. The lengths of their sides
are proportional. Knowledge of triangles can be a helpful in solving real-world problems.

1. Obtuse scalene; this triangle has vertices P, Q, and R, one angle (angle Q) that is between 90º and 180º, and sides of three
different lengths.

2. ∆ABC and ∆DEF are neither similar nor congruent; the corresponding angle measures are not known to be equal as shown

by the absence of congruence marks on the angles. Also, the ratios of the corresponding sides are not equal: 

6.1.3: Pythagorean Theorem

1. Use the Pythagorean Theorem to find the unknown side of a right triangle.
2. Solve application problems involving the Pythagorean Theorem.

Introduction

A long time ago, a Greek mathematician named Pythagoras discovered an interesting property about right triangles: the sum of
the squares of the lengths of each of the triangle’s legs is the same as the square of the length of the triangle’s hypotenuse. This
property—which has many applications in science, art, engineering, and architecture—is now called the Pythagorean Theorem.

Let’s take a look at how this theorem can help you learn more about the construction of triangles. And the best part—you don’t
even have to speak Greek to apply Pythagoras’ discovery.

The Pythagorean Theorem

Pythagoras studied right triangles, and the relationships between the legs and the hypotenuse of a right triangle, before deriving his
theory.

If a and b are the lengths of the legs of a right triangle and c is the length of the hypotenuse, then the sum of the squares of the
lengths of the legs is equal to the square of the length of the hypotenuse.

This relationship is represented by the formula: 

 Try It Now Answers

= ≠
6.5

5

6.5

5

5

5

 Learning Objectives

 The Pythagorean Theorem

+ =a2 b2 c2
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In the box above, you may have noticed the word “square,” as well as the small 2s to the top right of the letters in . To
square a number means to multiply it by itself. So, for example, to square the number  you multiply , and to square the
number , you multiply . Some common squares are shown in the table below.

Number Number Times Itself Square

1 1

2 4

3 9

4 16

5 25

10 100

When you see the equation , you can think of this as “the length of side a times itself, plus the length of side b times
itself is the same as the length of side c times itself.”

Let’s try out all of the Pythagorean Theorem with an actual right triangle.

This theorem holds true for this right triangle—the sum of the squares of the lengths of both legs is the same as the square of the
length of the hypotenuse. And, in fact, it holds true for all right triangles.

The Pythagorean Theorem can also be represented in terms of area. In any right triangle, the area of the square drawn from the
hypotenuse is equal to the sum of the areas of the squares that are drawn from the two legs. You can see this illustrated below in the
same 3-4-5 right triangle.

Note that the Pythagorean Theorem only works with right triangles.

Finding the Length of the Hypotenuse

You can use the Pythagorean Theorem to find the length of the hypotenuse of a right triangle if you know the length of the
triangle’s other two sides, called the legs. Put another way, if you know the lengths of a and b, you can find c.

+ =a2 b2 c2

5 5 ⋅ 5
12 12 ⋅ 12

= 1 ⋅ 112

= 2 ⋅ 222

= 3 ⋅ 332

= 4 ⋅ 442

= 5 ⋅ 552

= 10 ⋅ 10102

+ =a2 b2 c2
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In the triangle above, you are given measures for legs a and b: 5 and 12, respectively. You can use the Pythagorean Theorem to find
a value for the length of c, the hypotenuse.

The Pythagorean Theorem.

Substitute known values for a and b.

Evaluate.

Simplify. To find the value of c, think about a number that, when multiplied by itself, equals 169. Does 10 work? How about 11?
12? 13? (You can use a calculator to multiply if the numbers are unfamiliar.)

The square root of 169 is 13.

Using the formula, you find that the length of c, the hypotenuse, is 13.

In this case, you did not know the value of c—you were given the square of the length of the hypotenuse, and had to figure it out
from there. When you are given an equation like  and are asked to find the value of c, this is called finding the square
root of a number. (Notice you found a number, c, whose square was 169.)

Finding a square root takes some practice, but it also takes knowledge of multiplication, division, and a little bit of trial and error.
Look at the table below.

Number 
Number  which, when multiplied by

itself, equals number 
Square Root 

1 1

4 2

9 3

16 4

25 5

100 10

It is a good habit to become familiar with the squares of the numbers from 0‒10, as these arise frequently in mathematics. If you
can remember those square numbers—or if you can use a calculator to find them—then finding many common square roots will be
just a matter of recall.

+ =a2 b2 c2

(5 +(12 =)2 )2 c2

25 +144 = c2

169 = c2

c = 13

169 = c2

x
y

x
y

1 ⋅ 1

2 ⋅ 2

3 ⋅ 3

4 ⋅ 4

5 ⋅ 5

10 ⋅ 10
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For which of these triangles is ?

A)  B) 

C)  D) 

Finding the Length of a Leg

You can use the same formula to find the length of a right triangle’s leg if you are given measurements for the lengths of the
hypotenuse and the other leg. Consider the example below.

Find the length of side a in the triangle below. Use a calculator to estimate the square root to one decimal place.

Solution
In this right triangle, you are given the measurements for the hypotenuse, c, and one leg, b. The hypotenuse is always opposite
the right angle and it is always the longest side of the triangle.

 = ?

 = 6

 = 7

To find the length of leg a, substitute the known values into the Pythagorean Theorem.

Solve for . Think: what number, when added to 36, gives you 49?

Use a calculator to find the square root of 13. The calculator gives an answer of 3.6055…, which you can round to 3.6. (Since
you are approximating, you use the symbol ≈.)

 Try It Now 1

(3 +(3 =)2 )2 r2

 Example 2.3.20

a

b

c

+ =a2 b2 c2

+ =a2 62 72

a2

+36 = 49a2

= 13a2
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Answer: a ≈ 3.6

Which of the following correctly uses the Pythagorean Theorem to find the missing side, ?

A) 

B) 

C) 

D) 

Using the Pythagorean Theorem to Solve Real-world Problems

The Pythagorean Theorem is perhaps one of the most useful formulas you will learn in mathematics because there are so many
applications of it in real world settings. Architects and engineers use this formula extensively when building ramps, bridges, and
buildings. Look at the following examples.

The owners of a house want to convert a stairway leading from the ground to their back porch into a ramp. The porch is 3 feet
off the ground, and due to building regulations, the ramp must start 12 feet away from the base of the porch. How long will the
ramp be?

Use a calculator to find the square root, and round the answer to the nearest tenth.

Solution
To solve a problem like this one, it often makes sense to draw a simple diagram showing where the legs and hypotenuse of the
triangle lie.

Identify the legs and the hypotenuse of the triangle. You know that the triangle is a right triangle since the ground and the
raised portion of the porch are perpendicular—this means you can use the Pythagorean Theorem to solve this problem. Identify
a, b, and c.

 = 3

 = 12

a ≈ 3.6

 Try It Now 2

x

+ =82 102 x2

x+8 = 10

+ =x2 82 102

+ =x2 102 82

 Example 2.3.21

a

b
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 = ?

Use the Pythagorean Theorem to find the length of c.

Use a calculator to find c.

The square root of 153 is 12.369…, so you can round that to 12.4.

Answer: The ramp will be 12.4 feet long.

A sailboat has a large sail in the shape of a right triangle. The longest edge of the sail measures 17 yards, and the bottom edge
of the sail is 8 yards. How tall is the sail?

Solution
Draw an image to help you visualize the problem. In a right triangle, the hypotenuse will always be the longest side, so here it
must be 17 yards. The problem also tells you that the bottom edge of the triangle is 8 yards.

Setup the Pythagorean Theorem.

, so

Answer: The height of the sail is 15 yards.

Summary

The Pythagorean Theorem states that in any right triangle, the sum of the squares of the lengths of the triangle’s legs is the same as
the square of the length of the triangle’s hypotenuse. This theorem is represented by the formula 222 abc + = . Put simply, if you
know the lengths of two sides of a right triangle, you can apply the Pythagorean Theorem to find the length of the third side.
Remember, this theorem only works for right triangles.

c

+ =a2 b2 c2

+ =32 122 c2

9 +144 = c2

153 = c2

12.4 = c2

 Example 2.3.22

+ =a2 b2 c2

+ =a2 82 172

+64 = 289a2

= 225a2

15 ⋅ 15 = 225

a = 15
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1. B) ; this is a right triangle; when you sum the squares of the lengths of the sides, you get the square of the
length of the hypotenuse.

2. C) ; in this triangle, the hypotenuse has length , and the legs have length  and . Substituting into the
Pythagorean Theorem you have: ; this equation is the same as , or . What number,
times itself, equals ? That would make .

A triangle is formed when three straight line segments bound a portion of the plane. The line segments are called the sides of the
triangle. A point where two sides meet is called a vertex of the triangle, and the angle formed is called an angle of the triangle.
The symbol for triangle is .

The triangle in Figure  is denoted by  (or  or , etc.).

Its sides are , , and .
Its vertices are , and .
Its angles are , , and .

Figure : Triangle .

The triangle is the most important figure in plane geometry, This is because figures with more than three sides can always be
divided into triangles (Figure ). If we know the properties of a triangle, we can extend this knowledge to the study of other
figures as well.

Figure : A closed figure formed by more than three straight lines can be divided into triangles.

A fundamental property of triangles is the following:

The sum of the angles of a triangle is .

In  of Figure , .

 Try It Now Answers

+ =x2 82 102 10 8 x

+ =x2 82 102 +64 = 100x2 = 36x2

36 x = 6

△

2.3.1 △ABC △BCA △CAB

AB AC BC

A,B C

∠A ∠B ∠C

2.3.1 ABC

2.3.2

2.3.2

 Theorem 2.3.1

180∘

△ABC 2.3.1 ∠A+∠B+∠C = 180∘
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Find :

Solution

Answer: 

Proof of Theorem : Through  draw  parallel to  (see Figure ). Note that we are using the parallel postulate here,
 and  because they are alternate interior angles of parallel lines, Therefore 

.

Figure : Through  draw  parallel to .

We may verify Theorem  by measuring the angles of a triangle with a protractor and taking the sum, However no measuring
instrument is perfectly accurate, It is reasonable to expect an answer such as , , , etc. The purpose of our
mathematical proof is to assure us that the sum of the angles of every triangle must be exactly \(180^{\circ}\).

Find :

Solution

 Example 2.3.1

∠C

∠A+∠B+∠C

+ +∠C40∘ 60∘

+∠C100∘

∠C

∠C

=

=

=

=

=

180∘

180∘

180∘

−180∘ 100∘

80∘

∠C = 80∘

2.3.1 C DE AB 2.3.3
∠1 = ∠A ∠3 = ∠B

∠A+∠B+∠C = ∠1 +∠3 +∠2 = 180∘

2.3.3 C DE AB

2.3.1
179∘ 182∘ 180.5∘

 Example 2.3.2

x
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Check:

Answer: .

Find  and :

Solution

Answer: , .

In Figure ,  is called an exterior angle of , , , and  are called the interior angles of .  and 
 are said to be the interior angles remote from the exterior angle .

Figure :  is an exterior angle of .

The results of Example  suggest the following theorem.

∠A+∠B+∠C

2x+3x+4x

9x

x

=

=

=

=

180∘

180

180

20

x = 20

 Example 2.3.3

y x

50 +100 +y

150 +y

y

y

x

=

=

=

=

=

180

180

180 −150

30

180 −30 = 150

(2.3.1)

y = 30 x = 150

2.3.4 ∠x △ABC ∠A ∠B ∠y △ABC ∠A

∠B ∠x

2.3.4 ∠x △ABC

2.3.3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/@go/page/76285?pdf


2.3.18 https://phys.libretexts.org/@go/page/76285

An exterior angle is equal to the sum of the two remote interior angles,

In Figure , .

Find :

Solution

Using Theorem , .

Answer: .

Proof of Theorem : We present this proof in double-column form, with statements in the left column and the reason for each
statement in the right column. The last statement is the theorem we wish to prove.

Statements Reasons

1. 1. The sum of the angles of a triangle is .

2. 2. Subtract  from both sides of the equation, statement 1.

3. 3.  and  are supplementary.

4. .
4. Both  (statement 3) and  (statement 2) equal 

.

Find :

Solution

 is an exterior angle with remote interior angles  and . By Theorem ,

 Theorem 2.3.2

2.3.4 ∠x = ∠A+∠B

 Example  (repeated)2.3.3

x

2.3.2 = + =x∘ 100∘ 50∘ 150∘

x = 150

2.3.2

∠A+ ∠B+ ∠y = 180∘ 180∘

∠A+ ∠B = − ∠y180∘ ∠y

∠x = − ∠y.180∘ ∠x ∠y

∠x = ∠A+ ∠B
∠x ∠A+ ∠B

− ∠y180∘

 Example 2.3.4

x

∠BCD ∠A ∠B 2.3.2
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The least common denominator (1, c, d) is 15.

Check:

Answer: .

Our work on the sum of the angles of a triangle can easily be extended to other figures:

Find the sum of the angles of a quadrilateral (four  sided figure),

Solution

Divide the quadrilateral into two triangles as illustrated,

Answer: .

∠BCD

x
12

5

=

=

∠A+∠B

x+x+2
4

3

(2.3.2)

x
3

( )15

12

5

36x

36x

36x−35x

x

=

=

=

=

=

x+(15)x+(15)(2)
3

( )15

4

3

20x+15x+30

35x+30

30

30

x = 30

 Example 2.3.5

∠A+∠B+∠C +∠D =

=

=

∠A+∠1 +∠3 +∠2 +∠4 +∠C

+180∘ 180∘

360∘

360∘
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Find the sum of the angles of a pentagon (five-sided figure).

Solution

Divide the pentagon into three triangles as illustrated, The sum is equal to the sum of the angles of the three triangle = 
.

Answer: .

There is one more simple principle which we will derive from Theorem , Consider the two triangles in Figure .

Figure : Each triangle has an angle of  and .

We are given that  and . A short calculation shows that we must also have .
This suggests the following theorem:

If two angles of one triangle are equal respectively to two angles of another triangle, then their remaining angles are also equal.

In Figure , if  and  then .

Proof

.

Figure .  and .

 Example 2.3.6

(3)( ) =180∘ 540∘

540∘

2.3.1 2.3.5

2.3.5 60∘ 40∘

∠A = ∠D = 60∘ ∠B = ∠E = 40∘ ∠C = ∠F = 80∘

 Theorem 2.3.3

2.3.6 ∠A = ∠D ∠B = ∠E ∠C = ∠F

∠C = −(∠A+∠B) = −(∠D+∠E) = ∠F180∘ 180∘

2.3.6 ∠A = ∠D ∠B = ∠E
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Our Theorem , which states that the sum of the angles of a triangle is , is one of the most important consequences of
the parallel postulate, Therefore, one way of testing the truth of the parallel postulate (see the Historical Note in Section 1.4) is
to test the truth of Theorem , This was actually tried by the German mathematician, astronomer, and physicist, Karl
Friedrich Gauss (1777 - 1855). (This is the same Gauss whose name is used as a unit of measurement in the theory of
magnetism), Gauss measured the sum of the angles of the triangle formed by three mountain peaks in Germany, He found the
sum of the angles to be 14.85 seconds more than  (60 seconds 1 minute, 60 minutes = 1 degree). However this small
excess could have been due to experimental error, so the sum might actually have been .

Aside from experimental error, there is another difficulty involved in verifying the angle sum theorem. According to the non-
Euclidean geometry of Lobachevsky, the sum of the angles of a triangle is always less than . In the non-Euclidean
geometry of Riemann, the sum of the angles is always more than , However in both cases the difference from  is
insignificant unless the triangle is very large, Neither theory tells us exactly how large such a triangle should be, Even if we
measured the angles of a very large triangle, like one formed by three stars, and found the sum to be indistinguishable from 

, we could only say that the angle sum theorem and parallel postulate are apparently true for these large distances, These
distances still might be too small to enable us to determine whichgeometric system best describes the universe as a whole,

Problems

1 - 12. Find  and all the missing angles of each triangle:

1.  2. 

3.  4. 

5.  6. 

 Historical Note

2.3.1 180∘

2.3.1

180∘

180∘

180∘

180∘ 180∘

180∘

x
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7.  8. 

9.  10. 

11. 12. 

13 - 14. Find , and :

13. 14. 

15 - 20. Find :

x, y z

x

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/@go/page/76285?pdf


2.3.23 https://phys.libretexts.org/@go/page/76285

15.  16. 

17. 18. 

19.  20. 

21. Find the sum of the angles of a hexagon (6-sided figure).

22. Find the sum of the angles of an octagon (8-sided figure).

23 - 26. Find :

23.  24. 

x
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25.  26. 

In a right triangle, the sides of the right angle are called the legs of the triangle and the remaining side is called the hypotenuse. In
Figure , side  and  are the legs and side  is the hypotenuse.

Figure : A right triangle.

The following is one of the most famous theorems in mathematics.

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs. That is,

Thus, for the sides of the triangle in Figure ,

Before we prove Theorem , we will give several examples.

Find 

Solution

2.3.1 AC BC AB

2.3.1

 Theorem : Pythagorean Theorem2.3.1

+ =leg2 leg2 hypotenuse 2 (2.3.3)

2.3.1

+ =a2 b2 c2

2.3.1

 Example 2.3.1

x
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Check:

Answer: .

Find :

Solution

Check:

+leg2 leg2

+32 42

9 +16

25

5

=

=

=

=

=

hyp2

x2

x2

x2

x

x = 5

 Example 2.3.2

x

+leg2 leg2

+52 x2

25 +x2

x2

x

=

=

=

=

=

hyp2

102

100

75

= = 575
−−

√ 25
−−

√ 3
–

√ 3
–

√
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Answer: .

Find :

Solution

Check:

Answer: .

Find 

x = 5 3
–

√

 Example 2.3.3

x

+leg2 leg2

+52 52

25 +25

50

x

=

=

=

=

=

hyp2

x2

x2

x2

= = 550
−−

√ 25
−−

√ 2
–

√ 2
–

√

x = 5 2
–

√

 Example 2.3.4

x
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Solution

 

We reject  because  cannot be negative.

Check, :

Answer: .

We will now restate and prove Theorem :

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs. That is,

In Figure ,

+leg2 leg2

+(x+1x2 )2

+ +2x+1x2 x2

+ +2x+1 − −4x−4x2 x2 x2

−2x−3x2

(x−3)(x+1)

=

=

=

=

=

=

hyp2

(x+2)2

+4x+4x2

0

0

0

x−3

x

=

=

0

3

x+1

x

=

=

0

−1

x = −1 AC = x

x = 3

x = 3

2.3.1

 Theorem  Pythagorean Theorem2.3.1

+ = .leg2 leg2 hypotenuse 2

2.3.1

+ = .a2 b2 c2
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Figure . A right triangle.

Figure . Draw  perpendicular to .

Proof

In Figure , draw  perpendicular to . Let . Then  (Figure ). As in Example ,
section 4.2,  and . From these two similarities we obtain two proportions:

The converse of the Pythagorean Theorem also holds:

2.3.1

2.3.2 CD AB

2.3.1 CD AB x = AD BD = c−x 2.3.2 2.3.3
△ABC ∼△ACD △ABC ∼△CBD
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In a triangle, if the square of one side is equal to the sun of the squares of the other two sides then the triangle is a right
triangle.

In Figure , if  then  is a right triangle with .

Figure : If  then .

Proof

Draw a new triangle, , so that , , and  (Figure ).  is a right triangle, so by
Theorem , . We have  and therefore . Therefore 

 because . Therefore, .

Figure : Given , draw  so that ,  and .

Is  a right triangle?

 Theorem  (converse of the Pythagorean Theorem).2.3.2

2.3.3 = +c2 a2 b2
△ABC ∠C = 90∘

2.3.3 = +c2 a2 b2 ∠C = 90∘

△DEF ∠F = 90∘ d = a e = b 2.3.4 △DEF

2.3.1 = +f 2 d2 e2 = + = + =f 2 d2 e2 a2 b2 c2 f = c

△ABC ≅△DEF SSS = SSS ∠C +∠F = 90∘

2.3.4 △ABC △DEF ∠F = 90∘ d = a e = b

 Example 2.3.5

△ABC
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Solution

.

so by Theorem ,  is a right triangle.

Answer: yes.

Find  and :

Solution

 is a rectangle so  and . Therefore  and 
.

Answer: , .

= = 49AC2 72

= = 81BC2 92

= ( = 130AB2 130
−−−

√ )2

49 +81 = 130

2.3.2 △ABC

 Example 2.3.6

x AB

+x2 122

+144x2

x2

x2

x

=

=

=

=

=

132

169

169 −144

25

5

CDEF EF = CD = 20 CF = DE = 12 FB = 5
AB = AE+EF +FB = 5 +20 +5 = 30

x = 5 AB = 30
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Find ,  and :

Solution

 is a rhombus. The diagonals of a rhombus are perpendicular and bisect each other.

Answer: .

A ladder 39 feet long leans against a building, How far up the side of the building does the ladder reach if the foot of the ladder
is 15 feet from the building?

Solution

Answer: 36 feet.

 Example 2.3.7

x AC BD

ABCD

+62 82

36 +64

100

10

=

=

=

=

x2

x2

x2

x

AC = 8 +8 = 16,BD = 6 +6 = 12.

x = 10,AC = 16,BD = 12

 Example 2.3.8

+leg2 leg2

+x2 152

+225x2

x2

x2

x

=

=

=

=

=

=

hyp2

392

1521

1521 −225

1296

= 361296
− −−−

√
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Pythagoras (c. 582 - 507 B.C.) was not the first to discover the theorem which bears his name. It was known long before his
time by the Chinese, the Babylonians, and perhaps also the Egyptians and the Hindus, According to tradition, Pythagoras was
the first to give a nroof of the theorem, His proof probably made use of areas, like the one suggested. In Figure  below,
(each square contains four congruent right triangles with sides of lengths , , and , In addition the square on the left contains
a square with side a and a square with side  while the one on the right contains a square with side c.)

Figure : Pythagoras may have proved  in this way.
Since the time of Pythagoras, at least several hundred different proofs of the Pythagorean Theorem have been proposed,
Pythagoras was the founder of the Pythagorean school, a secret religious society devoted to the study of philosophy,
mathematics, and science. Its membership was a select group, which tended to keep the discoveries and practices of the society
secret from outsiders. The Pythagoreans believed that numbers were the ultimate components of the universe and that all
physical relationships could be expressed with whole numbers, This belief was prompted in part by their discovery that the
notes of the musical scale were related by numerical ratios. The Pythagoreans made important contributions to medicine,
physics, and astronomy, In geometry, they are credited with the angle s

um theorem for triangles, the properties of parallel lines, and the theory of similar triangles and proportions.

Problems
1 - 10. Find . Leave answers in simplest radical form.

1.

2.

 Historical Note

2.3.5
a b c

b

2.3.5 + =a2 b2 c2

x
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3.

4.

5.

6.
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7.

8.

9.

10.
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11 - 14. Find  and all sides of the triangle:

11.

12.

13.

14.

x

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/@go/page/76285?pdf


2.3.36 https://phys.libretexts.org/@go/page/76285

15 - 16. Find :

15.

16.

17. Find  and .

18. Find :

x

x AB

x
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19. Find  and :

20. Find  and :

21. Find  and :

22. Find ,  and :

x,AC BD

x,AC BD

x y

x AC BD
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23. Find  and :

24. Find  and :

25 - 30. Is  a right triangle?

25.

26.

x,AB BD

x,AB AD

△ABC
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27.

28.

29.

30.
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31. A ladder 25 feet long leans against a building, How far up the side of the building does the ladder reach if the foot of the ladder
is 7 feet from the building?

32. A man travels 24 miles east and then 10 miles north. At the end of his journey how far is he from his starting point?

33. Can a table 9 feet wide (with its legs folded) fit through a rectangular doorway 4 feet by 8 feet?

34. A baseball diamond is a square 90 feet on each side, Find the distance from home plate to second base (leave answer in
simplest radical form).

This appendix contains some formulas and results from geometry that are important in the study of trigonometry.

For a circle with radius :

Circumference: 
Area: 

 Circles

r

C = 2πr
A = πr2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/@go/page/76285?pdf


2.3.41 https://phys.libretexts.org/@go/page/76285

The sum of the measures of the three angles of a triangle is .
A triangle in which each angle has a measure of less that  is called an acute triangle.
A triangle that has an angle whose measure is greater than  is called an obtuse triangle.
A triangle that contains an angle whose measure is  is called a right triangle. The side of a right triangle that is opposite
the right angle is called the hypotenuse, and the other two sides are called the legs.
An isosceles triangle is a triangle in which two sides of the triangle have equal length. In this case, the two angles across
from the two sides of equal length have equal measure.
An equilateral triangle is a triangle in which all three sides have the same length. Each angle of an equilateral triangle has
a measure of .

The sum of the measures of the two acute angles of a right triangle is . In the diagram on the right, .
The Pythagorean Theorem. In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other
two sides. In the diagram on the right, 

A right triangle in which both acute angles are . For this type of right triangle, the lengths of the two legs are equal. So
if  is the length of the hypotenuse and  is the length of each of the legs, then by the Pythagorean Theorem, .
Solving this equation for , we obtain

 

 

 

 Triangles

180∘

90∘

90∘

90∘

60∘

 Right Triangles

90∘ α+β = 90∘

= +c2 a2 b2

 Special Right Triangles

45
∘

c x = +c2 x2 x2

x

2 =x2 c2 (2.3.4)

=x2 c2

2
(2.3.5)

x =
c2

2

−−−
√ (2.3.6)

x = =
x

2
–

√

c 2
–

√

2
(2.3.7)
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A right triangle with acute angles of  and .

We start with an equilateral triangle with sides of length . By drawing an angle bisector at one of the vertices, we create two
congruent right triangles with acute angles of  and .

This means that the third side of each of these right triangles will have a length of . If the length of the altitude is , then

using the Pythagorean Theorem, we obtain

 

 

 

Two triangles are similar if the three angles of one triangle are equal in measure to the three angles of the other triangle. The
following diagram shows similar triangles  and . We write .

The sides of similar triangles do not have to have the same length but they will be proportional. Using the notation in the
diagram, this means that

30
∘

60
∘

c

30∘ 60∘

c

2
x

= +(c2 x2 c

2
)2 (2.3.8)

= −x2 c2 c2

4
(2.3.9)

=x2 3c2

4
(2.3.10)

x = =
3c2

4

− −−
√

c 3
–

√

2
(2.3.11)

 Similar Triangles

△ABC △DEF △ABC ∼△DEF

= =
a

d

b

e

c

f
(2.3.12)
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We use some properties of parallelograms in the study of vectors in Section 3.5. A parallelogram is a quadrilateral with two
pairs of parallel sides. We will use the diagram on the right to describe some properties of parallelograms.

Opposite sides are equal in length. In the diagram, this means that

As shown in the diagram, opposite angles are equal. That is,

The sum of two adjacent angles is . In the diagram, this means that

This page titled 2.3: Triangles is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted Sundstrom &
Steven Schlicker (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform.

6.1: Basic Geometric Concepts and Figures by Darlene Diaz is licensed CC BY-NC-SA 4.0. Original source:
https://www.sccollege.edu/OER/Documents/MATH 105/Math For Liberal Art Students (2017).pdf.
1.5: Triangles by Henry Africk is licensed CC BY-NC-SA 4.0. Original source: https://academicworks.cuny.edu/ny_oers/44.
4.4: Pythagorean Theorem by Henry Africk is licensed CC BY-NC-SA 4.0. Original source: https://academicworks.cuny.edu/ny_oers/44.
6: Some Geometric Facts about Triangles and Parallelograms by Ted Sundstrom & Steven Schlicker is licensed CC BY-NC-SA 3.0.
Original source: https://scholarworks.gvsu.edu/books/12.

 Parallelograms

AB = DC  and AD = BC (2.3.13)

∠DAB = ∠BCD and ∠ABC = ∠CDA (2.3.14)

180∘

α+β = 180∘ (2.3.15)
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2.4: The Rectangular Coordinate Systems and Graphs

Plot ordered pairs in a Cartesian coordinate system.
Graph equations by plotting points.
Graph equations with a graphing utility.
Find -intercepts and -intercepts.
Use the distance formula.
Use the midpoint formula.

Plotting Ordered Pairs in the Cartesian Coordinate System
The Cartesian coordinate system, also called the rectangular coordinate system, is based on a two-dimensional plane consisting of
the -axis and the -axis. Perpendicular to each other, the axes divide the plane into four sections. Each section is called a
quadrant; the quadrants are numbered counterclockwise as shown in Figure .

Figure 

The center of the plane is the point at which the two axes cross. It is known as the origin, or point . From the origin, each axis
is further divided into equal units: increasing, positive numbers to the right on the -axis and up the -axis; decreasing, negative
numbers to the left on the -axis and down the -axis. The axes extend to positive and negative infinity as shown by the
arrowheads in Figure .

 Learning Objectives

x y

x y

2.4.2

2.4.2

(0, 0)
x y

x y

2.4.3
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Figure 

Each point in the plane is identified by its -coordinate, or horizontal displacement from the origin, and its -coordinate, or vertical
displacement from the origin. Together, we write them as an ordered pair indicating the combined distance from the origin in the
form . An ordered pair is also known as a coordinate pair because it consists of - and -coordinates. For example, we can
represent the point  in the plane by moving three units to the right of the origin in the horizontal direction, and one unit
down in the vertical direction. See Figure .

Figure 

When dividing the axes into equally spaced increments, note that the -axis may be considered separately from the -axis. In other
words, while the -axis may be divided and labeled according to consecutive integers, the -axis may be divided and labeled by
increments of , or , or . In fact, the axes may represent other units, such as years against the balance in a savings account, or
quantity against cost, and so on. Consider the rectangular coordinate system primarily as a method for showing the relationship
between two quantities.

A two-dimensional plane where the

-axis is the horizontal axis
-axis is the vertical axis

A point in the plane is defined as an ordered pair, , such that  is determined by its horizontal distance from the origin
and  is determined by its vertical distance from the origin.

2.4.3

x y

(x, y) x y

(3, −1)
2.4.4

2.4.4

x y

x y

2 10 100

 Cartesian Coordinate System

x

y

(x, y) x

y
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Plot the points , , and  in the plane.

Solution

To plot the point , begin at the origin. The -coordinate is , so move two units to the left. The -coordinate is , so
then move four units up in the positive  direction.

To plot the point , begin again at the origin. The -coordinate is , so move three units to the right. The -coordinate is
also , so move three units up in the positive  direction.

To plot the point , begin again at the origin. The -coordinate is . This tells us not to move in either direction along the
-axis. The -coordinate is , so move three units down in the negative  direction. See the graph in Figure .

Figure 
Analysis

Note that when either coordinate is zero, the point must be on an axis. If the -coordinate is zero, the point is on the -axis. If
the -coordinate is zero, the point is on the -axis.

Graphing Equations by Plotting Points

We can plot a set of points to represent an equation. When such an equation contains both an  variable and a  variable, it is called
an equation in two variables. Its graph is called a graph in two variables. Any graph on a two-dimensional plane is a graph in
two variables.

Suppose we want to graph the equation . We can begin by substituting a value for  into the equation and determining
the resulting value of . Each pair of - and -values is an ordered pair that can be plotted. Table  lists values of  from  to 

 and the resulting values for .

Table 

 Example : Plotting Points in a Rectangular Coordinate System2.4.1

(−2, 4) (3, 3) (0, −3)

(−2, 4) x – 2 y 4
y

(3, 3) x 3 y

3 y

(0, −3) x 0
x y – 3 y 2.4.5

2.4.5

x y

y x

x y

y = 2x−1 x

y x y 2.4.1 x – 3
3 y

2.4.1

x y = 2x− 1 (x, y)

−3 y = 2(−3) − 1 = −7 (−3, −7)

−2 y = 2(−2) − 1 = −5 (−2, −5)

−1 y = 2(−1) − 1 = −3 (−1, −3)

0 y = 2(0) − 1 = −1 (0, −1)

1 y = 2(1) − 1 = 1 (1, 1)
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We can plot the points in the table. The points for this particular equation form a line, so we can connect them (Figure ). This
is not true for all equations.

Figure 

Note that the -values chosen are arbitrary, regardless of the type of equation we are graphing. Of course, some situations may
require particular values of  to be plotted in order to see a particular result. Otherwise, it is logical to choose values that can be
calculated easily, and it is always a good idea to choose values that are both negative and positive. There is no rule dictating how
many points to plot, although we need at least two to graph a line. Keep in mind, however, that the more points we plot, the more
accurately we can sketch the graph.

1. Make a table with one column labeled , a second column labeled with the equation, and a third column listing the
resulting ordered pairs.

2. Enter -values down the first column using positive and negative values. Selecting the -values in numerical order will
make the graphing simpler.

3. Select -values that will yield -values with little effort, preferably ones that can be calculated mentally.
4. Plot the ordered pairs.
5. Connect the points if they form a line.

Graph the equation  by plotting points.

Solution

First, we construct a table similar to Table . Choose  values and calculate .

Table 

x y = 2x− 1 (x, y)

2 y = 2(2) − 1 = 3 (2, 3)

3 y = 2(3) − 1 = 5 (3, 5)

2.4.6

2.4.6

x

x

 Howto: Given an equation, graph by plotting points

x

x x

x y

 Example : Graphing an Equation in Two Variables by Plotting Points2.4.2

y = −x+2

2.4.2 x y

2.4.2

x y = −x+ 2 (x, y)

−5 y = −(−5) + 2 = 7 (−5, 7)

−3 y = −(−3) + 2 = 5 (−3, 5)
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Now, plot the points. Connect them if they form a line. See Figure .

Figure 

Construct a table and graph the equation by plotting points: .

Answer

Please see Table  and graph below.

Table 

x y = −x+ 2 (x, y)

−1 y = −(−1) + 2 = 3 (−1, 3)

0 y = −(0) + 2 = 2 (0, 2)

1 y = −(1) + 2 = 1 (1, 1)

3 y = −(3) + 2 = −1 (3, −1)

5 y = −(5) + 2 = −3 (5, −3)

2.4.7

2.4.7

 Exercise 2.4.1

y = x+2
1

2

2.4.3

2.4.3

x y = 12x+ 2 (x, y)

−2 y = 12(−2) + 2 = 1 (−2, 1)

−1 y = 12(−1) + 2 = 32 (−1, 32)

0 y = 12(0) + 2 = 2 (0, 2)

1 y = 12(1) + 2 = 52 (1, 52)

2 y = 12(2) + 2 = 3 (2, 3)
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Figure 

Finding -intercepts and -intercepts

The intercepts of a graph are points at which the graph crosses the axes. The -intercept is the point at which the graph crosses the
\(x\)-axis. At this point, the -coordinate is zero. The -intercept is the point at which the graph crosses the -axis. At this point, the

-coordinate is zero.

To determine the -intercept, we set  equal to zero and solve for . Similarly, to determine the -intercept, we set  equal to zero
and solve for . For example, lets find the intercepts of the equation .

To find the -intercept, set .

−intercept: 

To find the -intercept, set .

−intercept: 
We can confirm that our results make sense by observing a graph of the equation as in Figure . Notice that the graph crosses
the axes where we predicted it would.

2.4.8

x y

x

y y y

x

x y x y x

y y = 3x−1

x y = 0

y

0

1
1

3

= 3x−1
= 3x−1

= 3x

= x

x ( , 0)
1

3

y x = 0

y

y

y

= 3x−1

= 3(0) −1

= −1

y (0, −1)

2.4.12
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Figure 

1. Find the -intercept by setting  and solving for .
2. Find the -intercept by setting  and solving for .

Find the intercepts of the equation . Then sketch the graph using only the intercepts.

Solution

Set  to find the -intercept.

−intercept: 

Set  to find the -intercept.

−intercept: 
Plot both points, and draw a line passing through them as in Figure .

2.4.12

 Howto: GIVEN AN EQUATION, FIND THE INTERCEPTS

x y = 0 x

y x = 0 y

 Example : Finding the Intercepts of the Given Equation2.4.4

y = −3x−4

y = 0 x

y

0
4
4

3

= −3x−4
= −3x−4
= −3x

= x

x (− , 0)
4

3

x = 0 y

y

y

y

= −3x−4
= −3(0) −4

= −4

y (0, −4)

2.4.13
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Figure 

Find the intercepts of the equation and sketch the graph: .

Answer

-intercept is ; -intercept is 

Figure 

Using the Distance Formula
Derived from the Pythagorean Theorem, the distance formula is used to find the distance between two points in the plane. The
Pythagorean Theorem, , is based on a right triangle where  and  are the lengths of the legs adjacent to the right
angle, and  is the length of the hypotenuse. See Figure .

2.4.13

 Exercise 2.4.2

y = − x+3
3

4

x (4, 0) y (0, 3)

2.4.14

+ =a2 b2 c2 a b

c 2.4.15
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Figure 

The relationship of sides  and  to side  is the same as that of sides  and  to side . We use the absolute value
symbol to indicate that the length is a positive number because the absolute value of any number is positive. (For example, 

. ) The symbols  and  indicate that the lengths of the sides of the triangle are positive. To find the
length , take the square root of both sides of the Pythagorean Theorem.

It follows that the distance formula is given as

We do not have to use the absolute value symbols in this definition because any number squared is positive.

Given endpoints  and , the distance between two points is given by

Find the distance between the points  and .

Solution

Let us first look at the graph of the two points. Connect the points to form a right triangle as in Figure 

Figure 

Then, calculate the length of  using the distance formula.

2.4.15

| − |x2 x1 | − |y2 y1 d a b c

| −3| = 3 | − |x2 x1 | − |y2 y1

c

= + → c =c2 a2 b2 +a2 b2− −−−−−
√ (2.4.1)

= + → d =d
2 ( − )x2 x1

2
( − )y2 y1

2
+( − )x2 x1

2
( − )y2 y1

2
− −−−−−−−−−−−−−−−−−

√ (2.4.2)

 distance between two points

( , )x1 y1 ( , )x2 y2

d = +( − )x2 x1
2 ( − )y2 y1

2
− −−−−−−−−−−−−−−−−−

√ (2.4.3)

 Example : Finding the Distance between Two Points2.4.5

(−3, −1) (2, 3)

2.4.16

2.4.16

d

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76286?pdf


2.4.10 https://phys.libretexts.org/@go/page/76286

Find the distance between two points:  and .

Answer

Using the Midpoint Formula
When the endpoints of a line segment are known, we can find the point midway between them. This point is known as the midpoint
and the formula is known as the midpoint formula. Given the endpoints of a line segment,  and , the midpoint
formula states how to find the coordinates of the midpoint M.

A graphical view of a midpoint is shown in Figure . Notice that the line segments on either side of the midpoint are
congruent.

Figure 

Find the midpoint of the line segment with the endpoints  and .

Solution

Use the formula to find the midpoint of the line segment.

d = +( − )x2 x1
2 ( − )y2 y1

2
− −−−−−−−−−−−−−−−−−

√

= +(2 −(−3)) 2 (3 −(−1)) 2
− −−−−−−−−−−−−−−−−−−−

√

= +(5)2 (4)2
− −−−−−−−−

√

= 25 +16
− −−−−−

√

= 41
−−

√

 Exercise 2.4.3

(1, 4) (11, 9)

= 5125
−−−

√ 5
–

√

( , )x1 y1 ( , )x2 y2

M =( , )
+x1 x2

2

+y1 y2

2
(2.4.4)

2.4.18

2.4.18

 Example : Finding the Midpoint of the Line Segment2.4.7

(7, −2) (9, 5)

( , )
+x1 x2

2

+y1 y2

2
=( , )

7 +9

2

−2 +5

2

=(8, )
3

2
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Find the midpoint of the line segment with endpoints  and .

Answer

The diameter of a circle has endpoints  and . Find the center of the circle.

Solution

The center of a circle is the center, or midpoint, of its diameter. Thus, the midpoint formula will yield the center point.

Access these online resources for additional instruction and practice with the Cartesian coordinate system.

1. Plotting points on the coordinate plane

2. Find x and y intercepts based on the graph of a line

Key Concepts
We can locate, or plot, points in the Cartesian coordinate system using ordered pairs, which are defined as displacement from
the -axis and displacement from the -axis. See Example.
An equation can be graphed in the plane by creating a table of values and plotting points. See Example.
Using a graphing calculator or a computer program makes graphing equations faster and more accurate. Equations usually have
to be entered in the form _____. See Example.
Finding the - and -intercepts can define the graph of a line. These are the points where the graph crosses the axes. See
Example.
The distance formula is derived from the Pythagorean Theorem and is used to find the length of a line segment. See Example
and Example.
The midpoint formula provides a method of finding the coordinates of the midpoint dividing the sum of the -coordinates and
the sum of the -coordinates of the endpoints by . See Example and Example.

This page titled 2.4: The Rectangular Coordinate Systems and Graphs is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

2.1: The Rectangular Coordinate Systems and Graphs by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/precalculus.

 Exercise 2.4.4

(−2, −1) (−8, 6)

(−5, )
5

2

 Example : Finding the Center of a Circle2.4.8

(−1, −4) (5, −4)

( , )
+x1 x2

2

+y1 y2

2
=( , ))

−1 +5

2

−4 −4

2

=( , − )
4

2

8

2

= (2, 4)

 Media

x y

y =
x y

x

y 2
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2.5: Finding Angle Measurements

Angles

Lines, line segments, points, and rays are the building blocks of other figures. For example, two rays with a common endpoint
make up an angle. The common endpoint of the angle is called the vertex.

The angle ABC is shown below. This angle can also be called ∠ABC, ∠CBA or simply ∠B. When you are naming angles, be
careful to include the vertex (here, point B) as the middle letter.

The image below shows a few angles on a plane. Notice that the label of each angle is written “point-vertex-point,” and the
geometric notation is in the form ∠ABC.

Sometimes angles are very narrow; sometimes they are very wide. When people talk about the “size” of an angle, they are referring
to the arc between the two rays. The length of the rays has nothing to do with the size of the angle itself. Drawings of angles will
often include an arc (as shown above) to help the reader identify the correct ‘side’ of the angle.

Think about an analog clock face. The minute and hour hands are both fixed at a point in the middle of the clock. As time passes,
the hands rotate around the fixed point, making larger and smaller angles as they go. The length of the hands does not impact the
angle that is made by the hands.

An angle is measured in degrees, represented by the symbol º. A circle is defined as having 360º. (In skateboarding and basketball,
“doing a 360” refers to jumping and doing one complete body rotation.

A right angle is any degree that measures exactly 90º. This represents exactly one-quarter of the way around a circle. Rectangles
contain exactly four right angles. A corner mark is often used to denote a right angle, as shown in right angle DCB below.

Angles that are between 0º and 90º (smaller than right angles) are called acute angles. Angles that are between 90º and 180º (larger
than right angles and less than 180º) are called obtuse angles. And an angle that measures exactly 180º is called a straight angle
because it forms a straight line.
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Figure : Examples of Angles

Label each angle below as acute, right, or obtuse.

Solution
You can start by identifying any right angles.

∠GFI is a right angle, as indicated by the corner mark at vertex F.

Acute angles will be smaller than ∠GFI (or less than 90º). This means that ∠DAB and ∠MLN are acute.

∠TQS is larger than ∠GFI, so it is an obtuse angle.

Answer: ∠DAB and ∠MLN are acute angles. ∠GFI is a right angle. ∠TQS is an obtuse angle.

Identify each point, ray, and angle in the picture below.

2.5.5

 Example 2.5.4

 Example 2.5.5
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Solution
Begin by identifying each point in the figure. There are 4: E, F, G, and J.

Now find rays. A ray begins at one point, and then continues through another point towards infinity (indicated by an arrow).

Three rays start at point J: , , and . But also notice that a ray could start at point F and go through J and G, and

another could start at point G and go through J and F. These rays can be represented by  and .

Finally, look for angles. ∠EJG is obtuse, ∠EJF is acute, and ∠FJG is straight. (Don’t forget those straight angles!)

Answer: Points: E, F, G, J

Rays: , , , , 

Angles: ∠EJG, ∠EJF, ∠FJG

Identify the acute angles in the given image:

Finding Angle Measurements

Understanding how parallel and perpendicular lines relate can help you figure out the measurements of some unknown angles. To
start, all you need to remember is that perpendicular lines intersect at a 90º angle and that a straight angle measures 180º.

The measure of an angle such as ∠A is written as m∠A. Look at the example below. How can you find the measurements of the
unmarked angles?

JE
−→

JF
−→

JG
−→

GF
−→−

FG
−→−

JE
−→

JG
−→

JF
−→

GF
−→−

FG
−→−

 Try It Now 2
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Find the measurement of ∠IJF.

Solution
Only one angle, ∠HJM, is marked in the image. Notice that it is a right angle, so it measures 90º. ∠HJM is formed by the

intersection of lines  and . Since  is a line, ∠IJM is a straight angle measuring 180º.

You can use this information to find the measurement of ∠HJI :

m∠HJM + m∠HJI = m∠IJM

90º + m∠HJI = 180º

m∠HJI = 90º

Now use the same logic to find the measurement of ∠IJF. ∠IJF is formed by the intersection of lines  and . Since 

 is a line, ∠HJF will be a straight angle measuring 180º.

 Example 2.5.8

IM
←→

HF
←→

IM
←→

IM
←→

HF
←→

HF
←→
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You know that ∠HJI measures 90º. Use this information to find the measurement of ∠IJF:

m∠HJM + m∠IJF = m∠HJF

90º + m∠IJF = 180º

m∠IJF = 90º

Answer: m∠IJF = 90º

In this example, you may have noticed that angles ∠HJI, ∠IJF, and ∠HJM are all right angles. (If you were asked to find the
measurement of ∠FJM, you would find that angle to be 90º, too.) This is what happens when two lines are perpendicular—the four
angles created by the intersection are all right angles.

Not all intersections happen at right angles, though. In the example below, notice how you can use the same technique as shown
above (using straight angles) to find the measurement of a missing angle.

Find the measurement of ∠DAC.

Solution

This image shows the line  and the ray  intersecting at point A. The measurement of ∠BAD is 135º. You can use
straight angles to find the measurement of ∠DAC.

 Example 2.5.9

BC
←→

AD
−→−
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∠BAC is a straight angle, so it measures 180º.

Use this information to find the measurement of ∠DAC.

m∠BAD + m∠DAC = m∠BAC

135º + m∠DAC = 180º

m∠DAC = 45º

Answer: m∠DAC = 45º

Find the measurement of ∠CAD.

Supplementary and Complementary

In the example above, m∠BAC and m∠DAC add up to 180º. Two angles whose measures add up to 180º are called
supplementary angles. There’s also a term for two angles whose measurements add up to 90º, they are called complementary

 Try It Now 2
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angles.

One way to remember the difference between the two terms is that “corner” and “complementary” each begin with c (a 90º angle
looks like a corner), while straight and “supplementary” each begin with s (a straight angle measures 180º).

If you can identify supplementary or complementary angles within a problem, finding missing angle measurements is often simply
a matter of adding or subtracting.

Two angles are supplementary. If one of the angles measures 48º, what is the measurement of the other angle?

Solution
Two supplementary angles make up a straight angle, so the measurements of the two angles will be 180º.

m∠A + m∠B = 180º

You know the measurement of one angle. To find the measurement of the second angle, subtract 48º from 180º.

48º+ m∠B = 180º

m∠B = 180º - 48º

m∠B = 132º

Answer: The measurement of the other angle is 132º

Find the measurement of ∠AXZ.

Solution

This image shows two intersecting lines,  and . They intersect at point X, forming four angles. Angles ∠AXY and
∠AXZ are supplementary because together they make up the straight angle ∠YXZ.

Use this information to find the measurement of ∠AXZ.

m∠AXY + m∠AXZ = m∠YXZ

30º + m∠AXZ = 180º

m∠AXZ = 150º

 Example 2.5.10

 Example 2.5.11

AB
←→

Y Z
←→
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Answer: m∠AXZ = 150º

Find the measurement of ∠BAC.

Solution

This image shows the line  and the rays  and , all intersecting at point A. Angle ∠BAD is a right angle. Angles
∠BAC and ∠CAD are complementary because together they create ∠BAD.

Use this information to find the measurement of ∠BAC .

m∠BAC + m∠CAD = m∠BAD

m∠BAC + 50º = 90º

m∠BAC = 40º

 Example 2.5.12

CF
←→

AB
←→

AD
←→
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Answer: m∠BAC = 40º

Find the measurement of ∠CAD.

Solution
You know the measurements of two angles here: ∠CAB and ∠DAE. You also know that m∠BAE = 180º.

Use this information to find the measurement of ∠CAD.

m∠BAC + m∠CAD + m∠DAE = m∠BAE

25º + m∠CAD + 75º = 180º

m∠CAD + 100º = 180º

m∠CAD = 80º

Answer: m∠CAD = 80º

 Example 2.5.13
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Which pair of angles is complementary?

A) ∠PKO and ∠MKN

B) ∠PKO and ∠PKM

C) ∠LKP and ∠LKN

D) ∠LKM and ∠MKN

Summary

Parallel lines do not intersect, while perpendicular lines cross at a 90º angle. Two angles whose measurements add up to 180º are
said to be supplementary, and two angles whose measurements add up to 90º are said to be complementary. For most pairs of
intersecting lines, all you need is the measurement of one angle to find the measurements of all other angles formed by the
intersection.

1. C) FH || EG; both EG and FH are marked with >> on each line, and those markings mean they are parallel.
2. 137º; ∠BAD is a straight angle measuring 180º. Since ∠BAC measures 43º, the measure of ∠CAD must be 180º – 43º =

137º.
3. D) ∠LKM and ∠MKN; the measurements of two complementary angles will add up to 90º. ∠LKP is a right angle, so
∠LKN must be a right angle as well. ∠LKM + ∠MKN = ∠LKN, so ∠LKM and ∠MKN are complementary.

 Try It Now 3

 Try It Now Answers
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Two lines are parallel if they do not meet, no matter how far they are extended. The symbol for parallel is . In Figure ,  

 . The arrow marks are used to indicate the lines are parallel.

Figure :  and  are parallel.They do not meet no matter how far they are
extended.

Figure :  and  are not parallel. They meet at
point .

|| 2.5.1 AB
↔

|| CD
↔

2.5.1 AB
↔

CD̂

2.5.1 EF
↔

GH
↔

P
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We make the following assumption about parallel lines, called the parallel postulate.

The probabilities assigned to events by a distribution function on a sample space are given by

Through a point not on a given line one and only one line can be drawn parallel to the given line. So in Figure , there is

exactly one line that can be drawn through  that is parallel to .

Figure : There is exactly one line that can be drawn through  parallel to .

Figure :  is a transversal.

A transversal is a line that intersects two other lines at two distinct points. In Figure ,  is a transversal.  and  are

called alternate interior angles of lines  and . The word "alternate," here, means that the angles are on different sides of

the transversal, one angle formed with  and the other formed with . The word "interior" means that they are between the
two lines. Notice that they form the letter " ." (Figure ).  and  are also alternate interior angles. They also form a " "
though It is stretched out and backwards. Viewed from the side, the letter " " may also look like an " ."

Figure : Alternate interior form the letters " " or " ". The letter may be stretched out or backwards.

Alternate interior angles are important because of the following theorem:

 Theorem : Parallel Postulate2.5.1

2.5.3

C AB
←−−

2.5.3 C AB
−→−

2.5.4 EF
←→

2.5.4 EF
←→

∠x ∠x′

AB
←→

CD
←→

AB
←→

CD
←→

Z 2.5.5 ∠y ∠y′ Z

Z N

2.5.5 Z N
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If two lines are parallel then their alternate interior angles are equal, If the alternate interior angles of two lines are equal then
the lines must 'oe parallel,

In Figure ,  must be parallel to  because the alternate interior angles are both . Notice that the other pair of
alternate interior angles,  and , are also equal. They are both . In Figure , the lines are not parallel and none of the
alternate interior angles are equal.

Figure : The lines are parallel and their alternate interior angles are equal.

Figure : The lines are not parallel and their alternate interior angles are not equal.

The Proof of Theorem  is complicated and will be deferred to the appendix.

Find  and :

Solution

 since the arrows indicate parallel lines.  because alternate interior angles of parallel lines are equal. 
.

Answer: .

 Theorem  The "Z" Theorem2.5.1

2.5.6 AB
←→

CD
←→

30∘

∠y ∠y′ 150∘ 2.5.7

2.5.6

2.5.7

2.5.1

 Example 2.5.1

x, y z

||AB
←→

CD
←→

=x∘ 40∘

= = − =y∘ z∘ 180∘ 40∘ 140∘

x = 40, y = 140, z = 140
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Corresponding angles of two lines are two angles which are on the same side of the two lines and the same side of the transversal,

In Figure ,  and  are corresponding angles of lines  and . They form the letter " ."  and ,  and ,

and  and  are other pairs of corresponding angles of  and . They all form the letter " ", though it might be a
backwards or upside down " " (Figure ).

Figure : Four pairs of corresponding angles are illustrated.

Figure : Corresponding angles form the letter " ," though it may be a backwards or upside down " ."

Corresponding angles are important because of the following theorem:

If two lines are parallel then their corresponding angles are equal. If the corresponding angles of two lines are equal then the
lines must be parallel.

Find :

Solution

2.5.8 ∠w ∠w′ AB
←→

CD
←→

F ∠x ∠x′ ∠y ∠y′

∠z ∠z′ AB
←→

CD
←→

F

F 2.5.9

2.5.8

2.5.9 F F

 Theorem : The "F" Theorem2.5.2

 Example 2.5.2

x
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The arrow indicate . Therefore  because  and  are the measures of corresponding angles of the

parallel lines  and .

Answer: .

Figure : Each pair of corresponding angles is equal.

Notice that we can now find all the other angles in Example . Each one is either supplementary to one of the 
angles or forms equal vertical angles with one of them (Figure ). Therefore all the corresponding angles are equal,
Also each pair of alternate interior angles is equal. It is not hard to see that if just one pair of corresponding angles or one pair of
alternate interior angles are equal then so are all other pairs of corresponding and alternate interior angles.

Proof of Theorem : The corresponding angles will be equal if the alternate interior angles are equal and vice versa. Therefore
Theorem  follows directly from Therorem .

In Figure ,  and  are called interior angles on the same side of the transversal.(In some textbooks, interior angles
on the same sdie of the transversal are called cointerior angles.)  and  are also interior angles on the same side of the
transversal, Notice that each pair of angles forms the letter " ." Compare Figure  with Figure 10 and also with Example 

, The following theorem is then apparent:

Figure : Interior angles on the same side of the transversal form the letter " ". It may also be a backwards " ."

If two lines are parallel then the interior angles on the same side of the transversal are supplementary (they add uP to ). If
the interior angles of two lines on the same side of the transversal are supplementary then the lines must be parallel.

Find  and the marked angles:

||AB
←→

CD
←→

=x∘ 110∘ x∘ 110∘

AB
←→

CD
←→

x = 110

PageIndex10

PageIndex2 110∘

PageIndex10

2.5.2

2.5.2 2.5.1

2.5.11 ∠x ∠x′

∠y ∠y′

C 2.5.11

2.5.1

2.5.11 C C

 Theorem :The "C" Theorem2.5.3

180∘

 Example 2.5.3

x
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Solution

The lines are parallel so by Theorem  the two labelled angles must be supplementary.

.

Check:

Answer: , , .

Find  and the marked angles:

Solution

 because vertical angles are equal.  and  are interior angles on the same side of the
transversal, and therefore are supplementary because the lines are parallel.

2.5.3

x+2x+30

3x+30

3x

3x

x

=

=

=

=

=

180

180

180 −30

150

50

(2.5.1)

∠CHG= x = 50∘

∠AGH = 2x+30 = 2(50) +30 = 100 +30 = 130∘

x = 50 ∠CHG= 50∘ ∠AGHa = 130∘

 Example 2.5.4

x

∠BEF = 3x+40∘ ∠BEF ∠DFE
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Check:

Answer: , , .

List all pairs of alternate interior angles in the diagram, (The single arrow indicates  is parallel to  and the double arrow

indicates  is parallel to .

Solution

We see if a letter  or  can be formed using the line segments in the diagram (Figure ),

Answer:  and  are alternate interior angles of lines  and .  and  are alternate interior

angles of lines  and 

3x+40 +2x+50

5x+90

5x

5x

x

=

=

=

=

=

180

180

180 −90

90

18

(2.5.2)

∠AEC = 3x+40 = 3(18) +40 = 54 +40 = 94∘

∠DFE = 2x+50 = 2(18) +50 = 36 +50 = 86∘

x = 18 ∠AEG= 94∘ ∠DFE = 86∘

 Example 2.5.5

AB
←→

CD
←→

AD
←→

BC
←→

Z N 2.5.12

∠DCA ∠CAB AB
←→

CD
←→

∠DAC ∠ACB

AD
←→

BC
←→
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A telescope is pointed at a star  above the horizon, What angle  must the mirror  make with the horizontal so that the
star can be seen in the eyepiece ?

Solution

 because they are alternate interior angles of parallel lines  and .  because the
angle of incidence is equal to the angle of reflection. Therefore

Answer: 

SUMMARY

Alternate interior angles of paralle lines are equal. They form the letter " ."

 Example 2.5.6

70∘ x∘ BD

E

= ∠BCEx∘ AB
←→

CE
←→

∠DCF = ∠BCE = x∘

x+70 +x

2x+70

2x

x

=

=

=

=

180

180

110

55

(2.5.3)

55∘

Z
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Corresponding angles of parallel lines are equal. They form the letter " ."

Interior angles on the same sides of the transversal of parallel lines are supplementary. They form the letter " ."

The parallel postulate given earlier in this section is the equivalent of the fifth postulate of Euclid's Elements. Euclid was
correct in assuming it as a postulate rather than trying to prove it as a theorem, However this did not become clear to the
mathematical world until the nineteenth century, 2200 years later, In the interim, scores of prominent mathematicians
attempted unsuccessfully to give a satisfactory proof of the parallel postulate. They felt that it was not as self-evident as a
postulate should be, and that it required some formal justification,

In 1826, N, I, Lobachevsky, a Russian mathematician, presented a system of geometry based on the assumption that through a
given point more than one straight line can be drawn parallel to a given line (Figure ). In 1854, the German
mathematician Georg Bernhard Riemann proFosed a system of geometriJ in which there are no parallel lines at all, A gecmetry
in which the parallel postulate has been replaced by some other postulate is called a non-Euclidean geometry. The existence of
these geometries shows that the parallel postulate need not necessarily be true. Indeed Einstein used the geometry of Riemann
as the basis for his theory of relativity.

Figure : In the geometry of Lobachevsky, more than one line can be drawn through  parallel to .

F

G

 Historical Note

2.5.13

PageIndex13 C AB
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Of course our original parallel postulate makes the most sense for ordinary applications, and we use it throughout this book,
However, for applications where great distances are involved, such as in astronomy, it may well be that a non-Euclidean
geometry gives a better approximation of physical reality.

Problems

For each of the following, state the theorem(s) used in obtaining your answer (for example, "alternate interior angles of parallel
lines are equal"). Lines marked with the same arrow are assumed to be parallel,

1 - 2. Find , and :

1.  2. 

3 - 4. Find , , , , , , and :

3.  4. 

5 - 10. Find :

5.  6. 

x, y z

t u v w x y z

x
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7.  8. 

9.  10. 

11 - 18. Find  and the marked angles:

11.  12. 

13.  14. 

x
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15. 16. 

17.  18. 

19 - 26. For each of the following, list all pairs of alternate interior angles and corresponding angles, If there are none, then list all
pairs of interior angles on the same side of the transversal. Indicate the parallel lines which form each pair of angles.

19.  20. 

21.  22. 

23.  24. 
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25.  26. 

27. A telescope is pointed at a star  above the horizon. What angle  must the mirror  make wiht the horizontal so that the
star can be seen in the eyepiece ?

28. A periscope is used by sailors in a submarine to see objects on the surface of the water, If , what angle  does
the mirror  make with the horizontal?

This page titled 2.5: Finding Angle Measurements is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Henry Africk (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of
the LibreTexts platform.

6.1: Basic Geometric Concepts and Figures by Darlene Diaz is licensed CC BY-NC-SA 4.0. Original source:
https://www.sccollege.edu/OER/Documents/MATH 105/Math For Liberal Art Students (2017).pdf.
1.4: Parallel Lines by Henry Africk is licensed CC BY-NC-SA 4.0. Original source: https://academicworks.cuny.edu/ny_oers/44.

50∘ x∘ BD

E

∠ECF = 90∘ x∘

BD
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2.6: Parallel and Perpendicular Lines

6.1.1: Properties of Angles

1. Identify parallel and perpendicular lines.
2. Find measures of angles.
3. Identify complementary and supplementary angles.

Introduction

Imagine two separate and distinct lines on a plane. There are two possibilities for these lines: they will either intersect at one point,
or they will never intersect. When two lines intersect, four angles are formed. Understanding how these angles relate to each other
can help you figure out how to measure them, even if you only have information about the size of one angle.

Parallel and Perpendicular

Parallel lines are two or more lines that never intersect. Likewise, parallel line segments are two line segments that never intersect
even if the line segments were turned into lines that continued forever. Examples of parallel line segments are all around you, in the
two sides of this page and in the shelves of a bookcase. When you see lines or structures that seem to run in the same direction,
never cross one another, and are always the same distance apart, there’s a good chance that they are parallel.

Perpendicular lines are two lines that intersect at a 90º (right) angle. And perpendicular line segments also intersect at a 90º (right)
angle. You can see examples of perpendicular lines everywhere as well—on graph paper, in the crossing pattern of roads at an
intersection, to the colored lines of a plaid shirt. In our daily lives, you may be happy to call two lines perpendicular if they merely
seem to be at right angles to one another. When studying geometry, however, you need to make sure that two lines intersect at a 90º
angle before declaring them to be perpendicular.

The image below shows some parallel and perpendicular lines. The geometric symbol for parallel is ||, so you can show that AB ||
CD. Parallel lines are also often indicated by the marking >> on each line (or just a single > on each line). Perpendicular lines are

indicated by the symbol ⊥, so you can write .

If two lines are parallel, then any line that is perpendicular to one line will also be perpendicular to the other line. Similarly, if two
lines are both perpendicular to the same line, then those two lines are parallel to each other. Let’s take a look at one example and
identify some of these types of lines.

 Learning Objectives

⊥W X
←→−

Y Z
←→
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Identify a set of parallel lines and a set of perpendicular lines in the image below.

Solution

Parallel lines never meet, and perpendicular lines intersect at a right angle.  and  do not intersect in this image, but if
you imagine extending both lines, they will intersect soon. So, they are neither parallel nor perpendicular.

 is perpendicular to both  and , as indicated by the right-angle marks at the intersection of those lines.

Since  is perpendicular to both lines, then  and  are parallel.

 Example 2.6.7

AB
←→

CD
←→

AB
←→

W X
←→−

Y Z
←→

AB
←→

W X
←→−

Y Z
←→
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Answer:  || 

 ⊥ ,  ⊥ 

Which statement most accurately represents the image below?

A) EF || GH

B) AB ⊥ EG

C) FH || EG

D) AB || FH

Determine the slopes of parallel and perpendicular lines.
Find equations of parallel and perpendicular lines

Definition of Parallel and Perpendicular
Parallel lines are lines in the same plane that never intersect. Two nonvertical lines in the same plane, with slopes  and , are
parallel if their slopes are the same, . Consider the following two lines:

Consider their corresponding graphs:

W X
←→−

Y Z
←→

AB
←→

W X
←→−

AB
←→

Y Z
←→

 Try It Now 1

 Learning Objectives

m1 m2

=m1 m2
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Figure 

Both lines have a slope  and thus are parallel.

Perpendicular lines are lines in the same plane that intersect at right angles (  degrees). Two nonvertical lines in the same plane,
with slopes  and , are perpendicular if the product of their slopes is . We can solve for  and obtain 

. In this form, we see that perpendicular lines have slopes that are negative reciprocals, or opposite reciprocals. For
example, if given a slope

then the slope of a perpendicular line is the opposite reciprocal:

The mathematical notation  reads “  perpendicular.” We can verify that two slopes produce perpendicular lines if their product
is .

Geometrically, we note that if a line has a positive slope, then any perpendicular line will have a negative slope. Furthermore, the
rise and run between two perpendicular lines are interchanged.

2.6.1

m = 3
4

90
m1 m2 −1 : m1 ⋅ m2 = −1 m1

=m1
−1
m2

m = − 5
8

=m⊥
8
5

m⊥ m

−1

m ⋅ = − ⋅ = − = −1 ✓m⊥
5
8

8
5

40
40
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Figure 

Perpendicular lines have slopes that are opposite reciprocals, so remember to find the reciprocal and change the sign. In other
words,

If , then 

Determining the slope of a perpendicular line can be performed mentally. Some examples follow

Given slope Slope of perpendicular line

Table 

Determine the slope of a line parallel to .

Solution:

Since the given line is in slope-intercept form, we can see that its slope is . Thus the slope of any line parallel to the
given line must be the same, . The mathematical notation  reads “  parallel.”

Answer:

2.6.2

m = a

b
= −m⊥

b
a

m = 1
2

= −2m⊥

m = − 3
4

=m⊥
4
3

m = 3 = −m⊥
1
3

m = −4 =m⊥
1
4

2.6.1

 Example 2.6.1

y = −5x +3

m = −5
= −5m∥ m∥ m

= −5m∥
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Determine the slope of a line perpendicular to .

Solution:

First, solve for  and express the line in slope-intercept form.

In this form, we can see that the slope of the given line is , and thus .

Answer:

Find the slope of the line perpendicular to .

Answer

Finding Equations of Parallel and Perpendicular Lines
We have seen that the graph of a line is completely determined by two points or one point and its slope. Often you will be asked to
find the equation of a line given some geometric relationship—for instance, whether the line is parallel or perpendicular to another
line.

Find the equation of the line passing through  and parallel to 

Solution

Here the given line has slope , and the slope of a line parallel is . Since you are given a point and the slope, use
the point-slope form of a line to determine the equation.

Answer:

It is important to have a geometric understanding of this question. We were asked to find the equation of a line parallel to
another line passing through a certain point.

 Example 2.6.2

3x −7y = 21

y

m = 3
7

= −m⊥
7
3

= −m⊥
7
3

 Exercise 2.6.1

15x +5y = 20

=m⊥
1
3

 Example 2.6.3

(6, −1) y = x +21
2

m = 1
2

=m∥
1
2

P oint

(6, −1)

Slope

=m∥
1
2

y = x −41
2
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Figure 

Through the point  we found a parallel line, , shown dashed. Notice that the slope is the same as the given
line, but the -intercept is different. If we keep in mind the geometric interpretation, then it will be easier to remember the
process needed to solve the problem.

Find the equation of the line passing through  and perpendicular to .

Solution:

The given line has slope , and thus . Substitute this slope and the given point into point-slope form.

Answer:

Geometrically, we see that the line , shown dashed below, passes through  and is perpendicular to the
given line.

2.6.3

(6, −1) y = x −41
2

y

 Example 2.6.4

(−1, −5) y = − x +21
4

m = − 1
4

= + = 4m⊥
4
1

P oint

(−1, −5)

Slope

= 4m⊥

y = 4x −1

y = 4x −1 (−1, −5)
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Figure 

It is not always the case that the given line is in slope-intercept form. Often you have to perform additional steps to determine the
slope. The general steps for finding the equation of a line are outlined in the following example.

Find the equation of the line passing through  and perpendicular to .

Solution:

Step 1: Find the slope . First, find the slope of the given line. To do this, solve for  to change standard form to slope-
intercept form, .

In this form, you can see that the slope is , and thus .

Step 2: Substitute the slope you found and the given point into the point-slope form of an equation for a line. In this case, the
slope is  and the given point is .

Step 3: Solve for .

Answer:

Find the equation of the line passing through  and parallel to .

Solution:

Find the slope  by solving for .

The given line has the slope , and so . We use this and the point  in point-slope form.

2.6.4

 Example 2.6.5

(8, −2) 6x +3y = 1

m y

y = mx +b

6x +3y

6x +3y−6x

3y
3y

3

y

y

= 1
= 1−6x

= −6x +1

=
−6x +1

3

= +
−6x

3

1

3

= −2x +
1

3

m = −2 = − 2
1

= = +m⊥
−1
−2

1
2

=m⊥
1
2

(8, −2)

y −y1

y −(−2)

= m(x − )x1

= (x −8)
1

2

y

y = x −61
2

 Example 2.6.6

( , 1)7
2

2x +14y = 7

m y

2x +14y

2x +14y−2x

14y

14y

14

y

y

= 7
= 7−2x

= −2x +7

=
−2x +7

14

= +
−2x

14

7

14

= − x +
1

7

1

2

m = − 1
7

= −m∥
1
7

( , 1)7
2
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Answer:

Find the equation of the line perpendicular to  and passing through .

Answer

When finding an equation of a line perpendicular to a horizontal or vertical line, it is best to consider the geometric interpretation.

Find the equation of the line passing through  and perpendicular to .

Solution:

We recognize that  is a horizontal line and we want to find a perpendicular line passing through .

Figure 

If we draw the line perpendicular to the given horizontal line, the result is a vertical line.

y −y1

y −1

y −1

y −1+1

y

y

= m(x − )x1

= − (x − )
1

7

7

2

= − x +
1

7

1

2

= − x + +1
1

7

1

2

= − x + +
1

7

1

2

2

2

= − x +
1

7

3

2

y = − x +1
7

3
2

 Exercise 2.6.2

x −3y = 9 (− , 2)1
2

y = −3x + 1
2

 Example 2.6.7

(−3, −2) y = 4

y = 4 (−3, −2)

2.6.5
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Figure 

Equations of vertical lines look like . Since it must pass through , we conclude that  is the equation. All
ordered pair solutions of a vertical line must share the same -coordinate.

Answer:

We can rewrite the equation of any horizontal line, , in slope-intercept form as follows:

Written in this form, we see that the slope is . If we try to find the slope of a perpendicular line by finding the opposite
reciprocal, we run into a problem: , which is undefined. This is why we took care to restrict the definition to two
nonvertical lines. Remember that horizontal lines are perpendicular to vertical lines.

Key Takeaways
Parallel lines have the same slope.
Perpendicular lines have slopes that are opposite reciprocals. In other words, if , then .
To find an equation of a line, first use the given information to determine the slope. Then use the slope and a point on the line to
find the equation using point-slope form.
Horizontal and vertical lines are perpendicular to each other.

Determine the slope of parallel lines and perpendicular lines.

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

2.6.6

x = k (−3, −2) x = −3
x

x = −3

y = k

y = 0x +k

m = 0 = 0
1

= −m⊥
1
0

m = a

b
= −m⊥

b
a

 Exercise  Parallel and Perpendicular Lines2.6.3

y = − x +83
4

y = x −31
2

y = 4x +4
y = −3x +7
y = − x −125

8

y = x +7
3

3
2

y = 9x −25
y = −10x +15
y = 5
x = −12
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11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

Answer

1.  and 

3.  and 

5.  and 

7.  and 

9.  and  undefined

11.  and 

13.  and 

15.  and 

17.  and 

19.  and 

Determine if the lines are parallel, perpendicular, or neither.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

x −y = 0
x +y = 0
4x +3y = 0
3x −5y = 10
−2x +7y = 14
−x −y = 1

5

x − y = −11
2

1
3

− x + y = 82
3

4
5

2x − y =1
5

1
10

− x −2y = 74
5

= −m∥
3
4

=m⊥
4
3

= 4m∥ = −m⊥
1
4

= −m∥
5
8

=m⊥
8
5

= 9m∥ = −m⊥
1
9

= 0m∥ m⊥

= 1m∥ = −1m⊥

= −m∥
4
3

=m⊥
3
4

=m∥
2
7

= −m⊥
7
2

=m∥
3
2

= −m⊥
2
3

= 10m∥ = −m⊥
1

10

 Exercise  Parallel and Perpendicular Lines2.6.4

⎧

⎩
⎨
⎪⎪

⎪⎪

y

y

= x +3
2

3

= x −3
2

3
⎧

⎩
⎨
⎪⎪

⎪⎪

y

y

= x −1
3

4

= x +3
4

3
⎧

⎩⎨
y

y

= −2x +1

= x +8
1

2
⎧

⎩⎨
y

y

= 3x −
1

2
= 3x +2

{
y

x

= 5
= −2

⎧

⎩⎨
y

y

= 7

= −
1

7

{
3x −5y

5x +3y

= 15

= 9
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8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

Answer

1. Parallel

3. Perpendicular

5. Perpendicular

7. Perpendicular

9. Parallel

11. Neither

13. Parallel

15. Parallel

Find the equation of the line

1. Parallel to  and passing through .
2. Parallel to  and passing through .
3. Perpendicular to  and passing through .
4. Perpendicular to  and passing through .
5. Perpendicular to  and passing through .
6. Perpendicular to  and passing through .
7. Parallel to  and passing through .
8. Parallel to  and passing through (7, −3)\).
9. Perpendicular to  and passing through .

10. Perpendicular to  and passing through .
11. Parallel to  and passing through .
12. Parallel to  and passing through .
13. Parallel to  and passing through .
14. Parallel to  and passing through .
15. Perpendicular to  and passing through .

{
x −y

3x +3y

= 7
= 2

{
2x −6y

−x +3y

= 4

= −2

{
−4x +2y

6x −3y

= 3
= −3

{
x +3y

2x +3y

= 9

= 6

{
y −10
x −10

= 0
= 0

{
y +2

2y −10
= 0
= 0

{
3x +2y

2x +3y

= 6

= 6

{
−5x +4y

10x −8y

= 20
= 16

⎧

⎩
⎨
⎪⎪

⎪⎪

x − y
1

2

1

3

x + y
1

6

1

4

= 1

= −2

 Exercise  Equations in Point-Slope Form2.6.5

y = x +21
2

(6, −1)

y = − x −33
4

(−8, 2)

y = 3x −1 (−3, 2)
y = − x +21

3
(4, −3)

y = −2 (−1, 5)

x = 1
5

(5, −3)

y = 3 (2, 4)
x = 2

y = x (7, −13)
y = 2x +9 (3, −1)

y = x −51
4

(−2, 1)

y = − x +13
4

(4, )1
4

2x −3y = 6 (6, −2)
−x +y = 4 (9, 7)

5x −3y = 18 (−9, 10)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/@go/page/76288?pdf


2.6.13 https://phys.libretexts.org/@go/page/76288

16. Perpendicular to  and passing through .
17. Parallel to  and passing through .
18. Parallel to  and passing through .
19. Perpendicular to  and passing through .
20. Perpendicular to  and passing through .
21. Parallel to  and passing through .
22. Parallel to  and passing through .
23. Perpendicular to  and passing through .
24. Perpendicular to  and passing through .
25. Parallel to  and passing through .
26. Parallel to  and passing through .
27. Perpendicular to  and passing through .
28. Perpendicular to  and passing through .

Answer

1. 

3. 

5. 

7. 

9. 

11. 

13. 

15. 

17. 

19. 

21. 

23. 

25. 

27. 

This page titled 2.6: Parallel and Perpendicular Lines is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Anonymous.

6.1: Basic Geometric Concepts and Figures by Darlene Diaz is licensed CC BY-NC-SA 4.0. Original source:
https://www.sccollege.edu/OER/Documents/MATH 105/Math For Liberal Art Students (2017).pdf.
3.6: Parallel and Perpendicular Lines by Anonymous is licensed CC BY-NC-SA 3.0. Original source:
https://2012books.lardbucket.org/books/beginning-algebra.

x −y = 11 (6, −8)
x − y = 21

5
1
3

(−15, 6)

−10x − y = 125
7

(−1, )1
2

x − y = 11
2

1
3

(−10, 3)

−5x +y = −1 (−4, 0)
x +4y = 8 (−1, −2)
7x −5y = 35 (2, −3)

6x +3y = 1 (8, −2)
−4x −5y = 1 (−1, −1)

−5x −2y = 4 ( , − )1
5

1
4

6x − y = 93
2

( , )1
3

2
3

y −3 = 0 (−6, 12)
x +7 = 0 (5, −10)

y = x −41
2

y = − x +11
3

x = −1

y = 4

y = −x −6

y = x +1
4

3
2

y = x −62
3

y = − x +3
5

23
5

y = x +153
5

y = − x −2
3

11
3

y = − x −1
4

9
4

y = x −61
2

y = − x +5
2

1
4

x = −6
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SECTION OVERVIEW

2.7: Solving Linear Equations and Inequalities

2.7.1: Solving Linera Equations

2.7.2: Solving Inequalities

2.7.3: Solving Quadratic Equations

2.7.4: Solving a System of Linear Equations

2.7.5: Solving a System of Linear Equations with Cramer's Rule

This page titled 2.7: Solving Linear Equations and Inequalities is shared under a CC BY-NC-SA license and was authored, remixed, and/or
curated by OpenStax.
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2.7.1: Solving Linera Equations

By the end of this section, you will be able to:

Solve equations using a general strategy

It is time now to lay out one overall strategy that can be used to solve any linear equation. Some equations we solve will not require
all these steps to solve, but many will.

Beginning by simplifying each side of the equation makes the remaining steps easier.

Solve: .

Answer

 

 

 

 

Solve: 

Answer

Solve: 

Answer

 Learning Objectives

 Exercise : How to Solve Linear Equations Using the General Strategy2.7.1.1

−6(x+3) = 24

 Exercise 2.7.1.2

5(x+3) = 35

x = 4

 Exercise 2.7.1.3

6(y−4) =−18

y = 1
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1. Simplify each side of the equation as much as possible. 
Use the Distributive Property to remove any parentheses. 
Combine like terms.

2. Collect all the variable terms on one side of the equation. 
Use the Addition or Subtraction Property of Equality.

3. Collect all the constant terms on the other side of the equation. 
Use the Addition or Subtraction Property of Equality.

4. Make the coefficient of the variable term to equal to 1. 
Use the Multiplication or Division Property of Equality. 
State the solution to the equation.

5. Check the solution. Substitute the solution into the original equation to make sure the result is a true statement.

Solve: 

Answer

 

Simplify each side of the equation as much as possible by distributing.

The only y term is on the left side, so all variable terms are on the left side of the
equation.

 

Add 9 to both sides to get all constant terms on the right side of the equation.

Simplify.

Rewrite −y as −1y.

Make the coefficient of the variable term to equal to 1 by dividing both sides by −1.

Simplify. .

Check:  

Let y=−17.  

  

  

Solve: 

Answer

Solve: 

Answer

 GENERAL STRATEGY FOR SOLVING LINEAR EQUATIONS.

 Exercise 2.7.1.4

−(y+9) = 8

 Exercise 2.7.1.5

−(y+8) =−2

y =−6

 Exercise 2.7.1.6

−(z+4) =−12
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Solve: 

Answer

 .

Simplify each side of the equation as much as possible.  

Distribute. .

Combine like terms.

The only a term is on the left side, so all variable terms are on one side of the
equation.

 

Add 10 to both sides to get all constant terms on the other side of the equation.

Simplify.

Make the coefficient of the variable term to equal to 11 by dividing both sides by
55.

Simplify.

Check:  

Let a=0.  

  

  

  

Solve: 

Answer

Solve:

Answer

Solve: 

Answer

z= 8

 Exercise 2.7.1.7

5(a−3)+5 =−10

 Exercise 2.7.1.8

2(m−4)+3 =−1

m = 2

 Exercise 2.7.1.9

7(n−3)−8 =−15

n= 2

 Exercise 2.7.1.10

(6m−3) = 8−m2
3
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Distribute.

Add m to get the variables only to the left.

Simplify.

Add 2 to get constants only on the right.

Simplify.

Divide by 5.

Simplify.

Check:  

Let m=2.  

  

  

  

Solve: 

Answer

Solve: 

Answer

Solve: 

Answer

 

Simplify—use the Distributive Property.

Combine like terms.

Add 2 to both sides to collect constants on the right.

Simplify.

Divide both sides by −6−6.

 Exercise 2.7.1.11

(6u+3) = 7−u1
3

u = 2

 Exercise 2.7.1.12

(9x−12) = 8+2x2
3

x = 4

 Exercise 2.7.1.13

8−2(3y+5) = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76289?pdf


2.7.1.5 https://phys.libretexts.org/@go/page/76289

Simplify.

Check: Let y=−13.

 

Solve: 

Answer

Solve: 

Answer

Solve: 

Answer

 

Distribute.

Combine like terms.

Subtract 4x to get the variables only on the right side since . .

Simplify.

Subtract 21 to get the constants on left.

Simplify.

Divide by 6.

Simplify.

Check: .  

Let .  

 Exercise 2.7.1.14

12−3(4j+3) =−17

j= 5
3

 Exercise 2.7.1.15

−6−8(k−2) =−10

k= 5

2

 Exercise 2.7.1.16

4(x−1)−2 = 5(2x+3)+6

10 > 4

x= − 9
2
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Solve: 

Answer

Solve: 

Answer

Solve: 

Answer

 

Simplify from the innermost parentheses first.

Combine like terms in the brackets.

Distribute.

Add 160s to get the s’s to the right.

Simplify.

Subtract 600 to get the constants to the left.

Simplify.

Divide.

Simplify.

Check:  

Substitute s=−2.  

  

  

  

  

 Exercise 2.7.1.17

6(p−3)−7 = 5(4p+3)−12

p =−2

 Exercise 2.7.1.18

8(q+1)−5 = 3(2q−4)−1

q =−8

 Exercise 2.7.1.19

10[3−8(2s−5)] = 15(40−5s)
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Solve: .

Answer

Solve: .

Answer

Solve: .

Answer

 

Distribute.

Subtract 18n to get the variables to the left.

Simplify.

Subtract 1.8 to get the constants to the right.

Simplify.

Divide.

Simplify.

Check:  

Let n=0.4.  

  

  

  

Solve: .

Answer

 Exercise 2.7.1.20

6[4−2(7y−1)] = 8(13−8y)

y =− 17
5

 Exercise 2.7.1.21

12[1−5(4z−1)] = 3(24+11z)

z= 0

 Exercise 2.7.1.22

0.36(100n+5) = 0.6(30n+15)

 Exercise 2.7.1.23

0.55(100n+8) = 0.6(85n+14)

n= 1
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Solve: .

Answer

Key Concepts
General Strategy for Solving Linear Equations
1. Simplify each side of the equation as much as possible. 

Use the Distributive Property to remove any parentheses. 
Combine like terms.

2. Collect all the variable terms on one side of the equation. 
Use the Addition or Subtraction Property of Equality.

3. Collect all the constant terms on the other side of the equation. 
Use the Addition or Subtraction Property of Equality.

4. Make the coefficient of the variable term to equal to 1. 
Use the Multiplication or Division Property of Equality. 
State the solution to the equation.

5. Check the solution. 
Substitute the solution into the original equation.

Practice Makes Perfect

In the following exercises, solve each linear equation.

Answer

Answer

 Exercise 2.7.1.24

0.15(40m−120) = 0.5(60m+12)

m =−1

 Exercise 2.7.1.1

15(y−9) =−60

 Exercise 2.7.1.2

21(y−5) =−42

y = 3

 Exercise 2.7.1.3

−9(2n+1) = 36

 Exercise 2.7.1.4

−16(3n+4) = 32

n=−2

 Exercise 2.7.1.5

8(22+11r) = 0
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Answer

Answer

Answer

Answer

Answer

 Exercise 2.7.1.6

5(8+6p) = 0

p =− 4
3

 Exercise 2.7.1.7

−(w−12) = 30

 Exercise 2.7.1.8

−(t−19) = 28

t =−9

 Exercise 2.7.1.9

9(6a+8)+9 = 81

 Exercise 2.7.1.10

8(9b−4)−12 = 100

b = 2

 Exercise 2.7.1.11

32+3(z+4) = 41

 Exercise 2.7.1.12

21+2(m−4) = 25

m = 6

 Exercise 2.7.1.13

51+5(4−q) = 56

 Exercise 2.7.1.14

−6+6(5−k) = 15

k= 3
2
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Answer

Answer

Answer

Answer

 Exercise 2.7.1.15

2(9s−6)−62 = 16

 Exercise 2.7.1.16

8(6t−5)−35 =−27

t = 1

 Exercise 2.7.1.17

3(10−2x)+54 = 0

 Exercise 2.7.1.18

−2(11−7x)+54 = 4

x =−2

 Exercise 2.7.1.19

(9c−3) = 222
3

 Exercise 2.7.1.20

(10x−5) = 273
5

x = 5

 Exercise 2.7.1.21

(15c+10) = c+71
5

 Exercise 2.7.1.22

(20d+12) = d+71
4

d = 1

 Exercise 2.7.1.23

18−(9r+7) =−16
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Answer

Answer

Answer

Answer

Answer

 Exercise 2.7.1.24

15−(3r+8) = 28

r=−7

 Exercise 2.7.1.25

5−(n−1) = 19

 Exercise 2.7.1.26

−3−(m−1) = 13

m =−15

 Exercise 2.7.1.27

11−4(y−8) = 43

 Exercise 2.7.1.28

18−2(y−3) = 32

y =−4

 Exercise 2.7.1.29

24−8(3v+6) = 0

 Exercise 2.7.1.30

35−5(2w+8) =−10

w = 1
2

 Exercise 2.7.1.31

4(a−12) = 3(a+5)

 Exercise 2.7.1.32

−2(a−6) = 4(a−3)

a= 4
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Answer

Answer

Answer

Answer

 Exercise 2.7.1.33

2(5−u) =−3(2u+6)

 Exercise 2.7.1.34

5(8−r) =−2(2r−16)

r= 8

 Exercise 2.7.1.35

3(4n−1)−2 = 8n+3

 Exercise 2.7.1.36

9(2m−3)−8 = 4m+7

m = 3

 Exercise 2.7.1.37

12+2(5−3y) =−9(y−1)−2

 Exercise 2.7.1.38

−15+4(2−5y) =−7(y−4)+4

y =−3

 Exercise 2.7.1.39

8(x−4)−7x = 14

 Exercise 2.7.1.40

5(x−4)−4x = 14

x = 34

 Exercise 2.7.1.41

5+6(3s−5) =−3+2(8s−1)
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Answer

Answer

Answer

Answer

 Exercise 2.7.1.42

−12+8(x−5) =−4+3(5x−2)

x =−6

 Exercise 2.7.1.43

4(u−1)−8 = 6(3u−2)−7

 Exercise 2.7.1.44

7(2n−5) = 8(4n−1)−9

n=−1

 Exercise 2.7.1.45

4(p−4)−(p+7) = 5(p−3)

 Exercise 2.7.1.46

3(a−2)−(a+6) = 4(a−1)

a=−4

 Exercise 2.7.1.47

−(9y+5)−(3y−7)

= 16−(4y−2)

 Exercise 2.7.1.48

−(7m+4)−(2m−5)

= 14−(5m−3)

m =−4

 Exercise 2.7.1.49

4[5−8(4c−3)]

= 12(1−13c)−8

 Exercise 2.7.1.50

5[9−2(6d−1)]

= 11(4−10d)−139
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Answer

Answer

Answer

Answer

Answer

d =−3

 Exercise 2.7.1.51

3[−9+8(4h−3)]

= 2(5−12h)−19

 Exercise 2.7.1.52

3[−14+2(15k−6)]

= 8(3−5k)−24

k= 3
5

 Exercise 2.7.1.53

5[2(m+4)+8(m−7)]

= 2[3(5+m)−(21−3m)]

 Exercise 2.7.1.54

10[5(n+1)+4(n−1)]

= 11[7(5+n)−(25−3n)]

n=−5

 Exercise 2.7.1.55

5(1.2u−4.8) =−12

 Exercise 2.7.1.56

4(2.5v−0.6) = 7.6

v= 1

 Exercise 2.7.1.57

0.25(q−6) = 0.1(q+18)

 Exercise 2.7.1.58

0.2(p−6) = 0.4(p+14)

p =−34
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Answer

Classify Equations

In the following exercises, classify each equation as a conditional equation, an identity, or a contradiction and then state the
solution.

Answer

identity; all real numbers

Answer

identity; all real numbers

Answer

conditional equation; 

 Exercise 2.7.1.59

0.2(30n+50) = 28

 Exercise 2.7.1.60

0.5(16m+34) =−15

m =−4

 Exercise 2.7.1.61

23z+19 = 3(5z−9)+8z+46

 Exercise 2.7.1.62

15y+32 = 2(10y−7)−5y+46

 Exercise 2.7.1.63

5(b−9)+4(3b+9) = 6(4b−5)−7b+21

 Exercise 2.7.1.64

9(a−4)+3(2a+5) = 7(3a−4)−6a+7

 Exercise 2.7.1.65

18(5j−1)+29 = 47

 Exercise 2.7.1.66

24(3d−4)+100 = 52

d = 2

3
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Answer

conditional equation; 

Answer

contradiction; no solution

Answer

contradiction; no solution

Answer

conditional equation; 

 Exercise 2.7.1.67

22(3m−4) = 8(2m+9)

 Exercise 2.7.1.68

30(2n−1) = 5(10n+8)

n= 7

 Exercise 2.7.1.69

7v+42 = 11(3v+8)−2(13v−1)

 Exercise 2.7.1.70

18u−51 = 9(4u+5)−6(3u−10)

 Exercise 2.7.1.71

3(6q−9)+7(q+4) = 5(6q+8)−5(q+1)

 Exercise 2.7.1.72

5(p+4)+8(2p−1) = 9(3p−5)−6(p−2)

 Exercise 2.7.1.73

12(6h−1) = 8(8h+5)−4

 Exercise 2.7.1.74

9(4k−7) = 11(3k+1)+4

k= 26

 Exercise 2.7.1.75

45(3y−2) = 9(15y−6)
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Answer

contradiction; no solution

Answer

identity; all real numbers

Answer

identity; all real numbers

Everyday Math

Fencing Micah has 44 feet of fencing to make a dog run in his yard. He wants the length to be 2.5 feet more than the width.
Find the length, L, by solving the equation 2L+2(L−2.5)=44.

Coins Rhonda has  in nickels and dimes. The number of dimes is one less than twice the number of nickels. Find the 
number of nickels,  by solving the equation 

Answer

8 nickels

Writing Exercises

Using your own words, list the steps in the general strategy for solving linear equations.

 Exercise 2.7.1.76

60(2x−1) = 15(8x+5)

 Exercise 2.7.1.77

16(6n+15) = 48(2n+5)

 Exercise 2.7.1.78

36(4m+5) = 12(12m+15)

 Exercise 2.7.1.79

9(14d+9)+4d = 13(10d+6)+3

 Exercise 2.7.1.80

11(8c+5)−8c = 2(40c+25)+5

 Exercise 2.7.1.81

 Exercise 2.7.1.82

$1.90

n, 0.05n+0.10(2n−1) = 1.90.

 Exercise 2.7.1.83
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Explain why you should simplify both sides of an equation as much as possible before collecting the variable terms to one side
and the constant terms to the other side.

Answer

Answers will vary.

What is the first step you take when solving the equation  Why is this your first step?

Solve the equation  explaining all the steps of your solution as in the examples in this section.

Answer

Answers will vary.

Use the Distance, Rate, and Time Formula
One formula you will use often in algebra and in everyday life is the formula for distance traveled by an object moving at a
constant rate. Rate is an equivalent word for “speed.” The basic idea of rate may already familiar to you. Do you know what
distance you travel if you drive at a steady rate of 60 miles per hour for 2 hours? (This might happen if you use your car’s cruise
control while driving on the highway.) If you said 120 miles, you already know how to use this formula!

For an object moving at a uniform (constant) rate, the distance traveled, the elapsed time, and the rate are related by the
formula:

We will use the Strategy for Solving Applications that we used earlier in this chapter. When our problem requires a formula, we
change Step 4. In place of writing a sentence, we write the appropriate formula. We write the revised steps here for reference.

1. Read the problem. Make sure all the words and ideas are understood.
2. Identify what we are looking for.
3. Name what we are looking for. Choose a variable to represent that quantity.
4. Translate into an equation. Write the appropriate formula for the situation. Substitute in the given information.
5. Solve the equation using good algebra techniques.
6. Check the answer in the problem and make sure it makes sense.
7. Answer the question with a complete sentence.

You may want to create a mini-chart to summarize the information in the problem. See the chart in this first example.

 Exercise 2.7.1.84

 Exercise 2.7.1.85

3−7(y−4) = 38?

 Exercise 2.7.1.86

(8x+20) = 3x−41
4

 DISTANCE, RATE, AND TIME

d = rt  where  d

r

t

=

=

=

distance

rate

time

(2.7.1.1)

 SOLVE AN APPLICATION (WITH A FORMULA).
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Jamal rides his bike at a uniform rate of 12 miles per hour for  hours. What distance has he traveled?

Answer

Step 1. Read the problem.  

Step 2. Identify what you are looking for. distance traveled

Step 3. Name. Choose a variable to represent it. Let d = distance.

Step 4. Translate: Write the appropriate formula.

 

Substitute in the given information.

Step 5. Solve the equation.

Step 6. Check  

Does 42 miles make sense?  

Jamal rides:  

 

Step 7. Answer the question with a complete sentence. Jamal rode 42 miles.

Lindsay drove for  hours at 60 miles per hour. How much distance did she travel?

Answer

330 miles

Trinh walked for  hours at 3 miles per hour. How far did she walk?

Answer

7 miles

Rey is planning to drive from his house in San Diego to visit his grandmother in Sacramento, a distance of 520 miles. If he can
drive at a steady rate of 65 miles per hour, how many hours will the trip take?

Answer

Step 1. Read the problem.  

 Exercise 2.7.1.1

3 1
2

d = rt

d = 12 ⋅ 3 1
2

d = 42 miles

 Exercise 2.7.1.2

5 1
2

 Exercise 2.7.1.3

2 1
3

 Exercise 2.7.1.4
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Step 2. Identify what you are looking for. How many hours (time)

Step 3. Name. 
Choose a variable to represent it.

Let t = time.

 

Step 4. Translate. 
Write the appropriate formula.

Substitute in the given information.

Step 5. Solve the equation.

Step 6. Check. Substitute the numbers into
the formula and make sure the result is a 
true statement.

 

 

Step 7. Answer the question with a complete sentence. Rey’s trip will take 8 hours.

Lee wants to drive from Phoenix to his brother’s apartment in San Francisco, a distance of 770 miles. If he drives at a steady
rate of 70 miles per hour, how many hours will the trip take?

Answer

11 hours

Yesenia is 168 miles from Chicago. If she needs to be in Chicago in 3 hours, at what rate does she need to drive?

Answer

56 mph

Solve a Formula for a Specific Variable

You are probably familiar with some geometry formulas. A formula is a mathematical description of the relationship between
variables. Formulas are also used in the sciences, such as chemistry, physics, and biology. In medicine they are used for
calculations for dispensing medicine or determining body mass index. Spreadsheet programs rely on formulas to make calculations.
It is important to be familiar with formulas and be able to manipulate them easily.

In Exercise  and Exercise , we used the formula . This formula gives the value of d, distance, when you
substitute in the values of r and t, the rate and time. But in Exercise , we had to find the value of t. We substituted in values
of d and r and then used algebra to solve for tt. If you had to do this often, you might wonder why there is not a formula that gives
the value of t when you substitute in the values of d and r. We can make a formula like this by solving the formula  for t.

To solve a formula for a specific variable means to isolate that variable on one side of the equals sign with a coefficient of 1. All
other variables and constants are on the other side of the equals sign. To see how to solve a formula for a specific variable, we will
start with the distance, rate and time formula.

d = rt

520 = 65t

t = 8

d

520

520

=

=
?

=

rt

65 ⋅ 8

520✓

 Exercise 2.7.1.5

 Exercise 2.7.1.6

2.7.1.1 2.7.1.4 d = rt

2.7.1.4

d = rt
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Solve the formula d=rt for t:

1. when d=520 and r=65
2. in general

Answer

We will write the solutions side-by-side to demonstrate that solving a formula in general uses the same steps as when we
have numbers to substitute.

1. when d=520 and r=65 2. in general

Write the formula. Write the formula.

Substitute.   

Divide, to isolate t. Divide, to isolate tt.

Simplify. Simplify.

We say the formula  is solved for t.

Solve the formula  for r:

1. when d=180 and t=4
2. in general

Answer
1. 
2. 

Solve the formula  for r:

1. when d=780 and t=12
2. in general

Answer
1. 
2. \(r = \frac{d}{rt\)

Solve the formula  for h:

1. when  and 
2. in general

Answer

1. when  and 2. in general

Write the formula. Write the formula.

 Exercise 2.7.1.7

d = rt d = rt

520 = 65t

=520
65

65t
65

=d
r

rt

t

8 = t = t
d
r

t = d
r

 Exercise 2.7.1.8

d = rt

r= 45

r= d

t

 Exercise 2.7.1.9

d = rt

r= 65

 Exercise 2.7.1.10

A= bh1
2

A= 90 b = 15

A= 90 b= 15
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Substitute.   

Clear the fractions. Clear the fractions.

Simplify. Simplify.

Solve for h. Solve for hh.

We can now find the height of a triangle, if we know the area and the base, by using the formula 

Solve the formula  for h:

1. when  and 
2. in general

Answer
1. 
2. 

Solve the formula  for h:

1. when  and 
2. in general

Answer
1. 
2. 

The formula  is used to calculate simple interest, I, for a principal, P, invested at rate, r, for t years.

Solve the formula I=Prt to find the principal, P:

1. when I=$5,600, r=4% ,t=7years
2. in general

Answer

1. I=$5,600, r=4% ,t=7years 2. in general

Write the formula. Write the formula.

Substitute.   

Simplify. Simplify.

Divide, to isolate P. Divide, to isolate P. .

Simplify. Simplify.

The principal is  

h = 2A
b

 Exercise 2.7.1.11

A= bh1
2

A= 170 b = 17

h = 20

h = 2A
b

 Exercise 2.7.1.12

A= bh1
2

A= 62 h = 31

b = 4

b = 2A
h

I = Prt

 Exercise 2.7.1.13
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Solve the formula I=Prt to find the principal, P:

1. when I=$2160, r=6% ,t=3 years
2. in general

Answer
1. $12000
2. 

Solve the formula I=Prt to find the principal, P:

1. when I=$5400, r= 12% ,t=5 years
2. in general

Answer
1. $9000
2. 

Later in this class, and in future algebra classes, you’ll encounter equations that relate two variables, usually x and y. You might be
given an equation that is solved for y and need to solve it for x, or vice versa. In the following example, we’re given an equation
with both x and y on the same side and we’ll solve it for y.

Solve the formula 3x+2y=18 for y:

1. when x=4
2. in general

Answer

1. when x=4 2. in general

  

Substitute.   

Subtract to isolate the 
y-term.

Subtract to isolate the 
y-term.

Divide. Divide.

Simplify. Simplify.

Solve the formula 3x+4y=10 for y:

1. when 
2. in general

Answer

 Exercise 2.7.1.14

P = 1
rt

 Exercise 2.7.1.15

P = 1
rt

 Exercise 2.7.1.16

 Exercise 2.7.1.17

x = 14
3
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1. 
2. 

Solve the formula 5x+2y=18 for y:

1. when 
2. in general

Answer
1. 
2. 

In Exercise  through Exercise  we used the numbers in part 1 as a guide to solving in general in part 2. Now we will
solve a formula in general without using numbers as a guide.

Solve the formula P=a+b+c for a.

Answer

We will isolate aa on one side of the equation.

Both b and c are added to a, so we subtract them from both
sides of the equation.

Simplify.
 

Solve the formula P=a+b+c for b.

Answer

b=P−a−c

Solve the formula P=a+b+c for c.

Answer

c=P−a−b

Solve the formula 6x+5y=13 for y.

Answer

 

Subtract 6x from both sides to isolate the term with y.

y =−1

y =
10−3x

4

 Exercise 2.7.1.18

x = 4

y =−1

y = 18−5x

2

2.7.1.7 2.7.1.18

 Exercise 2.7.1.19

 Exercise 2.7.1.20

 Exercise 2.7.1.21

 Exercise 2.7.1.22
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Simplify.

Divide by 5 to make the coefficient 1.

Simplify.

The fraction is simplified. We cannot divide 13−6x by 5.

Solve the formula 4x+7y=9 for y.

Answer

Solve the formula 5x+8y=1 for y.

Answer

Key Concepts
To Solve an Application (with a formula)
1. Read the problem. Make sure all the words and ideas are understood.
2. Identify what we are looking for.
3. Name what we are looking for. Choose a variable to represent that quantity.
4. Translate into an equation. Write the appropriate formula for the situation. Substitute in the given information.
5. Solve the equation using good algebra techniques.
6. Check the answer in the problem and make sure it makes sense.
7. Answer the question with a complete sentence.

Distance, Rate and Time 
For an object moving at a uniform (constant) rate, the distance traveled, the elapsed time, and the rate are related by the
formula: d=rt where d = distance, r = rate, t = time.
To solve a formula for a specific variable means to get that variable by itself with a coefficient of 1 on one side of the
equation and all other variables and constants on the other side.

This page titled 2.7.1: Solving Linera Equations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

2.4: Use a General Strategy to Solve Linear Equations by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/elementary-algebra-2e.
2.4E: Exercises by OpenStax has no license indicated. Original source: https://openstax.org/details/books/elementary-algebra-2e.
2.6: Solve a Formula for a Specific Variable by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/elementary-algebra-2e.

 Exercise 2.7.1.23

y = 9−4x

7

 Exercise 2.7.1.24

y = 1−5x

8
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2.7.2: Solving Inequalities

By the end of this section, you will be able to:

Solve inequalities using the Subtraction and Addition Properties of inequality
Solve inequalities using the Division and Multiplication Properties of inequality
Solve inequalities that require simplification
Translate to an inequality and solve

Solve Inequalities using the Subtraction and Addition Properties of Inequality
The Subtraction and Addition Properties of Equality state that if two quantities are equal, when we add or subtract the same amount
from both quantities, the results will be equal.

Similar properties hold true for inequalities.

For example, we know that −4 is less than 2.

If we subtract 5 from both quantities, is the left side still less than
the right side?

We get −9 on the left and −3 on the right.

And we know −9 is less than −3.

 The inequality sign stayed the same.

Table 

Similarly we could show that the inequality also stays the same for addition.

This leads us to the Subtraction and Addition Properties of Inequality.

We use these properties to solve inequalities, taking the same steps we used to solve equations. Solving the inequality ,
the steps would look like this:

 Learning Objectives

 PROPERTIES OF EQUALITY

 Subtraction Property of Equality 

 For any numbers a, b,  and c,

 if  a = b,

 then a−c = b−c.

 Addition Property of Equality 

 For any numbers a, b,  and c

 if  a = b

 then a+c = b+c

(2.7.2.1)

2.7.2.1

 PROPERTIES OF INEQUALITY

 Subtraction Property of Inequality 

 For any numbers a, b,  and c,

 if  a < b

 then a−c < b−c.

 if  a > b

 then a−c > b−c.

 Addition Property of Inequality 

 For any numbers a, b,  and c

 if  a < b

 then a+c < b+c

 if  a > b

 then a+c > b+c

(2.7.2.2)

x+5 > 9
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Any number greater than 4 is a solution to this inequality.

Solve the inequality , graph the solution on the number line, and write the solution in interval notation.

Answer

 

Add  to both sides of the inequality.

Simplify.

Graph the solution on the number line.

Write the solution in interval notation.  

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

Answer

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

Answer

Solve Inequalities using the Division and Multiplication Properties of Inequality
The Division and Multiplication Properties of Equality state that if two quantities are equal, when we divide or multiply both
quantities by the same amount, the results will also be equal (provided we don’t divide by 0).

Subtract 5 from both sides to isolate x.

x+5

x+5 −5

x

>

>

>

9

9 −5

4

(2.7.2.3)

 Exercise 2.7.2.7

n− ≤1
2

5
8

1
2

 Exercise 2.7.2.8

p− ≥3
4

1
6

 Exercise 2.7.2.9

r− ≤1
3

7
12
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Are there similar properties for inequalities? What happens to an inequality when we divide or multiply both sides by a constant?

Consider some numerical examples.

  

Divide both sides by 5. Multiply both sides by 5.

Simplify.  

Fill in the inequality signs.  

Table 

The inequality signs stayed the same.

Does the inequality stay the same when we divide or multiply by a negative number?

  

Divide both sides by -5. Multiply both sides by -5.

Simplify.  

Fill in the inequality signs.  

Table 

The inequality signs reversed their direction.

When we divide or multiply an inequality by a positive number, the inequality sign stays the same. When we divide or multiply an
inequality by a negative number, the inequality sign reverses.

Here are the Division and Multiplication Properties of Inequality for easy reference.

For any real numbers a,b,c

When we divide or multiply an inequality by a:

positive number, the inequality stays the same.
negative number, the inequality reverses.

 PROPERTIES OF EQUALITY

Division Property of Equality

For any numbers a, b, c, and c ≠ 0

if  a = b

then  =a

c

b

c

MUltiplication Property of Equality

For any numbers a, b, c

if a = b

then  ac = bc

(2.7.2.4)

2.7.2.2

2.7.2.3

 DIVISION AND MULTIPLICATION PROPERTIES OF INEQUALITY

if a < b and c > 0,  then

if a > b and c > 0,  then

if a < b and c < 0,  then

if a > b and c < 0,  then

<  and ac < bca
c

b
c

>  and ac > bc
a
c

b
c

>  and ac > bc
a
c

b
c

<  and ac < bc
a
c

b
c

(2.7.2.5)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76290?pdf


2.7.2.4 https://phys.libretexts.org/@go/page/76290

Solve the inequality , graph the solution on the number line, and write the solution in interval notation.

Answer

 

Divide both sides of the inequality by 7. 
Since , the inequality stays the same.

Simplify.

Graph the solution on the number line.

Write the solution in interval notation.

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

Answer

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

Answer

Solve the inequality , graph the solution on the number line, and write the solution in interval notation.

Answer

 

Divide both sides of the inequality by −10. 
Since , the inequality reverses.

Simplify.

Graph the solution on the number line.

 Exercise 2.7.2.10

7y <  42

7 > 0

 Exercise 2.7.2.11

9c > 72

c > 8

(8, ∞)

 Exercise 2.7.2.12

12d ≤ 60

d ≤ 5

(−∞, 5]

 Exercise 2.7.2.13

−10a ≥ 50

−10 < 0
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Write the solution in interval notation.

Solve each inequality, graph the solution on the number line, and write the solution in interval notation.

Answer

Solve each inequality, graph the solution on the number line, and write the solution in interval notation.

Answer

Sometimes when solving an inequality, the variable ends up on the right. We can rewrite the inequality in reverse to get the
variable to the left.

Think about it as “If Xavier is taller than Alex, then Alex is shorter than Xavier.”

Solve the inequality , graph the solution on the number line, and write the solution in interval notation.

Answer

 

Multiply both sides of the inequality by . 
Since , the inequality stays the same.

Simplify.

Rewrite the variable on the left.

Graph the solution on the number line.

Write the solution in interval notation.

 Exercise 2.7.2.14

−8q < 32

q > −4

 Exercise 2.7.2.15

−7r ≤ −70

 SOLVING INEQUALITIES

x > a has the same meaning as a < x (2.7.2.6)

 Exercise 2.7.2.16

−20 < u
4
5

5
4

> 05
4
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Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

Answer

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

Answer

Solve the inequality , graph the solution on the number line, and write the solution in interval notation.

Answer

 

Multiply both sides of the inequality by −2. 
Since , the inequality reverses.

Simplify.

Graph the solution on the number line.

Write the solution in interval notation.

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

Answer

 Exercise 2.7.2.17

24 ≤ m3
8

 Exercise 2.7.2.18

−24 < n
4
3

 Exercise 2.7.2.19

≥ 8t
−2

−2 < 0

 Exercise 2.7.2.20

≤ 15k

−12
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Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

Answer

     

Solve Inequalities That Require Simplification

Most inequalities will take more than one step to solve. We follow the same steps we used in the general strategy for solving linear
equations, but be sure to pay close attention during multiplication or division.

Solve the inequality , graph the solution on the number line, and write the solution in interval notation.

Answer

 

Subtract 9m from both sides to collect the variables on the
left.

Simplify.

Divide both sides of the inequality by −5, and reverse the
inequality.

Simplify.

Graph the solution on the number line.

Write the solution in interval notation.

Solve the inequality , graph the solution on the number line, and write the solution in interval notation.

Answer

Solve the inequality , graph the solution on the number line, and write the solution in interval notation.

Answer

 Exercise 2.7.2.21

≥ −16u

−4

 Exercise 2.7.2.22

4m ≤ 9m+17

 Exercise 2.7.2.23

3q ≥ 7q−23

 Exercise 2.7.2.24

6x < 10x+19
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Solve the inequality  graph the solution on the number line, and write the solution in interval
notation.

Answer

Simplify each side as much as possible. 8p+3(p−12)>7p−28

Distribute. 8p+3p−36>7p−28

Combine like terms. 11p−36>7p−28

Subtract 7p from both sides to collect the variables on the left. 11p−36−7p>7p−28−7p

Simplify. 4p−36>−28

Add 36 to both sides to collect the constants on the right. 4p−36+36>−28+36

Simplify. 4p>8

Divide both sides of the inequality by 4; the inequality stays
the same.

Simplify.

Graph the solution on the number line.

Write the solution in interval notation.

Solve the inequality , graph the solution on the number line, and write the solution in interval
notation.

Answer

Solve the inequality , graph the solution on the number line, and write the solution in interval
notation.

Answer

 Exercise 2.7.2.25

8p+3(p−12) > 7p−28

> 84
4p

4

p > 2

(2, ∞)

 Exercise 2.7.2.26

9y+2(y+6) > 5y−24

 Exercise 2.7.2.27

6u+8(u−1) > 10u+32
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Just like some equations are identities and some are contradictions, inequalities may be identities or contradictions, too. We
recognize these forms when we are left with only constants as we solve the inequality. If the result is a true statement, we have an
identity. If the result is a false statement, we have a contradiction.

Solve the inequality , graph the solution on the number line, and write the solution in interval
notation.

Answer

Simplify each side as much as possible. 8x−2(5−x)<4(x+9)+6x

Distribute. 8x−10+2x<4x+36+6x

Combine like terms. 10x−10<10x+36

Subtract 10x from both sides to collect the variables on the
left.

10x−10−10x<10x+36−10x

Simplify. −10<36

The xx’s are gone, and we have a true statement.
The inequality is an identity. 
The solution is all real numbers.

Graph the solution on the number line.

Write the solution in interval notation.

Solve the inequality , graph the solution on the number line, and write the solution in interval
notation.

Answer

Solve the inequality , graph the solution on the number line, and write the solution in
interval notation.

Answer

Solve the inequality , graph the solution on the number line, and write the solution in interval notation.

Answer

 Exercise 2.7.2.28

8x−2(5 −x) < 4(x+9) +6x

(−∞, ∞)

 Exercise 2.7.2.29

4b−3(3 −b) > 5(b−6) +2b

 Exercise 2.7.2.30

9h−7(2 −h) < 8(h+11) +8h

 Exercise 2.7.2.31

a− a > a+1
3

1
8

5
24

3
4
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Multiply both sides by the LCD, 24, to clear the fractions.

Simplify.

Combine like terms.

Subtract 5a from both sides to collect the variables on the left.

Simplify.

The statement is false! The inequality is a contradiction.

 There is no solution.

Graph the solution on the number line.

Write the solution in interval notation. There is no solution.

Solve the inequality , graph the solution on the number line, and write the solution in interval notation.

Answer

Solve the inequality , graph the solution on the number line, and write the solution in interval notation.

Answer

Translate to an Inequality and Solve

To translate English sentences into inequalities, we need to recognize the phrases that indicate the inequality. Some words are easy,
like ‘more than’ and ‘less than’. But others are not as obvious.

Think about the phrase ‘at least’ – what does it mean to be ‘at least 21 years old’? It means 21 or more. The phrase ‘at least’ is the
same as ‘greater than or equal to’.

Table   shows some common phrases that indicate inequalities.

> <

" data-valign="middle"
class="lt-math-15134">is
greater than

is greater than or equal to is less than is less than or equal to

Table 

 Exercise 2.7.2.32

x− x > x+1
4

1
12

1
6

7
8

 Exercise 2.7.2.33

z− z < z−2
5

1
3

1
15

3
5

2.7.2.4

≥ ≤

2.7.2.4
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> <

" data-valign="middle"
class="lt-math-15134">is more
than

is at least is smaller than is at most

" data-valign="middle"
class="lt-math-15134">is larger
than

is no less than has fewer than is no more than

" data-valign="middle"
class="lt-math-15134">exceeds

is the minimum is lower than is the maximum

Translate and solve. Then write the solution in interval notation and graph on the number line.

Twelve times c is no more than 96.

Answer

Translate.

Solve—divide both sides by 12.

Simplify.

Write in interval notation.

Graph on the number line.

Translate and solve. Then write the solution in interval notation and graph on the number line.

Twenty times y is at most 100

Answer

Translate and solve. Then write the solution in interval notation and graph on the number line.

Nine times z is no less than 135

Answer

≥ ≤

 Exercise 2.7.2.34

 Exercise 2.7.2.35

 Exercise 2.7.2.36
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Translate and solve. Then write the solution in interval notation and graph on the number line.

Thirty less than x is at least 45.

Answer

Translate.

Solve—add 30 to both sides.

Simplify.

Write in interval notation.

Graph on the number line.

Translate and solve. Then write the solution in interval notation and graph on the number line.

Nineteen less than p is no less than 47

Answer

Translate and solve. Then write the solution in interval notation and graph on the number line.

Four more than a is at most 15.

Answer

Key Concepts
Subtraction Property of Inequality 
For any numbers a, b, and c, 
if a<b then a−c<b−c and 
if a>b then a−c>b−c.
Addition Property of Inequality 
For any numbers a, b, and c, 
if a<b then a+c<b+c and 
if a>b then a+c>b+c.
Division and Multiplication Properties of Inequality 
For any numbers a, b, and c, 
if a<b and c>0, then ac<bc and ac>bc. 

 Exercise 2.7.2.37

 Exercise 2.7.2.38

 Exercise 2.7.2.39
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if a>b and c>0, then ac>bc and ac>bc. 
if a<b and c<0, then ac>bc and ac>bc. 
if a>b and c<0, then ac<bc and ac<bc.
When we divide or multiply an inequality by a:

positive number, the inequality stays the same.
negative number, the inequality reverses.

Practice Makes Perfect

Everyday Math

Safety A child’s height, h, must be at least 57 inches for the child to safely ride in the front seat of a car. Write this as an
inequality.

Fighter pilots The maximum height, h, of a fighter pilot is 77 inches. Write this as an inequality.

Answer

Elevators The total weight, w, of an elevator’s passengers can be no more than 1,200 pounds. Write this as an inequality.

Shopping The number of items, n, a shopper can have in the express check-out lane is at most 8. Write this as an inequality.

Answer

Writing Exercises

Give an example from your life using the phrase ‘at least’.

Give an example from your life using the phrase ‘at most’.

Answer

Answers will vary.

Explain why it is necessary to reverse the inequality when solving 

 Exercise 2.7.2.75

 Exercise 2.7.2.76

h ≤ 77

 Exercise 2.7.2.77

 Exercise 2.7.2.78

n ≤ 8

 Exercise 2.7.2.79

 Exercise 2.7.2.80

 Exercise 2.7.2.81

−5x > 10
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Explain why it is necessary to reverse the inequality when solving 

Answer

Answers will vary.

Self Check

ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

ⓑ What does this checklist tell you about your mastery of this section? What steps will you take to improve?

This page titled 2.7.2: Solving Inequalities is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

2.7: Solve Linear Inequalities by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/elementary-algebra-
2e.
2.7E: Exercises by OpenStax has no license indicated. Original source: https://openstax.org/details/books/elementary-algebra-2e.

 Exercise 2.7.2.82

< 12n
−3
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2.7.3: Solving Quadratic Equations

By the end of this section, you will be able to:

Solve quadratic equations using the Quadratic Formula
Use the discriminant to predict the number and type of solutions of a quadratic equation
Identify the most appropriate method to use to solve a quadratic equation

Before you get started, take this readiness quiz.

1. Evaluate  when  and .
2. Simplify .
3. Simplify .

Solve Quadratic Equations Using the Quadratic Formula
When we solved quadratic equations in the last section by completing the square, we took the same steps every time. By the end of
the exercise set, you may have been wondering ‘isn’t there an easier way to do this?’ The answer is ‘yes’. Mathematicians look for
patterns when they do things over and over in order to make their work easier. In this section we will derive and use a formula to
find the solution of a quadratic equation.

We have already seen how to solve a formula for a specific variable ‘in general’, so that we would do the algebraic steps only once,
and then use the new formula to find the value of the specific variable. Now we will go through the steps of completing the square
using the general form of a quadratic equation to solve a quadratic equation for .

We start with the standard form of a quadratic equation and solve it for  by completing the square.

 

Isolate the variable terms on one side.

Make the coefficient of  equal to , by dividing by .

Simplify.

To complete the square, find  and add it to both sides

of the equation.
 

The left side is a perfect square, factor it.

Find the common denominator of the right side and write
equivalent fractions with the common denominator.

Simplify.

Combine to one fraction.

Use the square root property.

 Learning Objectives

−4abb2 a= 3 b =−2
108
−−−

√
50
−−

√

x

x

a + bx+ c= 0, a ≠ 0x2

a + bx = −cx2

x2 1 a + x = −
ax2

a

b

a

c

a

+ x = −x2 b

a

c

a

( ⋅ )
1

2

b

a

2

=( )
1

2

b

a

2
b2

4a2
+ x+ = − +x2 b

a

b2

4a2
c

a

b2

4a2

= − +(x+ )
b

2a

2
c

a

b2

4a2

= −(x+ )
b

2a

2
b2

4a2
c ⋅ 4a

a ⋅ 4a

= −(x+ )
b

2a

2
b2

4a2
4ac

4a2

=(x+ )
b

2a

2 −4acb2

4a2

x+ = ±
b

2a

−4acb2

4a2

− −−−−−−
√
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Simplify the radical.

Add  to both sides of the equation.

Combine the terms on the right side.

The final equation is called the "Quadratic Formula."

The solutions to a quadratic equation of the form , where  are given by the formula:

To use the Quadratic Formula, we substitute the values of , and  from the standard form into the expression on the right side
of the formula. Then we simplify the expression. The result is the pair of solutions to the quadratic equation.

Notice the Quadratic Formula (Equation ) is an equation. Make sure you use both sides of the equation.

Solve by using the Quadratic Formula: .

Solution:

Step 1: Write the quadratic equation in
standard form. Identify the  values.

This equation is in standard form.

Step 2: Write the quadratic formula. Then
substitute in the values of .

Substitute in 
 

Step 3: Simplify the fraction, and solve
for .

 

x+ = ±
b

2a

−4acb2
− −−−−−−

√

2a

−
b

2a x= − ±
b

2a

−4acb2
− −−−−−−

√

2a

x=
−b± −4acb2

− −−−−−−
√

2a

 Definition : Quadratic Formula2.7.3.1

a +bx+c = 0x2 a≠ 0

x =
−b± −4acb2

− −−−−−−
√

2a
(2.7.3.1)

a, b c

2.7.3.1

 Example  How to Solve a Quadratic Equation Using the Quadratic Formula2.7.3.1

2 +9x−5 = 0x2

a, b, c

a + bx+ c= 0x2

2 + 9x−5= 0x2

a = 2, b= 9, c= −5

a, b, c
a = 2, b= 9, c= −5

x=
−b± −4acb2

− −−−−−−
√

2a

x=
−9± −4⋅ 2 ⋅ (−5)92

− −−−−−−−−−−−
√

2 ⋅ 2

x

x=
−9± 81− (−40)

− −−−−−−−−
√

4

x=
−9± 121

−−−
√

4

x=
−9±11

4

x= x=
−9+11

4

−9−11

4

x= x=
2

4

−20

4

x= x= −5
1

2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76291?pdf


2.7.3.3 https://phys.libretexts.org/@go/page/76291

Step 4: Check the solutions.
Put each answer in the original equation

to check. Substitute  and .

Solve by using the Quadratic Formula: .

Answer

Solve by using the Quadratic Formula: .

Answer

1. Write the quadratic equation in standard form, . Identify the values of , and .
2. Write the Quadratic Formula. Then substitute in the values of , and .
3. Simplify.
4. Check the solutions.

If you say the formula as you write it in each problem, you’ll have it memorized in no time! And remember, the Quadratic Formula
is an EQUATION. Be sure you start with “ ”.

Solve by using the Quadratic Formula: .

Solution:

 

x=
1

2
x= −5

2 +9x−5x2

2 + 9 ⋅ −5( )
1

2

2 1

2

2 ⋅ + 0 ⋅ − 5
1

4

1

2

2 ⋅ + 9 ⋅ − 5
1

4

1

2

+ −5
1

2

9

2

− 5
10

2

5− 5
0

= 0

0=
?

0=
?

0=
?

0=
?

0=
?

0=
?

= 0
2 +9x−5= 0x2

2(−5 +9(−5)− 5 0)2 =
?

2 ⋅ 25− 45−5 0=
?

50− 45−5 0=
?

0 = 0

 Exercise 2.7.3.1

3 −5y+2 = 0y2

y = 1, y =
2

3

 Exercise 2.7.3.2

4 +2z−6 = 0z2

z= 1, z=−
3

2

 HowTo: Solve a Quadratic Equation Using the Quadratic Formula

a +bx+c = 0x2 a, b c

a, b c

x =

 Example 2.7.3.2

−6x =−5x2

−6x= −5x2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76291?pdf


2.7.3.4 https://phys.libretexts.org/@go/page/76291

Write the equation in standard form by adding  to each side.

This equation is now in standard form.
 

Identify the values of , , . , , 

Write the Quadratic Formula.

Then substitute in the values of .

Simplify.

Rewrite to show two solutions.

Simplify.

 

Check:

 

Solve by using the Quadratic Formula: .

Answer

Solve by using the Quadratic Formula: .

Answer

When we solved quadratic equations by using the Square Root Property, we sometimes got answers that had radicals. That can
happen, too, when using the Quadratic Formula. If we get a radical as a solution, the final answer must have the radical in its
simplified form.

Solve by using the Quadratic Formula: .

Solution:

 

This equation is in standard form.

5 − 6x+5= 0x2

a + bx+ c=0x2

−6x+5= 0x2

a b c a = 1 b= −6 c= 5

x=
−b± −4acb2

− −−−−−−
√

2a

a, b, c x=
−(−6)± (−6) − 4 ⋅ 1 ⋅ (5)2− −−−−−−−−−−−−−

√

2 ⋅ 1

x=
6± 36−20

− −−−−−
√

2

x=
6± 16

−−
√

2

x=
6±4

2

x= , x=6+4
2

6−4
2

x= , x=10
2

2
2

x= 5, x= 1

 Exercise 2.7.3.3

−2a= 15a2

a=−3, a= 5

 Exercise 2.7.3.4

+24 =−10bb2

b =−6, b =−4

 Example 2.7.3.3

2 +10x+11 = 0x2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76291?pdf


2.7.3.5 https://phys.libretexts.org/@go/page/76291

Identify the values of  and .

Write the Quadratic Formula.

Then substitute in the values of , and .

Simplify.

 

Simplify the radical.

Factor out the common factor in the numerator.

Remove the common factors.

Rewrite to show two solutions.

Check:
We leave the check for you!

 

Solve by using the Quadratic Formula: .

Answer

Solve by using the Quadratic Formula: .

Answer

When we substitute , and  into the Quadratic Formula and the radicand is negative, the quadratic equation will have
imaginary or complex solutions. We will see this in the next example.

Solve by using the Quadratic Formula: .

Solution:

 

This equation is in standard form.

Table 9.3.5

a, b c

x=
−b± −4acb2

− −−−−−−
√

2a

a, b c

x=
−10± 100−88− −−−−−−√

4

x=
−10± 12

−−√

4

x=
−10±2 3

–√

4

x=
2(−5± )3

–√

4

x=
−5± 3

–√

2

x= , x=
−5+ 3

–√

2

−5− 3
–√

2

 Exercise 2.7.3.5

3 +12m+7 = 0m2

m = ,m =
−6+ 15

−−
√

3

−6− 15
−−

√

3

 Exercise 2.7.3.6

5 +4n−4 = 0n2

n= ,n=
−2+2 6

–
√

5

−2−2 6
–

√

5

a, b c

 Example 2.7.3.4

3 +2p+9 = 0p2
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Identify the values of .

Write the Quadratic Formula.

Then substitute in the values of .

Simplify.

 

Simplify the radical using complex numbers.

Simplify the radical.

Factor the common factor in the numerator.

Remove the common factors.

Rewrite in standard  form.

Write as two solutions.

Solve by using the Quadratic Formula: .

Answer

Solve by using the Quadratic Formula: .

Answer

Remember, to use the Quadratic Formula, the equation must be written in standard form, . Sometimes, we will
need to do some algebra to get the equation into standard form before we can use the Quadratic Formula.

Solve by using the Quadratic Formula: .

Solution:

Our first step is to get the equation in standard form.

 

Distribute to get the equation in standard form.

Table 9.3.6

a, b, c

a, b, c

a+ bi

 Exercise 2.7.3.7

4 −2a+8 = 0a2

a= + i, a= − i
1

4

31
−−

√

4

1

4

31
−−

√

4

 Exercise 2.7.3.8

5 +2b+4 = 0b2

b =− + i, b =− − i
1

5

19
−−

√

5

1

5

19
−−

√

5

a +bx+c = 0x2

 Example 2.7.3.5

x(x+6)+4 = 0
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This equation is now in standard form.

Identify the values of .

Write the Quadratic Formula.

Then substitute in the values of .

Simplify.

 

Simplify the radical.

Factor the common factor in the numerator.

Remove the common factors.

Write as two solutions.

Check:
We leave the check for you!

 

Solve by using the Quadratic Formula: .

Answer

Solve by using the Quadratic Formula: .

Answer

When we solved linear equations, if an equation had too many fractions we cleared the fractions by multiplying both sides of the
equation by the LCD. This gave us an equivalent equation—without fractions— to solve. We can use the same strategy with
quadratic equations.

Solve by using the Quadratic Formula: .

Solution:

Our first step is to clear the fractions.

 

Multiply both sides by the LCD, , to clear the fractions.

Table 9.3.7

a, b, c

a, b, c

 Exercise 2.7.3.9

x(x+2)−5 = 0

x =−1+ , x =−1−6
–

√ 6
–

√

 Exercise 2.7.3.10

3y(y−2)−3 = 0

y = 1+ , y = 1−2
–

√ 2
–

√

 Example 2.7.3.6

+ u =
1

2
u2 2

3

1

3

6
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Multiply.

Subtract  to get the equation in standard form.

Identify the values of , and .

Write the Quadratic Formula.

Then substitute in the values of  and .

Simplify.

 

Simplify the radical.

Factor the common factor in the numerator.

Remove the common factors.

Rewrite to show two solutions.

Check:
We leave the check for you!

 

Solve by using the Quadratic Formula: .

Answer

Solve by using the Quadratic Formula: .

Answer

Think about the equation . We know from the Zero Product Property that this equation has only one solution, 
.

We will see in the next example how using the Quadratic Formula to solve an equation whose standard form is a perfect square
trinomial equal to  gives just one solution. Notice that once the radicand is simplified it becomes , which leads to only one
solution.

2

a, b c

a, b, c

 Exercise 2.7.3.11

− c =
1

4
c2

1

3

1

12

c = , c =
2+ 7

–
√

3

2− 7
–

√

3

 Exercise 2.7.3.12

− d =−
1

9
d2 1

2

1

3

d = , d =
9+ 33

−−
√

4

9− 33
−−

√

4

(x−3 = 0)2

x = 3

0 0
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Solve by using the Quadratic Formula: .

Solution:

 

Add  to get the equation in standard form.

Identify the values of , and .

Write the quadratic formula.

Then substitute in the values of , and .

Simplify.

 

Simplify the radical.

Simplify the fraction.

Check:
We leave the check for you!

 

Table 9.3.8

Did you recognize that  is a perfect square trinomial. It is equivalent to ? If you solve 
 by factoring and then using the Square Root Property, do you get the same result?

Solve by using the Quadratic Formula: .

Answer

Solve by using the Quadratic Formula: .

Answer

Use the Discriminant to Predict the Number and Type of Solutions of a Quadratic Equation
When we solved the quadratic equations in the previous examples, sometimes we got two real solutions, one real solution, and
sometimes two complex solutions. Is there a way to predict the number and type of solutions to a quadratic equation without
actually solving the equation?

Yes, the expression under the radical of the Quadratic Formula makes it easy for us to determine the number and type of solutions.
This expression is called the discriminant.

 Example 2.7.3.7

4 −20x =−25x2

25

a, b c

a, b c

4 −20x+25x2 (2x−5)2

4 −20x+25 = 0x2

 Exercise 2.7.3.13

+10r+25 = 0r2

r=−5

 Exercise 2.7.3.14

25 −40t =−16t2

t =
4

5
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Discriminant

Figure 9.3.85

Let’s look at the discriminant of the equations in some of the examples and the number and type of solutions to those quadratic
equations.

Quadratic Equation (in
standard form)

Discriminat Value of the Discriminant Number and Type of Solutions

 real

 
 real

 
 complex

Table 9.3.9

Figure 9.3.86

Using the Discriminant , to Determine the Number and Type of Solutions of a Quadratic Equation

For a quadratic equation of the form , ,

If , the equation has  real solutions.
if , the equation has  real solution.
if , the equation has  complex solutions.

Determine the number of solutions to each quadratic equation.

a. 
b. 
c. 

Solution:

To determine the number of solutions of each quadratic equation, we will look at its discriminant.

a.

The equation is in standard form, identify , and .

Write the discriminant.

 Definition 2.7.3.2

− 4acb
2

2 + 9x−5= 0x2 −92 4 ⋅ 2(−5)

121
+ 2

4 −20x+25 = 0x2 (−20 −4 ⋅ 4 ⋅ 25)2

0
0 1

3 + 2p+9= 0p2
−4⋅ 3 ⋅ 922

−104
− 2

− 4acb
2

a +bx+c = 0x2 a≠ 0

−4ac > 0b2 2
−4ac = 0b2 1
−4ac < 0b2 2

 Example 2.7.3.8

3 +7x−9 = 0x2

5 +n+4 = 0n2

9 −6y+1 = 0y2

3 +7x−9 = 0x2

a, b c

a= 3, b = 7, c =−9
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Substitute in the values of , and .

Simplify.

 

Since the discriminant is positive, there are  real solutions to the equation.

b.

The equation is in standard form, identify , and .

Write the discriminant.

Substitute in the values of , and .

Simplify.

 

Since the discriminant is negative, there are  complex solutions to the equation.

c.

The equation is in standard form, identify , and .

Write the discriminant.

Substitute in the values of , and .

Simplify.

 

Since the discriminant is , there is  real solution to the equation.

Determine the number and type of solutions to each quadratic equation.

a. 
b. 
c. 

Answer
a.  complex solutions
b.  real solutions

−4acb2

a, b c

(7 −4 ⋅ 3 ⋅ (−9))2

49+108
157

2

5 +n+4 = 0n2

a, b c

a= 5, b = 1, c = 4

−4acb2

a, b c

(1 −4 ⋅ 5 ⋅ 4)2

1−80
−79

2

9 −6y+1 = 0y2

a, b c

a= 9, b =−6, c = 1

−4acb2

a, b c

(−6 −4 ⋅ 9 ⋅ 1)2

36−36
0

0 1

 Exercise 2.7.3.15

8 −3m+6 = 0m2

5 +6z−2 = 0z2

9 +24w+16 = 0w2

2
2
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c.  real solution

Determine the number and type of solutions to each quadratic equation.

a. 
b. 
c. 

Answer
a.  real solutions
b.  complex solutions
c.  real solution

Identify the Most Appropriate Method to Use to Solve a Quadratic Equation

We summarize the four methods that we have used to solve quadratic equations below.

Methods for Solving Quadratic Equations
1. Factoring
2. Square Root Property
3. Completing the Square
4. Quadratic Formula

Given that we have four methods to use to solve a quadratic equation, how do you decide which one to use? Factoring is often the
quickest method and so we try it first. If the equation is  or  we use the Square Root Property. For any other
equation, it is probably best to use the Quadratic Formula. Remember, you can solve any quadratic equation by using the Quadratic
Formula, but that is not always the easiest method.

What about the method of Completing the Square? Most people find that method cumbersome and prefer not to use it. We needed
to include it in the list of methods because we completed the square in general to derive the Quadratic Formula. You will also use
the process of Completing the Square in other areas of algebra.

Identify the Most Appropriate Method to Solve a Quadratic Equation
1. Try Factoring first. If the quadratic factors easily, this method is very quick.
2. Try the Square Root Property next. If the equation fits the form  or , it can easily be solved by using

the Square Root Property.
3. Use the Quadratic Formula. Any other quadratic equation is best solved by using the Quadratic Formula.

The next example uses this strategy to decide how to solve each quadratic equation.

Identify the most appropriate method to use to solve each quadratic equation.

a. 
b. 
c. 

Solution:

a.

Since the equation is in the , the most appropriate method is to use the Square Root Property.

b.

1

 Exercise 2.7.3.16

+7b−13 = 0b2

5 −6a+10 = 0a2

4 −20r+25 = 0r2

2
2
1

a = kx2 a(x−h = k)2

a = kx2 a(x−h = k)2

 Example 2.7.3.9

5 = 17z2

4 −12x+9 = 0x2

8 +6u = 11u2

5 = 17z2

a = kx2
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We recognize that the left side of the equation is a perfect square trinomial, and so factoring will be the most appropriate
method.

c.

Put the equation in standard form.

While our first thought may be to try factoring, thinking about all the possibilities for trial and error method leads us to choose
the Quadratic Formula as the most appropriate method.

Identify the most appropriate method to use to solve each quadratic equation.

a. 
b. 
c. 

Answer
a. Factoring
b. Square Root Property
c. Quadratic Formula

Identify the most appropriate method to use to solve each quadratic equation.

a. 
b. 
c. 

Answer
a. Quadratic Formula
b. Factoring or Square Root Property
c. Square Root Property

Practice Makes Perfect

In the following exercises, solve each equation.

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

4 −12x+9 = 0x2

8 +6u = 11u2

8 +6u−11 = 0u2

 Exercise 2.7.3.17

+6x+8 = 0x2

(n−3 = 16)2

5 −6p = 9p2

 Exercise 2.7.3.18

8 +3a−9 = 0a2

4 +4b+1 = 0b2

5 = 125c2

 Solve Quadratic Equations of the Form  Using the Square Root Propertya = kx2

= 49a2

−24 = 0r2

−300 = 0u2

4 = 36m2

= 484
3
x2

+25 = 0x2

+63 = 0x2

+2 = 1104
3
x2

+3 = 112
5
a2

7 +10 = 26p2
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11. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

11. 

In the following exercises, solve by using the Quadratic Formula.

12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 

23. 

24. 
25. 

Answer

12. 

13. 

14. 
15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

5 −7 = 25y2

a=±7
r=±2 6

–
√

u =±10 3
–

√

m =±3
x =±6
x =±5i
x =±3 i7

–
√

x =±9
a=±2 5

–
√

p =± 4
7√

y =±
4 2√

5√

 Solve Quadratic Equations Using the Quadratic Formula

4 +m−3 = 0m2

2 −7p+3 = 0p2

+7p+12 = 0p2

−8r= 33r2

3 +7u−2 = 0u2

2 −6a+3 = 0a2

+8x−4 = 0x2

3 +5y−2 = 0y2

2 +3x+3 = 0x2

8 −6x+2 = 0x2

(v+1)(v−5)−4 = 0

+ m =
1

4
m2

1

12

1

3
16 +24c+9 = 0c2

25 +30q+9 = 0q2

m =−1,m =
3

4

p = , p = 3
1

2
p =−4, p =−3
r=−3, r= 11

u =
−7± 73

−−
√

6

a=
3± 3

–
√

2
x =−4±2 5

–
√

y = , y =−2
1

3

x =− ± i
3

4

15
−−

√

4

x = ± i
3

8

7
–

√

8
v= 2± 13

−−
√
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23. 

24. 

25. 

28. In the following exercises, determine the number of real solutions for each quadratic equation.

a. 
b. 
c. 

Answer

28. a. no real solutions b.  c. 

29. In the following exercises, determine the number of real solutions for each quadratic equation.

a. 
b. 
c. 

Answer

29. a.  b. no real solutions c. 

Key Concepts
Quadratic Formula

The solutions to a quadratic equation of the form  are given by the formula:

How to solve a quadratic equation using the Quadratic Formula.
1. Write the quadratic equation in standard form, . Identify the values of .
2. Write the Quadratic Formula. Then substitute in the values of .
3. Simplify.
4. Check the solutions.

Using the Discriminant, , to Determine the Number and Type of Solutions of a Quadratic Equation
For a quadratic equation of the form ,

If , the equation has  real solutions.
If , the equation has  real solution.
If , the equation has  complex solutions.

Methods to Solve Quadratic Equations:

Factoring
Square Root Property
Completing the Square
Quadratic Formula

How to identify the most appropriate method to solve a quadratic equation.
1. Try Factoring first. If the quadratic factors easily, this method is very quick.
2. Try the Square Root Property next. If the equation fits the form  or , it can easily be solved by

using the Square Root Property.

m = 1,m =
−4

3

c =−
3

4

q =−
3

5

 Use the Discriminant to Predict the Number of Real Solutions of a Quadratic Equation

4 −5x+16 = 0x2

36 +36y+9 = 0y2

6 +3m−5 = 0m2

1 2

+12r+36 = 0r2

8 −11t+5 = 0t2

3 −5v−1 = 0v2

1 2

a +bx+c = 0, a≠ 0x2

x =
−b± −4acb2

− −−−−−−
√

2a

a +bx+c = 0x2 a, b, c
a, b, c

−4acb2

a +bx+c = 0, a≠ 0x2

−4ac > 0b2 2
−4ac = 0b2 1
−4ac < 0b2 2

a = kx2 a(x−h = k)2
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3. Use the Quadratic Formula. Any other quadratic equation is best solved by using the Quadratic Formula.

Glossary

discriminant

In the Quadratic Formula, , the quantity  is called the discriminant.

This page titled 2.7.3: Solving Quadratic Equations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

9.4: Solve Quadratic Equations Using the Quadratic Formula by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/intermediate-algebra-2e.
9.4E: Exercises by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/intermediate-algebra-2e.
9.2E: Exercises by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/intermediate-algebra-2e.

x =
−b± −4acb2

− −−−−−−√

2a
−4acb2
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2.7.4: Solving a System of Linear Equations

Solve a system of equations using the substitution method.
Recognize systems of equations that have no solution or an infinite number of solutions.
Solve application problems using the substitution method.

Using Substitution to Solve a System of Equations
In the substitution method, you solve for one variable and then substitute that expression into the other equation. The important
thing here is that you are always substituting values that are equivalent.

For example:

Sean is 5 years older than four times his daughter’s age. His daughter is 7. How old is Sean?

You might do this problem in your head. Sean’s daughter is 7, so “four times his daughter’s age” is 28, and 5 years added to that is
33. Sean is 33.

If you solved the problem like that, you used a simple substitution—you substituted in the value “7” for “his daughter’s age.” You
learned in the second part of the problem that “his daughter is 7.” So substituting in a value of “7” for “his daughter’s age” in the
first part of the problem was okay, because you knew these two quantities were equal.

Let’s look at a simple system of equations that can be solved using substitution.

Find the value of  for this system.

Equation A: 

Equation B: 

Solution

The problem asks to solve for .
Equation B gives you the value of , , so you can
substitute 2 into Equation A for .

Substituting  into Equation A.

Simplify and solve the equation for .

You can substitute a value for a variable even if it is an expression. Here’s an example.

Solve for  and .

Equation A: 

Equation B: 

Solution

 Learning Objectives

 Example

 x

 4x + 3y = −14

 y = 2

 
4x + 3y

y

= −14

= 2

 x

 y  y = 2

 y

 4x + 3(2) = −14  y = 2

 

4x + 6

4x

x

= −14

= −20

= −5

 x

 x = −5

 Example

 x  y

 y + x = 3

 x = y + 5
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The goal of the substitution method is to rewrite one of the
equations in terms of a single variable. Equation  tells us that 

, so it makes sense to substitute that  into
Equation A for .

Substitute  into Equation A for  and you get 
.

Simplify and solve the equation to get .

To now find , substitute this value for  into either equation
and solve for . We will use Equation A here to get .

TRUE TRUE

Finally, check the solution ,  by substituting
these values into each of the original equations.

 and The solution is .

Remember, a solution to a system of equations must be a solution to each of the equations within the system. The ordered pair 
 works for both equations, so you know that it is a solution to the system as well.

Let’s look at another example whose substitution involves the distributive property.

Solve for  and .

Solution

Choose an equation to use for the substitution.
The first equation tells you how to express  in terms of , so
it makes sense to substitute  into the second equation for 

.

Substitute  for  into the second equation.

Simplify and solve the equation for .

 
y + x = 3

x = y + 5

 B

 x = y + 5  y + 5

 x

 
y + x = 3

y + (y + 5) = 3

 y + 5  x

 y + (y + 5) = 3

 

2y + 5

−5

2y      

y      

=    3

−5

−2

= −1

 y = −1

 

y + x

−1 + x

+1       

x

=   3

=   3

+1

=   4

 x  y

 x  x = 4

 

y + x = 3

−1 + 4 = 3

3 = 3

 

x = y + 5

4 = −1 + 5

4 = 4
 x = 4  y = −1

 x = 4  y = −1  (4, −1)

 (4, −1)

 Example

 x  y

 
y = 3x +6

−2x +4y = 4

 
y = 3x + 6

−2x + 4y = 4

 y  x

 3x + 6

 y

 
−2x + 4y = 4

−2x + 4(3x + 6) = 4
 3x + 6  y

 

−2x + 12x + 24 =

10x + 24 =

  − 24    

10x          =

x          =

4

4

−24

−20

−2

 x
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To find , substitute this value for  back into one of the
original equations.

TRUE TRUE

Check the solution ,  by substituting them into
each of the original equations.

 and .

The solution is .

In the examples above, one of the equations was already given to us in terms of the variable  or . This allowed us to quickly
substitute that value into the other equation and solve for one of the unknowns.

Sometimes you may have to rewrite one of the equations in terms of one of the variables first before you can substitute. Look at the
example below.

Solve for  and .

Solution

Choose an equation to use for the substitution. The second
equation, , can easily be rewritten in terms of ,
so it makes sense to start there.

Rewrite  in terms of .

Substitute  for  in the other equation as 
.

Simplify and solve the equation for .

Substitute  back into one of the original equations to
solve for .

 

y = 3x + 6

y = 3(−2) + 6

y = −6 + 6

y = 0

 y  x

 

y = 3x + 6

0 = 3(−2) + 6

0 = −6 + 6

0 = 0

 

−2x + 4y = 4

−2(−2) + 4(0) = 4

4 + 0 = 4

4 = 4
 x = −2  y = 0

 x = −2  y = 0

 (−2, 0)

 x  y

 Example

 x  y

 
2x +3y = 22

3x +y = 19

 
2x + 3y = 22

3x + y = 19
 3x + y = 19  y

 
3x + y = 19

y = 19 − 3x
 3x + y = 19  y

 
2x + 3y = 22

2x + 3(19 − 3x) = 22

 19 − 3x  y

 2x + 3(19 − 3x) = 22

 

2x + 57 − 9x = 22

−7x + 57 = 22

−7x = −35

x = 5

 x

 

3x + y = 19

3(5) + y = 19

15 + y = 19

y = 19 − 15

y = 4

 x = 5

 y
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TRUE TRUE

Check both solutions by substituting them into each of the
original equations.

 and 

The solution is .

Solve the system for  and .

A. 
B. 
C. 
D. 

Answer
A. Incorrect. If you substitute the values  and  into the first equation, you get a false statement: 

. To solve this system, try rewriting the first equation as . Then substitute  in for 
in the second equation, and solve for . The correct answer is , .

B. Correct. Substituting these values into either equation results in a true statement: , and 
.

C. Incorrect. If you substitute the values  and  into the second equation, you get a false statement: 
. To solve this system, try rewriting the first equation as . Then substitute  in

for  in the second equation, and solve for . The correct answer is .
D. Incorrect. If you substitute the values  and  into the second equation, you get a false statement: 

. To solve this system, try rewriting the first equation as . Then substitute  in
for  in the second equation, and solve for . The correct answer is .

Special Situations
There are some cases where using the substitution method will yield results that, at first, do not make sense. Let’s take a look at
some of these and figure out what is going on.

Solve for  and .

Solution

Since the first equation is , you can substitute 
 in for  in the second equation.

Expand the expression on the left.

 

2x + 3y

2(5) + 3(4)

10 + 12
22

= 22

= 22

= 22
= 22

 
3x + y

3(5) + 4

19

= 19

= 19

= 19

 x = 5  y = 4

 (5, 4)

 Exercise

 x  y

 
2y = x +8

2y −10 = 2x

 x = −3, y = 2

 x = −2, y = 3

 x = −5, y = 2

 x = 0, y = −5

 x = −3  y = 2

 2(2) = −3 +9  x = 2y −8  2y −8  x

 y  x = −2  y = 3

 2(3) = −2 +8

 2(3) −10 = 2(−2)

 x = −5  y = 2

 2(2) −10 = 2(−5)  x = 2y −8  2y −8

 x  y  x = −2, y = 3

 x = 0  y = −5

 2(−5) −10 = 2(0)  x = 2y −8  2y −8

 x  y  x = −2, y = 3

 Example

 x  y

 
y = 5x +4

10x −2y = 4

 
y = 5x + 4

10x − 2y = 4

 10x − 2(5x + 4) = 4

 y = 5x + 4

 5x + 4  y

 10x − 10x − 8 = 4
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Combine like terms on the left side of equation.
, so you are left with .

The statement  is false, so there is no solution.

You get the false statement . What does this mean? The graph of this system sheds some light on what is happening.

The lines are parallel. They never intersect and there is no solution to this system of linear equations. Note that the result 
is not a solution. It is simply a false statement and it indicates that there is no solution.

Now take this problem, which is interesting as well.

Substituting  for  in the second equation, you find the following:

This time, you get a true statement: . But what does this type of answer mean? Again, graphing can help you
make sense of this system.

This system consists of two equations that both represent the same line; the two lines are collinear. Every point along the line will
be a solution to the system, and that’s why the substitution method yields a true statement. In this case, there are an infinite number

 
0 − 8

−8

= 4

= 4  10x − 10x = 0   − 8 = 4

  −8 = 4

  −8 = 4

  −8 = 4

 

 Solve for x and y.

y = −0.5x

9y = −4.5x

  −0.5x  y

 

9y

9(−0.5x)

−4.5x

= −4.5x

= −4.5x

= −4.5x

  −4.5x = −4.5x
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of solutions.

Aubrey is using the substitution method to solve the following system of equations:

She arrives at an answer of . She thinks that this answer means that the lines are parallel and that the system has no
solution.

Aubrey wants to check her answer. Which of the following actions will best help her find out whether the two equations in the
system are, in fact, parallel?

A. Check to see whether the slopes of both lines are the same, and the y-intercepts are different.
B. Check to see whether either line goes through the origin.
C. Check to see whether the lines have the same y-intercept.
D. Check to see whether both lines go through the point .

Answer
A. Correct. Parallel lines have the same slope, but she also has to check whether they have different y-intercepts because

the lines could be collinear (remember that 2 collinear lines are the same line). If Aubrey finds that the slopes of the
lines are the same and the y-intercepts are different, then she can be confident that her answer is correct.

B. Incorrect. The origin has no bearing on whether two lines are parallel. In the case of this system, neither line goes
through the origin, but the lines are still parallel. If Aubrey finds that the slopes of the lines are the same and the y-
intercepts are different, then she can be confident that her answer is correct.

C. Incorrect. It is true that lines with the same y-intercept are never parallel, because parallel lines can never intersect. But
just checking that the y-intercepts aren’t the same is not enough. To be parallel, lines also must have the same slope. If
Aubrey finds that the slopes of the lines are the same and the y-intercepts are different, then she can be confident that
her answer is correct.

D. Incorrect. Although she arrived at an answer of , this does not mean that the lines themselves intersect at the
point . If Aubrey finds that the slopes of the lines are the same and the y-intercepts are different, then she can be
confident that her answer is correct.

Solving Application Problems Using Substitution

Systems of equations are a very useful tool for modeling real-life situations and answering questions about them. If you can
translate the application into two linear equations with two variables, then you have a system of equations that you can solve to find
the solution. You can use any method to solve the system of equations. Use the substitution method in this topic.

In order to sell more of its produce, a local farm sells bags of apples in two sizes: medium and large. A medium bag contains 4
Macintosh and 1 Granny Smith apples and costs $2.80. A large bag contains 8 Macintosh and 4 Granny Smith apples and costs
$7.20. The price of one Granny Smith apple is the same in the medium bag as it is in the large bag. The price of one Macintosh
apple is the same in the medium bag as it is in the large bag. What is the price of each kind of apple?

Let’s start by creating a system of equations that represents what is happening in the problem. There are two types of apples and
two sizes of bags. You can let  represent the cost of a Macintosh apple and  represent the cost of a Granny Smith apple. Let’s
make a table and see what is known.

 
Cost of Macintosh

apples
+

Cost of Granny
Smith apples

= Total cost of bag

Medium + = $2.80

Large + = $7.20

 Exercise

 
y −x = 21

2y = 2x +16

 8 = 21

 (8, 21)

 8 = 21

 (8, 21)

 m  g

 4m  g

 8m  4g
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Now that you have two equations in the same variables, you can solve the system. You will use substitution. The steps are shown in
the example below:

Solve for  and  using the substitution method.

Solution

First, rewrite one of the equations in terms of one of the
variables.

Substitute  for  in the second equation and solve
for .

Substitute the value of , , into one of the original
equations to solve for .

Check both equations by substituting in the values of  and .

 

One Granny Smith apple costs $0.80 and one Macintosh apple costs $0.50.

Using the substitution method can be an effective approach to solving geometric problems.

The perimeter of a rectangle is 60 inches. If the length is 10 inches longer than the width, find the dimensions using the
substitution method.

Solution

Use the information provided to write a system of equations. Let
 and .

Substitute  for  in the first equation and solve for .

 Example

 g  m

 
4m +g = 2.80

8m +4g = 7.20

 
4m + g = 2.80

g = 2.80 − 4m

 

8m + 4g = 7.20

8m + 4(2.80 − 4m) = 7.20

8m + 11.20 − 16m = 7.20

8m − 16m = 7.20 − 11.20

−8m = −4.00

m = 0.50

 (2.80 − 4m)  g

 m

 

4m + g = 2.80

4(0.5) + g = 2.80

2 + g = 2.80

g = 2.80 − 2

g = 0.80

 m  0.50

 g

 

4m + g

4(.50) + .80

2.80

= 2.80

= 2.80

= 2.80

 g  m

 

8m + 4g

8(.50) + 4(.80)

4.00 + 3.20

7.20

= 7.20

= 7.20

= 7.20

= 7.20

 Example

 
2l + 2w = 60

l = w + 10  l =  length   w =  width 

 

2l              + 2w

2(w + 10) + 2w

2w    + 20      + 2w

4w      + 20

−20

4w

w

=    60

=    60

=    60

=    60

−20

=    40

=    10

 w + 10  l  w
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To find , substitute 10 for  in one of the equations and solve
for .

Check both solutions by substituting them into the two
equations.

Both of them are true, so this is a correct solution.

The length of the rectangle is 20 inches.

The width of the rectangle is 10 inches.

Summary

The substitution method is one way of solving systems of equations. To use the substitution method, use one equation to find an
expression for one of the variables in terms of the other variable. Then substitute that expression in place of that variable in the
second equation. You can then solve this equation as it will now have only one variable. Solving using the substitution method will
yield one of three results: a single value for each variable within the system (indicating one solution), an untrue statement
(indicating no solutions), or a true statement (indicating an infinite number of solutions).

Solve a system of equations when no multiplication is necessary to eliminate a variable.
Solve a system of equations when multiplication is necessary to eliminate a variable.
Recognize systems that have no solution or an infinite number of solutions.
Solve application problems using the elimination method.

Introduction

The elimination method for solving systems of linear equations uses the addition property of equality. You can add the same value
to each side of an equation.

So if you have a system:  and , you can add  to the left side of the first equation and add 8 to the
right side of the equation. And since , you are adding the same value to each side of the first equation.

Using Addition to Eliminate a Variable

If you add the two equations,  and  together, as noted above, watch what happens.

You have eliminated the  term, and this equation can be solved using the methods for solving equations with one variable.

Let’s see how this system is solved using the elimination method.

Use elimination to solve the system.

Solution

 

l = w + 10

l = 10 + 10

l = 20

 l  w

 l

 

l = w + 10

20 = 10 + 10

20 = 20

 

2l + 2w = 60

2(20) + 2(10) = 60

40 + 20 = 60

60 = 60

 Learning Objectives

 x −y = −6  x +y = 8  x +y

 x +y = 8

 x −y = −6  x +y = 8

 

x −y =

x +y =

2x +0 =

−6

8

2

 y

 Example

 
x −y = −6

x +y = 8
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Add the equations.

Solve for .

Substitute  into one of the original equations and solve
for .

TRUE TRUE

Be sure to check your answer in both equations!
The answers check.

The solution is .

Unfortunately, not all systems work out this easily. How about a system like  and ? If you add these
two equations together, no variables are eliminated.

But you want to eliminate a variable. So let’s add the opposite of one of the equations to the other equation.

You have eliminated the  variable, and the problem can now be solved. See the example below.

Use elimination to solve the system.

Solution

You can eliminate the y-variable if you add the opposite of one
of the equations to the other equation.

Rewrite the second equation as its opposite.
Add.

Solve for .

Substitute  into one of the original equations and solve
for .

 

x − y =

+ x + y =

2x        =

−6

8

2

 
2x

x

= 2

= 1
 x

 

x + y = 8

1 + y = 8

y = 8 − 1

y = 7

 x = 1

 y

 

x − y = −6

1 − 7 = −6

−6 = −6

 
x + y

1 + 7

8

= 8
= 8

= 8

 (1, 7)

 2x +y = 12   −3x +y = 2

 

2x +y

−3x +y

−x +2y

= 12

= 2

= 14

 

2x +y = 12 →

−3x +y = 2 →

2x +y = 12 →

−(−3x +y) = −(2) →

2x +y =  12

3x −y = −2
– –––––––––––

5x +0y =  10

 y

 Example

 
2x +y

−3x +y

= 12

= 2

 
2x + y

−3x + y

= 12

= 2

 

2x + y

3x − y

5x

= 12

= −2

= 10

 x = 2  x

 

2(2) + y = 12

4 + y = 12

y = 8

 x = 2

 y
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TRUE TRUE

Be sure to check your answer in both equations!
The answers check.

The solution is .

The following are two more examples showing how to solve linear systems of equations using elimination.

Use elimination to solve the system.

Solution

Notice the coefficients of each variable in each equation. If you
add these two equations, the  term will be eliminated since 

.

Add and solve for .

Substitute  into one of the original equations.

TRUE TRUE

Check solutions.
The answers check.

The solution is .

Use elimination to solve for  and .

Solution

Notice the coefficients of each variable in each equation. You
will need to add the opposite of one of the equations to eliminate
the variable , as , but .

 

2x + y = 12

2(2) + 8 = 12

4 + 8 = 12

12 = 12

 

−3x + y = 2

−3(2) + 8 = 2

−6 + 8 = 2

2 = 2

 (2, 8)

 Example

 
−2x +3y

2x +5y

= −1

= 25

 
−2x + 3y

2x + 5y

= −1

= 25
 x

  − 2x + 2x = 0

 

−2x + 3y =

2x + 5y =

8y =

y =

−1

25

24

3

 y

 

2x + 5y

2x + 5(3)

2x + 15

2x

x

= 25

= 25

= 25

= 10

= 5

 y = 3

 

−2x + 3y

−2(5) + 3(3)

−10 + 9

−1

= −1

= −1

= −1

= −1

 

2x + 5y = 25

2(5) + 5(3) = 25

10 + 15 = 25

25 = 25

 (5, 3)(5, 3)

 Example

 x  y

 
4x + 2y = 14

5x + 2y = 16
 y  2y + 2y = 4y  2y + (−2y) = 0
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Change one of the equations to its opposite, add and solve for 
.

Substitute  into one of the original equations and solve
for .

The solution is .

Go ahead and check this last example—substitute  into both equations. You get two true statements:  and !

Notice that you could have used the opposite of the first equation rather than the second equation and gotten the same result.

Using Multiplication and Addition to Eliminate a Variables
Many times, adding the equations or adding the opposite of one of the equations will not result in eliminating a variable. Look at
the system below.

If you add the equations above, or add the opposite of one of the equations, you will get an equation that still has two variables. So
let’s now use the multiplication property of equality first. You can multiply both sides of one of the equations by a number that will
result in the coefficient of one of the variables being the opposite of the same variable in the other equation.

This is where multiplication comes in handy. The first equation contains the term  and the second equation contains the term .
If you multiply the second equation by -4, when you add both equations, the  variables will add up to 0.

See the example below.

Solve for  and .

Equation A: 

Equation B: 

Solution

Look for terms that can be eliminated. The equations do not
have any  or  terms with the same coefficients.

Multiply the second equation by -4 so they have the same
coefficient.

Rewrite the system, and add the equations.

Solve for .

 

4x + 2y =

−5x − 2y =

−x          =

x          =

14

−16

−2

2

 x

 

4x + 2y =

4(2) + 2y =

8 + 2y =

2y =

y =

14

14

14

6

3

 x = 2

 y

 (2, 3)

 (2, 3)  14 = 14  16 = 16

 
3x +4y = 52

5x +y = 30

 4y  y

 y

 

3x +4y = 52

5x +y = 30

→ 3x +4y = 52

→ −4(5x +y) = −4(30)

→ 3x +4y = 52

→ −20x −4y = −120
– ––––––––––––––––––

−17x +0y = −68

 Example

 x  y

 3x + 4y = 52

 5x + y = 30

 
3x + 4y = 52

5x +   y = 30  x  y

 
3x + 4y

−4(5x + y)

= 52

= −4(30)

 
3x + 4y =

−20x − 4y =

52

−120

 
−17x

x

= −68

= 4
 x
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Substitute  into one of the original equations to find .

TRUE TRUE

Check your answer.
The answers check.

The solution is .

There are other ways to solve this system. Instead of multiplying one equation in order to eliminate a variable when the equations
were added, you could have multiplied both equations by different numbers.

Let’s remove the variable  this time. Multiply Equation A by 5 and Equation B by -3.

Solve for  and .

Solution

Look for terms that can be eliminated. The equations do not
have any  and  terms with the same coefficient.

In order to use the elimination method, you have to create
variables that have the same coefficient—then you can eliminate
them. Multiply the top equation by 5.

Now multiply the bottom equation by -3.

Next add the equations, and solve for .

Substitute  into one of the original equations to find .

The solution is . You arrive at the same solution as before.

These equations were multiplied by 5 and -3 respectively, because that gave you terms that would add up to 0. Be sure to multiply
all of the terms of the equation.

 

3x + 4y = 52

3(4) + 4y = 52

12 + 4y = 52

4y = 40

y = 10

 x = 4  y

 

3x + 4y = 52

3(4) + 4(10) = 52

12 + 40 = 52

52 = 52

 

5x + y = 30

5(4) + 10 = 30

20 + 10 = 30

30 = 30

 (4, 10)

 x

 Example

 x  y

 
3x +4y = 52

5x +  y = 30

 
3x + 4y = 52

5x +   y = 30  x  y

 
5(3x + 4y)

5x +  y  

= 5(52)

= 0

 
15x + 20y

5x + y

= 260

= 30

 
15x + 20y

−3(5x +   y)

= 260

= −3(30)

 
15x + 20y =

−15x −   3y =

260

−90

 

15x + 20y

−15x −   3y

17y

y

=

=

=

=

+260

−90

170

10

 y

 

3x + 4y

3x + 4(10)

3x + 40

3x

x

= 52

= 52

= 52

= 12

= 4

 y = 10  x

 (4, 10)
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Felix needs to find  and  in the following system.

Equation A: 

Equation B: 

If he wants to use the elimination method to eliminate one of the variables, which is the most efficient way for him to do so?

A. Add Equation A and Equation B
B. Add  to both sides of Equation A
C. Multiply Equation A by 5
D. Multiply Equation B by -1

Answer
A. Correct. If Felix adds the two equations, the terms  and  will cancel out, leaving . Felix will then

easily be able to solve for .
B. Incorrect. Adding  to both sides of Equation A will not change the value of the equation, nor will it help eliminate

either of the variables—Felix will end up with the rewritten equation . The correct answer is to add
Equation A and Equation B.

C. Incorrect. Multiplying Equation A by 5 yields , which does not help Felix eliminate any of the
variables in the system. Felix may notice that now both equations have a constant of 25, but subtracting one from
another is not an efficient way of solving this problem. Instead, it would create another equation where both variables
are present. The correct answer is to add Equation A and Equation B.

D. Incorrect. Multiplying Equation B by -1 yields , which does not help Felix eliminate any of the
variables in the system. Felix may notice that now both equations have a term of , but adding them would not
eliminate them, it would give him a . The correct answer is to add Equation A and Equation B.

Special Situations

Just as with the substitution method, the elimination method will sometimes eliminate both variables, and you end up with either a
true statement or a false statement. Recall that a false statement means that there is no solution.

Let’s look at an example.

Solve for  and .

Solution

Add the equations to eliminate the x-term.

There is no solution.

Graphing these lines shows that they are parallel lines and as such do not share any point in common, verifying that there is no
solution.

 Exercise

 x  y

 7y −4x = 5

 3y +4x = 25

 4x

 4x   −4x  10y = 30

 y

 4x

 7y = 5 +4x

 35y −20x = 25

  −3y −4x = −25

  −4x

  −8x

 Example

 x  y

 
−x −y = −4

x +y = 2

 

−x − y

x + y

0

=

=

=

−4

2

−2
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If both variables are eliminated and you are left with a true statement, this indicates that there are an infinite number of ordered
pairs that satisfy both of the equations. In fact, the equations are the same line.

Solve for  and .

Solution

Add the equations to eliminate the x-term.

There are an infinite number of solutions.

Graphing these two equations will help to illustrate what is happening.

Solving Application Problems Using the Elimination Method

The elimination method can be applied to solving systems of equations that model real situations. Two examples of using the
elimination method in problem solving are shown below.

 Example

 x  y

 
x +y

−x −y

=

=

2

−2

 

x + y

−x − y

0

=

=

=

2

−2

0
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The sum of two numbers is 10. Their difference is 6. What are the two numbers?

Solution

Write a system of equations to model the situation.
=one number
=the other number

Add the equations to eliminate the y-term and then solve for .

Substitute the value for  into one of the original equations to
find .

TRUE TRUE

Check your answer by substituting  and  into the
original system.
The answers check.

The numbers are 8 and 2.

A theater sold 800 tickets for Friday night’s performance. One child ticket costs $4.50 and one adult ticket costs $6.00.
The total amount collected was $4,500. How many of each type of ticket were sold?

Solution

The total number of tickets sold is .

The amount of money collected is 

System of equations:

Write a system of equations to model the ticket sale situation.
=number of adult tickets sold
=number of child tickets sold

Use multiplication to re-write the first equation.

Add the opposite of the second equation to eliminate a term and
solve for .

Substitute 200 in for  in one of the original equations.

 Example

 
x + y

x − y

=

=

10

6
 x

 y

 

x + y

+ x − y

2x

x

=

=

=

=

10

6

16

8

 x

 

x + y

8 + y

y

=

=

=

10

10

2

 x

 y

 

x + y = 10

8 + 2 = 10

10 = 10

 

x − y = 6

8 − 2 = 6

6 = 6
 x = 8  y = 2

 Example

 800

 a + c = 800

 $4, 500

 6a + 4.5c = 4, 500

 a + c = 800

 6a + 4.5c = 4, 500

 a

 c

 
6(a + c) = 6(800)

6a + 4.5c = 4, 500

 
6a + 6c = 4, 800

6a + 4.5c = 4, 500

 

6a + 6c

−6a − 4.5c

1.5c

=

=

=

4, 800

−4, 500

300

 c = 200

 c

 

a + 200

−200

a

=

=

800

−200

600

 c
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TRUE TRUE

Check your answer by substituting  and  into
the original system.
The answers check.

600 adult tickets and 200 child tickets were sold.

Summary
Combining equations is a powerful tool for solving a system of equations. Adding or subtracting two equations in order to
eliminate a common variable is called the elimination (or addition) method. Once one variable is eliminated, it becomes much
easier to solve for the other one. Multiplication can be used to set up matching terms in equations before they are combined. When
using multiplication in the elimination method, it is important to multiply all the terms on both sides of the equation—not just the
one term you are trying to eliminate.

Solve a system of equations when no multiplication is necessary to eliminate a variable.
Solve a system of equations when multiplication is necessary to eliminate a variable.
Solve application problems that require the use of this method.
Recognize systems that have no solution or an infinite number of solutions.

Introduction
Equations can have more than one or two variables. You are going to look at equations with three variables. Equations with one
variable graph on a line. Equations with two variables graph on a plane. Equations with three variables graph in a 3-dimensional
space.

Equations with one variable require only one equation to have a unique (one) solution. Equations with two variables require two
equations to have a unique solution (one ordered pair). So it should not be a surprise that equations with three variables require a
system of three equations to have a unique solution (one ordered triplet).

Solving A System of Three Variables

Just as when solving a system of two equations, there are three possible outcomes for the solution of a system of three variables.
Let’s look at this visually, although you will not be graphing these equations.

Case 1: There is one solution. In order for three equations with three variables to have one solution, the planes must intersect in a
single point.

Case 2: There is no solution. The three planes do not have any points in common. (Note that two of the equations may have points
in common with each other, but not all three.) Below are examples of some of the ways this can happen.

 
a + c

600 + 200

800

= 800
= 800

= 800

 

6a + 4.5c = 4, 500

6(600) + 4.5(200) = 4, 500

3, 600 + 900 = 4, 500

4500 = 4, 500

 a = 600  c = 200

 Learning Objectives
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Case 3: There are an infinite number of solutions. This occurs when the three planes intersect in a line. And this can also occur
when the three equations graph as the same plane.

Let’s start by looking at Case 1, where the system has a unique (one) solution. This is the case that you are usually most interested
in.

Here is a system of linear equations. There are three variables and three equations.

You know how to solve a system with two equations and two variables. For the first step, use the elimination method to remove one
of the variables. In this case,  can be eliminated by adding the first and second equations.

To solve the system, though, you need two equations using two variables. Adding the first and third equations in the original system
will also give an equation with  and  but not .

Now you have a system of two equations and two variables.

Solve the system using elimination again. In this case, you can eliminate  by adding the opposite of the second equation:

Solve the resulting equation for the remaining variable.

Now you use one of the equations in the two-variable system to find .

 

3x +4y −z = 8

5x −2y +z = 4

2x −2y +z = 1

 z

 

3x +4y −z

5x −2y +z

8x +2y       

=   8

=   4

= 12

 x  y  z

 

3x +4y −z = 8

2x −2y +z = 1

5x +2y    = 9

 
8x +2y = 12

5x +2y   = 9

 y

 

8x +   2y

−5x +−2y

3x            

=

=

=

12

−9

3

 
3x = 3

x = 1

 y
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Finally, use any equation from the first system, along with the values already found, to solve for the last variable.

Be sure to check your answer. With this many steps, there are a lot of places to make a simple error!

Since , , and  is a solution for all three equations, it’s the solution for the system of equations. Just as two
values can be written as an ordered pair, three values can be written as an ordered triplet: .

1. Choose two equations and use them to eliminate one variable.
2. Choose another pair of equations and use them to eliminate the same variable.
3. Use the resulting pair of equations from steps 1 and 2 to eliminate one of the two remaining variables.
4. Solve the final equation for the remaining variable.
5. Find the value of the second variable. Do this by using one of the resulting equations from steps 1 and 2 and the value of

the found variable from step 4.
6. Find the value of the third variable. Do this by using one of the original equations and the values of the found variables

from steps 4 and 5.
7. Check your answer in all three equations!

 

5x +2y = 9

5(1) +2y = 9

5 +2y = 9

2y = 4

y = 2

 

2x −2y +z = 1

2(1) −2(2) +z = 1

2 −4 +z = 1

−2 +z = 1

z = 3

 

3x +4y −z = 8

3(1) +4(2) −3 = 8

3 +8 −3 = 8

11 −3 = 8

8 = 8

 TRUE 

 

5x −2y +z = 4

5(1) −2(2) +3 = 4

5 −4 +3 = 4

1 +3 = 4

4 = 4

 TRUE 

 

2x −2y +z = 1

2(1) −2(2) +3 = 1

2 −4 +3 = 1

−2 +3 = 1

1 = 1

 TRUE 

 x = 1  y = 2  z = 3

 Solving a system of three variables
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Solve for , , and .

Solution

Step 1: Choose two equations and eliminate a variable. The first
two equations can be added to eliminate .

Step 2: The third equation has no  variable, so there’s nothing
to eliminate! You have a system of two equations and two
variables.

Step 3: Eliminate a second variable. These equations can be
added to eliminate .

Step 4: Solve the resulting equation for the remaining variable.

Step 5: Use that value and one of the equations from the system
in step 3 that involves just two variables, one of which was 
that you already know. Solve for the second variable.

Step 6: Use the two found values and one of the original
equations that had all three variables to solve for the third
variable.

Step 7: Check your answer.

The solution is .

As with systems of two equations with two variables, you may need to add the opposite of one of the equations or even multiply
one of the equations before adding in order to eliminate one of the variables.

 Example

 f  g  h

 

f +g +h

f −h

−2f +g

=

=

=

13

−2

3

 

f + g + h

f        − h

2f         + g

=

=

=

13

−2

11
 h

 
2f + g

−2f + g

=

=

11

3

 h

 

2f +  g

−2f +  g

2g

=

=

=

11

3

14
 f

 
2g = 14

g = 7

 

2f + g

2f + 7

2f       

f       

=

=

=

=

11

11

4

2

 g

 

f + g + h = 13

2 + 7 + h = 13

9 + h = 13

h =   4

 

f + g + h = 13

2 + 7 + 4 = 13

9 + 4 = 13

13 = 13

 TRUE 

 

f − h = −2

2 − 4 = −2

−2 = −2

 TRUE 

 

−2f + g = 3

−2(2) + 7 = 3

−4 + 7 = 3

3 = 3

 TRUE 

 (f , g, h) = (2, 7, 4)
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Solve for , , and .

Solution

Step 1: First, choose two equations and eliminate a variable.
Multiply the second equation by -1, and then add it to the first
equation. This will eliminate .

Step 2: Next, combine the third equation and one of the first two
to eliminate  again. However, the third equation has a
coefficient of -4 on  while the coefficients in the first two
equations are both 1. So, multiply the second equation by 4 and
add.

Step 3: Eliminate a second variable using the equations from
steps 1 and 2. Again, they cannot be added as they are. Look at
the coefficients on . If you multiply the equation from step 1
by -3, the  terms will have the same coefficient.

Multiply and then add. Be careful of the signs!

Step 4: Solve the resulting equation for the remaining variable.

Step 5: Use that value and one of the equations from the system
in step 3, that involves just two variables, one of which was .
Solve for the second variable.

Step 6: Use the two found values and one of the original
equations to solve for the third variable.

 Example

 x  y  z

 

3x −2y +  z =  12

x +3y +  z = −4

2x +2y −4z =    6

 
3x − 2y + z 

−1(x + 3y + z)

=

=

12

−1(−4)
 z

 
2x + 2y − 4z

4(x + 3y + z)

=

=

6

4(−4)

 

2x +   2y − 4z

4x + 12y + 4z

6x + 14y         

=

=

=

6

−16

−10

 z

 z

 
2x −   5y

6x + 14y

=

=

16

−10  x

 x

 
−3(2x − 5y) = −3(16)

6x + 14y = −10

 

−6x+

6x+

15y =

14y =

29y =

−48

−10

−58

 
29y

y

=

=

−58

−2

 

2x − 5y = 16

2x − 5(−2) = 16

2x + 10 = 16

2x = 6

x = 3

 y

 

x + 3y + z = −4

3 + 3(−2) + z = −4

3 + (−6) + z = −4

−3 + z = −4

z = −1
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Step 7: Check your answer.

The solution is .

These systems can be helpful for solving real-world problems.

Andrea sells photographs at art fairs. She prices the photos according to size: small photos cost $10, medium photos
cost $15, and large photos cost $40. She usually sells as many small photos as medium and large photos combined. She
also sells twice as many medium photos as large. A booth at the art fair costs $300.

If her sales go as usual, how many of each size photo must she sell to pay for the booth?

Solution

=number of small photos sold
=number of medium photos sold

=number of large photos sold
=money received for small photos

=money received for medium photos
=money received for large photos

To set up the system, first choose the variables. In this case the
unknown values are the number of small, medium, and large
photos.
The total of her sales must be $300 to pay for the booth.

The number of small photos is the same as the total of medium
and large photos.
She sells twice as many medium photos as large photos.

To make things easier, rewrite the equations to be in the same
format, with all variables on the left side of the equal sign and
only a constant number on the right.
Now solve the system.

Step 1: First choose two equations and eliminate a variable.
Since one equation has no  variable, it may be helpful to use
the other two equations and eliminate the  variable from them.

 

3x − 2y + z = 12

3(3) − 2(−2) + (−1) = 12

9 + 4 − 1 = 12

13 − 1 = 12

12 = 12

 TRUE 

 

x + 3y + z = −4

3 + 3(−2) + (−1) = −4

3 + (−6) + (−1) = −4

−3 + (−1) = −4

−4 = −4

 TRUE 

 

2x + 2y − 4z = 6

2(3) + 2(−2) − 4(−1) = 6

6 + (−4) + 4 = 6

2 + 4 = 6

6 = 6

 TRUE 

 (x, y, z) = (3, −2, −1)

 Example

 S

 M

 L

 10S

 15M

 40L

 10S + 15M + 40L = 300

 S = M + L

 M = 2L

 

10S + 15M + 40L = 300

S − M − L = 0

M − 2L = 0

 
10S + 15M + 40L

S −     M − L

=

=

300

0

 
10S + 15M + 40L 

−10(S −     M −    L)

=

=

300

10(0)

 S

 S
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Multiply the second equation by -10 and add.

Step 2: The second equation for our two-variable system will be
the remaining equation (that has no  variable).

Step 3: Eliminate a second variable using the equations from
steps 1 and 2.

While you could multiply the second equation by 25 to eliminate
, the numbers will be easier to work with if you divide the

first equation by 25. Don’t forget to be careful of the signs!

Step 4: Solve the resulting equation for the remaining variable.

Step 5: Use that value and one of the equations containing just

two variables, one of those variables being , that you
already know, to solve for the second
variable.t’s best to use one of the original equations—in case
an error was made in multiplication.

Step 6: Use the two found values and one of the original
equations to solve for the third variable.
You can even use one of the equations before you rewrote it for
the system.

She usually sells as many small photos as medium and large
photos combined.
Medium and large photos combined , which is
the number of small photos.

 

She also sells twice as many medium photos as large.
Medium photos is 6, which is twice the number of large photos
(3).

Step 7: Check your answer.
With application problems, it’s sometimes easier (and better) to
use the original wording of the problem rather than the equations
you write.

A booth at the art fair costs $300. Andrea receives $10(9) or
$90 for the 9 small photos, $15(6) or $90 for the 6 medium
photos, and $40(3) or $120 for the large photos.

.

 

If Andrea sells small photos, medium photos, and large photos, she’ll receive exactly the amount of money needed to pay for
the booth.

In the solution to this system, what is the value of ?

A. 5
B. 16

 

10S + 15M + 40L

−10S + 10M + 10L

25M + 50L

=

=

=

300

0

300

 M − 2L = 0
 S

 
25M + 50L

M −   2L

=

=

300

0

 

M + 2L

M − 2L

2M          

= 12

=   0

= 12

 L

 
2M = 12

M = 6

 

M

6

3

= 2L

= 2L

= L

 L

 

S = M + L

S = 6 + 3

S = 9

  = 6 + 3 = 9

 $90 + $90 + $120 = $300

 Exercise

 x

 

7x −4y +3z = 28

3x +3y −  z = 19

3x +2y +  z = 16
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C. -31
D. 1

Answer
A. Correct. Eliminate  by adding the last two equations together to get . Now, multiply the second

equation by 3 and add it to the first equation to get . This creates a smaller system of two equations and
two variables:  and . Multiply  by  to create  and
now add this to . This eliminates , giving , so .

B. Incorrect. Eliminate  by adding the last two equations together, to get . Now, multiply the second
equation by 3 and add it to the first equation to get . This creates a smaller system of two equations and
two variables:  and . Multiply  by  to create  and
now add this to . This eliminates , giving , so .

C. Incorrect. Eliminate  by adding the last two equations together, to get . Now, multiply the second
equation by 3 and add it to the first equation to get . This creates a smaller system of two equations and
two variables:  and . Multiply  by  to create  and
now add this to . This eliminates , giving , so .

D. Incorrect. Eliminate  by adding the last two equations together, to get . Now, multiply the second
equation by 3 and add it to the first equation to get . This creates a smaller system of two equations and
two variables:  and . Multiply  by  to create  and
now add this to . This eliminates , giving , so .

Systems with No Solutions or an Infinite Number of Solutions

Now let’s look at Case 2 (no solution) and Case 3 (an infinite number of solutions).

Since you will not graph these equations, as it is difficult to graph in three dimensions on a 2-dimensional sheet of paper, you will
look at what happens when you try to solve systems with no solutions or an infinite number of solutions.

Let’s look at a system that has no solutions.

Suppose you wanted to solve this system, and you started with the last two equations. Multiply the third equation by 4 and add it to
the second equation to eliminate .

In this case, the result is a false statement. This means there are no solutions to the two equations and therefore there can be no
solutions for the system of three equations. If this occurs for any two of the three equations, then there is no solution for the system
of equations.

Now let’s look at a system that has an infinite number of solutions.

For the first step, you would choose two equations and combine them to eliminate a variable. You can eliminate  by multiplying
the first equation by 3 and adding to the second equation.

 z  6x +5y = 35

 16x +5y = 85

 6x +5y = 35  16x +5y = 85  6x +5y = 35   −1   −6x −5y = −35

 16x +5y = 85  y  10x = 50  x = 5

 z  6x +5y = 35

 16x +5y = 85

 6x +5y = 35  16x +5y = 85  6x +5y = 35   −1   −6x −5y = −35

 16x +5y = 85  y  10x = 50  x = 5

 z  6x +5y = 35

 16x +5y = 85

 6x +5y = 35  16x +5y = 85  6x +5y = 35   −1   −6x −5y = −35

 16x +5y = 85  y  10x = 50  x = 5

 z  6x +5y = 35

 16x +5y = 85

 6x +5y = 35  16x +5y = 85  6x +5y = 35   −1   −6x −5y = −35

 16x +5y = 85  y  10x = 50  x = 5

 

5x −2y +  z =    3

4x −4y −8z =    2

−x +  y +2z = −3

 x

 
4x −4y −8z  

4(−x +  y +2z)

=         2

= 4(−3)

 

4x −4y −8z =      2

−4x +4y +8z = −12

0 = −10

 

x −2y +  z =    3

−3x +6y −3z = −9

4x −8y +4z =  12

 x
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Notice that when the two equations are added, all variables are eliminated! The final equation is a true statement: .

When this happens, it’s because the two equations are equivalent. These two equations would graph as the same plane. But in order
for the solution to the system of three equations to be infinite, you need to continue to check with the third equation.

Since the first two equations are equivalent, the system of equations could be written with only two equations. Continue as before.
Multiply the first equation by -4 and add the third equation.

Again, the final equation is the true statement . So the third equation is the same plane as the first two. Now you can confirm
that there are an infinite number of solutions—all of the points that are on the plane that these three equations each describe.

This is one type of situation where there are an infinite number of solutions. There are others, which you will not examine at this
time.

How many solutions does the following system of equations have?

Solution

Multiply the first equation by -2 and then add that resulting
equation to the second equation.

 is a true statement, which leads us to believe that you
may have an infinite number of solutions. This outcome
indicates that the first pair of equations is really the same
equation. The values of , , and  that will make the first
equation work will also work for the second.

Now add the third equation with the first.

Again, the result is another true statement. The first and third
equations are the same. So you have three equations that will all
graph as the same plane.

There are an infinite number of solutions to this system.

 
3(x −2y +z) =  3(3)

−3x +6y −3z =   −9

 

3x −6y +3z =    9

−3x +6y −3z = −9

0 =    0

 0 = 0

 4x −8y +4z = −12

 

−4x +8y −4z =

4x −8y +4z =

0 =

−12

12

0

 0 = 0

 Example

 

x +y +z = 2

2x +2y +2z = 4

−3x −3y −3z = −6

 
−2(x + y + z) = −2(2)

2x + 2y + 2z =         4

 

−2x − 2y − 2z = −4

2x + 2y + 2z =    4

0 =    0

 0 = 0

 x  y  z

 
3(x + y + z) =  3(2)

−3x − 3y − 3z =   − 6

 

3x + 3y + 3z =    6

−3x − 3y − 3z = −6

0 =    0
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Solve the following system of equations.

Solution

Compare the coefficients on the  terms. Multiply the first
equation by -4 and then add that resulting equation to the second
equation.

Notice that a false statement is produced: . This means
that there is no solution to this system of equations; you do not
have to complete any further steps.

The system has no solutions.

How many solutions does this system have?

A. No solutions
B. One
C. An infinite number of solutions

Answer
A. Correct. Multiply the last equation by -2 to get . If you add this equation to the first one, you

will get , a false statement. This means that this system has no solutions.
B. Incorrect. If you multiply the last equation by -2 and then add it to the first equation, you get , a false

statement. This system has no solutions.
C. Incorrect. If you multiply the last equation by -2 and then add it to the first equation, you get , a false

statement. This system has no solutions.

Summary

Combining equations is a powerful tool for solving a system of equations, including systems with three equations and three
variables. Sometimes, you must multiply one of the equations before you add so that you can eliminate a variable. You continue the
process of combining equation and eliminating variables until you have found the value of all of the variables. Occasionally this
process leads to all of the variables being eliminated (eliminated not solved for). When all the variables are eliminated by
combining equations, if it leads to a false statement, then the system will have no solutions. When all the variables are eliminated
by combining equations, if one of the resulting equations is true, the system may have an infinite number of solutions. However, all
the equations must be compared and found to true for there to be an infinite number of solutions, not just two of the three
equations.

This page titled 2.7.4: Solving a System of Linear Equations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by The NROC Project via source content that was edited to the style and standards of the LibreTexts platform.

14.2.1: The Substitution Method by The NROC Project is licensed CC BY-NC-SA 4.0. Original source:
https://content.nroc.org/DevelopmentalMath.HTML5/Common/toc/toc_en.html.

 Example

 

x −y −2z = 4

4x −4y −z = 2

−x +y +2z = −3

 
−4(x − y − 2z) = −4(4)

4x − 4y − 8z =         2

 x

 

−4x + 4y + 8z = −16

4x − 4y − 8z =      2

0 = −14

 0 = −14

 Exercise

 

6x +4y +2z = 32

3x −3y −  z = 19

3x +2y +  z = 32

  −6x −4y −2z = −64

 0 = −32

 0 = −32

 0 = −32
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14.2.2: The Elimination Method by The NROC Project is licensed CC BY-NC-SA 4.0. Original source:
https://content.nroc.org/DevelopmentalMath.HTML5/Common/toc/toc_en.html.
14.3.1: Solving Systems of Three Variables by The NROC Project is licensed CC BY-NC-SA 4.0. Original source:
https://content.nroc.org/DevelopmentalMath.HTML5/Common/toc/toc_en.html.
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2.7.5: Solving a System of Linear Equations with Cramer's Rule

Evaluate 2 × 2 determinants.
Use Cramer’s Rule to solve a system of equations in two variables.
Evaluate 3 × 3 determinants.
Use Cramer’s Rule to solve a system of three equations in three variables.
Know the properties of determinants.

We have learned how to solve systems of equations in two variables and three variables, and by multiple methods: substitution,
addition, Gaussian elimination, using the inverse of a matrix, and graphing. Some of these methods are easier to apply than others
and are more appropriate in certain situations. In this section, we will study two more strategies for solving systems of equations.

Evaluating the Determinant of a 2 × 2 Matrix
A determinant is a real number that can be very useful in mathematics because it has multiple applications, such as calculating area,
volume, and other quantities. Here, we will use determinants to reveal whether a matrix is invertible by using the entries of a square
matrix to determine whether there is a solution to the system of equations. Perhaps one of the more interesting applications,
however, is their use in cryptography. Secure signals or messages are sometimes sent encoded in a matrix. The data can only be
decrypted with an invertible matrix and the determinant. For our purposes, we focus on the determinant as an indication of the
invertibility of the matrix. Calculating the determinant of a matrix involves following the specific patterns that are outlined in this
section.

The determinant of a 2 × 2 matrix, given

is defined as

Notice the change in notation. There are several ways to indicate the determinant, including  and replacing the brackets
in a matrix with straight lines, .

Find the determinant of the given matrix.

Solution

Using Cramer’s Rule to Solve a System of Two Equations in Two Variables

We will now introduce a final method for solving systems of equations that uses determinants. Known as Cramer’s Rule, this
technique dates back to the middle of the 18th century and is named for its innovator, the Swiss mathematician Gabriel Cramer
(1704-1752), who introduced it in 1750 in Introduction à l'Analyse des lignes Courbes algébriques. Cramer’s Rule is a viable and

 Learning Objectives

 FIND THE DETERMINANT OF A 2 × 2 MATRIX

A = [ ]
a

c

b

d

det(A)

|A|

 Example : Finding the Determinant of a  Matrix2.7.5.1 2 × 2

A = [ ]
5

−6

2

3

det(A) =
∣

∣
∣

5

−6

2

3

∣

∣
∣

= 5(3) −(−6)(2)

= 27
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efficient method for finding solutions to systems with an arbitrary number of unknowns, provided that we have the same number of
equations as unknowns.

Cramer’s Rule will give us the unique solution to a system of equations, if it exists. However, if the system has no solution or an
infinite number of solutions, this will be indicated by a determinant of zero. To find out if the system is inconsistent or dependent,
another method, such as elimination, will have to be used.

To understand Cramer’s Rule, let’s look closely at how we solve systems of linear equations using basic row operations. Consider a
system of two equations in two variables.

We eliminate one variable using row operations and solve for the other. Say that we wish to solve for . If Equation  is
multiplied by the opposite of the coefficient of  in Equation , Equation  is multiplied by the coefficient of  in
Equation , and we add the two equations, the variable  will be eliminated.

Now, solve for .

Similarly, to solve for ,we will eliminate .

Solving for  gives

Notice that the denominator for both  and  is the determinant of the coefficient matrix.

We can use these formulas to solve for  and , but Cramer’s Rule also introduces new notation:

:determinant of the coefficient matrix
:determinant of the numerator in the solution of 

:determinant of the numerator in the solution of 

x+ ya1 b1

x+ ya2 b2

= (1)c1

= (2)c2

(2.7.5.1)

(2.7.5.2)

x 2.7.5.2

y 2.7.5.1 2.7.5.1 y

2.7.5.2 y

−

x+ y =b2a1 b2b1 b2c1

x− y = −b1a2 b1b2 b1c2
– –––––––––––––––––––––

x− x = −b2a1 b1a2 b2c1 b1c2

Multiply   by R1 b2

Multiply   by  −R2 b1

x

x− xb2a1 b1a2

x( − )b2a1 b1a2

x

= −b2c1 b1c2

= −b2c1 b1c2

= =
−b2c1 b1c2

−b2a1 b1a2

[ ]
c1

c2

b1

b2

[ ]
a1

a2

b1

b2

y x

−

x+ y =a2a1 a2b1 a2c1

x− y = −a1a2 a1b2 a1c2
– ––––––––––––––––––––––

y− y = −a2b1 a1b2 a2c1 a1c2

Multiply   by R1 a2

Multiply   by  −R2 a1

y

y− ya2b1 a1b2

y( − )a2b1 a1b2

y

= −a2c1 a1c2

= −a2c1 a1c2

= = =
−a2c1 a1c2

−a2b1 a1b2

−a1c2 a2c1

−a1b2 a2b1

[ ]
a1

a2

c1

c2

[ ]
a1

a2

b1

b2

x y

x y

D

Dx x

x =
Dx

D
(2.7.5.3)

Dy y

y =
Dy

D
(2.7.5.4)
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The key to Cramer’s Rule is replacing the variable column of interest with the constant column and calculating the determinants.
We can then express  and  as a quotient of two determinants.

Cramer’s Rule is a method that uses determinants to solve systems of equations that have the same number of equations as
variables.

Consider a system of two linear equations in two variables.

The solution using Cramer’s Rule is given as

If we are solving for , the  column is replaced with the constant column. If we are solving for , the  column is replaced
with the constant column.

Solve the following  system using Cramer’s Rule.

Solution

Solve for .

Solve for .

x y

 CRAMER’S RULE FOR  SYSTEMS2 × 2

x+ ya1 b1

x+ ya2 b2

= c1

= c2

x

y

= = ,D ≠ 0
Dx

D

[ ]
c1

c2

b1

b2

[ ]
a1

a2

b1

b2

= = ,D ≠ 0
Dy

D

[ ]
a1

a2

c1

c2

[ ]
a1

a2

b1

b2

(2.7.5.5)

(2.7.5.6)

x x y y

 Example : Using Cramer’s Rule to Solve a  System2.7.5.2 2 × 2

2 ×2

12x+3y

2x−3y

= 15

= 13

x

x =
Dx

D

=

[ ]
15

13

3

−3

[ ]
12

2

3

−3

=
−45 −39

−36 −6

=
−84

−42
= 2

y
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The solution is .

Use Cramer’s Rule to solve the  system of equations.

Answer

Evaluating the Determinant of a 3 × 3 Matrix
Finding the determinant of a 2×2 matrix is straightforward, but finding the determinant of a 3×3 matrix is more complicated. One
method is to augment the 3×3 matrix with a repetition of the first two columns, giving a 3×5 matrix. Then we calculate the sum of
the products of entries down each of the three diagonals (upper left to lower right), and subtract the products of entries up each of
the three diagonals (lower left to upper right). This is more easily understood with a visual and an example.

Find the determinant of the 3×3 matrix.

1. Augment  with the first two columns.

2. From upper left to lower right: Multiply the entries down the first diagonal. Add the result to the product of entries down the
second diagonal. Add this result to the product of the entries down the third diagonal.

3. From lower left to upper right: Subtract the product of entries up the first diagonal. From this result subtract the product of
entries up the second diagonal. From this result, subtract the product of entries up the third diagonal.

The algebra is as follows:

y =
Dy

D

=

[ ]
12

2

15

13

[ ]
12

2

3

−3

=
156 −30

−36 −6

= −
126

42
= −3

(2, −3)

 Exercise 2.7.5.1

2 ×2

x+2y

−2x+y

= −11

= −13

(3, −7)

A =
⎡

⎣
⎢

a1

a2

a3

b1

b2

b3

c1

c2

c3

⎤

⎦
⎥

A

det(A) =

∣

∣

∣
∣
∣

a1

a2

a3

b1

b2

b3

c1

c2

c3

a1

a2

a3

b1

b2

b3

∣

∣

∣
∣
∣

|A| = + + − − −a1b2c3 b1c2a3 c1a2b3 a3b2c1 b3c2a1 c3a2b1
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Find the determinant of the  matrix given

Solution

Augment the matrix with the first two columns and then follow the formula. Thus,

Find the determinant of the 3 × 3 matrix.

Answer

No, this method only works for 2 × 2 and 3 × 3 matrices. For larger matrices it is best to use a graphing utility or computer
software.

Using Cramer’s Rule to Solve a System of Three Equations in Three Variables

Now that we can find the determinant of a  matrix, we can apply Cramer’s Rule to solve a system of three equations in three
variables. Cramer’s Rule is straightforward, following a pattern consistent with Cramer’s Rule for  matrices. As the order of
the matrix increases to , however, there are many more calculations required.

When we calculate the determinant to be zero, Cramer’s Rule gives no indication as to whether the system has no solution or an
infinite number of solutions. To find out, we have to perform elimination on the system.

Consider a  system of equations.

, , , 

where

 Example : Finding the Determinant of a 3 × 3 Matrix2.7.5.3

3 ×3

A =
⎡

⎣
⎢

0

3

4

2

−1

0

1

1

1

⎤

⎦
⎥

|A| =

∣

∣

∣
∣
∣

0

3

4

2

−1

0

1

1

1

0

3

4

2

−1

0

∣

∣

∣
∣
∣

= 0(−1)(1) +2(1)(4) +1(3)(0) −4(−1)(1) −0(1)(0) −1(3)(2)

= 0 +8 +0 +4 −0 −6

= 6

 Exercise 2.7.5.2

det(A) =

∣

∣

∣
∣

1

1

1

−3

1

−2

7

1

3

∣

∣

∣
∣

−10

 Q&A: Can we use the same method to find the determinant of a larger matrix?

3 ×3

2 ×2

3 ×3

3 ×3

x+ y+ za1 b1 c1

x+ y+ za2 b2 c2

x+ y+ za3 b3 c3

= d1

= d2

= d3

(2.7.5.7)

(2.7.5.8)

(2.7.5.9)

x =
Dx

D
y =

Dy

D
z =

Dz

D
D ≠ 0

D = , = , = , =

∣

∣

∣
∣

a1

a2

a3

b1

b2

b3

c1

c2

c3

∣

∣

∣
∣ Dx

∣

∣

∣
∣

d1

d2

d3

b1

b2

b3

c1

c2

c3

∣

∣

∣
∣ Dy

∣

∣

∣
∣

a1

a2

a3

d1

d2

d3

c1

c2

c3

∣

∣

∣
∣ Dz

∣

∣

∣
∣

a1

a2

a3

b1

b2

b3

d1

d2

d3

∣

∣

∣
∣ (2.7.5.10)
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If we are writing the determinant ,we replace the  column with the constant column. If we are writing the determinant ,we
replace they y column with the constant column. If we are writing the determinant ,we replace the  column with the constant
column. Always check the answer.

Find the solution to the given  system using Cramer’s Rule.

Solution

Use Cramer’s Rule.

, , , 

Then,

The solution is .

Use Cramer’s Rule to solve the  matrix.

Answer

Solve the system of equations using Cramer’s Rule.

Solution

We begin by finding the determinants , ,and .

We know that a determinant of zero means that either the system has no solution or it has an infinite number of solutions. To
see which one, we use the process of elimination. Our goal is to eliminate one of the variables.

1. Multiply Equation  by .

Dx x Dy

Dz z

 Example : Solving a  System Using Cramer’s Rule2.7.5.4 3 × 3

3 ×3

x+y−z

3x−2y+z

x+3y−2z

= 6

= −5

= 14

D =

∣

∣

∣
∣

1

3

1

1

−2

3

−1

1

−2

∣

∣

∣
∣

=Dx

∣

∣

∣
∣

6

−5

14

1

−2

3

−1

1

−2

∣

∣

∣
∣

=Dy

∣

∣

∣
∣

1

3

1

6

−5

14

−1

1

−2

∣

∣

∣
∣

=Dz

∣

∣

∣
∣

1

3

1

1

−2

3

6

−5

14

∣

∣

∣
∣

x

y

z

=
Dx

D

=
Dy

D

=
Dz

D

=
−3

−3

=
−9

−3

=
6

−3

= 1

= 3

= −2

(1, 3, −2)

 Exercise 2.7.5.3

3 ×3

x−3y+7z

x+y+z

x−2y+3z

= 13

= 1

= 4

(−2, , )
3

5

12

5

 Example : Using Cramer’s Rule to Solve an Inconsistent System2.7.5.5A

3x−2y

6x−4y

= 4

= 0

(2.7.5.11)

(2.7.5.12)

D Dx Dy

D = = 3(−4) −6(−2) = 0
∣

∣
∣
3

6

−2

−4

∣

∣
∣

2.7.5.11 −2
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2. Add the result to Equation .

We obtain the equation , which is false. Therefore, the system has no solution. Graphing the system reveals two
parallel lines. See Figure .

Figure 

Solve the system with an infinite number of solutions.

Solution

Let’s find the determinant first. Set up a matrix augmented by the first two columns.

Then,

As the determinant equals zero, there is either no solution or an infinite number of solutions. We have to perform elimination to
find out.

1. Multiply Equation  by  and add the result to Equation :

2. Obtaining an answer of , a statement that is always true, means that the system has an infinite number of solutions.
Graphing the system, we can see that two of the planes are the same and they both intersect the third plane on a line. See
Figure .

2.7.5.12

−6x+4y = −8

6x−4y = 0
– –––––––––––

0 = −8

0 = −8

2.7.5.1

2.7.5.1

 Example : Use Cramer’s Rule to Solve a Dependent System2.7.5.5B

x−2y+3z

3x+y−2z

2x−4y+6z

= 0

= 0

= 0

(2.7.5.13)

(2.7.5.14)

(2.7.5.15)

∣

∣

∣
∣
∣

1

3

2

−2

1

−4

3

−2

6

1

3

2

−2

1

−4

∣

∣

∣
∣
∣

1(1)(6) +(−2)(−2)(2) +3(3)(−4) −2(1)(3) −(−4)(−2)(1) −6(3)(−2) = 0

2.7.5.13 −2 2.7.5.15

−2x+4y−6x = 0

2x−4y+6z = 0
– ––––––––––––––––

0 = 0

0 = 0

2.7.5.2
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Figure 

Understanding Properties of Determinants
There are many properties of determinants. Listed here are some properties that may be helpful in calculating the determinant of a
matrix.

1. If the matrix is in upper triangular form, the determinant equals the product of entries down the main diagonal.
2. When two rows are interchanged, the determinant changes sign.
3. If either two rows or two columns are identical, the determinant equals zero.
4. If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.
5. The determinant of an inverse matrix  is the reciprocal of the determinant of the matrix .
6. If any row or column is multiplied by a constant, the determinant is multiplied by the same factor.

Illustrate each of the properties of determinants.

Solution

Property 1 states that if the matrix is in upper triangular form, the determinant is the product of the entries down the main
diagonal.

Augment  with the first two columns.

Then

Property 2 states that interchanging rows changes the sign. Given

2.7.5.2

 PROPERTIES OF DETERMINANTS

A−1 A

 Example : Illustrating Properties of Determinants2.7.5.6

A =
⎡

⎣
⎢

1

0

0

2

2

0

3

1

−1

⎤

⎦
⎥

A

A =
⎡

⎣
⎢⎢

1

0

0

2

2

0

3

1

−1

1

0

0

2

2

0

⎤

⎦
⎥⎥

det(A) = 1(2)(−1) +2(1)(0) +3(0)(0) −0(2)(3) −0(1)(1) +1(0)(2)

= −2

A

det(A)

= [ ]
−1

4

5

−3

= (−1)(−3) −(4)(5)

= 3 −20

= −17
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Property 3 states that if two rows or two columns are identical, the determinant equals zero.

Property 4 states that if a row or column equals zero, the determinant equals zero. Thus,

Property 5 states that the determinant of an inverse matrix  is the reciprocal of the determinant . Thus,

Property 6 states that if any row or column of a matrix is multiplied by a constant, the determinant is multiplied by the same
factor. Thus,

Find the solution to the given  system.

B

det(B)

= [ ]
4

−1

−3

5

= (4)(5) −(−1)(−3)

= 20 −3

= 17

A

det(A)

=
⎡

⎣
⎢⎢

1

2

−1

2

2

2

2

2

2

1

2

−1

2

2

2

⎤

⎦
⎥⎥

= 1(2)(2) +2(2)(−1) +2(2)(2) +1(2)(2) −2(2)(1) −2(2)(2)

= 4 −4 +8 +4 −4 −8

= 0

A

det(A)

= [ ]
1

0

2

0

= 1(0) −2(0)

= 0

A−1 A

A

det(A)

= [ ]
1

3

2

4

= 1(4) −3(2)

= −2

A−1

det( )A−1

=
⎡

⎣

−2

3

2

1

−
1

2

⎤

⎦

= −2(− )− (1)
1

2

3

2

= −
1

2

A

det(A)

= [ ]
1

3

2

4

= 1(4) −2(3)

= −2

B

det(B)

= [ ]
2(1)

3

2(2)

4

= 2(4) −3(4)

= −4

 Example : Using Cramer’s Rule and Determinant Properties to Solve a System2.7.5.7

3 ×3

2x+4y+4z

3x+7y+7z

x+2y+2z

= 2

= −5

= 4

(2.7.5.16)

(2.7.5.17)

(2.7.5.18)
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Solution

Using Cramer’s Rule, we have

Notice that the second and third columns are identical. According to Property 3, the determinant will be zero, so there is either
no solution or an infinite number of solutions. We have to perform elimination to find out.

1. Multiply Equation  by  and add the result to Equation .

Obtaining a statement that is a contradiction means that the system has no solution.

Access these online resources for additional instruction and practice with Cramer’s Rule.

Solve a System of Two Equations Using Cramer's Rule
Solve a Systems of Three Equations using Cramer's Rule

Key Concepts

The determinant for  is . See Example .

Cramer’s Rule replaces a variable column with the constant column. Solutions are , . See Example .

To find the determinant of a  matrix, augment with the first two columns. Add the three diagonal entries (upper left to
lower right) and subtract the three diagonal entries (lower left to upper right). See Example .
To solve a system of three equations in three variables using Cramer’s Rule, replace a variable column with the constant column

for each desired solution: , , . See Example .

Cramer’s Rule is also useful for finding the solution of a system of equations with no solution or infinite solutions. See Example
 and Example .

Certain properties of determinants are useful for solving problems. For example:
If the matrix is in upper triangular form, the determinant equals the product of entries down the main diagonal.
When two rows are interchanged, the determinant changes sign.
If either two rows or two columns are identical, the determinant equals zero.
If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.
The determinant of an inverse matrix  is the reciprocal of the determinant of the matrix .
If any row or column is multiplied by a constant, the determinant is multiplied by the same factor. See Example  and
Example .

This page titled 2.7.5: Solving a System of Linear Equations with Cramer's Rule is shared under a CC BY 4.0 license and was authored, remixed,
and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

11.8: Solving Systems with Cramer's Rule by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/precalculus.

D =
⎡

⎣
⎢

2

3

1

4

7

2

4

7

2

⎤

⎦
⎥

2.7.5.18 – 2 2.7.5.16

−2x−4y−4x

2x+4y+4z

0

= −8

= 2

= −6

 Media

[ ]
a

c

b

d
ad−bc 2.7.5.1

x =
Dx

D
y =

Dy

D
2.7.5.2

3 ×3

2.7.5.3

x =
Dx

D
y =

Dy

D
z =

Dz

D
2.7.5.4

2.7.5.5 2.7.5.6

A−1 A

2.7.5.7

2.7.5.8
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2.8: Functions

Use functional notation to evaluate a function.
Determine the domain and range of a function.
Draw the graph of a function.
Find the zeros of a function.
Make new functions from two or more given functions.
Describe the symmetry properties of a function.
Determine the conditions for when a function has an inverse.
Use the horizontal line test to recognize when a function is one-to-one.
Find the inverse of a given function.
Draw the graph of an inverse function.

Functions
Given two sets  and  a set with elements that are ordered pairs  where  is an element of  and  is an element of  is a
relation from  to . A relation from  to  defines a relationship between those two sets. A function is a special type of relation
in which each element of the first set is related to exactly one element of the second set. The element of the first set is called the
input; the element of the second set is called the output. Functions are used all the time in mathematics to describe relationships
between two sets. For any function, when we know the input, the output is determined, so we say that the output is a function of the
input. For example, the area of a square is determined by its side length, so we say that the area (the output) is a function of its side
length (the input). The velocity of a ball thrown in the air can be described as a function of the amount of time the ball is in the air.
The cost of mailing a package is a function of the weight of the package. Since functions have so many uses, it is important to have
precise definitions and terminology to study them.

Figure : A function can be visualized as an input/output device

A function  consists of a set of inputs, a set of outputs, and a rule for assigning each input to exactly one output. The set of
inputs is called the domain of the function. The set of outputs is called the range of the function.

Figure : A function maps every element in the domain to exactly one element in the range. Although each input can be sent to
only one output, two different inputs can be sent to the same output.

For example, consider the function , where the domain is the set of all real numbers and the rule is to square the input. Then, the
input  is assigned to the output .

Since every nonnegative real number has a real-value square root, every nonnegative number is an element of the range of this
function. Since there is no real number with a square that is negative, the negative real numbers are not elements of the range. We
conclude that the range is the set of nonnegative real numbers.

 Learning Objectives

A B (x, y) x A y B,
A B A B

2.8.1

 Definition: Functions

f

2.8.2

f

x = 3 = 932
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For a general function  with domain , we often use  to denote the input and  to denote the output associated with . When
doing so, we refer to  as the independent variable and  as the dependent variable, because it depends on . Using function
notation, we write , and we read this equation as “  equals  of  For the squaring function described earlier, we write 

.

Algebraic Formulas
Sometimes we are given a function in an explicit formula. Formulas arise in many applications. For example, the area of a circle of
radius  is given by the formula . When an object is thrown upward from the ground with an initial velocity  ft/s, its
height above the ground from the time it is thrown until it hits the ground is given by the formula . When 
dollars are invested in an account at an annual interest rate  compounded continuously, the amount of money after  years is given
by the formula . Algebraic formulas are important tools to calculate function values. Often we also represent these
functions visually in graph form.

Given an algebraic formula for a function , the graph of  is the set of points , where  is in the domain of  and  is
in the range. To graph a function given by a formula, it is helpful to begin by using the formula to create a table of inputs and
outputs. If the domain of  consists of an infinite number of values, we cannot list all of them, but because listing some of the
inputs and outputs can be very useful, it is often a good way to begin.

When creating a table of inputs and outputs, we typically check to determine whether zero is an output. Those values of  where 
 are called the zeros of a function. For example, the zeros of  are . The zeros determine where the

graph of  intersects the -axis, which gives us more information about the shape of the graph of the function. The graph of a
function may never intersect the -axis, or it may intersect multiple (or even infinitely many) times.

Another point of interest is the  -intercept, if it exists. The -intercept is given by .

Since a function has exactly one output for each input, the graph of a function can have, at most, one -intercept. If  is in the
domain of a function  then  has exactly one -intercept. If  is not in the domain of  then  has no -intercept. Similarly,
for any real number  if  is in the domain of , there is exactly one output  and the line  intersects the graph of 
exactly once. On the other hand, if  is not in the domain of   is not defined and the line  does not intersect the graph of

. This property is summarized in the vertical line test.

Given a function , every vertical line that may be drawn intersects the graph of  no more than once. If any vertical line
intersects a set of points more than once, the set of points does not represent a function.

We can use this test to determine whether a set of plotted points represents the graph of a function (Figure ).

Figure : (a) The set of plotted points represents the graph of a function because every vertical line intersects the set of points,
at most, once. (b) The set of plotted points does not represent the graph of a function because some vertical lines intersect the set of
points more than once.

f D x y x

x y x

y = f(x) y f x. ”
f(x) = x2

r A(r) = πr2 v0

s(t) = −16 + tt2 v0 P

r t

A(t) = P ert

f f (x, f(x)) x f f(x)

f

x

f(x) = 0 f(x) = −4x2 x = ±2
f x

x

y y (0, f(0))

y x = 0
f , f y x = 0 f , f y

c, c f f(c), x = c f

c f , f(c) x = c

f

 Vertical Line Test

f f

2.8.7

2.8.7
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Consider the function 

a. Find all zeros of .
b. Find the -intercept (if any).
c. Sketch a graph of .

Solution

1.To find the zeros, solve . We discover that  has one zero at .

2. The -intercept is given by 

3. Given that  is a linear function of the form  that passes through the points  and , we can
sketch the graph of  (Figure ).

Figure : The function  is a line with -intercept  and -intercept .

Consider the function .

a. Find all zeros of .
b. Find the -intercept (if any).
c. Sketch a graph of .

Solution

1.To find the zeros, solve . This equation implies . Since  for all , this equation
has no solutions, and therefore  has no zeros.

2.The -intercept is given by .

3.To graph this function, we make a table of values. Since we need , we need to choose values of . We
choose values that make the square-root function easy to evaluate.

-3 -2 1

1 2 3

Making use of the table and knowing that, since the function is a square root, the graph of  should be similar to the graph of 
, we sketch the graph (Figure ).

 Example : Finding Zeros and -Intercepts of a Function2.8.3 y

f(x) = −4x +2.

f

y

f

f(x) = −4x +2 = 0 f x = 1/2

y (0, f(0)) = (0, 2).

f f(x) = mx +b (1/2, 0) (0, 2)
f 2.8.8

2.8.8 f(x) = −4x + 2 x (1/2, 0) y (0, 2)

 Example : Using Zeros and -Intercepts to Sketch a Graph2.8.4 y

f(x) = +1x +3
− −−−−

√

f

y

f

+1 = 0x +3
− −−−−

√ = −1x +3
− −−−−

√ ≥ 0x +3
− −−−−

√ x

f

y (0, f(0)) = (0, +1)3
–

√

x +3 ≥ 0 x ≥ −3

x

f(x)

f

y = x−−√ 2.8.9
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Figure : The graph of  has a -intercept but no -intercepts.

Find the zeros of 

Hint

Factor the polynomial.

Answer

If a ball is dropped from a height of 100 ft, its height s at time  is given by the function , where s is
measured in feet and  is measured in seconds. The domain is restricted to the interval  where  is the time when the
ball is dropped and  is the time when the ball hits the ground.

a. Create a table showing the height s(t) when  and . Using the data from the table, determine the
domain for this function. That is, find the time  when the ball hits the ground.

b. Sketch a graph of .

Solution

0 0.5 1 1.5 2 2.5

100 96 84 64 36 0

Since the ball hits the ground when , the domain of this function is the interval .

2.

2.8.9 f(x) = + 1x + 3− −−−−√ y x

 Exercise 2.8.4

f(x) = −5 +6x.x3 x2

x = 0, 2, 3

 Example : Finding the Height of a Free-Falling Object2.8.5

t s(t) = −16 +100t2

t [0, c], t = 0
t = c

t = 0, 0.5, 1, 1.5, 2, 2.5
c

s

t

s(t)

t = 2.5 [0, 2.5]

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76300?pdf


2.8.5 https://phys.libretexts.org/@go/page/76300

Figure , the values of  are getting smaller as  is getting larger. A function with this property is said to be decreasing.
On the other hand, for the function  graphed in Figure , the values of  are getting larger as the
values of  are getting larger. A function with this property is said to be increasing. It is important to note, however, that a
function can be increasing on some interval or intervals and decreasing over a different interval or intervals. For example,
using our temperature function plotted above, we can see that the function is decreasing on the interval , increasing on the
interval , and then decreasing on the interval . We make the idea of a function increasing or decreasing over a
particular interval more precise in the next definition.

We say that a function  is increasing on the interval  if for all 

 when 

We say  is strictly increasing on the interval  if for all 

 when 

We say that a function  is decreasing on the interval  if for all 

 if 

We say that a function  is strictly decreasing on the interval  if for all ,

 if 

For example, the function  is increasing on the interval  because  whenever . On the other
hand, the function  is decreasing on the interval  because  whenever  (Figure ).

2.8.8 f(x) x

f(x) = + 1x + 3− −−−−√ 2.8.9 f(x)
x

(0, 4)
(4, 14) (14, 23)

 Definition: Increasing and Decreasing on an Interval

f I , ∈ I,x1 x2

f( ) ≤ f( )x1 x2 < .x1 x2

f I , ∈ I,x1 x2

f( ) < f( )x1 x2 < .x1 x2

f I , ∈ I,x1 x2

f( ) ≥ f( )x1 x2 < .x1 x2

f I , ∈ Ix1 x2

f( ) > f( )x1 x2 < .x1 x2

f(x) = 3x (−∞, ∞) 3 < 3x1 x2 <x1 x2

f(x) = −x3 (−∞, ∞) − > −x3
1

x3
2

<x1 x2 2.8.10

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76300?pdf


2.8.6 https://phys.libretexts.org/@go/page/76300

Figure : (a) The function  is increasing on the interval . (b) The function  is decreasing on
the interval .

Combining Functions
Now that we have reviewed the basic characteristics of functions, we can see what happens to these properties when we combine
functions in different ways, using basic mathematical operations to create new functions. For example, if the cost for a company to
manufacture  items is described by the function  and the revenue created by the sale of  items is described by the function 

, then the profit on the manufacture and sale of  items is defined as . Using the difference between
two functions, we created a new function.

Alternatively, we can create a new function by composing two functions. For example, given the functions  and 
, the composite function  is defined such that

The composite function  is defined such that

Note that these two new functions are different from each other.

Combining Functions with Mathematical Operators
To combine functions using mathematical operators, we simply write the functions with the operator and simplify. Given two
functions  and , we can define four new functions:

Sum

Difference

Product

 for Quotient

2.8.10 f(x) = 3x (−∞, ∞) f(x) = −x3

(−∞, ∞)

x C(x) x

R(x) x P (x) = R(x) −C(x)

f(x) = x2

g(x) = 3x +1 f ∘ g

(f ∘ g)(x) = f(g(x)) = (g(x) = (3x +1 .)2 )2

g ∘ f

(g ∘ f)(x) = g(f(x)) = 3f(x) +1 = 3 +1.x2

f g

(f + g)(x) = f(x) + g(x)

(f − g)(x) = f(x) − g(x)

(f ⋅ g)(x) = f(x)g(x)

( )(x) =
f

g

f(x)

g(x)
g(x) ≠ 0
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Given the functions  and , find each of the following functions and state its domain.

a. 
b. 
c. 

d. 

Solution

1. 

The domain of this function is the interval .

2.

The domain of this function is the interval .

3. 

The domain of this function is the interval .

4. .

The domain of this function is 

For  and , find  and state its domain.

Hint

The new function  is a quotient of two functions. For what values of  is the denominator zero?

Answer

 The domain is 

Function Composition

When we compose functions, we take a function of a function. For example, suppose the temperature  on a given day is described
as a function of time  (measured in hours after midnight) as in Table . Suppose the cost , to heat or cool a building for 1
hour, can be described as a function of the temperature . Combining these two functions, we can describe the cost of heating or
cooling a building as a function of time by evaluating . We have defined a new function, denoted , which is defined
such that  for all  in the domain of . This new function is called a composite function. We note that since
cost is a function of temperature and temperature is a function of time, it makes sense to define this new function . It
does not make sense to consider , because temperature is not a function of cost.

Consider the function  with domain  and range , and the function  with domain  and range . If  is a subset of ,
then the composite function  is the function with domain  such that

A composite function  can be viewed in two steps. First, the function  maps each input  in the domain of  to its output 
 in the range of . Second, since the range of  is a subset of the domain of , the output  is an element in the domain of 

 Example : Combining Functions Using Mathematical Operations2.8.6

f(x) = 2x −3 g(x) = −1x2

(f +g)(x)
(f −g)(x)
(f ⋅ g)(x)

( ) (x)
f

g

(f +g)(x) = (2x −3) +( −1) = +2x −4.x2 x2

(−∞, ∞)

(f −g)(x) = (2x −3) −( −1) = − +2x −2.x2 x2

(−∞, ∞)

(f ⋅ g)(x) = (2x −3)( −1) = 2 −3 −2x +3.x2 x3 x2

(−∞, ∞)

( ) (x) =
f

g

2x −3

−1x2

{x | x ≠ ±1}.

 Exercise 2.8.6

f(x) = +3x2 g(x) = 2x −5 (f/g)(x)

(f/g)(x) x

( ) (x) = .
f

g

+3x2

2x−5
{x | x ≠ }.5

2

T

t 2.8.1 C

T

C(T (t)) C ∘ T

(C ∘ T )(t) = C(T (t)) t T

(C ∘ T )(t)
(T ∘ C)(t)

 Definition: Composite Functions

f A B g D E B D

(g ∘ f)(x) A

(g ∘ f)(x) = g(f(x))

g ∘ f f x f

f(x) f f g f(x)
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, and therefore it is mapped to an output  in the range of . In Figure , we see a visual image of a composite
function.

Figure : For the composite function , we have   and .

Consider the functions  and .

a. Find  and state its domain and range.
b. Evaluate  .
c. Find  and state its domain and range.
d. Evaluate  .

Solution

1. We can find the formula for  in two different ways. We could write

.

Alternatively, we could write

Since  for all real numbers  the domain of  is the set of all real numbers. Since ,
the range is, at most, the interval . To show that the range is this entire interval, we let  and solve this
equation for  to show that for all  in the interval , there exists a real number  such that . Solving this
equation for  we see that , which implies that

If  is in the interval , the expression under the radical is nonnegative, and therefore there exists a real number  such that
. We conclude that the range of  is the interval 

2. 

3. We can find a formula for  in two ways. First, we could write

Alternatively, we could write

The domain of  is the set of all real numbers  such that . To find the range of  we need to find all values  for
which there exists a real number  such that

Solving this equation for  we see that we need  to satisfy

g g(f(x)) g 2.8.11

2.8.11 g ∘ f (g ∘ f)(1) = 4, (g ∘ f)(2) = 5, (g ∘ f)(3) = 4

 Example : Compositions of Functions Defined by Formulas2.8.7

f(x) = +1x2 g(x) = 1/x

(g ∘ f)(x)
(g ∘ f)(4), (g ∘ f)(−1/2)

(f ∘ g)(x)
(f ∘ g)(4), (f ∘ g)(−1/2)

(g ∘ f)(x)

(g ∘ f)(x) = g(f(x)) = g( +1) =x2 1

+1x2

(g ∘ f)(x) = g(f(x)) = = .
1

f(x)

1

+1x2

+1 ≠ 0x2 x, (g ∘ f)(x) 0 < 1/( +1) ≤ 1x2

(0, 1] y = 1/( +1)x2

x y (0, 1] x y = 1/( +1)x2

x, +1 = 1/yx2

x = ± −11
y

− −−−−
√

y (0, 1] x

1/( +1) = yx2 g ∘ f (0, 1].

(g ∘ f)(4) = g(f(4)) = g( +1) = g(17) =42 1
17

(g ∘ f)(− ) = g(f(− )) = g((− +1) = g( ) =1
2

1
2

1
2

)2 5
4

4
5

(f ∘ g)(x)

(f ∘ g)(x) = f(g(x)) = f( ) = ( +1.1
x

1
x )2

(f ∘ g)(x) = f(g(x)) = (g(x) +1 = ( +1.)2 1
x

)2

f ∘ g x x ≠ 0 f , y

x ≠ 0

+1 = y.( )
1

x

2

x, x
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which simplifies to

Finally, we obtain

Since  is a real number if and only if  the range of  is the set 

4.

In Example , we can see that . This tells us, in general terms, that the order in which we compose
functions matters.

Let . Let  Find .

Solution

Symmetry of Functions
The graphs of certain functions have symmetry properties that help us understand the function and the shape of its graph. For
example, consider the function  shown in Figure . If we take the part of the curve that lies to the right
of the -axis and flip it over the -axis, it lays exactly on top of the curve to the left of the -axis. In this case, we say the function
has symmetry about the -axis. On the other hand, consider the function  shown in Figure . If we take the
graph and rotate it  about the origin, the new graph will look exactly the same. In this case, we say the function has symmetry
about the origin.

Figure : (a) A graph that is symmetric about the -axis. (b) A graph that is symmetric about the origin.

If we are given the graph of a function, it is easy to see whether the graph has one of these symmetry properties. But without a
graph, how can we determine algebraically whether a function  has symmetry? Looking at Figure  again, we see that since

 is symmetric about the -axis, if the point  is on the graph, the point  is on the graph. In other words, 

= y −1,( )
1

x

2

= ±
1

x
y −1
− −−−

√

x = ± .
1

y −1
− −−−

√

1/ y −1
− −−−

√ y > 1, f {y | y ≥ 1}.

(f ∘ g)(4) = f(g(4)) = f( ) = ( +1 =1
4

1
4

)2 17
16

(f ∘ g)(− ) = f(g(− )) = f(−2) = (−2 +1 = 51
2

1
2

)2

2.8.7 (f ∘ g)(x) ≠ (g ∘ f)(x)

 Exercise 2.8.7

f(x) = 2 −5x g(x) = .x
−−

√ (f ∘ g)(x)

(f ∘ g)(x) = 2 −5 .x−−√

f(x) = −2 −3x4 x2 2.8.12a

y y y

y f(x) = −4xx3 2.8.12b

180°

2.8.12 y

f 2.8.12a

f y (x, y) (−x, y)
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. If a function  has this property, we say  is an even function, which has symmetry about the -axis. For example, 
 is even because

In contrast, looking at Figure  again, if a function  is symmetric about the origin, then whenever the point  is on the
graph, the point  is also on the graph. In other words, . If  has this property, we say  is an odd
function, which has symmetry about the origin. For example,  is odd because

If  for all  in the domain of , then  is an even function. An even function is symmetric about the -axis.
If  for all  in the domain of , then  is an odd function. An odd function is symmetric about the origin.

Determine whether each of the following functions is even, odd, or neither.

a. 
b. 
c. 

Solution

To determine whether a function is even or odd, we evaluate  and compare it to  and .

1.  Therefore,  is even.

2.  Now,  Furthermore, noting that 
, we see that . Therefore,  is neither even nor odd.

3.  Therefore,  is odd.

Determine whether  is even, odd, or neither.

Hint

Compare  with  and .

Answer

 is odd.

One symmetric function that arises frequently is the absolute value function, written as . The absolute value function is defined
as

Some students describe this function by stating that it “makes everything positive.” By the definition of the absolute value function,
we see that if , then  and if , then  However, for   Therefore, it is more
accurate to say that for all nonzero inputs, the output is positive, but if , the output . We conclude that the range of the
absolute value function is  In Figure , we see that the absolute value function is symmetric about the -axis and
is therefore an even function.

f(−x) = f(x) f f y

f(x) = x2

f(−x) = (−x = = f(x).)2 x2

2.8.12b f (x, y)
(−x, −y) f(−x) = −f(x) f f

f(x) = x3

f(−x) = (−x = − = −f(x).)3 x3

 Definition: Even and Odd Functions

f(x) = f(−x) x f f y

f(−x) = −f(x) x f f

 Example : Even and Odd Functions2.8.10

f(x) = −5 +7 −2x4 x2

f(x) = 2 −4x +5x5

f(x) = 3x

+1x2

f(−x) f(x) −f(x)

f(−x) = −5(−x +7(−x −2 = −5 +7 −2 = f(x).)4 )2 x4 x2 f

f(−x) = 2(−x −4(−x) +5 = −2 +4x +5.)5 x5 f(−x) ≠ f(x).
−f(x) = −2 +4x −5x5 f(−x) ≠ −f(x) f

f(−x) = 3(−x)/((−x)2 +1)= −3x/( +1) =x2 −[3x/( +1)] = −f(x).x2 f

 Exercise 2.8.10

f(x) = 4 −5xx3

f(−x) f(x) −f(x)

f(x)

|x|

f(x) ={
−x,
x,

if x < 0
if x ≥ 0

x < 0 |x| = −x > 0, x > 0 |x| = x > 0. x = 0, |x| = 0.
x = 0 |x| = 0

{y | y ≥ 0}. 2.8.13 y
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Figure : The graph of  is symmetric about the -axis.

Find the domain and range of the function .

Solution

Since the absolute value function is defined for all real numbers, the domain of this function is . Since 
for all , the function . Therefore, the range is, at most, the set  To see that the range is,
in fact, this whole set, we need to show that for  there exists a real number  such that

A real number  satisfies this equation as long as

Since , we know , and thus the right-hand side of the equation is nonnegative, so it is possible that there is a
solution. Furthermore,

Therefore, we see there are two solutions:

.

The range of this function is 

For the function , find the domain and range.

Hint

 for all real numbers .

Answer

Domain = , range = 

Inverse Functions

An inverse function reverses the operation done by a particular function. In other words, whatever a function does, the inverse
function undoes it. In this section, we define an inverse function formally and state the necessary conditions for an inverse function
to exist. We examine how to find an inverse function and study the relationship between the graph of a function and the graph of its
inverse. Then we apply these ideas to define and discuss properties of the inverse trigonometric functions.

2.8.13 f(x) = |x| y

 Example : Working with the Absolute Value Function2.8.11

f(x) = 2|x −3| +4

(−∞, ∞) |x −3| ≥ 0
x f(x) = 2|x −3| +4 ≥ 4 {y | y ≥ 4}.

y ≥ 4 x

2|x −3| +4 = y

x

|x −3| = (y −4)1
2

y ≥ 4 y −4 ≥ 0

|x −3| ={
−(x −3),
x −3,

if x < 3
if x ≥ 3

x = ± (y −4) +31
2

{y | y ≥ 4}.

 Exercise : Domain and Range2.8.11

f(x) = |x +2| −4

|x +2| ≥ 0 x

(−∞, ∞) {y | y ≥ −4}.
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Existence of an Inverse Function
We begin with an example. Given a function  and an output , we are often interested in finding what value or values 
were mapped to  by . For example, consider the function . Since any output , we can solve this
equation for  to find that the input is . This equation defines  as a function of . Denoting this function as , and
writing , we see that for any  in the domain of . Thus, this new function,

, “undid” what the original function  did. A function with this property is called the inverse function of the original function.

Given a function  with domain  and range , its inverse function (if it exists) is the function  with domain  and range 
 such that  if and only if . In other words, for a function  and its inverse ,

for all  in  and

for all  in .

Note that  is read as “  inverse.” Here, the  is not used as an exponent so

Figure shows the relationship between the domain and range of  and the domain and range of .

Figure : Given a function  and its inverse  if and only if . The range of  becomes the domain of 
 and the domain of  becomes the range of .

Recall that a function has exactly one output for each input. Therefore, to define an inverse function, we need to map each input to
exactly one output. For example, let’s try to find the inverse function for . Solving the equation  for , we arrive
at the equation . This equation does not describe  as a function of  because there are two solutions to this equation for
every . The problem with trying to find an inverse function for  is that two inputs are sent to the same output for
each output . The function  discussed earlier did not have this problem. For that function, each input was sent
to a different output. A function that sends each input to a different output is called a one-to-one function.

We say a function  is a one-to-one function if  when .

One way to determine whether a function is one-to-one is by looking at its graph. If a function is one-to-one, then no two inputs can
be sent to the same output. Therefore, if we draw a horizontal line anywhere in the -plane, according to the horizontal line test,
it cannot intersect the graph more than once. We note that the horizontal line test is different from the vertical line test. The vertical
line test determines whether a graph is the graph of a function. The horizontal line test determines whether a function is one-to-one
(Figure ).

A function  is one-to-one if and only if every horizontal line intersects the graph of  no more than once.

f y = f(x) x

y f f(x) = +4x3 y = +4x3

x x = y −4
− −−−

√3 x y f −1

x = (y) =f −1 y −4
− −−−

√3 x f , f −1f(x)) = ( +4) = xf −1 x3

f −1 f

 Definition: Inverse Functions

f D R f −1 R

D (y) = xf −1 f(x) = y f f −1

(f(x)) = xf −1

x D

f( (y)) = yf −1

y R

f −1 f −1

(x) ≠ .f −1 1

f(x)

2.8.1 f f −1

2.8.1 f , (y) = xf −1 f −1 f(x) = y f

f −1 f f −1

f(x) = x2 y = x2 x

x = ± y√ x y

y > 0 f(x) = x2

y > 0 f(x) = +4x3

 Definition: One-to-One functions

f f( ) ≠ f( )x1 x2 ≠x1 x2

xy

2.8.2

 Horizontal Line Test

f f
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Figure : (a) The function  is not one-to-one because it fails the horizontal line test. (b) The function  is
one-to-one because it passes the horizontal line test.

For each of the following functions, use the horizontal line test to determine whether it is one-to-one.

a)

b)

Solution

a) Since the horizontal line  for any integer  intersects the graph more than once, this function is not one-to-one.

2.8.2 f(x) = x2 f(x) = x3

 Example : Determining Whether a Function Is One-to-One2.8.1

y = n n ≥ 0
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b) Since every horizontal line intersects the graph once (at most), this function is one-to-one.

Is the function  graphed in the following image one-to-one?

Solution

Use the horizontal line test.

Answer

No

 Exercise 2.8.1

f
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Finding a Function’s Inverse
We can now consider one-to-one functions and show how to find their inverses. Recall that a function maps elements in the domain
of  to elements in the range of . The inverse function maps each element from the range of  back to its corresponding element
from the domain of . Therefore, to find the inverse function of a one-to-one function , given any  in the range of , we need to
determine which  in the domain of  satisfies . Since  is one-to-one, there is exactly one such value . We can find that
value  by solving the equation  for . Doing so, we are able to write  as a function of  where the domain of this
function is the range of  and the range of this new function is the domain of . Consequently, this function is the inverse of , and
we write . Since we typically use the variable  to denote the independent variable and y to denote the dependent
variable, we often interchange the roles of  and , and write . Representing the inverse function in this way is also
helpful later when we graph a function  and its inverse  on the same axes.

1. Solve the equation  for .
2. Interchange the variables  and  and write .

Find the inverse for the function  State the domain and range of the inverse function. Verify that 

Solution

Follow the steps outlined in the strategy.

Step 1. If  then  and 

Step 2. Rewrite as  and let .Therefore, .

Since the domain of  is , the range of  is . Since the range of  is , the domain of  is 
.

You can verify that  by writing

Note that for  to be the inverse of , both  and  for all  in the domain of the inside
function.

Find the inverse of the function . State the domain and range of the inverse function.

Hint

Use the Problem-Solving Strategy for finding inverse functions.

Answer

. The domain of  is . The range of  is .

Graphing Inverse Functions
Let’s consider the relationship between the graph of a function  and the graph of its inverse. Consider the graph of  shown in
Figure  and a point  on the graph. Since , then . Therefore, when we graph , the point  is
on the graph. As a result, the graph of  is a reflection of the graph of  about the line .

f f f

f f y f

x f f(x) = y f x

x f(x) = y x x y

f f f

x = (y)f −1 x

x y y = (x)f −1

f f −1

 Problem-Solving Strategy: Finding an Inverse Function

y = f(x) x

x y y = (x)f −1

 Example : Finding an Inverse Function2.8.2

f(x) = 3x −4.
(f(x)) = x.f −1

y = 3x −4, 3x = y +4 x = y + .1
3

4
3

y = x +1
3

4
3

y = (x)f −1 (x) = x +f −1 1
3

4
3

f (−∞, ∞) f −1 (−∞, ∞) f (−∞, ∞) f −1

(−∞, ∞)

(f(x)) = xf −1

(f(x)) = (3x −4) = (3x −4) + = x − + = x.f −1 f −1 1
3

4
3

4
3

4
3

(x)f −1 f(x) (f(x)) = xf −1 f( (x)) = xf −1 x

 Exercise 2.8.2

f(x) = 3x/(x −2)

(x) =f −1 2x

x −3
f −1 {x | x ≠ 3} f −1 {y | y ≠ 2}

f f

2.8.3 (a, b) b = f(a) (b) = af −1 f −1 (b, a)
f −1 f y = x
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Figure : (a) The graph of this function  shows point  on the graph of . (b) Since  is on the graph of , the point 
 is on the graph of . The graph of  is a reflection of the graph of  about the line .

For the graph of  in the following image, sketch a graph of  by sketching the line  and using symmetry. Identify the
domain and range of .

Solution

Reflect the graph about the line . The domain of  is . The range of  is . By using the preceding
strategy for finding inverse functions, we can verify that the inverse function is , as shown in the graph.

2.8.3 f (a, b) f (a, b) f

(b, a) f −1 f −1 f y = x

 Example : Sketching Graphs of Inverse Functions2.8.3

f f −1 y = x

f −1

y = x f −1 [0, ∞) f −1 [−2, ∞)
(x) = −2f −1 x2
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Sketch the graph of  and the graph of its inverse using the symmetry property of inverse functions.

Hint

The graphs are symmetric about the line 

Answer

Restricting Domains
As we have seen,  does not have an inverse function because it is not one-to-one. However, we can choose a subset of
the domain of  such that the function is one-to-one. This subset is called a restricted domain. By restricting the domain of , we
can define a new function  such that the domain of  is the restricted domain of  and  for all  in the domain of .
Then we can define an inverse function for  on that domain. For example, since  is one-to-one on the interval ,
we can define a new function  such that the domain of  is  and  for all  in its domain. Since  is a one-to-one
function, it has an inverse function, given by the formula . On the other hand, the function  is also one-to-
one on the domain . Therefore, we could also define a new function  such that the domain of  is  and 

 for all  in the domain of . Then  is a one-to-one function and must also have an inverse. Its inverse is given by the
formula  (Figure ).

Figure : (a) For  restricted to , . (b) For  restricted to , .

Consider the function .

a. Sketch the graph of  and use the horizontal line test to show that  is not one-to-one.

 Exercise 2.8.3

f(x) = 2x +3

y = x

f(x) = x2

f f

g g f g(x) = f(x) x g

g f(x) = x2 [0, ∞)
g g [0, ∞) g(x) = x2 x g

(x) =g−1 x−−√ f(x) = x2

(−∞, 0] h h (−∞, 0]
h(x) = x2 x h h

(x) = −h−1 x−−√ 2.8.4

2.8.4 g(x) = x2 [0, ∞) (x) =g−1 x−−√ h(x) = x2 (−∞, 0] (x) = −h−1 x−−√

 Example : Restricting the Domain2.8.4

f(x) = (x +1)2

f f
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b. Show that  is one-to-one on the restricted domain . Determine the domain and range for the inverse of  on this
restricted domain and find a formula for .

Solution

a) The graph of  is the graph of  shifted left  unit. Since there exists a horizontal line intersecting the graph more than
once,  is not one-to-one.

b) On the interval  is one-to-one.

The domain and range of  are given by the range and domain of , respectively. Therefore, the domain of  is 
and the range of  is . To find a formula for , solve the equation  for  If , then 

. Since we are restricting the domain to the interval where , we need . Therefore, 

. Interchanging  and , we write  and conclude that .

Consider  restricted to the domain . Verify that  is one-to-one on this domain. Determine the domain
and range of the inverse of  and find a formula for .

Hint

The domain and range of  is given by the range and domain of , respectively. To find , solve  for .

Answer

The domain of  is . The range of  is . The inverse function is given by the formula 
.

f [−1, ∞) f

f −1

f y = x2 1
f

[−1, ∞), f

f −1 f f −1 [0, ∞)
f −1 [−1, ∞) f −1 y = (x +1)2 x. y = (x +1)2

x = −1 ± y√ x ≥ −1 ± ≥ 0y√
x = −1 + y√ x y y = −1 + x−−√ (x) = −1 +f −1 x−−√

 Exercise 2.8.4

f(x) = 1/x2 (−∞, 0) f

f f −1

f −1 f f −1 y = 1/x2 x

f −1 (0, ∞) f −1 (−∞, 0)
(x) = −1/f −1 x−−√
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Key Concepts
For a function to have an inverse, the function must be one-to-one. Given the graph of a function, we can determine whether the
function is one-to-one by using the horizontal line test.
If a function is not one-to-one, we can restrict the domain to a smaller domain where the function is one-to-one and then define
the inverse of the function on the smaller domain.
For a function  and its inverse  for all  in the domain of  and  for all  in the domain
of .
Since the trigonometric functions are periodic, we need to restrict their domains to define the inverse trigonometric functions.
The graph of a function  and its inverse  are symmetric about the line 

Key Equations
Inverse function

 for all  in  and  for all  in .

Glossary

horizontal line test
a function  is one-to-one if and only if every horizontal line intersects the graph of , at most, once

inverse function
for a function , the inverse function  satisfies  if 

inverse trigonometric functions
the inverses of the trigonometric functions are defined on restricted domains where they are one-to-one functions

one-to-one function
a function  is one-to-one if  if 

restricted domain
a subset of the domain of a function 

Key Concepts
A function is a mapping from a set of inputs to a set of outputs with exactly one output for each input.
If no domain is stated for a function  the domain is considered to be the set of all real numbers  for which the
function is defined.
When sketching the graph of a function  each vertical line may intersect the graph, at most, once.
A function may have any number of zeros, but it has, at most, one -intercept.
To define the composition , the range of  must be contained in the domain of .
Even functions are symmetric about the -axis whereas odd functions are symmetric about the origin.

Key Equations
Composition of two functions

Absolute value function

Glossary

absolute value function

f , f( (x)) = xf −1 f −1 x f −1 (f(x)) = xf −1 x

f

f f −1 y = x.

(f(x)) = xf −1 x D, f( (y)) = yf −1 y R

f f

f f −1 (y) = xf −1 f(x) = y

f f( ) ≠ f( )x1 x2 ≠x1 x2

f

y = f(x), x

f ,
y

g ∘ f f g

y

(g ∘ f)(x) = g(f(x))

f(x) ={−x,
x,

if x < 0
if x ≥ 0

f(x) ={
−x,
x,

if x < 0
if x ≥ 0
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composite function
given two functions  and , a new function, denoted , such that 

decreasing on the interval 
a function decreasing on the interval  if, for all  if 

dependent variable
the output variable for a function

domain
the set of inputs for a function

even function
a function is even if  for all  in the domain of 

function
a set of inputs, a set of outputs, and a rule for mapping each input to exactly one output

graph of a function
the set of points  such that  is in the domain of  and 

increasing on the interval 
a function increasing on the interval  if for all  if 

independent variable
the input variable for a function

odd function
a function is odd if  for all  in the domain of 

range
the set of outputs for a function

symmetry about the origin
the graph of a function  is symmetric about the origin if  is on the graph of  whenever  is on the graph

symmetry about the -axis
the graph of a function  is symmetric about the -axis if  is on the graph of  whenever  is on the graph

table of values
a table containing a list of inputs and their corresponding outputs

vertical line test
given the graph of a function, every vertical line intersects the graph, at most, once

zeros of a function
when a real number  is a zero of a function 

This page titled 2.8: Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Edwin “Jed” Herman &
Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

1.1: Review of Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
1.4: Inverse Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f g g ∘ f (g ∘ f)(x) = g(f(x))

I

I , ∈ I, f( ) ≥ f( )x1 x2 x1 x2 <x1 x2

f(−x) = f(x) x f

(x, y) x f y = f(x)

I

I , ∈ I, f( ) ≤ f( )x1 x2 x1 x2 <x1 x2

f(−x) = −f(x) x f

f (−x, −y) f (x, y)

y

f y (−x, y) f (x, y)

x f , f(x) = 0
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2.8.1: Basic Functions

Calculate the slope of a linear function and interpret its meaning.
Recognize the degree of a polynomial.
Find the roots of a quadratic polynomial.
Describe the graphs of basic odd and even polynomial functions.
Identify a rational function.
Describe the graphs of power and root functions.
Explain the difference between algebraic and transcendental functions.
Graph a piecewise-defined function.
Sketch the graph of a function that has been shifted, stretched, or reflected from its initial graph position.

We have studied the general characteristics of functions, so now let’s examine some specific classes of functions. We begin by
reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By
combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental
functions we examine later in this chapter. We finish the section with examples of piecewise-defined functions and take a look at
how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.

Linear Functions and Slope
The easiest type of function to consider is a linear function. Linear functions have the form , where  and  are
constants. In Figure , we see examples of linear functions when a is positive, negative, and zero. Note that if , the
graph of the line rises as  increases. In other words,  is increasing on . If , the graph of the line
falls as  increases. In this case,  is decreasing on . If , the line is horizontal.

Figure : These linear functions are increasing or decreasing on  and one function is a horizontal line.

As suggested by Figure , the graph of any linear function is a line. One of the distinguishing features of a line is its slope.
The slope is the change in  for each unit change in . The slope measures both the steepness and the direction of a line. If the
slope is positive, the line points upward when moving from left to right. If the slope is negative, the line points downward when
moving from left to right. If the slope is zero, the line is horizontal. To calculate the slope of a line, we need to determine the ratio
of the change in  versus the change in . To do so, we choose any two points  and  on the line and calculate 

. In Figure , we see this ratio is independent of the points chosen.

 Learning Objectives

f(x) = ax+b a b

2.8.1.1 a > 0
x f(x) = ax+b (−∞, ∞) a < 0

x f(x) = ax+b (−∞, ∞) a = 0

2.8.1.1 (∞, ∞)

2.8.1.1
y x

y x ( , )x1 y1 ( , )x2 y2
−y2 y1

−x2 x1
2.8.1.2
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Figure : For any linear function, the slope  is independent of the choice of points  and 
on the line.

Consider line  passing through points  and . Let  and  denote the changes in 
and ,respectively. The slope of the line is

We now examine the relationship between slope and the formula for a linear function. Consider the linear function given by the
formula . As discussed earlier, we know the graph of a linear function is given by a line. We can use our definition
of slope to calculate the slope of this line. As shown, we can determine the slope by calculating  for any
points  and  on the line. Evaluating the function  at , we see that  is a point on this line. Evaluating this
function at , we see that  is also a point on this line. Therefore, the slope of this line is

We have shown that the coefficient  is the slope of the line. We can conclude that the formula  describes a line with
slope . Furthermore, because this line intersects the -axis at the point , we see that the -intercept for this linear function is 

. We conclude that the formula  tells us the slope, , and the -intercept, , for this line. Since we often
use the symbol  to denote the slope of a line, we can write

to denote the slope-intercept form of a linear function.

Sometimes it is convenient to express a linear function in different ways. For example, suppose the graph of a linear function
passes through the point  and the slope of the line is . Since any other point  on the graph of  must satisfy the
equation

this linear function can be expressed by writing

2.8.1.2 ( − )/( − )y2 y1 x2 x1 ( , )x1 y1 ( , )x2 y2

 Definition: Slope of a Linear Function

L ( , )x1 y1 ( , )x2 y2 Δy = −y2 y1 Δx = −x2 x1 y

x

m = =
−y2 y1

−x2 x1

Δy

Δx

f(x) = ax+b

( − )/( − )y2 y1 x2 x1

( , )x1 y1 ( , )x2 y2 f x = 0 (0, b)
x = 1 (1, a+b)

= a.
(a+b) −b

1 −0

a f(x) = ax+b

a y (0, b) y

(0, b) f(x) = ax+b a y (0, b)
m

f(x) = mx+b
  
slope-intercept form

( , )x1 y1 m (x, f(x)) f

m = ,
f(x) −y1

x−x1

.f(x) − = m(x− )y1 x1
  

point-slope equation
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We call this equation the point-slope equation for that linear function.

Since every nonvertical line is the graph of a linear function, the points on a nonvertical line can be described using the slope-
intercept or point-slope equations. However, a vertical line does not represent the graph of a function and cannot be expressed in
either of these forms. Instead, a vertical line is described by the equation  for some constant . Since neither the slope-
intercept form nor the point-slope form allows for vertical lines, we use the notation

where  are both not zero, to denote the standard form of a line.

Consider a line passing through the point  with slope . The equation

is the point-slope equation for that line.

Consider a line with slope  and -intercept  The equation

is an equation for that line in slope-intercept form.

The standard form of a line is given by the equation

where  and  are both not zero. This form is more general because it allows for a vertical line, .

Consider the line passing through the points  and , as shown in Figure .

Figure : Finding the equation of a linear function with a graph that is a line between two given points.

1. Find the slope of the line.
2. Find an equation for this linear function in point-slope form.
3. Find an equation for this linear function in slope-intercept form.

Solution

1. The slope of the line is

x = k k

,ax+by = c
  
standard form

a, b

 Definition: Point-Slope Equation, and the Slope-Intercept Form and Standard Form of the Equation of a Line

( , )x1 y1 m

y− = m(x− )y1 x1

m y (0, b).

y = mx+b

ax+by = c,

a b x = k

 Example : Finding the Slope and Equations of Lines2.8.1.1

(11, −4) (−4, 5) 2.8.1.3

2.8.1.3

m = = = − = − .
−y2 y1

−x2 x1

5 −(−4)
−4 −11

9
15

3
5
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2. To find an equation for the linear function in point-slope form, use the slope  and choose any point on the line. If
we choose the point , we get the equation

3. To find an equation for the linear function in slope-intercept form, solve the equation in part b. for . When we do this,
we get the equation

Consider the line passing through points  and .

a. Find the slope of the line.
b. Find an equation of that line in point-slope form.
c. Find an equation of that line in slope-intercept form.

Hint

The slope .

Answer a

.

Answer b

The point-slope form is .

Answer c

The slope-intercept form is .

Jessica leaves her house at 5:50 a.m. and goes for a 9-mile run. She returns to her house at 7:08 a.m. Answer the following
questions, assuming Jessica runs at a constant pace.

a. Describe the distance  (in miles) Jessica runs as a linear function of her run time  (in minutes).
b. Sketch a graph of .
c. Interpret the meaning of the slope.

Solution

a. At time , Jessica is at her house, so . At time  minutes, Jessica has finished running  mi, so 
. The slope of the linear function is

The -intercept is , so the equation for this linear function is

b. To graph , use the fact that the graph passes through the origin and has slope 

m = −3/5
(11, −4)

f(x) +4 = − (x−11).
3
5

f(x)

f(x) = − x+ .
3
5

13
5

 Exercise 2.8.1.1

(−3, 2) (1, 4)

m = Δy/Δx

m = 1/2

y−4 = (x−1)
1
2

y = x+
1
2

7
2

 Example :2.8.1.2

D t

D

t = 0 D(0) = 0 t = 78 9
D(78) = 9

m = = .
9 −0

78 −0
3

26

y (0, 0)

D(t) = t.
3

26

D m = 3/26.
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c. The slope  describes the distance (in miles) Jessica runs per minute, or her average velocity.

Polynomials
A linear function is a special type of a more general class of functions: polynomials. A polynomial function is any function that can
be written in the form

for some integer  and constants , where . In the case when , we allow for ; if ,
the function  is called the zero function. The value  is called the degree of the polynomial; the constant  is called the
leading coefficient. A linear function of the form  is a polynomial of degree 1 if  and degree 0 if . A
polynomial of degree 0 is also called a constant function. A polynomial function of degree 2 is called a quadratic function. In
particular, a quadratic function has the form

where . A polynomial function of degree  is called a cubic function.

Power Functions
Some polynomial functions are power functions. A power function is any function of the form , where  and  are any
real numbers. The exponent in a power function can be any real number, but here we consider the case when the exponent is a
positive integer. (We consider other cases later.) If the exponent is a positive integer, then  is a polynomial. If  is even,
then  is an even function because  if  is even. If  is odd, then  is an odd
function because  if  is odd (Figure ).

m = 3/26 ≈ 0.115

f(x) = + +… + x+anx
n an−1x

n−1 a1 a0

n ≥ 0 , , … ,an an−1 a0 ≠ 0an n = 0 = 0a0 = 0a0

f(x) = 0 n an
f(x) = mx+b m ≠ 0 m = 0

f(x) = a +bx+c,x2

a ≠ 0 3

f(x) = axb a b

f(x) = axn n

f(x) = axn f(−x) = a(−x = a)n xn n n f(x) = axn

f(−x) = a(−x = −a)n xn n 2.8.1.4
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Figure : (a) For any even integer ,  is an even function. (b) For any odd integer ,  is an odd
function.

Behavior at Infinity

To determine the behavior of a function  as the inputs approach infinity, we look at the values  as the inputs, , become
larger. For some functions, the values of  approach a finite number. For example, for the function , the values 

 become closer and closer to zero for all values of  as they get larger and larger. For this function, we say “  approaches
two as  goes to infinity,” and we write  as . The line  is a horizontal asymptote for the function 

 because the graph of the function gets closer to the line as  gets larger.

For other functions, the values  may not approach a finite number but instead may become larger for all values of  as they get
larger. In that case, we say “  approaches infinity as  approaches infinity,” and we write  as . For example,
for the function , the outputs  become larger as the inputs  get larger. We can conclude that the function 

 approaches infinity as  approaches infinity, and we write  as . The behavior as  and the
meaning of  as  or  can be defined similarly. We can describe what happens to the values of  as 

 and as  as the end behavior of the function.

To understand the end behavior for polynomial functions, we can focus on quadratic and cubic functions. The behavior for higher-
degree polynomials can be analyzed similarly. Consider a quadratic function . If , the values 

 as . If , the values  as . Since the graph of a quadratic function is a parabola, the
parabola opens upward if .; the parabola opens downward if  (Figure ).

Now consider a cubic function . If , then  as  and  as .
If , then  as  and  as . As we can see from both of these graphs, the leading term of
the polynomial determines the end behavior (Figure ).

2.8.1.4 n f(x) = axn n f(x) = axn

f f(x) x

f(x) f(x) = 2 +1/x
1/x x f(x)

x f(x) → 2 x → ∞ y = 2
f(x) = 2 +1/x x

f(x) x

f(x) x f(x) → ∞ x → ∞
f(x) = 3x2 f(x) x

f(x) = 3x2 x 3 → ∞x2 x → ∞ x → −∞
f(x) → −∞ x → ∞ x → −∞ f(x)

x → ∞ x → −∞

f(x) = a +bx+cx2 a > 0
f(x) → ∞ x → ±∞ a < 0 f(x) → −∞ x → ±∞

a > 0 a < 0 2.8.1.5a

f(x) = a +b +cx+dx3 x2 a > 0 f(x) → ∞ x → ∞ f(x) → −∞ x → −∞
a < 0 f(x) → −∞ x → ∞ f(x) → ∞ x → −∞

2.8.1.5b
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Figure : (a) For a quadratic function, if the leading coefficient ,the parabola opens upward. If , the parabola
opens downward. (b) For a cubic function , if the leading coefficient , the values  as  and the values 

 as . If the leading coefficient , the opposite is true.

Zeros of Polynomial Functions

Another characteristic of the graph of a polynomial function is where it intersects the -axis. To determine where a function 
intersects the -axis, we need to solve the equation  for . In the case of the linear function , the -
intercept is given by solving the equation . In this case, we see that the -intercept is given by . In the case
of a quadratic function, finding the -intercept(s) requires finding the zeros of a quadratic equation: . In some
cases, it is easy to factor the polynomial  to find the zeros. If not, we make use of the quadratic formula.

Consider the quadratic equation

where . The solutions of this equation are given by the quadratic formula

If the discriminant , Equation  tells us there are two real numbers that satisfy the quadratic equation. If 
, this formula tells us there is only one solution, and it is a real number. If , no real numbers satisfy

the quadratic equation.

In the case of higher-degree polynomials, it may be more complicated to determine where the graph intersects the -axis. In some
instances, it is possible to find the -intercepts by factoring the polynomial to find its zeros. In other cases, it is impossible to
calculate the exact values of the -intercepts. However, as we see later in the text, in cases such as this, we can use analytical tools
to approximate (to a very high degree) where the -intercepts are located. Here we focus on the graphs of polynomials for which
we can calculate their zeros explicitly.

For the following functions,

a. 
b. 

i. describe the behavior of  as ,

2.8.1.5 a > 0 a < 0
f a > 0 f(x) → ∞ x → ∞

f(x) → −∞ x → −∞ a < 0

x f

x f(x) = 0 x f(x) = mx+b x

mx+b = 0 x (−b/m, 0)
x a +bx+c = 0x2

a +bx+cx2

 The Quadratic Formula

a +bx+c = 0,x2

a ≠ 0

x = .
−b± −4acb2− −−−−−−√

2a
(2.8.1.1)

−4ac > 0b2 2.8.1.1
−4ac = 0b2 −4ac < 0b2

x

x

x

x

 Example : Graphing Polynomial Functions2.8.1.3

f(x) = −2 +4x−1x2

f(x) = −3 −4xx3 x2

f(x) x → ±∞
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ii. find all zeros of , and
iii. sketch a graph of .

Solution

1. The function  is a quadratic function.

1. Because , as 

2. To find the zeros of , use the quadratic formula. The zeros are

3. To sketch the graph of ,use the information from your previous answers and combine it with the fact that the
graph is a parabola opening downward.

2. The function  is a cubic function.

1. Because , as , . As , .

2. To find the zeros of , we need to factor the polynomial. First, when we factor  out of all the terms, we find

Then, when we factor the quadratic function , we find

Therefore, the zeros of  are .

3. Combining the results from parts i. and ii., draw a rough sketch of .

f

f

f(x) = −2 +4x−1x2

a = −2 < 0 x → ±∞, f(x) → −∞.

f

x = = = = .
−4 ± −4(−2)(−1)42

− −−−−−−−−−−−
√

2(−2)
−4 ± 8–√

−4
−4 ±2 2–√

−4
2 ± 2–√

2

f

f(x) = −3 −4xx3 x2

a = 1 > 0 x → ∞ f(x) → ∞ x → −∞ f(x) → −∞

f x

f(x) = x( −3x−4).x2

−3x−4x2

f(x) = x(x−4)(x+1).

f x = 0, 4, −1

f
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Consider the quadratic function  Find the zeros of . Does the parabola open upward or downward?

Hint

Use the quadratic formula.

Answer

The zeros are . The parabola opens upward.

Algebraic Functions

By allowing for quotients and fractional powers in polynomial functions, we create a larger class of functions. An algebraic
function is one that involves addition, subtraction, multiplication, division, rational powers, and roots. Two types of algebraic
functions are rational functions and root functions.

Just as rational numbers are quotients of integers, rational functions are quotients of polynomials. In particular, a rational function
is any function of the form ,where  and  are polynomials. For example,

 and 

are rational functions. A root function is a power function of the form , where  is a positive integer greater than one.
For example,  is the square-root function and  is the cube-root function. By allowing for
compositions of root functions and rational functions, we can create other algebraic functions. For example,  is an
algebraic function.

For each of the following functions, find the domain and range.

a. 

b. 

 Exercise 2.8.1.2

f(x) = 3 −6x+2.x2 f

x = 1 ± /33–√

f(x) = p(x)/q(x) p(x) q(x)

f(x) =
3x−1
5x+2

g(x) =
4
+1x2

f(x) = x1/n n

f(x) = =x1/2 x−−√ g(x) = =x1/3 x−−√3

f(x) = 4 −x2− −−−−√

 Example : Finding Domain and Range for Algebraic Functions2.8.1.5

f(x) =
3x−1
5x+2

f(x) = 4 −x2− −−−−√
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Solution

1. It is not possible to divide by zero, so the domain is the set of real numbers  such that . To find the range, we
need to find the values  for which there exists a real number  such that

When we multiply both sides of this equation by , we see that  must satisfy the equation

From this equation, we can see that  must satisfy

If y= , this equation has no solution. On the other hand, as long as ,

satisfies this equation. We can conclude that the range of  is .

2. To find the domain of , we need . When we factor, we write . This inequality
holds if and only if both terms are positive or both terms are negative. For both terms to be positive, we need to find  such
that

 and 

These two inequalities reduce to  and . Therefore, the set  must be part of the domain. For
both terms to be negative, we need

 and 

These two inequalities also reduce to  and . There are no values of  that satisfy both of these inequalities. Thus,
we can conclude the domain of this function is 

If , then . Therefore, , and the range of  is 

Find the domain and range for the function 

Hint

The denominator cannot be zero. Solve the equation  for  to find the range.

Answer

The domain is the set of real numbers  such that . The range is the set .

The root functions  have defining characteristics depending on whether  is odd or even. For all even integers ,
the domain of  is the interval . For all odd integers , the domain of  is the set of all real
numbers. Since  for odd integers ,  is an odd function if  is odd. See the graphs of root functions for
different values of  in Figure .

x x ≠ −2/5
y x

y =
3x−1
5x+2

5x+2 x

5xy+2y = 3x−1.

x

2y+1 = x(3 −5y).

3/5 y ≠ 3/5

x =
2y+1
3 −5y

f {y | y ≠ 3/5}

f 4 − ≥ 0x2 4 − = (2 −x)(2 +x) ≥ 0x2

x

2 −x ≥ 0 2 +x ≥ 0.

2 ≥ x x ≥ −2 {x | −2 ≤ x ≤ 2}

2 −x ≤ 0 2 +x ≤ 0.

2 ≤ x x ≤ −2 x

{x | −2 ≤ x ≤ 2}.

−2 ≤ x ≤ 2 0 ≤ 4 − ≤ 4x2 0 ≤ ≤ 24 −x2
− −−−−

√ f {y | 0 ≤ y ≤ 2}.

 Exercise 2.8.1.3

f(x) = (5x+2)/(2x−1).

y = (5x+2)/(2x−1) x

x x ≠ 1/2 {y | y ≠ 5/2}

f(x) = x1/n n n ≥ 2
f(x) = x1/n [0, ∞) n ≥ 1 f(x) = x1/n

= (−xx1/n )1/n n f(x) = x1/n n

n 2.8.1.7
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Figure : (a) If  is even, the domain of  is . (b) If  is odd, the domain of  is  and
the function  is an odd function.

For each of the following functions, determine the domain of the function.

a. 

b. 

c. 
d. 

Solution

a. You cannot divide by zero, so the domain is the set of values  such that . Therefore, the domain is 
.

b. You need to determine the values of  for which the denominator is zero. Since  for all real numbers , the
denominator is never zero. Therefore, the domain is 

c. Since the square root of a negative number is not a real number, the domain is the set of values  for which .
Therefore, the domain is 

d. The cube root is defined for all real numbers, so the domain is the interval 

Find the domain for each of the following functions:  and .

Hint

Determine the values of  when the expression in the denominator of  is nonzero, and find the values of  when the
expression inside the radical of  is nonnegative.

Answer

The domain of  is . The domain of  is 

Transcendental Functions
Thus far, we have discussed algebraic functions. Some functions, however, cannot be described by basic algebraic operations.
These functions are known as transcendental functions because they are said to “transcend,” or go beyond, algebra. The most
common transcendental functions are trigonometric, exponential, and logarithmic functions. A trigonometric function relates the
ratios of two sides of a right triangle. They are  (We discuss trigonometric functions
later in the chapter.) An exponential function is a function of the form , where the base . A logarithmic
function is a function of the form  for some constant  where  if and only if . (We
also discuss exponential and logarithmic functions later in the chapter.)

2.8.1.7 n f(x) = x−−√n [0, ∞) n f(x) = x−−√n (−∞, ∞)
f(x) = x−−√n

 Example : Finding Domains for Algebraic Functions2.8.1.6

f(x) =
3
−1x2

f(x) =
2x+5
3 +4x2

f(x) = 4 −3x− −−−−√
f(x) = 2x−1− −−−−√3

x −1 ≠ 0x2

{x | x ≠ ±1}
x 3 +4 ≥ 4x2 x

(−∞, ∞).
x 4 −3x ≥ 0

{x | x ≤ 4/3}.
(−∞, ∞).

 Exercise 2.8.1.4

f(x) = (5 −2x)/( +2)x2 g(x) = 5x−1− −−−−√

x f x

g

f (−∞, ∞) g {x | x ≥ 1/5}.

sinx, cosx, tanx, cotx, secx,  and  cscx.
f(x) = bx b > 0, b ≠ 1

f(x) = (x)logb b > 0, b ≠ 1, (x) = ylogb = xby
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Classify each of the following functions, a. through c., as algebraic or transcendental.

a. 

b. 
c. 

Solution

a. Since this function involves basic algebraic operations only, it is an algebraic function.
b. This function cannot be written as a formula that involves only basic algebraic operations, so it is transcendental. (Note that

algebraic functions can only have powers that are rational numbers.)
c. As in part b, this function cannot be written using a formula involving basic algebraic operations only; therefore, this

function is transcendental.

Is  an algebraic or a transcendental function?

Answer

Algebraic

Piecewise-Defined Functions
Sometimes a function is defined by different formulas on different parts of its domain. A function with this property is known as a
piecewise-defined function. The absolute value function is an example of a piecewise-defined function because the formula
changes with the sign of :

Other piecewise-defined functions may be represented by completely different formulas, depending on the part of the domain in
which a point falls. To graph a piecewise-defined function, we graph each part of the function in its respective domain, on the same
coordinate system. If the formula for a function is different for  and , we need to pay special attention to what happens
at  when we graph the function. Sometimes the graph needs to include an open or closed circle to indicate the value of the
function at . We examine this in the next example.

Sketch a graph of the following piecewise-defined function:

Solution

Graph the linear function  on the interval  and graph the quadratic function  on the interval 
. Since the value of the function at  is given by the formula , we see that . To indicate

this on the graph, we draw a closed circle at the point . The value of the function is given by  for all ,
but not at . To indicate this on the graph, we draw an open circle at .

 Example : Classifying Algebraic and Transcendental Functions2.8.1.7

f(x) =
+1x3− −−−−√

4x+2
f(x) = 2x

2

f(x) = sin(2x)

 Exercise :2.8.1.5

f(x) = x/2

x

f(x) = { .−x,
x,

if x < 0
if x ≥ 0

x < a x > a

x = a

x = a

 Example : Graphing a Piecewise-Defined Function2.8.1.8

f(x) = {
x+3,
(x−2 ,)2

if x < 1
if x ≥ 1

y = x+3 (−∞, 1) y = (x−2)2

[1, ∞) x = 1 f(x) = (x−2)2 f(1) = 1
(1, 1) f(x) = x+3 x < 1

x = 1 (1, 4)
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Figure : This piecewise-defined function is linear for  and quadratic for 

2) Sketch a graph of the function

Solution:

In a big city, drivers are charged variable rates for parking in a parking garage. They are charged $10 for the first hour or any
part of the first hour and an additional $2 for each hour or part thereof up to a maximum of $30 for the day. The parking garage
is open from 6 a.m. to 12 midnight.

a. Write a piecewise-defined function that describes the cost  to park in the parking garage as a function of hours parked .
b. Sketch a graph of this function 

Solution

1.Since the parking garage is open 18 hours each day, the domain for this function is . The cost to park a car
at this parking garage can be described piecewise by the function

2.The graph of the function consists of several horizontal line segments.

2.8.1.8 x < 1 x ≥ 1.

f(x) = { .
2 −x,
x+2,

if x ≤ 2
if x > 2

 Example : Parking Fees Described by a Piecewise-Defined Function2.8.1.9

C x

C(x).

{x | 0 < x ≤ 18}

C(x) = .

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪

10,
12,
14,
16,

⋮
30,

for 0 < x ≤ 1
for 1 < x ≤ 2
for 2 < x ≤ 3
for 3 < x ≤ 4

for 10 < x ≤ 18
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The cost of mailing a letter is a function of the weight of the letter. Suppose the cost of mailing a letter is  for the first ounce
and  for each additional ounce. Write a piecewise-defined function describing the cost  as a function of the weight  for 

, where  is measured in cents and  is measured in ounces.

Hint

The piecewise-defined function is constant on the intervals 

Answer

Transformations of Functions

We have seen several cases in which we have added, subtracted, or multiplied constants to form variations of simple functions. In
the previous example, for instance, we subtracted 2 from the argument of the function  to get the function .
This subtraction represents a shift of the function  two units to the right. A shift, horizontally or vertically, is a type of
transformation of a function. Other transformations include horizontal and vertical scalings, and reflections about the axes.

A vertical shift of a function occurs if we add or subtract the same constant to each output . For , the graph of  is a
shift of the graph of  up  units, whereas the graph of  is a shift of the graph of  down  units. For example, the
graph of the function  is the graph of  shifted up  units; the graph of the function  is the
graph of  shifted down  units (Figure ).

 Exercise 2.8.1.6

49¢
21¢ C x

0 < x ≤ 3 C x

(0, 1], (1, 2], … .

C(x) =
⎧

⎩⎨
49, 0 < x ≤ 1
70, 1 < x ≤ 2
91, 2 < x ≤ 3

y = x2 f(x) = (x−2)2

y = x2

y c > 0 f(x) +c

f(x) c f(x) −c f(x) c

f(x) = +4x3 y = x3 4 f(x) = −4x3

y = x3 4 2.8.1.9
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Figure : (a) For , the graph of  is a vertical shift up  units of the graph of . (b) For , the
graph of  is a vertical shift down c units of the graph of .

A horizontal shift of a function occurs if we add or subtract the same constant to each input . For , the graph of  is a
shift of the graph of  to the left  units; the graph of  is a shift of the graph of  to the right  units. Why does the
graph shift left when adding a constant and shift right when subtracting a constant? To answer this question, let’s look at an
example.

Consider the function  and evaluate this function at . Since  and , the graph of 
 is the graph of  shifted left  units. Similarly, the graph of  is the graph of  shifted

right  units (Figure ).

Figure : (a) For , the graph of  is a horizontal shift left  units of the graph of . (b) For ,
the graph of  is a horizontal shift right  units of the graph of 

A vertical scaling of a graph occurs if we multiply all outputs  of a function by the same positive constant. For , the graph of
the function  is the graph of  scaled vertically by a factor of . If , the values of the outputs for the function 
are larger than the values of the outputs for the function ; therefore, the graph has been stretched vertically. If , then
the outputs of the function  are smaller, so the graph has been compressed. For example, the graph of the function 

 is the graph of  stretched vertically by a factor of 3, whereas the graph of  is the graph of 
compressed vertically by a factor of  (Figure ).

2.8.1.9 c > 0 y = f(x) + c c y = f(x) c > 0
y = f(x) − c y = f(x)

x c > 0 f(x+c)
f(x) c f(x−c) f(x) c

f(x) = |x+3| x−3 f(x−3) = |x| x−3 < x

f(x) = |x+3| y = |x| 3 f(x) = |x−3| y = |x|
3 2.8.1.10

2.8.1.10 c > 0 y = f(x+ c) c y = f(x) c > 0
y = f(x− c) c y = f(x).

y c > 0
cf(x) f(x) c c > 1 cf(x)

f(x) 0 < c < 1
cf(x)

f(x) = 3x2 y = x2 f(x) = /3x2 y = x2

3 2.8.1.11b
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Figure : (a) If , the graph of  is a vertical stretch of the graph of . (b) If , the graph of 
 is a vertical compression of the graph of .

The horizontal scaling of a function occurs if we multiply the inputs  by the same positive constant. For , the graph of the
function  is the graph of  scaled horizontally by a factor of . If , the graph of  is the graph of 
compressed horizontally. If , the graph of  is the graph of  stretched horizontally. For example, consider the
function  and evaluate  at . Since , the graph of  is the graph of  compressed
horizontally. The graph of  is a horizontal stretch of the graph of  (Figure ).

Figure : (a) If , the graph of  is a horizontal compression of the graph of . (b) If , the
graph of  is a horizontal stretch of the graph of .

We have explored what happens to the graph of a function  when we multiply  by a constant  to get a new function .
We have also discussed what happens to the graph of a function when we multiply the independent variable  by  to get a
new function . However, we have not addressed what happens to the graph of the function if the constant  is negative. If we
have a constant , we can write  as a positive number multiplied by ; but, what kind of transformation do we get when we
multiply the function or its argument by  When we multiply all the outputs by , we get a reflection about the -axis. When
we multiply all inputs by , we get a reflection about the -axis. For example, the graph of  is the graph of 

 reflected about the -axis. The graph of  is the graph of  reflected about the -axis
(Figure ).

2.8.1.11 c > 1 y = cf(x) y = f(x) 0 < c < 1
y = cf(x) y = f(x)

x c > 0
f(cx) f(x) c c > 1 f(cx) f(x)

0 < c < 1 f(cx) f(x)
f(x) = 2x−−√ f x/2 f(x/2) = x−−√ f(x) = 2x−−√ y = x−−√

y = x/2
−−−

√ y = x−−√ 2.8.1.12

2.8.1.12 c > 1 y = f(cx) y = f(x) 0 < c < 1
y = f(cx) y = f(x)

f f c > 0 cf(x)
f x c > 0

f(cx) c

c < 0 c −1
−1? −1 x

−1 y f(x) = −( +1)x3

y = ( +1)x3 x f(x) = (−x +1)3 y = +1x3 y

2.8.1.13
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Figure : (a) The graph of  is the graph of  reflected about the -axis. (b) The graph of  is
the graph of  reflected about the -axis.

If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph in the
correct order. Given a function , the graph of the related function  can be obtained from the graph of 

by performing the transformations in the following order.

Horizontal shift of the graph of . If , shift left. If  shift right.
Horizontal scaling of the graph of  by a factor of . If , reflect the graph about the -axis.
Vertical scaling of the graph of  by a factor of . If , reflect the graph about the  -axis.
Vertical shift of the graph of . If , shift up. If , shift down.

We can summarize the different transformations and their related effects on the graph of a function in the following table.

Transformation of Effect of the graph of 

Vertical shift up  units

Vertical shift down  units

Shift left by  units

Shift right by  units

Vertical stretch if ;
vertical compression if 

Horizontal stretch if ;
horizontal compression if 

Reflection about the -axis

Reflection about the -axis

For each of the following functions, a. and b., sketch a graph by using a sequence of transformations of a well-known function.

a. 
b. 

Solution

1.Starting with the graph of , shift  units to the left, reflect about the -axis, and then shift down  units.

2.8.1.13 y = −f(x) y = f(x) x y = f(−x)
y = f(x) y

f(x) y = cf(a(x+b)) +d

y = f(x)

y = f(x) b > 0 b < 0
y = f(x+b) |a| a < 0 y

y = f(a(x+b)) |c| c < 0 x

y = cf(a(x+b)) d > 0 d < 0

f(c > 0) f

f(x) + c c

f(x) − c c

f(x+ c) c

f(x− c) c

cf(x)
c > 1
0 < c < 1

f(cx)
0 < c < 1

c > 1

−f(x) x

f(−x) y

 Example : Transforming a Function2.8.1.10

f(x) = −|x+2| −3
f(x) = +1x−−√3

y = |x| 2 x 3
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Figure : The function  can be viewed as a sequence of three transformations of the function 
.

2. Starting with the graph of  reflect about the -axis, stretch the graph vertically by a factor of 3, and move up 1
unit.

Figure : The function can be viewed as a sequence of three transformations of the function .

Describe how the function  can be graphed using the graph of  and a sequence of
transformations

Answer

Shift the graph  to the left 1 unit, reflect about the -axis, then shift down 4 units.

Key Concepts
The power function  is an even function if n is even and , and it is an odd function if  is odd.
The root function  has the domain  if n is even and the domain  if  is odd. If  is odd, then 

 is an odd function.
The domain of the rational function , where  and  are polynomial functions, is the set of  such that 

.
Functions that involve the basic operations of addition, subtraction, multiplication, division, and powers are algebraic functions.
All other functions are transcendental. Trigonometric, exponential, and logarithmic functions are examples of transcendental
functions.

2.8.1.14 f(x) = −|x+ 2| − 3
y = |x|

y = sqrtx, y

2.8.1.15 f(x) = + 1x−−√3 y = x−−√

 Exercise 2.8.1.7

f(x) = −(x+1 −4)2 y = x2

y = x2 x

f(x) = xn n ≠ 0 n

f(x) = x1/n [0, ∞) (−∞, ∞) n n

f(x) = x1/n

f(x) = p(x)/q(x) p(x) q(x) x

q(x) ≠ 0
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A polynomial function  with degree  satisfies  as . The sign of the output as  depends on
the sign of the leading coefficient only and on whether  is even or odd.
Vertical and horizontal shifts, vertical and horizontal scalings, and reflections about the - and -axes are examples of
transformations of functions.

Key Equations
Point-slope equation of a line

Slope-intercept form of a line

Standard form of a line

Polynomial function

Glossary

algebraic function
a function involving any combination of only the basic operations of addition, subtraction, multiplication, division, powers, and
roots applied to an input variable 

cubic function
a polynomial of degree 3; that is, a function of the form , where 

degree
for a polynomial function, the value of the largest exponent of any term

linear function
a function that can be written in the form 

logarithmic function
a function of the form  for some base  such that  if and only if 

mathematical model
A method of simulating real-life situations with mathematical equations

piecewise-defined function
a function that is defined differently on different parts of its domain

point-slope equation
equation of a linear function indicating its slope and a point on the graph of the function

polynomial function
a function of the form 

power function
a function of the form  for any positive integer 

quadratic function
a polynomial of degree 2; that is, a function of the form  where 

f n ≥ 1 f(x) → ±∞ x → ±∞ x → ∞
n

x y

y− = m(x− )y1 x1

y = mx+b

ax+by = c

f(x) = + +⋯ + x+anx
n an−1x

n−1 a1 a0

x

f(x) = a +b +cx+dx3 x2 a ≠ 0

f(x) = mx+b

f(x) = (x)logb b > 0, b ≠ 1 y = (x)logb = xby

f(x) = + +… + x+anx
n an−1x

n−1 a1 a0

f(x) = xn n ≥ 1

f(x) = a +bx+cx2 a ≠ 0
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rational function
a function of the form , where  and  are polynomials

root function
a function of the form  for any integer 

slope
the change in  for each unit change in 

slope-intercept form
equation of a linear function indicating its slope and -intercept

transcendental function
a function that cannot be expressed by a combination of basic arithmetic operations

transformation of a function
a shift, scaling, or reflection of a function

This page titled 2.8.1: Basic Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Edwin “Jed”
Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

1.2: Basic Classes of Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f(x) = p(x)/q(x) p(x) q(x)

f(x) = x1/n n ≥ 2

y x

y
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2.8.2: Trigonometric Functions

Convert angle measures between degrees and radians.
Recognize the triangular and circular definitions of the basic trigonometric functions.
Write the basic trigonometric identities.
Identify the graphs and periods of the trigonometric functions.
Describe the shift of a sine or cosine graph from the equation of the function.

Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical
current, and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some combination of
trigonometric functions. In this section, we define the six basic trigonometric functions and look at some of the main identities
involving these functions.

Radian Measure
To use trigonometric functions, we first must understand how to measure the angles. Although we can use both radians and
degrees, radians are a more natural measurement because they are related directly to the unit circle, a circle with radius 1. The
radian measure of an angle is defined as follows. Given an angle , let  be the length of the corresponding arc on the unit circle
(Figure ). We say the angle corresponding to the arc of length 1 has radian measure 1.

Figure : The radian measure of an angle  is the arc length  of the associated arc on the unit circle.

Since an angle of  corresponds to the circumference of a circle, or an arc of length , we conclude that an angle with a degree
measure of  has a radian measure of . Similarly, we see that  is equivalent to  radians. Table  shows the
relationship between common degree and radian values.

Table : Common Angles Expressed in Degrees and Radians

Degrees Radians Degrees Radians

0 0 120

30 135

45 150

60 180

90   

a. Express  using radians.
b. Express  rad using degrees.

Solution

Use the fact that ° is equivalent to  radians as a conversion factor (Table ):

 Learning Objectives

θ s

2.8.2.1

2.8.2.1 θ s

360° 2π

360° 2π 180° π 2.8.2.1

2.8.2.1

2π/3

π/6 3π/4

π/4 5π/6

π/3 π

π/2

 Converting between Radians and Degrees

225°
5π/3

180 π 2.8.2.1
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a.  rad

b.  rad = ⋅ = °

a. Express  using radians.
b. Express  rad using degrees.

Hint

 radians is equal to 180°

Answer
a. 
b. 330°

The Six Basic Trigonometric Functions

Trigonometric functions allow us to use angle measures, in radians or degrees, to find the coordinates of a point on any circle—not
only on a unit circle—or to find an angle given a point on a circle. They also define the relationship between the sides and angles of
a triangle.

To define the trigonometric functions, first consider the unit circle centered at the origin and a point  on the unit circle.
Let  be an angle with an initial side that lies along the positive -axis and with a terminal side that is the line segment . An
angle in this position is said to be in standard position (Figure ). We can then define the values of the six trigonometric
functions for  in terms of the coordinates  and .

Figure : The angle  is in standard position. The values of the trigonometric functions for  are defined in terms of the
coordinates  and .

Let  be a point on the unit circle centered at the origin . Let  be an angle with an initial side along the positive -
axis and a terminal side given by the line segment . The trigonometric functions are then defined as

1 = = .
π rad

180°

180°

π rad

225° = 225° ⋅( )=( )
π

180°

5π

4
5π

3

5π

3

180°

π
300

 Exercise 2.8.2.1

210°
11π/6

π

7π/6

P = (x, y)
θ x OP

2.8.2.2
θ x y

2.8.2.2 θ θ
x y

 Definition: Trigonometric functions

P = (x, y) O θ x

OP

sin θ = y csc θ =
1

y

cos θ = x sec θ =
1

x

tan θ =
y

x
cot θ =

x

y
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If  and  are undefined. If , then  and  are undefined.

We can see that for a point  on a circle of radius  with a corresponding angle , the coordinates  and  satisfy

and

The values of the other trigonometric functions can be expressed in terms of , and  (Figure ).

Figure : For a point  on a circle of radius , the coordinates  and  satisfy  and .

Table  shows the values of sine and cosine at the major angles in the first quadrant. From this table, we can determine the
values of sine and cosine at the corresponding angles in the other quadrants. The values of the other trigonometric functions are
calculated easily from the values of  and 

Table : Values of  and  at Major Angles  in the First Quadrant

0 0 1

1 0

Evaluate each of the following expressions.

a. 

b. 

c. 

Solution:

x = 0, sec θ tanθ y = 0 cotθ csc θ

P = (x, y) r θ x y

cosθ

x

=
x

r
= r cosθ

(2.8.2.1)

(2.8.2.2)

sinθ

y

=
y

r
= r sinθ.

(2.8.2.3)

(2.8.2.4)

x, y r 2.8.2.3

2.8.2.3 P = (x,y) r x y x = r cos θ y = r sin θ

2.8.2.2

sinθ cosθ.

2.8.2.2 sin θ cos θ θ

θ sin θ cos θ

π

6
1

2

3–√

2

π

4
2
–√

2

2
–√

2

π

3
3–√

2

1

2
π

2

 Example : Evaluating Trigonometric Functions2.8.2.2

sin( )
2π

3

cos(− )
5π

6

tan( )
15π

4
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a) On the unit circle, the angle  corresponds to the point . Therefore,

b) An angle  corresponds to a revolution in the negative direction, as shown. Therefore,

c) An angle = = + . Therefore, this angle corresponds to more than one revolution, as shown. Knowing the fact that

an angle of  corresponds to the point , we can conclude that

θ =
2π

3
(− , )

1

2

3
–√

2

sin( ) = y =( ) .
2π

3

3
–

√

2

θ =−
5π

6

cos(− ) = x =− .
5π

6

3
–

√

2

θ
15π

4
2π

7π

4
7π

4
( , − )

2
–

√

2

2
–

√

2

tan( ) = =−1.
15π

4

y

x
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Evaluate  and .

Hint

Look at angles on the unit circle.

Answer

As mentioned earlier, the ratios of the side lengths of a right triangle can be expressed in terms of the trigonometric functions
evaluated at either of the acute angles of the triangle. Let  be one of the acute angles. Let  be the length of the adjacent leg,  be
the length of the opposite leg, and  be the length of the hypotenuse. By inscribing the triangle into a circle of radius , as shown
in Figure , we see that , and  satisfy the following relationships with :

Figure : By inscribing a right triangle in a circle, we can express the ratios of the side lengths in terms of the trigonometric
functions evaluated at .

A wooden ramp is to be built with one end on the ground and the other end at the top of a short staircase. If the top of the
staircase is  ft from the ground and the angle between the ground and the ramp is to be °, how long does the ramp need to
be?

Solution

Let  denote the length of the ramp. In the following image, we see that  needs to satisfy the equation .
Solving this equation for , we see that ≈  ft.

 Exercise 2.8.2.2

cos(3π/4) sin(−π/6)

cos(3π/4) =− /22
–

√

sin(−π/6) =−1/2

θ A O

H H

2.8.2.4 A,H O θ

sin θ =
O

H
csc θ =

H

O

cos θ =
A

H
sec θ =

H

A

tan θ =
O

A
cot θ =

A

O

2.8.2.4
θ

 Example : Constructing a Wooden Ramp2.8.2.3

4 10

x x sin(10°) = 4/x

x x = 4/ sin(10°) 23.035
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A house painter wants to lean a -ft ladder against a house. If the angle between the base of the ladder and the ground is to be 
°, how far from the house should she place the base of the ladder?

Hint

Draw a right triangle with hypotenuse 20.

Answer

10 ft

Trigonometric Identities
A trigonometric identity is an equation involving trigonometric functions that is true for all angles  for which the functions are
defined. We can use the identities to help us solve or simplify equations. The main trigonometric identities are listed next.

Reciprocal identities

Pythagorean identities

Addition and subtraction formulas

Double-angle formulas

For each of the following equations, use a trigonometric identity to find all solutions.

a. 
b. 

Solution

 Exercise 2.8.2.3

20
60

θ

 Trigonometric Identities

tanθ =
sinθ

cosθ

cotθ =
cosθ

sinθ

csc θ =
1

sinθ

sec θ =
1

cosθ

θ+ θsin2 cos2

1+ θtan2

1+ θcot2

= 1

= θsec2

= θcsc2

(2.8.2.5)

(2.8.2.6)

(2.8.2.7)

sin(α ±β) = sinα cosβ ±cosα sinβ

cos(α ±β) = cosα cosβ ∓sinα sinβ

sin(2θ) = 2 sinθcosθ (2.8.2.8)

cos(2θ) = 2 θ−1cos2

= 1−2 θsin2

= θ− θcos2 sin2

(2.8.2.9)

(2.8.2.10)

(2.8.2.11)

 Example : Solving Trigonometric Equations2.8.2.4

1+cos(2θ) = cosθ

sin(2θ) = tanθ
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a) Using the double-angle formula for , we see that  is a solution of

if and only if

which is true if and only if

To solve this equation, it is important to note that we need to factor the left-hand side and not divide both sides of the
equation by . The problem with dividing by  is that it is possible that  is zero. In fact, if we did divide
both sides of the equation by , we would miss some of the solutions of the original equation. Factoring the left-hand
side of the equation, we see that  is a solution of this equation if and only if

Since  when

and  when

we conclude that the set of solutions to this equation is

and

b) Using the double-angle formula for  and the reciprocal identity for , the equation can be written as

To solve this equation, we multiply both sides by  to eliminate the denominator, and say that if  satisfies this
equation, then  satisfies the equation

However, we need to be a little careful here. Even if  satisfies this new equation, it may not satisfy the original equation
because, to satisfy the original equation, we would need to be able to divide both sides of the equation by .
However, if , we cannot divide both sides of the equation by . Therefore, it is possible that we may arrive
at extraneous solutions. So, at the end, it is important to check for extraneous solutions. Returning to the equation, it is
important that we factor  out of both terms on the left-hand side instead of dividing both sides of the equation by 

. Factoring the left-hand side of the equation, we can rewrite this equation as

Therefore, the solutions are given by the angles  such that  or . The solutions of the first equation
are  The solutions of the second equation are  After
checking for extraneous solutions, the set of solutions to the equation is

and

cos(2θ) θ

1+cos(2θ) = cosθ

1+2 θ−1 = cosθ,cos2

2 θ−cosθ = 0.cos2

cosθ cosθ cosθ

cosθ

θ

cosθ(2 cosθ−1) = 0.

cosθ = 0

θ = , ±π, ±2π,… ,
π

2

π

2

π

2

cosθ = 1/2

θ = , ±2π,…or θ =− ,− ±2π,… ,
π

3

π

3

π

3

π

3

θ = +nπ, θ = +2nπ
π

2

π

3

θ =− +2nπ, n = 0,±1,±2,… .
π

3

sin(2θ) tan(θ)

2 sinθcosθ = .
sinθ

cosθ

cosθ θ

θ

2 sinθ θ−sinθ = 0.cos2

θ

cosθ

cosθ = 0 cosθ

sinθ

sinθ

sinθ(2 θ−1) = 0.cos2

θ sinθ = 0 θ = 1/2cos2

θ = 0,±π, ±2π,… . θ = π/4, (π/4)±(π/2), (π/4)±π,… .

θ = nπ
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with 

Find all solutions to the equation 

Hint

Use the double-angle formula for cosine (Equation ).

Answer

for .

Prove the trigonometric identity 

Solution:

We start with the Pythagorean identity (Equation )

Dividing both sides of this equation by  we obtain

Since  and , we conclude that

Prove the trigonometric identity 

Answer

Divide both sides of the identity  by .

Graphs and Periods of the Trigonometric Functions
We have seen that as we travel around the unit circle, the values of the trigonometric functions repeat. We can see this pattern in the
graphs of the functions. Let  be a point on the unit circle and let  be the corresponding angle . Since the angle  and 

 correspond to the same point , the values of the trigonometric functions at  and at  are the same. Consequently,
the trigonometric functions are periodic functions. The period of a function  is defined to be the smallest positive value  such
that  for all values  in the domain of . The sine, cosine, secant, and cosecant functions have a period of .
Since the tangent and cotangent functions repeat on an interval of length , their period is  (Figure ).

θ = +
π

4

nπ

2

n = 0,±1,±2,… .

 Exercise 2.8.2.4

cos(2θ) = sinθ.

2.8.2.8

θ = +2nπ, +2nπ, +2nπ
3π

2

π

6

5π

6

n = 0,±1,±2,…

 Example : Proving a Trigonometric Identity2.8.2.5

1+ θ = θ.tan2 sec2

2.8.2.5

θ+ θ = 1.sin2 cos2

θ,cos2

+1 = .
θsin2

θcos2
1

θcos2

sinθ/ cosθ = tanθ 1/ cosθ = sec θ

θ+1 = θ.tan2 sec2

 Exercise 2.8.2.5

1+ θ = θ.cot2 csc2

θ+ θ = 1sin2 cos2 θsin2

P = (x, y) θ θ

θ+2π P θ θ+2π

f p

f(x+p) = f(x) x f 2π

π π 2.8.2.5
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Figure : The six trigonometric functions are periodic.

Just as with algebraic functions, we can apply transformations to trigonometric functions. In particular, consider the following
function:

In Figure , the constant  causes a horizontal or phase shift. The factor  changes the period. This transformed sine
function will have a period . The factor  results in a vertical stretch by a factor of . We say  is the “amplitude of .”
The constant  causes a vertical shift.

Figure : A graph of a general sine function.

Notice in Figure  that the graph of  is the graph of  shifted to the left  units. Therefore, we can write

Similarly, we can view the graph of  as the graph of  shifted right  units, and state that 

2.8.2.5

f(x) = A sin(B(x−α))+C.

2.8.2.6 α B

2π/|B| A |A| |A| f

C

2.8.2.6

2.8.2.6 y = cosx y = sinx π/2

cosx = sin(x+π/2).

y = sinx y = cosx π/2
sinx = cos(x−π/2).
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A shifted sine curve arises naturally when graphing the number of hours of daylight in a given location as a function of the day of
the year. For example, suppose a city reports that June 21 is the longest day of the year with 15.7 hours and December 21 is the
shortest day of the year with 8.3 hours. It can be shown that the function

is a model for the number of hours of daylight  as a function of day of the year  (Figure ).

Figure : The hours of daylight as a function of day of the year can be modeled by a shifted sine curve.

Sketch a graph of 

Solution

This graph is a phase shift of  to the right by  units, followed by a horizontal compression by a factor of 2, a
vertical stretch by a factor of 3, and then a vertical shift by 1 unit. The period of  is .

Describe the relationship between the graph of  and the graph of .

Hint

h(t) = 3.7 sin( (x−80.5))+12
2π

365

h t 2.8.2.7

2.8.2.7

 Example : Sketching the Graph of a Transformed Sine Curve2.8.2.6

f(x) = 3 sin(2(x− ))+1.π

4

y = sin(x) π/4
f π

 Exercise 2.8.2.6

f(x) = 3 sin(4x)−5 y = sin(x)
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The graph of  can be sketched using the graph of  and a sequence of three transformations.

Answer

To graph , the graph of  needs to be compressed horizontally by a factor of 4, then
stretched vertically by a factor of 3, then shifted down 5 units. The function  will have a period of  and an amplitude
of 3.

Inverse Trigonometric Functions
The six basic trigonometric functions are periodic, and therefore they are not one-to-one. However, if we restrict the domain of a
trigonometric function to an interval where it is one-to-one, we can define its inverse. Consider the sine function. The sine function
is one-to-one on an infinite number of intervals, but the standard convention is to restrict the domain to the interval . By
doing so, we define the inverse sine function on the domain  such that for any  in the interval , the inverse sine
function tells us which angle  in the interval  satisfies . Similarly, we can restrict the domains of the other
trigonometric functions to define inverse trigonometric functions, which are functions that tell us which angle in a certain interval
has a specified trigonometric value.

The inverse sine function, denoted  or , and the inverse cosine function, denoted  or , are defined on
the domain  as follows:

if and only if  and ;

if and only if  and .

The inverse tangent function, denoted  or , and inverse cotangent function, denoted  or , are defined
on the domain  as follows:

if and only if  and ;

if and only if  and .

The inverse cosecant function, denoted  or , and inverse secant function, denoted  or , are defined on
the domain  as follows:

if and only if  and ;

if and only if  and .

To graph the inverse trigonometric functions, we use the graphs of the trigonometric functions restricted to the domains defined
earlier and reflect the graphs about the line  (Figure ).

f y = sin(x)

f(x) = 3 sin(4x)−5 y = sin(x)
f π/2

[− , ]π

2
π

2
[−1, 1] x [−1, 1]

θ [− , ]π
2

π
2

sinθ = x

 Definition: inverse trigonometric functions

sin−1 arcsin cos−1 arccos
D = {x| −1 ≤ x ≤ 1}

(x) = ysin−1

sin(y) = x − ≤ y ≤π
2

π
2

(x) = ycos−1

cos(y) = x 0 ≤ y ≤ π

tan−1 arctan cot−1 arccot
D = {x| −∞< x <∞}

(x) = ytan−1

tan(y) = x − < y <π

2
π

2

(x) = ycot−1

cot(y) = x 0 < y < π

csc−1 arccsc sec−1 arcsec
D = {x | |x| ≥ 1}

(x) = ycsc−1

csc(y) = x − ≤ y ≤ , y ≠ 0π

2
π

2

(x) = ysec−1

sec(y) = x 0 ≤ y ≤ π, y ≠ π/2

y = x 2.8.2.5
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Figure : The graph of each of the inverse trigonometric functions is a reflection about the line  of the corresponding
restricted trigonometric function.

When evaluating an inverse trigonometric function, the output is an angle. For example, to evaluate , we need to find an
angle  such that . Clearly, many angles have this property. However, given the definition of , we need the angle 
that not only solves this equation, but also lies in the interval . We conclude that .

We now consider a composition of a trigonometric function and its inverse. For example, consider the two expressions 

 and 

For the first one, we simplify as follows:

For the second one, we have

The inverse function is supposed to “undo” the original function, so why isn’t  Recalling our definition of
inverse functions, a function  and its inverse  satisfy the conditions  for all  in the domain of  and 

 for all  in the domain of , so what happened here? The issue is that the inverse sine function, , is the
inverse of the restricted sine function defined on the domain . Therefore, for  in the interval , it is true that 

. However, for values of  outside this interval, the equation does not hold, even though  is defined
for all real numbers .

What about  Does that have a similar issue? The answer is no. Since the domain of  is the interval , we
conclude that  if  and the expression is not defined for other values of . To summarize,

 if 

and

2.8.2.5 y = x

( )cos−1 1
2

θ cosθ = 1
2

cos−1 θ

[0, π] ( ) =cos−1 1
2

π

3

sin( ( ))sin−1 2√
2

(sin(π)).sin−1

sin( ( )) = sin( )= .sin−1 2
–

√

2

π

4

2
–

√

2

(sin(π)) = (0) = 0.sin−1 sin−1

(sin(π)) = π?sin−1

f f−1 f( (y)) = yf−1 y f−1

(f(x)) = xf−1 x f sin−1

[− , ]π

2
π

2
x [− , ]π

2
π

2

(sinx) = xsin−1 x (sinx)sin−1

x

sin( y)?sin−1 sin−1 [−1, 1]
sin( y) = ysin−1 −1 ≤ y ≤ 1 y

sin( y) = ysin−1 −1 ≤ y ≤ 1
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 if 

Similarly, for the cosine function,

 if 

and

 if 

Similar properties hold for the other trigonometric functions and their inverses.

Evaluate each of the following expressions.

a. 

b. 

c. 
d. 

Solution

a. Evaluating  is equivalent to finding the angle  such that  and . The angle 
 satisfies these two conditions. Therefore, .

b. First we use the fact that  Then . Therefore, 
.

c. To evaluate ,first use the fact that . Then we need to find the angle  such that 
 and . Since  satisfies both these conditions, we have 

.
d. Since , we need to evaluate . That is, we need to find the angle  such that 

and . Since  satisfies both these conditions, we can conclude that 

In many areas of science, engineering, and mathematics, it is useful to know the maximum value a function can obtain, even if
we don’t know its exact value at a given instant. For instance, if we have a function describing the strength of a roof beam, we
would want to know the maximum weight the beam can support without breaking. If we have a function that describes the
speed of a train, we would want to know its maximum speed before it jumps off the rails. Safe design often depends on
knowing maximum values.

This project describes a simple example of a function with a maximum value that depends on two equation coefficients. We
will see that maximum values can depend on several factors other than the independent variable .

1. Consider the graph in Figure  of the function  Describe its overall shape. Is it periodic? How do
you know?

(sinx) = xsin−1 − ≤ x ≤ .π
2

π
2

cos( y) = ycos−1 −1 ≤ y ≤ 1

(cosx) = xcos−1 0 ≤ x ≤ π.

 Example : Evaluating Expressions Involving Inverse Trigonometric Functions2.8.2.5

(− )sin−1 3√
2

tan( (− ))tan−1 1
3√

(cos( ))cos−1 5π

4

(cos( ))sin−1 2π
3

(− /2)sin−1 3
–

√ θ sinθ =− /23
–

√ −π/2 ≤ θ ≤ π/2

θ =−π/3 (− /2) =−π/3sin−1 3
–

√

(−1/ ) =−π/6.tan−1 3
–

√ tan(−π/6) =−1/ 3
–

√

tan( (−1/ )) =−1/tan−1 3
–

√ 3
–

√

(cos(5π/4))cos−1 cos(5π/4) =− /22
–

√ θ

cos(θ) =− /22
–

√ 0 ≤ θ ≤ π 3π/4
(cos(5π/4)) = (− /2)) = 3π/4cos−1 cos−1 2

–
√

cos(2π/3) =−1/2 (−1/2)sin−1 θ sin(θ) =−1/2
−π/2 ≤ θ ≤ π/2 −π/6
(cos(2π/3)) = (−1/2) =−π/6.sin−1 sin−1

 The Maximum Value of a Function

x

2.8.2.6 y = sinx+cosx.
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Figure : The graph of .

Using a graphing calculator or other graphing device, estimate the - and -values of the maximum point for the graph (the
first such point where ). It may be helpful to express the -value as a multiple of 

2. Now consider other graphs of the form  for various values of  and  Sketch the graph when 
and  and find the - and -values for the maximum point. (Remember to express the -value as a multiple of , if
possible.) Has it moved?

3. Repeat for  Is there any relationship to what you found in part (2)?

4. Complete the following table, adding a few choices of your own for  and 

0 1   3 4   

1 0   4 3   

1 1   1   

1 2   1   

2 1   12 5   

2 2   5 12   

5. Try to figure out the formula for the -values.

6. The formula for the -values is a little harder. The most helpful points from the table are  (Hint:
Consider inverse trigonometric functions.)

7. If you found formulas for parts (5) and (6), show that they work together. That is, substitute the -value formula you found into 
 and simplify it to arrive at the -value formula you found.

Key Concepts
Radian measure is defined such that the angle associated with the arc of length 1 on the unit circle has radian measure 1. An
angle with a degree measure of ° has a radian measure of  rad.
For acute angles ,the values of the trigonometric functions are defined as ratios of two sides of a right triangle in which one of
the acute angles is .
For a general angle , let  be a point on a circle of radius  corresponding to this angle . The trigonometric functions can
be written as ratios involving , , and .
The trigonometric functions are periodic. The sine, cosine, secant, and cosecant functions have period . The tangent and
cotangent functions have period .

Key Equations
Generalized sine function

2.8.2.6 y = sin x+cos x

x y

x > 0 x π.

y = A sinx+B cosx A B. A = 2
B = 1, x y x π

A = 1, B = 2.

A B :

A B x y A B x y

3
–

√

3
–

√

y

x (1, 1), (1, ), ( , 1).3
–

√ 3
–

√

x

y = A sinx+B cosx y

180 π

θ

θ

θ (x, y) r θ

x y r

2π

π

f(x) = A sin(B(x−α))+C
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Glossary

periodic function
a function is periodic if it has a repeating pattern as the values of  move from left to right

radians
for a circular arc of length  on a circle of radius 1, the radian measure of the associated angle  is 

trigonometric functions
functions of an angle defined as ratios of the lengths of the sides of a right triangle

trigonometric identity
an equation involving trigonometric functions that is true for all angles  for which the functions in the equation are defined

This page titled 2.8.2: Trigonometric Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Edwin
“Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

1.3: Trigonometric Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
1.4: Inverse Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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2.8.3: Exponential_and_Logarithmic_Functions

Identify the form of an exponential function.
Explain the difference between the graphs of  and .
Recognize the significance of the number .
Identify the form of a logarithmic function.
Explain the relationship between exponential and logarithmic functions.
Describe how to calculate a logarithm to a different base.

In this section we examine exponential and logarithmic functions. We use the properties of these functions to solve equations
involving exponential or logarithmic terms, and we study the meaning and importance of the number . We also define hyperbolic
and inverse hyperbolic functions, which involve combinations of exponential and logarithmic functions. (Note that we present
alternative definitions of exponential and logarithmic functions in the chapter Applications of Integrations, and prove that the
functions have the same properties with either definition.)

Exponential Functions

Recall the properties of exponents: If  is a positive integer, then we define  (with  factors of ). If  is a negative
integer, then  for some positive integer , and we define . Also,  is defined to be . If  is a rational
number, then , where  and  are integers and . For example, . However,
how is  defined if  is an irrational number? For example, what do we mean by ? This is too complex a question for us to
answer fully right now; however, we can make an approximation.

Table : Values of  for a List of Rational Numbers Approximating 

1.4 1.41 1.414 1.4142 1.41421 1.414213

2.639 2.65737 2.66475 2.665119 2.665138 2.665143

In Table , we list some rational numbers approaching , and the values of  for each rational number  are presented as
well. We claim that if we choose rational numbers  getting closer and closer to , the values of  get closer and closer to some
number . We define that number  to be .

Suppose a particular population of bacteria is known to double in size every  hours. If a culture starts with  bacteria, the
number of bacteria after  hours is . The number of bacteria after  hours is . In
general, the number of bacteria after  hours is . Letting , we see that the number of bacteria
after t hours is . Find the number of bacteria after  hours,  hours, and  hours.

Solution

The number of bacteria after 6 hours is given by

The number of bacteria after  hours is given by

The number of bacteria after  hours is given by  bacteria.

 Learning Objectives

xb bx

e

e

x = b ⋅ b⋯ bbx x b x

x =−y y = = 1/bx b−y by b0 1 x

x = p/q p q = =bx bp/q bp−−√
q

= = = 2793/2 93
−−

√ ( )9–√
3

bx x 2 2√

2.8.3.2 2x 2
–√

x

2x

2.8.3.2 2
–

√ 2x x

x 2
–

√ 2x

L L 2 2√

 Example : Bacterial Growth2.8.3.1

4 1000

4 n(4) = 1000 ⋅ 2 8 n(8) = n(4) ⋅ 2 = 1000 ⋅ 22

4m n(4m) = 1000 ⋅ 2m t = 4m

n(t) = 1000 ⋅ 2t/4 6 10 24

n(6) = 1000 ⋅ ≈ 2828 bacteria.26/4

10

n(10) = 1000 ⋅ ≈ 5657 bacteria.210/4

24 n(24) = 1000 ⋅ = 64, 00026
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Given the exponential function , evaluate  and .

Answer

.

Graphing Exponential Functions
For any base , , the exponential function  is defined for all real numbers  and . Therefore, the domain
of  is  and the range is . To graph , we note that for ,  is increasing on  and 

 as , whereas  as . On the other hand, if ,  is decreasing on  and 
 as  whereas  as  (Figure ).

Figure : If , then  is increasing on . If , then  is decreasing on .

Note that exponential functions satisfy the general laws of exponents. To remind you of these laws, we state them as rules.

For any constants , , and for all  and 

1. 

2. 

3. 

4. 

5. 

Use the laws of exponents to simplify each of the following expressions.

a. 

b. 

Soution

a. We can simplify as follows:

 Exercise 2.8.3.1

f(x) = 100 ⋅ 3x/2 f(4) f(10)

f(4) = 900

f(10) = 24, 300

b > 0 b ≠ 1 f(x) = bx x > 0bx

f(x) = bx (−∞,∞) (0,∞) bx b > 1 bx (−∞,∞)
→∞bx x →∞ →0bx x →−∞ 0 < b < 1 f(x) = bx (−∞,∞)
→ 0bx x →∞ →∞bx x →−∞ 2.8.3.2

2.8.3.2 b > 1 bx (−∞,∞) 0 < b < 1 bx (−∞,∞)

 Laws of Exponents

a > 0 b > 0 x y,

⋅ =bx by bx+y

=
bx

by
bx−y

( =bx)y bxy

(ab =)x axbx

=
ax

bx
( )

a

b

x

 Example : Using the Laws of Exponents2.8.3.2

(2x2/3)3

(4x−1/3)2

(x3y−1)2

(xy2)−2

= = = = .
(2x2/3)3

(4x−1/3)2
(23 x2/3)3

(42 x−1/3)2
8x2

16x−2/3

x2x2/3

2

x8/3

2
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b. We can simplify as follows:

Use the laws of exponents to simplify .

Hint

Answer

The Number e
A special type of exponential function appears frequently in real-world applications. To describe it, consider the following example
of exponential growth, which arises from compounding interest in a savings account. Suppose a person invests  dollars in a
savings account with an annual interest rate , compounded annually. The amount of money after 1 year is

.

The amount of money after  years is

.

More generally, the amount after  years is

.

If the money is compounded 2 times per year, the amount of money after half a year is

.

The amount of money after  year is

After  years, the amount of money in the account is

.

More generally, if the money is compounded  times per year, the amount of money in the account after  years is given by the
function

What happens as  To answer this question, we let  and write

and examine the behavior of  as , using a table of values (Table ).

Table : Values of  as 

10 100 1000 10,000 100,000 1,000,000

= = = = .
(x3y−1)2

(xy2)−2

( (x3)2 y−1)2

(x−2 y2)−2

x6y−2

x−2y−4
x6x2y−2y4 x8y2

 Exercise 2.8.3.2

6x−3y2

12x−4y5

/ =xa xb xa−b

x/(2 )y3

P

r

A(1) = P +rP = P (1+r)

2

A(2) = A(1)+rA(1) = P (1+r)+rP (1+r) = P (1+r)2

t

A(t) = P (1+r)t

A( ) = P +( )P = P (1+( ))
1

2

r

2

r

2

1

A(1) = A( )+( )A( ) = P (1+ )+ ((P (1+ ))= P .
1

2

r

2

1

2

r

2

r

2

r

2
(1+ )

r

2

2

t

A(t) = P(1+ )
r

2

2t

n t

A(t) = P .(1+ )
r

n

nt

n →∞? m = n/r

= ,(1+ )
r

n

nt

(1+ )
1

m

mrt

(1+1/m)m m →∞ 2.8.3.3

2.8.3.3 (1+ )
1

m

m

m → ∞

m
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2.5937 2.7048 2.71692 2.71815 2.718268 2.718280

Looking at this table, it appears that  is approaching a number between  and  as . In fact, 
does approach some number as . We call this number . To six decimal places of accuracy,

The letter  was first used to represent this number by the Swiss mathematician Leonhard Euler during the 1720s. Although
Euler did not discover the number, he showed many important connections between  and logarithmic functions. We still use
the notation  today to honor Euler’s work because it appears in many areas of mathematics and because we can use it in many
practical applications.

Returning to our savings account example, we can conclude that if a person puts  dollars in an account at an annual interest rate 
, compounded continuously, then . This function may be familiar. Since functions involving base  arise often in

applications, we call the function  the natural exponential function. Not only is this function interesting because of the
definition of the number , but also, as discussed next, its graph has an important property.

Since , we know  is increasing on . In Figure , we show a graph of  along with a
tangent line to the graph of  at . We give a precise definition of tangent line in the next chapter; but, informally, we say a
tangent line to a graph of  at  is a line that passes through the point  and has the same “slope” as  at that point .
The function  is the only exponential function  with tangent line at  that has a slope of  As we see later in the
text, having this property makes the natural exponential function the most simple exponential function to use in many instances.

Figure : The graph of  has a tangent line with slope  at .

Logarithmic Functions

Using our understanding of exponential functions, we can discuss their inverses, which are the logarithmic functions. These come
in handy when we need to consider any phenomenon that varies over a wide range of values, such as the pH scale in chemistry or
decibels in sound levels.

The exponential function  is one-to-one, with domain  and range . Therefore, it has an inverse function,
called the logarithmic function with base . For any , the logarithmic function with base , denoted , has domain 

 and range ,and satisfies

if and only if .

For example,

since ,

(1+ )
1

m

m

(1+1/m)m 2.7 2.8 m →∞ (1+1/m)m

m →∞ e

e ≈ 2.718282.

 Leonhard Euler

e

e

e

P

r A(t) = P ert e

f(x) = ex

e

e > 1 f(x) = ex (−∞,∞) 2.8.3.3 f(x) = ex

f x = 0
f x = a (a, f(a)) f

f(x) = ex bx x = 0 1.

2.8.3.3 f(x) = ex 1 x = 0

f(x) = bx (−∞,∞) (0,∞)
b b > 0, b ≠ 1 b logb

(0,∞) (−∞,∞)

(x) = ylogb

= xby

(8) = 3log2

= 823

( ) =−2log10
1

100
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since ,

since  for any base .

Furthermore, since  and  are inverse functions,

and

The most commonly used logarithmic function is the function . Since this function uses natural  as its base, it is called the
natural logarithm. Here we use the notation  or  to mean . For example,

Since the functions  and  are inverses of each other,

 and ,

and their graphs are symmetric about the line  (Figure ).

Figure : The functions  and  are inverses of each other, so their graphs are symmetric about the line .

In general, for any base , , the function  is symmetric about the line  with the function .
Using this fact and the graphs of the exponential functions, we graph functions  for several values of  ( Figure ).

Figure : Graphs of  are depicted for .

Before solving some equations involving exponential and logarithmic functions, let’s review the basic properties of logarithms.

= =10−2 1

102
1

100

(1) = 0logb

= 1b0 b > 0

y = (x)logb y = bx

( ) = xlogb bx

= x.b (x)logb

loge e

ln(x) lnx (x)loge

ln(e)

ln( )e3

ln(1)

= (e) = 1loge

= ( ) = 3loge e3

= (1) = 0.loge

f(x) = ex g(x) = ln(x)

ln( ) = xex = xeln x

y = x 2.8.3.4

2.8.3.4 y = ex y = ln(x) y = x

b > 0 b ≠ 1 g(x) = (x)logb y = x f(x) = bx

logb b > 1 2.8.3.5

2.8.3.5 y = (x)logb b = 2, e, 10
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If , and  is any real number, then

Product property

Quotient property

Power property

Solve each of the following equations for .

a. 
b. 

Solution

a. Applying the natural logarithm function to both sides of the equation, we have

.

Using the power property of logarithms,

Therefore,

b. Multiplying both sides of the equation by ,we arrive at the equation

.

Rewriting this equation as

,

we can then rewrite it as a quadratic equation in :

Now we can solve the quadratic equation. Factoring this equation, we obtain

Therefore, the solutions satisfy  and . Taking the natural logarithm of both sides gives us the solutions 
.

Solve

Hint

First solve the equation for 

Answer

 Properties of Logarithms

a, b, c > 0, b ≠ 1 r

(ac) = (a)+ (c)logb logb logb (2.8.3.1)

( )= (a)− (c)logb

a

c
logb logb (2.8.3.2)

( ) = r (a)logb ar logb (2.8.3.3)

 Example : Solving Equations Involving Exponential Functions2.8.3.4

x

= 25x

+6 = 5ex e−x

ln = ln25x

x ln5 = ln2.

x = .
ln2

ln5

ex

+6 = 5e2x ex

−5 +6 = 0e2x ex

ex

( −5( )+6 = 0.ex)2 ex

( −3)( −2) = 0.ex ex

= 3ex = 2ex

x = ln3, ln2

 Exercise 2.8.3.4

/(3+ ) = 1/2.e2x e2x

e2x
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.

Solve each of the following equations for .

a. 

b. 
c. 

Solution

a. By the definition of the natural logarithm function,

if and only if .

Therefore, the solution is .

b. Using the product (Equation ) and power (Equation ) properties of logarithmic functions, rewrite the left-hand
side of the equation as

Therefore, the equation can be rewritten as

or

.

The solution is .

c. Using the power property (Equation ) of logarithmic functions, we can rewrite the equation as .

Using the quotient property (Equation ), this becomes

Therefore, , which implies . We should then check for any extraneous solutions.

Solve .

Hint

First use the power property, then use the product property of logarithms.

Answer

x =
ln3

2

 Example : Solving Equations Involving Logarithmic Functions2.8.3.5

x

ln( ) = 4
1

x

+ x = 2log10 x
−−

√ log10
ln(2x)−3 ln( ) = 0x2

ln( ) = 4
1

x

=e4
1

x

x = 1/e4

2.8.3.1 2.8.3.3

+ xlog10 x−−√ log10 = xlog10 x−−√

= log10 x3/2

= x.
3

2
log10

x = 2
3

2
log10

x =log10
4

3

x = = 10104/3 10
−−

√3

2.8.3.3 ln(2x)−ln( ) = 0x6

2.8.3.2

ln( ) = 0
2

x5

2/ = 1x5 x = 2
–

√5

 Exercise 2.8.3.5

ln( )−4 ln(x) = 1x3

x =
1

e
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When evaluating a logarithmic function with a calculator, you may have noticed that the only options are  or , called the
common logarithm, or , which is the natural logarithm. However, exponential functions and logarithm functions can be
expressed in terms of any desired base . If you need to use a calculator to evaluate an expression with a different base, you can
apply the change-of-base formulas first. Using this change of base, we typically write a given exponential or logarithmic function
in terms of the natural exponential and natural logarithmic functions.

Let , and .

1.  for any real number .

If , this equation reduces to .

2.  for any real number .

If , this equation reduces to .

Use a calculating utility to evaluate  with the change-of-base formula presented earlier.

Solution

Use the second equation with  and : .

Use the change-of-base formula and a calculating utility to evaluate .

Hint

Use the change of base to rewrite this expression in terms of expressions involving the natural logarithm function.

Answer

In 1935, Charles Richter developed a scale (now known as the Richter scale) to measure the magnitude of an earthquake. The
scale is a base-10 logarithmic scale, and it can be described as follows: Consider one earthquake with magnitude  on the
Richter scale and a second earthquake with magnitude  on the Richter scale. Suppose , which means the
earthquake of magnitude  is stronger, but how much stronger is it than the other earthquake?

Figure : (credit: modification of work by Robb Hannawacker, NPS)

A way of measuring the intensity of an earthquake is by using a seismograph to measure the amplitude of the earthquake
waves. If  is the amplitude measured for the first earthquake and  is the amplitude measured for the second earthquake,
then the amplitudes and magnitudes of the two earthquakes satisfy the following equation:

.

log10 log
ln

b

 Rule: Change-of-Base Formulas

a > 0, b > 0 a ≠ 1, b ≠ 1

=ax bx alogb x

b = e = =ax ex aloge ex ln a

x =loga

xlogb

alogb

x > 0

b = e x =loga

lnx

lna

 Example : Changing Bases2.8.3.6

7log3

a = 3 b = e 7 = ≈ 1.77124log3
ln7

ln3

 Exercise 2.8.3.6

6log4

6 = ≈ 1.29248log4
ln6

ln4

 Example : The Richter Scale for Earthquakes2.8.3.7

R1

R2 >R1 R2

R1

2.8.3.6

A1 A2

− = ( )R1 R2 log10
A1

A2
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Consider an earthquake that measures 8 on the Richter scale and an earthquake that measures 7 on the Richter scale. Then,

.

Therefore,

,

which implies  or . Since  is 10 times the size of , we say that the first earthquake is 10 times as
intense as the second earthquake. On the other hand, if one earthquake measures 8 on the Richter scale and another measures 6,
then the relative intensity of the two earthquakes satisfies the equation

.

Therefore, .That is, the first earthquake is 100 times more intense than the second earthquake.

How can we use logarithmic functions to compare the relative severity of the magnitude 9 earthquake in Japan in 2011 with the
magnitude 7.3 earthquake in Haiti in 2010?

Solution

To compare the Japan and Haiti earthquakes, we can use an equation presented earlier:

.

Therefore, , and we conclude that the earthquake in Japan was approximately 50 times more intense than the
earthquake in Haiti.

Compare the relative severity of a magnitude  earthquake with a magnitude  earthquake.

Hint

.

Answer

The magnitude  earthquake is roughly  times as severe as the magnitude  earthquake.

Key Concepts
The exponential function  is increasing if  and decreasing if . Its domain is  and its range is 

.
The logarithmic function  is the inverse of . Its domain is  and its range is 
The natural exponential function is  and the natural logarithmic function is 
Given an exponential function or logarithmic function in base , we can make a change of base to convert this function to any
base ,  We typically convert to base .

Glossary

base
the number  in the exponential function  and the logarithmic function 

exponent
the value  in the expression 

natural exponential function
the function 

8−7 = ( )log10
A1

A2

( ) = 1log10
A1

A2

/ = 10A1 A2 = 10A1 A2 A1 A2

( ) = 8−6 = 2log10
A1

A2

= 100A1 A2

9−7.3 = ( )log10
A1

A2

/ =A1 A2 101.7

 Exercise 2.8.3.7

8.4 7.4

− = (A1/A2)R1 R2 log10

8.4 10 7.4

y = bx b > 1 0 < b < 1 (−∞,∞)
(0,∞)

y = (x)logb y = bx (0,∞) (−∞,∞).
y = ex y = lnx = x.loge

a

b > 0 b ≠ 1. e

b f(x) = bx f(x) = xlogb

x bx

f(x) = ex
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natural logarithm
the function 

number e
as  gets larger, the quantity  gets closer to some real number; we define that real number to be  the value of 
is approximately 

This page titled 2.8.3: Exponential_and_Logarithmic_Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Edwin “Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts
platform.

1.5: Exponential and Logarithmic Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

lnx = xloge

m (1+(1/m)m e; e

2.718282
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2.8.4: Properties_of_Logarithms

By the end of this section, you will be able to:

Use the properties of logarithms
Use the Change of Base Formula

Before you get started, take this readiness quiz.

1. Evaluate: a.  b. . 
If you missed this problem, review Example 5.14.

2. Write with a rational exponent: . 
If you missed this problem, review Example 8.27.

3. Round to three decimal places: . 
If you missed this problem, review Example 1.34.

Use the Properties of Logarithms
Now that we have learned about exponential and logarithmic functions, we can introduce some of the properties of logarithms.
These will be very helpful as we continue to solve both exponential and logarithmic equations.

The first two properties derive from the definition of logarithms. Since , we can convert this to logarithmic form and get 
. Also, since , we get .

Properties of Logarithms

In the next example we could evaluate the logarithm by converting to exponential form, as we have done previously, but
recognizing and then applying the properties saves time.

Evaluate using the properties of logarithms:

a. 
b. 

Solution:

a.

Use the property, .

b.

Use the property, .

 Learning Objectives

a0 a1

yx2−−−
√3

2.5646415

= 1a0

1 = 0loga = aa1 a = 1loga

 Definition 2.8.4.1

1 = 0 a = 1loga loga

 Example 2.8.4.1

1log8

6log6

1log8

1 = 0loga

0 1 = 0log8

6log6

a = 1loga

1 6 = 1log6
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Evaluate using the properties of logarithms:

a. 
b. 

Answer
a. 
b. 

Evaluate using the properties of logarithms:

a. 
b. 

Answer
a. 
b. 

The next two properties can also be verified by converting them from exponential form to logarithmic form, or the reverse.

The exponential equation  converts to the logarithmic equation , which is a true statement for positive
values for  only.

The logarithmic equation  converts to the exponential equation , which is also a true statement.

These two properties are called inverse properties because, when we have the same base, raising to a power “undoes” the log and
taking the log “undoes” raising to a power. These two properties show the composition of functions. Both ended up with the
identity function which shows again that the exponential and logarithmic functions are inverse functions.

Inverse Properties of Logarithms

For  and ,

In the next example, apply the inverse properties of logarithms.

Evaluate using the properties of logarithms:

a. 
b. 

Solution:

a.

Use the property, .

b.

 Exercise 2.8.4.1

1log13

9log9

0
1

 Exercise 2.8.4.2

1log5

7log7

0
1

= xa xloga x = xloga loga
x

= xloga a
x =ax ax

 Definition 2.8.4.2

a > 0, x > 0 a ≠ 1

= x = xa xloga loga a
x

 Example 2.8.4.2

4 9log4

log3 35

4 9log4

= xa xloga

9 = 94 9log4
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Use the property, .

Evaluate using the properties of logarithms:

a. 
b. 

Answer
a. 
b. 

Evaluate using the properties of logarithms:

a. 
b. 

Answer
a. 
b. 

There are three more properties of logarithms that will be useful in our work. We know exponential functions and logarithmic
function are very interrelated. Our definition of logarithm shows us that a logarithm is the exponent of the equivalent exponential.
The properties of exponents have related properties for exponents.

In the Product Property of Exponents, , we see that to multiply the same base, we add the exponents. The Product
Property of Logarithms,  tells us to take the log of a product, we add the log of the factors.

Product Property of Logarithms

If  and  then

The logarithm of a product is the sum of the logarithms.

We use this property to write the log of a product as a sum of the logs of each factor.

Use the Product Property of Logarithms to write each logarithm as a sum of logarithms. Simplify, if possible:

a. 
b. 

Solution:

a.

Use the Product Property, .

log3 35

= xa xloga

5 = 5log3 35

 Exercise 2.8.4.3

5 15log5

log7 74

15
4

 Exercise 2.8.4.4

2 8log2

log2 215

8
15

⋅ =am an am+n

M ⋅N = M + Nloga loga loga

 Definition 2.8.4.3

M > 0,N > 0, a > 0 a ≠ 1,

(M ⋅N) = M + Nloga loga loga

 Example 2.8.4.3

7xlog3

64xylog4

7xlog3

(M ⋅N) = M + Nloga loga loga
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b.

Use the Product Property, .

Simplify be evaluating, .

 

Use the Product Property of Logarithms to write each logarithm as a sum of logarithms. Simplify, if possible:

a. 
b. 

Answer
a. 
b. 

Use the Product Property of Logarithms to write each logarithm as a sum of logarithms. Simplify, if possible:

a. 
b. 

Answer
a. 
b. 

Similarly, in the Quotient Property of Exponents, , we see that to divide the same base, we subtract the exponents. The
Quotient Property of Logarithms,  tells us to take the log of a quotient, we subtract the log of the
numerator and denominator.

Quotient Property of Logarithms

If  and  then

The logarithm of a quotient is the difference of the logarithms.

Note that .

We use this property to write the log of a quotient as a difference of the logs of each factor.

7 + xlog3 log3

7x = 7 + xlog3 log3 log3

64xylog4

(M ⋅N) = M + Nloga loga loga

64 + x+ ylog4 log4 log4

64log4

3 + x+ ylog4 log4

64xy = 3 + x+ ylog4 log4 log4

 Exercise 2.8.4.5

3xlog3

8xylog2

1 + xlog3

3 + x+ ylog2 log2

 Exercise 2.8.4.6

9xlog9

27xylog3

1 + xlog9

3 + x+ ylog3 log3

=am

an am−n

= M − Nloga
M

N
loga loga

 Definition 2.8.4.4

M > 0,N > 0, a > 0 a ≠ 1,

= M − Nloga
M
N

loga loga

M = N ≠ (M −N)loga loga loga
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Use the Quotient Property of Logarithms to write each logarithm as a difference of logarithms. Simplify, if possible.

a. 
b. 

Solution:

a.

Use the Quotient Property, .

Simplify.

b.

Use the Quotient Property, .

Simplify.

Use the Quotient Property of Logarithms to write each logarithm as a difference of logarithms. Simplify, if possible.

a. 
b. 

Answer
a. 
b. 

Use the Quotient Property of Logarithms to write each logarithm as a difference of logarithms. Simplify, if possible.

a. 
b. 

Answer
a. 
b. 

The third property of logarithms is related to the Power Property of Exponents, , we see that to raise a power to a
power, we multiply the exponents. The Power Property of Logarithms,  tells us to take the log of a number
raised to a power, we multiply the power times the log of the number.

 Example 2.8.4.4

log5
5
7

log x

100

log5
5
7

= M − Nloga
M

N
loga loga

5 − 7log5 log5

1 − 7log5

= 1 − 7log5
5
7

log5

log x

100

= M − Nloga
M

N
loga loga

log x−log 100

log x−2

log = log x−2x

100

 Exercise 2.8.4.7

log4
3
4

log x

1000

3 −1log4

log x−3

 Exercise 2.8.4.8

log2
5
4

log 10
y

5 −2log2

1 −log y

=( )am n am⋅n

= p Mloga M
p loga
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Power Property of Logarithms

If  and  is any real number then,

The log of a number raised to a power as the product product of the power times the log of the number.

We use this property to write the log of a number raised to a power as the product of the power times the log of the number. We
essentially take the exponent and throw it in front of the logarithm.

Use the Power Property of Logarithms to write each logarithm as a product of logarithms. Simplify, if possible.

a. 
b. 

Solution:

a.

Use the Power Property, .

3 

b.

Use the Power Property, .

Use the Power Property of Logarithms to write each logarithm as a product of logarithms. Simplify, if possible.

a. 
b. 

Answer
a. 
b. 100

Use the Power Property of Logarithms to write each logarithm as a product of logarithms. Simplify, if possible.

a. 
b. 

Answer
a. 
b. 

 Definition 2.8.4.5

M > 0, a > 0, a ≠ 1 p

= p Mloga M
p loga

 Example 2.8.4.5

log5 43

log x10

log5 43

= p Mloga M
p loga

4log5

= 3 4log5 43 log5

log x10

= p Mloga M
p loga

10 log x

log = 10 log xx10

 Exercise 2.8.4.9

log7 54

log x100

4 5log7

⋅ log x

 Exercise 2.8.4.10

log2 37

log x20

7 3log2

20 ⋅ log x

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76298?pdf


2.8.4.7 https://phys.libretexts.org/@go/page/76298

We summarize the Properties of Logarithms here for easy reference. While the natural logarithms are a special case of these
properties, it is often helpful to also show the natural logarithm version of each property.

Properties of Logarithms

If  and  is any real number then,

Property Base Base 

Inverse Properties
  

Product Property of Logarithms

Quotient Property of Logarithms

Power Property of Logarithms

Table 10.4.1

Now that we have the properties we can use them to “expand” a logarithmic expression. This means to write the logarithm as a sum
or difference and without any powers.

We generally apply the Product and Quotient Properties before we apply the Power Property.

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Solution:

Use the Product Property, .

Use the Power Property, , on the last two terms. Simplify.

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Answer

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Answer

When we have a radical in the logarithmic expression, it is helpful to first write its radicand as a rational exponent.

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Solution

M > 0, a > 0, a ≠ 1 p

a e

1 = 0loga ln 1 = 0

a = 1loga ln e = 1

= xa xloga

= xloga a
x

= xeln x

ln = xex

(M ⋅ N) = M + Nloga loga loga ln(M ⋅ N) = lnM + lnN

= M − Nloga
M

N
loga loga ln = lnM − lnNM

N

= p Mloga M
p loga ln = p lnMM p

 Example 2.8.4.6

(2 )log4 x3y2

M ⋅N = M + Nloga loga loga

= p Mloga M
p loga

 Exercise 2.8.4.11

(5 )log2 x4y2

5 +4 x+2 ylog2 log2 log2

 Exercise 2.8.4.12

(7 )log3 x5y3

7 +5 x+3 ylog3 log3 log3

 Example 2.8.4.7

log2
x3

3 zy2

− −−−
√4
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Rewrite the radical with a rational exponent.

Use the Power Property, .

Use the Quotient Property, .

Use the Product Property, , in the second term.

Use the Power Property, , inside the parentheses.

Simplify by distributing.

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Answer

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Answer

The opposite of expanding a logarithm is to condense a sum or difference of logarithms that have the same base into a single
logarithm. We again use the properties of logarithms to help us, but in reverse.

To condense logarithmic expressions with the same base into one logarithm, we start by using the Power Property to get the
coefficients of the log terms to be one and then the Product and Quotient Properties as needed.

Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Solution:

The log expressions all have the same base, .

The first two terms are added, so we use the Product Property, .

Since the logs are subtracted, we use the Quotient Property, .

log2
x3

3 zy2

− −−−
√4

log2 ( )x3

3 zy2

1
4

= p Mloga M
p loga

( )1
4

log2
x3

3 zy2

M ⋅N = M − Nloga loga loga

( ( )− (3 z))1
4

log2 x3 log2 y2

M ⋅N = M + Nloga loga loga

( ( )−( 3 + + z))1
4

log2 x3 log2 log2 y
2 log2

= p Mloga M
p loga

(3 x−( 3 +2 y+ z))1
4

log2 log2 log2 log2

(3 x− 3 −2 y− z)1
4

log2 log2 log2 log2

= (3 x− 3 −2 y− z)log2
x3

3 zy2

− −−−
√4 1

4
log2 log2 log2 log2

 Exercise 2.8.4.13

log4
x4

2y3z2

− −−−
√5

(4 x− −3 y−2 z)1
5

log4
1
2

log4 log4

 Exercise 2.8.4.14

log3
x2

5yz

−−−
√3

(2 x− 5 − y− z)1
3

log3 log3 log3 log3

 Example 2.8.4.8

3 + x− ylog4 log4 log4

4

M + N = M : Nloga loga loga

M − N =loga loga loga
M

N
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Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Answer

Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Answer

Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Solution:

The log expressions have the same base, .

Use the Power Property, .

The terms are added, so we use the Product Property, .

 

Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Answer

Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Answer

Use the Change-of-Base Formula
To evaluate a logarithm with any other base, we can use the Change-of-Base Formula. We will show how this is derived.

 Exercise 2.8.4.15

5 + x− ylog2 log2 log2

log2
5x
y

 Exercise 2.8.4.16

6 − x− ylog3 log3 log3

log3
6
xy

 Example 2.8.4.9

2 x+4 (x+1)log3 log3

3

2 x+4 (x+1)log3 log3

M + N = M ⋅Nloga loga loga

+ (x+1log3 x
2 log3 )4

M + N = M ⋅Nloga loga loga

(x+1log3 x
2 )4

2 x+4 (x+1) = (x+1log3 log3 log3 x
2 )4

 Exercise 2.8.4.17

3 x+2 (x−1)log2 log2

(x−1log2 x
3 )2

 Exercise 2.8.4.18

2 log x+2 log(x+1)

log (x+1x2 )2
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The Change-of-Base Formula introduces a new base . This can be any base  we want where . Because our
calculators have keys for logarithms base  and base , we will rewrite the Change-of-Base Formula with the new base as  or .

Change-of-Base Formula

For any logarithmic bases  and ,

When we use a calculator to find the logarithm value, we usually round to three decimal places. This gives us an approximate value
and so we use the approximately equal symbol .

Rounding to three decimal places, approximate .

Solution:

 

Use the Change-of-Base Formula.

Identify  and . Choose  for .

Enter the expression  in the calculator using the log button

for base . Round to three decimal places.

Table 10.4.2

Rounding to three decimal places, approximate .

Answer

Rounding to three decimal places, approximate .

Answer

Suppose we want to evaluate Mloga
Let y = M .loga
Rewrite the epression in exponential form. 

Take the  of each side.logb
Use the Power Property.

Solve for y.

Substiture y = M .loga

Mloga
y = Mloga

= May

= Mlogb a
y logb

y a = Mlogb logb

y =
Mlogb
alogb

M =loga
Mlogb
alogb

b b b > 0, b ≠ 1
10 e 10 e

 Definition 2.8.4.6

a, b M > 0

M =loga
Mlogb
alogb

 new base b

M =loga
log M

log a

 new base 10

M =loga
lnM

ln a

 new base e

(≈)

 Example 2.8.4.10

35log4

a M 10 b

log 35

log 4

10

 Exercise 2.8.4.19

42log3

3.402

 Exercise 2.8.4.20

46log5

2.379
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In the previous section, we derived two important properties of logarithms, which allowed us to solve some basic exponential and
logarithmic equations.

Inverse Properties:

Exponential Property:

Change of Base:

While these properties allow us to solve a large number of problems, they are not sufficient to solve all problems involving
exponential and logarithmic equations.

Sum of Logs Property:

Difference of Logs Property:

It’s just as important to know what properties logarithms do not satisfy as to memorize the valid properties listed above. In
particular, the logarithm is not a linear function, which means that it does not distribute:

To help in this process we offer a proof of Equation  to help solidify our new rules and show how they follow from
properties you’ve already seen.

Let  and .

By definition of the logarithm,  and .

Using these expressions,

Using exponent rules on the right,

Taking the log of both sides, and utilizing the inverse property of logs,

Replacing  and  with their definition establishes the result

 properties of logs

( ) = xlogb bx (2.8.4.1)

= xb xlogb (2.8.4.2)

( ) = r (A)logb Ar logb (2.8.4.3)

(A) =logb
(A)logc
(b)logc

(2.8.4.4)

 properties of logs

(A) + (C) = (AC)logb logb logb (2.8.4.5)

(A) − (C) = ( )logb logb logb
A

C
(2.8.4.6)

logA+B ≠ logA+logB. (2.8.4.7)

2.8.4.7

 Proof

a = (A)logb c = (C)logb

= Aba = Cbc

AC = babc

AC = ba+c

(AC) = ( ) = a+clogb logb ba+c

a c

(AC) = A+ Clogb logb logb
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The proof for the difference property is very similar.

With these properties, we can rewrite expressions involving multiple logs as a single log, or break an expression involving a single
log into expressions involving multiple logs.

Write  as a single logarithm.

Solution

Using the sum of logs property on the first two terms,

This reduces our original expression to

Then using the difference of logs property,

Evaluate  without a calculator by first rewriting as a single logarithm.

Solution

On the first term, we can use the exponent property of logs to write

With the expression reduced to a sum of two logs, , we can utilize the sum of logs property

Since , we can evaluate this log without a calculator:

Without a calculator evaluate by first rewriting as a single logarithm:

Answer

Rewrite  as a sum or difference of logs

Solution

First, noticing we have a quotient of two expressions, we can utilize the difference property of logs to write

 Example 2.8.4.1

(5) + (8) − (2)log3 log3 log3

(5) + (8) = (5 ⋅ 8) = (40)log3 log3 log3 log3

(40) − (2)log3 log3

(40) − (2) = ( ) = (20)log3 log3 log3
40

2
log3

 Example 2.8.4.2

2 log(5) +log(4)

2 log(5) = log( ) = log(25)52

log(25) +log(4)

log(25) +log(4) = log(4 ⋅ 25) = log(100)

100 = 102

log(100) = log( ) = 2102

 Exercise 2.8.4.1

(8) + (4)log2 log2

(8 ⋅ 4) = (32) = ( ) = 5log2 log2 log2 25

 Example 2.8.4.3

ln( )
yx4

7

ln( ) = ln( y)−ln(7)
yx4

7
x4
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Then seeing the product in the first term, we use the sum property

Finally, we could use the exponent property on the first term

Interestingly, solving exponential equations was not the reason logarithms were originally developed.
Historically, up until the advent of calculators and computers, the power of logarithms was that these log
properties reduced multiplication, division, roots, or powers to be evaluated using addition, subtraction,
division and multiplication, respectively, which are much easier to compute without a calculator. Large
books were published listing the logarithms of numbers, such as in the table to the right. To find the product
of two numbers, the sum of log property was used. Suppose for example we didn’t know the value of 2
times 3. Using the sum property of logs:

Using the log table,

We can then use the table again in reverse, looking for 0.7781513 as an output of the logarithm. From that we can determine:

By using addition and the table of logs, we were able to determine .

Likewise, to compute a cube root like 

So .

Although these calculations are simple and insignificant, they illustrate the same idea that was used for hundreds of years as an
efficient way to calculate the product, quotient, roots, and powers of large and complicated numbers, either using tables of
logarithms or mechanical tools called slide rules.

These properties still have other practical applications for interpreting changes in exponential and logarithmic relationships.

Recall that in chemistry, the pH scale is used for quantifying acidic

If the concentration of hydrogen ions in a liquid is doubled, what is the effect on pH?

Solution

Suppose  is the original concentration of hydrogen ions, and  is the original pH of the liquid, so . If the
concentration is doubled, the new concentration is . Then the pH of the new liquid is

Using the sum property of logs,

Since , the new pH is

When the concentration of hydrogen ions is doubled, the pH decreases by 0.301.

ln( y)−ln(7) = ln( )+ln(y) −ln(7)x4 x4

ln( )+ln(y) −ln(7) = 4 ln(x) +ln(y) −ln(7)x4

log(2 ⋅ 3) = log(2) +log(3)

log(2 ⋅ 3) = log(2) +log(3) = 0.3010300 +0.4771213 = 0.7781513

log(2 ⋅ 3) = 0.7781513 = log(6).

2 ⋅ 3 = 6

8
–

√3

log( ) = log( ) = log(8) = (0.9030900) = 0.3010300 = log(2)8
–

√3 81/3 1

3

1

3

= 28
–

√3

 Example 2.8.4.4

pH = −log([ ]).H+

C P P = −log(C)
2C

pH = −log(2C)

pH = −log(2C) = −(log(2) +log(C)) = −log(2) −log(C)

P = −log(C)

pH = P −log(2) = P −0.301
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Log properties in Solving Equations
The logarithm properties often arise when solving problems involving logarithms. First, we’ll look at a simpler log equation.

Solve .

Solution

To solve for , we need to get it out from inside the log function. There are two ways we can approach this.

Method 1: Rewrite as an exponential.

Recall that since the common log is base 10,  can be rewritten as the exponential . Likewise, 
 can be rewritten in exponential form as

Method 2: Exponentiate both sides.

If , then . Using this idea, since , then . Use the inverse property of logs
to rewrite the left side and get .

Using either method, we now need to solve . Evaluate  to get

Add 6 to both sides 

Divide both sides by 2 

Occasionally the solving process will result in extraneous solutions – answers that are outside the domain of the original
equation. In this case, our answer looks fine.

Solve .

Solution

In order to rewrite in exponential form, we need a single logarithmic expression on the left side of the equation. Using the
difference property of logs, we can rewrite the left side:

Rewriting in exponential form reduces this to an algebraic equation:

Multiply both sides by  

Combine like terms 

Divide by 50 

 Example 2.8.4.5

log(2x−6) = 3

x

log(A) = B = A10B

log(2x−6) = 3

= 2x−6103

A = B =10A 10B log(2x−6) = 3 =10log(2x−6) 103

2x−6 = 103

2x−6 = 103 103

2x−6 = 1000

2x = 1006

x = 503

 Example 2.8.4.6

log(50x+25) −log(x) = 2

log( ) = 2
50x+25

x

= = 100
50x+25

x
102

x

50x+25 = 100x

25 = 50x
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Checking this answer in the original equation, we can verify there are no domain issues, and this answer is correct.

Solve .

Answer

Move both logs to one side

Use the difference property of logs

Factor

Simplify

Rewrite as an exponential

Add 2 to both sides

Solve .

Solution

Use the sum of logs property on the right 

Expand 

We have a log on both side of the equation this time. Rewriting in exponential form would be tricky, so instead we can
exponentiate both sides.

Use the inverse property of logs 

x = =
25

50

1

2

 Exercise 2.8.4.2

log( −4) = 1 +log(x+2)x2

log( −4) = 1 +log(x+2)x2

log( −4)−log(x+2) = 1x2

log( ) = 1
−4x2

x+2

log( ) = 1
(x+2)(x−2)

x+2

log(x−2) = 1

= x−2101

x = 12

 Example 2.8.4.7

ln(x+2) +ln(x+1) = ln(4x+14)

ln(x+2) +ln(x+1) = ln(4x+14)

ln((x+2)(x+1)) = ln(4x+14)

ln( +3x+2) = ln(4x+14)x2

=eln( +3x+2)x2

eln(4x+13)

+3x+2 = 4x+14x2
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Move terms to one side 

Factor 

 

Checking our answers, notice that evaluating the original equation at  would result in us evaluating , which is
undefined. That answer is outside the domain of the original equation, so it is an extraneous solution and we discard it. There is
one solution: .

More complex exponential equations can often be solved in more than one way. In the following example, we will solve the same
problem in two ways – one using logarithm properties, and the other using exponential properties.

In 2008, the population of Kenya was approximately 38.8 million, and was growing by 2.64% each year, while the population
of Sudan was approximately 41.3 million and growing by 2.24% each year(World Bank, World Development Indicators, as
reported on http://www.google.com/publicdata, retrieved August 24, 2010). If these trends continue, when will the population
of Kenya match that of Sudan?

Solution

We start by writing an equation for each population in terms of , the number of years after 2008.

To find when the populations will be equal, we can set the equations equal

For our first approach, we take the log of both sides of the equation.

Utilizing the sum property of logs, we can rewrite each side,

Then utilizing the exponent property, we can pull the variables out of the exponent

Moving all the terms involving  to one side of the equation and the rest of the terms to the other side,

Factoring out the  on the left,

Dividing to solve for 

It will be 15.991 years until the populations will be equal.

−x−12 = 0x2

(x+4)(x−3) = 0

x = −4 or x = 3

x = −4 ln(−2)

x = 3

 Example 2.8.4.8a

t

Kenya(t) = 38.8(1 +0.0264)t

Sudan(t) = 41.3(1 +0.0224)t

38.8(1.0264 = 41.3(1.0224)t )t

log(38.8(1.0264 ) = log(41.3(1.0224 ))t )t

log(38.8) +log( ) = log(41.3) +log( )1.0264t 1.0224t

log(38.8) + t log(1.0264) = log(41.3) + t log(1.0224)

t

t log(1.0264) − t log(1.0224) = log(41.3) −log(38.8)

t

t (log(1.0264) −log(1.0224)) = log(41.3) −log(38.8)

t

t = ≈ 15.991
log(41.3) −log(38.8)

log(1.0264) −log(1.0224)
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Solve the problem above by rewriting before taking the log.

Solution

Starting at the equation

Divide to move the exponential terms to one side of the equation and the constants to the other side

Using exponent rules to group on the left,

Taking the log of both sides

Utilizing the exponent property on the left,

Dividing gives

While the answer does not immediately appear identical to that produced using the previous method, note that by using the
difference property of logs, the answer could be rewritten:

While both methods work equally well, it often requires fewer steps to utilize algebra before taking logs, rather than relying solely
on log properties.

Tank A contains 10 liters of water, and 35% of the water evaporates each week. Tank B contains 30 liters of water, and 50% of
the water evaporates each week. In how many weeks will the tanks contain the same amount of water?

Answer

Tank A: . Tank B: 

Solving A(t) = B(t),

Using the method from Example 8b

 Example 2.8.4.8b

38.8(1.0264 = 41.3(1.0224)t )t

=
1.0264t

1.0224t
41.3

38.8

=( )
1.0264

1.0224

t 41.3

38.8

log( ) = log( )( )
1.0264

1.0224

t
41.3

38.8

t log( ) = log( )
1.0264

1.0224

41.3

38.8

t = ≈ 15.991 years

log( )
41.3

38.8

log( )
1.0264

1.0224

t = =

log( )
41.3

38.8

log( )
1.0264

1.0224

log(41.3) −log(38.8)

log(1.0264) −log(1.0224)

 Exercise 2.8.4.3

A(t) = 10(1 −0.35)t B(t) = 30(1 −0.50)t

10(0.65 = 30(0.5)t )t
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Regroup

Simplify

Take the log of both sides

Use the exponent property of logs

Divide and evaluate

Important Topics of this Section
Inverse
Exponential
Change of base
Sum of logs property
Difference of logs property

Access these online resources for additional instruction and practice with using the properties of logarithms.

Using Properties of Logarithms to Expand Logs
Using Properties of Logarithms to Condense Logs
Change of Base

Key Concepts

Inverse Properties of Logarithms
For  and 

Product Property of Logarithms
If  and , then,

The logarithm of a product is the sum of the logarithms.
Quotient Property of Logarithms

If  and , then,

The logarithm of a quotient is the difference of the logarithms.
Power Property of Logarithms

If  and  is any real number then,

=
(0.65)t

(0.5)t
30

10

= 3( )
0.65

0.5

t

= 3(1.3)t

log( ) = log(3)(1.3)t

t log(1.3) = log(3)

t = ≈ 4.1874 weeks
log(3)

log(1.3)

1 = 0 a = 1loga loga

a > 0, x > 0 a ≠ 1

= x = xa xloga loga a
x

M > 0,N > 0, a > 0 a ≠ 1

M ⋅N = M + Nloga loga loga

M > 0,N > 0, a > 0 a ≠ 1

= M − Nloga
M
N

loga loga

M > 0, a > 0, a ≠ 1 p
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The log of a number raised to a power is the product of the power times the log of the number.

Properties of Logarithms Summary 
If  and  is any real number then,

Property Base Base 

Inverse Properties
  

Product Property of Logarithms

Quotient Property of Logarithms

Power Property of Logarithms

Table 10.4.1

Change-of-Base Formula 
For any logarithmic bases  and , and ,

This page titled 2.8.4: Properties_of_Logarithms is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

10.5: Use the Properties of Logarithms by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/intermediate-algebra-2e.
4.4: Logarithmic Properties by David Lippman & Melonie Rasmussen is licensed CC BY-SA 4.0. Original source:
http://www.opentextbookstore.com/details.php?id=30.

= p Mloga M
p loga

M > 0, a > 0, a ≠ 1 p

a e

1 = 0loga ln 1 = 0

a = 1loga ln e = 1

= xa xloga

= xloga a
x

= xeln x

ln = xex

(M ⋅ N) = M + Nloga loga loga ln(M ⋅ N) = lnM + lnN

= M − Nloga
M

N
loga loga ln = lnM − lnNM

N

= p Mloga M
p loga ln = p lnMM p

a b M > 0

M =loga
Mlogb
alogb

 new base b

M =loga
log M

log a

 new base 10

M =loga
lnM

ln a

 new base e
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2.8.5: Exponential and Logarithmic Models
While we have explored some basic applications of exponential and logarithmic functions, in this section we explore some
important applications in more depth.

Radioactive Decay

In an earlier section, we discussed radioactive decay – the idea that radioactive isotopes change over time. One of the common
terms associated with radioactive decay is half-life.

The half-life of a radioactive isotope is the time it takes for half the substance to decay.

Given the basic exponential growth/decay equation , half-life can be found by solving for when half the original amount

remains; by solving , or more simply . Notice how the initial amount is irrelevant when solving for half-life.

Bismuth-210 is an isotope that decays by about 13% each day. What is the half-life of Bismuth-210?

Solution

We were not given a starting quantity, so we could either make up a value or use an unknown constant to represent the starting
amount. To show that starting quantity does not affect the result, let us denote the initial quantity by the constant a. Then the
decay of Bismuth-210 can be described by the equation .

To find the half-life, we want to determine when the remaining quantity is half the original: . Solving,

Divide by ,

Take the log of both sides

Use the exponent property of logs

Divide to solve for 

This tells us that the half-life of Bismuth-210 is approximately 5 days.

Cesium-137 has a half-life of about 30 years. If you begin with 200 mg of cesium-137, how much will remain after 30 years?
60 years? 90 years?

Solution

 Definition: Half Life

h(t) = abt

a = a(b
1

2
)t =

1

2
bt

 Example 2.8.5.1

Q(d) = a(0.87)d

a
1

2

a = a(0.87
1

2
)d

a

=
1

2
0.87d

log( ) = log( )
1

2
0.87d

log( ) = d log(0.87)
1

2

d

d = ≈ 4.977 days

log( )
1

2

log(0.87)

 Example 2.8.5.2
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Since the half-life is 30 years, after 30 years, half the original amount, 100 mg, will remain.

After 60 years, another 30 years have passed, so during that second 30 years, another half of the substance will decay, leaving
50 mg.

After 90 years, another 30 years have passed, so another half of the substance will decay, leaving 25 mg.

Cesium-137 has a half-life of about 30 years. Find the annual decay rate.

Solution

Since we are looking for an annual decay rate, we will use an equation of the form . We know that after 30
years, half the original amount will remain. Using this information

Dividing by 

Taking the 30  root of both sides

Subtracting one from both sides,

This tells us cesium-137 is decaying at an annual rate of 2.284% per year.

Chlorine-36 is eliminated from the body with a biological half-life of 10 days (www.ead.anl.gov/pub/doc/chlorine.pdf). Find
the daily decay rate.

Answer

 or 6.7% is the daily rate of decay.

Carbon-14 is a radioactive isotope that is present in organic materials, and is commonly used for dating historical artifacts.
Carbon-14 has a half-life of 5730 years. If a bone fragment is found that contains 20% of its original carbon-14, how old is the
bone?

Solution

To find how old the bone is, we first will need to find an equation for the decay of the carbon-14. We could either use a
continuous or annual decay formula, but opt to use the continuous decay formula since it is more common in scientific texts.
The half life tells us that after 5730 years, half the original substance remains. Solving for the rate,

Dividing by 

 Example 2.8.5.3

Q(t) = a(1 +r)t

a = a(1 +r
1

2
)30

a

= (1 +r
1

2
)30

th

= 1 +r
1

2

−−
√30

r = −1 ≈ −0.02284
1

2

−−
√30

 Exercise 2.8.5.1

r = −1 ≈ −0.067
1

2

−−
√10

 Example 2.8.5.4

a = a
1

2
er5730

a
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Taking the natural log of both sides

Use the inverse property of logs on the right side

Divide by 5730

Now we know the decay will follow the equation . To find how old the bone fragment is that contains 20%
of the original amount, we solve for  so that .

The bone fragment is about 13,300 years old.

In Example 2, we learned that Cesium-137 has a half-life of about 30 years. If you begin with 200 mg of cesium-137, will it
take more or less than 230 years until only 1 milligram remains?

Answer

Less than 230 years, 229.3157 to be exact.

Doubling Time

For decaying quantities, we asked how long it takes for half the substance to decay. For growing quantities we might ask how long
it takes for the quantity to double.

The doubling time of a growing quantity is the time it takes for the quantity to double.

Given the basic exponential growth equation , doubling time can be found by solving for when the original quantity has
doubled; by solving , or more simply . Like with decay, the initial amount is irrelevant when solving for

=
1

2
er5730

ln( ) = ln( )
1

2
er5730

ln( ) = 5730r
1

2

r = ≈ −0.000121

ln( )
1

2

5730

Q(t) = ae−0.000121t

t Q(t) = 0.20a

0.20a = ae−0.000121t

0.20 = e−0.000121t

ln(0.20) = ln( )e−0.000121t

ln(0.20) = −0.000121t

t = ≈ 13301 years
ln(0.20)

−0.000121

 Exercise 2.8.5.2

 Definition: Doubling Time

h(t) = abt

2a = a(b)x 2 = bx
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doubling time.

Cancer cells sometimes increase exponentially. If a cancerous growth contained 300 cells last month and 360 cells this month,
how long will it take for the number of cancer cells to double?

Solution

Defining  to be time in months, with  corresponding to this month, we are given two pieces of data: this month, (0, 360),
and last month, (-1, 300).

From this data, we can find an equation for the growth. Using the form , we know immediately a = 360, giving 
. Substituting in (-1, 300),

This gives us the equation 

To find the doubling time, we look for the time when we will have twice the original amount, so when .

 

 

 

 

months for the number of cancer cells to double.

Use of a new social networking website has been growing exponentially, with the number of new members doubling every 5
months. If the site currently has 120,000 users and this trend continues, how many users will the site have in 1 year?

Solution

We can use the doubling time to find a function that models the number of site users, and then use that equation to answer the
question. While we could use an arbitrary a as we have before for the initial amount, in this case, we know the initial amount
was 120,000.

If we use a continuous growth equation, it would look like , measured in thousands of users after t months.
Based on the doubling time, there would be 240 thousand users after 5 months. This allows us to solve for the continuous
growth rate:

 

 Example 2.8.5.5

t t = 0

C(t) = abt

C(t) = 360bt

300 = 360b−1

300 =
360

b

b = = 1.2
360

300

C(t) = 360(1.2)t

C(t) = 2a

2a = a(1.2)t

2 = (1.2)t

log(2) = log( )1.2t

log(2) = t log(1.2)

t = ≈ 3.802
log(2)

log(1.2)

 Example 2.8.5.6

N(t) = 120ert

240 = 120er5
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Now that we have an equation, , we can predict the number of users after 12 months:

.

So after 1 year, we would expect the site to have around 633,140 users.

If tuition at a college is increasing by 6.6% each year, how many years will it take for tuition to double?

Answer

Solving , it will take  years, or approximately 11 years, for tuition to double.

Newton’s Law of Cooling

When a hot object is left in surrounding air that is at a lower temperature, the object’s temperature will decrease exponentially,
leveling off towards the surrounding air temperature. This "leveling off" will correspond to a horizontal asymptote in the graph of
the temperature function. Unless the room temperature is zero, this will correspond to a vertical shift of the generic exponential
decay function.

The temperature of an object, , in surrounding air with temperature  will behave according to the formula

Where

 is time
 is a constant determined by the initial temperature of the object
 is a constant, the continuous rate of cooling of the object

While an equation of the form  could be used, the continuous growth form is more common.

A cheesecake is taken out of the oven with an ideal internal temperature of 165 degrees Fahrenheit, and is placed into a 35
degree refrigerator. After 10 minutes, the cheesecake has cooled to 150 degrees. If you must wait until the cheesecake has
cooled to 70 degrees before you eat it, how long will you have to wait?

Solution

Since the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature will decay exponentially
towards 35, following the equation

2 = er5

ln2 = 5r

r = ≈ 0.1386
ln2

5

N(t) = 120e0.1386t

N(12) = 120 = 633.140 thousand userse0.1386(12)

 Exercise 2.8.5.3

a(1 +0.066 = 2a)t t = ≈ 10.845
log(2)

log(1.066)

 Definition: Newton’s Law of Cooling

T Ts

T (t) = a +ekt Ts (2.8.5.1)

t

a

k

T (t) = a +bt Ts

 Example 2.8.5.7

T (t) = a +35ekt
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We know the initial temperature was 165, so . Substituting in these values,

We were given another pair of data, , which we can use to solve for 

 

Together this gives us the equation for cooling:

Now we can solve for the time it will take for the temperature to cool to 70 degrees.

 

 

 

 

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool. Of course, if you like your cheesecake
served chilled, you’d have to wait a bit longer.

A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later the temperature has risen to 45
degrees. How long will it take for the temperature to rise to 60 degrees?

Answer

. Substituting (0, 40), we find . Substituting (1, 45), we solve

T (0) = 165

165 = a +35ek0

165 = a+35

a = 130

T (10) = 150 k

150 = 130 +35ek10

115 = 130ek10

=
115

130
e10k

ln( ) = 10k
115

130

k = = −0.0123

ln( )
115

130

10

T (t) = 130 +35e−0.0123t

70 = 130 +35e−0.0123t

35 = 130e−0.0123t

=
35

130
e−0.0123t

ln( ) = −0.0123t
35

130

t = ≈ 106.68

ln( )
35

130

−0.0123

 Exercise 2.8.5.4

T (t) = a +70ekt a = −30

45 = −30 +70ek(1)
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to get

Solving  gives

Logarithmic Scales

For quantities that vary greatly in magnitude, a standard scale of measurement is not always effective, and utilizing logarithms can
make the values more manageable. For example, if the average distances from the sun to the major bodies in our solar system are
listed, you see they vary greatly.

Planet Distance (millions of km)

Mercury 58

Venus 108

Earth 150

Mars 228

Jupiter 779

Saturn 1430

Uranus 2880

Neptune 4500

Placed on a linear scale – one with equally spaced values – these values get bunched up.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

However, computing the logarithm of each value and plotting these new values on a number line results in a more manageable
graph, and makes the relative distances more apparent.(It is interesting to note the large gap between Mars and Jupiter on the log
number line. The asteroid belt is located there, which scientists believe is a planet that never formed because of the effects of the
gravity of Jupiter.)

Planet Distance (millions of km) log(distance)

Mercury 58 1.76

Venus 108 2.03

Earth 150 2.18

Mars 228 2.36

Jupiter 779 2.89

Saturn 1430 3.16

k = ln( ) = −0.1823
25

30

60 = −30 +70e−0.1823t

t = = 6.026 hours
ln(1/3)

−0.1823
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Uranus 2880 3.46

Neptune 4500 3.65

Sometimes, as shown above, the scale on a logarithmic number line will show the log values, but more commonly the original
values are listed as powers of 10, as shown below.

Estimate the value of point  on the log scale above

The point  appears to be half way between -2 and -1 in log value, so if  is the value of this point,

Rewriting in exponential form, 

Place the number 6000 on a logarithmic scale.

Solution

Since , this point would belong on the log scale about here:

Plot the data in the table below on a logarithmic scale (From http://www.epd.gov.hk/epd/noise_educ...1/intro_5.html, retrieved
Oct 2, 2010).

Source of Sound/Noise Approximate Sound Pressure in  Pa (micro Pascals)

Launching of the Space Shuttle 2000,000,000

Full Symphony Orchestra 2000,000

 Example 2.8.5.8

P

P V

log(V ) ≈ −1.5

V ≈ = 0.031610−1.5

 Example 2.8.5.9

log(6000) ≈ 3.8

 Exercise 2.8.5.5

μ
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Diesel Freight Train at High Speed at 25 m 200,000

Normal Conversation 20,000

Soft Whispering at 2 m in Library 2,000

Unoccupied Broadcast Studio 200

Softest Sound a human can hear 20

Answer

Notice that on the log scale above Example 8, the visual distance on the scale between points  and  and between  and  is the
same. When looking at the values these points correspond to, notice  is ten times the value of , and  is ten times the value of 

. A visual  difference between points corresponds to a relative (ratio) change between the corresponding values.

Logarithms are useful for showing these relative changes. For example, comparing $1,000,000 to $10,000, the first is 100 times
larger than the second.

Likewise, comparing $1000 to $10, the first is 100 times larger than the second.

When one quantity is roughly ten times larger than another, we say it is one order of magnitude larger. In both cases described
above, the first number was two orders of magnitude larger than the second.

Notice that the order of magnitude can be found as the common logarithm of the ratio of the quantities. On the log scale above, B is
one order of magnitude larger than , and  is one order of magnitude larger than .

Given two values  and , to determine how many orders of magnitude  is greater than ,

Difference in orders of magnitude = log(

On the log scale above Example 8, how many orders of magnitude larger is  than ?

Solution

The value  corresponds to 

The value  corresponds to 

The relative change is . The log of this value is 3.

A B C D

B A D

C linear

= 100 =
1, 000, 000

10, 000
102

= 100 =
1, 000

10
102

A D C

 Definition: Orders of magnitude

A B A B

)
A

B

 Example 2.8.5.10

C B

B = 100102

C = 100, 000105

= 1000 = =
100, 000

100

105

102
103
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 is three orders of magnitude greater than , which can be seen on the log scale by the visual difference between the points
on the scale.

Using the table from Try it Now #5, what is the difference of order of magnitude between the softest sound a human can hear
and the launching of the space shuttle?

Answer

. The sound pressure in Pa created by launching the space shuttle is 8 orders of magnitude greater than

the sound pressure in Pa created by the softest sound a human ear can hear.

Earthquakes

An example of a logarithmic scale is the Moment Magnitude Scale (MMS) used for earthquakes. This scale is commonly and
mistakenly called the Richter Scale, which was a very similar scale succeeded by the MMS.

For an earthquake with seismic moment , a measurement of earth movement, the MMS value, or magnitude of the
earthquake, is

Where  is a baseline measure for the seismic moment.

If one earthquake has a MMS magnitude of 6.0, and another has a magnitude of 8.0, how much more powerful (in terms of
earth movement) is the second earthquake?

Solution

Since the first earthquake has magnitude 6.0, we can find the amount of earth movement for that quake, which we'll denote .
The value of  is not particularity relevant, so we will not replace it with its value.

 

 

 

 

This tells us the first earthquake has about  times more earth movement than the baseline measure.

C B

 Exercise 2.8.5.6

=
2 ×109

2 ×101
108 μ

μ

 Moment Magnitude Scale

S

M = log( )
2

3

S

S0
(2.8.5.2)

=S0 1016

 Example 2.8.5.11

S1

S0

6.0 = log( )
2

3

S1

S0

6.0( = log( )
3

2

S1

S0

9 = log( )
S1

S0

=
S1

S0
109

=S1 109S0

109
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Doing the same with the second earthquake, , with a magnitude of 8.0,

 

Comparing the earth movement of the second earthquake to the first,

The second value's earth movement is 1000 times as large as the first earthquake.

One earthquake has magnitude of 3.0. If a second earthquake has twice as much earth movement as the first earthquake, find
the magnitude of the second quake.

Solution

Since the first quake has magnitude 3.0,

Solving for ,

 

 

 

Since the second earthquake has twice as much earth movement, for the second quake,

Finding the magnitude,

 

The second earthquake with twice as much earth movement will have a magnitude of about 3.2.

In fact, using log properties, we could show that whenever the earth movement doubles, the magnitude will increase by about
0.201:

S2

8.0 = log( )
2

3

S2

S0

=S2 1012S0

= = = 1000
S2

S1

1012S0

109S0

103

 Example 2.8.5.12

3.0 = log( )
2

3

S

S0

S

3.0 = log( )
3

2

S

S0

4.5 = log( )
S

S0

=104.5 S

S0

S = 104.5S0

S = 2 ⋅ 104.5S0

M = log( )
2

3

2 ⋅ 104.5S0

S0

M = log(2 ⋅ ) ≈ 3.201
2

3
104.5
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This illustrates the most important feature of a log scale: that  the quantity being considered will  to the scale
value, and vice versa.

Important Topics of this Section
Radioactive decay
Half life
Doubling time
Newton’s law of cooling
Logarithmic Scales
Orders of Magnitude
Moment Magnitude scale

This page titled 2.8.5: Exponential and Logarithmic Models is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by David Lippman & Melonie Rasmussen (The OpenTextBookStore) via source content that was edited to the style and standards of the
LibreTexts platform.

4.6: Exponential and Logarithmic Models by David Lippman & Melonie Rasmussen is licensed CC BY-SA 4.0. Original source:
http://www.opentextbookstore.com/details.php?id=30.

M = log( ) = log(2 ⋅ )
2

3

2S

S0

2

3

S

S0

M = (log(2) + log( ))
2

3

S

S0

M = log(2) + log( )
2

3

2

3

S

S0

M = 0.201 + log( )
2

3

S

S0
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2.9: Derivatives

Recognize the meaning of the tangent to a curve at a point.
Calculate the slope of a tangent line.
Identify the derivative as the limit of a difference quotient.
Calculate the derivative of a given function at a point.
Describe the velocity as a rate of change.
Explain the difference between average velocity and instantaneous velocity.
Estimate the derivative from a table of values.

Tangent Lines
Figure : The tangent line (shown in green) at point (a, f(a) is shown.

We define the tangent line to the graph of a function as follows.

Let  be a function defined in an open interval containing . The tangent line to  at  is the line passing through the
point  having slope

provided this limit exists.

Equivalently, we may define the tangent line to  at  to be the line passing through the point  having slope

provided this limit exists.

Find the equation of the line tangent to the graph of  at 

Solution

First find the slope of the tangent line. In this example, use Equation .

Next, find a point on the tangent line. Since the line is tangent to the graph of  at , it passes through the point 
. We have , so the tangent line passes through the point .

Using the point-slope equation of the line with the slope  and the point , we obtain the line .
Simplifying, we have . The graph of  and its tangent line at  are shown in Figure .

Figure : The tangent line to  at .

 Learning Objectives

2.9.1

 Definition: Tangent Line

f(x) a f(x) a

(a, f(a))

=mtan lim
x→a

f(x) −f(a)

x−a
(2.9.1)

f(x) a (a, f(a))

=mtan lim
h→0

f(a+h) −f(a)

h
(2.9.2)

 Example : Finding a Tangent Line2.9.1

f(x) = x2 x = 3.

2.9.1

mtan = lim
x→3

f(x) −f(3)

x−3

= lim
x→3

−9x2

x−3

= = (x+3) = 6lim
x→3

(x−3)(x+3)

x−3
lim
x→3

Apply the definition.

Substitute f(x) =  and f(3) = 9x2

Factor the numerator to evaluate the limit.

f(x) x = 3
(3, f(3)) f(3) = 9 (3, 9)

m = 6 (3, 9) y−9 = 6(x−3)
y = 6x−9 f(x) = x2 3 2.9.5

2.9.5 f(x) x = 3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/76309?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives


2.9.2 https://phys.libretexts.org/@go/page/76309

Use Equation  to find the slope of the line tangent to the graph of  at .

Solution

The steps are very similar to Example . See Equation  for the definition.

We obtained the same value for the slope of the tangent line by using the other definition, demonstrating that the formulas can
be interchanged.

Find the equation of the line tangent to the graph of  at .

Solution

We can use Equation , but as we have seen, the results are the same if we use Equation .

We now know that the slope of the tangent line is . To find the equation of the tangent line, we also need a point on the line.
We know that . Since the tangent line passes through the point  we can use the point-slope equation of a line to
find the equation of the tangent line. Thus the tangent line has the equation . The graphs of  and 

 are shown in Figure .

Figure :The line is tangent to  at .

Find the slope of the line tangent to the graph of  at .

Hint

Use either Equation  or Equation . Multiply the numerator and the denominator by a conjugate.

Answer

 Example : The Slope of a Tangent Line Revisited2.9.2

2.9.2 f(x) = x2 x = 3

2.9.1 2.9.2

mtan = lim
h→0

f(3 +h) −f(3)

h

= lim
h→0

(3 +h −9)2

h

= lim
h→0

9 +6h+ −9h2

h

= = (6 +h) = 6lim
h→0

h(6 +h)

h
lim
h→0

Apply the definition.

Substitute f(3 +h) = (3 +h  and f(3) = 9)2

Expand and simplify to evaluate the limit.

 Example : Finding the Equation of a Tangent Line2.9.3

f(x) = 1/x x = 2

2.9.1 2.9.2

mtan = lim
x→2

f(x) −f(2)

x−2

= lim
x→2

−1
x

1
2

x−2

= ⋅lim
x→2

−1
x

1
2

x−2

2x

2x

= lim
x→2

(2 −x)

(x−2)(2x)

= lim
x→2

−1

2x

= −
1

4

Apply the definition.

Substitute f(x) =  and f(2) =
1

x

1

2

Multiply numerator and denominator by 2x to simplify fractions.

Simplify.

Simplify using  = −1,  for x ≠ 2.
2 −x

x−2

Evaluate the limit.

− 1
4

f(2) = 1
2

(2, )1
2

y = − x+11
4

f(x) = 1
x

y = − x+11
4

2.9.6

2.9.6 f(x) x = 2

 Exercise 2.9.1

f(x) = x−−√ x = 4

2.9.1 2.9.2
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The Derivative of a Function at a Point

The type of limit we compute in order to find the slope of the line tangent to a function at a point occurs in many applications
across many disciplines. These applications include velocity and acceleration in physics, marginal profit functions in business, and
growth rates in biology. This limit occurs so frequently that we give this value a special name: the derivative. The process of
finding a derivative is called differentiation.

Let  be a function defined in an open interval containing . The derivative of the function  at , denoted by , is
defined by

provided this limit exists.

Alternatively, we may also define the derivative of  at  as

For , use a table to estimate  using Equation .

Solution

Create a table using values of  just below  and just above .

2.9 5.9

2.99 5.99

2.999 5.999

3.001 6.001

3.01 6.01

3.1 6.1

After examining the table, we see that a good estimate is .

For , use a table to estimate  using Equation .

Hint

Evaluate  at 

Answer

6

1
4

 Definition: Derivative

f(x) a f(x) a f '(a)

f '(a) = lim
x→a

f(x) −f(a)

x−a
(2.9.3)

f(x) a

f '(a) = .lim
h→0

f(a+h) −f(a)

h
(2.9.4)

 Example : Estimating a Derivative2.9.4

f(x) = x2 f '(3) 2.9.3

x 3 3

x
− 9x2

x − 3

f '(3) = 6

 Exercise 2.9.2

f(x) = x2 f '(3) 2.9.4

(x+h −)2 x2

h
h = −0.1, −0.01, −0.001, 0.001, 0.01, 0.1
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For , find  by using Equation .

Solution

Substitute the given function and value directly into the equation.

For , find  by using Equation .

Solution

Using this equation, we can substitute two values of the function into the equation, and we should get the same value as in
Example .

The results are the same whether we use Equation  or Equation .

For , find .

Hint

Use either Equation , Equation , or try both.

Answer

 Example : Finding a Derivative2.9.6

f(x) = 3 −4x+1x2 f '(2) 2.9.3

f '(x) = lim
x→2

f(x) −f(2)

x−2

= lim
x→2

(3 −4x+1) −5x2

x−2

= lim
x→2

(x−2)(3x+2)

x−2

= (3x+2)lim
x→2

= 8

Apply the definition.

Substitute f(x) = 3 −4x+1 and f(2) = 5.x2

Simplify and factor the numerator.

Cancel the common factor.

Evaluate the limit.

 Example : Revisiting the Derivative2.9.7

f(x) = 3 −4x+1x2 f '(2) 2.9.4

2.9.6

f '(2) = lim
h→0

f(2 +h) −f(2)

h

= lim
h→0

(3(2 +h −4(2 +h) +1) −5)2

h

= lim
h→0

3(4 +4h+ ) −8 −4h+1 −5h2

h

= lim
h→0

12 +12h+3 −12 −4hh2

h

= lim
h→0

3 +8hh2

h

= lim
h→0

h(3h+8)

h

= (3h+8)lim
h→0

= 8

Apply the definition.

Substitute f(2) = 5 and f(2 +h) = 3(2 +h −4(2 +h) +1.)2

Expand the numerator.

Distribute and begin simplifying the numerator.

Finish simplifying the numerator.

Factor the numerator.

Cancel the common factor.

Evaluate the limit.

2.9.3 2.9.4

 Exercise 2.9.4

f(x) = +3x+2x2 f '(1)

2.9.3 2.9.4

f '(1) = 5
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Velocities and Rates of Change
Now that we can evaluate a derivative, we can use it in velocity applications. Recall that if  is the position of an object moving
along a coordinate axis, the average velocity of the object over a time interval  if  or  if  is given by

As the values of  approach , the values of  approach the value we call the instantaneous velocity at . That is, instantaneous
velocity at , denoted , is given by

To better understand the relationship between average velocity and instantaneous velocity, see Figure . In this figure, the slope
of the tangent line (shown in red) is the instantaneous velocity of the object at time  whose position at time  is given by the
function . The slope of the secant line (shown in green) is the average velocity of the object over the time interval .

Figure : The slope of the secant line is the average velocity over the interval . The slope of the tangent line is the
instantaneous velocity.

We can use Equation  to calculate the instantaneous velocity, or we can estimate the velocity of a moving object by using a
table of values. We can then confirm the estimate by using Equation .

A lead weight on a spring is oscillating up and down. Its position at time  with respect to a fixed horizontal line is given by 
 (Figure ). Use a table of values to estimate . Check the estimate by using Equation .

Figure : A lead weight suspended from a spring in vertical oscillatory motion.

Solution

We can estimate the instantaneous velocity at  by computing a table of average velocities using values of  approaching 
, as shown in Table .

Table : Average velocities using values of  approaching 0

−0.1 0.998334166

−0.01 0.9999833333

−0.001 0.999999833

0.001 0.999999833

0.01 0.9999833333

0.1 0.998334166

s(t)
[a, t] t > a [t, a] t < a

= .vave
s(t) −s(a)

t−a
(2.9.5)

t a vave a

a v(a)

v(a) = s'(a) = .lim
t→a

s(t) −s(a)

t−a
(2.9.6)

2.9.7
t = a t

s(t) [a, t]

2.9.7 [a, t]

2.9.6
2.9.5

 Example : Estimating Velocity2.9.8

t

s(t) = sin t 2.9.8 v(0) 2.9.6

2.9.8

t = 0 t

0 2.9.2

2.9.2 t

t =sin t−sin 0
t−0

sin t
t
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From the table we see that the average velocity over the time interval  is , the average velocity over the
time interval  is , and so forth. Using this table of values, it appears that a good estimate is .

By using Equation , we can see that

Thus, in fact, .

A rock is dropped from a height of  feet. Its height above ground at time  seconds later is given by 
. Find its instantaneous velocity  second after it is dropped, using Equation .

Hint

. Follow the earlier examples of the derivative using Equation .

Answer

−32 ft/s

As we have seen throughout this section, the slope of a tangent line to a function and instantaneous velocity are related concepts.
Each is calculated by computing a derivative and each measures the instantaneous rate of change of a function, or the rate of
change of a function at any point along the function.

The instantaneous rate of change of a function  at a value  is its derivative .

Reaching a top speed of  mph, the Hennessey Venom GT is one of the fastest cars in the world. In tests it went from  to
 mph in  seconds, from  to  mph in  seconds, from  to  mph in  seconds, and from  to  mph in

 seconds. Use this data to draw a conclusion about the rate of change of velocity (that is, its acceleration) as it
approaches  mph. Does the rate at which the car is accelerating appear to be increasing, decreasing, or constant?

Figure : (credit: modification of work by Codex41, Flickr)

Solution: First observe that  mph =  ft/s,  mph ≈  ft/s,  mph ≈  ft/s, and  mph ≈  ft/s. We
can summarize the information in a table.

Table :  at different values of 

0 0

3.05 88

5.88 147.67

[−0.1, 0] 0.998334166
[−0.01, 0] 0.9999833333 v(0) = 1

2.9.6

v(0) = s'(0) = = = 1.lim
t→0

sin t−sin0

t−0
lim
t→0

sin t

t

v(0) = 1

 Exercise 2.9.5

64 t

s(t) = −16 +64, 0 ≤ t ≤ 2t2 1 2.9.6

v(t) = s'(t) 2.9.6

 Definition: Instantaneous Rate of Change

f(x) a f '(a)

 Example : Chapter Opener: Estimating Rate of Change of Velocity2.9.9

270.49 0
60 3.05 0 100 5.88 0 200 14.51 0 229.9
19.96

229.9

2.9.9

60 88 100 146.67 200 293.33 229.9 337.19

2.9.3 v(t) t

t v(t)
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14.51 293.33

19.96 337.19

Now compute the average acceleration of the car in feet per second on intervals of the form  as  approaches ,
as shown in the following table.

Average acceleration

0.0 16.89

3.05 14.74

5.88 13.46

14.51 8.05

The rate at which the car is accelerating is decreasing as its velocity approaches  mph (  ft/s).

A homeowner sets the thermostat so that the temperature in the house begins to drop from  at  p.m., reaches a low of 
 during the night, and rises back to  by  a.m. the next morning. Suppose that the temperature in the house is given by 

 for , where  is the number of hours past  p.m. Find the instantaneous rate of change of
the temperature at midnight.

Solution

Since midnight is  hours past  p.m., we want to compute . Refer to Equation .

The instantaneous rate of change of the temperature at midnight is  per hour.

A toy company can sell  electronic gaming systems at a price of  dollars per gaming system. The cost of
manufacturing  systems is given by  dollars. Find the rate of change of profit when  games
are produced. Should the toy company increase or decrease production?

Solution

The profit  earned by producing  gaming systems is , where  is the revenue obtained from the sale of 
 games. Since the company can sell  games at  per game,

t v(t)

[t, 19.96] t 19.96

t =
v(t) − v(19.96)

t − 19.96

v(t) − 337.19

t − 19.96

229.9 337.19

 Example : Rate of Change of Temperature2.9.10

70°F 9
60° 70° 7
T (t) = 0.4 −4t+70t2 0 ≤ t ≤ 10 t 9

3 9 T '(3) 2.9.3

T '(3) = lim
t→3

T (t) −T (3)

t−3

= lim
t→3

0.4 −4t+70 −61.6t2

t−3

= lim
t→3

0.4 −4t+8.4t2

t−3

= lim
t→3

0.4(t−3)(t−7)

t−3

= 0.4(t−7)lim
t→3

= −1.6

Apply the definition.

Substitute T (t) = 0.4 −4t+70 and T (3) = 61.6.t2

Simplify.

Cancel.

Evaluate the limit.

−1.6°F

 Example : Rate of Change of Profit2.9.11

x p = −0.01x+400
x C(x) = 100x+10, 000 10, 000

P (x) x R(x) −C(x) R(x)
x x p = −0.01x+400

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/76309?pdf


2.9.8 https://phys.libretexts.org/@go/page/76309

.

Consequently,

.

Therefore, evaluating the rate of change of profit gives

.

Since the rate of change of profit  and , the company should increase production.

A coffee shop determines that the daily profit on scones obtained by charging s dollars per scone is 
. The coffee shop currently charges  per scone. Find , the rate of change of profit

when the price is  and decide whether or not the coffee shop should consider raising or lowering its prices on scones.

Hint

Use Example  for a guide.

Answer

; raise prices

Key Concepts
The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the
limit of the difference quotient or the difference quotient with increment .
The derivative of a function  at a value  is found using either of the definitions for the slope of the tangent line.
Velocity is the rate of change of position. As such, the velocity  at time  is the derivative of the position  at time . 
Average velocity is given by

Instantaneous velocity is given by

We may estimate a derivative by using a table of values.

Key Equations
Difference quotient

Difference quotient with increment h

Slope of tangent line

R(x) = xp = x(−0.01x+400) = −0.01 +400xx2

P (x) = −0.01 +300x−10, 000x2

P '(10000) = lim
x→10000

P (x) −P (10000)

x−10000

= lim
x→10000

−0.01 +300x−10000 −1990000x2

x−10000

= lim
x→10000

−0.01 +300x−2000000x2

x−10000

= 100

P '(10, 000) > 0 P (10, 000) > 0

 Exercise 2.9.6

P (s) = −20 +150s−10s2 $3.25 P '(3.25)
$3.25

2.9.11

P '(3.25) = 20 > 0

h

f(x) a

v(t) t s(t) t

= .vave
s(t) −s(a)

t−a

v(a) = s'(a) = .lim
t→a

s(t) −s(a)

t−a

Q =
f(x) −f(a)

x−a

Q = =
f(a+h) −f(a)

a+h−a

f(a+h) −f(a)

h
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Derivative of f(x) at a

Average velocity

Instantaneous velocity

Glossary

derivative
the slope of the tangent line to a function at a point, calculated by taking the limit of the difference quotient, is the derivative

difference quotient

of a function  at  is given by

 or 

differentiation
the process of taking a derivative

instantaneous rate of change
the rate of change of a function at any point along the function , also called , or the derivative of the function at 

Derivative

Consider the function  that is plotted in Figure A2.1.1. For any value of , we can define the slope of the function as the
“steepness of the curve”. For values of  the function increases as  increases, so we say that the slope is positive. For values
of , the function decreases as  increases, so we say that the slope is negative. A synonym for the word slope is “derivative”,
which is the word that we prefer to use in calculus. The derivative of a function  is given the symbol  to indicate that we are
referring to the slope of  when plotted as a function of .

We need to specify which variable we are taking the derivative with respect to when the function has more than one variable but
only one of them should be considered independent. For example, the function  will have different values if  and 
 are changed, so we have to be precise in specifying that we are taking the derivative with respect to . The following notations

are equivalent ways to say that we are taking the derivative of  with respect to :

The notation with the prime ( ) can be useful to indicate that the derivative itself is also a function of .

The slope (derivative) of a function tells us how rapidly the value of the function is changing when the independent variable is
changing. For , as  gets more and more positive, the function gets steeper and steeper; the derivative is thus increasing

=mtan lim
x→a

f(x) −f(a)

x−a

=mtan lim
h→0

f(a+h) −f(a)

h

f '(a) = lim
x→a

f(x) −f(a)

x−a

f '(a) = lim
h→0

f(a+h) −f(a)

h

=vave
s(t) −s(a)

t−a

v(a) = s'(a) = lim
t→a

s(t) −s(a)

t−a

f(x) a

f(a+h) −f(a)

h

f(x) −f(a)

x−a

a f '(a) a

f(x) = x2 x

x > 0 x

x < 0 x

f(x)
df

dx

f(x) x

f(x) = a +bx2 a

b x

f(x) x

= f(x) = (x) =
df

dx

d

dx
f ′ f ′

(x),f ′ f ′ x

f(x) = x2 x
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with . The sign of the derivative tells us if the function is increasing or decreasing, whereas its absolute value tells how quickly
the function is changing (how steep it is).

We can approximate the derivative by evaluating how much  changes when  changes by a small amount, say, . In the limit
of , we get the derivative. In fact, this is the formal definition of the derivative:

where  is the small change in  that corresponds to the small change, , in . This makes the notation for the derivative
more clear,  is  in the limit where , and  is , in the same limit of .

As an example, let us determine the function  that is the derivative of . We start by calculating :

We now calculate :

and take the limit :

We have thus found that the function, , is the derivative of the function . This is illustrated in Figure A2.2.1.
Note that:

For ,  is positive and increasing with increasing , just as we described earlier (the function  is increasing and
getting steeper).
For ,  is negative and decreasing in magnitude as  increases. Thus  decreases and gets less steep as 
increases.
At ,  indicating that, at the origin, the function  is (momentarily) flat.

Figure A2.2.1:  and its derivative,  plotted for  between  and .

x

f(x) x Δx

Δx → 0

= =
df

dx
lim

Δx→0

Δf

Δx
lim

Δx→0

f(x+Δx) −f(x)

Δx
(2.9.7)

Δf f(x) Δx x

dx Δx Δx → 0 df Δf Δx → 0

(x)f ′ f(x) = x2 Δf

Δf = f(x+Δx) −f(x)

= (x+Δx −)2 x2

= +2xΔx+Δ −x2 x2 x2

= 2xΔx+Δx2

Δf

Δx

Δf

Δx
=

2xΔx+Δx2

Δx
= 2x+Δx

Δx → 0

df

dx
= lim

Δx→0

Δf

Δx

= (2x+Δx)lim
Δx→0

= 2x

(x) = 2xf ′ f(x) = x2

x > 0 (x)f ′ x f(x)

x < 0 (x)f ′ x f(x) x

x = 0 (x) = 0f ′ f(x)

f(x) = x2 (x) = 2xd′ x −5 +5
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When a function has a maximum, its derivative at that point

A. also has a maximum
B. is zero
C. has a minimum
D. is infinite

Answer

Common derivatives and properties

It is beyond the scope of this document to derive the functional form of the derivative for any function using Equation A2.2.1.
Table A2.2.1 below gives the derivatives for common functions. In all cases,  is the independent variable, and all other variables
should be thought of as constants:

Function, Derivative, 

Table A2.2.1: Common derivatives of functions.

If two functions of 1 variable,  and , are combined into a third function, , then there are simple rules for finding the
derivative, , based on the derivatives  and . These are summarized in Table A2.2.2 below.

Function, Derivative, 

 (The product rule)

 (The quotient rule)

 (The Chain Rule)

Table A2.2.2: Derivatives of combined functions.

Use the properties from Table A2.2.2 to show that the derivative of  is .

Solution:

Since , we can write:

 Exercise 2.9.1

x

f(x) (x)f ′

f(x) = a (x) = 0f ′

f(x) = xn (x) = nf ′ xn−1

f(x) = sin(x) (x) = cos(x)f ′

f(x) = cos(x) (x) = − sin(x)f ′

f(x) = tan(x) (x) =f ′ 1

(x)cos2

f(x) = ex (x) =f ′ ex

f(x) = ln(x) (x) =f ′ 1
x

f(x) g(x) h(x)
(x)h′ (x)f ′ (x)g′

h(x) (x)h′

h(x) = f(x) + g(x) (x) = (x) + (x)h′ f ′ g′

h(x) = f(x) − g(x) (x) = (x) − (x)h′ f ′ g′

h(x) = f(x)g(x) (x) = (x)g(x) + f(x) (x)h′ f ′ g′

h(x) =
f(x)

g(x)
(x) =h′ (x)g(x)−f(x) (x)f ′ g ′

(x)g2

h(x) = f(g(x)) (x) = (g(x)) (x)h′ f ′ g′

 Example 2.9.1

tan(x) 1
(x)cos2

tan(x) =
sin(x)

cos(x)
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Using the fourth row in Table A2.2.2, and the common derivatives from Table A2.2.1, we have:

as required.

Use the properties from Table A2.2.2 to calculate the derivative of .

Solution:

To calculate the derivative of , we need to use the Chain Rule.  is found by first taking  and then taking that
result squared. We can thus identify:

Using the common derivatives from Table A2.2.1, we have:

Applying the Chain Rule, we have:

where  means apply the derivative of  to the function . Since the derivative of  is , when we
apply it to  instead of , we get .

Partial derivatives and gradients

So far, we have only looked at the derivative of a function of a single independent variable and used it to quantify how much the
function changes when the independent variable changes. We can proceed analogously for a function of multiple variables, ,
by quantifying how much the function changes along the direction associated with a particular variable. This is illustrated in Figure
A2.2.2 for the function , which looks somewhat like a saddle.

h(x)

f(x)

g(x)

=
f(x)

g(x)

= sin(x)

= cos(x)

(x)f ′

(x)g′

(x)g2

(x)h′

= cos(x)

= −sin(x)

= (x)cos2

=
(x)g(x) −f(x) (x)f ′ g′

(x)g2

=
cos(x) cos(x) −sin(x)(−sin(x))

cos2

=
(x) + (x)cos2 sin2

cos2

=
1

(x)cos2

 Example 2.9.2

h(x) = (x)sin2

h(x) h(x) sin(x)

h(x)

f(x)

g(x)

= (x) = f(g(x))sin2

= x2

= sin(x)

(x)f ′

(x)g′

= 2x

= cos(x)

(x)h′ = (g(x)) (x)f ′ g′

= 2 sin(x) (x)g′

= 2 sin(x) cos(x)

(g(x))f ′ f(x) g(x) f(x) (x) = 2xf ′

g(x) 2x 2g(x) = 2 cos(x)

f(x, y)

f(x, y) = −2x2 y2
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Figure A2.2.2:  plotted for  between  and  and for  between  and . The point  labeled on the
figure shows the value of the function at . The two lines show the function evaluated when one of  or  is held constant.

Suppose that we wish to determine the derivative of the function  at  and . In this case, it does not make sense
to simply determine the “derivative”, but rather, we must specify in which direction we want the derivative. That is, we need to
specify in which direction we are interested in quantifying the rate of change of the function.

One possibility is to quantify the rate of change in the  direction. The solid line in Figure A2.2.2 shows the part of the function
surface where  is fixed at -2, that is, the function evaluated as . The point  on the figure shows the value of the
function when  and . By looking at the solid line at point , we can see that as  increases, the value of the
function is gently decreasing. The derivative of  with respect to  when  is held constant and evaluated at  and 

 is thus negative. Rather than saying “The derivative of  with respect to  when  is held constant” we say “The
partial derivative of  with respect to ”.

Since the partial derivative is different than the ordinary derivative (as it implies that we are holding independent variables fixed),
we give it a different symbol, namely, we use  instead of :

Calculating the partial derivative is very easy, as we just treat all variables as constants except for the variable with respect to which
we are differentiating . For the function , we have:

At , the partial derivative of  is indeed negative, consistent with our observation that, along the solid line, at point 
, the function is decreasing.

A function will have as many partial derivatives as it has independent variables. Also note that, just like a normal derivative, a
partial derivative is still a function. The partial derivative with respect to a variable tells us how steep the function is in the direction
in which that variable increases and whether it is increasing or decreasing.

Determine the partial derivatives of .

Solution:

f(x,y) = − 2x2 y2 x −5 +5 y −5 +5 P

f(−2, −2) x y

f(x) x = −2 y = −2

x

y f(x, y = −2) P

x = −2 y = −2 P x

f(x, y) x y x = −2
y = −2 f(x, y) x y

f(x, y) x

∂ d

= f(x, y) (Partial derivative of f with respect to x)
∂f

∂x

∂

∂x

1 f(x, y) = −2x2 y2

∂f

∂x
∂f

∂y

= ( −2 ) = 2x
∂

∂x
x2 y2

= ( −2 ) = −4y
∂

∂y
x2 y2

x = −2 f(x, y)
P

 Example 2.9.3

f(x, y, z) = a +byz−sin(z)x2
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In this case, we have three partial derivatives to evaluate. Note that  are  constants and can be thought of as numbers that we
do not know.

Since the partial derivatives tell us how the function changes in a particular direction, we can use them to find the direction in
which the function changes the most rapidly. For example, suppose that the surface from Figure A2.2.2 corresponds to a real
physical surface and that we place a ball at point . We wish to know in which direction the ball will roll. The direction that it will
roll in is the opposite of the direction where  increases the most rapidly (i.e. it will roll in the direction where 
decreases the most rapidly). The direction in which the function increases the most rapidly is called the “gradient” and denoted by 

.

Since the gradient is a direction, it cannot be represented by a single number. Rather, we use a “vector” to indicate this direction.
Since  has two independent variables, the gradient will be a vector with two components. The components of the gradient
are given by the partial derivatives:

where  and  are the unit vectors in the  and  directions, respectively (sometimes, the unit vectors are denoted  and ). The
direction of the gradient tells us in which direction the function increases the fastest, and the magnitude of the gradient tells us how
much the function increases in that direction.

Determine the gradient of the function  at the point  and .

Solution:

We have already found the partial derivatives that we need to evaluate at  and :

Evaluating the gradient at  and :

The gradient vector points in the direction . That is, the function increases the most in the direction where you would
take 1 pace in the negative  direction and 2 paces in the positive  direction. You can confirm this by looking at point  in
Figure A2.2.2 and imagining in which direction you would have to go to climb the surface to get the steepest climb.

The gradient is itself a function, but it is not a real function (in the sense of a real number), since it evaluates to a vector. It is a
mapping from real numbers  to a vector. As you take more advanced calculus courses, you will eventually encounter “vector
calculus”, which is just the calculus for functions of multiple variables to which you were just introduced. The key point to
remember here is that the gradient can be used to find the vector that points in the direction of maximal increase of the

a b

∂f

∂x
∂f

∂y
∂f

∂z

= (a +byz−sin(z)) = 2ax
∂

∂x
x2

= (a +byz−sin(z)) = bz
∂

∂y
x2

= (a +byz−sin(z)) = by−cos(z)
∂

∂z
x2

P

f(x, y) f(x, y)

∇f(x, y)

f(x, y)

∇f(x, y) = +
∂f

∂x
x̂

∂f

∂y
ŷ

x̂ ŷ x y î ĵ

 Example 2.9.4

f(x, y) = −2x2 y2 x = −2 y = −2

x = −2 y = −2

∂f

∂x
∂f

∂y

∴ ∇f(x, y)

= 2x

= −4y

= +
∂f

∂x
x̂

∂f

∂y
ŷ

= 2x −4yx̂ ŷ

x = −2 y = −2

∇f(x, y) = 2x −4yx̂ ŷ

= −4 +8x̂ ŷ

= 4(− +2 )x̂ ŷ

(−1, 2)
x y P

x, y
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corresponding multi-variate function. This is precisely the quantity that we need in physics to determine in which direction a ball
will roll when placed on a surface (it will roll in the direction opposite to the gradient vector).

The gradient of a function of one variable, , is

A. undefined
B. zero
C. equal to its derivative
D. infinite

Answer

Common uses of derivatives in physics
The simplest case of using a derivative is to describe the speed of an object. If an object covers a distance  in a period of time 

, it’s “average speed”, , is defined as the distance covered by the object divided by the amount of time it took to cover that
distance:

If the object changes speed (for example it is slowing down) over the distance , we can still define its “instantaneous speed”, ,
by measuring the amount of time, , that it takes the object to cover a very small distance, . The instantaneous speed is
defined in the limit where :

which is precisely the derivative of  with respect to .  is a function that gives the position, , of the object along some 
axis as a function of time. The speed of the object is thus the rate of change of its position.

Similarly, if the speed is changing with time, then we can define the “acceleration”, , of an object as the rate of change of its
speed:

Footnotes

1. To take the derivative is to “differentiate”!

Key Takeaways
The derivative of a function, , with respect to  can be written as:

and measures the rate of change of the function with respect to . The derivative of a function is generally itself a function. The
derivative is defined as:

Graphically, the derivative of a function represents the slope of the function, and it is positive if the function is increasing, negative
if the function is decreasing and zero if the function is flat. Derivatives can always be determined analytically for any continuous
function.

A partial derivative measures the rate of change of a multi-variate function, , with respect to one of its independent
variables. The partial derivative with respect to one of the variables is evaluated by taking the derivative of the function with

 Exercise 2.9.2

f(x)

Δx

Δt vavg

=vavg
Δx

Δt

Δx v

Δt Δx

Δx → 0

v= =lim
Δx→0

Δx

Δt

dx

dt

x(t) t x(t) x x

a

a =
dv

dt

f(x) x

f(x) = = (x)
d

dx

df

dx
f ′

x

(x) =f ′ lim
Δx→0

f(x+Δx) −f(x)

Δx

f(x, y)
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respect to that variable while treating all other independent variables as if they were constant. The partial derivative of a function
(with respect to ) is written as:

The gradient of a function, , is a vector in the direction in which that function is increasing most rapidly. It is given by:

Given a function, , its anti-derivative with respect to , , is written:

 is such that its derivative with respect to  is :

The anti-derivative of a function is only ever defined up to a constant, . We usually write this as:

since the derivative of  will also be equal to . The anti-derivative is also called the “indefinite integral” of .

The definite integral of a function , between  and , is written:

and is equal to the difference in the anti-derivative evaluated at  and :

where the constant  no longer matters, since it cancels out. Physical quantities only ever depend on definite integrals, since they
must be determined without an arbitrary constant.

Definite integrals are very useful in physics because they are related to a sum. Given a function , one can relate the sum of
terms of the form  over a range of values from  to  to the integral of  over that range:

This page titled 2.9: Derivatives is shared under a CC BY-SA license and was authored, remixed, and/or curated by Howard Martin revised by
Alan Ng.
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2.9.1: The Derivative as a Function

Define the derivative function of a given function.
Graph a derivative function from the graph of a given function.
State the connection between derivatives and continuity.
Describe three conditions for when a function does not have a derivative.
Explain the meaning of a higher-order derivative.

As we have seen, the derivative of a function at a given point gives us the rate of change or slope of the tangent line to the function
at that point. If we differentiate a position function at a given time, we obtain the velocity at that time. It seems reasonable to
conclude that knowing the derivative of the function at every point would produce valuable information about the behavior of the
function. However, the process of finding the derivative at even a handful of values using the techniques of the preceding section
would quickly become quite tedious. In this section we define the derivative function and learn a process for finding it.

2.9.1.1 Derivative Functions
The derivative function gives the derivative of a function at each point in the domain of the original function for which the
derivative is defined. We can formally define a derivative function as follows.

Let  be a function. The derivative function, denoted by , is the function whose domain consists of those values of  such
that the following limit exists:

A function  is said to be differentiable at  if  exists. More generally, a function is said to be differentiable on  if it is
differentiable at every point in an open set , and a differentiable function is one in which  exists on its domain.

In the next few examples we use Equation  to find the derivative of a function.

Find the derivative of .

Solution

Start directly with the definition of the derivative function.

Substitute  and  into .

 

Multiply numerator and denominator by  without
distributing in the denominator.

Multiply the numerators and simplify.

Cancel the .

Evaluate the limit

 Learning Objectives

 Definition: Derivative Function

f f ′ x

(x) = .f ′ lim
h→0

f(x+h) −f(x)

h
(2.9.1.1)

f(x) a (a)f ′ S

S (x)f ′

2.9.1.1

 Example : Finding the Derivative of a Square-Root Function2.9.1.1

f(x) = x
−−

√

f(x+h) = x+h
− −−−−

√ f(x) = x−−√ (x) =f ′ lim
h→0

f(x+h) −f(x)

h

(x) =f ′ lim
h→0

−x+h
− −−−−

√ x
−−

√

h

= ⋅lim
h→0

−x+h
− −−−−

√ x
−−

√

h

+x+h
− −−−−

√ x
−−

√

+x+h
− −−−−

√ x
−−

√

+x+h
− −−−−√ x−−√

= lim
h→0

h

h( + )x+h
− −−−−√ x−−√

= lim
h→0

1

( + )x+h
− −−−−

√ x
−−

√
h

=
1

2 x−−√
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Find the derivative of the function .

Solution

Follow the same procedure here, but without having to multiply by the conjugate.

Substitute  and  into 

 

Expand .

Simplify

Factor out  from the numerator

Cancel the common factor of 

Evaluate the limit

Find the derivative of .

Hint

Use Equation  and follow the example.

Answer

We use a variety of different notations to express the derivative of a function. In Example  we showed that if 
, then . If we had expressed this function in the form , we could have expressed the

derivative as  or . We could have conveyed the same information by writing .

Thus, for the function , each of the following notations represents the derivative of :

.

In place of  we may also use . Use of the  notation (called Leibniz notation) is quite common in engineering and

physics. To understand this notation better, recall that the derivative of a function at a point is the limit of the slopes of secant lines

as the secant lines approach the tangent line. The slopes of these secant lines are often expressed in the form  where  is the

difference in the  values corresponding to the difference in the  values, which are expressed as  (Figure ). Thus the
derivative, which can be thought of as the instantaneous rate of change of  with respect to , is expressed as

.

 Example : Finding the Derivative of a Quadratic Function2.9.1.2

f(x) = −2xx2

f(x+h) = (x+h −2(x+h))2 f(x) = −2xx2 (x) = .f ′ lim
h→0

f(x+h) −f(x)

h

(x) =f ′ lim
h→0

((x+h − 2(x+h)) − ( − 2x))2 x2

h

= lim
h→0

+ 2xh+ − 2x− 2h− + 2xx2 h2 x2

h
(x+h − 2(x+h))2

= lim
h→0

2xh− 2h+h2

h

= lim
h→0

h(2x− 2 +h)

h
h

= (2x− 2 +h)lim
h→0

h

= 2x− 2

 Exercise 2.9.1.1

f(x) = x2

2.9.1.1

(x) = 2xf ′

2.9.1.2
f(x) = −2xx2 (x) = 2x−2f ′ y = −2xx2

y' = 2x−2 = 2x−2
dy

dx
( −2x) = 2x−2

d

dx
x2

y = f(x) f(x)

(x), , y', (f(x))f ′ dy

dx

d

dx

(a)f ′
dy

dx
∣
∣x=a

dy

dx

Δy

Δx
Δy

y x Δx 2.9.1.1
y x

=
dy

dx
lim

Δx→0

Δy

Δx
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Figure : The derivative is expressed as .

2.9.1.2 Graphing a Derivative
We have already discussed how to graph a function, so given the equation of a function or the equation of a derivative function, we
could graph it. Given both, we would expect to see a correspondence between the graphs of these two functions, since  gives
the rate of change of a function  (or slope of the tangent line to ).

In Example , we found that for , . If we graph these functions on the same axes, as in Figure 

, we can use the graphs to understand the relationship between these two functions. First, we notice that  is increasing
over its entire domain, which means that the slopes of its tangent lines at all points are positive. Consequently, we expect 
for all values of x in its domain. Furthermore, as  increases, the slopes of the tangent lines to  are decreasing and we expect to
see a corresponding decrease in . We also observe that  is undefined and that , corresponding to a

vertical tangent to  at .

Figure : The derivative  is positive everywhere because the function  is increasing.

In Example , we found that for . The graphs of these functions are shown in Figure 
. Observe that  is decreasing for . For these same values of , . For values of ,  is increasing

and . Also,  has a horizontal tangent at  and .

2.9.1.1 =
dy

dx
lim

Δx→0

Δy

Δx

(x)f ′

f(x) f(x)

2.9.1.1 f(x) = x−−√ (x) =f ′ 1
2 x√

2.9.1.2 f(x)
(x) > 0f ′

x f(x)
(x)f ′ f(0) (x) = +∞lim

x→0+
f ′

f(x) 0

2.9.1.2 (x)f ′ f(x)

2.9.1.2 f(x) = −2x, (x) = 2x−2x2 f ′

2.9.1.3 f(x) x < 1 x (x) < 0f ′ x > 1 f(x)
(x) > 0f ′ f(x) x = 1 (1) = 0f ′
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Figure : The derivative  where the function  is decreasing and  where  is increasing. The
derivative is zero where the function has a horizontal tangent

Use the following graph of  to sketch a graph of .

Solution

The solution is shown in the following graph. Observe that  is increasing and  on . Also,  is
decreasing and  on  and on . Also note that  has horizontal tangents at  and , and 

 and .

2.9.1.3 (x) < 0f ′ f(x) (x) > 0f ′ f(x)

 Example : Sketching a Derivative Using a Function2.9.1.3

f(x) (x)f ′

f(x) (x) > 0f ′ (– 2, 3) f(x)
(x) < 0f ′ (−∞, −2) (3, +∞) f(x) – 2 3

(−2) = 0f ′ (3) = 0f ′
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Sketch the graph of . On what interval is the graph of  above the -axis?

Hint

The graph of  is positive where  is increasing.

Answer

2.9.1.3 Derivatives and Continuity
Now that we can graph a derivative, let’s examine the behavior of the graphs. First, we consider the relationship between
differentiability and continuity. We will see that if a function is differentiable at a point, it must be continuous there; however, a
function that is continuous at a point need not be differentiable at that point. In fact, a function may be continuous at a point and
fail to be differentiable at the point for one of several reasons.

Let  be a function and  be in its domain. If  is differentiable at , then  is continuous at .

If  is differentiable at , then  exists and, if we let , we have , and as , we can
see that .

Then

can be rewritten as

.

We want to show that  is continuous at  by showing that  Thus,

 Exercise 2.9.1.2

f(x) = −4x2 (x)f ′ x

(x)f ′ f(x)

(0, +∞)

 Differentiability Implies Continuity

f(x) a f(x) a f a

 Proof

f(x) a (a)f ′ h = x−a x = a+h h = x−a → 0
x → a

(a) =f ′ lim
h→0

f(a+h) −f(a)

h

(a) =f ′ lim
x→a

f(x) −f(a)

x−a

f(x) a f(x) = f(a).lim
x→a
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Therefore, since  is defined and , we conclude that  is continuous at .

□

We have just proven that differentiability implies continuity, but now we consider whether continuity implies differentiability. To
determine an answer to this question, we examine the function . This function is continuous everywhere; however, 
is undefined. This observation leads us to believe that continuity does not imply differentiability. Let’s explore further. For 

,

.

This limit does not exist because

 and .

See Figure .

Figure : The function  is continuous at  but is not differentiable at .

Let’s consider some additional situations in which a continuous function fails to be differentiable. Consider the function 
:

.

Thus  does not exist. A quick look at the graph of  clarifies the situation. The function has a vertical tangent line
at  (Figure ).

f(x)lim
x→a

= (f(x) −f(a) +f(a))lim
x→a

= ( ⋅ (x−a) +f(a))lim
x→a

f(x) −f(a)

x−a

=( ) ⋅( (x−a))+ f(a)lim
x→a

f(x) −f(a)

x−a
lim
x→a

lim
x→a

= (a) ⋅ 0 +f(a)f ′

= f(a).

Multiply and divide (f(x) −f(a)) by x−a.

f(a) f(x) = f(a)lim
x→a

f a

f(x) = |x| (0)f ′

f(x) = |x|

(0) = = =f ′ lim
x→0

f(x) −f(0)

x−0
lim
x→0

|x| − |0|

x−0
lim
x→0

|x|

x

= −1lim
x→0−

|x|

x
= 1lim

x→0+

|x|

x

2.9.1.4

2.9.1.4 f(x) = |x| 0 0

f(x) = x
−−

√3

(0) = = = +∞f ′ lim
x→0

−0x−−√3

x−0
lim
x→0

1

x2−−
√3

(0)f ′ f(x) = x−−√3

0 2.9.1.5
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Figure : The function  has a vertical tangent at . It is continuous at  but is not differentiable at .

The function  also has a derivative that exhibits interesting behavior at .

We see that

.

This limit does not exist, essentially because the slopes of the secant lines continuously change direction as they approach zero
(Figure ).

Figure : The function  is not differentiable at .

In summary:

1. We observe that if a function is not continuous, it cannot be differentiable, since every differentiable function must be
continuous. However, if a function is continuous, it may still fail to be differentiable.

2. We saw that  failed to be differentiable at  because the limit of the slopes of the tangent lines on the left and right
were not the same. Visually, this resulted in a sharp corner on the graph of the function at  From this we conclude that in order
to be differentiable at a point, a function must be “smooth” at that point.

3. As we saw in the example of , a function fails to be differentiable at a point where there is a vertical tangent line.

4. As we saw with  a function may fail to be differentiable at a point in more complicated ways

as well.

A toy company wants to design a track for a toy car that starts out along a parabolic curve and then converts to a straight line

(Figure ). The function that describes the track is to have the form  where 

2.9.1.5 f(x) = x−−√3 x = 0 0 0

f(x) ={
x sin( ),1

x

0,

 if x ≠ 0

 if x = 0
0

(0) = = sin( )f ′ lim
x→0

x sin(1/x) −0

x−0
lim
x→0

1

x

2.9.1.6

2.9.1.6 f(x) = {
x sin( ),1

x

0,

 if x ≠ 0

 if x = 0
0

f(x) = |x| 0
0.

f(x) = x−−√3

f(x) ={
x sin( ),1

x

0,

 if x ≠ 0

 if x = 0

 Example : A Piecewise Function that is Continuous and Differentiable2.9.1.4

2.9.1.7 f(x) = {
+bx+c,1

10
x2

− x+ ,1
4

5
2

 if x < −10

 if x ≥ −10
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 and  are in inches. For the car to move smoothly along the track, the function  must be both continuous and
differentiable at . Find values of  and  that make  both continuous and differentiable.

Figure : For the car to move smoothly along the track, the function must be both continuous and differentiable.

Solution

For the function to be continuous at , . Thus, since

and , we must have . Equivalently, we have .

For the function to be differentiable at ,

must exist. Since  is defined using different rules on the right and the left, we must evaluate this limit from the right and
the left and then set them equal to each other:

.

We also have

.

This gives us . Thus  and .

Find values of a and b that make  both continuous and differentiable at .

Hint

x f(x) f(x)
−10 b c f(x)

2.9.1.7

x = −10 f(x) = f(−10)lim
x→10−

f(x) = (−10 −10b+c = 10 −10b+clim
x→−10−

1

10
)2

f(−10) = 5 10 −10b+c = 5 c = 10b−5

−10

(10) =f ′ lim
x→−10

f(x) −f(−10)

x+10

f(x)

lim
x→−10−

f(x) −f(−10)

x+10
= lim

x→−10−

+bx+c−51
10
x2

x+10

= lim
x→−10−

+bx+(10b−5) −51
10
x2

x+10

= lim
x→−10−

−100 +10bx+100bx2

10(x+10)

= lim
x→−10−

(x+10)(x−10 +10b)

10(x+10)

= b−2

Substitute c = 10b−5.

Factor by grouping

lim
x→−10+

f(x) −f(−10)

x+10
= lim

x→−10+

− x+ −51
4

5
2

x+10

= lim
x→−10+

−(x+10)

4(x+10)

= −
1

4

b−2 = − 1
4

b = 7
4

c = 10( ) −5 =7
4

25
2

 Exercise 2.9.1.3

f(x) ={
ax+b,

,x2
 if x < 3
 if x ≥ 3

3
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Use Example  as a guide.

Answer

 and 

2.9.1.4 Higher-Order Derivatives
The derivative of a function is itself a function, so we can find the derivative of a derivative. For example, the derivative of a
position function is the rate of change of position, or velocity. The derivative of velocity is the rate of change of velocity, which is
acceleration. The new function obtained by differentiating the derivative is called the second derivative. Furthermore, we can
continue to take derivatives to obtain the third derivative, fourth derivative, and so on. Collectively, these are referred to as higher-
order derivatives. The notation for the higher-order derivatives of  can be expressed in any of the following forms:

It is interesting to note that the notation for  may be viewed as an attempt to express  more compactly.

Analogously, .

For , find .

Solution

First find .

Substitute  and  into 

 

Simplify the numerator.

Factor out the  in the numerator and cancel with the  in the
denominator.

Take the limit.

Next, find  by taking the derivative of 

Use  with  in place of 

Substitute  and 

Simplify.

Take the limit.

2.9.1.4

a = 6 b = −9

y = f(x)

(x), (x), (x), … , (x)f ′′ f ′′′ f (4) f (n)

(x), (x), (x), … , (x)y′′ y′′′ y(4) y(n)

, , , … , .
yd2

dx2

yd3

dy3

yd4

dy4

ydn

dyn

yd2

dx2
( )

d

dx

dy

dx

( ( )) = ( ) =
d

dx

d

dx

dy

dx

d

dx

yd2

dx2

yd3

dx3

 Example : Finding a Second Derivative2.9.1.5

f(x) = 2 −3x+1x2 (x)f ′′

(x)f ′

f(x) = 2 −3x+1x2 f(x+h) = 2(x+h −3(x+h) +1)2 (x) = .f ′ lim
h→0

f(x+h) −f(x)

h

(x) =f ′ lim
h→0

(2(x+h − 3(x+h) + 1) − (2 − 3x+ 1))2 x2

h

= lim
h→0

4xh+ 2 − 3hh2

h

= (4x+ 2h− 3)lim
h→0

h h

= 4x− 3

(x)f ′′ (x) = 4x−3.f ′

(x) =f ′′ lim
h→0

(x+h) − (x)f ′ f ′

h

(x) =f ′ lim
h→0

f(x+h) − f(x)

h
f'(x)

f(x).

= lim
h→0

(4(x+h) − 3) − (4x− 3)

h
(x+h) = 4(x+h) − 3f ′ (x) = 4x− 3.f ′

= 4lim
h→0

= 4

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76301?pdf


2.9.1.10 https://phys.libretexts.org/@go/page/76301

Find  for .

Hint

We found  in a previous checkpoint. Use Equation  to find the derivative of 

Answer

The position of a particle along a coordinate axis at time  (in seconds) is given by  (in meters). Find the
function that describes its acceleration at time .

Solution

Since  and , we begin by finding the derivative of :

Next,

Thus, .

For , find 

Hint

Use Example  as a guide.

Answer

2.9.1.5 Key Concepts
The derivative of a function  is the function whose value at  is .
The graph of a derivative of a function  is related to the graph of . Where  has a tangent line with positive slope, 

. Where  has a tangent line with negative slope, . Where  has a horizontal tangent line, 
If a function is differentiable at a point, then it is continuous at that point. A function is not differentiable at a point if it is not
continuous at the point, if it has a vertical tangent line at the point, or if the graph has a sharp corner or cusp.
Higher-order derivatives are derivatives of derivatives, from the second derivative to the  derivative.

 Exercise 2.9.1.4

(x)f ′′ f(x) = x2

(x) = 2xf ′ 2.9.1.1 (x)f ′

(x) = 2f ′′

 Example : Finding Acceleration2.9.1.6

t s(t) = 3 −4t+1t2

t

v(t) = s'(t) a(t) = v'(t) = (t)s′′ s(t)

s'(t) = lim
h→0

s(t+h) −s(t)

h

= lim
h→0

3(t+h −4(t+h) +1 −(3 −4t+1))2 t2

h

= 6t−4.

(t)s′′ = lim
h→0

s'(t+h) −s'(t)

h

= lim
h→0

6(t+h) −4 −(6t−4)

h

= 6.

a = 6 m/s
2

 Exercise 2.9.1.5

s(t) = t3 a(t).

2.9.1.6

a(t) = 6t

f(x) x (x)f ′

f(x) f(x) f(x)
(x) > 0f ′ f(x) (x) < 0f ′ f(x) (x) = 0.f ′

nth
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2.9.1.6 Key Equations
The derivative function

2.9.1.7 Glossary

derivative function
gives the derivative of a function at each point in the domain of the original function for which the derivative is defined

differentiable at 
a function for which  exists is differentiable at 

differentiable on 
a function for which  exists for each  in the open set  is differentiable on 

differentiable function
a function for which  exists is a differentiable function

higher-order derivative
a derivative of a derivative, from the second derivative to the  derivative, is called a higher-order derivative

2.9.1.8 Contributors and Attributions
Template:ContribOpenStaxCalc
Paul Seeburger (Monroe Community College) added explanation of the alternative definition of the derivative used in the proof
of that differentiability implies continuity.

This page titled 2.9.1: The Derivative as a Function is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

3.2: The Derivative as a Function by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

(x) =f ′ lim
h→0

f(x+h) −f(x)

h

a

(a)f ′ a

S

(x)f ′ x S S

(x)f ′

nth
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2.9.2: Differentiation Rules

State the constant, constant multiple, and power rules.
Apply the sum and difference rules to combine derivatives.
Use the product rule for finding the derivative of a product of functions.
Use the quotient rule for finding the derivative of a quotient of functions.
Extend the power rule to functions with negative exponents.
Combine the differentiation rules to find the derivative of a polynomial or rational function.
State the chain rule for the composition of two functions.
Apply the chain rule together with the power rule.
Apply the chain rule and the product/quotient rules correctly in combination when both are necessary.
Recognize the chain rule for a composition of three or more functions.
Describe the proof of the chain rule.

Finding derivatives of functions by using the definition of the derivative can be a lengthy and, for certain functions, a rather challenging process. For
example, previously we found that

by using a process that involved multiplying an expression by a conjugate prior to evaluating a limit.

The process that we could use to evaluate  using the definition, while similar, is more complicated.

In this section, we develop rules for finding derivatives that allow us to bypass this process. We begin with the basics.

2.9.2.1 The Basic Rules

The functions  and  where  is a positive integer are the building blocks from which all polynomials and rational functions are
constructed. To find derivatives of polynomials and rational functions efficiently without resorting to the limit definition of the derivative, we must first
develop formulas for differentiating these basic functions.

2.9.2.2 The Constant Rule
We first apply the limit definition of the derivative to find the derivative of the constant function, . For this function, both  and 

, so we obtain the following result:

The rule for differentiating constant functions is called the constant rule. It states that the derivative of a constant function is zero; that is, since a
constant function is a horizontal line, the slope, or the rate of change, of a constant function is . We restate this rule in the following theorem.

Let  be a constant. If , then 

Alternatively, we may express this rule as

Find the derivative of 

Solution

This is just a one-step application of the rule: 

 Learning Objectives

( ) =
d

dx
x−−√

1

2 x−−√

( )
d

dx
x−−√3

f(x) = c g(x) = xn n

f(x) = c f(x) = c

f(x+h) = c

f '(x) = lim
h→0

f(x+h) −f(x)

h

= lim
h→0

c−c

h

= lim
h→0

0

h

= 0 = 0.lim
h→0

0

 The Constant Rule

c f(x) = c f '(x) = 0.

(c) = 0.
d

dx

 Example : Applying the Constant Rule2.9.2.1

f(x) = 8.

f '(8) = 0.
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Find the derivative of .

Hint

Use the preceding example as a guide

Answer

0

2.9.2.3 The Power Rule
We have shown that

At this point, you might see a pattern beginning to develop for derivatives of the form . We continue our examination of derivative formulas by

differentiating power functions of the form  where  is a positive integer. We develop formulas for derivatives of this type of function in
stages, beginning with positive integer powers. Before stating and proving the general rule for derivatives of functions of this form, we take a look at a

specific case, . As we go through this derivation, pay special attention to the portion of the expression in boldface, as the technique used in this

case is essentially the same as the technique used to prove the general case.

Find .

Solution:

 

Notice that the first term in the expansion of  is  and the second
term is . All other terms contain powers of  that are two or greater

In this step the  terms have been cancelled, leaving only terms containing
.

Factor out the common factor of .

After cancelling the common factor of ,the only term not containing  is 
.

Let  go to .

Find 

Hint

Use  and follow the procedure outlined in the preceding example.

Answer

As we shall see, the procedure for finding the derivative of the general form  is very similar. Although it is often unwise to draw general
conclusions from specific examples, we note that when we differentiate , the power on  becomes the coefficient of  in the derivative and
the power on  in the derivative decreases by 1. The following theorem states that the power rule holds for all positive integer powers of . We will
eventually extend this result to negative integer powers. Later, we will see that this rule may also be extended first to rational powers of  and then to
arbitrary powers of . Be aware, however, that this rule does not apply to functions in which a constant is raised to a variable power, such as .

 Exercise 2.9.2.1

g(x) = −3

( ) = 2x  and  ( ) = .
d

dx
x2 d

dx
x1/2 1

2
x−1/2

( )
d

dx
xn

f(x) = xn n

( )
d

dx
x3

 Example : Differentiating 2.9.2.2 x3

( )
d

dx
x3

( ) =
d

dx
x3 lim

h→0

(x+h −)3 x3

h

= lim
h→0

+ 3 h+ 3x + −x3 x2 h2 h3 x3

h

(x+h)3 x3

3 hx2 h

= lim
h→0

3 h+ 3x +x2 h2 h3

h

x3

h

= lim
h→0

h(3 + 3xh+ )x2 h2

h
h

= (3 + 3xh+ )lim
h→0

x2 h2 h h

3x2

= 3x2 h 0

 Exercise 2.9.2.2

( ) .
d

dx
x4

(x+h = +4 h+6 +4x +)4 x4 x3 x2h2 h3 h4

( ) = 4
d

dx
x4 x3

f(x) = xn

f(x) = x3 x x2

x x

x

x f(x) = 3x
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Let  be a positive integer. If ,then

Alternatively, we may express this rule as

□

Find the derivative of the function  by applying the power rule.

Solution

Using the power rule with , we obtain

Find the derivative of .

Hint

Use the power rule with 

Answer

2.9.2.4 The Sum, Difference, and Constant Multiple Rules
We find our next differentiation rules by looking at derivatives of sums, differences, and constant multiples of functions. Just as when we work with
functions, there are rules that make it easier to find derivatives of functions that we add, subtract, or multiply by a constant. These rules are summarized
in the following theorem.

Let  and  be differentiable functions and  be a constant. Then each of the following equations holds.

Sum Rule. The derivative of the sum of a function  and a function  is the same as the sum of the derivative of  and the derivative of .

that is,

Difference Rule. The derivative of the difference of a function  and a function  is the same as the difference of the derivative of  and the
derivative of  :

that is,

Constant Multiple Rule. The derivative of a constant  multiplied by a function  is the same as the constant multiplied by the derivative:

that is,

□

 The Power Rule

n f(x) = xn

f '(x) = n .xn−1

( ) = n
d

dx
xn xn−1.

 Example : Applying the Power Rule2.9.2.3

f(x) = x10

n = 10

(x) = 10 = 10 .f ′ x10−1 x9

 Exercise 2.9.2.3

f(x) = x7

n = 7.

f '(x) = 7x6

 Sum, Difference, and Constant Multiple Rules

f(x) g(x) k

f g f g

(f(x) +g(x)) = (f(x))+ (g(x));
d

dx

d

dx

d

dx

for s(x) = f(x) +g(x), s'(x) = f '(x) +g'(x).

f g f

g

(f(x) −g(x)) = (f(x)) − (g(x));
d

dx

d

dx

d

dx

for d(x) = f(x) −g(x), d'(x) = f '(x) −g'(x).

k f

(kf(x)) = k (f(x));
d

dx

d

dx

for m(x) = kf(x), m'(x) = kf '(x).
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Find the derivative of  and compare it to the derivative of 

Solution

We use the power rule directly:

Since  has derivative , we see that the derivative of  is 3 times the derivative of . This relationship is illustrated in
Figure .

Figure : The derivative of  is 3 times the derivative of .

Find the derivative of .

Solution

We begin by applying the rule for differentiating the sum of two functions, followed by the rules for differentiating constant multiples of functions
and the rule for differentiating powers. To better understand the sequence in which the differentiation rules are applied, we use Leibniz notation
throughout the solution:

Find the derivative of 

Hint

Use the preceding example as a guide.

Answer

Find the equation of the line tangent to the graph of  at 

Solution

To find the equation of the tangent line, we need a point and a slope. To find the point, compute

This gives us the point . Since the slope of the tangent line at 1 is , we must first find . Using the definition of a derivative, we have

 Example : Applying the Constant Multiple Rule2.9.2.4

g(x) = 3x2 f(x) = .x2

g'(x) = (3 ) = 3 ( ) = 3(2x) = 6x.
d

dx
x2 d

dx
x2

f(x) = x2 f '(x) = 2x g(x) f(x)
2.9.2.1

2.9.2.1 g(x) f(x)

 Example : Applying Basic Derivative Rules2.9.2.5

f(x) = 2 +7x5

f '(x) = (2 +7)
d

dx
x5

= (2 ) + (7)
d

dx
x5 d

dx

= 2 ( ) + (7)
d

dx
x5 d

dx

= 2(5 ) +0x4

= 10x4

Apply the sum rule.

Apply the constant multiple rule.

Apply the power rule and the constant rule.

Simplify.

 Exercise 2.9.2.4

f(x) = 2 −6 +3.x3 x2

f '(x) = 6 −12x.x2

 Example : Finding the Equation of a Tangent Line2.9.2.6

f(x) = −4x+6x2 x = 1

f(1) = −4(1) +6 = 3.12

(1, 3) f '(1) f '(x)
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so the slope of the tangent line is . Using the point-slope formula, we see that the equation of the tangent line is

Putting the equation of the line in slope-intercept form, we obtain

Find the equation of the line tangent to the graph of  at . Use the point-slope form.

Hint

Use the preceding example as a guide.

Answer

2.9.2.5 The Product Rule
Now that we have examined the basic rules, we can begin looking at some of the more advanced rules. The first one examines the derivative of the
product of two functions. Although it might be tempting to assume that the derivative of the product is the product of the derivatives, similar to the sum
and difference rules, the product rule does not follow this pattern. To see why we cannot use this pattern, consider the function , whose

derivative is  and not 

Let  and  be differentiable functions. Then

That is,

This means that the derivative of a product of two functions is the derivative of the first function times the second function plus the derivative of the
second function times the first function.

For , use the product rule to find  if , and .

Solution

Since ,  and hence

For  find  by applying the product rule. Check the result by first finding the product and then differentiating.

Solution

If we set  and , then  and . Thus,

Simplifying, we have

To check, we see that  and, consequently, 

f '(x) = 2x−4

f '(1) = −2

y−3 = −2(x−1).

y = −2x+5.

 Exercise 2.9.2.5

f(x) = 3 −11x2 x = 2

y = 12x−23

f(x) = x2

f '(x) = 2x (x) ⋅ (x) = 1 ⋅ 1 = 1.
d

dx

d

dx

 Product Rule

f(x) g(x)

(f(x)g(x)) = (f(x)) ⋅ g(x) + (g(x)) ⋅ f(x).
d

dx

d

dx

d

dx

if p(x) = f(x)g(x), then p'(x) = f '(x)g(x) +g'(x)f(x).

 Example : Applying the Product Rule to Constant Functions2.9.2.7

p(x) = f(x)g(x) p'(2) f(2) = 3, f '(2) = −4, g(2) = 1 g'(2) = 6

p(x) = f(x)g(x) p'(x) = f '(x)g(x) +g'(x)f(x),

p'(2) = f '(2)g(2) +g'(2)f(2) = (−4)(1) +(6)(3) = 14.

 Example : Applying the Product Rule to Binomials2.9.2.8

p(x) = ( +2)(3 −5x),x2 x3 p'(x)

f(x) = +2x2 g(x) = 3 −5xx3 f '(x) = 2x g'(x) = 9 −5x2

p'(x) = f '(x)g(x) +g'(x)f(x) = (2x)(3 −5x) +(9 −5)( +2).x3 x2 x2

p'(x) = 15 +3 −10.x4 x2

p(x) = 3 + −10xx5 x3 p'(x) = 15 +3 −10.x4 x2
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Use the product rule to obtain the derivative of 

Hint

Set  and  and use the preceding example as a guide.

Answer

2.9.2.6 The Quotient Rule
Having developed and practiced the product rule, we now consider differentiating quotients of functions. As we see in the following theorem, the
derivative of the quotient is not the quotient of the derivatives; rather, it is the derivative of the function in the numerator times the function in the
denominator minus the derivative of the function in the denominator times the function in the numerator, all divided by the square of the function in the
denominator. In order to better grasp why we cannot simply take the quotient of the derivatives, keep in mind that

Let  and  be differentiable functions. Then

That is, if

then

The proof of the quotient rule is very similar to the proof of the product rule, so it is omitted here. Instead, we apply this new rule for finding derivatives
in the next example.

Use the quotient rule to find the derivative of 

Solution

Let  and . Thus,  and .

Substituting into the quotient rule, we have

Simplifying, we obtain

Find the derivative of .

Hint

 Exercise 2.9.2.6

p(x) = 2 (4 +x).x5 x2

f(x) = 2x5 g(x) = 4 +xx2

p'(x) = 10 (4 +x) +(8x+1)(2 ) = 56 +12 .x4 x2 x5 x6 x5

( ) = 2x,  not  = = 3 .
d

dx
x2

( )
d

dx
x3

(x)
d

dx

3x2

1
x2

 The Quotient Rule

f(x) g(x)

( ) = .
d

dx

f(x)

g(x)

(f(x)) ⋅ g(x) − (g(x)) ⋅ f(x)
d

dx

d

dx

(g(x))2

q(x) =
f(x)

g(x)

q'(x) = .
f '(x)g(x) −g'(x)f(x)

(g(x))
2

 Example : Applying the Quotient Rule2.9.2.9

q(x) = .
5x2

4x+3

f(x) = 5x2 g(x) = 4x+3 f '(x) = 10x g'(x) = 4

q'(x) = = .
f '(x)g(x) −g'(x)f(x)

(g(x))2

10x(4x+3) −4(5 )x2

(4x+3)2

q'(x) =
20 +30xx2

(4x+3)2

 Exercise 2.9.2.7

h(x) =
3x+1

4x−3
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Apply the quotient rule with  and .

Answer

It is now possible to use the quotient rule to extend the power rule to find derivatives of functions of the form  where  is a negative integer.

If  is a negative integer, then

Find .

Solution

By applying the extended power rule with , we obtain

Use the extended power rule and the constant multiple rule to find .

Solution

It may seem tempting to use the quotient rule to find this derivative, and it would certainly not be incorrect to do so. However, it is far easier to
differentiate this function by first rewriting it as .

Find the derivative of  using the extended power rule.

Hint

Rewrite . Use the extended power rule with .

Answer

.

2.9.2.7 Combining Differentiation Rules
As we have seen throughout the examples in this section, it seldom happens that we are called on to apply just one differentiation rule to find the
derivative of a given function. At this point, by combining the differentiation rules, we may find the derivatives of any polynomial or rational function.
Later on we will encounter more complex combinations of differentiation rules. A good rule of thumb to use when applying several rules is to apply the
rules in reverse of the order in which we would evaluate the function.

f(x) = 3x+1 g(x) = 4x−3

h'(x) = − .
13

(4x−3)2

xk k

 Extended Power Rule

k

( ) = k .
d

dx
xk xk−1

 Example : Using the Extended Power Rule2.9.2.10

( )
d

dx
x−4

k = −4

( ) = −4 = −4 .
d

dx
x−4 x−4−1 x−5

 Example : Using the Extended Power Rule and the Constant Multiple Rule2.9.2.11

f(x) =
6

x2

f(x) = 6x−2

f '(x) = ( ) = (6 )
d

dx

6

x2

d

dx
x−2

= 6 ( )
d

dx
x−2

= 6(−2 )x−3

= −12x−3

Rewrite   as 6 .
6

x2
x−2

Apply the constant multiple rule.

Use the extended power rule to differentiate  .x−2

Simplify.

 Exercise 2.9.2.8

g(x) =
1

x7

g(x) = =
1

x7
x−7 k = −7

g'(x) = −7x−8
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For , find .

Solution: Finding this derivative requires the sum rule, the constant multiple rule, and the product rule.

Apply the sum rule.

Apply the constant multiple rule to differentiate  and the product rule
to differentiate .

 

For , express  in terms of , and their derivatives.

Solution

We can think of the function  as the product of the function  and the function . That is, . Thus,

For , find .

Solution

This procedure is typical for finding the derivative of a rational function.

Find 

Hint

Apply the difference rule and the constant multiple rule.

Answer

Determine the values of  for which  has a horizontal tangent line.

Solution

To find the values of  for which  has a horizontal tangent line, we must solve .

Since ,

we must solve . Thus we see that the function has horizontal tangent lines at  and  as shown in the following

graph.

 Example : Combining Differentiation Rules2.9.2.12

k(x) = 3h(x) + g(x)x2 k'(x)

k'(x) = (3h(x) + g(x)) = (3h(x)) + ( g(x))
d

dx
x2 d

dx

d

dx
x2

= 3 (h(x)) +( ( )g(x) + (g(x)) )
d

dx

d

dx
x2 d

dx
x2 3h(x)

g(x)x2

= 3h'(x) + 2xg(x) + g'(x)x2

 Example : Extending the Product Rule2.9.2.13

k(x) = f(x)g(x)h(x) k'(x) f(x), g(x),h(x)

k(x) f(x)g(x) h(x) k(x) = (f(x)g(x)) ⋅h(x)

k'(x) = (f(x)g(x)) ⋅h(x) + (h(x)) ⋅ (f(x)g(x)).
d

dx

d

dx

= (f '(x)g(x) +g'(x)f(x))h(x) +h'(x)f(x)g(x)

= f '(x)g(x)h(x) +f(x)g'(x)h(x) +f(x)g(x)h'(x).

Apply the product rule to the product of f(x)g(x) and h(x).

Apply the product rule to f(x)g(x)

Simplify.

 Example : Combining the Quotient Rule and the Product Rule2.9.2.14

h(x) =
2 k(x)x3

3x+2
h'(x)

h'(x) =
(2 k(x)) ⋅ (3x+2) − (3x+2) ⋅ (2 k(x))

d

dx
x3

d

dx
x3

(3x+2)2

=
(6 k(x) +k'(x) ⋅ 2 )(3x+2) −3(2 k(x))x2 x3 x3

(3x+2)2

=
−6 k(x) +18 k(x) +12 k(x) +6 k'(x) +4 k'(x)x3 x3 x2 x4 x3

(3x+2)2

Apply the quotient rule.

Apply the product rule to find  (2 k(x)).  Use  (3x+2) = 3.
d

dx
x3 d

dx

Simplify

 Exercise 2.9.2.9

(3f(x) −2g(x)).
d

dx

3f '(x) −2g'(x).

 Example : Determining Where a Function Has a Horizontal Tangent2.9.2.15

x f(x) = −7 +8x+1x3 x2

x f(x) f '(x) = 0

f '(x) = 3 −14x+8 = (3x−2)(x−4)x2

(3x−2)(x−4) = 0 x =
2

3
x = 4
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Figure : This function has horizontal tangent lines at  and .

The position of an object on a coordinate axis at time  is given by  What is the initial velocity of the object?

Solution

Since the initial velocity is  begin by finding  by applying the quotient rule:

.

After evaluating, we see that 

Find the values of  for which the line tangent to the graph of  has a tangent line parallel to the line 

Hint

Solve .

Answer

Formula One car races can be very exciting to watch and attract a lot of spectators. Formula One track designers have to ensure sufficient
grandstand space is available around the track to accommodate these viewers. However, car racing can be dangerous, and safety considerations are
paramount. The grandstands must be placed where spectators will not be in danger should a driver lose control of a car (Figure ).

Figure : The grandstand next to a straightaway of the Circuit de Barcelona-Catalunya race track, located where the spectators are not in
danger.

Safety is especially a concern on turns. If a driver does not slow down enough before entering the turn, the car may slide off the racetrack. Normally,
this just results in a wider turn, which slows the driver down. But if the driver loses control completely, the car may fly off the track entirely, on a
path tangent to the curve of the racetrack.

Suppose you are designing a new Formula One track. One section of the track can be modeled by the function  (Figure 
). The current plan calls for grandstands to be built along the first straightaway and around a portion of the first curve. The plans call for the

front corner of the grandstand to be located at the point ( ). We want to determine whether this location puts the spectators in danger if a
driver loses control of the car.

2.9.2.2 x = 2/3 x = 4

 Example : Finding a Velocity2.9.2.16

t s(t) = .
t

+1t2

v(0) = s'(0), s'(t)

s'(t) = =
1( +1) −2t(t)t2

( +1t2 )2

1 − t2

( +1t2 )2

v(0) = 1.

 Exercise 2.9.2.10

x f(x) = 4 −3x+2x2 y = 2x+3.

f '(x) = 2

5

8

 Formula One Grandstands

2.9.2.3

2.9.2.3

f(x) = +3 +xx3 x2

2.9.2.4
−1.9, 2.8
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Figure : (a) One section of the racetrack can be modeled by the function . (b) The front corner of the grandstand is
located at ( ).

1. Physicists have determined that drivers are most likely to lose control of their cars as they are coming into a turn, at the point where the slope of
the tangent line is 1. Find the  coordinates of this point near the turn.

2. Find the equation of the tangent line to the curve at this point.
3. To determine whether the spectators are in danger in this scenario, find the -coordinate of the point where the tangent line crosses the line 

. Is this point safely to the right of the grandstand? Or are the spectators in danger?
4. What if a driver loses control earlier than the physicists project? Suppose a driver loses control at the point ( ). What is the slope of

the tangent line at this point?
5. If a driver loses control as described in part 4, are the spectators safe?
6. Should you proceed with the current design for the grandstand, or should the grandstands be moved?

We have seen the techniques for differentiating basic functions (  etc.) as well as sums, differences, products, quotients, and constant
multiples of these functions. However, these techniques do not allow us to differentiate compositions of functions, such as  or 

. In this section, we study the rule for finding the derivative of the composition of two or more functions.

2.9.2.8 Deriving the Chain Rule

When we have a function that is a composition of two or more functions, we could use all of the techniques we have already learned to differentiate it.
However, using all of those techniques to break down a function into simpler parts that we are able to differentiate can get cumbersome. Instead, we use
the chain rule, which states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the
derivative of the inner function.

To put this rule into context, let’s take a look at an example: . We can think of the derivative of this function with respect to  as the rate
of change of  relative to the change in . Consequently, we want to know how  changes as  changes. We can think of this event as a
chain reaction: As  changes,  changes, which leads to a change in . This chain reaction gives us hints as to what is involved in computing the
derivative of . First of all, a change in  forcing a change in  suggests that somehow the derivative of  is involved. In addition, the change in

 forcing a change in  suggests that the derivative of  with respect to , where , is also part of the final derivative.

We can take a more formal look at the derivative of  by setting up the limit that would give us the derivative at a specific value  in the
domain of .

This expression does not seem particularly helpful; however, we can modify it by multiplying and dividing by the expression  to obtain

From the definition of the derivative, we can see that the second factor is the derivative of  at  That is,

2.9.2.4 f(x) = + 3 +xx3 x2

−1.9, 2.8

(x, y)

x

y = 2.8
−2.5, 0.625

 Learning Objectives

, sinx, cosx,xn

h(x) = sin( )x3

k(x) = 3 +1x2− −−−−−
√

h(x) = sin( )x3 x

sin( )x3 x sin( )x3 x

x x3 sin( )x3

sin( )x3 x x3 x3

x3 sin( )x3 sin(u) u u = x3

h(x) = sin( )x3 a

h(x) = sin( )x3

(a) =h′ lim
x→a

sin( ) −sin( )x3 a3

x−a

−x3 a3

(a) = ⋅ .h′ lim
x→a

sin( ) −sin( )x3 a3

−x3 a3

−x3 a3

x−a

x3 x = a.

= ( ) = 3 .lim
x→a

−x3 a3

x−a

d

dx
x3 ∣

∣x=a
a2
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However, it might be a little more challenging to recognize that the first term is also a derivative. We can see this by letting  and observing that as
:

Thus, .

In other words, if , then . Thus, if we think of  as the composition  where 
 and , then the derivative of  is the product of the derivative of  and the derivative of the function 
 evaluated at the function . At this point, we anticipate that for , it is quite likely that 

. As we determined above, this is the case for .

Now that we have derived a special case of the chain rule, we state the general case and then apply it in a general form to other composite functions. An
informal proof is provided at the end of the section.

Let  and  be functions. For all  in the domain of  for which  is differentiable at  and  is differentiable at , the derivative of the
composite function

is given by

Alternatively, if  is a function of , and  is a function of , then

1. To differentiate , begin by identifying  and .
2. Find  and evaluate it at  to obtain .
3. Find 
4. Write 

Note: When applying the chain rule to the composition of two or more functions, keep in mind that we work our way from the outside function in. It
is also useful to remember that the derivative of the composition of two functions can be thought of as having two parts; the derivative of the
composition of three functions has three parts; and so on. Also, remember that we never evaluate a derivative at a derivative.

2.9.2.9 The Chain and Power Rules Combined
We can now apply the chain rule to composite functions, but note that we often need to use it with other rules. For example, to find derivatives of
functions of the form , we need to use the chain rule combined with the power rule. To do so, we can think of  as 

 where . Then . Thus, . This leads us to the derivative of a power function using the chain
rule,

For all values of  for which the derivative is defined, if

Then

u = x3

x → a, u → a3

.

lim
x→a

sin( ) −sin( )x3 a3

−x3 a3
= lim

u→a3

sinu−sin( )a3

u−a3

= (sinu)
d

du
∣
∣u=a3

= cos( )a3

(a) = cos( ) ⋅ 3h′ a3 a2

h(x) = sin( )x3 (x) = cos( ) ⋅ 3h′ x3 x2 h(x) = sin( )x3 (f ∘ g)(x) = f(g(x))
f(x) = sinx g(x) = x3 h(x) = sin( )x3 g(x) = x3

f(x) = sinx g(x) = x3 h(x) = sin(g(x))
(x) = cos(g(x)) (x)h′ g′ h(x) = sin( )x3

 Rule: The Chain Rule

f g x g g x f g(x)

h(x) = (f ∘ g)(x) = f(g(x)) (2.9.2.1)

(x) = (g(x)) ⋅ (x).h′ f ′ g′ (2.9.2.2)

y u u x

= ⋅ .
dy

dx

dy

du

du

dx
(2.9.2.3)

 Problem-Solving Strategy: Applying the Chain Rule

h(x) = f(g(x)) f(x) g(x)
(x)f ′ g(x) (g(x))f ′

(x).g′

(x) = (g(x)) ⋅ (x).h′ f ′ g′

h(x) = (g(x))
n

h(x) = (g(x))
n

f(g(x)) f(x) = xn (x) = nf ′ xn−1 (g(x)) = n(g(x)f ′ )
n−1

(x) = n(g(x) ⋅ (x)h′ )
n−1

g′

 Rule: Power Rule for Composition of Functions (General Power Rule)

x

h(x) = (g(x) ,)
n

(2.9.2.4)

(x) = n(g(x) ⋅ (x).h′ )
n−1

g′ (2.9.2.5)
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Find the derivative of .

Solution

First, rewrite .

Applying the power rule with , we have

.

Rewriting back to the original form gives us

Find the derivative of .

Hint

Use the General Power Rule (Equation ) with .

Answer

Find the derivative of .

Solution

First recall that , so we can rewrite  as .

Applying the power rule with , we obtain

.

Find the equation of a line tangent to the graph of  at .

Solution

Because we are finding an equation of a line, we need a point. The -coordinate of the point is 2. To find the -coordinate, substitute 2 into .

Since , the point is .

For the slope, we need . To find , first we rewrite  and apply the power rule to obtain

.

By substituting, we have 

Therefore, the line has equation . Rewriting, the equation of the line is .

Find the equation of the line tangent to the graph of  at .

Hint

Use the preceding example as a guide.

Answer

 Example : Using the Chain and Power Rules2.9.2.1

h(x) =
1

(3 +1x2 )2

h(x) = = (3 +1
1

(3 +1x2 )2
x2 )−2

g(x) = 3 +1x2

(x) = −2(3 +1 ⋅ 6xh′ x2 )−3

(x) =h′ −12x

(3 +1x2 )3

 Exercise 2.9.2.1

h(x) = (2 +2x−1x3 )4

2.9.2.5 g(x) = 2 +2x−1x3

(x) = 4(2 +2x−1 (6 +2) = 8(3 +1)(2 +2x−1h′ x3 )3 x2 x2 x3 )3

 Example : Using the Chain and Power Rules with a Trigonometric Function2.9.2.2

h(x) = xsin3

x = (sinxsin3 )3 h(x) = xsin3 h(x) = (sinx)3

g(x) = sinx

(x) = 3(sinx cosx = 3 x cosxh′ )2 sin2

 Example : Finding the Equation of a Tangent Line2.9.2.3

h(x) =
1

(3x−5)2
x = 2

x y h(x)

h(2) = = 1
1

(3(2) −5)2
(2, 1)

(2)h′ (x)h′ h(x) = (3x−5)−2

(x) = −2(3x−5 (3) = −6(3x−5h′ )−3 )−3

(2) = −6(3(2) −5 = −6.h′ )−3

y−1 = −6(x−2) y = −6x+13

 Exercise 2.9.2.2

f(x) = ( −2x2 )3 x = −2

y = −48x−88
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2.9.2.10 Combining the Chain Rule with Other Rules
Now that we can combine the chain rule and the power rule, we examine how to combine the chain rule with the other rules we have learned. In
particular, we can use it with the formulas for the derivatives of trigonometric functions or with the product rule.

Find the derivative of 

Solution

Think of  as  where . Since , we have . Then we do the following
calculation.

Thus, the derivative of  is given by 

In the following example we apply the rule that we have just derived.

Find the derivative of 

Solution

Let . Then . Using the result from the previous example,

Find the derivative of 

Solution

Apply the chain rule to  to obtain

In this problem,  so we have  Therefore, we obtain

Find the derivative of 

Hint

Apply the chain rule to  first and then use .

Answer

At this point we provide a list of derivative formulas that may be obtained by applying the chain rule in conjunction with the formulas for derivatives of
trigonometric functions. Their derivations are similar to those used in the examples above. For convenience, formulas are also given in Leibniz’s
notation, which some students find easier to remember. (We discuss the chain rule using Leibniz’s notation at the end of this section.) It is not absolutely
necessary to memorize these as separate formulas as they are all applications of the chain rule to previously learned formulas.

For all values of  for which the derivative is defined,

 Example : Using the Chain Rule on a General Cosine Function2.9.2.4

h(x) = cos(g(x)).

h(x) = cos(g(x)) f(g(x)) f(x) = cosx (x) = −sinxf ′ (g(x)) = −sin(g(x))f ′

(x)h′ = (g(x)) ⋅ (x)f ′ g′

= −sin(g(x)) ⋅ (x)g′

Apply the chain rule.

Substitute (g(x)) = −sin(g(x)).f ′

h(x) = cos(g(x)) (x) = −sin(g(x)) ⋅ (x).h′ g′

 Example : Using the Chain Rule on a Cosine Function2.9.2.5

h(x) = cos(5 ).x2

g(x) = 5x2 (x) = 10xg′

(x) = −sin(5 ) ⋅ 10x = −10x sin(5 )h′ x2 x2

 Example : Using the Chain Rule on Another Trigonometric Function2.9.2.6

h(x) = sec(4 +2x).x5

h(x) = sec(g(x))

(x) = sec(g(x)) tan(g(x)) ⋅ (x).h′ g′

g(x) = 4 +2x,x5 (x) = 20 +2.g′ x4

(x) = sec(4 +2x) tan(4 +2x)(20 +2) = (20 +2)sec(4 +2x) tan(4 +2x).h′ x5 x5 x4 x4 x5 x5

 Exercise 2.9.2.3

h(x) = sin(7x+2).

h(x) = sin(g(x)) g(x) = 7x+2

(x) = 7 cos(7x+2)h′

 Using the Chain Rule with Trigonometric Functions

x

( sin(g(x))) = cos(g(x)) ⋅ (x)
d

dx
g′ ( sinu) = cosu ⋅

d

dx

du

dx

( cos(g(x))) = − sin(g(x)) ⋅ (x)
d

dx
g′ ( cosu) = − sinu ⋅

d

dx

du

dx
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Find the derivative of .

Solution

First apply the product rule, then apply the chain rule to each term of the product.

Find the derivative of .

Hint

Start out by applying the quotient rule. Remember to use the chain rule to differentiate the denominator.

Answer

2.9.2.11 Composites of Three or More Functions
We can now combine the chain rule with other rules for differentiating functions, but when we are differentiating the composition of three or more
functions, we need to apply the chain rule more than once. If we look at this situation in general terms, we can generate a formula, but we do not need to
remember it, as we can simply apply the chain rule multiple times.

In general terms, first we let

Then, applying the chain rule once we obtain

Applying the chain rule again, we obtain

For all values of  for which the function is differentiable, if

then

( tan(g(x))) = (g(x)) ⋅ (x)
d

dx
sec2 g′ ( tanu) = u ⋅

d

dx
sec2 du

dx

( cot(g(x))) = − (g(x)) ⋅ (x)
d

dx
csc2 g′ ( cotu) = − u ⋅

d

dx
csc2 du

dx

(sec(g(x))) = sec(g(x)) tan(g(x)) ⋅ (x)
d

dx
g′ (sec u) = sec u tanu ⋅

d

dx

du

dx

(csc(g(x))) = −csc(g(x)) cot(g(x)) ⋅ (x)
d

dx
g′ (csc u) = −csc u cotu ⋅ .

d

dx

du

dx

 Example : Combining the Chain Rule with the Product Rule2.9.2.7

h(x) = (2x+1 (3x−2)5 )7

(x)h′ = ((2x+1 ) ⋅ (3x−2 + ((3x−2 ) ⋅ (2x+1
d

dx
)5 )7 d

dx
)7 )5

= 5(2x+1 ⋅ 2 ⋅ (3x−2 +7(3x−2 ⋅ 3 ⋅ (2x+1)4 )7 )6 )5

= 10(2x+1 (3x−2 +21(3x−2 (2x+1)4 )7 )6 )5

= (2x+1 (3x−2 (10(3x−2) +21(2x+1)))4 )6

= (2x+1 (3x−2 (72x+1))4 )6

Apply the product rule.

Apply the chain rule.

Simplify.

Factor out (2x+1 (3x−2)4 )6

Simplify.

 Exercise 2.9.2.4

h(x) =
x

(2x+3)3

(x) =h′ 3 −4x

(2x+3)4

k(x) = h(f(g(x))).

(x) = (h(f(g(x)))) = (f(g(x))) ⋅ (f(g(x))).k′ d

dx
h′ d

dx

(x) = (f(g(x))) ⋅ (g(x)) ⋅ (x).k′ h′ f ′ g′

 Rule: Chain Rule for a Composition of Three Functions

x

k(x) = h(f(g(x))),

(x) = (f(g(x))) ⋅ (g(x)) ⋅ (x).k′ h′ f ′ g′
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In other words, we are applying the chain rule twice.

Notice that the derivative of the composition of three functions has three parts. (Similarly, the derivative of the composition of four functions has
four parts, and so on.) Also, remember, we can always work from the outside in, taking one derivative at a time.

Find the derivative of 

Solution

First, rewrite  as

.

Then apply the chain rule several times.

Find the derivative of 

Hint

Rewrite  and use Example  as a guide.

Answer

A particle moves along a coordinate axis. Its position at time t is given by . What is the velocity of the particle at time 

?

Solution

To find , the velocity of the particle at time , we must differentiate . Thus,

To find the velocity at , calculate

At this point, we present a very informal proof of the chain rule. For simplicity’s sake we ignore certain issues: For example, we assume that 
 for  in some open interval containing . We begin by applying the limit definition of the derivative to the function  to obtain

:

Rewriting, we obtain

 Example : Differentiating a Composite of Three Functions2.9.2.8

k(x) = (7 +1).cos4 x2

k(x)

k(x) = ( cos(7 +1)x2 )
4

(x)k′ = 4(cos(7 +1) ⋅ ( cos(7 +1))x2 )3 d

dx
x2

= 4(cos(7 +1) (−sin(7 +1)) ⋅ (7 +1)x2 )3 x2 d

dx
x2

= 4(cos(7 +1) (−sin(7 +1))(14x)x2 )3 x2

= −56x sin(7 +1) (7 +1)x2 cos3 x2

Apply the chain rule.

Apply the chain rule.

Apply the chain rule.

Simplify

 Exercise 2.9.2.5

h(x) = ( ).sin6 x3

h(x) = ( ) = ( sin( )sin6 x3 x3 )
6

2.9.2.8

(x) = 18 ( ) cos( )h′ x2 sin5 x3 x3

 Example : Using the Chain Rule in a Velocity Problem2.9.2.9

s(t) = sin(2t) +cos(3t)

t =
π

6

v(t) t s(t)

v(t) = (t) = 2 cos(2t) −3 sin(3t).s′

t = π

6

v( )
π

6
= 2 cos(2 × )−3 sin(3 × )

π

6

π

6

= 2 cos( )−3 sin( )
π

3

π

2
= 1 −3
= −2

 Proof of Chain Rule

g(x) ≠ g(a) x ≠ a a h(x)
(a)h′

(a) = .h′ lim
x→a

f(g(x))−f(g(a))

x−a
(2.9.2.6)

(a) = ⋅ .h′ lim
x→a

f(g(x))−f(g(a))

g(x) −g(a)

g(x) −g(a)

x−a
(2.9.2.7)
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Although it is clear that

it is not obvious that

To see that this is true, first recall that since  is differentiable at ,  is also continuous at  Thus,

Next, make the substitution and  and use change of variables in the limit to obtain

Finally,

□

Let  If , and , find 

Solution

Use the chain rule, then substitute.

Given . If  and , find .

Hint

Follow Example .

Answer

28

2.9.2.12 The Chain Rule Using Leibniz’s Notation
As with other derivatives that we have seen, we can express the chain rule using Leibniz’s notation. This notation for the chain rule is used heavily in
physics applications.

For  let  and  Thus,

and

Consequently,

= (a),lim
x→a

g(x) −g(a)

x−a
g′ (2.9.2.8)

= (g(a)).lim
x→a

f(g(x))−f(g(a))

g(x) −g(a)
f ′ (2.9.2.9)

g a g a.

g(x) = g(a).lim
x→a

(2.9.2.10)

y = g(x) b = g(a)

= = (b) = (g(a)).lim
x→a

f(g(x))−f(g(a))

g(x) −g(a)
lim
y→b

f(y) −f(b)

y−b
f ′ f ′ (2.9.2.11)

(a) = ⋅ = (g(a)) ⋅ (a).h′ lim
x→a

f(g(x))−f(g(a))

g(x) −g(a)

g(x) −g(a)

x−a
f ′ g′ (2.9.2.12)

 Example : Using the Chain Rule with Functional Values2.9.2.10

h(x) = f(g(x)). g(1) = 4, (1) = 3g′ (4) = 7f ′ (1).h′

(1)h′ = (g(1)) ⋅ (1)f ′ g′

= (4) ⋅ 3f ′

= 7 ⋅ 3

= 21

Apply the chain rule.

Substitute g(1) = 4 and (1) = 3.g′

Substitute (4) = 7.f ′

Simplify.

 Exercise 2.9.2.6

h(x) = f(g(x)) g(2) = −3, (2) = 4,g′ (−3) = 7f ′ (2)h′

2.9.2.10

h(x) = f(g(x)), u = g(x) y = h(x) = f(u).

(x) =h′ dy

dx

(g(x)) = (u) =f ′ f ′ dy

du

(x) = .g′ du

dx
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If  is a function of , and  is a function of , then

Find the derivative of 

Solution

First, let . Thus, . Next, find  and . Using the quotient rule,

and

.

Finally, we put it all together.

It is important to remember that, when using the Leibniz form of the chain rule, the final answer must be expressed entirely in terms of the original
variable given in the problem.

Find the derivative of 

Solution

First, let  Then . Next, find  and :

 and 

Finally, we put it all together.

Use Leibniz’s notation to find the derivative of . Make sure that the final answer is expressed entirely in terms of the variable .

Hint

Let .

Answer

= (x) = (g(x)) ⋅ (x) = ⋅ .
dy

dx
h′ f ′ g′ dy

du

du

dx

 Rule: Chain Rule Using Leibniz’s Notation

y u u x

= ⋅ .
dy

dx

dy

du

du

dx
(2.9.2.13)

 Example : Taking a Derivative Using Leibniz’s Notation I2.9.2.11

y = .( )
x

3x+2

5

u =
x

3x+2
y = u5

du

dx

dy

du

=
du

dx

2

(3x+2)2

= 5
dy

du
u4

dy

dx
= ⋅

dy

du

du

dx

= 5 ⋅u4 2

(3x+2)2

= 5 ⋅( )
x

3x+2

4
2

(3x+2)2

=
10x4

(3x+2)6

Apply the chain rule.

Substitute = 5 and = .
dy

du
u4 du

dx

2

(3x+2)2

Substitute u = .
x

3x+2

Simplify.

 Example : Taking a Derivative Using Leibniz’s Notation II2.9.2.12

y = tan(4 −3x+1).x2

u = 4 −3x+1.x2 y = tanu
du

dx

dy

du

= 8x−3
du

dx
= u.

dy

du
sec2

dy

dx
= ⋅

dy

du

du

dx

= u ⋅ (8x−3)sec2

= (4 −3x+1) ⋅ (8x−3)sec2 x2

Apply the chain rule.

Use = 8x−3 and = u.
du

dx

dy

du
sec2

Substitute u = 4 −3x+1.x2

 Exercise 2.9.2.7

y = cos( )x3 x

u = x3
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2.9.2.13 Key Concepts
The derivative of a constant function is zero.
The derivative of a power function is a function in which the power on  becomes the coefficient of the term and the power on  in the derivative
decreases by 1.
The derivative of a constant  multiplied by a function  is the same as the constant multiplied by the derivative.
The derivative of the sum of a function  and a function  is the same as the sum of the derivative of  and the derivative of .
The derivative of the difference of a function  and a function  is the same as the difference of the derivative of  and the derivative of .
The derivative of a product of two functions is the derivative of the first function times the second function plus the derivative of the second function
times the first function.
The derivative of the quotient of two functions is the derivative of the first function times the second function minus the derivative of the second
function times the first function, all divided by the square of the second function.
We used the limit definition of the derivative to develop formulas that allow us to find derivatives without resorting to the definition of the derivative.
These formulas can be used singly or in combination with each other.
The chain rule allows us to differentiate compositions of two or more functions. It states that for 

In Leibniz’s notation this rule takes the form

.

We can use the chain rule with other rules that we have learned, and we can derive formulas for some of them.
The chain rule combines with the power rule to form a new rule:

If , then .

When applied to the composition of three functions, the chain rule can be expressed as follows: If  then 

2.9.2.14 Key Equations
The chain rule

The power rule for functions

2.9.2.15 Glossary

constant multiple rule

the derivative of a constant  multiplied by a function  is the same as the constant multiplied by the derivative: 

constant rule

the derivative of a constant function is zero: , where  is a constant

difference rule
the derivative of the difference of a function  and a function  is the same as the difference of the derivative of  and the derivative of : 

power rule
the derivative of a power function is a function in which the power on  becomes the coefficient of the term and the power on  in the derivative

decreases by 1: If  is an integer, then 

product rule
the derivative of a product of two functions is the derivative of the first function times the second function plus the derivative of the second function

times the first function: 

quotient rule

= −3 sin( ).
dy

dx
x2 x3

x x

c f

f g f g

f g f g

h(x) = f(g(x)),

(x) = (g(x)) ⋅ (x).h′ f ′ g′

= ⋅
dy

dx

dy

du

du

dx

h(x) = (g(x))
n

(x) = n(g(x) ⋅ (x)h′ )
n−1

g′

h(x) = f(g(k(x))),

(x) = (g(k(x))) ⋅ (k(x)) ⋅ (x).h′ f ′ g′ k′

(x) = (g(x)) ⋅ (x)h′ f ′ g′

(x) = n(g(x) ⋅ (x)h′ )
n−1

g′

c f (cf(x)) = cf '(x)
d

dx

(c) = 0
d

dx
c

f g f g

(f(x) −g(x)) = f '(x) −g'(x)
d

dx

x x

n ( ) = n
d

dx
xn xn−1

(f(x)g(x)) = f '(x)g(x) +g'(x)f(x)
d

dx
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the derivative of the quotient of two functions is the derivative of the first function times the second function minus the derivative of the second

function times the first function, all divided by the square of the second function: 

sum rule
the derivative of the sum of a function  and a function  is the same as the sum of the derivative of  and the derivative of : 

chain rule
the chain rule defines the derivative of a composite function as the derivative of the outer function evaluated at the inner function times the derivative
of the inner function

This page titled 2.9.2: Differentiation Rules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that
was edited to the style and standards of the LibreTexts platform.

3.3: Differentiation Rules by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source: https://openstax.org/details/books/calculus-
volume-1.
3.6: The Chain Rule by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source: https://openstax.org/details/books/calculus-volume-1.

( ) =
d

dx

f(x)

g(x)

f '(x)g(x) −g'(x)f(x)

(g(x))
2

f g f g

(f(x) +g(x)) = f '(x) +g'(x)
d

dx
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2.9.3: Derivatives as Rates of Change

Determine a new value of a quantity from the old value and the amount of change.
Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
Predict the future population from the present value and the population growth rate.
Use derivatives to calculate marginal cost and revenue in a business situation.

In this section we look at some applications of the derivative by focusing on the interpretation of the derivative as the rate of
change of a function. These applications include acceleration and velocity in physics, population growth rates in biology, and
marginal functions in economics.

2.9.3.1 Amount of Change Formula
One application for derivatives is to estimate an unknown value of a function at a point by using a known value of a function at
some given point together with its rate of change at the given point. If  is a function defined on an interval , then the
amount of change of  over the interval is the change in the  values of the function over that interval and is given by

The average rate of change of the function  over that same interval is the ratio of the amount of change over that interval to the
corresponding change in the  values. It is given by

As we already know, the instantaneous rate of change of  at  is its derivative

For small enough values of , . We can then solve for  to get the amount of change formula:

We can use this formula if we know only and  and wish to estimate the value of . For example, we may use the
current population of a city and the rate at which it is growing to estimate its population in the near future. As we can see in Figure 

, we are approximating  by the  coordinate at a+h on the line tangent to  at . Observe that the accuracy
of this estimate depends on the value of  as well as the value of .

Figure : The new value of a changed quantity equals the original value plus the rate of change times the interval of change: 

 Learning Objectives

f(x) [a, a +h]

f(x) y

f(a +h) −f(a).

f

x

.
f(a +h) −f(a)

h

f(x) a

f '(a) = .lim
h→0

f(a +h) −f(a)

h

h f '(a) ≈
f(a+h)−f(a)

h
f(a +h)

f(a +h) ≈ f(a) +f '(a)h. (2.9.3.1)

f(a) f '(a) f(a +h)

2.9.3.1 f(a +h) y f(x) x = a

h f '(a)

2.9.3.1
f(a + h) ≈ f(a) + f'(a)h.
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If  and , estimate .

Solution

Begin by finding . We have  Thus,

Given  and , estimate .

Hint

Use the same process as in the preceding example.

Answer

2.9.3.2 Motion along a Line
Another use for the derivative is to analyze motion along a line. We have described velocity as the rate of change of position. If we
take the derivative of the velocity, we can find the acceleration, or the rate of change of velocity. It is also important to introduce
the idea of speed, which is the magnitude of velocity. Thus, we can state the following mathematical definitions.

Let  be a function giving the position of an object at time t.

The velocity of the object at time  is given by .
The speed of the object at time  is given by .
The acceleration of the object at  is given by .

A ball is dropped from a height of 64 feet. Its height above ground (in feet)  seconds later is given by .

a. What is the instantaneous velocity of the ball when it hits the ground?
b. What is the average velocity during its fall?

Solution

The first thing to do is determine how long it takes the ball to reach the ground. To do this, set . Solving 
, we get , so it takes 2 seconds for the ball to reach the ground.

 Example : Estimating the Value of a Function2.9.3.1

f(3) = 2 f '(3) = 5 f(3.2)

h h = 3.2 −3 = 0.2.

f(3.2) = f(3 +0.2) ≈ f(3) +(0.2)f '(3) = 2 +0.2(5) = 3.

 Exercise 2.9.3.1

f(10) = −5 f '(10) = 6 f(10.1)

−4.4

 Definition

s(t)

t v(t) = s'(t)

t |v(t)|

t a(t) = v'(t) = (t)s′′

 Example : Comparing Instantaneous Velocity and Average Velocity2.9.3.2

t s(t) = −16 +64t2

s(t) = 0

−16 +64 = 0t2 t = 2
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a. The instantaneous velocity of the ball as it strikes the ground is . Since , we obtain 
ft/s.

b. The average velocity of the ball during its fall is

 ft/s.

A particle moves along a coordinate axis in the positive direction to the right. Its position at time  is given by 
. Find  and  and use these values to answer the following questions.

a. Is the particle moving from left to right or from right to left at time ?
b. Is the particle speeding up or slowing down at time ?

Solution

Begin by finding  and .

 and .

Evaluating these functions at , we obtain  and .

a. Because , the particle is moving from right to left.
b. Because  and , velocity and acceleration are acting in opposite directions. In other words, the particle is

being accelerated in the direction opposite the direction in which it is traveling, causing  to decrease. The particle is
slowing down.

The position of a particle moving along a coordinate axis is given by 

a. Find .
b. At what time(s) is the particle at rest?
c. On what time intervals is the particle moving from left to right? From right to left?
d. Use the information obtained to sketch the path of the particle along a coordinate axis.

Solution

a. The velocity is the derivative of the position function:

b. The particle is at rest when , so set . Factoring the left-hand side of the equation produces 
. Solving, we find that the particle is at rest at  and .

c. The particle is moving from left to right when  and from right to left when . Figure  gives the
analysis of the sign of  for , but it does not represent the axis along which the particle is moving.

Figure :The sign of  determines the direction of the particle.

Since  on , the particle is moving from left to right on these intervals.
Since  on , the particle is moving from right to left on this interval.

d. Before we can sketch the graph of the particle, we need to know its position at the time it starts moving  and at the
times that it changes direction . We have , , and . This means that the particle begins on
the coordinate axis at  and changes direction at  and  on the coordinate axis. The path of the particle is shown on a
coordinate axis in Figure .

v(2) v(t) = s'(t) = −32t v(t) = −64

= = = −32vave
s(2)−s(0)

2−0
0−64

2

 Example : Interpreting the Relationship between  and 2.9.3.3 v(t) a(t)

t

s(t) = −4t +2t3 v(1) a(1)

t = 1

t = 1

v(t) a(t)

v(t) = (t) = 3 −4s′ t2 a(t) = v'(t) = (t) = 6ts′′

t = 1 v(1) = −1 a(1) = 6

v(1) < 0

v(1) < 0 a(1) > 0

|v(t)|

 Example : Position and Velocity2.9.3.4

s(t) = −9 +24t +4, t ≥ 0.t3 t2

v(t)

v(t) = s'(t) = 3 −18t +24.t2

v(t) = 0 3 −18t +24 = 0t2

3(t −2)(t −4) = 0 t = 2 t = 4

v(t) > 0 v(t) < 0 2.9.3.2

v(t) t ≥ 0

2.9.3.2 v(t)

3 −18t +24 > 0t2 [0, 2) ∪ (4, +∞)

3 −18t +24 < 0t2 (2, 4)

(t = 0)

(t = 2, 4) s(0) = 4 s(2) = 24 s(4) = 20

4 24 20

2.9.3.3
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Figure : The path of the particle can be determined by analyzing .

A particle moves along a coordinate axis. Its position at time  is given by . Is the particle moving from
right to left or from left to right at time ?

Hint

Find  and look at the sign.

Answer

left to right

2.9.3.3 Population Change

In addition to analyzing velocity, speed, acceleration, and position, we can use derivatives to analyze various types of populations,
including those as diverse as bacteria colonies and cities. We can use a current population, together with a growth rate, to estimate
the size of a population in the future. The population growth rate is the rate of change of a population and consequently can be
represented by the derivative of the size of the population.

If  is the number of entities present in a population, then the population growth rate of  is defined to be .

The population of a city is tripling every 5 years. If its current population is 10,000, what will be its approximate population 2
years from now?

Solution

Let  be the population (in thousands)  years from now. Thus, we know that  and based on the information, we
anticipate . Now estimate , the current growth rate, using

.

By applying Equation  to , we can estimate the population 2 years from now by writing

;

thus, in 2 years the population will be 18,000.

The current population of a mosquito colony is known to be 3,000; that is, . If , estimate the size of
the population in 3 days, where  is measured in days.

Hint

Use 

Answer

3,300

2.9.3.3 v(t)

 Exercise 2.9.3.2

t s(t) = −5t +1t2

t = 3

v(3)

 Definition

P (t) P (t) P '(t)

 Example : Estimating a Population2.9.3.5

P (t) t P (0) = 10

P (5) = 30 P '(0)

P '(0) ≈ = = 4
P(5)−P(0)

5−0

30−10

5

2.9.3.1 P (t)

P (2) ≈ P (0) +(2)P '(0) ≈ 10 +2(4) = 18

 Exercise 2.9.3.3

P (0) = 3, 000 P '(0) = 100

t

P (3) ≈ P (0) +3P '(0)
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2.9.3.4 Changes in Cost and Revenue
In addition to analyzing motion along a line and population growth, derivatives are useful in analyzing changes in cost, revenue,
and profit. The concept of a marginal function is common in the fields of business and economics and implies the use of
derivatives. The marginal cost is the derivative of the cost function. The marginal revenue is the derivative of the revenue function.
The marginal profit is the derivative of the profit function, which is based on the cost function and the revenue function.

If  is the cost of producing  items, then the marginal cost  is .
If  is the revenue obtained from selling  items, then the marginal revenue  is .
If  is the profit obtained from selling  items, then the marginal profit  is defined to be 

.

We can roughly approximate

by choosing an appropriate value for . Since  represents objects, a reasonable and small value for  is 1. Thus, by substituting 
, we get the approximation . Consequently,  for a given value of  can be

thought of as the change in cost associated with producing one additional item. In a similar way,  approximates
the revenue obtained by selling one additional item, and  approximates the profit obtained by producing and
selling one additional item.

Assume that the number of barbeque dinners that can be sold, , can be related to the price charged, , by the equation 
.

In this case, the revenue in dollars obtained by selling  barbeque dinners is given by

.

Use the marginal revenue function to estimate the revenue obtained from selling the  barbeque dinner. Compare this to
the actual revenue obtained from the sale of this dinner.

Solution

First, find the marginal revenue function: 

Next, use  to approximate , the revenue obtained from the sale of the  dinner. Since 
, the revenue obtained from the sale of the  dinner is approximately $3.

The actual revenue obtained from the sale of the  dinner is

 or 

The marginal revenue is a fairly good estimate in this case and has the advantage of being easy to compute.

Suppose that the profit obtained from the sale of  fish-fry dinners is given by . Use the marginal
profit function to estimate the profit from the sale of the  fish-fry dinner.

Hint

Use  to approximate .

Answer

$2

 Definition

C(x) x MC(x) MC(x) = C'(x)

R(x) x MR(x) MR(x) = R'(x)

P (x) = R(x) −C(x) x MP (x)

MP (x) = P '(x) = MR(x) −MC(x) = R'(x) −C'(x)

MC(x) = C'(x) = lim
h→0

C(x +h) −C(x)

h

h x h

h = 1 MC(x) = C'(x) ≈ C(x +1) −C(x) C'(x) x

MR(x) = R'(x)

MP (x) = P '(x)

 Example : Applying Marginal Revenue2.9.3.6

x p

p(x) = 9 −0.03x, 0 ≤ x ≤ 300

x

R(x) = xp(x) = x(9 −0.03x) = −0.03 +9x  for 0 ≤ x ≤ 300x2

101st

MR(x) = R'(x) = −0.06x +9.

R'(100) R(101) −R(100) 101st

R'(100) = 3 101st

101st

R(101) −R(100) = 602.97 −600 = 2.97, $2.97.

 Exercise 2.9.3.4

x P (x) = −0.03 +8x −50x2

101st

P '(100) P (101) −P (100)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76303?pdf


2.9.3.6 https://phys.libretexts.org/@go/page/76303

2.9.3.5 Key Concepts
Using , it is possible to estimate  given  and .
The rate of change of position is velocity, and the rate of change of velocity is acceleration. Speed is the absolute value, or
magnitude, of velocity.
The population growth rate and the present population can be used to predict the size of a future population.
Marginal cost, marginal revenue, and marginal profit functions can be used to predict, respectively, the cost of producing one
more item, the revenue obtained by selling one more item, and the profit obtained by producing and selling one more item.

2.9.3.6 Glossary

acceleration
is the rate of change of the velocity, that is, the derivative of velocity

amount of change
the amount of a function  over an interval 

average rate of change

is a function  over an interval  is 

marginal cost
is the derivative of the cost function, or the approximate cost of producing one more item

marginal revenue
is the derivative of the revenue function, or the approximate revenue obtained by selling one more item

marginal profit
is the derivative of the profit function, or the approximate profit obtained by producing and selling one more item

population growth rate
is the derivative of the population with respect to time

speed
is the absolute value of velocity, that is,  is the speed of an object at time  whose velocity is given by 

This page titled 2.9.3: Derivatives as Rates of Change is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

3.4: Derivatives as Rates of Change by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f(a +h) ≈ f(a) +f '(a)h f(a +h) f '(a) f(a)

f(x) [x, x +h]isf(x +h) −f(x)

f(x) [x, x +h]
f(x+h)−f(a)

b−a

|v(t)| t v(t)
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2.9.4: Linear Approximations and Differentials

Describe the linear approximation to a function at a point.
Write the linearization of a given function.
Draw a graph that illustrates the use of differentials to approximate the change in a quantity.
Calculate the relative error and percentage error in using a differential approximation.

We have just seen how derivatives allow us to compare related quantities that are changing over time. In this section, we examine
another application of derivatives: the ability to approximate functions locally by linear functions. Linear functions are the easiest
functions with which to work, so they provide a useful tool for approximating function values. In addition, the ideas presented in
this section are generalized later in the text when we study how to approximate functions by higher-degree polynomials
Introduction to Power Series and Functions.

Linear Approximation of a Function at a Point
Consider a function  that is differentiable at a point . Recall that the tangent line to the graph of  at  is given by the
equation

For example, consider the function  at . Since  is differentiable at  and , we see that 
. Therefore, the tangent line to the graph of  at  is given by the equation

Figure  shows a graph of  along with the tangent line to  at . Note that for  near , the graph of the
tangent line is close to the graph of . As a result, we can use the equation of the tangent line to approximate  for  near . For
example, if , the  value of the corresponding point on the tangent line is

The actual value of  is given by

Therefore, the tangent line gives us a fairly good approximation of  (Figure ). However, note that for values of  far
from , the equation of the tangent line does not give us a good approximation. For example, if , the -value of the
corresponding point on the tangent line is

whereas the value of the function at  is 

 Learning Objectives

f x = a f a

y = f(a) + (a)(x−a).f ′

f(x) = 1
x a = 2 f x = 2 (x) = −f ′ 1

x2

(2) = −f ′ 1
4

f a = 2

y = − (x−2).
1

2

1

4

2.9.4.1a f(x) = 1
x f x = 2 x 2

f f(x) x 2
x = 2.1 y

y = − (2.1 −2) = 0.475.
1

2

1

4

f(2.1)

f(2.1) = ≈ 0.47619.
1

2.1

f(2.1) 2.9.4.1b x

2 x = 10 y

y = − (10 −2) = −2 = −1.5,
1

2

1

4

1

2

x = 10 f(10) = 0.1.
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Figure : (a) The tangent line to  at  provides a good approximation to  for  near . (b) At , the
value of  on the tangent line to  is . The actual value of  is , which is approximately .

In general, for a differentiable function , the equation of the tangent line to  at  can be used to approximate  for  near
. Therefore, we can write

 for  near .

We call the linear function

the linear approximation, or tangent line approximation, of  at . This function  is also known as the linearization of 
at 

To show how useful the linear approximation can be, we look at how to find the linear approximation for  at 

Find the linear approximation of  at  and use the approximation to estimate .

Solution

Since we are looking for the linear approximation at  using Equation  we know the linear approximation is given
by

We need to find  and 

Therefore, the linear approximation is given by Figure .

Using the linear approximation, we can estimate  by writing

2.9.4.1 f(x) = 1/x x = 2 f x 2 x = 2.1
y f(x) = 1/x 0.475 f(2.1) 1/2.1 0.47619

f f x = a f(x) x

a

f(x) ≈ f(a) + (a)(x−a)f ′ x a

L(x) = f(a) + (a)(x−a)f ′ (2.9.4.1)

f x = a L f

x = a.

f(x) = x
−−

√ x = 9.

 Example : Linear Approximation of 2.9.4.1 x−−√

f(x) = x−−√ x = 9 9.1
−−−

√

x = 9, 2.9.4.1

L(x) = f(9) + (9)(x−9).f ′

f(9) (9).f ′

f(x) = ⇒ f(9) = = 3x−−√ 9
–

√

(x) = ⇒ (9) = =f ′ 1
2 x√

f ′ 1
2 9√

1
6

2.9.4.2

L(x) = 3 + (x−9)
1

6

9.1
−−−

√

= f(9.1) ≈ L(9.1) = 3 + (9.1 −9) ≈ 3.0167.9.1
−−−

√
1

6
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Figure : The local linear approximation to  at  provides an approximation to  for  near .

Analysis

Using a calculator, the value of  to four decimal places is . The value given by the linear approximation, , is
very close to the value obtained with a calculator, so it appears that using this linear approximation is a good way to estimate 

, at least for x near . At the same time, it may seem odd to use a linear approximation when we can just push a few buttons
on a calculator to evaluate . However, how does the calculator evaluate ? The calculator uses an approximation! In
fact, calculators and computers use approximations all the time to evaluate mathematical expressions; they just use higher-
degree approximations.

Find the local linear approximation to  at . Use it to approximate  to five decimal places.

Hint

Answer

 

Find the linear approximation of  at  and use it to approximate 

Solution

First we note that since  rad is equivalent to , using the linear approximation at  seems reasonable. The linear
approximation is given by

We see that

Therefore, the linear approximation of  at  is given by Figure .

To estimate  using , we must first convert  to radians. We have  radians, so the estimate for 
is given by

2.9.4.2 f(x) = x−−√ x = 9 f x 9

9.1
−−−

√ 3.0166 3.0167

x−−√ 9
9.1
−−−

√ 9.1
−−−

√

 Exercise 2.9.4.1

f(x) = x−−√3 x = 8 8.1
−−−

√3

L(x) = f(a) + (a)(x−a)f ′

L(x) = 2 + (x−8);1
12

2.00833

 Example : Linear Approximation of 2.9.4.2 sin x

f(x) = sinx x = π

3
sin(62°).

π
3

60° x = π/3

L(x) = f( ) + ( )(x− ).π

3
f ′ π

3
π

3

f(x) = sinx ⇒ f( ) = sin( ) =π
3

π
3

3√
2

(x) = cosx ⇒ ( ) = cos( ) =f ′ f ′ π
3

π
3

1
2

f x = π/3 2.9.4.3

L(x) = + (x− )
3√

2
1
2

π

3

sin(62°) L 62° 62° = 62π
180

sin(62°)

sin(62°) = f( ) ≈ L( ) = + ( − ) = + ( ) = + ≈ 0.88348.62π
180

62π
180

3√

2
1
2

62π
180

π

3
3√

2
1
2

2π
180

3√

2
π

180
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Figure : The linear approximation to  at  provides an approximation to  for  near 

Find the linear approximation for  at 

Hint

Answer

Linear approximations may be used in estimating roots and powers. In the next example, we find the linear approximation for 
 at , which can be used to estimate roots and powers for real numbers near . The same idea can be

extended to a function of the form  to estimate roots and powers near a different number .

Find the linear approximation of  at . Use this approximation to estimate 

Solution

The linear approximation at  is given by

Because

the linear approximation is given by Figure .

We can approximate  by evaluating  when . We conclude that

2.9.4.3 f(x) = sin x x = π/3 sin x x π/3.

 Exercise 2.9.4.2

f(x) = cosx x = .π

2

L(x) = f(a) + (a)(x−a)f ′

L(x) = −x+ π

2

f(x) = (1 +x)n x = 0 1
f(x) = (m+x)n m

 Example : Approximating Roots and Powers2.9.4.3

f(x) = (1 +x)n x = 0 (1.01 .)3

x = 0

L(x) = f(0) + (0)(x−0).f ′

f(x) = (1 +x ⇒ f(0) = 1)n

(x) = n(1 +x ⇒ (0) = n,f ′ )n−1 f ′

2.9.4.4a

L(x) = 1 +n(x−0) = 1 +nx

(1.01)3 L(0.01) n = 3

(1.01 = f(1.01) ≈ L(1.01) = 1 +3(0.01) = 1.03.)3
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Figure : (a) The linear approximation of  at  is . (b) The actual value of  is . The linear
approximation of  at  estimates  to be .

Find the linear approximation of  at  without using the result from the preceding example.

Hint

Answer

Differentials
We have seen that linear approximations can be used to estimate function values. They can also be used to estimate the amount a
function value changes as a result of a small change in the input. To discuss this more formally, we define a related concept:
differentials. Differentials provide us with a way of estimating the amount a function changes as a result of a small change in input
values.

When we first looked at derivatives, we used the Leibniz notation  to represent the derivative of  with respect to .
Although we used the expressions  and  in this notation, they did not have meaning on their own. Here we see a meaning to
the expressions  and . Suppose  is a differentiable function. Let  be an independent variable that can be assigned
any nonzero real number, and define the dependent variable  by

It is important to notice that  is a function of both  and . The expressions  and  are called differentials. We can divide
both sides of Equation  by  which yields

This is the familiar expression we have used to denote a derivative. Equation  is known as the differential form of Equation
.

For each of the following functions, find  and evaluate when  and 

a. 
b. 

Solution

2.9.4.4 f(x) x = 0 L(x) 1.013 1.030301
f(x) x = 0 1.013 1.03

 Exercise 2.9.4.3

f(x) = (1 +x)4 x = 0

(x) = 4(1 +xf ′ )3

L(x) = 1 +4x

dy/dx y x

dy dx

dy dx y = f(x) dx

dy

dy = (x)dx.f ′ (2.9.4.2)

dy x dx dy dx

2.9.4.2 dx,

= (x).
dy

dx
f ′ (2.9.4.3)

2.9.4.3
2.9.4.2

 Example : Computing Differentials2.9.4.4

dy x = 3 dx = 0.1.

y = +2xx2

y = cosx
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The key step is calculating the derivative. When we have that, we can obtain  directly.

a. Since  we know , and therefore

When  and 

b. Since  This gives us

When  and 

For , find .

Hint

Answer

We now connect differentials to linear approximations. Differentials can be used to estimate the change in the value of a function
resulting from a small change in input values. Consider a function  that is differentiable at point . Suppose the input  changes
by a small amount. We are interested in how much the output  changes. If  changes from  to , then the change in  is 
(also denoted ), and the change in  is given by

Instead of calculating the exact change in , however, it is often easier to approximate the change in  by using a linear
approximation. For  near  can be approximated by the linear approximation (Equation )

Therefore, if  is small,

That is,

In other words, the actual change in the function  if  increases from  to  is approximately the difference between 
 and , where  is the linear approximation of  at . By definition of , this difference is equal to .

In summary,

Therefore, we can use the differential  to approximate the change in  if  increases from  to . We
can see this in the following graph.

dy

f(x) = +2x,x2 (x) = 2x+2f ′

dy = (2x+2)dx.

x = 3 dx = 0.1,

dy = (2 ⋅ 3 +2)(0.1) = 0.8.

f(x) = cosx, (x) = −sin(x).f ′

dy = −sinx dx.

x = 3 dx = 0.1,

dy = −sin(3)(0.1) = −0.1 sin(3).

 Exercise 2.9.4.4

y = ex
2

dy

dy = (x)dxf ′

dy = 2x dxex
2

f a x

y x a a+dx x dx

Δx y

Δy = f(a+dx) −f(a).

y y

x a, f(x) 2.9.4.1

L(x) = f(a) + (a)(x−a).f ′

dx

f(a+dx) ≈ L(a+dx) = f(a) + (a)(a+dx−a).f ′

f(a+dx) −f(a) ≈ L(a+dx) −f(a) = (a)dx.f ′

f x a a+dx

L(a+dx) f(a) L(x) f a L(x) (a)dxf ′

Δy = f(a+dx) −f(a) ≈ L(a+dx) −f(a) = (a)dx = dy.f ′

dy = (a)dxf ′ y x x = a x = a+dx
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Figure : The differential  is used to approximate the actual change in  if  increases from  to .

We now take a look at how to use differentials to approximate the change in the value of the function that results from a small
change in the value of the input. Note the calculation with differentials is much simpler than calculating actual values of functions
and the result is very close to what we would obtain with the more exact calculation.

Let  Compute  and  at  if 

Solution

The actual change in  if  changes from  to  is given by

The approximate change in  is given by . Since  we have

For  find  and  at  if 

Hint

Answer

Calculating the Amount of Error

Any type of measurement is prone to a certain amount of error. In many applications, certain quantities are calculated based on
measurements. For example, the area of a circle is calculated by measuring the radius of the circle. An error in the measurement of
the radius leads to an error in the computed value of the area. Here we examine this type of error and study how differentials can be
used to estimate the error.

Consider a function  with an input that is a measured quantity. Suppose the exact value of the measured quantity is , but the
measured value is . We say the measurement error is  (or ). As a result, an error occurs in the calculated quantity 

. This type of error is known as a propagated error and is given by

Since all measurements are prone to some degree of error, we do not know the exact value of a measured quantity, so we cannot
calculate the propagated error exactly. However, given an estimate of the accuracy of a measurement, we can use differentials to
approximate the propagated error  Specifically, if  is a differentiable function at ,the propagated error is

2.9.4.5 dy = (a) dxf ′ y x a a+dx

 Example : Approximating Change with Differentials2.9.4.5

y = +2x.x2 Δy dy x = 3 dx = 0.1.

y x x = 3 x = 3.1

Δy = f(3.1) −f(3) = [(3.1 +2(3.1)] −[ +2(3)] = 0.81.)2 32

y dy = (3)dxf ′ (x) = 2x+2,f ′

dy = (3)dx = (2(3) +2)(0.1) = 0.8.f ′

 Exercise 2.9.4.5

y = +2x,x2 Δy dy x = 3 dx = 0.2.

dy = (3)dx, Δy = f(3.2) −f(3)f ′

dy = 1.6, Δy = 1.64

f a

a+dx dx Δx

f(x)

Δy = f(a+dx) −f(a).

Δy. f a

Δy ≈ dy = (a)dx.f ′
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Unfortunately, we do not know the exact value  However, we can use the measured value  and estimate

In the next example, we look at how differentials can be used to estimate the error in calculating the volume of a box if we assume
the measurement of the side length is made with a certain amount of accuracy.

Suppose the side length of a cube is measured to be  cm with an accuracy of  cm.

a. Use differentials to estimate the error in the computed volume of the cube.
b. Compute the volume of the cube if the side length is (i)  cm and (ii)  cm to compare the estimated error with the

actual potential error.

Solution

a. The measurement of the side length is accurate to within  cm. Therefore,

The volume of a cube is given by , which leads to

Using the measured side length of  cm, we can estimate that

Therefore,

b. If the side length is actually  cm, then the volume of the cube is

If the side length is actually  cm, then the volume of the cube is

Therefore, the actual volume of the cube is between  and . Since the side length is measured to be 5 cm,
the computed volume is  Therefore, the error in the computed volume is

That is,

We see the estimated error  is relatively close to the actual potential error in the computed volume.

Estimate the error in the computed volume of a cube if the side length is measured to be  cm with an accuracy of  cm.

Hint

Answer

The volume measurement is accurate to within .

The measurement error  and the propagated error  are absolute errors. We are typically interested in the size of an
error relative to the size of the quantity being measured or calculated. Given an absolute error  for a particular quantity, we
define the relative error as , where  is the actual value of the quantity. The percentage error is the relative error expressed as

a. a+dx,

Δy ≈ dy ≈ (a+dx)dx.f ′

 Example : Volume of a Cube2.9.4.6

5 0.1

4.9 5.1

±0.1

−0.1 ≤ dx ≤ 0.1.

V = x3

dV = 3 dx.x2

5

−3(5 (0.1) ≤ dV ≤ 3(5 (0.1).)2 )2

−7.5 ≤ dV ≤ 7.5.

4.9

V (4.9) = (4.9 = 117.649 .)3 cm3

5.1

V (5.1) = (5.1 = 132.651 .)3 cm3

117.649 132.651
V (5) = = 125.53

117.649 −125 ≤ ΔV ≤ 132.651 −125.

−7.351 ≤ ΔV ≤ 7.651.

dV

 Exercise 2.9.4.6

6 0.2

dV = 3 dxx2

21.6 cm3

dx (= Δx) Δy

Δq
Δq

q q

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76304?pdf


2.9.4.9 https://phys.libretexts.org/@go/page/76304

a percentage. For example, if we measure the height of a ladder to be  in. when the actual height is  in., the absolute error is 1
in. but the relative error is , or . By comparison, if we measure the width of a piece of cardboard to be  in.
when the actual width is  in., our absolute error is  in., whereas the relative error is , or  Therefore, the
percentage error in the measurement of the cardboard is larger, even though  in. is less than  in.

An astronaut using a camera measures the radius of Earth as  mi with an error of  mi. Let’s use differentials to
estimate the relative and percentage error of using this radius measurement to calculate the volume of Earth, assuming the
planet is a perfect sphere.

Solution: If the measurement of the radius is accurate to within  we have

Since the volume of a sphere is given by  we have

Using the measured radius of  mi, we can estimate

To estimate the relative error, consider . Since we do not know the exact value of the volume , use the measured radius 

 mi to estimate . We obtain . Therefore the relative error satisfies

which simplifies to

The relative error is  and the percentage error is .

Determine the percentage error if the radius of Earth is measured to be  mi with an error of  mi.

Hint

Use the fact that  to find .

Answer

Key Concepts
A differentiable function  can be approximated at  by the linear function

For a function , if  changes from  to , then

is an approximation for the change in . The actual change in  is

A measurement error  can lead to an error in a calculated quantity . The error in the calculated quantity is known as the
propagated error. The propagated error can be estimated by

63 62
= 0.0161

62
1.6% 8.25

8 1
4

=0.25
8

1
32

3.1%.

0.25 1

 Example : Relative and Percentage Error2.9.4.7

4000 ±80

±80,

−80 ≤ dr ≤ 80.

V = ( )π ,4
3

r3

dV = 4π dr.r2

4000

−4π(4000 (80) ≤ dV ≤ 4π(4000 (80).)2 )2

dV

V
V

r = 4000 V V ≈ ( )π(40004
3

)3

≤ ≤ ,
−4π(4000 (80))

2

4π(4000 /3)3

dV

V

4π(4000 (80))
2

4π(4000 /3)3

−0.06 ≤ ≤ 0.06.
dV

V

0.06 6%

 Exercise 2.9.4.7

3950 ±100

dV = 4π drr2 dV /V

7.6%

y = f(x) a

L(x) = f(a) + (a)(x−a).f ′

y = f(x) x a a+dx

dy = (x)dxf ′

y y

Δy = f(a+dx) −f(a).

dx f(x)

dy ≈ (x)dx.f ′
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To estimate the relative error of a particular quantity , we estimate .

Key Equations
Linear approximation

A differential

Glossary

differential
the differential  is an independent variable that can be assigned any nonzero real number; the differential  is defined to be 

differential form
given a differentiable function  the equation  is the differential form of the derivative of  with
respect to 

linear approximation
the linear function  is the linear approximation of  at 

percentage error
the relative error expressed as a percentage

propagated error
the error that results in a calculated quantity  resulting from a measurement error 

relative error

given an absolute error  for a particular quantity,  is the relative error.

tangent line approximation (linearization)
since the linear approximation of  at  is defined using the equation of the tangent line, the linear approximation of  at 

 is also known as the tangent line approximation to  at 

This page titled 2.9.4: Linear Approximations and Differentials is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Edwin “Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts
platform.

4.2: Linear Approximations and Differentials by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

q
Δq

q

L(x) = f(a) + (a)(x−a)f ′

dy = (x)dxf ′

dx dy

dy = (x)dxf ′

y = (x),f ′ dy = (x)dxf ′ y

x

L(x) = f(a) + (a)(x−a)f ′ f x = a

f(x) dx

Δq
Δq

q

f x = a f

x = a f x = a
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2.9.5: Maxima and Minima

Define absolute extrema.
Define local extrema.
Explain how to find the critical points of a function over a closed interval.
Describe how to use critical points to locate absolute extrema over a closed interval.

Given a particular function, we are often interested in determining the largest and smallest values of the function. This information
is important in creating accurate graphs. Finding the maximum and minimum values of a function also has practical significance,
because we can use this method to solve optimization problems, such as maximizing profit, minimizing the amount of material
used in manufacturing an aluminum can, or finding the maximum height a rocket can reach. In this section, we look at how to use
derivatives to find the largest and smallest values for a function.

Absolute Extrema
Consider the function  over the interval . As . Therefore, the function does not have
a largest value. However, since  for all real numbers  and  when , the function has a smallest value, 

, when . We say that  is the absolute minimum of  and it occurs at . We say that  does
not have an absolute maximum (Figure ).

Figure : The given function has an absolute minimum of  at . The function does not have an absolute maximum.

Let  be a function defined over an interval  and let . We say  has an absolute maximum on  at  if  for
all . We say  has an absolute minimum on  at  if  for all . If  has an absolute maximum on  at  or
an absolute minimum on  at , we say  has an absolute extremum on  at .

Before proceeding, let’s note two important issues regarding this definition. First, the term absolute here does not refer to absolute
value. An absolute extremum may be positive, negative, or zero. Second, if a function  has an absolute extremum over an interval 

 at , the absolute extremum is . The real number  is a point in the domain at which the absolute extremum occurs. For
example, consider the function  over the interval . Since

for all real numbers , we say  has an absolute maximum over  at . The absolute maximum is . It occurs
at , as shown in Figure (b).

A function may have both an absolute maximum and an absolute minimum, just one extremum, or neither. Figure  shows
several functions and some of the different possibilities regarding absolute extrema. However, the following theorem, called the
Extreme Value Theorem, guarantees that a continuous function  over a closed, bounded interval  has both an absolute
maximum and an absolute minimum.

 Learning Objectives

f(x) = +1x2 (−∞, ∞) x → ±∞, f(x) → ∞

+1 ≥ 1x2 x +1 = 1x2 x = 0

1 x = 0 1 f(x) = +1x2 x = 0 f(x) = +1x2

2.9.5.1

2.9.5.1 1 x = 0

 Definition: Absolute Extrema

f I c ∈ I f I c f(c) ≥ f(x)

x ∈ I f I c f(c) ≤ f(x) x ∈ I f I c

I c f I c

f

I c f(c) c

f(x) = 1/( +1)x2 (−∞, ∞)

f(0) = 1 ≥ = f(x)
1

+1x2

x f (−∞, ∞) x = 0 f(0) = 1

x = 0 2.9.5.2

2.9.5.2

f [a, b]
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Figure : Graphs (a), (b), and (c) show several possibilities for absolute extrema for functions with a domain of 
Graphs (d), (e), and (f) show several possibilities for absolute extrema for functions with a domain that is a bounded interval.

If  is a continuous function over the closed, bounded interval , then there is a point in  at which  has an absolute
maximum over  and there is a point in  at which  has an absolute minimum over .

The proof of the extreme value theorem is beyond the scope of this text. Typically, it is proved in a course on real analysis. There
are a couple of key points to note about the statement of this theorem. For the extreme value theorem to apply, the function must be
continuous over a closed, bounded interval. If the interval  is open or the function has even one point of discontinuity, the function
may not have an absolute maximum or absolute minimum over . For example, consider the functions shown in Figure  (d),
(e), and (f). All three of these functions are defined over bounded intervals. However, the function in graph (e) is the only one that
has both an absolute maximum and an absolute minimum over its domain. The extreme value theorem cannot be applied to the
functions in graphs (d) and (f) because neither of these functions is continuous over a closed, bounded interval. Although the
function in graph (d) is defined over the closed interval , the function is discontinuous at . The function has an absolute
maximum over  but does not have an absolute minimum. The function in graph (f) is continuous over the half-open interval 

, but is not defined at , and therefore is not continuous over a closed, bounded interval. The function has an absolute
minimum over , but does not have an absolute maximum over . These two graphs illustrate why a function over a
bounded interval may fail to have an absolute maximum and/or absolute minimum.

2.9.5.2 (−∞, ∞).

 Theorem : Extreme Value Theorem2.9.5.1

f [a, b] [a, b] f

[a, b] [a, b] f [a, b]

I

I 2.9.5.2

[0, 4] x = 2

[0, 4]

[0, 2) x = 2

[0, 2) [0, 2)
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Before looking at how to find absolute extrema, let’s examine the related concept of local extrema. This idea is useful in
determining where absolute extrema occur.

Local Extrema and Critical Points
Consider the function  shown in Figure . The graph can be described as two mountains with a valley in the middle. The
absolute maximum value of the function occurs at the higher peak, at . However,  is also a point of interest. Although 

 is not the largest value of , the value  is larger than  for all  near 0. We say  has a local maximum at .
Similarly, the function  does not have an absolute minimum, but it does have a local minimum at  because  is less than 

 for  near 1.

Figure : This function  has two local maxima and one local minimum. The local maximum at  is also the absolute
maximum.

A function  has a local maximum at  if there exists an open interval  containing  such that  is contained in the domain of 
 and  for all . A function  has a local minimum at  if there exists an open interval  containing  such that
 is contained in the domain of  and  for all . A function  has a local extremum at  if  has a local

maximum at  or  has a local minimum at .

Note that if  has an absolute extremum at  and  is defined over an interval containing , then  is also considered a local
extremum. If an absolute extremum for a function  occurs at an endpoint, we do not consider that to be a local extremum, but
instead refer to that as an endpoint extremum.

Given the graph of a function , it is sometimes easy to see where a local maximum or local minimum occurs. However, it is not
always easy to see, since the interesting features on the graph of a function may not be visible because they occur at a very small
scale. Also, we may not have a graph of the function. In these cases, how can we use a formula for a function to determine where
these extrema occur?

To answer this question, let’s look at Figure  again. The local extrema occur at  and  Notice that at 
 and , the derivative . At , the derivative  does not exist, since the function  has a corner there.

In fact, if  has a local extremum at a point , the derivative  must satisfy one of the following conditions: either 
 or  is undefined. Such a value  is known as a critical point and it is important in finding extreme values for

functions.

Let  be an interior point in the domain of . We say that  is a critical point of  if  or  is undefined.

As mentioned earlier, if  has a local extremum at a point , then  must be a critical point of . This fact is known as
Fermat’s theorem.

f 2.9.5.3

x = 2 x = 0

f(0) f f(0) f(x) x f x = 0

f x = 1 f(1)

f(x) x

2.9.5.3 f x = 2

 Definition: Local Extrema

f c I c I

f f(c) ≥ f(x) x ∈ I f c I c

I f f(c) ≤ f(x) x ∈ I f c f

c f c

f c f c f(c)

f

f

2.9.5.3 x = 0, x = 1, x = 2.

x = 0 x = 1 (x) = 0f ′ x = 2 (x)f ′ f

f x = c (c)f ′

(c) = 0f ′ (c)f ′ c

 Definition: Critical Points

c f c f (c) = 0f ′ (c)f ′

f x = c c f
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If  has a local extremum at  and  is differentiable at , then 

Suppose  has a local extremum at  and  is differentiable at . We need to show that . To do this, we will show that
 and , and therefore . Since  has a local extremum at ,  has a local maximum or local

minimum at . Suppose  has a local maximum at . The case in which  has a local minimum at  can be handled similarly.
There then exists an open interval I such that  for all . Since  is differentiable at , from the definition of the
derivative, we know that

Since this limit exists, both one-sided limits also exist and equal . Therefore,

and

Since  is a local maximum, we see that  for  near . Therefore, for  near , but , we have 
. From Equation  we conclude that . Similarly, it can be shown that  Therefore, 

□

From Fermat’s theorem, we conclude that if  has a local extremum at , then either  or  is undefined. In other
words, local extrema can only occur at critical points.

Note this theorem does not claim that a function  must have a local extremum at a critical point. Rather, it states that critical
points are candidates for local extrema. For example, consider the function . We have  when .
Therefore,  is a critical point. However,  is increasing over , and thus  does not have a local extremum
at . In Figure , we see several different possibilities for critical points. In some of these cases, the functions have local
extrema at critical points, whereas in other cases the functions do not. Note that these graphs do not show all possibilities for the
behavior of a function at a critical point.

 Theorem : Fermat’s Theorem2.9.5.2

f c f c (c) = 0.f ′

 Proof

f c f c (c) = 0f ′

(c) ≥ 0f ′ (c) ≤ 0f ′ (c) = 0f ′ f c f

c f c f c

f(c) ≥ f(x) x ∈ I f c

(c) = .f ′ lim
x→c

f(x) −f(c)

x −c

(c)f ′

(c) =f ′ lim
x→c+

f(x) −f(c)

x −c,
(2.9.5.1)

(c) = .f ′ lim
x→c−

f(x) −f(c)

x −c

f(c) f(x) −f(c) ≤ 0 x c x c x > c

≤ 0
f(x)−f(c)

x−c
2.9.5.1 (c) ≤ 0f ′ (c) ≥ 0.f ′

(c) = 0.f ′

f c (c) = 0f ′ (c)f ′

f

f(x) = x3 (x) = 3 = 0f ′ x2 x = 0

x = 0 f(x) = x3 (−∞, ∞) f

x = 0 2.9.5.4
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Figure : (a–e) A function  has a critical point at  if  or  is undefined. A function may or may not have a
local extremum at a critical point.

Later in this chapter we look at analytical methods for determining whether a function actually has a local extremum at a critical
point. For now, let’s turn our attention to finding critical points. We will use graphical observations to determine whether a critical
point is associated with a local extremum.

For each of the following functions, find all critical points. Use a graphing utility to determine whether the function has a local
extremum at each of the critical points.

a. 
b. 
c. 

Solution

a. The derivative  is defined for all real numbers . Therefore, we only need to find the values for 
where . Since , the critical points are  and  From the graph of 
in Figure , we see that  has a local maximum at  and a local minimum at .

Figure : This function has a local maximum and a local minimum.

b. Using the chain rule, we see the derivative is

Therefore,  has critical points when  and when . We conclude that the critical points are . From
the graph of  in Figure , we see that  has a local (and absolute) minimum at , but does not have a local

2.9.5.4 f c (c) = 0f ′ (c)f ′

 Example : Locating Critical Points2.9.5.1

f(x) = − +4x1
3

x3 5
2

x2

f(x) = ( −1x2 )3

f(x) = 4x

1+x2

(x) = −5x +4f ′ x2 x x

(x) = 0f ′ (x) = −5x +4 = (x −4)(x −1)f ′ x2 x = 1 x = 4. f

2.9.5.5 f x = 1 x = 4

2.9.5.5

(x) = 3( −1 (2x) = 6x( −1 .f ′ x2 )2 x2 )2

f x = 0 −1 = 0x2 x = 0, ±1

f 2.9.5.6 f x = 0
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extremum at  or .

Figure : This function has three critical points: , , and . The function has a local (and absolute)
minimum at , but does not have extrema at the other two critical points.

c. By the quotient rule, we see that the derivative is

.

The derivative is defined everywhere. Therefore, we only need to find values for  where . Solving , we
see that  which implies . Therefore, the critical points are . From the graph of  in Figure ,
we see that f has an absolute maximum at  and an absolute minimum at  Hence,  has a local maximum at 

 and a local minimum at . (Note that if  has an absolute extremum over an interval  at a point  that is not an
endpoint of , then  has a local extremum at 

Figure : This function has an absolute maximum and an absolute minimum.

Find all critical points for 

Hint

Calculate 

Answer

Locating Absolute Extrema
The extreme value theorem states that a continuous function over a closed, bounded interval has an absolute maximum and an
absolute minimum. As shown in Figure , one or both of these absolute extrema could occur at an endpoint. If an absolute
extremum does not occur at an endpoint, however, it must occur at an interior point, in which case the absolute extremum is a local
extremum. Therefore, by Fermat's Theorem, the point  at which the local extremum occurs must be a critical point. We summarize
this result in the following theorem.

x = 1 x = −1

2.9.5.6 x = 0 x = 1 x = −1
x = 0

(x) = =f ′ 4(1+ )−4x(2x)x2

(1+x2)
2

4−4x2

(1+x2)
2

x (x) = 0f ′ (x) = 0f ′

4 −4 = 0,x2 x = ±1 x = ±1 f 2.9.5.7

x = 1 x = −1. f

x = 1 x = −1 f I c

I f c. )

2.9.5.7

 Exercise 2.9.5.1

f(x) = − −2x +1.x3 1
2

x2

(x).f ′

x = , x = 1−2

3
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Let  be a continuous function over a closed, bounded interval . The absolute maximum of  over  and the absolute
minimum of  over  must occur at endpoints of  or at critical points of  in .

With this idea in mind, let’s examine a procedure for locating absolute extrema.

Consider a continuous function  defined over the closed interval 

1. Evaluate  at the endpoints  and 
2. Find all critical points of  that lie over the interval  and evaluate  at those critical points.
3. Compare all values found in (1) and (2). From "Location of Absolute Extrema," the absolute extrema must occur at

endpoints or critical points. Therefore, the largest of these values is the absolute maximum of . The smallest of these
values is the absolute minimum of .

Now let’s look at how to use this strategy to find the absolute maximum and absolute minimum values for continuous functions.

For each of the following functions, find the absolute maximum and absolute minimum over the specified interval and state
where those values occur.

a.  over 
b.  over .

Solution

a. Step 1. Evaluate  at the endpoints  and .

 and 

Step 2. Since  is defined for all real numbers  Therefore, there are no critical points where the
derivative is undefined. It remains to check where . Since  at  and  is in the interval 

 is a candidate for an absolute extremum of  over . We evaluate  and find

.

Step 3. We set up the following table to compare the values found in steps 1 and 2.

Conclusion

 

Absolute maximum

Absolute minimum

From the table, we find that the absolute maximum of  over the interval [1, 3] is , and it occurs at . The absolute
minimum of  over the interval  is , and it occurs at  as shown in Figure .

 Theorem : Location of Absolute Extrema2.9.5.3

f I f I

f I I f I

 Problem-Solving Strategy: Locating Absolute Extrema over a Closed Interval

f [a, b].

f x = a x = b.

f (a, b) f

f

f

 Example : Locating Absolute Extrema2.9.5.2

f(x) = − +3x −2x2 [1, 3].

f(x) = −3x2 x2/3 [0, 2]

f x = 1 x = 3

f(1) = 0 f(3) = −2

(x) = −2x +3,f ′ f ′ x.

(x) = 0f ′ (x) = −2x +3 = 0f ′ x = 3
2

3
2

[1, 3], f( )3
2

f [1, 3] f( )3
2

f ( ) =3
2

1
4

x f(x)

1 0

3
2

1
4

3 −2

f 1
4

x = 3
2

f [1, 3] −2 x = 3 2.9.5.8
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Figure : This function has both an absolute maximum and an absolute minimum.

b. Step 1. Evaluate  at the endpoints  and .

 and 

Step 2. The derivative of  is given by

for . The derivative is zero when , which implies . The derivative is undefined at .
Therefore, the critical points of  are . The point  is an endpoint, so we already evaluated  in step 1.
The point  is not in the interval of interest, so we need only evaluate . We find that

Step 3. We compare the values found in steps 1 and 2, in the following table.

Conclusion

Absolute maximum

Absolute minimum

 

We conclude that the absolute maximum of  over the interval  is zero, and it occurs at . The absolute minimum is 
 and it occurs at  as shown in Figure .

Figure : This function has an absolute maximum at an endpoint of the interval.

2.9.5.8

f x = 0 x = 2

f(0) = 0 f(2) = 4 −3 ≈ −0.762(2)
2/3

f

(x) = 2x − =f ′ 2

x1/3

2 −2x4/3

x1/3

x ≠ 0 2 −2 = 0x4/3 x = ±1 x = 0

f x = 0, 1, −1 x = 0 f(0)

x = −1 f(1)

f(1) = −2.

x f(x)

0 0

1 −2

2 −0.762

f [0, 2] x = 0

−2, x = 1 2.9.5.9
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Find the absolute maximum and absolute minimum of  over the interval .

Hint

Look for critical points. Evaluate  at all critical points and at the endpoints.

Answer

The absolute maximum is  and it occurs at . The absolute minimum is  and it occurs at .

At this point, we know how to locate absolute extrema for continuous functions over closed intervals. We have also defined local
extrema and determined that if a function  has a local extremum at a point , then  must be a critical point of . However, 
being a critical point is not a sufficient condition for  to have a local extremum at . Later in this chapter, we show how to
determine whether a function actually has a local extremum at a critical point. First, however, we need to introduce the Mean Value
Theorem, which will help as we analyze the behavior of the graph of a function.

Key Concepts
A function may have both an absolute maximum and an absolute minimum, have just one absolute extremum, or have no
absolute maximum or absolute minimum.
If a function has a local extremum, the point at which it occurs must be a critical point. However, a function need not have a
local extremum at a critical point.
A continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. Each extremum
occurs at a critical point or an endpoint.

Glossary

absolute extremum
if  has an absolute maximum or absolute minimum at , we say  has an absolute extremum at 

absolute maximum
if  for all  in the domain of , we say  has an absolute maximum at 

absolute minimum
if  for all  in the domain of , we say  has an absolute minimum at 

critical point
if  or  is undefined, we say that c is a critical point of 

extreme value theorem
if  is a continuous function over a finite, closed interval, then  has an absolute maximum and an absolute minimum

Fermat’s theorem
if  has a local extremum at , then  is a critical point of 

local extremum
if  has a local maximum or local minimum at , we say  has a local extremum at 

local maximum
if there exists an interval  such that  for all , we say  has a local maximum at 

local minimum
if there exists an interval  such that  for all , we say  has a local minimum at 

 Exercise 2.9.5.2

f(x) = −4x +3x2 [1, 4]

f

3 x = 4 −1 x = 2

f c c f c

f c

f c f c

f(c) ≥ f(x) x f f c

f(c) ≤ f(x) x f f c

(c) = 0f ′ (c)f ′ f

f f

f c c f

f c f c

I f(c) ≥ f(x) x ∈ I f c

I f(c) ≤ f(x) x ∈ I f c
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2.9.6: Derivatives and the Shape of a Graph

Explain how the sign of the first derivative affects the shape of a function’s graph.
State the first derivative test for critical points.
Use concavity and inflection points to explain how the sign of the second derivative affects the shape of a function’s graph.
Explain the concavity test for a function over an open interval.
Explain the relationship between a function and its first and second derivatives.
State the second derivative test for local extrema.

Earlier in this chapter we stated that if a function  has a local extremum at a point , then  must be a critical point of . However,
a function is not guaranteed to have a local extremum at a critical point. For example,  has a critical point at  since 

 is zero at , but  does not have a local extremum at . Using the results from the previous section, we are
now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also
see how the second derivative provides information about the shape of a graph by describing whether the graph of a function
curves upward or curves downward.

The First Derivative Test
Corollary  of the Mean Value Theorem showed that if the derivative of a function is positive over an interval  then the function is
increasing over . On the other hand, if the derivative of the function is negative over an interval , then the function is decreasing
over  as shown in the following figure.

Figure : Both functions are increasing over the interval . At each point , the derivative . Both functions are
decreasing over the interval . At each point , the derivative 

A continuous function  has a local maximum at point  if and only if  switches from increasing to decreasing at point .
Similarly,  has a local minimum at  if and only if  switches from decreasing to increasing at . If  is a continuous function
over an interval  containing  and differentiable over , except possibly at , the only way  can switch from increasing to
decreasing (or vice versa) at point  is if  changes sign as  increases through . If  is differentiable at , the only way that 
can change sign as  increases through  is if . Therefore, for a function  that is continuous over an interval  containing
 and differentiable over , except possibly at , the only way  can switch from increasing to decreasing (or vice versa) is if 

 or  is undefined. Consequently, to locate local extrema for a function , we look for points  in the domain of 
such that  or  is undefined. Recall that such points are called critical points of .

 Learning Objectives

f c c f

f(x) = x3 x = 0
(x) = 3f ′ x2 x = 0 f x = 0

3 I

I I

I

2.9.6.1 (a, b) x (x) > 0f ′

(a, b) x (x) < 0.f ′

f c f c

f c f c f

I c I c f

c f ′ x c f c f ′

x c (c) = 0f ′ f I

c I c f

(c) = 0f ′ (c)f ′ f c f

(c) = 0f ′ (c)f ′ f

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76306?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph


2.9.6.2 https://phys.libretexts.org/@go/page/76306

Note that  need not have a local extrema at a critical point. The critical points are candidates for local extrema only. In Figure 
, we show that if a continuous function  has a local extremum, it must occur at a critical point, but a function may not have

a local extremum at a critical point. We show that if  has a local extremum at a critical point, then the sign of  switches as 
increases through that point.

Figure : The function  has four critical points: ,and . The function  has local maxima at  and , and a local
minimum at . The function  does not have a local extremum at . The sign of  changes at all local extrema.

Using Figure , we summarize the main results regarding local extrema.

If a continuous function  has a local extremum, it must occur at a critical point .
The function has a local extremum at the critical point  if and only if the derivative  switches sign as  increases through .
Therefore, to test whether a function has a local extremum at a critical point , we must determine the sign of  to the left
and right of .

This result is known as the first derivative test.

Suppose that  is a continuous function over an interval  containing a critical point . If  is differentiable over , except
possibly at point , then  satisfies one of the following descriptions:

i. If  changes sign from positive when  to negative when , then  is a local maximum of .
ii. If  changes sign from negative when  to positive when , then  is a local minimum of .

iii. If  has the same sign for  and , then  is neither a local maximum nor a local minimum of 

Now let’s look at how to use this strategy to locate all local extrema for particular functions.

Use the first derivative test to find the location of all local extrema for  Use a graphing utility to
confirm your results.

Solution

Step 1. The derivative is  To find the critical points, we need to find where  Factoring the
polynomial, we conclude that the critical points must satisfy

Therefore, the critical points are  Now divide the interval  into the smaller intervals 
and 

f

2.9.6.2 f

f f ′ x

2.9.6.2 f a, b, c d f a d
b f c f ′

2.9.6.2

f c

c f ′ x c

c (x)f ′

c

 First Derivative Test

f I c f I

c f(c)

f ′ x < c x > c f(c) f

f ′ x < c x > c f(c) f

f ′ x < c x > c f(c) f

 Example : Using the First Derivative Test to Find Local Extrema2.9.6.1

f(x) = −3 −9x−1.x3 x2

(x) = 3 −6x−9.f ′ x2 (x) = 0.f ′

3( −2x−3) = 3(x−3)(x+1) = 0.x2

x = 3, −1. (−∞, ∞) (−∞, −1), (−1, 3)
(3, ∞).
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Step 2. Since  is a continuous function, to determine the sign of  over each subinterval, it suffices to choose a point
over each of the intervals  and  and determine the sign of  at each of these points. For example,
let’s choose , , and  as test points.

Table: : First Derivative Test for 

Interval Test Point
Sign of 

at Test Point
Conclusion

(+)(−)(−)=+  is increasing.

(+)(−)(+)=-  is decreasing.

(+)(+)(+)=+  is increasing.

Step 3. Since  switches sign from positive to negative as  increases through ,  has a local maximum at . Since 
 switches sign from negative to positive as  increases through ,  has a local minimum at . These analytical results

agree with the following graph.

Figure : The function  has a maximum at  and a minimum at 

Use the first derivative test to locate all local extrema for 

Hint

Find all critical points of  and determine the signs of  over particular intervals determined by the critical points.

f ′ (x)f ′

(−∞, −1), (−1, 3) (3, ∞) f ′

x = −2 x = 0 x = 4

2.9.6.1 f(x) = − 3 − 9x− 1.x3 x2

(x) = 3(x − 3)(x + 1)f ′

(−∞, −1) x = −2 f

(−1, 3) x = 0 f

(3, ∞) x = 4 f

f ′ x −1 f x = −1
f ′ x 3 f x = 3

2.9.6.3 f x = −1 x = 3

 Exercise 2.9.6.1

f(x) = − + +18x.x3 3
2
x2

f (x)f ′
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Answer

 has a local minimum at  and a local maximum at .

Use the first derivative test to find the location of all local extrema for  Use a graphing utility to confirm
your results.

Solution

Step 1. The derivative is

The derivative  when  Therefore,  at . The derivative  is undefined at 
Therefore, we have three critical points: , , and . Consequently, divide the interval  into the
smaller intervals , and .

Step 2: Since  is continuous over each subinterval, it suffices to choose a test point  in each of the intervals from step 1 and
determine the sign of  at each of these points. The points , and  are test points for these
intervals.

Table: : First Derivative Test for 

Interval Test Point Sign of  at

Test Point
Conclusion

 is decreasing.

 is increasing.

 is increasing.

 is decreasing.

Step 3: Since  is decreasing over the interval  and increasing over the interval ,  has a local minimum at 
. Since  is increasing over the interval  and the interval ,  does not have a local extremum at .

Since  is increasing over the interval  and decreasing over the interval ,  has a local maximum at . The
analytical results agree with the following graph.

Figure : The function  has a local minimum at  and a local maximum at 

Use the first derivative test to find all local extrema for .

f −2 3

 Example : Using the First Derivative Test2.9.6.2

f(x) = 5 − .x1/3 x5/3

(x) = − = − = = .f ′ 5

3
x−2/3 5

3
x2/3 5

3x2/3

5x2/3

3

5 −5x4/3

3x2/3

5(1 − )x4/3

3x2/3

(x) = 0f ′ 1 − = 0.x4/3 (x) = 0f ′ x = ±1 (x)f ′ x = 0.
x = 0 x = 1 x = −1 (−∞, ∞)

(−∞, −1), (−1, 0), (0, 1) (1, ∞)

f ′ x

f ′ x = −2, x = − , x =1
2

1
2

x = 2

2.9.6.2 f(x) = 5 − .x1/3 x5/3

(x) =f ′ 5(1− )x4/3

3x2/3

(−∞, −1) x = −2 = −
(+)(−)

+
f

(−1, 0) x = − 1
2 = +

(+)(+)

+
f

(0, 1) x = 1
2 = +

(+)(+)

+
f

(1, ∞) x = 2 = −
(+)(−)

+
f

f (−∞, −1) (−1, 0) f

x = −1 f (−1, 0) (0, 1) f x = 0
f (0, 1) (1, ∞) f x = 1

2.9.6.4 f x = −1 x = 1

 Exercise 2.9.6.2

f(x) =
3

x−1
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Hint

The only critical point of  is 

Answer

 has no local extrema because  does not change sign at .

Concavity and Points of Inflection

We now know how to determine where a function is increasing or decreasing. However, there is another issue to consider regarding
the shape of the graph of a function. If the graph curves, does it curve upward or curve downward? This notion is called the
concavity of the function.

Figure  shows a function  with a graph that curves upward. As  increases, the slope of the tangent line increases. Thus,
since the derivative increases as  increases,  is an increasing function. We say this function  is concave up. Figure 
shows a function  that curves downward. As  increases, the slope of the tangent line decreases. Since the derivative decreases as 

 increases,  is a decreasing function. We say this function  is concave down.

Let  be a function that is differentiable over an open interval . If  is increasing over , we say  is concave up over . If 
 is decreasing over , we say  is concave down over .

Figure : (a), (c) Since  is increasing over the interval , we say  is concave up over  Since  is
decreasing over the interval , we say  is concave down over 

In general, without having the graph of a function , how can we determine its concavity? By definition, a function  is
concave up if  is increasing. From Corollary , we know that if  is a differentiable function, then  is increasing if its
derivative . Therefore, a function  that is twice differentiable is concave up when . Similarly, a function 

 is concave down if  is decreasing. We know that a differentiable function  is decreasing if its derivative .
Therefore, a twice-differentiable function  is concave down when . Applying this logic is known as the concavity
test.

f x = 1.

f f ′ x = 1

2.9.6.5a f x

x f ′ f 2.9.6.5b
f x

x f ′ f

 Definition: concavity test

f I f ′ I f I

f ′ I f I

2.9.6.5 f ′ (a, b) f (a, b). (b), (d) f ′

(a, b) f (a, b).

f f

f ′ 3 f ′ f ′

(x) > 0f ′′ f (x) > 0f ′′

f f ′ f ′ (x) < 0f ′′

f (x) < 0f ′′
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Let  be a function that is twice differentiable over an interval .

i. If  for all , then  is concave up over 
ii. If  for all  then  is concave down over .

We conclude that we can determine the concavity of a function  by looking at the second derivative of . In addition, we observe
that a function  can switch concavity (Figure ). However, a continuous function can switch concavity only at a point  if 

 or  is undefined. Consequently, to determine the intervals where a function  is concave up and concave down,
we look for those values of  where  or  is undefined. When we have determined these points, we divide the
domain of  into smaller intervals and determine the sign of  over each of these smaller intervals. If  changes sign as we pass
through a point , then  changes concavity. It is important to remember that a function  may not change concavity at a point 
even if  or  is undefined. If, however,  does change concavity at a point  and  is continuous at , we say the
point  is an inflection point of .

If  is continuous at  and  changes concavity at , the point  is an inflection point of .

Figure : Since  for , the function  is concave up over the interval . Since  for ,
the function  is concave down over the interval . The point  is an inflection point of .

For the function  determine all intervals where  is concave up and all intervals where  is
concave down. List all inflection points for . Use a graphing utility to confirm your results.

Solution

To determine concavity, we need to find the second derivative  The first derivative is  so the
second derivative is  If the function changes concavity, it occurs either when  or  is
undefined. Since  is defined for all real numbers , we need only find where . Solving the equation ,
we see that  is the only place where  could change concavity. We now test points over the intervals  and 
to determine the concavity of . The points  and  are test points for these intervals.

Table: : Test for Concavity for 

Interval Test Point
Sign of  at

Test Point
Conclusion

−  is concave down

+  is concave up

 Test for Concavity

f I

(x) > 0f ′′ x ∈ I f I

(x) < 0f ′′ x ∈ I, f I

f f

f 2.9.6.6 x

(x) = 0f ′′ (x)f ′′ f

x (x) = 0f ′′ (x)f ′′

f f ′′ f ′′

x f f x

(x) = 0f ′′ (x)f ′′ f a f a

(a, f(a)) f

 Definition: inflection point

f a f a (a, f(a)) f

2.9.6.6 (x) > 0f ′′ x < a f (−∞,a) (x) < 0f ′′ x > a

f (a, ∞) (a,f(a)) f

 Example : Testing for Concavity2.9.6.3

f(x) = −6 +9x+30,x3 x2 f f

f

(x).f ′′ (x) = 3 −12x+9,f ′ x2

(x) = 6x−12.f ′′ (x) = 0f ′′ (x)f ′′

f ′′ x (x) = 0f ′′ 6x−12 = 0
x = 2 f (−∞, 2) (2, ∞)

f x = 0 x = 3

2.9.6.3 f(x) = − 6 + 9x+ 30.x3 x2

(x) = 6x − 12f ′′

(−∞, 2) x = 0 f

(2, ∞) x = 3 f
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We conclude that  is concave down over the interval  and concave up over the interval . Since  changes
concavity at , the point  is an inflection point. Figure  confirms the analytical results.

Figure : The given function has a point of inflection at  where the graph changes concavity.

For , find all intervals where  is concave up and all intervals where  is concave down.

Hint

Find where 

Answer

 is concave up over the interval  and concave down over the interval 

We now summarize, in Table , the information that the first and second derivatives of a function  provide about the graph
of , and illustrate this information in Figure .

Table: : What Derivatives Tell Us about Graphs

Sign of Sign of Is  increasing or decreasing? Concavity

Positive Positive Increasing Concave up

Positive Negative Increasing Concave down

Negative Positive Decreasing Concave up

Negative Negative Decreasing Concave down

f (−∞, 2) (2, ∞) f

x = 2 (2, f(2)) = (2, 32) 2.9.6.7

2.9.6.7 (2, 32)

 Exercise 2.9.6.3

f(x) = − + +18xx3 3
2
x2 f f

(x) = 0f ′′

f (−∞, )1
2

( , ∞)1
2

2.9.6.4 f

f 2.9.6.8

2.9.6.4

f ′ f ′′ f
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Figure :Consider a twice-differentiable function  over an open interval . If  for all , the function is
increasing over . If  for all , the function is decreasing over . If  for all , the function is concave
up. If  for all , the function is concave down on .

The Second Derivative Test
The first derivative test provides an analytical tool for finding local extrema, but the second derivative can also be used to locate
extreme values. Using the second derivative can sometimes be a simpler method than using the first derivative.

We know that if a continuous function has a local extremum, it must occur at a critical point. However, a function need not have a
local extremum at a critical point. Here we examine how the second derivative test can be used to determine whether a function
has a local extremum at a critical point. Let  be a twice-differentiable function such that  and  is continuous over an
open interval  containing . Suppose . Since  is continuous over  for all  (Figure ). Then,
by Corollary ,  is a decreasing function over . Since , we conclude that for all  if  and 

 if . Therefore, by the first derivative test,  has a local maximum at .

On the other hand, suppose there exists a point  such that  but . Since  is continuous over an open interval 
 containing , then  for all  (Figure ). Then, by Corollary ,  is an increasing function over . Since 

, we conclude that for all ,  if  and  if . Therefore, by the first derivative test,  has
a local minimum at 

Figure : Consider a twice-differentiable function  such that  is continuous. Since  and , there is an
interval  containing  such that for all  in ,  is increasing if  and  is decreasing if . As a result,  has a local
maximum at . Since  and , there is an interval  containing  such that for all  in ,  is decreasing if 

 and  is increasing if . As a result,  has a local minimum at .

2.9.6.8 f I (x) > 0f ′ x ∈ I

I (x) < 0f ′ x ∈ I I (x) > 0f ′′ x ∈ I

(x) < 0f ′′ x ∈ I I

f (a) = 0f ′ f ′′

I a (a) < 0f ′′ f ′′ I, (x) < 0f ′′ x ∈ I 2.9.6.9
3 f ′ I (a) = 0f ′ x ∈ I, (x) > 0f ′ x < a

(x) < 0f ′ x > a f x = a

b (b) = 0f ′ (b) > 0f ′′ f ′′

I b (x) > 0f ′′ x ∈ I 2.9.6.9 3 f ′ I

(b) = 0f ′ x ∈ I (x) < 0f ′ x < b (x) > 0f ′ x > b f

x = b.

2.9.6.9 f f ′′ (a) = 0f ′ (a) < 0f ′′

I a x I f x < a f x > a f
x = a (b) = 0f ′ (b) > 0f ′′ I b x I f

x < b f x > b f x = b
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Suppose  and  is continuous over an interval containing .

i. If , then  has a local minimum at .
ii. If , then  has a local maximum at .

iii. If  then the test is inconclusive.

Note that for case iii. when , then  may have a local maximum, local minimum, or neither at . For example, the
functions  and  all have critical points at . In each case, the second derivative is zero at 

. However, the function  has a local minimum at  whereas the function  has a local maximum at
, and the function  does not have a local extremum at .

Let’s now look at how to use the second derivative test to determine whether  has a local maximum or local minimum at a critical
point  where 

Use the second derivative to find the location of all local extrema for 

Solution

To apply the second derivative test, we first need to find critical points  where . The derivative is 
. Therefore,  when .

To determine whether  has a local extremum at any of these points, we need to evaluate the sign of  at these points. The
second derivative is

In the following table, we evaluate the second derivative at each of the critical points and use the second derivative test to
determine whether  has a local maximum or local minimum at any of these points.

Table: : Second Derivative Test for 

Conclusion

Local maximum

Second derivative test is inconclusive

Local minimum

By the second derivative test, we conclude that  has a local maximum at  and  has a local minimum at .
The second derivative test is inconclusive at . To determine whether  has a local extrema at  we apply the first
derivative test. To evaluate the sign of  for  and , let  and  be the
two test points. Since  and , we conclude that  is decreasing on both intervals and, therefore,  does not
have a local extrema at  as shown in the following graph.

 Second Derivative Test

(c) = 0f ′ f ′′ c

(c) > 0f ′′ f c

(c) < 0f ′′ f c

(c) = 0,f ′′

(c) = 0f ′′ f c

f(x) = , f(x) = ,x3 x4 f(x) = −x4 x = 0
x = 0 f(x) = x4 x = 0 f(x) = −x4

x = 0 f(x) = x3 x = 0

f

c (c) = 0.f ′

 Example : Using the Second Derivative Test2.9.6.4

f(x) = −5 .x5 x3

c (c) = 0f ′

(x) = 5 −15f ′ x4 x2 (x) = 5 −15 = 5 ( −3) = 0f ′ x4 x2 x2 x2 x = 0, ± 3
–

√

f f ′′

(x) = 20 −30x = 10x(2 −3).f ′′ x3 x2

f

2.9.6.5 f(x) = − 5 .x5 x3

x (x)f ′′

− 3
–√ −30 3

–√

0 0

3
–√ 30 3

–√

f x = − 3
–

√ f x = 3
–

√

x = 0 f x = 0,
(x) = 5 ( −3)f ′ x2 x2 x ∈ (− , 0)3

–
√ x ∈ (0, )3

–
√ x = −1 x = 1

(−1) < 0f ′ (1) < 0f ′ f f

x = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76306?pdf


2.9.6.10 https://phys.libretexts.org/@go/page/76306

Figure :The function  has a local maximum at  and a local minimum at 

Consider the function . The points  satisfy . Use the second derivative test to
determine whether  has a local maximum or local minimum at those points.

Hint

Answer

 has a local maximum at  and a local minimum at .

We have now developed the tools we need to determine where a function is increasing and decreasing, as well as acquired an
understanding of the basic shape of the graph. In the next section we discuss what happens to a function as  At that point,
we have enough tools to provide accurate graphs of a large variety of functions.

Key Concepts
If  is a critical point of  and  for  and  for , then  has a local maximum at .
If  is a critical point of  and  for  and  for  then  has a local minimum at .
If  over an interval , then  is concave up over .
If  over an interval , then  is concave down over .
If  and , then  has a local minimum at .
If  and , then  has a local maximum at .
If  and , then evaluate  at a test point  to the left of  and a test point  to the right of , to determine
whether  has a local extremum at .

Glossary

concave down
if  is differentiable over an interval  and  is decreasing over , then  is concave down over 

concave up
if  is differentiable over an interval  and  is increasing over , then  is concave up over 

2.9.6.10 f x = − 3–√ x = 3–√

 Exercise 2.9.6.4

f(x) = −( ) −18xx3 3
2
x2 c = 3, −2 (c) = 0f ′

f

(x) = 6x−3f ′′

f −2 3

x → ±∞.

c f (x) > 0f ′ x < c (x) < 0f ′ x > c f c

c f (x) < 0f ′ x < c (x) > 0f ′ x > c, f c

(x) > 0f ′′ I f I

(x) < 0f ′′ I f I

(c) = 0f ′ (c) > 0f ′′ f c

(c) = 0f ′ (c) < 0f ′′ f c

(c) = 0f ′ (c) = 0f ′′ (x)f ′ x c x c

f c

f I f ′ I f I

f I f ′ I f I
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concavity
the upward or downward curve of the graph of a function

concavity test
suppose  is twice differentiable over an interval ; if  over , then  is concave up over ; if  over , then  is
concave down over 

first derivative test
let  be a continuous function over an interval  containing a critical point  such that  is differentiable over  except possibly
at ; if  changes sign from positive to negative as  increases through , then  has a local maximum at ; if  changes sign
from negative to positive as  increases through , then  has a local minimum at ; if  does not change sign as  increases
through , then  does not have a local extremum at 

inflection point
if  is continuous at  and  changes concavity at , the point  is an inflection point of 

second derivative test
suppose  and ' is continuous over an interval containing ; if , then  has a local minimum at ; if 

, then  has a local maximum at ; if , then the test is inconclusive

This page titled 2.9.6: Derivatives and the Shape of a Graph is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Edwin “Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts
platform.
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x c f c f ′ x

c f c
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(c) < 0f ′′ f c (c) = 0f ′′

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76306?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://creativecommons.org/licenses/by-nc-sa/4.0
https://openstax.org/
https://openstax.org/
https://openstax.org/details/books/calculus-volume-1
https://math.libretexts.org/@go/page/2504
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


2.9.7.1 https://phys.libretexts.org/@go/page/76307

2.9.7: Optimization Problems

Set up and solve optimization problems in several applied fields.

One common application of calculus is calculating the minimum or maximum value of a function. For example, companies often
want to minimize production costs or maximize revenue. In manufacturing, it is often desirable to minimize the amount of material
used to package a product with a certain volume. In this section, we show how to set up these types of minimization and
maximization problems and solve them by using the tools developed in this chapter.

Solving Optimization Problems over a Closed, Bounded Interval
The basic idea of the optimization problems that follow is the same. We have a particular quantity that we are interested in
maximizing or minimizing. However, we also have some auxiliary condition that needs to be satisfied. For example, in Example 

, we are interested in maximizing the area of a rectangular garden. Certainly, if we keep making the side lengths of the
garden larger, the area will continue to become larger. However, what if we have some restriction on how much fencing we can use
for the perimeter? In this case, we cannot make the garden as large as we like. Let’s look at how we can maximize the area of a
rectangle subject to some constraint on the perimeter.

A rectangular garden is to be constructed using a rock wall as one side of the garden and wire fencing for the other three sides
(Figure ). Given  of wire fencing, determine the dimensions that would create a garden of maximum area. What is
the maximum area?

Figure : We want to determine the measurements  and  that will create a garden with a maximum area using  of
fencing.

Solution

Let  denote the length of the side of the garden perpendicular to the rock wall and  denote the length of the side parallel to
the rock wall. Then the area of the garden is

We want to find the maximum possible area subject to the constraint that the total fencing is . From Figure , the
total amount of fencing used will be  Therefore, the constraint equation is

Solving this equation for , we have  Thus, we can write the area as

 Learning Objectives

2.9.7.1

 Example : Maximizing the Area of a Garden2.9.7.1

2.9.7.1 100 ft

2.9.7.1 x y 100 ft

x y

A = x ⋅ y.

100 ft 2.9.7.1
2x +y.

2x +y = 100.

y y = 100 −2x.

A(x) = x ⋅ (100 −2x) = 100x −2 .x2
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Before trying to maximize the area function  we need to determine the domain under consideration. To
construct a rectangular garden, we certainly need the lengths of both sides to be positive. Therefore, we need  and .
Since , if , then . Therefore, we are trying to determine the maximum value of  for  over the
open interval . We do not know that a function necessarily has a maximum value over an open interval. However, we do
know that a continuous function has an absolute maximum (and absolute minimum) over a closed interval. Therefore, let’s
consider the function  over the closed interval . If the maximum value occurs at an interior point,
then we have found the value  in the open interval  that maximizes the area of the garden.

Therefore, we consider the following problem:

Maximize  over the interval 

As mentioned earlier, since  is a continuous function on a closed, bounded interval, by the extreme value theorem, it has a
maximum and a minimum. These extreme values occur either at endpoints or critical points. At the endpoints, . Since
the area is positive for all  in the open interval , the maximum must occur at a critical point. Differentiating the
function , we obtain

Therefore, the only critical point is  (Figure ). We conclude that the maximum area must occur when .

Figure : To maximize the area of the garden, we need to find the maximum value of the function .

Then we have  To maximize the area of the garden, let  and . The area
of this garden is .

Determine the maximum area if we want to make the same rectangular garden as in Figure , but we have  of
fencing.

Hint

We need to maximize the function  over the interval 

Answer

The maximum area is .

Now let’s look at a general strategy for solving optimization problems similar to Example .

1. Introduce all variables. If applicable, draw a figure and label all variables.
2. Determine which quantity is to be maximized or minimized, and for what range of values of the other variables (if this can

be determined at this time).
3. Write a formula for the quantity to be maximized or minimized in terms of the variables. This formula may involve more

than one variable.

A(x) = 100x −2 ,x2

x > 0 y > 0
y = 100 −2x y > 0 x < 50 A(x) x

(0, 50)

A(x) = 100x −2x2 [0, 50]
x (0, 50)

A(x) = 100x −2x2 [0, 50].

A

A(x) = 0
x (0, 50)

A(x)

A'(x) = 100 −4x.

x = 25 2.9.7.2 x = 25

2.9.7.2 A(x) = 100x − 2x2

y = 100 −2x = 100 −2(25) = 50. x = 25 ft y = 50 ft

1250 ft2

 Exercise 2.9.7.1

2.9.7.2 200 ft

A(x) = 200x −2x2 [0, 100].

5000 ft2

2.9.7.1

 Problem-Solving Strategy: Solving Optimization Problems
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4. Write any equations relating the independent variables in the formula from step . Use these equations to write the quantity
to be maximized or minimized as a function of one variable.

5. Identify the domain of consideration for the function in step  based on the physical problem to be solved.
6. Locate the maximum or minimum value of the function from step  This step typically involves looking for critical points

and evaluating a function at endpoints.

Now let’s apply this strategy to maximize the volume of an open-top box given a constraint on the amount of material to be used.

An open-top box is to be made from a  by  piece of cardboard by removing a square from each corner of the box
and folding up the flaps on each side. What size square should be cut out of each corner to get a box with the maximum
volume?

Solution

Step 1: Let  be the side length of the square to be removed from each corner (Figure ). Then, the remaining four flaps
can be folded up to form an open-top box. Let  be the volume of the resulting box.

Figure : A square with side length  inches is removed from each corner of the piece of cardboard. The remaining flaps
are folded to form an open-top box.

Step 2: We are trying to maximize the volume of a box. Therefore, the problem is to maximize .

Step 3: As mentioned in step 2, are trying to maximize the volume of a box. The volume of a box is

where and  are the length, width, and height, respectively.

Step 4: From Figure , we see that the height of the box is  inches, the length is  inches, and the width is 
 inches. Therefore, the volume of the box is

Step 5: To determine the domain of consideration, let’s examine Figure . Certainly, we need  Furthermore, the
side length of the square cannot be greater than or equal to half the length of the shorter side, ; otherwise, one of the flaps
would be completely cut off. Therefore, we are trying to determine whether there is a maximum volume of the box for  over
the open interval  Since  is a continuous function over the closed interval , we know  will have an absolute
maximum over the closed interval. Therefore, we consider  over the closed interval  and check whether the absolute
maximum occurs at an interior point.

Step 6: Since  is a continuous function over the closed, bounded interval ,  must have an absolute maximum (and
an absolute minimum). Since  at the endpoints and  for  the maximum must occur at a critical
point. The derivative is

To find the critical points, we need to solve the equation

3

4
4.

 Example : Maximizing the Volume of a Box2.9.7.2

24 in. 36 in.

x 2.9.7.3
V

2.9.7.3 x

V

V = L ⋅ W ⋅ H,

L, W , H

2.9.7.3 x 36 −2x

24 −2x

.
V (x) = (36 −2x)(24 −2x)x

= 4 −120 +864xx3 x2

2.9.7.3 x > 0.
24 in.

x

(0, 12). V [0, 12] V

V [0, 12]

V (x) [0, 12] V

V (x) = 0 V (x) > 0 0 < x < 12,

V '(x) = 12 −240x +864.x2

12 −240x +864 = 0.x2
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Dividing both sides of this equation by , the problem simplifies to solving the equation

Using the quadratic formula, we find that the critical points are

Since  is not in the domain of consideration, the only critical point we need to consider is . Therefore, the
volume is maximized if we let  The maximum volume is

as shown in the following graph.

Figure : Maximizing the volume of the box leads to finding the maximum value of a cubic polynomial.

Suppose the dimensions of the cardboard in Example  are  by  Let  be the side length of each square and
write the volume of the open-top box as a function of . Determine the domain of consideration for .

Hint

The volume of the box is 

Answer

 The domain is .

An island is  mi due north of its closest point along a straight shoreline. A visitor is staying at a cabin on the shore that is  mi
west of that point. The visitor is planning to go from the cabin to the island. Suppose the visitor runs at a rate of  mph and
swims at a rate of  mph. How far should the visitor run before swimming to minimize the time it takes to reach the island?

Solution

Step 1: Let  be the distance running and let  be the distance swimming (Figure ). Let  be the time it takes to get
from the cabin to the island.

12

−20x +72 = 0.x2

.

x =
20 ± (−20 −4(1)(72))2− −−−−−−−−−−−−−

√

2

=
20 ± 112

−−−
√

2

=
20 ±4 7

–
√

2

= 10 ±2 7
–

√

10 +2 7
–

√ 10 −2 7
–

√
x = 10 −2 in.7

–
√

V (10 −2 ) = 640 +448 ≈ 1825 .7
–

√ 7
–

√ in3

2.9.7.4

 Exercise 2.9.7.2

2.9.7.2 20 in. 30 in. x

x x

L ⋅ W ⋅ H.

V (x) = x(20 −2x)(30 −2x). [0, 10]

 Example : Minimizing Travel Time2.9.7.3

2 6
8

3

x y 2.9.7.5 T
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Figure : How can we choose  and  to minimize the travel time from the cabin to the island?

Step 2: The problem is to minimize .

Step 3: To find the time spent traveling from the cabin to the island, add the time spent running and the time spent swimming.
Since Distance = Rate × Time  the time spent running is

,

and the time spent swimming is

.

Therefore, the total time spent traveling is

.

Step 4: From Figure , the line segment of  miles forms the hypotenuse of a right triangle with legs of length  mi and 
 mi. Therefore, by the Pythagorean theorem, , and we obtain . Thus, the total

time spent traveling is given by the function

.

Step 5: From Figure , we see that . Therefore,  is the domain of consideration.

Step 6: Since  is a continuous function over a closed, bounded interval, it has a maximum and a minimum. Let’s begin by
looking for any critical points of  over the interval  The derivative is

If , then

Therefore,

Squaring both sides of this equation, we see that if  satisfies this equation, then  must satisfy

2.9.7.5 x y

T

(D = R ×T ),

= =Trunning

Drunning

Rrunning

x

8

= =Tswimming

Dswimming

Rswimming

y

3

T = +
x

8

y

3

2.9.7.5 y 2
6 −x +(6 −x =22 )2 y2 y = (6 −x +4)2− −−−−−−−−−

√

T (x) = +
x

8

(6 −x +4)2− −−−−−−−−−
√

3

2.9.7.5 0 ≤ x ≤ 6 [0, 6]

T (x)
T [0, 6].

T '(x) = − ⋅ 2(6 −x)
1

8

1

2

[(6 −x +4)2 ]−1/2

3

= −
1

8

(6 −x)

3 (6 −x +4)2− −−−−−−−−−√

T '(x) = 0,

=
1

8

6 −x

3 (6 −x +4)2− −−−−−−−−−√
(2.9.7.1)

3 = 8(6 −x).(6 −x +4)2
− −−−−−−−−−

√ (2.9.7.2)

x x

9[(6 −x +4] = 64(6 −x ,)2 )2
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which implies

We conclude that if  is a critical point, then  satisfies

[Note that since we are squaring, ]

Therefore, the possibilities for critical points are

Since  is not in the domain, it is not a possibility for a critical point. On the other hand,  is in
the domain. Since we squared both sides of Equation  to arrive at the possible critical points, it remains to verify that 

 satisfies Equation . Since  does satisfy that equation, we conclude that 
 is a critical point, and it is the only one. To justify that the time is minimized for this value of , we just need

to check the values of  at the endpoints  and , and compare them with the value of  at the critical point 
. We find that  and , whereas

Therefore, we conclude that  has a local minimum at  mi.

Suppose the island is  mi from shore, and the distance from the cabin to the point on the shore closest to the island is  mi.
Suppose a visitor swims at the rate of  mph and runs at a rate of  mph. Let  denote the distance the visitor will run before
swimming, and find a function for the time it takes the visitor to get from the cabin to the island.

Hint

The time 

Answer

In business, companies are interested in maximizing revenue. In the following example, we consider a scenario in which a
company has collected data on how many cars it is able to lease, depending on the price it charges its customers to rent a car. Let’s
use these data to determine the price the company should charge to maximize the amount of money it brings in.

Owners of a car rental company have determined that if they charge customers  dollars per day to rent a car, where 
, the number of cars  they rent per day can be modeled by the linear function . If they charge

 per day or less, they will rent all their cars. If they charge  per day or more, they will not rent any cars. Assuming the
owners plan to charge customers between  per day and  per day to rent a car, how much should they charge to
maximize their revenue?

Solution

Step 1: Let  be the price charged per car per day and let  be the number of cars rented per day. Let  be the revenue per day.

Step 2: The problem is to maximize 

Step 3: The revenue (per day) is equal to the number of cars rented per day times the price charged per car per day—that is, 

55(6 −x = 36.)2

x x

(x −6 = .)2 36

55

(x −6 = (6 −x .)2 )2

x = 6 ± .
6

55
−−

√

x = 6 +6/ 55
−−

√ x = 6 −6/ 55
−−

√

2.9.7.2
x = 6 −6/ 55

−−
√ 2.9.7.1 x = 6 −6/ 55

−−
√

x = 6 −6/ 55
−−

√ x

T (x) x = 0 x = 6 T (x)
x = 6 −6/ 55

−−
√ T (0) ≈ 2.108 h T (6) ≈ 1.417 h

T (6 −6/ ) ≈ 1.368 h.55
−−

√

T x ≈ 5.19

 Exercise 2.9.7.3

1 15
2.5 6 x

T = + .Trunning Tswimming

T (x) = +
x

6

(15 −x +1)2− −−−−−−−−−−
√

2.5

 Example : Maximizing Revenue2.9.7.4

p

50 ≤ p ≤ 200 n n(p) = 1000 −5p

$50 $200
$50 $200

p n R

R.

R = n ×p.
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Step 4: Since the number of cars rented per day is modeled by the linear function  the revenue  can be
represented by the function

Step 5: Since the owners plan to charge between  per car per day and  per car per day, the problem is to find the
maximum revenue  for  in the closed interval .

Step 6: Since  is a continuous function over the closed, bounded interval , it has an absolute maximum (and an
absolute minimum) in that interval. To find the maximum value, look for critical points. The derivative is 

 Therefore, the critical point is . When  When 
. When .

Therefore, the absolute maximum occurs at . The car rental company should charge  per day per car to
maximize revenue as shown in the following figure.

Figure : To maximize revenue, a car rental company has to balance the price of a rental against the number of cars
people will rent at that price.

A car rental company charges its customers  dollars per day, where . It has found that the number of cars rented
per day can be modeled by the linear function  How much should the company charge each customer to
maximize revenue?

Hint

 where  is the number of cars rented and  is the price charged per car.

Answer

The company should charge  per car per day.

A rectangle is to be inscribed in the ellipse

What should the dimensions of the rectangle be to maximize its area? What is the maximum area?

Solution

Step 1: For a rectangle to be inscribed in the ellipse, the sides of the rectangle must be parallel to the axes. Let  be the length
of the rectangle and  be its width. Let  be the area of the rectangle.

n(p) = 1000 −5p, R

R(p) = n ×p

= (1000 −5p)p

= −5 +1000p.p2

$50 $200
R(p) p [50, 200]

R [50, 200]

R'(p) = −10p +1000. p = 100 p = 100, R(100) = $50, 000.
p = 50, R(p) = $37, 500 p = 200, R(p) = $0

p = $100 $100

2.9.7.6

 Exercise 2.9.7.4

p 60 ≤ p ≤ 150
n(p) = 750 −5p.

R(p) = n ×p, n p

$75

 Example : Maximizing the Area of an Inscribed Rectangle2.9.7.5

+ = 1.
x2

4
y2

L

W A
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Figure : We want to maximize the area of a rectangle inscribed in an ellipse.

Step 2: The problem is to maximize .

Step 3: The area of the rectangle is 

Step 4: Let  be the corner of the rectangle that lies in the first quadrant, as shown in Figure . We can write length 

 and width . Since  and , we have . Therefore, the area is

Step 5: From Figure , we see that to inscribe a rectangle in the ellipse, the -coordinate of the corner in the first
quadrant must satisfy . Therefore, the problem reduces to looking for the maximum value of  over the open
interval . Since  will have an absolute maximum (and absolute minimum) over the closed interval , we
consider  over the interval . If the absolute maximum occurs at an interior point, then we have found
an absolute maximum in the open interval.

Step 6: As mentioned earlier,  is a continuous function over the closed, bounded interval . Therefore, it has an
absolute maximum (and absolute minimum). At the endpoints  and ,  For , .

Therefore, the maximum must occur at a critical point. Taking the derivative of , we obtain

To find critical points, we need to find where  We can see that if  is a solution of

then  must satisfy

Therefore,  Thus,  are the possible solutions of Equation . Since we are considering  over the
interval ,  is a possibility for a critical point, but  is not. Therefore, we check whether  is a solution
of Equation . Since  is a solution of Equation , we conclude that  is the only critical point of  in
the interval .

Therefore,  must have an absolute maximum at the critical point . To determine the dimensions of the rectangle,
we need to find the length  and the width . If  then

2.9.7.7

A

A = LW .

(x, y) 2.9.7.7

L = 2x W = 2y + = 1
x2

4
y2 y > 0 y = 1 −

x2

4

− −−−−−
√

A = LW = (2x)(2y) = 4x = 2x1 −
x2

4

− −−−−−
√ 4 −x2

− −−−−
√

2.9.7.7 x

0 < x < 2 A(x)
(0, 2) A(x) [0, 2]

A(x) = 2x 4 −x2
− −−−−

√ [0, 2]

A(x) [0, 2]
x = 0 x = 2 A(x) = 0. 0 < x < 2 A(x) > 0

A(x)

(x)A′ = 2 +2x ⋅ (−2x)4 −x2− −−−−
√

1

2 4 −x2
− −−−−

√

= 2 −4 −x2− −−−−√ 2x2

4 −x2
− −−−−

√

= .
8 −4x2

4 −x2
− −−−−

√

(x) = 0.A′ x

= 0,
8 −4x2

4 −x2
− −−−−

√
(2.9.7.3)

x

8 −4 = 0.x2

= 2.x2 x = ± 2
–

√ 2.9.7.3 x

[0, 2] x = 2
–

√ x = − 2
–

√ 2
–

√

2.9.7.3 x = 2
–√ 2.9.7.3 2

–√ A(x)
[0, 2]

A(x) x = 2
–

√

L W x = 2
–

√
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Therefore, the dimensions of the rectangle are  and . The area of this rectangle is 

Modify the area function  if the rectangle is to be inscribed in the unit circle . What is the domain of
consideration?

Hint

If  is the vertex of the square that lies in the first quadrant, then the area of the square is 

Answer

 The domain of consideration is .

Solving Optimization Problems when the Interval Is Not Closed or Is Unbounded
In the previous examples, we considered functions on closed, bounded domains. Consequently, by the extreme value theorem, we
were guaranteed that the functions had absolute extrema. Let’s now consider functions for which the domain is neither closed nor
bounded.

Many functions still have at least one absolute extrema, even if the domain is not closed or the domain is unbounded. For example,
the function  over  has an absolute minimum of  at . Therefore, we can still consider functions
over unbounded domains or open intervals and determine whether they have any absolute extrema. In the next example, we try to
minimize a function over an unbounded domain. We will see that, although the domain of consideration is  the function has
an absolute minimum.

In the following example, we look at constructing a box of least surface area with a prescribed volume. It is not difficult to show
that for a closed-top box, by symmetry, among all boxes with a specified volume, a cube will have the smallest surface area.
Consequently, we consider the modified problem of determining which open-topped box with a specified volume has the smallest
surface area.

A rectangular box with a square base, an open top, and a volume of  is to be constructed. What should the dimensions
of the box be to minimize the surface area of the box? What is the minimum surface area?

Solution

Step 1: Draw a rectangular box and introduce the variable  to represent the length of each side of the square base; let 
represent the height of the box. Let  denote the surface area of the open-top box.

Figure : We want to minimize the surface area of a square-based box with a given volume.

Step 2: We need to minimize the surface area. Therefore, we need to minimize .

Step 3: Since the box has an open top, we need only determine the area of the four vertical sides and the base. The area of each
of the four vertical sides is  The area of the base is . Therefore, the surface area of the box is

y = = = .1 −
( 2

–
√ )2

4

− −−−−−−−−

√ 1 −
1

2

− −−−−
√

1

2
–

√

L = 2x = 2 2
–

√ W = 2y = =
2

2
–

√
2
–

√

A = LW = (2 )( ) = 4.2
–

√ 2
–

√

 Exercise 2.9.7.5

A + = 1x2 y2

(x, y) A = (2x)(2y) = 4xy.

A(x) = 4x .1 −x2
− −−−−

√ [0, 1]

f(x) = +4x2 (−∞, ∞) 4 x = 0

(0, ∞),

 Example : Minimizing Surface Area2.9.7.6

216 in3

x y

S

2.9.7.8

S

x ⋅ y. x2
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.

Step 4: Since the volume of this box is  and the volume is given as , the constraint equation is

.

Solving the constraint equation for , we have . Therefore, we can write the surface area as a function of  only:

Therefore, .

Step 5: Since we are requiring that , we cannot have . Therefore, we need . On the other hand,  is
allowed to have any positive value. Note that as  becomes large, the height of the box  becomes correspondingly small so
that . Similarly, as  becomes small, the height of the box becomes correspondingly large. We conclude that the
domain is the open, unbounded interval . Note that, unlike the previous examples, we cannot reduce our problem to
looking for an absolute maximum or absolute minimum over a closed, bounded interval. However, in the next step, we
discover why this function must have an absolute minimum over the interval 

Step 6: Note that as  Also, as . Since  is a continuous function that approaches
infinity at the ends, it must have an absolute minimum at some . This minimum must occur at a critical point of .
The derivative is

Therefore,  when . Solving this equation for , we obtain , so  Since this is

the only critical point of , the absolute minimum must occur at  (see Figure ).

When ,  Therefore, the dimensions of the box should be  and  With

these dimensions, the surface area is

Figure : We can use a graph to determine the dimensions of a box of given the volume and the minimum surface area.

Consider the same open-top box, which is to have volume . Suppose the cost of the material for the base is  and
the cost of the material for the sides is  and we are trying to minimize the cost of this box. Write the cost as a function
of the side lengths of the base. (Let  be the side length of the base and  be the height of the box.)

Hint

If the cost of one of the sides is  the cost of that side is  dollars.

Answer

S = 4xy +x2

yx2 216 in3

y = 216x2

y y =
216

x2
x

S(x) = 4x( )+ .
216

x2
x2

S(x) = +
864

x
x2

y = 216x2 x = 0 x > 0 x

x y

y = 216x2 x

(0, ∞)

(0, ∞).

x → , S(x) → ∞.0+ x → ∞, S(x) → ∞ S

x ∈ (0, ∞) S

S'(x) = − +2x.
864

x2

S'(x) = 0 2x =
864

x2
x = 432x3 x = = 6 .432

−−−
√3

2
–

√3

S x = 6 2
–

√3 2.9.7.9

x = 6 2
–

√3 y = = 3 in.
216

(6 2
–

√3 )2
2
–

√3 x = 6 in.2
–

√3 y = 3 in.2
–

√3

S(6 ) = +(6 = 1082
–

√3 864

6 2
–

√3
2
–

√3 )2 4
–

√3 in2

2.9.7.9

 Exercise 2.9.7.6

216 in3 20¢/in2
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 dollars

Key Concepts
To solve an optimization problem, begin by drawing a picture and introducing variables.
Find an equation relating the variables.
Find a function of one variable to describe the quantity that is to be minimized or maximized.
Look for critical points to locate local extrema.

Glossary

optimization problems
problems that are solved by finding the maximum or minimum value of a function

This page titled 2.9.7: Optimization Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Edwin
“Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

4.7: Applied Optimization Problems by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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2.9.8: Table of Derivatives

General Formulas

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Trigonometric Functions

9. 

10. 

11. 

12. 

13. 

14. 

Inverse Trigonometric Functions

15. 

16. 

17. 

18. 

19. 

20. 

(c) = 0
d

dx

(f(x) +g(x)) = f '(x) +g'(x)
d

dx

(f(x)g(x)) = f '(x)g(x) +f(x)g'(x)
d

dx

( ) = n , for real numbers n
d

dx
xn xn−1

(cf(x)) = cf '(x)
d

dx

(f(x) −g(x)) = f '(x) −g'(x)
d

dx

( ) =
d

dx

f(x)

g(x)

g(x)f '(x) −f(x)g'(x)

(g(x))2

[f(g(x))] = f '(g(x)) ⋅ g'(x)
d

dx

(sinx) = cosx
d

dx

(tanx) = x
d

dx
sec2

(secx) = secx tanx
d

dx

(cosx) = −sinx
d

dx

(cotx) = − x
d

dx
csc2

(cscx) = −cscx cotx
d

dx

(arcsinx) =
d

dx

1

1 −x2
− −−−−

√

(arctanx) =
d

dx

1

1 +x2

(arcsec x) =
d

dx

1

|x| −1x2
− −−−−

√

(arccosx) =
d

dx

−1

1 −x2
− −−−−

√

(arccotx) =
d

dx

−1

1 +x2

(arccsc x) =
d

dx

−1

|x| −1x2
− −−−−

√
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Exponential and Logarithmic Functions

21. 

22. 

23. 

24. 

Hyperbolic Functions

25. 

26. 

27. 

28. 

29. 

30. 

Inverse Hyperbolic Functions

31. 

32. 

33. 

34. 

35. 

36. 

Contributors
Template:ContribOpenStaxCalc
Modified to change inverse trig notation by Paul Seeburger (Monroe Community College)

2.9.8: Table of Derivatives is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

( ) =
d

dx
ex ex

(ln |x|) =
d

dx

1

x

( ) = lnb
d

dx
bx bx

( x) =
d

dx
logb

1

x lnb

(sinhx) = coshx
d

dx

(tanhx) = x
d

dx
sech2

(sechx) = −sechx tanhx
d

dx

(coshx) = sinhx
d

dx

(cothx) = − x
d

dx
csch2

(cschx) = −cschx cothx
d

dx

(arcsinhx) =
d

dx

1

+1x2
− −−−−

√

(arctanhx) = (|x| < 1)
d

dx

1

1 −x2

(arcsechx) = (0 < x < 1)
d

dx

−1

x 1 −x2
− −−−−

√

(arccoshx) = (x > 1)
d

dx

1

−1x2
− −−−−

√

(arccothx) = (|x| > 1)
d

dx

1

1 −x2

(arccschx) = (x ≠ 0)
d

dx

−1

|x| 1 +x2
− −−−−

√
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2.10: Anti derivatives and integrals
In the previous section, we were concerned with determining the derivative of a function . The derivative is useful because it
tells us how the function  varies as a function of . In physics, we often know how a function varies, but we do not know the
actual function. In other words, we often have the opposite problem: we are given the derivative of a function, and wish to
determine the actual function. For this case, we will limit our discussion to functions of a single independent variable.

Suppose that we are given a function  and we know that this is the derivative of some other function, , which we do not
know. We call  the anti-derivative of . The anti-derivative of a function , written , thus satisfies the property:

Since we have a symbol for indicating that we take the derivative with respect to  ( ), we also have a symbol, , for
indicating that we take the anti-derivative with respect to :

Earlier, we justified the symbol for the derivative by pointing out that it is like  but for the case when . Similarly, we
will justify the anti-derivative sign, , by showing that it is related to a sum of , in the limit . The  sign
looks like an “S” for sum.

While it is possible to exactly determine the derivative of a function , the anti-derivative can only be determined up to a
constant. Consider for example a different function, , where  is a constant. The derivative of  with
respect to  is given by:

Hence, the function  is also an anti-derivative of . The constant  can often be determined using additional
information (sometimes called “initial conditions”). Recall the function, , shown in Figure A2.2.1 (left panel). If you
imagine shifting the whole function up or down, the derivative would not change. In other words, if the origin of the axes were not
drawn on the left panel, you would still be able to determine the derivative of the function (how steep it is). Adding a constant, ,
to a function is exactly the same as shifting the function up or down, which does not change its derivative. Thus, when you know
the derivative, you cannot know the value of , unless you are also told that the function must go through a specific point (a so-
called initial condition).

In order to determine the derivative of a function, we used Equation A2.2.1. We now need to derive an equivalent prescription for
determining the anti-derivative. Suppose that we have the two pieces of information required to determine  completely,
namely:

1. the function  (its derivative).
2. the condition that  must pass through a specific point, .

f(x)

f(x) x

f(x) F (x)

F (x) f(x) f(x) F (x)

= f(x)
dF

dx

x d

dx
∫ dx

x

∫ f(x)dx

∴ (∫ f(x)dx)
d

dx

= F (x)

= = f(x)
dF

dx

Δf

Δx
Δx → 0

∫ f(x)dx f(x)Δx Δx → 0 ∫

f(x)

(x) = F (x) +CF
~

C (x)F
~

x

dF
~

dx
= (F (x) +C)

d

dx

= +
dF

dx

dC

dx

= +0
dF

dx
= f(x)

(x) = F (x) +CF
~

f(x) C

f(x) = x2

C

C

F (x)

f(x) = dF

dx

F (x) F ( ) =x0 F0
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Figure A2.3.1: Determining the anti-derivative, , given the function  and the initial condition that  passes
through the point .

The procedure for determining the anti-derivative  is illustrated above in Figure A2.3.1. We start by drawing the point that we
know the function  must go through, . We then choose a value of  and use the derivative, , to calculate ,
the amount by which  changes when  changes by . Using the derivative  evaluated at , we have:

We can then estimate the value of the function  at the next point, , as illustrated by the black arrow in
Figure A2.3.1

Now that we have determined the value of the function  at , we can repeat the procedure to determine the value of the
function  at the next point, . Again, we use the derivative evaluated at , , to determine , and add
that to  to get , as illustrated by the grey arrow in Figure A2.3.1:

Using the summation notation, we can generalize the result and write the function  evaluated at any point, :

The result above will become exactly correct in the limit :

Let us take a closer look at the sum. Each term in the sum is of the form , and is illustrated in Figure A2.3.2 for the
same case as in Figure A2.3.1 (that is, Figure A2.3.2 shows  that we know, and Figure A2.3.1 shows  that we are trying
to find).

F (x) f(x) = 2x F (x)
( , ) = (1, 3)x0 F0

F (x)

F (x) ( , )x0 F0 Δx f(x) ΔF0

F (x) x Δx f(x) x0

ΔF0

Δx
∴ ΔF0

≈ f( ) (in the limitΔx → 0)x0

= f( )Δxx0

= F ( )F1 x1 = +Δxx1 x0

F1 = F ( )x1

= F (x+Δx)

≈ +ΔF0 F0

≈ +f( )ΔxF0 x0

F (x) x = x1

F (x) = +Δxx2 x1 x1 f( )x1 ΔF1

F1 = F ( )F2 x2

F2 = F ( +Δx)x1

≈ +ΔF1 F1

≈ +f( )ΔxF1 x1

≈ +f( )Δx+f( )ΔxF0 x0 x1

F (x) = +NΔxxN x0

F ( ) ≈ + f( )ΔxxN F0 ∑
i=1

i=N

xi−1

Δx → 0

F ( ) = F ( ) + f( )ΔxxN x0 lim
Δx→0

∑
i=1

i=N

xi−1 (2.10.1)

f( )Δxxi−1

f(x) F (x)
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Figure A2.3.2: The function  and illustration of the terms  and  as the area between the curve 
and the  axis when .

As you can see, each term in the sum corresponds to the area of a rectangle between the function  and the  axis (with a piece
missing). In the limit where , the missing pieces (shown by the hashed areas in Figure A2.3.2) will vanish and 
will become exactly the area between  and the  axis over a length . The sum of the rectangular areas will thus approach
the area between  and the  axis between  and :

Re-arranging Equation A2.3.1 gives us a prescription for determining the anti-derivative:

We see that if we determine the area between  and the  axis from  to , we can obtain the difference between the anti-
derivative at two points, 

The difference between the anti-derivative, , evaluated at two different values of  is called the integral of  and has the
following notation:

As you can see, the integral has labels that specify the range over which we calculate the area between  and the  axis. A
common notation to express the difference  is to use brackets:

Recall that we wrote the anti-derivative with the same  symbol earlier:

The symbol  without the limits is called the indefinite integral. You can also see that when you take the (definite)
integral (i.e. the difference between  evaluated at two points), any constant that is added to  will cancel. Physical
quantities are always based on definite integrals, so when we write the constant  it is primarily for completeness and to emphasize
that we have an indefinite integral.

As an example, let us determine the integral of  between  and , as well as the indefinite integral of ,
which is the case that we illustrated in Figures A2.3.1 and A2.3.2. Using Equation A2.3.2, we have:

f(x) = 2x f( ) Δxx0 f( ) Δxx1 f(x)
x Δx → 0

f(x) x

Δx → 0 f( )Δxxi
f(x) x Δx

f(x) x x0 xN

f( )Δx = Area between f(x) and x axis from   to lim
Δx→0

∑
i=1

i=N

xi−1 x0 xN

F ( ) −F ( )xN x0 = f( )Δxlim
Δx→0

∑
i=1

i=N

xi−1

f(x) x x0 xN
F ( ) −F ( )xN x0

F (x) x f(x)

f(x)dx = F ( ) −F ( ) = f( )Δx∫
xN

x0

xN x0 lim
Δx→0

∑
i=1

i=N

xi−1 (2.10.2)

f(x) x

F ( ) −F ( )xN x0

f(x)dx = F ( ) −F ( ) = [F (x)∫
xN

x0

xN x0 ]
xN

x0

∫

∫ f(x)dx = F (x)

∫ f(x)dx

F (x) F (x)

C

f(x) = 2x x = 1 x = 4 f(x)
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where we have:

Note that  is the number of times we have  in the interval between  and . Thus, taking the limit of  is the same
as taking the limit . Let us illustrate the sum for the case where , and thus when , corresponding to the
illustration in Figure A2.3.2:

where in the second line, we noticed that we could factor out the  because it appears in each term. Since we only used 4 points,
this is a pretty coarse approximation of the integral, and we expect it to be an underestimate (as the missing area represented by the
hashed lines in Figure A2.3.2 is quite large).

If we repeat this for a larger value of N,  ( ), we should obtain a more accurate answer:

Writing this out again for the general case so that we can take the limit , and factoring out the :

Now, consider the combination:

that appears above. This corresponds to the arithmetic average of the values from  to  (sum the values and divide by the
number of values). In the limit where , then the value . The average value of  in the interval between  and 

 is simply given by the value of  at the midpoint of the interval:

f(x)dx∫
xN

x0

= f( )Δxlim
Δx→0

∑
i=1

i=N

xi−1

= 2 Δxlim
Δx→0

∑
i=1

i=N

xi−1

x0

xN

Δx

= 1

= 4

=
−xN x0

N

N Δx x0 xN Δx → 0

N → ∞ N = 3 Δx = 1

2 Δx∑
i=1

i=N=3

xi−1 = 2 Δx+2 Δx+2 Δxx0 x1 x2

= 2Δx( + + )x0 x1 x2

= 2 ( + + )
−x3 x0

N
x0 x1 x2

= 2 (1 +2 +3)
(4) −(1)

(3)

= 12

2Δx

N = 6 Δx = 0.5

2 Δx∑
i=1

i=6

xi−1 = 2 ( + + + + + )
−x6 x0

N
x0 x1 x2 x3 x4 x5

= 2 (1 +1.5 +2 +2.5 +3 +3.5)
4 −1

6
= 13.5

N → ∞ 2Δx

2 Δx∑
i=1

i=N

xi−1 = 2Δx∑
i=1

i=N

xi−1

= 2
−xN x0

N
∑
i=1

i=N

xi−1

1

N
∑
i=1

i=N

xi−1

x0 xN−1

N → ∞ ≈xN−1 xN x x0

xN x

= ( + )lim
N→∞

1

N
∑
i=1

i=N

xi−1
1

2
xN x0
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Putting everything together:

where in the last line, we substituted in the values of  and . Writing this as the integral:

we can immediately identify the anti-derivative and the indefinite integral:

This is of course the result that we expected, and we can check our answer by taking the derivative of :

We have thus confirmed that  is the anti-derivative of .

The quantity  is equal to

A. the area between the function  and the  axis between  and 
B. the sum of  in the limit  between  and 
C. the difference .

Answer

Common anti-derivative and properties

Table A2.3.1 below gives the anti-derivatives (indefinite integrals) for common functions. In all cases,  is the independent
variable, and all other variables should be thought of as constants:

Function, Anti-derivative, 

Table A2.3.1: Common indefinite integrals of functions.

2 Δxlim
N→∞

∑
i=1

i=N

xi−1 = 2( + )xN x0 lim
N→∞

1

N
∑
i=1

i=N

xi−1

= 2( − ) ( + )xN x0
1

2
xN x0

= −x2
N x2

0

= (4 −(1 = 15)2 )2

= 1x0 = 4xN

2xdx = F ( ) −F ( ) = −∫
xN

x0

xN x0 x2
N x2

0

F (x)

∫ 2xdx

= +Cx2

= +Cx2

F (x)

= ( +C) = 2x
dF

dx

d

dx
x2

F (x) = +Cx2 f(x) = 2x

 Exercise 2.10.1

f(t)dt∫ b

a

f(t) f t = a t = b

f(t)Δt Δt → 0 t = a t = b

f(b) −f(a)

x,

f(x) F (x)

f(x) = a F(x) = ax+C

f(x) = xn F(x) = +C
1

n+1
xn+1

f(x) = 1
x

F(x) = ln(|x|) +C

f(x) = sin(x) F(x) = − cos(x) +C

f(x) = cos(x) F(x) = sin(x) +C

f(x) = tan(x) F(x) = − ln(| cos(x)|) +C

f(x) = ex F(x) = +Cex

f(x) = ln(x) F(x) = x ln(x) −x+C
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Note that, in general, it is much more difficult to obtain the anti-derivative of a function than it is to take its derivative. A few
common properties to help evaluate indefinite integrals are shown in Table A2.3.2 below.

Anti-derivative Equivalent anti-derivative

 (sum)

 (subtraction)

 (multiplication by constant)

 (integration by parts)

Table A2.3.2: Some properties of indefinite integrals.

Common uses of integrals in Physics - from a sum to an integral

Integrals are extremely useful in physics because they are related to sums. If we assume that our mathematician friends (or
computers) can determine anti-derivatives for us, using integrals is not that complicated.

The key idea in physics is that integrals are a tool to easily performing sums. As we saw above, integrals correspond to the area
underneath a curve, which is found by summing the (different) areas of an infinite number of infinitely small rectangles. In physics,
it is often the case that we need to take the sum of an infinite number of small things that keep varying, just as the areas of the
rectangles.

Consider, for example, a rod of length, , and total mass , as shown in Figure A2.3.3. If the rod is uniform in density, then if we
cut it into, say, two equal pieces, those two pieces will weigh the same. We can define a “linear mass density”, , for the rod, as the
mass per unit length of the rod:

The linear mass density has dimensions of mass over length and can be used to find the mass of any length of rod. For example, if
the rod has a mass of  and a length of , then the mass density is:

Knowing the mass density, we can now easily find the mass, , of a piece of rod that has a length of, say, . Using the
mass density, the mass of the  rod is given by:

Now suppose that we have a rod of length  that is not uniform, as in Figure A2.3.3, and that does not have a constant linear mass
density. Perhaps the rod gets wider and wider, or it has a holes in it that make it not uniform. Imagine that the mass density of the
rod is instead given by a function, , that depends on the position along the rod, where  is the distance measured from one side
of the rod.

Figure A2.3.3: A rod with a varying linear density. To calculate the mass of the rod, we consider a small mass element  of
length  at position . The total mass of the rod is found by summing the mass of the small mass elements.

Now, we cannot simply determine the mass of the rod by multiplying  and , since we do not know which value of  to use.
In fact, we have to use all of the values of , between  and .

The strategy is to divide the rod up into  pieces of length . If we label our pieces of rod with an index , we can say that the
piece that is at position  has a tiny mass, . We assume that  is small enough so that  can be taken as constant over
the length of that tiny piece of rod. Then, the tiny piece of rod at , has a mass, , given by:

∫ (f(x) + g(x))dx ∫ f(x)dx+ ∫ g(x)dx

∫ (f(x) − g(x))dx ∫ f(x)dx− ∫ g(x)dx

∫ af(x)dx a ∫ f(x)dx

∫ (x)g(x)dxf ′ f(x)g(x) − ∫ f(x) (x)dxg′

L M

μ

μ =
M

L

M = 5kg L = 2m

μ = = = 2.5kg/m
M

L

(5kg)

(2m)

m l = 10cm

10cm

m = μl = (2.5kg/m)(0.1m) = 0.25kg

L

μ(x) x

Δmi

Δx xi

μ(x) L x

x x = 0 x = L

N Δx i

xi Δmi Δx μ(x)

x = xi Δmi
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where  is evaluated at the position, , of our tiny piece of rod. The total mass, , of the rod is then the sum of the masses of
the tiny rods, in the limit where :

But this is precisely the definition of the integral (Equation A2.3.1), which we can easily evaluate with an anti-derivative:

where  is the anti-derivative of .

Suppose that the mass density is given by the function:

with anti-derivative (Table A2.3.1):

Let  and let’s say that the length of the rod is . The total mass of the rod is then:

With a little practice, you can solve this type of problem without writing out the sum explicitly. Picture an infinitesimal piece of the
rod of length  at position . It will have an infinitesimal mass, , given by:

The total mass of the rod is the then the sum (i.e. the integral) of the mass elements

and we really can think of the  sign as a sum, when the things being summed are infinitesimally small. In the above equation, we
still have not specified the range in  over which we want to take the sum; that is, we need some sort of index for the mass
elements to make this a meaningful definite integral. Since we already know how to express  in terms of , we can substitute
our expression for  using one with :

Δ = μ( )Δxmi xi

μ( )xi xi M

Δx → 0

M = Δlim
Δx→0

∑
i=1

i=N

mi

= μ( )Δxlim
Δx→0

∑
i=1

i=N

xi

M = μ( )Δxlim
Δx→0

∑
i=1

i=N

xi

= μ(x)dx∫
L

0

= G(L) −G(0)

G(x) μ(x)

μ(x) = ax3

G(x) = a +C
1

4
x4

a = 5kg/m
4

L = 0.5m

M = μ(x)dx∫
L

0

= a dx∫
L

0

x3

= G(L) −G(0)

= [a ]−[a ]
1

4
L4 1

4
04

= 5 (0.5mkg/m4 1

4
)4

= 78g

dx x dm

dm = μ(x)dx

M = ∫ dm

∫
x

dm dx

dm dx

M = ∫ dm = μ(x)dx∫
L

0
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where we have made the integral definite by specifying the range over which to sum, since we can use  to “label” the mass
elements.

One should note that coming up with the above integral is physics. Solving it is math. We will worry much more about writing out
the integral than evaluating its value. Evaluating the integral can always be done by a mathematician friend or a computer, but
determining which integral to write down is the physicist’s job!

Key Takeaways

The derivative of a function, , with respect to  can be written as:

and measures the rate of change of the function with respect to . The derivative of a function is generally itself a function. The
derivative is defined as:

Graphically, the derivative of a function represents the slope of the function, and it is positive if the function is increasing, negative
if the function is decreasing and zero if the function is flat. Derivatives can always be determined analytically for any continuous
function.

A partial derivative measures the rate of change of a multi-variate function, , with respect to one of its independent
variables. The partial derivative with respect to one of the variables is evaluated by taking the derivative of the function with
respect to that variable while treating all other independent variables as if they were constant. The partial derivative of a function
(with respect to ) is written as:

The gradient of a function, , is a vector in the direction in which that function is increasing most rapidly. It is given by:

Given a function, , its anti-derivative with respect to , , is written:

 is such that its derivative with respect to  is :

The anti-derivative of a function is only ever defined up to a constant, . We usually write this as:

since the derivative of  will also be equal to . The anti-derivative is also called the “indefinite integral” of .

The definite integral of a function , between  and , is written:

and is equal to the difference in the anti-derivative evaluated at  and :

x

f(x) x

f(x) = = (x)
d

dx

df

dx
f ′

x

(x) =f ′ lim
Δx→0

f(x+Δx) −f(x)

Δx

f(x, y)

x

∂f

∂x

∇f(x, y)

∇f(x, y) = +
∂f

∂x
x̂

∂f

∂y
ŷ

f(x) x F (x)

F (x) = ∫ f(x)dx

F (x) x f(x)

= f(x)
dF

dx

C

∫ f(x)dx = F (x) +C

F (x) +C f(x) f(x)

f(x) x = a x = b

f(x)dx∫
b

a

x = a x = b

f(x)dx = F (b) −F (a)∫
b

a
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where the constant  no longer matters, since it cancels out. Physical quantities only ever depend on definite integrals, since they
must be determined without an arbitrary constant.

Definite integrals are very useful in physics because they are related to a sum. Given a function , one can relate the sum of
terms of the form  over a range of values from  to  to the integral of  over that range:

This page titled 2.10: Anti derivatives and integrals is shared under a CC BY-SA license and was authored, remixed, and/or curated by Howard
Martin revised by Alan Ng.
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2.10.1: Integrals
Integration is the inverse operation to differentiation:

It is not always easy to evaluate a given integral. In fact some integrals are not even doable! However, there are some methods that
could yield an answer. While you might be happier using a computer algebra system, such as Maple or WolframAlpha.com, or a
fancy calculator, you should know a few basic integrals and know how to use tables for some of the more complicated ones.

First of all, there are some integrals you are expected to know without doing any work. These integrals appear often and are just an
application of the Fundamental Theorem of Calculus to the previous Table 8.4.1. The basic integrals that students should know off
the top of their heads are given in Table .

These are not the only integrals you should be able to do. We can expand the list by recalling a few of the techniques that you
learned in calculus, the Method of Substitution, Integration by Parts, integration using partial fraction decomposition, and
trigonometric integrals, and trigonometric substitution. There are also a few other techniques that you had not seen before. We will
look at several examples.

Evaluate .

Solution
When confronted with an integral, you should first ask if a simple substitution would reduce the integral to one you know how
to do.

The ugly part of this integral is the  under the square root. So, we let .

Noting that when , we have  For our example, .

Looking at the integral, part of the integrand can be written as . Then, the integral becomes

The substitution has converted our integral into an integral over . Also, this integral is doable! It is one of the integrals we
should know. Namely, we can write it as

This is now easily finished after integrating and using the substitution variable to give

Note that we have added the required integration constant and that the derivative of the result easily gives the original
integrand (after employing the Chain Rule).

Often we are faced with definite integrals, in which we integrate between two limits. There are several ways to use these limits.
However, students often forget that a change of variables generally means that the limits have to change.

Table : Table of Common Integrals.

Function Indefinite Integral

∫ dx = f(x) +C
df

dx

2.10.1.1

 Example 2.10.1.1

∫ dx
x

+1x2
− −−−−

√

+1x2 u = +1x2

u = f(x) du = (x)dx.f ′ du = 2xdx

xdx = udu
1

2

∫ dx = ∫
x

+1x2
− −−−−

√

1

2

du

u−−√

u

∫ = ∫ du
1

2

du

u
−−

√

1

2
u−1/2

∫ dx = +C = +C.
x

+1x2
− −−−−

√

1

2

u1/2

1

2

+1x2− −−−−
√
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a ax
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Function Indefinite Integral

Evaluate .

Solution
This is the last example but with integration limits added. We proceed as before. We let . As  goes from o to 
takes values from i to  So, this substitution gives

When you becomes proficient at integration, you can bypass some of these steps. In the next example we try to demonstrate the
thought process involved in using substitution without explicitly using the substitution variable.

Evaluate .

Solution

xn
xn+1

n+ 1

eax
1

a
eax

1

x
lnx

sinax − cos ax
1

a

cos ax sinax
1

a

axsec2 tanax
1

a

sinhax coshax
1

a

coshax sinhax
1

a

axsech2 tanhax
1

a

sec x ln | sec x+ tanx|

1

a+ bx
ln(a+ bx)

1

b

1

+a2 x2

1

a
tan−1 x

a

1

−a2 x2
− −−−−−

√
sin−1 x

a

1

x −x2 a2
− −−−−−

√
1

a
sec−1 x

a

1

−x2 a2
− −−−−−

√
= ln +xcosh−1 x

a
∣∣ −x2 a2

− −−−−−
√ ∣∣

 Example 2.10.1.2

dx∫ 2
0

x

+1x2
− −−−−

√

u = +1x2 x 2, u
5.

dx = = = −1∫
2

0

x

+1x2
− −−−−

√

1

2
∫

5

1

du

u
−−

√
|u−−√
5
1

5
–

√

 Example 2.10.1.3

dx∫ 2
0

x

9 +4x2
− −−−−−

√
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As with the previous example, one sees that the derivative of  is proportional to , which is in the numerator of the
integrand. Thus a substitution would give an integrand of the form  So, we expect the answer to be proportional to 

. The starting point is therefore,

where  is a constant to be determined.

We can determine  through differentiation since the derivative of the answer should be the integrand. Thus,

Comparing this result with the integrand, we see that the integrand is obtained when . Therefore,

We now complete the integral,

The function  is called the Gudermannian and connects trigonometric and hyperbolic

functions. This function was named after Christoph Gudermann (1798-1852), but introduced by Johann Heinrich Lambert ( 
 ), who was one of the first to introduce hyperbolic functions.

Evaluate .

Solution
This integral can be performed by first using the definition of  followed by a simple substitution.

Now, we let  and . Then,

Integration by Parts

When the Method of Substitution fails, there are other methods you can try. One of the most used is the Method of Integration by
Parts. Recall the Integration by Parts Formula:

9 +4x2 x

.u−1/2

=u−−√ 9 +4x2
− −−−−−

√

∫ dx = A
x

9 +4x2
− −−−−−

√
9 +4x2− −−−−−

√

A

A

A
d

dx
(9 +4 )x2

1

2 = A ( ) (8x)(9 +4 )x2
−

1

2
1

2

= 4xA(9 +4 )x2
−

1

2

A =
1

4

∫ dx =
x

9 +4x2
− −−−−−

√

1

4
9 +4x2− −−−−−

√

dx = [5 −3] =∫
2

0

x

9 +4x2
− −−−−−

√

1

4

1

2

gd(x) = = 2 −∫ x

0

dx

coshx
tan−1 ex

π

2

1728 −1777

 Example 2.10.1.4

∫
dx

coshx

coshx

∫
dx

coshx
= ∫ dx

2

+ex e−x

= ∫ dx
2ex

+1e2x

u = ex du = dxex

∫
dx

coshx
= ∫ du

2

1 +u2

= 2 u+Ctan−1

= 2 +Ctan−1 ex
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The idea behind Integrating by Parts is that you are given the integral on the left and you can relate it to an integral on the right.
Hopefully, the new integral is one you can do, or at least it is an easier integral than the one you are trying to evaluate.

However, you are not usually given the functions  and . You have to determine them. The integral form that you really have is a
function of another variable, say . Another form of the Integration by Parts Formula can be written as

Note: Often in physics one needs to move a derivative between functions inside an integrand. The key - use integration by parts to
move the derivative from one function to the other under an integral.

This form is a bit more complicated in appearance, though it is clearer than the  form as to what is happening. The derivative
has been moved from one function to the other. Recall that this formula was derived by integrating the product rule for
differentiation. These two formulae can be related by using the differential relations

This also gives a method for applying the Integration by Parts Formula.

Consider the integral 

Solution
We choose  and  This gives the correct left side of the Integration by Parts Formula. We next determine 
and  :

We note that one usually does not need the integration constant. Inserting these expressions into the Integration by Parts
Formula, we have

We see that the new integral is easier to do than the original integral. Had we picked  and , then the
formula still works, but the resulting integral is not easier.

For completeness, we finish the integration. The result is

As always, you can check your answer by differentiating the result, a step students often forget to do. Namely,

So, we do get back the integrand in the original integral.

 Integration by Parts Formula

∫ udv= uv−∫ vdu

u v

x

∫ f(x) (x)dx = f(x)g(x) −∫ g(x) (x)dxg′ f ′

u−v

u = f(x) → du = (x)dxf ′

v= g(x) → dv= (x)dxg′

 Example 2.10.1.5

∫ x sin2xdx.

u = x dv= sin2xdx. v

du

du = dx = dx
du

dx

v= ∫ dv= ∫ sin2xdx = − cos 2x
1

2

∫ x sin2xdx = − x cos 2x+ ∫ cos 2xdx
1

2

1

2

u = sin2x dv= xdx

∫ x sin2xdx = − x cos 2x+ sin2x+C.
1

2

1

4

(− x cos 2x+ sin2x+C)
d

dx

1

2

1

4
= − cos 2x+x sin2x+ (2 cos 2x)

1

2

1

4

= x sin2x. 
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(Integration by Parts for Definite Integrals). We can also perform integration by parts on definite integrals. The general formula is
written as

Consider the integral

This will require two integrations by parts. First, we let  and  Then,

Inserting into the Integration by Parts Formula, we have

We note that the resulting integral is easier that the given integral, but we still cannot do the integral off the top of our head
(unless we look at Example  ). So, we need to integrate by parts again. (Note: In your calculus class you may recall that there
is a tabular method for carrying out multiple applications of the formula. We will show this method in the next example.)

We apply integration by parts by letting  and . This gives  and . Therefore, we
have

The final result is

There are other ways to compute integrals of this type. First of all, there is the Tabular Method to perform integration by parts. A
second method is to use differentiation of parameters under the integral. We will demonstrate this using examples.

Compute the integral  using the Tabular Method.

(Using the Tabular Method). First we identify the two functions under the integral,  and . We then write the two
functions and list the derivatives and integrals of each, respectively. This is shown in Table A.4. Note that we stopped

First when we reached zero in the left column.

Next, one draws diagonal arrows, as indicated, with alternating signs attached, starting with . The indefinite integral is then
obtained by summing the products of the functions at the ends of the arrows along with the signs on each arrow:

To find the definite integral, one evaluates the antiderivative at the given limits.

f(x) (x)dx = − g(x) (x)dx∫
b

a

g′ f(x)g(x)|
b

a ∫
b

a

f ′

 Example 2.10.1.6

cosxdx∫
π

0
x2

u = x2 dv= cosx.

du = 2xdx. v= sinx

cosxdx∫
π

0
x2 = −2 x sinxdxsinxx2 ∣∣

π

0
∫

π

0

= −2 x sinxdx∫
π

0

3!

U = x dV = sinxdx dU = dx V = −cosx

x sinxdx∫
π

0
= − + cosxdxx cosx|π0 ∫

π

0

= π+ sinx|π0
= π

cosxdx = −2π∫
π

0
x2

 Example 2.10.1.7

cosxdx∫ π

0
x2

x2 cosx

+

∫ cosxdx = sinx+2x cosx−2 sinx+Cx2 x2
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Actually, the Tabular Method works even if a zero does not appear in the left column. One can go as far as possible, and if a zero
does not appear, then one needs only integrate, if possible, the product of the functions in the last row, adding the next sign in the
alternating sign progression. The next example shows how this works.

Figure : Tabular Method

Figure : Tabular Method, showing a nonterminating example.

Use the Tabular Method to compute .

As before, we first set up the table as shown in Figure .

Putting together the pieces, noting that the derivatives in the left column will never vanish, we have

The integral on the right is a multiple of the one on the left, so we can combine them,

or

cosxdx∫
π

0
x2 = [ sinx+2x cosx−2 sinx]x2 π

0

= ( sinπ+2π cosπ−2 sinπ)−0π2

= −2π.

2.10.1.1

2.10.1.2

 Example 2.10.1.8

∫ sin3xdxe2x

2.10.1.2

∫ sin3xdx =( sin3x− cos 3x) +∫ (−9 sin3x)( ) dxe2x 1

2

3

4
e2x 1

4
e2x

∫ sin3xdx =( sin3x− cos 3x)
13

4
e2x 1

2

3

4
e2x

∫ sin3xdx =( sin3x− cos 3x)e2x 2

13

3

13
e2x
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Differentiation Under the Integral
Differentiation Under the Integral Sign and Feynman’s trick.

Another method that one can use to evaluate this integral is to differentiate under the integral sign. This is mentioned in the Richard
Feynman’s memoir Surely You’re Joking, Mr. Feynman!. In the book Feynman recounts using this "trick" to be able to do integrals
that his MIT classmates could not do. This is based on a theorem found in Advanced Calculus texts. Reader’s unfamiliar with
partial derivatives should be able to grasp their use in the following example.

Let the functions  and  be continuous in both , and , in the region of the  plane which includes 

, where the functions  and  are continuous and have continuous derivatives for 
. Defining

then

for . This is a generalized version of the Fundamental Theorem of Calculus.

In the next examples we show how we can use this theorem to bypass integration by parts.

Use differentiation under the integral sign to evaluate . First, consider the integral

Then,

Evaluating this result at , we have

The reader can verify this result by employing the previous methods or by just differentiating the result.

 Theorem 2.10.1.1

f(x, t)
∂f(x, t)

∂x
t x (t, x)

a(x) ≤ t ≤ b(x), ≤ x ≤x0 x1 a(x) b(x)
≤ x ≤x0 x1

F (x) ≡ f(x, t)dt,∫
b(x)

a(x)

dF (x)

dx
=( ) +( ) + f(x, t)dt

∂F

∂b

db

dx

∂F

∂a

da

dx
∫

b(x)

a(x)

∂

∂x

= f(x, b(x)) (x) −f(x, a(x)) (x) + f(x, t)dtb′ a′ ∫
b(x)

a(x)

∂

∂x

≤ x ≤x0 x1

 Example 2.10.1.9

∫ x dxex

I(x, a) = ∫ dx =eax
eax

a

= ∫ x dx
∂I(x, a)

∂a
eax

SO

∫ x dxeax =
∂I(x, a)

∂a

= (∫ dx)
∂

∂a
eax

= ( )
∂

∂a

eax

a

=( − )
x

a

1

a2
eax

a = 1

∫ x dx = (x−1)ex ex
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We will do the integral  once more. First, consider the integral

Differentiating the integral  with respect to  twice gives

Evaluation of this result at  leads to the desired result. Namely,

Trigonometric Integrals
Other types of integrals that you will see often are trigonometric integrals. In particular, integrals involving powers of sines and
cosines. For odd powers, a simple substitution will turn the integrals into simple powers.

For example, consider

Solution
This can be rewritten as

Integration of odd powers of sine and cosine. Let . Then, . Since , we have

A quick check confirms the answer:

 Example 2.10.1.10

cosxdx∫ π

0
x2

I(a) ≡ cosaxdx∫
π

0

=
sinax

a

∣
∣
∣
π

0

=
sinaπ

a

I(a) a

= − cosaxdx
I(a)d2

da2
∫

π

0
x2

a = 1

cosxdx∫
π

0
x2 = −

I(a)d2

da2

∣

∣
∣
a=1

= − ( )
d2

da2

sinaπ

a

∣

∣
∣
a=1

∣

∣
∣
a=1

= − )( )
d

da

aπ cosaπ−sinaπ

a2

∣

∣
∣
a3

|a=1

= −(
sinaπ+2aπ cosaπ−2 sinaπa2π2

−2π.

 Example 2.10.1.11

∫ xdxcos3

∫ xdx = ∫ x cosxdxcos3 cos2

u = sinx du = cosxdx x = 1 − xcos2 sin2

∫ xdxcos3 = ∫ x cosxdxcos2

= ∫ (1 − )duu2

= u− +C
1

3
u3

= sinx− x+C.
1

3
sin3
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Even powers of sines and cosines are a little more complicated, but doable. In these cases we need the half angle formulae
(A.24)-(A.25).

(Integration of even powers of sine and cosine).

As an example, we will compute

.

Solution
Substituting the half angle formula for , we have

We note that this result appears often in physics. When looking at root mean square averages of sinusoidal waves, one needs the
average of the square of sines and cosines. Recall that the average of a function on interval  is given as

So, the average of  over one period is

The root mean square is then found by taking the square root, .

Recall that RMS averages refer to the root mean square average. This is computed by first computing the average, or mean, of the
square of some quantity. Then one takes the square root. Typical examples are RMS voltage, RMS current, and the average energy
in an electromagnetic wave. AC currents oscillate so fast that the measured value is the RMS voltage.

Trigonometric Function Substitution

Another class of integrals typically studied in calculus are those involving the forms , , or \(\sqrt{x^2 − 1\).
These can be simplified through the use of trigonometric substitutions. The idea is to combine the two terms under the radical into
one term using trigonometric identities. We will consider some typical examples.

Evaluate .

Solution
Since , we perform the sine substitution

(sinx− x+C)
d

dx

1

3
sin3 = cosx− x cosxsin2

= cosx (1 − x)sin2

= xcos3

 Example 2.10.1.12

xdx∫
2π

0
cos2

xcos2

xdx∫
2π

0
cos2 = (1 +cos 2x)dx

1

2
∫

2π

0

=
1

2
(x− sin2x)

1

2

2π

0

= π

[a, b]

= f(x)dxfave 
1

b−a
∫

b

a

xcos2

xdx = .
1

2π
∫

2π

0
cos2 1

2

1

2
–

√

1 −x2
− −−−−

√ 1 +x2
− −−−−

√

 Example 2.10.1.13

∫ dx1 −x2
− −−−−

√

1 − θ = θsin2 cos2
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In any of these computations careful attention has to be paid to simplifying the radical. This is because

For example, . For  one typically specifies the domain  In this domain we
have .

Then,

Using the last example, we have

However, we need to write the answer in terms of . We do this by first using the double angle formula for  and 
 to obtain

Similar trigonometric substitutions result for integrands involving  and . The substitutions are summarized in
Table A.6. The simplification of the given form is then obtained using trigonometric identities. This can also be accomplished by
referring to the right triangles shown in Figure .

Table : Standard trigonometric substitutions.

Form Substitution Differential

Figure : Geometric relations used in trigonometric substitution.

Evaluate .

Solution
Let . Then,  and

x = sinθ, dx = cosθdθ

= |x|.x2
−−

√

= = 5(−5)2− −−−−√ 25
−−

√ x = sinθ, −π/2 ≤ θ ≤ π/2.
| cosθ| = cosθ

∫ dx1 −x2− −−−−
√ = ∫ cosθdθ1 − θsin2− −−−−−−−

√

= ∫ θdθ.cos2

∫ dx = (θ− sin2θ)+C.1 −x2− −−−−
√ 1

2

1

2

x sin2θ

cosθ = 1 −x2
− −−−−

√

∫ dx = ( x−x )+C.1 −x2− −−−−
√ 1

2
sin−1 1 −x2− −−−−

√

1 +x2
− −−−−

√ −1x2
− −−−−

√

2.10.1.3

2.10.1.2

−a2 x2
− −−−−−

√ x = a sin θ dx = a cos θdθ

+a2 x2
− −−−−−

√ x = a tan θ dx = a θdθsec2

−x2 a2
− −−−−−

√ x = a sec θ dx = a sec θ tan θdθ

2.10.1.3

 Example 2.10.1.14

dx∫ 2
0 +4x2

− −−−−
√

x = 2 tanθ dx = 2 θdθsec2
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So, the integral becomes

One has to recall, or look up,

This gives

Evaluate .

Solution
In this case one needs the secant substitution. This yields

Evaluate .

Again we can use a secant substitution. This yields

Hyperbolic Function Substitution
Even though trigonometric substitution plays a role in the calculus program, students often see hyperbolic function substitution
used in physics courses. The reason might be because hyperbolic function substitution is sometimes simpler. The idea is the same
as for trigonometric substitution. We use an identity to simplify the radical.

= = 2 sec θ+4x2− −−−−
√ 4 θ+4tan2− −−−−−−−−

√

dx = 4 θdθ∫
2

0
+4x2− −−−−√ ∫

π/4

0
sec3

∫ θdθ = (tanθ sec θ+ln| sec θ+tanθ|) +C.sec3 1

2

dx∫
2

0
+4x2− −−−−

√ = 2[tanθ sec θ+ln| sec θ+tanθ|]
π/4
0

= 2( +ln | +1| −(0 +ln(1)))2
–

√ 2
–

√

= 2( +ln( +1))2
–

√ 2
–

√

 Example 2.10.1.15

∫ , x ≥ 1
dx

−1x2− −−−−
√

∫
dx

−1x2
− −−−−

√
= ∫

sec θ tanθdθ

θ−1sec2
− −−−−−−−

√

= ∫
sec θ tanθdθ

tanθ

= ∫ sec θdθ

= ln(sec θ+tanθ) +C

= ln(x+ )+C.−1x2− −−−−
√

 Example 2.10.1.16

∫ , x ≥ 1
dx

x −1x2
− −−−−

√

∫
dx

x −1x2
− −−−−

√
= ∫

sec θ tanθdθ

sec θ θ−1sec2
− −−−−−−−

√

= ∫ dθ
sec θ tanθ

sec θ tanθ

= ∫ dθ = θ+C = x+C.sec−1
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Evaluate  using the substitution .

Solution
Since , we have  Also, we can use the identity  to rewrite

The integral can be now be evaluated using these substitutions and some hyperbolic function identities,

In Example A.17 we used a trigonometric substitution and found

This is the same result since .

Evaluate  for  using hyperbolic function substitution.

Solution
This integral was evaluated in Example  using the trigonometric substitution  and the resulting integral of 

 had to be recalled. Here we will use the substitution

Then,

This is the same result as we had obtained previously, but this derivation was a little cleaner.

Also, we can extend this result to values  by letting  - cosh . This gives

Combining these results, we have shown

 Example 2.10.1.17

dx∫ 2
0

+4x2
− −−−−

√ x = 2 sinhu

x = 2 sinhu dx = 2 coshudu. u− u = 1cosh2 sinh2

= = 2 coshu+4x2− −−−−√ 4 u+4sinh2
− −−−−−−−−−√

dx∫
2

0
+4x2− −−−−

√ = 4 udu∫
1sinh−1

0
cosh2

= 2 (1 +cosh2u)du∫
1sinh−1

0

= 2[u+ sinh2u]
1

2

1sinh−1

0

= 2[u+sinhu coshu] 1sinh−1

0

= 2 ( 1 + )sinh−1 2
–

√

= 2( +ln( +1))∫
2

0
+4x2− −−−−√ 2

–
√ 2

–
√

1 = ln(1 + )sinh−1 2
–

√

 Example 2.10.1.18

∫
dx

−1x2
− −−−−

√
x ≥ 1

2.10.1.16 x = sec θ
sec θ

x = coshu, dx = sinhudu, = = sinhu−1x2
− −−−−

√ u−1cosh2− −−−−−−−−
√

∫
dx

−1x2
− −−−−

√
= ∫

sinhudu

sinhu

= ∫ du = u+C

= x+Ccosh−1

= ln(x+ )+C, x ≥ 1
1

2
−1x2− −−−−

√

x ≤ −1 x = u

∫ = ln(x+ )+C, x ≤ −1
dx

−1x2
− −−−−

√

1

2
−1x2− −−−−

√

∫ = ln(|x| + )+C, ≥ 1
dx

−1x2
− −−−−

√

1

2
−1x2− −−−−

√ x2
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We have seen in the last example that the use of hyperbolic function substitution allows us to bypass integrating the secant function
in Example  when using trigonometric substitutions. In fact, we can use hyperbolic substitutions to evaluate integrals of
powers of secants. Comparing Example  and Example , we consider the transformation . The
relation between differentials is found by differentiation, giving

Since

we have , therefore

In the next example we show how useful this transformation is.

(Evaluation of ).

Evaluate  using hyperbolic function substitution.

Solution
From the discussion in the last paragraph, we have

We can express this result in the usual form by using the logarithmic form of the inverse hyperbolic cosine,

The result is

This example was fairly simple using the transformation . Another common integral that arises often is integrations
of . In a typical calculus class this integral is evaluated using integration by parts. However. that leads to a tricky
manipulation that is a bit scary the first time it is encountered (and probably upon several more encounters.) In the next example,
we will show how hyperbolic function substitution is simpler.

(Evaluation of ).

Evaluate  using hyperbolic function substitution.

Solution

First, we consider the transformation  with  . Then,

This integral was done in Example A.7, leading to

2.10.1.16
2.10.1.16 2.10.1.18 sec θ = coshu

sec θ tanθdθ = sinhudu

θ = θ−1tanh2 sec2

tanθ = sinhu

dθ =
du

coshu

∫ sec θdθ

 Example 2.10.1.19

∫ sec θdθ

∫ sec θdθ = ∫ du

= u+C

= (sec θ) +Ccosh−1

x = ln(x+ )cosh−1 −1x2− −−−−
√

∫ sec θdθ = ln(sec θ+tanθ)

sec θ = coshu
θsec3

∫ θdθsec3

 Example 2.10.1.20

∫ θdθsec3

sec θ = coshu dθ =
du

coshu

∫ θdθ = ∫sec3 du

coshu
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While correct, this is not the form usually encountered. Instead, we make the slightly different transformation .
Since , we find  As before, we find

Using this transformation and several identities, the integral becomes

There are many other integration methods, some of which we will visit in other parts of the book, such as partial fraction
decomposition and numerical integration. Another topic which we will revisit is power series.

Integrations Table

Basic Integrals

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

∫ θdθ = 2 +Csec3 tan−1 eu

tanθ = sinhu
θ = 1 + θsec2 tan2 sec θ = coshu.

dθ =
du

coshu

∫ θdθsec3 = ∫ uducosh2

= ∫ (1 +cosh2u)du
1

2

= (u+ sinh2u)
1

2

1

2

= (u+sinhu coshu)
1

2

= ( (sec θ) +tanθ sec θ)
1

2
cosh−1

= (sec θ tanθ+ln(sec θ+tanθ))
1

2

∫ du = +C, n ≠ −1un
un+1

n+1

∫ = ln|u| +C
du

u

∫ du = +Ceu eu

∫ du = +Cau
au

lna

∫ sinu du = −cosu+C

∫ cosu du = sinu+C

∫ u du = tanu+Csec2

∫ u du = −cotu+Ccsc2

∫ secu tanu du = secu+C

∫ cscu cotu du = −cscu+C

∫ tanu du = ln| secu| +C

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/@go/page/76310?pdf


2.10.1.15 https://phys.libretexts.org/@go/page/76310

12. 

13. 

14. 

15. 

16. 

17. 

Trigonometric Integrals

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

∫ cotu du = ln| sinu| +C

∫ secu du = ln| secu+tanu| +C

∫ cscu du = ln| cscu−cotu| +C

∫ = ( )+C
du

−a2 u2
− −−−−−

√
sin−1 u

a

∫ = ( )+C
du

+a2 u2

1

a
tan−1 u

a

∫ = +C
du

u −u2 a2
− −−−−−

√

1

a
sec−1 |u|

a

∫ u du = u− sin2u+Csin2 1

2

1

4

∫ u du = u+ sin2u+Ccos2 1

2

1

4

∫ u du = tanu−u+Ctan2

∫ u du = −cotu−u+Ccot2

∫ u du = − (2 + u) cosu+Csin3 1

3
sin2

∫ u du = (2 + u) sinu+Ccos3 1

3
cos2

∫ u du = u+ln| cosu| +Ctan3 1

2
tan2

∫ u du = − u−ln| sinu| +Ccot3 1

2
cot2

∫ u du = secu tanu+ ln| secu+tanu| +Csec3 1

2

1

2

∫ u du = − cscu cotu+ ln| cscu−cotu| +Ccsc3 1

2

1

2

∫ u du = u cosu+ ∫ u dusinn −1

n
sinn−1 n−1

n
sinn−2

∫ u du = u sinu+ ∫ u ducosn
1

n
cosn−1 n−1

n
cosn−2

∫ u du = u−∫ u dutann 1

n−1
tann−1 tann−2

∫ u du = u−∫ u ducotn
−1

n−1
cotn−1 cotn−2

∫ u du = tanu u+ ∫ u dusecn
1

n−1
secn−2 n−2

n−1
secn−2

∫ u du = cotu u+ ∫ u ducscn
−1

n−1
cscn−2 n−2

n−1
cscn−2

∫ sinau sinbu du = − +C
sin(a−b)u

2(a−b)

sin(a+b)u

2(a+b)
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35. 

36. 

37. 

38. 

39. 

40. 

41. 

Exponential and Logarithmic Integrals

42. 

43. 

44. 

45. 

46. 

47. 

48. 

Hyperbolic Integrals

49. 

50. 

51. 

52. 

53. 

54. 

55. 

∫ cosau cos bu du = + +C
sin(a−b)u

2(a−b)

sin(a+b)u

2(a+b)

∫ sinau cos bu du = − − +C
cos(a−b)u

2(a−b)

cos(a+b)u

2(a+b)

∫ u sinu du = sinu−u cosu+C

∫ u cosu du = cosu+u sinu+C

∫ sinu du = − cosu+n∫ cosu duun un un−1

∫ cosu du = sinu−n∫ sinu duun un un−1

∫ u u du = − + ∫ u u dusinn cosm
u usinn−1 cosm+1

n+m

n−1

n+m
sinn−2 cosm

= + ∫ u u du
u usinn+1 cosm−1

n+m

m−1

n+m
sinn cosm−2

∫ u du = (au−1) +Ceau
1

a2
eau

∫ du = − ∫ duuneau
1

a
uneau

n

a
un−1eau

∫ sinbu du = (a sinbu−b cos bu) +Ceau
eau

+a2 b2

∫ cos bu du = (a cos bu+b sinbu) +Ceau
eau

+a2 b2

∫ lnu du = u lnu−u+C

∫ lnu du = [(n+1) lnu−1] +Cun
un+1

(n+1)2

∫ du = ln| lnu| +C
1

u lnu

∫ sinhu du = coshu+C

∫ coshu du = sinhu+C

∫ tanhu du = lncoshu+C

∫ cothu du = ln| sinhu| +C

∫ sechu du = | sinhu| +Ctan−1

∫ cschu du = ln ∣ tanh u ∣ +C
1

2

∫ u du = tanh u+Csech2
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56. 

57. 

58. 

Inverse Trigonometric Integrals

59. 

60. 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

Integrals Involving a  + u , a > 0

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

76. 

∫ u du = −coth u+Ccsch2

∫ sechu tanhu du = −sechu+C

∫ cschu cothu du = −cschu+C

∫ u du = u u+ +Csin−1 sin−1 1 −u2− −−−−√

∫ u du = u u− +Ccos−1 cos−1 1 −u2− −−−−
√

∫ u du = u u− ln(1 + ) +Ctan−1 tan−1 1

2
u2

∫ u u du = u+ +Csin−1 2 −1u2

4
sin−1 u 1 −u2

− −−−−
√

4

∫ u u du = u− +Ccos−1 2 −1u2

4
cos−1 u 1 −u2

− −−−−
√

4

∫ u u du = u− +Ctan−1 +1u2

2
tan−1 u

2

∫ u du = [ u−∫ ] , n ≠ −1un sin−1 1

n+1
un+1 sin−1 duun+1

1 −u2− −−−−
√

∫ u du = [ u+∫ ] , n ≠ −1un cos−1 1

n+1
un+1 cos−1 duun+1

1 −u2
− −−−−

√

∫ u du = [ u−∫ ] , n ≠ −1un tan−1 1

n+1
un+1 tan−1 duun+1

1 +u2

2 2

∫ du = + ln(u+ )+C+a2 u2− −−−−−√ u

2
+a2 u2− −−−−−√ a2

2
+a2 u2− −−−−−√

∫ du = ( +2 ) − ln(u+ )+Cu2 +a2 u2− −−−−−
√ u

8
a2 u2 +a2 u2− −−−−−

√ a4

8
+a2 u2− −−−−−

√

∫ du = −a ln +C
+a2 u2− −−−−−

√

u
+a2 u2− −−−−−

√
∣

∣
∣
a+ +a2 u2− −−−−−

√

u

∣

∣
∣

∫ du = − +ln(u+ )+C
+a2 u2− −−−−−

√

u2

+a2 u2− −−−−−
√

u
+a2 u2− −−−−−

√

∫ = ln(u+ )+C
du

+a2 u2
− −−−−−

√
+a2 u2− −−−−−

√

∫ du = ( )− ln(u+ )+C
u2

+a2 u2
− −−−−−

√

u

2
+a2 u2− −−−−−√ a2

2
+a2 u2− −−−−−√

∫ = ln +C
du

u +a2 u2
− −−−−−

√

−1

a

∣

∣
∣

+a+a2 u2
− −−−−−

√

u

∣

∣
∣

∫ = − +C
du

u2 +a2 u2
− −−−−−

√

+a2 u2
− −−−−−

√

ua2

∫ = +C
du

( + )a2 u2 3/2

u

a2 +a2 u2
− −−−−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/@go/page/76310?pdf


2.10.1.18 https://phys.libretexts.org/@go/page/76310

Integrals Involving u  − a , a > 0

77. 

78. 

79. 

80. 

81. 

82. 

83. 

84. 

Integrals Involving a  − u , a > 0

85. 

86. 

87. 

88. 

89. 

90. 

91. 

92. 

93. 

Integrals Involving 2au − u , a > 0

94. 

95. 

96. 

2 2

∫ du = − ln u+ +C−u2 a2− −−−−−
√

u

2
−u2 a2− −−−−−

√
a2

2
∣∣ −u2 a2− −−−−−

√ ∣∣

∫ du = (2 − ) − ln u+ +Cu2 −u2 a2− −−−−−
√ u

8
u2 a2 −u2 a2− −−−−−

√ a4

8
∣∣ −u2 a2− −−−−−

√ ∣∣

∫ du = −a +C
−u2 a2

− −−−−−
√

u
−u2 a2− −−−−−

√ cos−1 a

|u|

∫ du = − +ln u+ +C
−u2 a2

− −−−−−
√

u2

−u2 a2
− −−−−−

√

u
∣∣ −u2 a2− −−−−−

√ ∣∣

∫ = ln u+ +C
du

−u2 a2
− −−−−−

√
∣∣ −u2 a2− −−−−−

√ ∣∣

∫ du = + ln u+ +C
u2

−u2 a2
− −−−−−

√

u

2
−u2 a2− −−−−−

√
a2

2
∣
∣ −u2 a2− −−−−−

√ ∣
∣

∫ = +C
du

u2 −u2 a2
− −−−−−

√

−u2 a2
− −−−−−

√

ua2

∫ = − +C
du

( −u2 a2)3/2

u

a2 −u2 a2
− −−−−−

√

2 2

∫ du = + +C−a2 u2− −−−−−√ u

2
−a2 u2− −−−−−√ a2

2
sin−1 u

a

∫ du = (2 − ) + +Cu2 −a2 u2− −−−−−
√ u

8
u2 a2 −a2 u2− −−−−−

√ a4

8
sin−1 u

a

∫ du = −a ln +C
−a2 u2

− −−−−−
√

u
−a2 u2− −−−−−

√
∣

∣
∣
a+ −a2 u2

− −−−−−
√

u

∣

∣
∣

∫ du = − +C
−a2 u2

− −−−−−
√

u2

−1

u
−a2 u2− −−−−−

√ sin−1 u

a

∫ du = (−u + )+C
u2

−a2 u2
− −−−−−

√

1

2
−a2 u2− −−−−−

√ a2 sin−1 u

a

∫ = − ln +C
du

u −a2 u2
− −−−−−

√

1

a

∣

∣
∣
a+ −a2 u2

− −−−−−
√

u

∣

∣
∣

∫ = − +C
du

u2 −a2 u2
− −−−−−

√

1

ua2
−a2 u2− −−−−−

√

∫ du = − (2 −5 ) + +C( − )a2 u2 3/2 u

8
u2 a2 −a2 u2− −−−−−

√
3a4

8
sin−1 u

a

∫ = − +C
du

( −a2 u2)3/2

u

a2 −a2 u2
− −−−−−

√

2

∫ du = + ( )+C2au−u2− −−−−−−
√ u−a

2
2au−u2− −−−−−−

√ a2

2
cos−1 a−u

a

∫ = ( )+C
du

2au−u2
− −−−−−−

√
cos−1 a−u

a

∫ u du = + ( )+C2au−u2− −−−−−−
√ 2 −au−3u2 a2

6
2au−u2− −−−−−−

√ a3

2
cos−1 a−u

a
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97. 

Integrals Involving a + bu, a ≠ 0

98. 

99. 

100. 

101. 

102. 

103. 

104. 

105. 

106. 

107. 

108. 

109. 

110. 

111. 

112. 

113. 

This page titled 2.10.1: Integrals is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform.

8.5: Integrals by Russell Herman is licensed CC BY-NC-SA 3.0. Original source:
http://people.uncw.edu/hermanr/mat361/ODEBook/index.htm.
Appendix B: Table of Integrals by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

∫ = − +C
du

u 2au−u2
− −−−−−−

√

2au−u2
− −−−−−−

√

au

∫ du = (a+bu−a ln |a+bu|) +C
u

a+bu

1

b2

∫ du = [(a+bu −4a(a+bu) +2 ln |a+bu|]+C
u2

a+bu

1

2b3
)2 a2

∫ = ln +C
du

u(a+bu)

1

a

∣
∣
∣

u

a+bu

∣
∣
∣

∫ = − + ln +C
du

(a+bu)u2

1

au

b

a2

∣
∣
∣
a+bu

u

∣
∣
∣

∫ du = + ln|a+bu| +C
u

(a+bu)2

a

(a+bu)b2

1

b2

∫ du = − ln +C
u

u(a+bu)2

1

a(a+bu)

1

a2

∣
∣
∣
a+bu

u

∣
∣
∣

∫ du = (a+bu− −2a ln |a+bu|)+C
u2

(a+bu)2

1

b3

a2

a+bu

∫ u du = (3bu−2a)(a+bu +Ca+bu
− −−−−

√
2

15b2
)3/2

∫ du = (bu−2a) +C
u

a+bu
− −−−−

√

2

3b2
a+bu
− −−−−

√

∫ du = (8 +3 −4abu) +C
u2

a+bu
− −−−−

√

2

15b3
a2 b2u2 a+bu

− −−−−
√

∫ =
du

u a+bu
− −−−−

√

⎧

⎩
⎨
⎪⎪

⎪⎪

ln +C, if a > 01
a√

∣
∣

−a+bu√ a√

+a+bu√ a√

∣
∣

+C, if a < 0
2√

−a√
tan−1 a+bu

−a

− −−−
√

∫ du = 2 +a∫
a+bu
− −−−−

√

u
a+bu
− −−−−

√
du

u a+bu
− −−−−

√

∫ du = − + ∫
a+bu
− −−−−

√

u2

a+bu
− −−−−

√

u

b

2

du

u a+bu
− −−−−

√

∫ du = [ (a+bu −na∫ du]un a+bu
− −−−−

√
2

b(2n+3)
un )3/2 un−1 a+bu

− −−−−
√

∫ du = − ∫ du
un

a+bu
− −−−−

√

2un a+bu
− −−−−

√

b(2n+1)

2na

b(2n+1)

un−1

a+bu
− −−−−

√

∫ = − − ∫
du

un a+bu
− −−−−

√

a+bu
− −−−−

√

a(n−1)un−1

b(2n−3)

2a(n−1)

du

un−1 a+bu
− −−−−

√
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2.10.2: Antiderivatives

Find the general antiderivative of a given function.
Explain the terms and notation used for an indefinite integral.
State the power rule for integrals.
Use antidifferentiation to solve simple initial-value problems.

At this point, we have seen how to calculate derivatives of many functions and have been introduced to a variety of their
applications. We now ask a question that turns this process around: Given a function , how do we find a function with the
derivative  and why would we be interested in such a function?

We answer the first part of this question by defining antiderivatives. The antiderivative of a function  is a function with a
derivative . Why are we interested in antiderivatives? The need for antiderivatives arises in many situations, and we look at
various examples throughout the remainder of the text. Here we examine one specific example that involves rectilinear motion. In
our examination in Derivatives of rectilinear motion, we showed that given a position function  of an object, then its velocity
function  is the derivative of —that is, . Furthermore, the acceleration  is the derivative of the velocity 

—that is, . Now suppose we are given an acceleration function , but not the velocity function  or the
position function . Since , determining the velocity function requires us to find an antiderivative of the acceleration
function. Then, since  determining the position function requires us to find an antiderivative of the velocity function.
Rectilinear motion is just one case in which the need for antiderivatives arises. We will see many more examples throughout the
remainder of the text. For now, let’s look at the terminology and notation for antiderivatives, and determine the antiderivatives for
several types of functions. We examine various techniques for finding antiderivatives of more complicated functions later in the
text (Introduction to Techniques of Integration).

2.10.2.0.1 The Reverse of Differentiation

At this point, we know how to find derivatives of various functions. We now ask the opposite question. Given a function , how
can we find a function with derivative ? If we can find a function  with derivative  we call  an antiderivative of .

A function  is an antiderivative of the function  if

for all  in the domain of .

Consider the function . Knowing the power rule of differentiation, we conclude that  is an antiderivative of 
since .

Are there any other antiderivatives of ?

Yes; since the derivative of any constant  is zero,  is also an antiderivative of . Therefore,  and  are also
antiderivatives.

Are there any others that are not of the form  for some constant ?

The answer is no. From Corollary 2 of the Mean Value Theorem, we know that if  and  are differentiable functions such that 
 then  for some constant . This fact leads to the following important theorem.

Let  be an antiderivative of  over an interval . Then,

I. for each constant , the function  is also an antiderivative of  over ;
II. if  is an antiderivative of  over , there is a constant  for which  over .

In other words, the most general form of the antiderivative of  over  is .

 Learning Objectives

f

f

f

f

s(t)
v(t) s(t) v(t) = s'(t) a(t)

v(t) a(t) = v'(t) = (t)s′′ a v

s a(t) = v'(t)
v(t) = s'(t),

f

f F f , F f

 Definition: Antiderivative

F f

F '(x) = f(x)

x f

f(x) = 2x F (x) = x2 f

F '(x) = 2x

f

C +Cx2 2x +5x2 −x2 2
–

√

+Cx2 C

F G

F '(x) = G'(x), F (x) −G(x) = C C

 Theorem : General Form of an Antiderivative2.10.2.1

F f I

C F (x) +C f I

G f I C G(x) = F (x) +C I

f I F (x) +C
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We use this fact and our knowledge of derivatives to find all the antiderivatives for several functions.

For each of the following functions, find all antiderivatives.

a. 

b. 

c. 
d. 

Solution:

a. Because

then  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some constant ,
and every function of the form  is an antiderivative of .

b. Let 

For  and

For  and

Therefore,

Thus,  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some

constant  and every function of the form  is an antiderivative of .

c. We have

so  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some
constant  and every function of the form  is an antiderivative of .

d. Since

then  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some constant  and
every function of the form  is an antiderivative of .

Find all antiderivatives of .

Hint

 Example : Finding Antiderivatives2.10.2.1

f(x) = 3x2

f(x) =
1

x
f(x) = cosx
f(x) = ex

( ) = 3
d

dx
x3 x2

F (x) = x3 3x2 3x2 +Cx3 C

+Cx3 3x2

f(x) = ln |x|.

x > 0, f(x) = ln |x| = ln(x)

( lnx) = .
d

dx

1

x

x < 0, f(x) = ln |x| = ln(−x)

( ln(−x)) = − = .
d

dx

1

−x

1

x

( ln |x|) = .
d

dx

1

x

F (x) = ln |x|
1

x

1

x
ln |x| +C

C ln |x| +C
1

x

( sinx) = cosx,
d

dx

F (x) = sinx cosx cosx sinx+C

C sinx+C cosx

( ) = ,
d

dx
ex ex

F (x) = ex ex ex +Cex C

+Cex ex

 Exercise 2.10.2.1

f(x) = sinx
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What function has a derivative of ?

Answer

2.10.2.1 Indefinite Integrals
We now look at the formal notation used to represent antiderivatives and examine some of their properties. These properties allow

us to find antiderivatives of more complicated functions. Given a function , we use the notation  or  to denote the

derivative of . Here we introduce notation for antiderivatives. If  is an antiderivative of , we say that  is the most
general antiderivative of  and write

The symbol  is called an integral sign, and  is called the indefinite integral of .

Given a function , the indefinite integral of , denoted

is the most general antiderivative of . If  is an antiderivative of , then

The expression  is called the integrand and the variable  is the variable of integration.

Given the terminology introduced in this definition, the act of finding the antiderivatives of a function  is usually referred to as
integrating .

For a function  and an antiderivative , the functions , where  is any real number, are often referred to as the family
of antiderivatives of . For example, since  is an antiderivative of  and any antiderivative of  is of the form  we
write

Figure  shows a graph of this family of antiderivatives.

sinx

F (x) = −cosx+C

f f '(x)
df

dx
f F f F (x) +C

f

∫ f(x)dx = F (x) +C.

∫ ∫ f(x)dx f

 Definition: Indefinite Integrals

f f

∫ f(x)dx, (2.10.2.1)

f F f

∫ f(x)dx = F (x) +C. (2.10.2.2)

f(x) x

f

f

f F F (x) +C C

f x2 2x 2x +C,x2

∫ 2x dx = +C.x2

2.10.2.1
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 Figure : The family of antiderivatives of 
consists of all functions of the form , where  is any real number.

For some functions, evaluating indefinite integrals follows directly from properties of derivatives. For example, for ,

which comes directly from

.

This fact is known as the power rule for integrals.

For 

Evaluating indefinite integrals for some other functions is also a straightforward calculation. The following table lists the indefinite
integrals for several common functions. A more complete list appears in Appendix B.

Table : Integration Formulas

Differentiation Formula Indefinite Integral

 for 

2.10.2.1 2x
+Cx2 C

n ≠ −1

∫ dx = +C,xn
xn+1

n+1

( ) = (n+1) =
d

dx

xn+1

n+1

xn

n+1
xn

 Power Rule for Integrals

n ≠ −1,

∫ dx = +C.xn
xn+1

n+1
(2.10.2.3)

2.10.2.1

(k) = 0
d

dx
∫ k dx = ∫ k dx = kx+Cx

0

( ) = n
d

dx
xn xn−1 ∫ dx = +Cx

n xn+1

n+ 1
n ≠ −1

( ln |x|) =
d

dx

1

x
∫ dx = ln |x| +C

1

x

( ) =
d

dx
ex ex ∫ dx = +Ce

x
e
x
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Differentiation Formula Indefinite Integral

From the definition of indefinite integral of , we know

if and only if  is an antiderivative of .

Therefore, when claiming that

it is important to check whether this statement is correct by verifying that 

Each of the following statements is of the form  Verify that each statement is correct by showing that 

a. 

b. 

Solution:

a. Since

,

the statement

is correct.

( sinx) = cosx
d

dx
∫ cosxdx = sinx+C

( cosx) = − sinx
d

dx
∫ sinxdx = − cosx+C

( tanx) = x
d

dx
sec2 ∫ xdx = tanx+Csec2

( csc x) = − csc x cotx
d

dx
∫ csc x cotxdx = − csc x+C

( sec x) = sec x tanx
d

dx
∫ sec x tanxdx = sec x+C

( cotx) = − x
d

dx
csc2 ∫ xdx = − cotx+Ccsc2

( x) =
d

dx
sin−1 1

1 −x2
− −−−−

√
∫ = x+C

1

1 −x2
− −−−−

√
sin−1

( x) =
d

dx
tan−1 1

1 +x2
∫ dx = x+C

1

1 +x2
tan−1

( |x|) =
d

dx
sec−1 1

x − 1x2
− −−−−

√
∫ dx = |x| +C

1

x − 1x2
− −−−−

√
sec−1

f

∫ f(x)dx = F (x) +C

F f

∫ f(x)dx = F (x) +C

F '(x) = f(x).

 Example : Verifying an Indefinite Integral2.10.2.2

∫ f(x)dx = F (x) +C.

F '(x) = f(x).

∫ (x+ ) dx = + +Cex
x2

2
ex

∫ x dx = x − +Cex ex ex

( + +C) = x+
d

dx

x2

2
ex ex

∫ (x+ ) dx = + +Cex
x2

2
ex
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Note that we are verifying an indefinite integral for a sum. Furthermore,  and  are antiderivatives of  and ,

respectively, and the sum of the antiderivatives is an antiderivative of the sum. We discuss this fact again later in this section.

b. Using the product rule, we see that

Therefore, the statement

is correct.

Note that we are verifying an indefinite integral for a product. The antiderivative  is not a product of the
antiderivatives. Furthermore, the product of antiderivatives,  is not an antiderivative of  since

.

In general, the product of antiderivatives is not an antiderivative of a product.

Verify that 

Hint

Calculate 

Answer

In Table , we listed the indefinite integrals for many elementary functions. Let’s now turn our attention to evaluating
indefinite integrals for more complicated functions. For example, consider finding an antiderivative of a sum . In Example 

 we showed that an antiderivative of the sum  is given by the sum —that is, an antiderivative of a sum is

given by a sum of antiderivatives. This result was not specific to this example. In general, if  and  are antiderivatives of any
functions  and , respectively, then

Therefore,  is an antiderivative of  and we have

Similarly,

In addition, consider the task of finding an antiderivative of  where  is any real number. Since

for any real number , we conclude that

x2

2
ex x ex

(x − +C) = +x − = x .
d

dx
ex ex ex ex ex ex

∫ x dx = x − +Cex ex ex

x −ex ex

/2x2ex xex

( ) = x + ≠ x
d

dx

x2ex

2
ex

x2ex

2
ex

 Exercise 2.10.2.2

∫ x cosx dx = x sinx+cosx+C.

(x sinx+cosx+C).
d

dx

(x sinx+cosx+C) = sinx+x cosx−sinx = x cosx
d

dx

2.10.2.1
f +g

2.10.2.2a x+ex +
x2

2
ex

F G

f g

(F (x) +G(x)) = F '(x) +G'(x) = f(x) +g(x).
d

dx

F (x) +G(x) f(x) +g(x)

∫ (f(x) +g(x)) dx = F (x) +G(x) +C.

∫ (f(x) −g(x)) dx = F (x) −G(x) +C.

kf(x), k

(kF (x)) = k (F (x)) = kF '(x) = kf(x)
d

dx

d

dx

k
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These properties are summarized next.

Let  and  be antiderivatives of  and , respectively, and let  be any real number.

Sums and Differences

Constant Multiples

From this theorem, we can evaluate any integral involving a sum, difference, or constant multiple of functions with antiderivatives
that are known. Evaluating integrals involving products, quotients, or compositions is more complicated. (See Example 
for an example involving an antiderivative of a product.) We look at and address integrals involving these more complicated
functions in Introduction to Integration. In the next example, we examine how to use this theorem to calculate the indefinite
integrals of several functions.

Evaluate each of the following indefinite integrals:

a. 

b. 

c. 

d. 

Solution:

a. Using Properties of Indefinite Integrals, we can integrate each of the four terms in the integrand separately. We obtain

From the second part of Properties of Indefinite Integrals, each coefficient can be written in front of the integral sign, which
gives

Using the power rule for integrals, we conclude that

b. Rewrite the integrand as

Then, to evaluate the integral, integrate each of these terms separately. Using the power rule, we have

∫ kf(x)dx = kF (x) +C.

 Properties of Indefinite Integrals

F G f g k

∫ (f(x) ±g(x)) dx = F (x) ±G(x) +C (2.10.2.4)

∫ kf(x)dx = kF (x) +C (2.10.2.5)

2.10.2.2b

 Example : Evaluating Indefinite Integrals2.10.2.3

∫ (5 −7 +3x+4) dxx3 x2

∫ dx
+4x2 x−−√3

x

∫ dx
4

1 +x2

∫ tanx cosx dx

∫ (5 −7 +3x+4) dx = ∫ 5 dx−∫ 7 dx+∫ 3x dx+∫ 4 dx.x3 x2 x3 x2

∫ 5 dx−∫ 7 dx+∫ 3x dx+∫ 4 dx = 5 ∫ dx−7 ∫ dx+3 ∫ x dx+4 ∫ 1 dx.x3 x2 x3 x2

∫ (5 −7 +3x+4) dx = − + +4x+C.x3 x2 5

4
x4 7

3
x3 3

2
x2

= + .
+4x2 x−−√3

x

x2

x

4 x−−√3

x
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c. Using Properties of Indefinite Integrals, write the integral as

Then, use the fact that  is an antiderivative of  to conclude that

d. Rewrite the integrand as

Therefore,

Evaluate .

Hint

Integrate each term in the integrand separately, making use of the power rule.

Answer

2.10.2.2 Initial-Value Problems
We look at techniques for integrating a large variety of functions involving products, quotients, and compositions later in the text.
Here we turn to one common use for antiderivatives that arises often in many applications: solving differential equations.

A differential equation is an equation that relates an unknown function and one or more of its derivatives. The equation

is a simple example of a differential equation. Solving this equation means finding a function  with a derivative . Therefore, the
solutions of Equation  are the antiderivatives of . If  is one antiderivative of , every function of the form 

 is a solution of that differential equation. For example, the solutions of

are given by

∫ (x+ ) dx
4

x2/3
= ∫ x dx+4 ∫ dxx−2/3

= +4 +C
1

2
x2 1

( )+1−2
3

x(−2/3)+1

= +12 +C.
1

2
x2 x1/3

4 ∫ dx.
1

1 +x2

(x)tan−1 1

1 +x2

∫ dx = 4 (x) +C.
4

1 +x2
tan−1

tanx cosx = ⋅ cosx = sinx.
sinx

cosx

∫ tanx cosx dx = ∫ sinx dx = −cosx+C.

 Exercise 2.10.2.3

∫ (4 −5 +x−7) dxx3 x2

∫ (4 −5 +x−7) dx = − + −7x+Cx3 x2 x4 5

3
x3 1

2
x2

= f(x)
dy

dx
(2.10.2.6)

y f

2.10.2.6 f F f

y = F (x) +C

= 6
dy

dx
x2

y = ∫ 6 dx = 2 +C.x2 x3
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Sometimes we are interested in determining whether a particular solution curve passes through a certain point  —that is, 
. The problem of finding a function  that satisfies a differential equation

with the additional condition

is an example of an initial-value problem. The condition  is known as an initial condition. For example, looking for a
function  that satisfies the differential equation

and the initial condition

is an example of an initial-value problem. Since the solutions of the differential equation are  to find a function  that
also satisfies the initial condition, we need to find  such that . From this equation, we see that , and
we conclude that  is the solution of this initial-value problem as shown in the following graph.

 Figure : Some of the solution curves of the

differential equation  are displayed. The function  satisfies the differential equation and the initial condition

Solve the initial-value problem

Solution

First we need to solve the differential equation. If , then

Next we need to look for a solution  that satisfies the initial condition. The initial condition  means we need a
constant  such that  Therefore,

( , )x0 y0

y( ) =x0 y0 y

= f(x)
dy

dx

y( ) =x0 y0

y( ) =x0 y0

y

= 6
dy

dx
x2

y(1) = 5

y = 2 +C,x3 y

C y(1) = 2(1 +C = 5)3 C = 3
y = 2 +3x3

2.10.2.2

= 6
dy

dx
x2 y = 2 +3x3

y(1) = 5.

 Example : Solving an Initial-Value Problem2.10.2.4

= sinx, y(0) = 5.
dy

dx

= sinx
dy

dx

y = ∫ sin(x)dx = −cosx+C.

y y(0) = 5
C −cosx+C = 5.
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The solution of the initial-value problem is 

Solve the initial value problem .

Hint

Find all antiderivatives of 

Answer

Initial-value problems arise in many applications. Next we consider a problem in which a driver applies the brakes in a car. We are
interested in how long it takes for the car to stop. Recall that the velocity function  is the derivative of a position function 
and the acceleration  is the derivative of the velocity function. In earlier examples in the text, we could calculate the velocity
from the position and then compute the acceleration from the velocity. In the next example we work the other way around. Given
an acceleration function, we calculate the velocity function. We then use the velocity function to determine the position function.

A car is traveling at the rate of  ft/sec (  mph) when the brakes are applied. The car begins decelerating at a constant rate of
 ft/sec .

a. How many seconds elapse before the car stops?
b. How far does the car travel during that time?

Solution

a. First we introduce variables for this problem. Let  be the time (in seconds) after the brakes are first applied. Let  be the
acceleration of the car (in feet per seconds squared) at time . Let  be the velocity of the car (in feet per second) at time .
Let  be the car’s position (in feet) beyond the point where the brakes are applied at time .

The car is traveling at a rate of  ft/sec. Therefore, the initial velocity is  ft/sec. Since the car is decelerating, the
acceleration is

.

The acceleration is the derivative of the velocity,

Therefore, we have an initial-value problem to solve:

Integrating, we find that

Since  Thus, the velocity function is

To find how long it takes for the car to stop, we need to find the time  such that the velocity is zero. Solving 

we obtain  sec.

b. To find how far the car travels during this time, we need to find the position of the car after  sec. We know the velocity 

 is the derivative of the position . Consider the initial position to be . Therefore, we need to solve the initial-

C = 5 +cos(0) = 6.

y = −cosx+6.

 Exercise 2.10.2.4

= 3 , y(1) = 2
dy

dx
x−2

f(x) = 3x−2.

y = − +5
3

x

v(t) s(t),
a(t)

 Example :2.10.2.5

88 60
15 2

t a(t)
t v(t) t

s(t) t

88 v(0) = 88

a(t) = −15 ft/sec
2

v'(t) = −15.

v'(t) = −15, v(0) = 88.

v(t) = −15t+C.

v(0) = 88,C = 88.

v(t) = −15t+88.

t −15t+88 = 0,

t =
88

15
88

15
v(t) s(t) s(0) = 0
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value problem

Integrating, we have

Since , the constant is . Therefore, the position function is

After  sec, the position is  ft.

Suppose the car is traveling at the rate of  ft/sec. How long does it take for the car to stop? How far will the car travel?

Hint

Answer

 sec,  ft

2.10.2.3 Key Concepts
If  is an antiderivative of  then every antiderivative of  is of the form  for some constant .
Solving the initial-value problem

requires us first to find the set of antiderivatives of  and then to look for the particular antiderivative that also satisfies the
initial condition.

2.10.2.4 Glossary

antiderivative
a function  such that  for all  in the domain of  is an antiderivative of 

indefinite integral

the most general antiderivative of  is the indefinite integral of ; we use the notation  to denote the indefinite

integral of 

initial value problem

a problem that requires finding a function  that satisfies the differential equation  together with the initial condition

This page titled 2.10.2: Antiderivatives is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

4.10: Antiderivatives by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

s'(t) = −15t+88, s(0) = 0.

s(t) = − +88t+C.
15

2
t2

s(0) = 0 C = 0

s(t) = − +88t.
15

2
t2

t = 88
15

s( ) ≈ 258.13388
15

 Exercise 2.10.2.5

44

v(t) = −15t+44.

2.93 64.5

F f , f F (x) +C C

= f(x), y( ) =
dy

dx
x0 y0

f

F F '(x) = f(x) x f f

f(x) f ∫ f(x)dx

f

y = f(x)
dy

dx
y( ) =x0 y0
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2.10.3: Physical Applications of Integration-

Determine the mass of a one-dimensional object from its linear density function.
Determine the mass of a two-dimensional circular object from its radial density function.
Calculate the work done by a variable force acting along a line.
Calculate the work done in pumping a liquid from one height to another.
Find the hydrostatic force against a submerged vertical plate.

In this section, we examine some physical applications of integration. Let’s begin with a look at calculating mass from a density
function. We then turn our attention to work, and close the section with a study of hydrostatic force.

Mass and Density
We can use integration to develop a formula for calculating mass based on a density function. First we consider a thin rod or wire.
Orient the rod so it aligns with the -axis, with the left end of the rod at  and the right end of the rod at  (Figure 

). Note that although we depict the rod with some thickness in the figures, for mathematical purposes we assume the rod is
thin enough to be treated as a one-dimensional object.

Figure : We can calculate the mass of a thin rod oriented along the -axis by integrating its density function.

If the rod has constant density , given in terms of mass per unit length, then the mass of the rod is just the product of the density
and the length of the rod: . If the density of the rod is not constant, however, the problem becomes a little more
challenging. When the density of the rod varies from point to point, we use a linear density function, , to denote the density of
the rod at any point, . Let  be an integrable linear density function. Now, for  let  be a regular
partition of the interval , and for  choose an arbitrary point . Figure  shows a
representative segment of the rod.

Figure : A representative segment of the rod.

The mass  of the segment of the rod from  to  is approximated by

Adding the masses of all the segments gives us an approximation for the mass of the entire rod:

 Learning Objectives

x x = a x = b

2.10.3.1

2.10.3.1 x

ρ

(b−a)ρ
ρ(x)

x ρ(x) i = 0, 1, 2, … ,n P = xi
[a, b] i = 1, 2, … ,n ∈ [ , ]x∗

i xi−1 xi 2.10.3.2

2.10.3.2

mi xi−1 xi

≈ ρ( )( − )mi x∗
i xi xi−1

= ρ( )Δx.x∗
i

m =∑
i=1

n

mi

≈ ρ( )Δx.∑
i=1

n

x∗
i
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This is a Riemann sum. Taking the limit as , we get an expression for the exact mass of the rod:

We state this result in the following theorem.

Given a thin rod oriented along the -axis over the interval , let  denote a linear density function giving the density of
the rod at a point  in the interval. Then the mass of the rod is given by

We apply this theorem in the next example.

Consider a thin rod oriented on the -axis over the interval . If the density of the rod is given by , what is
the mass of the rod?

Solution

Applying Equation  directly, we have

Consider a thin rod oriented on the -axis over the interval . If the density of the rod is given by  what is
the mass of the rod?

Hint

Use the process from the previous example.

Solution

We now extend this concept to find the mass of a two-dimensional disk of radius . As with the rod we looked at in the one-
dimensional case, here we assume the disk is thin enough that, for mathematical purposes, we can treat it as a two-dimensional
object. We assume the density is given in terms of mass per unit area (called area density), and further assume the density varies
only along the disk’s radius (called radial density). We orient the disk in the , with the center at the origin. Then, the
density of the disk can be treated as a function of , denoted . We assume  is integrable. Because density is a function of 

, we partition the interval from  along the -axis. For , let  be a regular partition of the interval 
, and for , choose an arbitrary point . Now, use the partition to break up the disk into thin (two-

dimensional) washers. A disk and a representative washer are depicted in the following figure.

n → ∞

m = ρ( )Δxlim
n→∞

∑
i=1

n

x∗
i

= ρ(x)dx.∫
b

a

 Mass–Density Formula of a One-Dimensional Object

x [a, b] ρ(x)
x

m = ρ(x)dx.∫
b

a

(2.10.3.1)

 Example : Calculating Mass from Linear Density2.10.3.1

x [π/2, π] ρ(x) = sinx

2.10.3.1

m = ρ(x)dx∫
b

a

= sinx dx∫
π

π/2

= −cosx∣
∣
π

π/2

= 1.

 Exercise 2.10.3.1

x [1, 3] ρ(x) = 2 +3,x2

70/3

r

xy−plane

x ρ(x) ρ(x)
x [0, r] x i = 0, 1, 2, … ,n P = xi
[0, r] i = 1, 2, … ,n ∈ [ , ]x∗

i xi−1 xi
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Figure : (a) A thin disk in the xy-plane. (b) A representative washer.

We now approximate the density and area of the washer to calculate an approximate mass, . Note that the area of the washer is
given by

You may recall that we had an expression similar to this when we were computing volumes by shells. As we did there, we use 
 to approximate the average radius of the washer. We obtain

Using  to approximate the density of the washer, we approximate the mass of the washer by

Adding up the masses of the washers, we see the mass  of the entire disk is approximated by

We again recognize this as a Riemann sum, and take the limit as  This gives us

We summarize these findings in the following theorem.

Let  be an integrable function representing the radial density of a disk of radius . Then the mass of the disk is given by

Let  represent the radial density of a disk. Calculate the mass of a disk of radius 4.

Solution

Applying Equation , we find

2.10.3.3

mi

= π( −π(Ai xi)
2 xi−1 )2

= π[ − ]x2
i x2

i−1

= π( + )( − )xi xi−1 xi xi−1

= π( + )Δx.xi xi−1

≈ ( + )/2x∗
i xi xi−1

= π( + )Δx ≈ 2π Δx.Ai xi xi−1 x∗
i

ρ( )x∗
i

≈ 2π ρ( )Δx.mi x∗
i x∗

i

m

m = ≈ 2π ρ( )Δx.∑
i=1

n

mi ∑
i=1

n

x∗
i x∗

i

n → ∞.

m = 2π ρ( )Δxlim
n→∞

∑
i=1

n

x∗
i x∗

i

= 2πxρ(x)dx.∫
r

0

 Mass–Density Formula of a Circular Object

ρ(x) r

m = 2πxρ(x)dx.∫
r

0
(2.10.3.2)

 Example : Calculating Mass from Radial Density2.10.3.2

ρ(x) = x−−√

2.10.3.2
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Let  represent the radial density of a disk. Calculate the mass of a disk of radius 2.

Hint

Use the process from the previous example.

Solution

Work Done by a Force

We now consider work. In physics, work is related to force, which is often intuitively defined as a push or pull on an object. When
a force moves an object, we say the force does work on the object. In other words, work can be thought of as the amount of energy
it takes to move an object. According to physics, when we have a constant force, work can be expressed as the product of force and
distance.

In the English system, the unit of force is the pound and the unit of distance is the foot, so work is given in foot-pounds. In the
metric system, kilograms and meters are used. One newton is the force needed to accelerate  kilogram of mass at the rate of 
m/sec . Thus, the most common unit of work is the newton-meter. This same unit is also called the joule. Both are defined as
kilograms times meters squared over seconds squared 

When we have a constant force, things are pretty easy. It is rare, however, for a force to be constant. The work done to compress (or
elongate) a spring, for example, varies depending on how far the spring has already been compressed (or stretched). We look at
springs in more detail later in this section.

Suppose we have a variable force  that moves an object in a positive direction along the -axis from point  to point . To
calculate the work done, we partition the interval  and estimate the work done over each subinterval. So, for ,
let  be a regular partition of the interval , and for , choose an arbitrary point . To
calculate the work done to move an object from point  to point , we assume the force is roughly constant over the interval,
and use  to approximate the force. The work done over the interval , then, is given by

Therefore, the work done over the interval  is approximately

Taking the limit of this expression as  gives us the exact value for work:

Thus, we can define work as follows.

m = 2πxρ(x)dx∫
r

0

= 2πx dx = 2π dx∫
4

0
x−−√ ∫

4

0
x3/2

= 2π = [32]
2

5
x5/2 ∣40

4π

5

= .
128π

5

 Exercise 2.10.3.2

ρ(x) = 3x+2

24π

1 1
2

(kg ⋅ / ).m2 s2

F (x) x a b

[a, b] i = 0, 1, 2, … ,n
P = xi [a, b] i = 1, 2, … ,n ∈ [ , ]x∗

i xi−1 xi
xi−1 xi

F ( )x∗
i [ , ]xi−1 xi

≈ F ( )( − ) = F ( )Δx.Wi x∗
i xi xi−1 x∗

i

[a, b]

W = ≈ F ( )Δx.∑
i=1

n

Wi ∑
i=1

n

x∗
i

n → ∞

W = F ( )Δxlim
n→∞

∑
i=1

n

x∗
i

= F (x)dx.∫
b

a
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If a variable force  moves an object in a positive direction along the -axis from point  to point , then the work done on
the object is

Note that if  is constant, the integral evaluates to  which is the formula we stated at the beginning of this
section.

Now let’s look at the specific example of the work done to compress or elongate a spring. Consider a block attached to a horizontal
spring. The block moves back and forth as the spring stretches and compresses. Although in the real world we would have to
account for the force of friction between the block and the surface on which it is resting, we ignore friction here and assume the
block is resting on a frictionless surface. When the spring is at its natural length (at rest), the system is said to be at equilibrium. In
this state, the spring is neither elongated nor compressed, and in this equilibrium position the block does not move until some force
is introduced. We orient the system such that  corresponds to the equilibrium position (Figure ).

Figure : A block attached to a horizontal spring at equilibrium, compressed, and elongated.

According to Hooke’s law, the force required to compress or stretch a spring from an equilibrium position is given by ,
for some constant . The value of k depends on the physical characteristics of the spring. The constant  is called the spring
constant and is always positive. We can use this information to calculate the work done to compress or elongate a spring, as shown
in the following example.

Suppose it takes a force of  N (in the negative direction) to compress a spring  m from the equilibrium position. How
much work is done to stretch the spring  m from the equilibrium position?

Solution

First find the spring constant, . When , we know  so

and  Then, to calculate work, we integrate the force function, obtaining

 Definition: Work

F (x) x a b

W = F (x)dx.∫
b

a

(2.10.3.3)

F F ⋅ (b−a) = F ⋅ d,

x = 0 2.10.3.4

2.10.3.4

F (x) = kx

k k

 Example : The Work Required to Stretch or Compress a Spring2.10.3.3

10 0.2
0.5

k x = −0.2 F (x) = −10,

F (x) = kx

−10 = k(−0.2)

k = 50

F (x) = 50x.
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The work done to stretch the spring is  J.

Suppose it takes a force of  lb to stretch a spring  in. from the equilibrium position. How much work is done to stretch the
spring  ft from the equilibrium position?

Hint

Use the process from the previous example. Be careful with units.

Solution

 ft-lb

Work Done in Pumping
Consider the work done to pump water (or some other liquid) out of a tank. Pumping problems are a little more complicated than
spring problems because many of the calculations depend on the shape and size of the tank. In addition, instead of being concerned
about the work done to move a single mass, we are looking at the work done to move a volume of water, and it takes more work to
move the water from the bottom of the tank than it does to move the water from the top of the tank.

We examine the process in the context of a cylindrical tank, then look at a couple of examples using tanks of different shapes.
Assume a cylindrical tank of radius  m and height  m is filled to a depth of 8 m. How much work does it take to pump all the
water over the top edge of the tank?

The first thing we need to do is define a frame of reference. We let  represent the vertical distance below the top of the tank. That
is, we orient the -axis vertically, with the origin at the top of the tank and the downward direction being positive (Figure 

).

Figure : How much work is needed to empty a tank partially filled with water?

Using this coordinate system, the water extends from  to . Therefore, we partition the interval  and look at the
work required to lift each individual “layer” of water. So, for , let  be a regular partition of the interval 

, and for , choose an arbitrary point . Figure  shows a representative layer.

W = F (x)dx∫
b

a

= 50x dx∫
0.5

0

= 25x2∣∣
0.5

0

= 6.25.

6.25

 Exercise 2.10.3.3

8 6
1

8

4 10

x

x

2.10.3.5

2.10.3.5

x = 2 x = 10 [2, 10]
i = 0, 1, 2, … ,n P = xi

[2, 10] i = 1, 2, … ,n ∈ [ , ]x∗
i xi−1 xi 2.10.3.6
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Figure : A representative layer of water.

In pumping problems, the force required to lift the water to the top of the tank is the force required to overcome gravity, so it is
equal to the weight of the water. Given that the weight-density of water is , or , calculating the volume of
each layer gives us the weight. In this case, we have

Then, the force needed to lift each layer is

Note that this step becomes a little more difficult if we have a noncylindrical tank. We look at a noncylindrical tank in the next
example.

We also need to know the distance the water must be lifted. Based on our choice of coordinate systems, we can use  as an
approximation of the distance the layer must be lifted. Then the work to lift the  layer of water  is approximately

Adding the work for each layer, we see the approximate work to empty the tank is given by

This is a Riemann sum, so taking the limit as  we get

The work required to empty the tank is approximately 23,650,000 J.

For pumping problems, the calculations vary depending on the shape of the tank or container. The following problem-solving
strategy lays out a step-by-step process for solving pumping problems.

1. Sketch a picture of the tank and select an appropriate frame of reference.
2. Calculate the volume of a representative layer of water.
3. Multiply the volume by the weight-density of water to get the force.
4. Calculate the distance the layer of water must be lifted.
5. Multiply the force and distance to get an estimate of the work needed to lift the layer of water.

2.10.3.6

9800 N/m
3

62.4 lb/ft
3

V = π(4 Δx = 16πΔx.)2

F = 9800 ⋅ 16πΔx = 156, 800πΔx.

x∗
i

ith Wi

≈ 156, 800π Δx.Wi x∗
i

W =∑
i=1

n

Wi

≈ 156, 800π Δx.∑
i=1

n

x∗
i

n → ∞,

W = 156, 800π Δxlim
n→∞

∑
i=1

n

x∗
i

= 156, 800π xdx∫
10

2

= 156, 800π( ) = 7, 526, 400π ≈ 23, 644, 883.
x2

2
∣
∣
∣
10

2

 Problem-Solving Strategy: Solving Pumping Problems
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6. Sum the work required to lift all the layers. This expression is an estimate of the work required to pump out the desired
amount of water, and it is in the form of a Riemann sum.

7. Take the limit as  and evaluate the resulting integral to get the exact work required to pump out the desired amount
of water.

We now apply this problem-solving strategy in an example with a noncylindrical tank.

Assume a tank in the shape of an inverted cone, with height  ft and base radius  ft. The tank is full to start with, and water
is pumped over the upper edge of the tank until the height of the water remaining in the tank is  ft. How much work is
required to pump out that amount of water?

Solution

The tank is depicted in Figure . As we did in the example with the cylindrical tank, we orient the -axis vertically,
with the origin at the top of the tank and the downward direction being positive (step 1).

Figure : A water tank in the shape of an inverted cone.

The tank starts out full and ends with  ft of water left, so, based on our chosen frame of reference, we need to partition the
interval . Then, for , let  be a regular partition of the interval , and for ,
choose an arbitrary point . We can approximate the volume of a layer by using a disk, then use similar triangles
to find the radius of the disk (Figure ).

n → ∞

 Example : A Pumping Problem with a Noncylindrical Tank2.10.3.4

12 4
4

2.10.3.7 x

2.10.3.7

4
[0, 8] i = 0, 1, 2, … ,n P = xi [0, 8] i = 1, 2, … ,n

∈ [ , ]x∗
i xi−1 xi
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Figure : Using similar triangles to express the radius of a disk of water.

From properties of similar triangles, we have

Then the volume of the disk is

The weight-density of water is lb/ft , so the force needed to lift each layer is approximately

Based on the diagram, the distance the water must be lifted is approximately  feet (step 4), so the approximate work needed
to lift the layer is

Summing the work required to lift all the layers, we get an approximate value of the total work:

Taking the limit as  we obtain

2.10.3.8

= =
ri

12 −x∗
i

4

12

1

3

3 = 12 −ri x∗
i

=ri
12 −x∗

i

3

= 4 − .
x∗
i

3

(step 1)

= π Δx.Vi (4 − )
x∗
i

3

2

(step 2)

62.4 3

≈ 62.4π ΔxFi (4 − )
x∗
i

3

2

(step 3)

x∗
i

≈ 62.4π Δx.Wi x∗
i (4 − )

x∗
i

3

2

(step 5)

W = ≈ 62.4π Δx.∑
i=1

n

Wi ∑
i=1

n

x∗
i (4 − )

x∗
i

3

2

(step 6)

n → ∞,
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It takes approximately  ft-lb of work to empty the tank to the desired level.

A tank is in the shape of an inverted cone, with height  ft and base radius 6 ft. The tank is filled to a depth of 8 ft to start
with, and water is pumped over the upper edge of the tank until 3 ft of water remain in the tank. How much work is required to
pump out that amount of water?

Hint

Use the process from the previous example.

Solution

Approximately  ft-lb

Hydrostatic Force and Pressure

In this last section, we look at the force and pressure exerted on an object submerged in a liquid. In the English system, force is
measured in pounds. In the metric system, it is measured in newtons. Pressure is force per unit area, so in the English system we
have pounds per square foot (or, perhaps more commonly, pounds per square inch, denoted psi). In the metric system we have
newtons per square meter, also called pascals.

Let’s begin with the simple case of a plate of area  submerged horizontally in water at a depth s (Figure ). Then, the force
exerted on the plate is simply the weight of the water above it, which is given by , where  is the weight density of water
(weight per unit volume). To find the hydrostatic pressure—that is, the pressure exerted by water on a submerged object—we
divide the force by the area. So the pressure is .

Figure : A plate submerged horizontally in water.

By Pascal’s principle, the pressure at a given depth is the same in all directions, so it does not matter if the plate is submerged
horizontally or vertically. So, as long as we know the depth, we know the pressure. We can apply Pascal’s principle to find the force
exerted on surfaces, such as dams, that are oriented vertically. We cannot apply the formula  directly, because the depth
varies from point to point on a vertically oriented surface. So, as we have done many times before, we form a partition, a Riemann
sum, and, ultimately, a definite integral to calculate the force.

W = 62.4π (4 − Δxlim
n→∞

∑
i=1

n

x∗
i

x∗
i

3
)2

= 62.4πx dx∫
8

0
(4 − )

x

3

2

= 62.4π x(16 − + ) dx = 62.4π (16x− + ) dx∫
8

0

8x

3

x2

9
∫

8

0

8x2

3

x3

9

= 62.4π [8 − + ] = 10, 649.6π ≈ 33, 456.7.x2 8x3

9

x4

36
∣
∣
∣
8

0

33, 450

 Exercise 2.10.3.4

10

43, 255.2

A 2.10.3.9
F = ρAs ρ

p = F/A = ρs

2.10.3.9

F = ρAs
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Suppose a thin plate is submerged in water. We choose our frame of reference such that the -axis is oriented vertically, with the
downward direction being positive, and point  corresponding to a logical reference point. Let  denote the depth at point
x. Note we often let  correspond to the surface of the water. In this case, depth at any point is simply given by .
However, in some cases we may want to select a different reference point for , so we proceed with the development in the
more general case. Last, let  denote the width of the plate at the point .

Assume the top edge of the plate is at point  and the bottom edge of the plate is at point . Then, for ,
let  be a regular partition of the interval , and for , choose an arbitrary point . The
partition divides the plate into several thin, rectangular strips (Figure ).

Figure : A thin plate submerged vertically in water.

Let’s now estimate the force on a representative strip. If the strip is thin enough, we can treat it as if it is at a constant depth, .
We then have

Adding the forces, we get an estimate for the force on the plate:

This is a Riemann sum, so taking the limit gives us the exact force. We obtain

Evaluating this integral gives us the force on the plate. We summarize this in the following problem-solving strategy.

1. Sketch a picture and select an appropriate frame of reference. (Note that if we select a frame of reference other than the one
used earlier, we may have to adjust Equation  accordingly.)

2. Determine the depth and width functions,  and 
3. Determine the weight-density of whatever liquid with which you are working. The weight-density of water is ,

or .
4. Use the equation to calculate the total force.

A water trough 15 ft long has ends shaped like inverted isosceles triangles, with base 8 ft and height 3 ft. Find the force on one
end of the trough if the trough is full of water.

Solution

Figure  shows the trough and a more detailed view of one end.

x

x = 0 s(x)
x = 0 s(x) = x

x = 0
w(x) x

x = a x = b i = 0, 1, 2, … ,n
P = xi [a, b] i = 1, 2, … ,n ∈ [ , ]x∗

i xi−1 xi
2.10.3.10

2.10.3.10

s( )x∗
i

= ρAs = ρ[w( )Δx]s( ).Fi x∗
i x∗

i

F ≈ = ρ[w( )Δx]s( ).∑
i=1

n

Fi ∑
i=1

n

x∗
i x∗

i

F = ρ[w( )Δx]s( ) = ρw(x)s(x)dx.lim
n→∞

∑
i=1

n

x∗
i x∗

i ∫
b

a

(2.10.3.4)

 Problem-Solving Strategy: Finding Hydrostatic Force

2.10.3.4
s(x) w(x).

62.4 lb/ft3

9800 N/m3

 Example : Finding Hydrostatic Force2.10.3.5
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Figure : (a) A water trough with a triangular cross-section. (b) Dimensions of one end of the water trough.

Select a frame of reference with the -axis oriented vertically and the downward direction being positive. Select the top of the
trough as the point corresponding to  (step 1). The depth function, then, is . Using similar triangles, we see that 

 (step 2). Now, the weight density of water is  (step 3), so applying Equation , we
obtain

The water exerts a force of 748.8 lb on the end of the trough (step 4).

A water trough 12 m long has ends shaped like inverted isosceles triangles, with base 6 m and height 4 m. Find the force on
one end of the trough if the trough is full of water.

Hint

Follow the problem-solving strategy and the process from the previous example.

Solution

 N

2.10.3.11

x

x = 0 s(x) = x

w(x) = 8 −(8/3)x 62.4 lb/ft3 2.10.3.4

F = ρw(x)s(x)dx∫
b

a

= 62.4(8 − x)x dx = 62.4 (8x− ) dx∫
3

0

8

3
∫

3

0

8

3
x2

= = 748.8.62.4 [4 − ]x2 8

9
x3 ∣

∣
∣
3

0

 Exercise 2.10.3.5
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We now return our attention to the Hoover Dam, mentioned at the beginning of this chapter. The actual dam is arched, rather
than flat, but we are going to make some simplifying assumptions to help us with the calculations. Assume the face of the
Hoover Dam is shaped like an isosceles trapezoid with lower base 750 ft, upper base 1250 ft, and height 750 ft (see the
following figure).

When the reservoir is full, Lake Mead’s maximum depth is about 530 ft, and the surface of the lake is about 10 ft below the top
of the dam (see the following figure).

Figure : A simplified model of the Hoover Dam with assumed dimensions.
a. Find the force on the face of the dam when the reservoir is full.
b. The southwest United States has been experiencing a drought, and the surface of Lake Mead is about 125 ft below where it

would be if the reservoir were full. What is the force on the face of the dam under these circumstances?

Solution:

a.

We begin by establishing a frame of reference. As usual, we choose to orient the -axis vertically, with the downward direction
being positive. This time, however, we are going to let  represent the top of the dam, rather than the surface of the water.
When the reservoir is full, the surface of the water is  ft below the top of the dam, so  (see the following
figure).

Figure : We first choose a frame of reference.

To find the width function, we again turn to similar triangles as shown in the figure below.

 Example : Finding Hydrostatic Force2.10.3.6

2.10.3.12

x

x = 0
10 s(x) = x−10
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Figure : We use similar triangles to determine a function for the width of the dam. (a) Assumed dimensions of the
dam; (b) highlighting the similar triangles.

From the figure, we see that . Using properties of similar triangles, we get . Thus,

Using a weight-density of lb/ft  (step 3) and applying Equation , we get

Note the change from pounds to tons ( lb =  ton) (step 4). This changes our depth function, , and our limits of
integration. We have . The lower limit of integration is 135. The upper limit remains . Evaluating the
integral, we get

When the reservoir is at its average level, the surface of the water is about 50 ft below where it would be if the reservoir were
full. What is the force on the face of the dam under these circumstances?

Hint

Change the depth function,  and the limits of integration.

Solution

Approximately 7,164,520,000 lb or 3,582,260 t

2.10.3.14

w(x) = 750 +2r r = 250 −(1/3)x

w(x) = 1250 − x
2

3
(step 2)

62.4 3 2.10.3.4

F = ρw(x)s(x)dx∫
b

a

= 62.4(1250 − x) (x−10)dx∫
540

10

2

3

= 62.4 − [ −1885x+18750] dx∫
540

10

2

3
x2

= −62.4( )[ − +18750x] ≈ 8, 832, 245, 000 lb = 4, 416, 122.5 t.
2

3

x3

3

1885x2

2
∣
∣
∣
540

10

2000 1 s(x)
s(x) = x−135 540

F = ρw(x)s(x)dx∫
b

a

= 62.4(1250 − x) (x−135)dx∫
540

135

2

3

= −62.4( ) (x−1875)(x−135)dx = −62.4( ) ( −2010x+253125)dx
2

3
∫

540

135

2

3
∫

540

135
x2

= −62.4( )[ −1005 +253125x] ≈ 5, 015, 230, 000 lb = 2, 507, 615 t.
2

3

x3

3
x2 ∣

∣
∣
540

135

 Exercise 2.10.3.6
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Key Concepts
Several physical applications of the definite integral are common in engineering and physics.
Definite integrals can be used to determine the mass of an object if its density function is known.
Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a pumping
problem.
Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.

Key Equations
Mass of a one-dimensional object

Mass of a circular object

Work done on an object

Hydrostatic force on a plate

Glossary

density function
a density function describes how mass is distributed throughout an object; it can be a linear density, expressed in terms of mass
per unit length; an area density, expressed in terms of mass per unit area; or a volume density, expressed in terms of mass per
unit volume; weight-density is also used to describe weight (rather than mass) per unit volume

Hooke’s law
this law states that the force required to compress (or elongate) a spring is proportional to the distance the spring has been
compressed (or stretched) from equilibrium; in other words, , where  is a constant

hydrostatic pressure
the pressure exerted by water on a submerged object

work
the amount of energy it takes to move an object; in physics, when a force is constant, work is expressed as the product of force
and distance

This page titled 2.10.3: Physical Applications of Integration- is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Edwin “Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts
platform.

6.5: Physical Applications of Integration by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

m = ρ(x)dx∫
b

a

m = 2πxρ(x)dx∫
r

0

W = F (x)dx∫
b

a

F = ρw(x)s(x)dx∫
b

a

F = kx k
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2.10.4: Moments_and_Centers_of_Mass

Find the center of mass of objects distributed along a line.
Locate the center of mass of a thin plate.
Use symmetry to help locate the centroid of a thin plate.
Apply the theorem of Pappus for volume.

In this section, we consider centers of mass (also called centroids, under certain conditions) and moments. The basic idea of the
center of mass is the notion of a balancing point. Many of us have seen performers who spin plates on the ends of sticks. The
performers try to keep several of them spinning without allowing any of them to drop. If we look at a single plate (without spinning
it), there is a sweet spot on the plate where it balances perfectly on the stick. If we put the stick anywhere other than that sweet
spot, the plate does not balance and it falls to the ground. (That is why performers spin the plates; the spin helps keep the plates
from falling even if the stick is not exactly in the right place.) Mathematically, that sweet spot is called the center of mass of the
plate.

In this section, we first examine these concepts in a one-dimensional context, then expand our development to consider centers of
mass of two-dimensional regions and symmetry. Last, we use centroids to find the volume of certain solids by applying the theorem
of Pappus.

Center of Mass and Moments

Let’s begin by looking at the center of mass in a one-dimensional context. Consider a long, thin wire or rod of negligible mass
resting on a fulcrum, as shown in Figure . Now suppose we place objects having masses  and  at distances  and 

 from the fulcrum, respectively, as shown in Figure .

Figure : (a) A thin rod rests on a fulcrum. (b) Masses are placed on the rod.

The most common real-life example of a system like this is a playground seesaw, or teeter-totter, with children of different weights
sitting at different distances from the center. On a seesaw, if one child sits at each end, the heavier child sinks down and the lighter
child is lifted into the air. If the heavier child slides in toward the center, though, the seesaw balances. Applying this concept to the
masses on the rod, we note that the masses balance each other if and only if

Figure : The center of mass  is the balance point of the system.

In the seesaw example, we balanced the system by moving the masses (children) with respect to the fulcrum. However, we are
really interested in systems in which the masses are not allowed to move, and instead we balance the system by moving the

 Learning Objectives

2.10.4.1a m1 m2 d1

d2 2.10.4.1b

2.10.4.1

= .m1d1 m2d2

2.10.4.2 x̄
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fulcrum. Suppose we have two point masses,  and , located on a number line at points  and , respectively (Figure 
). The center of mass, , is the point where the fulcrum should be placed to make the system balance.

Thus, we have

or

The expression in the numerator of Equation , , is called the first moment of the system with respect to the
origin. If the context is clear, we often drop the word first and just refer to this expression as the moment of the system. The
expression in the denominator, , is the total mass of the system. Thus, the center of mass of the system is the point at
which the total mass of the system could be concentrated without changing the moment.

This idea is not limited just to two point masses. In general, if  masses,  are placed on a number line at points 
 respectively, then the center of mass of the system is given by

Let  be point masses placed on a number line at points , respectively, and let 

denote the total mass of the system. Then, the moment of the system with respect to the origin is given by

and the center of mass of the system is given by

We apply this theorem in the following example.

Suppose four point masses are placed on a number line as follows:

 placed at 
 placed at 
 placed at 
 placed at 

Solution

Find the moment of the system with respect to the origin and find the center of mass of the system.

First, we need to calculate the moment of the system (Equation ):

m1 m2 x1 x2

2.10.4.2 x̄

| − |m1 x1 x̄

( − )m1 x̄ x1

−m1x̄ m1x1

( + )x̄ m1 m2

= | − |m2 x2 x̄

= ( − )m2 x2 x̄

= −m2x2 m2x̄

= +m1x1 m2x2

=x̄
+m1x1 m2x2

+m1 m2
(2.10.4.1)

2.10.4.1 +m1x1 m2x2

+m1 m2

n , , … , ,m1 m2 mn

, , … , ,x1 x2 xn

=x̄

∑
i=1

n

mixi

∑
i=1

n

mi

 Center of Mass of Objects on a Line

, , … ,m1 m2 mn , , … ,x1 x2 xn m =∑
i=1

n

mi

M =∑
i=1

n

mixi (2.10.4.2)

= .x̄
M

m
(2.10.4.3)

 Example : Finding the Center of Mass of Objects along a Line2.10.4.1

= 30 kg,m1 = −2mx1

= 5 kg,m2 = 3mx2

= 10 kg,m3 = 6mx3

= 15 kg,m4 = −3m.x4

2.10.4.2
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Now, to find the center of mass, we need the total mass of the system:

Then we have (from Equation )

.

The center of mass is located 1/2 m to the left of the origin.

Suppose four point masses are placed on a number line as follows:

 placed at 
 placed at 
 placed at 
 placed at 

Find the moment of the system with respect to the origin and find the center of mass of the system.

Hint

Use the process from the previous example.

Answer

We can generalize this concept to find the center of mass of a system of point masses in a plane. Let  be a point mass located at
point  in the plane. Then the moment  of the mass with respect to the -axis is given by . Similarly, the
moment  with respect to the -axis is given by

Notice that the -coordinate of the point is used to calculate the moment with respect to the -axis, and vice versa. The reason is
that the -coordinate gives the distance from the point mass to the -axis, and the -coordinate gives the distance to the -axis (see
the following figure).

Figure : Point mass  is located at point  in the plane.

If we have several point masses in the -plane, we can use the moments with respect to the - and -axes to calculate the - and 
-coordinates of the center of mass of the system.

M =∑
i=1

4

mixi

= −60 +15 +60 −45

= −30.

m =∑
i=1

4

mi

= 30 +5 +10 +15

= 60 kg

2.10.4.3

– = = − = −x̄
M

m

30

60

1

2

 Exercise 2.10.4.1

= 12 kgm1 = −4mx1

= 12 kgm2 = 4mx2

= 30 kgm3 = 2mx3

= 6 kg,m4 = −6m.x4

M = 24, = mx̄
2

5

m1

( , )x1 y1 Mx x =Mx m1y1

My y

= .My m1x1

x y

x y y x

2.10.4.3 m1 ( , )x1 y1

xy x y x

y
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Let , , …,  be point masses located in the -plane at points  respectively, and let 

 denote the total mass of the system. Then the moments  and  of the system with respect to the - and -

axes, respectively, are given by

and

Also, the coordinates of the center of mass  of the system are

and

The next example demonstrates how to the center of mass formulas (Equations  - ) may be applied.

Suppose three point masses are placed in the -plane as follows (assume coordinates are given in meters):

 placed at 
 placed at 
 placed at 

Find the center of mass of the system.

Solution

First we calculate the total mass of the system:

Next we find the moments with respect to the - and -axes:

Then we have

and

 Center of Mass of Objects in a Plane

m1 m2 mn xy ( , ), ( , ), … , ( , ),x1 y1 x2 y2 xn yn

m =∑
i=1

n

mi Mx My x y

=Mx ∑
i=1

n

miyi (2.10.4.4)

= .My ∑
i=1

n

mixi (2.10.4.5)

( , )x̄ ȳ

=x̄
My

m
(2.10.4.6)

= .ȳ
Mx

m
(2.10.4.7)

2.10.4.4 2.10.4.7

 Example : Finding the Center of Mass of Objects in a Plane2.10.4.2

xy

= 2 kgm1 (−1, 3),
= 6 kgm2 (1, 1),
= 4 kgm3 (2, −2).

m = = 2 +6 +4 = 12 kg.∑
i=1

3

mi

x y

My

Mx

= = −2 +6 +8 = 12,∑
i=1

3

mixi

= = 6 +6 −8 = 4.∑
i=1

3

miyi

= = = 1x̄
My

m

12

12

= = = .ȳ
Mx

m

4

12

1

3
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The center of mass of the system is  in meters.

Suppose three point masses are placed on a number line as follows (assume coordinates are given in meters):

 placed at 
 placed at 
 placed at 

Find the center of mass of the system.

Hint

Use the process from the previous example.

Answer

 m

Center of Mass of Thin Plates

So far we have looked at systems of point masses on a line and in a plane. Now, instead of having the mass of a system
concentrated at discrete points, we want to look at systems in which the mass of the system is distributed continuously across a thin
sheet of material. For our purposes, we assume the sheet is thin enough that it can be treated as if it is two-dimensional. Such a
sheet is called a lamina. Next we develop techniques to find the center of mass of a lamina. In this section, we also assume the
density of the lamina is constant.

Laminas are often represented by a two-dimensional region in a plane. The geometric center of such a region is called its centroid.
Since we have assumed the density of the lamina is constant, the center of mass of the lamina depends only on the shape of the
corresponding region in the plane; it does not depend on the density. In this case, the center of mass of the lamina corresponds to
the centroid of the delineated region in the plane. As with systems of point masses, we need to find the total mass of the lamina, as
well as the moments of the lamina with respect to the - and -axes.

We first consider a lamina in the shape of a rectangle. Recall that the center of mass of a lamina is the point where the lamina
balances. For a rectangle, that point is both the horizontal and vertical center of the rectangle. Based on this understanding, it is
clear that the center of mass of a rectangular lamina is the point where the diagonals intersect, which is a result of the symmetry
principle, and it is stated here without proof.

If a region  is symmetric about a line , then the centroid of  lies on .

Let’s turn to more general laminas. Suppose we have a lamina bounded above by the graph of a continuous function , below
by the -axis, and on the left and right by the lines  and , respectively, as shown in the following figure.

Figure : A region in the plane representing a lamina.

As with systems of point masses, to find the center of mass of the lamina, we need to find the total mass of the lamina, as well as
the moments of the lamina with respect to the - and -axes. As we have done many times before, we approximate these quantities

(1, 1/3),

 Exercise 2.10.4.2

= 5 kg,m1 (−2, −3),
= 3 kg,m2 (2, 3),
= 2 kg,m3 (−3, −2).

(−1, −1)

x y

 The Symmetry Principle

R l R l

f(x)
x x = a x = b

2.10.4.4

x y
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by partitioning the interval  and constructing rectangles.

For  let  be a regular partition of . Recall that we can choose any point within the interval 
as our . In this case, we want  to be the x-coordinate of the centroid of our rectangles. Thus, for , we select 

 such that  is the midpoint of the interval. That is, . Now, for  construct a
rectangle of height  on  The center of mass of this rectangle is  as shown in the following figure.

Figure : A representative rectangle of the lamina.

Next, we need to find the total mass of the rectangle. Let  represent the density of the lamina (note that  is a constant). In this
case,  is expressed in terms of mass per unit area. Thus, to find the total mass of the rectangle, we multiply the area of the
rectangle by . Then, the mass of the rectangle is given by .

To get the approximate mass of the lamina, we add the masses of all the rectangles to get

Equation  is a Riemann sum. Taking the limit as  gives the exact mass of the lamina:

Next, we calculate the moment of the lamina with respect to the x-axis. Returning to the representative rectangle, recall its center of
mass is . Recall also that treating the rectangle as if it is a point mass located at the center of mass does not change
the moment. Thus, the moment of the rectangle with respect to the x-axis is given by the mass of the rectangle, ,
multiplied by the distance from the center of mass to the x-axis: . Therefore, the moment with respect to the x-axis of the
rectangle is  Adding the moments of the rectangles and taking the limit of the resulting Riemann sum, we see
that the moment of the lamina with respect to the x-axis is

We derive the moment with respect to the y-axis similarly, noting that the distance from the center of mass of the rectangle to the y-
axis is . Then the moment of the lamina with respect to the y-axis is given by

We find the coordinates of the center of mass by dividing the moments by the total mass to give  and . If
we look closely at the expressions for , and , we notice that the constant  cancels out when  and  are calculated.

We summarize these findings in the following theorem.

[a, b]

i = 0, 1, 2, … ,n, P = xi [a, b] [ , ]xi−1 xi
x∗
i x∗

i i = 1, 2, … ,n
∈ [ , ]x∗

i xi−1 xi x∗
i = ( + )/2x∗

i xi−1 xi i = 1, 2, … ,n,
f( )x∗

i [ , ].xi−1 xi ( , (f( ))/2),x∗
i x∗

i

2.10.4.5

ρ ρ

ρ

ρ ρf( )Δxx∗
i

m ≈ ρf( )Δx.∑
i=1

n

x∗
i (2.10.4.8)

2.10.4.8 n → ∞

m = ρf( )Δxlim
n→∞

∑
i=1

n

x∗
i

= ρ f(x)dx.∫
b

a

( , (f( ))/2)x∗
i x∗

i

ρf( )Δxx∗
i

(f( ))/2x∗
i

ρ([f( ) /2)Δx.x∗
i ]2

Mx = ρ Δxlim
n→∞

∑
i=1

n [f( )x∗
i ]2

2

= ρ dx.∫
b

a

[f(x)]2

2

x∗
i

My = ρ f( )i)Δxlim
n→∞

∑
i=1

n

x∗
i x∗

= ρ xf(x)dx.∫
b

a

= /mx̄ My = /mȳ Mx

,Mx My m ρ x̄ ȳ
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Let R denote a region bounded above by the graph of a continuous function , below by the x-axis, and on the left and right
by the lines  and , respectively. Let  denote the density of the associated lamina. Then we can make the following
statements:

i. The mass of the lamina is

ii. The moments  and  of the lamina with respect to the x- and y-axes, respectively, are

and

iii. The coordinates of the center of mass  are

and

In the next example, we use this theorem to find the center of mass of a lamina.

Let R be the region bounded above by the graph of the function  and below by the x-axis over the interval .
Find the centroid of the region.

Solution

The region is depicted in the following figure.

Figure : Finding the center of mass of a lamina.

Since we are only asked for the centroid of the region, rather than the mass or moments of the associated lamina, we know the
density constant  cancels out of the calculations eventually. Therefore, for the sake of convenience, let’s assume .

First, we need to calculate the total mass (Equation ):

 Center of Mass of a Thin Plate in the xy-Plane

f(x)
x = a x = b ρ

m = ρ f(x)dx.∫
b

a

(2.10.4.9)

Mx My

= ρ dxMx ∫
b

a

[f(x)]2

2
(2.10.4.10)

= ρ xf(x)dx.My ∫
b

a

(2.10.4.11)

( , )x̄ ȳ

=x̄
My

m
(2.10.4.12)

= .ȳ
Mx

m
(2.10.4.13)

 Example : Finding the Center of Mass of a Lamina2.10.4.3

f(x) = x−−√ [0, 4]

2.10.4.6

ρ ρ = 1

2.10.4.9
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Next, we compute the moments (Equation ):

and (Equation ):

Thus, we have (Equation ):

and (Equation ):

m = ρ f(x)dx∫
b

a

= dx∫
4

0
x−−√

=
2

3
x3/2∣

∣
∣
4

0

= [8 −0]
2

3

= .
16

3

2.10.4.12

Mx = ρ dx∫
b

a

[f(x)]2

2

= dx∫
4

0

x

2

=
1

4
x2∣

∣
∣
4

0

= 4

2.10.4.11

My = ρ xf(x)dx∫
b

a

= x dx∫
4

0
x−−√

= dx∫
4

0
x3/2

=
2

5
x5/2∣

∣
∣
4

0

= [32 −0]
2

5

= .
64

5

2.10.4.12

x̄ =
My

m

=
64/5

16/3

= ⋅
64

5

3

16

=
12

5

2.10.4.13
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The centroid of the region is 

Let  be the region bounded above by the graph of the function  and below by the x-axis over the interval 
Find the centroid of the region.

Hint

Use the process from the previous example.

Answer

The centroid of the region is 

We can adapt this approach to find centroids of more complex regions as well. Suppose our region is bounded above by the graph
of a continuous function , as before, but now, instead of having the lower bound for the region be the x-axis, suppose the
region is bounded below by the graph of a second continuous function, , as shown in Figure .

Figure : A region between two functions.

Again, we partition the interval  and construct rectangles. A representative rectangle is shown in Figure .

Figure : A representative rectangle of the region between two functions.

Note that the centroid of this rectangle is . We won’t go through all the details of the Riemann sum
development, but let’s look at some of the key steps. In the development of the formulas for the mass of the lamina and the moment
with respect to the y-axis, the height of each rectangle is given by , which leads to the expression  in the
integrands.

In the development of the formula for the moment with respect to the x-axis, the moment of each rectangle is found by multiplying
the area of the rectangle,  by the distance of the centroid from the -axis, , which gives 

. Summarizing these findings, we arrive at the following theorem.

ȳ =
Mx

y

=
4

16/3

= 4 ⋅
3

16

= .
3

4

(12/5, 3/4).

 Exercise 2.10.4.3

R f(x) = x2 [0, 2].

(3/2, 6/5).

f(x)
g(x) 2.10.4.7

2.10.4.7

[a, b] 2.10.4.8

2.10.4.8

( , (f( ) +g( ))/2)x∗
i x∗

i x∗
i

f( ) −g( )x∗
i x∗

i f(x) −g(x)

ρ[f( ) −g( )]Δx,x∗
i x∗

i x (f( ) +g( ))/2x∗
i x∗

i

ρ(1/2)[f( ) −[g( ) Δxx∗
i ]2 x∗

i ]2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76313?pdf


2.10.4.10 https://phys.libretexts.org/@go/page/76313

Let  denote a region bounded above by the graph of a continuous function  below by the graph of the continuous
function , and on the left and right by the lines  and , respectively. Let  denote the density of the associated
lamina. Then we can make the following statements:

i. The mass of the lamina is

ii. The moments  and  of the lamina with respect to the x- and y-axes, respectively, are

and

iii. The coordinates of the center of mass  are

and

We illustrate this theorem in the following example.

Let R be the region bounded above by the graph of the function  and below by the graph of the function 
 Find the centroid of the region.

Solution

The region is depicted in the following figure.

Figure : Finding the centroid of a region between two curves.

The graphs of the functions intersect at  and , so we integrate from −2 to 1. Once again, for the sake of
convenience, assume .

First, we need to calculate the total mass:

 Center of Mass of a Lamina Bounded by Two Functions

R f(x),
g(x) x = a x = b ρ

m = ρ [f(x) −g(x)]dx.∫
b

a

Mx My

= ρ 12([f(x) −[g(x) )dxMx ∫
b

a

]2 ]2

= ρ x[f(x) −g(x)]dx.My ∫
b

a

, )x̄ ȳ

=x̄
My

m

=ȳ
Mx

m

 Example : Finding the Centroid of a Region Bounded by Two Functions2.10.4.4

f(x) = 1 −x2

g(x) = x−1.

2.10.4.9

(−2, −3) (1, 0)
ρ = 1
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Next, we compute the moments:

and

Therefore, we have

m = ρ [f(x) −g(x)]dx∫
b

a

= [1 − −(x−1)]dx∫
1

−2
x2

= (2 − −x)dx∫
1

−2
x2

= [2x− − ]
1

3
x3 1

2
x2 ∣

∣
∣
1

−2

= [2 − − ]−[−4 + −2]
1

3

1

2

8

3

= .
9

2

Mx = ρ ([f(x) −[g(x) )dx∫
b

a

1

2
]2 ]2

= ((1 − −(x−1 )dx
1

2
∫

1

−2
x2)2 )2

= ( −3 +2x)dx
1

2
∫

1

−2
x4 x2

= [ − + ]
1

2

x5

5
x3 x2

∣

∣
∣
1

−2

= −
27

10

My = ρ x[f(x) −g(x)]dx∫
b

a

= x[(1 − ) −(x−1)]dx∫
1

−2
x2

= x[2 − −x]dx∫
1

−2
x2

= (2x− − )dx∫
1

−2
x4 x2

= [ − − ]x2 x5

5

x3

3

∣

∣
∣
1

−2

= − .
9

4
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and

The centroid of the region is 

Let  be the region bounded above by the graph of the function  and below by the graph of the function 
 Find the centroid of the region.

Hint

Use the process from the previous example.

Answer

The centroid of the region is 

The Symmetry Principle
We stated the symmetry principle earlier, when we were looking at the centroid of a rectangle. The symmetry principle can be a
great help when finding centroids of regions that are symmetric. Consider the following example.

Let R be the region bounded above by the graph of the function  and below by the x-axis. Find the centroid of
the region.

Solution

The region is depicted in the following figure

Figure : We can use the symmetry principle to help find the centroid of a symmetric region.

The region is symmetric with respect to the y-axis. Therefore, the x-coordinate of the centroid is zero. We need only calculate 
. Once again, for the sake of convenience, assume .

x̄ =
My

m

= − ⋅
9

4

2

9

= −
1

2

ȳ =
Mx

y

= − ⋅
27

10

2

9

= − .
3

5

(−(1/2), −(3/5)).

 Exercise 2.10.4.4

R f(x) = 6 −x2

g(x) = 3 −2x.

(1, 13/5).

 Example : Finding the Centroid of a Symmetric Region2.10.4.5

f(x) = 4 −x2

2.10.4.10

ȳ ρ = 1
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First, we calculate the total mass:

Next, we calculate the moments. We only need :

Then we have

The centroid of the region is 

Let  be the region bounded above by the graph of the function  and below by -axis. Find the centroid of the
region.

Hint

Use the process from the previous example.

Answer

The centroid of the region is 

The Grand Canyon Skywalk opened to the public on March 28, 2007. This engineering marvel is a horseshoe-shaped
observation platform suspended 4000 ft above the Colorado River on the West Rim of the Grand Canyon. Its crystal-clear glass
floor allows stunning views of the canyon below (see the following figure).

m = ρ f(x)dx∫
b

a

= (4 − )dx∫
2

−2
x2

= [4x− ]
x3

3

∣

∣
∣
2

−2

= .
32

3

Mx

Mx = ρ dx∫
b

a

[f(x)]2

2

= dx = (16 −8 + )dx
1

2
∫

2

−2
[4 − ]x2 2 1

2
∫

2

−2
x2 x4

= [ − +16x] =
1

2

x5

5

8x3

3
∣2
−2

256

15

= = ⋅ = .ȳ
Mx

y

256

15

3

32

8

5

(0, 8/5).

 Exercise 2.10.4.5

R f(x) = 1 −x2 x

(0, 2/5).

 The Grand Canyon Skywalk
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Figure : The Grand Canyon Skywalk offers magnificent views of the canyon. (credit: 10da_ralta, Wikimedia
Commons)

The Skywalk is a cantilever design, meaning that the observation platform extends over the rim of the canyon, with no visible
means of support below it. Despite the lack of visible support posts or struts, cantilever structures are engineered to be very
stable and the Skywalk is no exception. The observation platform is attached firmly to support posts that extend 46 ft down
into bedrock. The structure was built to withstand 100-mph winds and an 8.0-magnitude earthquake within 50 mi, and is
capable of supporting more than 70,000,000 lb.

One factor affecting the stability of the Skywalk is the center of gravity of the structure. We are going to calculate the center of
gravity of the Skywalk, and examine how the center of gravity changes when tourists walk out onto the observation platform.

The observation platform is U-shaped. The legs of the U are 10 ft wide and begin on land, under the visitors’ center, 48 ft from
the edge of the canyon. The platform extends 70 ft over the edge of the canyon.

To calculate the center of mass of the structure, we treat it as a lamina and use a two-dimensional region in the xy-plane to
represent the platform. We begin by dividing the region into three subregions so we can consider each subregion separately.
The first region, denoted , consists of the curved part of the U. We model  as a semicircular annulus, with inner radius 25
ft and outer radius 35 ft, centered at the origin (Figure ).

Figure : We model the Skywalk with three sub-regions.

The legs of the platform, extending 35 ft between  and the canyon wall, comprise the second sub-region, . Last, the ends
of the legs, which extend 48 ft under the visitor center, comprise the third sub-region, . Assume the density of the lamina is
constant and assume the total weight of the platform is 1,200,000 lb (not including the weight of the visitor center; we will
consider that later). Use .

2.10.4.11

R1 R1

2.10.4.12

2.10.4.12

R1 R2

R3

g = 32 ft/sec2
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1. Compute the area of each of the three sub-regions. Note that the areas of regions  and  should include the areas of the
legs only, not the open space between them. Round answers to the nearest square foot.

2. Determine the mass associated with each of the three sub-regions.
3. Calculate the center of mass of each of the three sub-regions.
4. Now, treat each of the three sub-regions as a point mass located at the center of mass of the corresponding sub-region.

Using this representation, calculate the center of mass of the entire platform.
5. Assume the visitor center weighs 2,200,000 lb, with a center of mass corresponding to the center of mass of .Treating

the visitor center as a point mass, recalculate the center of mass of the system. How does the center of mass change?
6. Although the Skywalk was built to limit the number of people on the observation platform to 120, the platform is capable

of supporting up to 800 people weighing 200 lb each. If all 800 people were allowed on the platform, and all of them went
to the farthest end of the platform, how would the center of gravity of the system be affected? (Include the visitor center in
the calculations and represent the people by a point mass located at the farthest edge of the platform, 70 ft from the canyon
wall.)

Theorem of Pappus

This section ends with a discussion of the theorem of Pappus for volume, which allows us to find the volume of particular kinds of
solids by using the centroid. (There is also a theorem of Pappus for surface area, but it is much less useful than the theorem for
volume.)

Let  be a region in the plane and let l be a line in the plane that does not intersect . Then the volume of the solid of
revolution formed by revolving  around l is equal to the area of  multiplied by the distance d traveled by the centroid of .

We can prove the case when the region is bounded above by the graph of a function  and below by the graph of a function 
 over an interval , and for which the axis of revolution is the -axis. In this case, the area of the region is 

. Since the axis of rotation is the -axis, the distance traveled by the centroid of the region depends

only on the -coordinate of the centroid, , which is

where

and

Then,

and thus

R2 R3

R3

 Theorem of Pappus for Volume

R R

R R R

 Proof

f(x)
g(x) [a, b] y

A = [f(x) −g(x)] dx∫
b

a

y

x x̄

x = ,
My

m

m = ρ [f(x) −g(x)]dx∫
b

a

= ρ x[f(x) −g(x)]dx.My ∫
b

a

d = 2π

ρ x[f(x) −g(x)]dx∫
b

a

ρ [f(x) −g(x)]dx∫
b

a

d ⋅A = 2π x[f(x) −g(x)]dx.∫
b

a
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However, using the method of cylindrical shells, we have

So,

and the proof is complete.

□

Let  be a circle of radius 2 centered at  Use the theorem of Pappus for volume to find the volume of the torus generated
by revolving  around the -axis.

Solution

The region and torus are depicted in the following figure.

Figure : Determining the volume of a torus by using the theorem of Pappus. (a) A circular region  in the plane; (b)
the torus generated by revolving  about the -axis.

The region  is a circle of radius 2, so the area of R is . By the symmetry principle, the centroid of R is the
center of the circle. The centroid travels around the -axis in a circular path of radius 4, so the centroid travels  units.
Then, the volume of the torus is  units .

Let R be a circle of radius 1 centered at  Use the theorem of Pappus for volume to find the volume of the torus generated
by revolving R around the -axis.

Hint

Use the process from the previous example.

Answer

 units

Key Concepts
Mathematically, the center of mass of a system is the point at which the total mass of the system could be concentrated without
changing the moment. Loosely speaking, the center of mass can be thought of as the balancing point of the system.

V = 2π x[f(x) −g(x)]dx.∫
b

a

V = d ⋅A

 Example : Using the Theorem of Pappus for Volume2.10.4.6

R (4, 0).
R y

2.10.4.13 R
R y

R A = 4π units2

y d = 8π
A ⋅ d = 32π2 3

 Exercise 2.10.4.6

(3, 0).
y

6π2 3
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For point masses distributed along a number line, the moment of the system with respect to the origin is  For

point masses distributed in a plane, the moments of the system with respect to the - and -axes, respectively, are 

 and , respectively.

For a lamina bounded above by a function , the moments of the system with respect to the - and -axes, respectively, are 

 and 

The - and -coordinates of the center of mass can be found by dividing the moments around the -axis and around the -axis,
respectively, by the total mass. The symmetry principle says that if a region is symmetric with respect to a line, then the
centroid of the region lies on the line.
The theorem of Pappus for volume says that if a region is revolved around an external axis, the volume of the resulting solid is
equal to the area of the region multiplied by the distance traveled by the centroid of the region.

Key Equations
Mass of a lamina

Moments of a lamina

Center of mass of a lamina

Glossary

center of mass
the point at which the total mass of the system could be concentrated without changing the moment

centroid
the centroid of a region is the geometric center of the region; laminas are often represented by regions in the plane; if the lamina
has a constant density, the center of mass of the lamina depends only on the shape of the corresponding planar region; in this
case, the center of mass of the lamina corresponds to the centroid of the representative region

lamina
a thin sheet of material; laminas are thin enough that, for mathematical purposes, they can be treated as if they are two-
dimensional

moment

if n masses are arranged on a number line, the moment of the system with respect to the origin is given by ; if,

instead, we consider a region in the plane, bounded above by a function  over an interval , then the moments of the

region with respect to the - and -axes are given by  and , respectively

symmetry principle
the symmetry principle states that if a region  is symmetric about a line , then the centroid of  lies on 

theorem of Pappus for volume

M = .∑
i=1

n

mixi

x y

=Mx ∑
i=1

n

miyi =My ∑
i=

n

mixi

f(x) x y

= ρ dxMx ∫
b

a

[f(x)]2

2
= ρ xf(x)dx.My ∫

b

a

x y y x

m = ρ f(x)dx∫
b

a

= ρ dx and  = ρ xf(x)dxMx ∫
b

a

[f(x)]2

2
My ∫

b

a

=  and  =x̄
My

m
ȳ

Mx

m

M =∑
i=1

n

mixi

f(x) [a, b]

x y = ρ dxMx ∫
b

a

[f(x)]2

2
= ρ xf(x)dxMy ∫

b

a

R I R I
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this theorem states that the volume of a solid of revolution formed by revolving a region around an external axis is equal to the
area of the region multiplied by the distance traveled by the centroid of the region

This page titled 2.10.4: Moments_and_Centers_of_Mass is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Edwin “Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

6.6: Moments and Centers of Mass by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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2.10.5: Table_of_Integrals

Basic Integrals

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Trigonometric Integrals

18. 

19. 

20. 

21. 

∫ du = +C, n ≠ −1u
n

un+1

n+1

∫ = ln|u| +C
du

u

∫ du = +Ce
u

e
u

∫ du = +Ca
u a

u

lna

∫ sinu du = −cosu+C

∫ cosu du = sinu+C

∫ u du = tanu+Csec2

∫ u du = −cotu+Ccsc2

∫ secu tanu du = secu+C

∫ cscu cotu du = −cscu+C

∫ tanu du = ln| secu| +C

∫ cotu du = ln| sinu| +C

∫ secu du = ln| secu+tanu| +C

∫ cscu du = ln| cscu−cotu| +C

∫ = ( )+C
du

−a2 u2
− −−−−−

√
sin−1 u

a

∫ = ( )+C
du

+a2 u2

1

a
tan−1 u

a

∫ = +C
du

u −u2 a2
− −−−−−

√

1

a
sec−1 |u|

a

∫ u du = u− sin2u+Csin2 1

2

1

4

∫ u du = u+ sin2u+Ccos2 1

2

1

4

∫ u du = tanu−u+Ctan2

∫ u du = −cotu−u+Ccot2
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22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

Exponential and Logarithmic Integrals

42. 

∫ u du = − (2 + u) cosu+Csin3 1

3
sin2

∫ u du = (2 + u) sinu+Ccos3 1

3
cos2

∫ u du = u+ln| cosu| +Ctan3 1

2
tan2

∫ u du = − u−ln| sinu| +Ccot3 1

2
cot2

∫ u du = secu tanu+ ln| secu+tanu| +Csec3 1

2

1

2

∫ u du = − cscu cotu+ ln| cscu−cotu| +Ccsc3 1

2

1

2

∫ u du = u cosu+ ∫ u dusinn
−1

n
sinn−1 n−1

n
sinn−2

∫ u du = u sinu+ ∫ u ducosn
1

n
cosn−1 n−1

n
cosn−2

∫ u du = u−∫ u dutann
1

n−1
tann−1 tann−2

∫ u du = u−∫ u ducotn
−1

n−1
cotn−1 cotn−2

∫ u du = tanu u+ ∫ u dusecn
1

n−1
secn−2 n−2

n−1
secn−2

∫ u du = cotu u+ ∫ u ducscn
−1

n−1
cscn−2 n−2

n−1
cscn−2

∫ sinau sinbu du = − +C
sin(a−b)u

2(a−b)

sin(a+b)u

2(a+b)

∫ cosau cos bu du = + +C
sin(a−b)u

2(a−b)

sin(a+b)u

2(a+b)

∫ sinau cos bu du = − − +C
cos(a−b)u

2(a−b)

cos(a+b)u

2(a+b)

∫ u sinu du = sinu−u cosu+C

∫ u cosu du = cosu+u sinu+C

∫ sinu du = − cosu+n∫ cosu duu
n

u
n

u
n−1

∫ cosu du = sinu−n∫ sinu duu
n

u
n

u
n−1

∫ u u du = − + ∫ u u dusinn cosm
u usinn−1 cosm+1

n+m

n−1

n+m
sinn−2 cosm

= + ∫ u u du
u usinn+1 cosm−1

n+m

m−1

n+m
sinn cosm−2

∫ u du = (au−1) +Ce
au

1

a2
e
au
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43. 

44. 

45. 

46. 

47. 

48. 

Hyperbolic Integrals

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

Inverse Trigonometric Integrals

59. 

60. 

61. 

62. 

63. 

64. 

∫ du = − ∫ duu
n
e
au 1

a
u
n
e
au n

a
u
n−1

e
au

∫ sinbu du = (a sinbu−b cos bu) +Ce
au

e
au

+a2 b2

∫ cos bu du = (a cos bu+b sinbu) +Ce
au e

au

+a2 b2

∫ lnu du = u lnu−u+C

∫ lnu du = [(n+1) lnu−1] +Cu
n u

n+1

(n+1)2

∫ du = ln| lnu| +C
1

u lnu

∫ sinhu du = coshu+C

∫ coshu du = sinhu+C

∫ tanhu du = lncoshu+C

∫ cothu du = ln| sinhu| +C

∫ sechu du = | sinhu| +Ctan−1

∫ cschu du = ln ∣ tanh u ∣ +C
1

2

∫ u du = tanh u+Csech2

∫ u du = −coth u+Ccsch2

∫ sechu tanhu du = −sechu+C

∫ cschu cothu du = −cschu+C

∫ u du = u u+ +Csin−1 sin−1 1 −u
2− −−−−

√

∫ u du = u u− +Ccos−1 cos−1 1 −u
2− −−−−

√

∫ u du = u u− ln(1 + ) +Ctan−1 tan−1 1

2
u

2

∫ u u du = u+ +Csin−1 2 −1u
2

4
sin−1 u 1 −u2

− −−−−
√

4

∫ u u du = u− +Ccos−1 2 −1u
2

4
cos−1 u 1 −u2

− −−−−
√

4

∫ u u du = u− +Ctan−1 +1u
2

2
tan−1 u

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76314?pdf


2.10.5.4 https://phys.libretexts.org/@go/page/76314

65. 

66. 

67. 

Integrals Involving a  + u , a > 0

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

76. 

Integrals Involving u  − a , a > 0

77. 

78. 

79. 

80. 

81. 

82. 

83. 

84. 

∫ u du = [ u−∫ ] , n ≠ −1u
n sin−1 1

n+1
u
n+1 sin−1 duu

n+1

1 −u2
− −−−−

√

∫ u du = [ u+∫ ] , n ≠ −1u
n cos−1 1

n+1
u
n+1 cos−1 duu

n+1

1 −u2
− −−−−

√

∫ u du = [ u−∫ ] , n ≠ −1u
n tan−1 1

n+1
u
n+1 tan−1 duu

n+1

1 +u2

2 2

∫ du = + ln(u+ )+C+a
2

u
2− −−−−−

√ u

2
+a

2
u

2− −−−−−
√ a

2

2
+a

2
u

2− −−−−−
√

∫ du = ( +2 ) − ln(u+ )+Cu
2 +a

2
u

2− −−−−−
√

u

8
a

2
u

2 +a
2

u
2− −−−−−

√
a

4

8
+a

2
u

2− −−−−−
√

∫ du = −a ln +C
+a2 u2

− −−−−−
√

u
+a

2
u

2− −−−−−
√

∣

∣
∣
a+ +a2 u2

− −−−−−
√

u

∣

∣
∣

∫ du = − +ln(u+ )+C
+a2 u2

− −−−−−
√

u2

+a2 u2
− −−−−−

√

u
+a

2
u

2− −−−−−
√

∫ = ln(u+ )+C
du

+a2 u2
− −−−−−

√
+a

2
u

2− −−−−−
√

∫ du = ( )− ln(u+ )+C
u

2

+a2 u2
− −−−−−

√

u

2
+a

2
u

2− −−−−−
√ a

2

2
+a

2
u

2− −−−−−
√

∫ = ln +C
du
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− −−−−−

√

−1

a

∣

∣
∣

+a+a2 u2
− −−−−−

√

u

∣

∣
∣

∫ = − +C
du

u2 +a2 u2
− −−−−−

√

+a2 u2
− −−−−−

√

ua2

∫ = +C
du

( + )a2 u2 3/2

u

a2 +a2 u2
− −−−−−

√

2 2

∫ du = − ln u+ +C−u
2

a
2− −−−−−

√ u

2
−u

2
a

2− −−−−−
√ a

2

2
∣∣ −u

2
a

2− −−−−−
√ ∣∣

∫ du = (2 − ) − ln u+ +Cu
2 −u

2
a

2− −−−−−
√

u

8
u

2
a

2 −u
2

a
2− −−−−−

√
a4

8
∣
∣ −u

2
a

2− −−−−−
√ ∣

∣

∫ du = −a +C
−u2 a2

− −−−−−
√

u
−u

2
a

2− −−−−−√ cos−1 a

|u|

∫ du = − +ln u+ +C
−u2 a2

− −−−−−
√

u2

−u2 a2
− −−−−−

√

u
∣
∣ −u

2
a

2− −−−−−
√ ∣

∣

∫ = ln u+ +C
du

−u2 a2
− −−−−−

√
∣∣ −u

2
a

2− −−−−−
√ ∣∣

∫ du = + ln u+ +C
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2

−u2 a2
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√

u

2
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2
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2

2
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√
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Integrals Involving a  − u , a > 0

85. 

86. 

87. 

88. 

89. 

90. 

91. 

92. 

93. 

Integrals Involving 2au − u , a > 0

94. 

95. 

96. 

97. 

Integrals Involving a + bu, a ≠ 0

98. 

99. 

100. 

101. 

102. 

103. 

104. 
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∣
∣
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∣
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2
cos−1 a−u

a

∫ = ( )+C
du

2au−u2
− −−−−−−

√
cos−1 a−u

a

∫ u du = + ( )+C2au−u
2− −−−−−−

√ 2 −au−3u
2

a
2

6
2au−u

2− −−−−−−
√ a

3

2
cos−1 a−u

a

∫ = − +C
du

u 2au−u2
− −−−−−−

√

2au−u2
− −−−−−−

√

au

∫ du = (a+bu−a ln |a+bu|) +C
u

a+bu

1

b2

∫ du = [(a+bu −4a(a+bu) +2 ln |a+bu|]+C
u

2

a+bu

1

2b3
)2

a
2

∫ = ln +C
du

u(a+bu)

1

a

∣
∣
∣

u

a+bu

∣
∣
∣

∫ = − + ln +C
du

(a+bu)u2

1

au

b

a2

∣
∣
∣
a+bu

u

∣
∣
∣

∫ du = + ln|a+bu| +C
u

(a+bu)2

a

(a+bu)b2

1

b2

∫ du = − ln +C
u

u(a+bu)2

1

a(a+bu)

1

a2

∣
∣
∣
a+bu

u

∣
∣
∣

∫ du = (a+bu− −2a ln |a+bu|)+C
u

2

(a+bu)2

1

b3

a
2

a+bu
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105. 

106. 

107. 

108. 

109. 

110. 

111. 

112. 

113. 

This page titled 2.10.5: Table_of_Integrals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Edwin
“Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

Appendix B: Table of Integrals by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

∫ u du = (3bu−2a)(a+bu +Ca+bu
− −−−−

√
2

15b2
)3/2

∫ du = (bu−2a) +C
u

a+bu
− −−−−

√

2

3b2
a+bu
− −−−−

√

∫ du = (8 +3 −4abu) +C
u

2

a+bu
− −−−−

√

2

15b3
a

2
b

2
u

2
a+bu
− −−−−

√

∫ =
du

u a+bu
− −−−−

√

⎧

⎩
⎨
⎪⎪

⎪⎪

ln +C, if a > 01
a√

∣
∣

−a+bu√ a√

+a+bu√ a√

∣
∣

+C, if a < 0
2√

−a√
tan−1 a+bu

−a

− −−−
√

∫ du = 2 +a∫
a+bu
− −−−−

√

u
a+bu
− −−−−

√
du

u a+bu
− −−−−

√

∫ du = − + ∫
a+bu
− −−−−

√

u2

a+bu
− −−−−

√

u

b

2

du

u a+bu
− −−−−

√

∫ du = [ (a+bu −na∫ du]u
n

a+bu
− −−−−

√
2

b(2n+3)
u
n )3/2

u
n−1

a+bu
− −−−−

√

∫ du = − ∫ du
u
n

a+bu
− −−−−

√

2un a+bu
− −−−−

√

b(2n+1)

2na

b(2n+1)

u
n−1

a+bu
− −−−−

√

∫ = − − ∫
du

un a+bu
− −−−−

√

a+bu
− −−−−

√

a(n−1)un−1

b(2n−3)

2a(n−1)

du

un−1 a+bu
− −−−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76314?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.05%3A_Table_of_Integrals
https://creativecommons.org/licenses/by-nc-sa/4.0
https://openstax.org/
https://openstax.org/
https://openstax.org/details/books/calculus-volume-1
https://math.libretexts.org/@go/page/14736
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


2.11.1 https://phys.libretexts.org/@go/page/76326

SECTION OVERVIEW

2.11: Vectors

2.11.1: Review of Trigonometry

2.11.2: Right Angle Triangle Trigonometry

2.11.3: Scalars and Vectors

2.11.4: Coordinate Systems and Components of a Vector

2.11.5: Algebra of Vectors

2.11.6: Products of Vectors

2.11.7: Further Topics

2.11.E: Practice

2.11: Vectors is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76326?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.04%3A__Coordinate_Systems_and_Components_of_a_Vector
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.05%3A_Algebra_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.06%3A_Products_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.07%3A_Further_Topics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.E%3A_Practice
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors
https://creativecommons.org/licenses/by-nc-sa/


2.11.1.1 https://phys.libretexts.org/@go/page/76318

2.11.1: Review of Trigonometry

Convert angle measures between degrees and radians.
Recognize the triangular and circular definitions of the basic trigonometric functions.
Write the basic trigonometric identities.
Identify the graphs and periods of the trigonometric functions.
Describe the shift of a sine or cosine graph from the equation of the function.

Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current,
and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some combination of trigonometric
functions. In this section, we define the six basic trigonometric functions and look at some of the main identities involving these
functions.

Radian Measure
To use trigonometric functions, we first must understand how to measure the angles. Although we can use both radians and degrees,
radians are a more natural measurement because they are related directly to the unit circle, a circle with radius 1. Moreove, radian is the
SI unit for angles. The radian measure of an angle is defined as follows. Given an angle , let  be the length of the corresponding arc on
the unit circle (Figure ). We say the angle corresponding to the arc of length 1 has radian measure 1.

Figure : The radian measure of an angle  is the arc length  of the associated arc on the unit circle.

Since an angle of  corresponds to the circumference of a circle, or an arc of length , we conclude that an angle with a degree
measure of  has a radian measure of . Similarly, we see that  is equivalent to  radians. Table  shows the
relationship between common degree and radian values.

Table : Common Angles Expressed in Degrees and Radians

Degrees Radians Degrees Radians

0 0 120

30 135

45 150

60 180

90   

a. Express  using radians.
b. Express  rad using degrees.

Solution

Use the fact that ° is equivalent to  radians as a conversion factor (Table ):

 Learning Objectives

θ s

2.11.1.1

2.11.1.1 θ s

360° 2π
360° 2π 180° π 2.11.1.1

2.11.1.1

2π/3

π/6 3π/4

π/4 5π/6

π/3 π

π/2

 Converting between Radians and Degrees

225°
5π/3

180 π 2.11.1.1

1 = = .
π rad

180°

180°

π rad
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a. 

b.  rad = ⋅ = °

a. Express  using radians.
b. Express  rad using degrees.

Hint

 radians is equal to 180°

Answer
a. 
b. 330°

The Six Basic Trigonometric Functions
Trigonometric functions allow us to use angle measures, in radians or degrees, to find the coordinates of a point on any circle—not only
on a unit circle—or to find an angle given a point on a circle. They also define the relationship between the sides and angles of a triangle.

To define the trigonometric functions, first consider the unit circle centered at the origin and a point  on the unit circle. Let 
be an angle with an initial side that lies along the positive -axis and with a terminal side that is the line segment . An angle in this
position is said to be in standard position (Figure ). We can then define the values of the six trigonometric functions for  in
terms of the coordinates  and .

Figure : The angle  is in standard position. The values of the trigonometric functions for  are defined in terms of the
coordinates  and .

Let  be a point on the unit circle centered at the origin . Let  be an angle with an initial side along the positive -axis
and a terminal side given by the line segment . The trigonometric functions are then defined as

If  and  are undefined. If , then  and  are undefined.

We can see that for a point  on a circle of radius  with a corresponding angle , the coordinates  and  satisfy

225° = 225° ⋅( ) ° =( ) rad
π

180

5π

4
5π

3

5π

3

180°

π
300

 Exercise 2.11.1.1

210°
11π/6

π

7π/6

P = (x, y) θ

x OP

2.11.1.2 θ

x y

2.11.1.2 θ θ
x y

 Definition: Trigonometric functions

P = (x, y) O θ x

OP

sin θ = y csc θ =
1

y

cos θ = x sec θ =
1

x

tan θ =
y

x
cot θ =

x

y

x = 0, sec θ tanθ y = 0 cotθ csc θ

P = (x, y) r θ x y
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and

The values of the other trigonometric functions can be expressed in terms of , and  (Figure ).

Figure : For a point  on a circle of radius , the coordinates  and  satisfy  and .

Table  shows the values of sine and cosine at the major angles in the first quadrant. From this table, we can determine the values
of sine and cosine at the corresponding angles in the other quadrants. The values of the other trigonometric functions are calculated
easily from the values of  and 

Table : Values of  and  at Major Angles  in the First Quadrant

0 0 1

1 0

Evaluate each of the following expressions.

a. 

b. 

c. 

Solution:

a) On the unit circle, the angle  corresponds to the point . Therefore,

cosθ

x

=
x

r
= r cosθ

(2.11.1.1)

(2.11.1.2)

sinθ

y

=
y

r
= r sinθ.

(2.11.1.3)

(2.11.1.4)

x, y r 2.11.1.3

2.11.1.3 P = (x,y) r x y x = r cos θ y = r sin θ

2.11.1.2

sinθ cosθ.

2.11.1.2 sin θ cos θ θ

θ sin θ cos θ

π

6
1

2

3–√

2

π

4
2
–√

2

2
–√

2

π

3
3–√

2

1

2
π

2

 Example : Evaluating Trigonometric Functions2.11.1.2

sin( )
2π

3

cos(− )
5π

6

tan( )
15π

4

θ =
2π

3
(− , )

1

2

3
–

√

2

sin( ) = y =( ) .
2π

3

3
–

√

2
(2.11.1.5)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76318?pdf


2.11.1.4 https://phys.libretexts.org/@go/page/76318

b) An angle  corresponds to a revolution in the negative direction, as shown. Therefore,

c) An angle = = + . Therefore, this angle corresponds to more than one revolution, as shown. Knowing the fact that an

angle of  corresponds to the point , we can conclude that

Evaluate  and .

Hint

Look at angles on the unit circle.

Answer

θ = −
5π

6

cos(− ) = x = − .
5π

6

3
–

√

2
(2.11.1.6)

θ
15π

4
2π

7π

4
7π

4
( , )

2
–

√

2

2
–

√

2

tan( ) = = −1.
15π

4

y

x
(2.11.1.7)

 Exercise 2.11.1.2

cos(3π/4) sin(−π/6)

cos(3π/4) = − /22
–

√
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As mentioned earlier, the ratios of the side lengths of a right triangle can be expressed in terms of the trigonometric functions evaluated
at either of the acute angles of the triangle. Let  be one of the acute angles. Let  be the length of the adjacent leg,  be the length of
the opposite leg, and  be the length of the hypotenuse. By inscribing the triangle into a circle of radius , as shown in Figure ,
we see that , and  satisfy the following relationships with :

Figure : By inscribing a right triangle in a circle, we can express the ratios of the side lengths in terms of the trigonometric
functions evaluated at .

A wooden ramp is to be built with one end on the ground and the other end at the top of a short staircase. If the top of the staircase is
 ft from the ground and the angle between the ground and the ramp is to be °, how long does the ramp need to be?

Solution

Let  denote the length of the ramp. In the following image, we see that  needs to satisfy the equation . Solving
this equation for , we see that ≈  ft.

A house painter wants to lean a -ft ladder against a house. If the angle between the base of the ladder and the ground is to be °,
how far from the house should she place the base of the ladder?

Hint

Draw a right triangle with hypotenuse 20.

Answer

10 ft

Trigonometric Identities
A trigonometric identity is an equation involving trigonometric functions that is true for all angles  for which the functions are
defined. We can use the identities to help us solve or simplify equations. The main trigonometric identities are listed next.

sin(−π/6) = −1/2

θ A O

H H 2.11.1.4
A,H O θ

sin θ =
O

H
csc θ =

H

O

cos θ =
A

H
sec θ =

H

A

tan θ =
O

A
cot θ =

A

O

2.11.1.4
θ

 Example : Constructing a Wooden Ramp2.11.1.3

4 10

x x sin(10°) = 4/x
x x = 4/ sin(10°) 23.035

 Exercise 2.11.1.3

20 60

θ
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Reciprocal identities

Pythagorean identities

Addition and subtraction formulas

Double-angle formulas

For each of the following equations, use a trigonometric identity to find all solutions.

a. 
b. 

Solution

a) Using the double-angle formula for , we see that  is a solution of

if and only if

which is true if and only if

To solve this equation, it is important to note that we need to factor the left-hand side and not divide both sides of the equation
by . The problem with dividing by  is that it is possible that  is zero. In fact, if we did divide both sides of the
equation by , we would miss some of the solutions of the original equation. Factoring the left-hand side of the equation,
we see that  is a solution of this equation if and only if

Since  when

 Trigonometric Identities

tanθ =
sinθ

cosθ
(2.11.1.8)

cotθ =
cosθ

sinθ
(2.11.1.9)

csc θ =
1

sinθ
(2.11.1.10)

sec θ =
1

cosθ
(2.11.1.11)

θ+ θsin2 cos2

1 + θtan2

1 + θcot2

= 1

= θsec2

= θcsc2

(2.11.1.12)

(2.11.1.13)

(2.11.1.14)

sin(α±β) = sinα cosβ±cosα sinβ (2.11.1.15)

cos(α±β) = cosα cosβ∓sinα sinβ (2.11.1.16)

sin(2θ) = 2 sinθcosθ (2.11.1.17)

cos(2θ) = 2 θ−1cos2

= 1 −2 θsin2

= θ− θcos2 sin2

(2.11.1.18)

(2.11.1.19)

(2.11.1.20)

 Example : Solving Trigonometric Equations2.11.1.4

1 +cos(2θ) = cosθ
sin(2θ) = tanθ

cos(2θ) θ

1 +cos(2θ) = cosθ

1 +2 cos 2θ−1 = cosθ,

2 θ−cosθ = 0.cos2

cosθ cosθ cosθ
cosθ
θ

cosθ(2 cosθ−1) = 0.

cosθ = 0
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and  when

we conclude that the set of solutions to this equation is

and

b) Using the double-angle formula for  and the reciprocal identity for , the equation can be written as

To solve this equation, we multiply both sides by  to eliminate the denominator, and say that if  satisfies this equation,
then  satisfies the equation

However, we need to be a little careful here. Even if  satisfies this new equation, it may not satisfy the original equation
because, to satisfy the original equation, we would need to be able to divide both sides of the equation by . However, if 

, we cannot divide both sides of the equation by . Therefore, it is possible that we may arrive at extraneous
solutions. So, at the end, it is important to check for extraneous solutions. Returning to the equation, it is important that we
factor  out of both terms on the left-hand side instead of dividing both sides of the equation by . Factoring the left-
hand side of the equation, we can rewrite this equation as

Therefore, the solutions are given by the angles  such that . The solutions of the first equation are 
 The solutions of the second equation are  After checking for

extraneous solutions, the set of solutions to the equation is

and

with 

Find all solutions to the equation 

Hint

Use the double-angle formula for cosine (Equation ).

Answer

for .

θ = , ±π, ±2π, … ,
π

2

π

2

π

2

cosθ = 1/2

θ = , ±2π, … orθ = − , − ±2π, … ,
π

3

π

3

π

3

π

3

θ = +nπ, θ = +2nπ
π

2

π

3

θ = − +2nπ, n = 0, ±1, ±2, … .
π

3

sin(2θ) tan(θ)

2 sinθcosθ = .
sinθ

cosθ

cosθ θ

θ

2 sinθ θ−sinθ = 0.cos2

θ

cosθ
cosθ = 0 cosθ

sinθ sinθ

sinθ(2 θ−1) = 0.cos2

θ sinθ = 0or θ = 1/2cos2

θ = 0, ±π, ±2π, … . θ = π/4, (π/4) ±(π/2), (π/4) ±π, … .

θ = nπ

θ = +
π

4

nπ

2

n = 0, ±1, ±2, … .

 Exercise 2.11.1.4

cos(2θ) = sinθ.

2.11.1.17

θ = +2nπ, +2nπ, +2nπ
3π

2

π

6

5π

6

n = 0, ±1, ±2, …
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Prove the trigonometric identity 

Solution:

We start with the Pythagorean identity (Equation )

Dividing both sides of this equation by  we obtain

Since  and , we conclude that

Prove the trigonometric identity 

Answer

Divide both sides of the identity  by .

Graphs and Periods of the Trigonometric Functions
We have seen that as we travel around the unit circle, the values of the trigonometric functions repeat. We can see this pattern in the
graphs of the functions. Let  be a point on the unit circle and let θ be the corresponding angle . Since the angle  and 
correspond to the same point , the values of the trigonometric functions at  and at  are the same. Consequently, the
trigonometric functions are periodic functions. The period of a function  is defined to be the smallest positive value p such that 

 for all values  in the domain of . The sine, cosine, secant, and cosecant functions have a period of . Since the
tangent and cotangent functions repeat on an interval of length , their period is  (Figure ).

 Example : Proving a Trigonometric Identity2.11.1.5

1 + θ = θ.tan2 sec2

2.11.1.12

θ+ θ = 1.sin2 cos2

θ,cos2

+1 = .
θsin2

θcos2

1

θcos2

sinθ/ cosθ = tanθ 1/ cosθ = sec θ

θ+1 = θ.tan2 sec2

 Exercise 2.11.1.5

1 + θ = θ.cot2 csc2

θ+ θ = 1sin2 cos2 θsin2

P = (x, y) θ θ+2π
P θ θ+2π

f

f(x+p) = f(x) x f 2π
π π 2.11.1.5
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Figure : The six trigonometric functions are periodic.

Just as with algebraic functions, we can apply transformations to trigonometric functions. In particular, consider the following function:

In Figure , the constant  causes a horizontal or phase shift. The factor  changes the period. This transformed sine function
will have a period . The factor  results in a vertical stretch by a factor of . We say  is the “amplitude of .” The constant 

 causes a vertical shift.

Figure : A graph of a general sine function.

Notice in Figure  that the graph of  is the graph of  shifted to the left  units. Therefore, we can write

Similarly, we can view the graph of  as the graph of  shifted right  units, and state that 

A shifted sine curve arises naturally when graphing the number of hours of daylight in a given location as a function of the day of the
year. For example, suppose a city reports that June 21 is the longest day of the year with 15.7 hours and December 21 is the shortest day
of the year with 8.3 hours. It can be shown that the function

2.11.1.5

f(x) = A sin(B(x−α)) +C. (2.11.1.21)

2.11.1.6 α B

2π/|B| A |A| |A| f

C

2.11.1.6

2.11.1.6 y = cosx y = sinx π/2

cosx = sin(x+π/2). (2.11.1.22)

y = sinx y = cosx π/2 sinx = cos(x−π/2).

h(t) = 3.7 sin( (x−80.5))+12
2π

365
(2.11.1.23)
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is a model for the number of hours of daylight  as a function of day of the year  (Figure ).

Figure : The hours of daylight as a function of day of the year can be modeled by a shifted sine curve.

Sketch a graph of 

Solution

This graph is a phase shift of  to the right by  units, followed by a horizontal compression by a factor of 2, a vertical
stretch by a factor of 3, and then a vertical shift by 1 unit. The period of  is .

Describe the relationship between the graph of  and the graph of .

Hint

The graph of  can be sketched using the graph of  and a sequence of three transformations.

Answer

To graph , the graph of  needs to be compressed horizontally by a factor of 4, then stretched
vertically by a factor of 3, then shifted down 5 units. The function  will have a period of  and an amplitude of 3.

h t 2.11.1.7

2.11.1.7

 Example : Sketching the Graph of a Transformed Sine Curve2.11.1.6

f(x) = 3 sin(2(x−π4)) +1.

y = sin(x) π/4
f π

 Exercise 2.11.1.6

f(x) = 3 sin(4x) −5 y = sin(x)

f y = sin(x)

f(x) = 3 sin(4x) −5 y = sin(x)
f π/2
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Key Concepts
Radian measure is defined such that the angle associated with the arc of length 1 on the unit circle has radian measure 1. An angle
with a degree measure of ° has a radian measure of  rad.
For acute angles ,the values of the trigonometric functions are defined as ratios of two sides of a right triangle in which one of the
acute angles is .
For a general angle , let  be a point on a circle of radius  corresponding to this angle . The trigonometric functions can be
written as ratios involving , , and .
The trigonometric functions are periodic. The sine, cosine, secant, and cosecant functions have period . The tangent and cotangent
functions have period .

Glossary

periodic function
a function is periodic if it has a repeating pattern as the values of  move from left to right

radians
for a circular arc of length  on a circle of radius 1, the radian measure of the associated angle  is 

trigonometric functions
functions of an angle defined as ratios of the lengths of the sides of a right triangle

trigonometric identity
an equation involving trigonometric functions that is true for all angles  for which the functions in the equation are defined

Contributors and Attributions
Template:ContribOpenStaxCalc

Pythagorean Identities

Double-Angle Identities

Half-Angle Identities

Angle Sum and Difference Identities

Angle Reflections and Shifts

180 π

θ

θ

θ (x, y) r θ

x y r

2π
π

x

s θ s

θ

x+ x = 1cos2 sin2

x− x = 1sec2 tan2

sin2x = 2 sinx cosx

cos 2x = x− x = 1 −2 x = 2 x−1cos2 sin2 sin2 cos2

x =cos2
1 +cos 2x

2

x =sin2 1 −cos 2x

2

sin(α+β) = sin(α) cos(β) +cos(α) sin(β)

sin(α−β) = sin(α) cos(β) −cos(α) sin(β)

cos(α+β) = cos(α) cos(β) −sin(α) sin(β)

cos(α−β) = cos(α) cos(β) +sin(α) sin(β)

sin(−x) = −sinx

cos(−x) = cosx

sin(x± ) = ±cosxπ

2

cos(x± ) = ∓sinxπ
2
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Graphs of the Trigonometric Functions

Figure_APP_005.jpg" style="width: 975px; height: 513px;" width="975px" height="513px"
src="https://math.libretexts.org/@api/dek...re_APP_005.jpg" />

Figure_APP_007n.jpg" style="width: 975px; height: 444px;" width="975px" height="444px"
src="https://math.libretexts.org/@api/dek...e_APP_007n.jpg" />

Trigonometric Identities

Pythagorean Identities

Even-Odd Identities

t + tcos2 sin2

1 + ttan2

1 + tcot2

= 1

= tsec2

= tcsc2

(2.11.1.24)

(2.11.1.25)

(2.11.1.26)

cos(−t)

sec(−t)

sin(−t)

tan(−t)

csc(−t)

cot(−t)

= cos  t

= sec  t

= − sin  t

= − tan  t

= − csc  t

= − cot  t

(2.11.1.27)

(2.11.1.28)

(2.11.1.29)

(2.11.1.30)

(2.11.1.31)

(2.11.1.32)
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Cofunction Identities

Fundamental Identities

Sum and Difference Identities

Double-Angle Formulas

Half-Angle Formulas

Reduction Formulas

Product-to-Sum Formulas

cos  t

sin  t

tan  t

cot  t

sec  t

csc  t

= sin( − t)
π

2

= cos( − t)
π

2
= cot(π2 − t)

= tan( − t)
π

2

= csc( − t)
π

2

= sec( − t)
π

2

(2.11.1.33)

(2.11.1.34)

(2.11.1.35)

(2.11.1.36)

(2.11.1.37)

(2.11.1.38)

tan  t

sec  t

csc  t

cot  t

=
sin  t

cos  t

=
1

cos  t

=
1

sin  t

= =
1

tan  t

cos  t

sin  t

(2.11.1.39)

(2.11.1.40)

(2.11.1.41)

(2.11.1.42)

cos(α+ β)

cos(α− β)

sin(α+ β)

sin(α− β)

tan(α+ β)

tan(α− β)

= cos α  cos β− sin α  sin β

= cos α  cos β+ sin α  sin β

= sin α  cos β+ cos α  sin β

= sin α  cos β− cos α  sin β

=
tan α+ tan β

1 − tan α  tan β

=
tan α− tan β

1 + tan α  tan β

(2.11.1.43)

(2.11.1.44)

(2.11.1.45)

(2.11.1.46)

(2.11.1.47)

(2.11.1.48)

sin(2θ)

cos(2θ)

cos(2θ)

cos(2θ)

tan(2θ) =
2  tan  θ

1 − θtan2

= 2  sin  θ  cos  θ

= θ− θcos2 sin2

= 1 − 2  θsin2

= 2  θ− 1cos2

(2.11.1.49)

(2.11.1.50)

(2.11.1.51)

(2.11.1.52)

(2.11.1.53)

sin 
α

2

cos 
α

2

tan 
α

2

tan 
α

2

tan 
α

2

= ±
1 − cos α

2

− −−−−−−−
√

= ±
1 + cos α

2

− −−−−−−−
√

= ±
1 − cos α

1 + cos α

− −−−−−−−
√

=
sin α

1 + cos α

=
1 − cos α

sin α

(2.11.1.54)

(2.11.1.55)

(2.11.1.56)

(2.11.1.57)

(2.11.1.58)

θsin2

θcos2

θtan2

=
1 − cos(2θ)

2

=
1 + cos(2θ)

2

=
1 − cos(2θ)

1 + cos(2θ)

(2.11.1.59)

(2.11.1.60)

(2.11.1.61)

cos α  cos β

sin α  cos β

sin α  sin β

cos α  sin β

= [cos(α− β) + cos(α+ β)]
1

2

= [sin(α+ β) + sin(α− β)]
1

2

= [cos(α− β) − cos(α+ β)]
1

2

= [sin(α+ β) − sin(α− β)]
1

2

(2.11.1.62

(2.11.1.63

(2.11.1.64

(2.11.1.65
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Sum-to-Product Formulas

Law of Sines

Law of Cosines

2.11.1: Review of Trigonometry is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

1.3: Trigonometric Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
14.3.2: Trigonometric Functions is licensed CC BY-NC-SA 4.0.
14.3.3: Trigonometric Identities is licensed CC BY-NC-SA 4.0.
14: Appendix by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/precalculus.

sin α+ sin β

sin α− sin β

cos α− cos β

cos α+ cos β

= 2  sin( )  cos( )
α+ β

2

α− β

2

= 2  sin( )  cos( )
α− β

2

α+ β

2

= −2  sin( )  sin( )
α+ β

2

α− β

2

= 2  cos( )  cos( )
α+ β

2

α− β

2

(2.11.1.6

(2.11.1.6

(2.11.1.6

(2.11.1.6

sin α

a
a

sin α

= =
sin β

b

sin γ

c

= =
b

sin β

c

sin γ

(2.11.1.70)

(2.11.1.71)

a2

b2

c2

= + − 2bc  cos αb2 c2

= + − 2ac  cos βa2 c2

= + − 2ab  cos γa2 b2

(2.11.1.72)

(2.11.1.73)

(2.11.1.74)
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2.11.2: Right Angle Triangle Trigonometry

Use right triangles to evaluate trigonometric functions.

Find function values for 30°( ),45°( ),and 60°( ).

Use equal cofunctions of complementary angles.
Use the definitions of trigonometric functions of any angle.
Use right-triangle trigonometry to solve applied problems.

Mt. Everest, which straddles the border between China and Nepal, is the tallest mountain in the world. Measuring its height is no
easy task and, in fact, the actual measurement has been a source of controversy for hundreds of years. The measurement process
involves the use of triangles and a branch of mathematics known as trigonometry. In this section, we will define a new group of
functions known as trigonometric functions, and find out how they can be used to measure heights, such as those of the tallest
mountains.

We can defined the sine and cosine of an angle in terms of the coordinates of a point on the unit circle intersected by the terminal
side of the angle:

In this section, however, we will see another way to define trigonometric functions using properties of right triangles.

Using Right Triangles to Evaluate Trigonometric Functions
We can used a unit circle to define the trigonometric functions. In this section, we use definitions so that we can apply them to right
triangles. The value of the sine or cosine function of  is its value at  radians. First, we need to create our right triangle. Figure 

 shows a point on a unit circle of radius 1. If we drop a vertical line segment from the point  to the x-axis, we have a
right triangle whose vertical side has length  and whose horizontal side has length . We can use this right triangle to redefine
sine, cosine, and the other trigonometric functions as ratios of the sides of a right triangle.

Figure : Graph of quarter circle with radius of 1. Inscribed triangle with an angle of t. Point of (x,y) is at intersection of
terminal side of angle and edge of circle.

We know

Likewise, we know

These ratios still apply to the sides of a right triangle when no unit circle is involved and when the triangle is not in standard
position and is not being graphed using  coordinates. To be able to use these ratios freely, we will give the sides more general
names: Instead of ,we will call the side between the given angle and the right angle the adjacent side to angle . (Adjacent means
“next to.”) Instead of ,we will call the side most distant from the given angle the opposite side from angle . And instead of ,we
will call the side of a right triangle opposite the right angle the hypotenuse. These sides are labeled in Figure .

 Learning Objectives

π

6

π

4

π

3

cos t

sin t

= x

= y

t t

2.11.2.1 (x, y)
y x

2.11.2.1

cos t = = x
x

1
(2.11.2.1)

sin t = = y
y

1
(2.11.2.2)

(x, y)
x t

y t 1
2.11.2.2
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Figure : The sides of a right triangle in relation to angle .

Understanding Right Triangle Relationships
Given a right triangle with an acute angle of ,

A common mnemonic for remembering these relationships is SohCahToa , formed from the first letters of “Sine is opposite over
hypotenuse, Cosine is adjacent over hypotenuse, Tangent is opposite over adjacent.”

1. Find the sine as the ratio of the opposite side to the hypotenuse.
2. Find the cosine as the ratio of the adjacent side to the hypotenuse.
3. Find the tangent is the ratio of the opposite side to the adjacent side.

Given the triangle shown in Figure , find the value of .

Figure : A right triangle with side lengths of 8, 15, and 17. Angle alpha also labeled which is opposite to the side
labeled 8.

Solution

The side adjacent to the angle is 15, and the hypotenuse of the triangle is 17, so via Equation :

Given the triangle shown in Figure , find the value of .

2.11.2.2 t

t

sin(t)

cos(t)

tan(t)

=
opposite

hypotenuse

=
adjacent

hypotenuse

=
opposite

adjacent

(2.11.2.3)

(2.11.2.4)

(2.11.2.5)

1

 how to: Given the side lengths of a right triangle and one of the acute angles, find the sine, cosine, and
tangent of that angle

 Example : Evaluating a Trigonometric Function of a Right Triangle2.11.2.1

2.11.2.3 cos α

2.11.2.3

2.11.2.4

cos(α) =
adjacent

hypotenuse

=
15

17

 Exercise 2.11.2.1

2.11.2.4 sin t
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Figure : A right triangle with sides of 7, 24, and 25. Also labeled is angle t which is opposite the side labeled 7.

Answer

Relating Angles and Their Functions

When working with right triangles, the same rules apply regardless of the orientation of the triangle. In fact, we can evaluate the six
trigonometric functions of either of the two acute angles in the triangle in Figure . The side opposite one acute angle is the
side adjacent to the other acute angle, and vice versa.

Figure : The side adjacent to one angle is opposite the other.

We will be asked to find all six trigonometric functions for a given angle in a triangle. Our strategy is to find the sine, cosine, and
tangent of the angles first. Then, we can find the other trigonometric functions easily because we know that the reciprocal of sine is
cosecant, the reciprocal of cosine is secant, and the reciprocal of tangent is cotangent.

1. If needed, draw the right triangle and label the angle provided.
2. Identify the angle, the adjacent side, the side opposite the angle, and the hypotenuse of the right triangle.
3. Find the required function:

sine as the ratio of the opposite side to the hypotenuse
cosine as the ratio of the adjacent side to the hypotenuse
tangent as the ratio of the opposite side to the adjacent side
secant as the ratio of the hypotenuse to the adjacent side
cosecant as the ratio of the hypotenuse to the opposite side
cotangent as the ratio of the adjacent side to the opposite side

Using the triangle shown in Figure , evaluate  and .

Figure : Right triangle with sides of 3, 4, and 5. Angle alpha is also labeled which is opposite the side labeled 4.

Solution

2.11.2.4

7
25

2.11.2.5

2.11.2.5

 how to: Given the side lengths of a right triangle, evaluate the six trigonometric functions of one of the acute
angles

 Example : Evaluating Trigonometric Functions of Angles Not in Standard Position2.11.2.2

2.11.2.6 sinα, cos α, tanα, sec α, csc α, cot α

2.11.2.6
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Using the triangle shown in Figure , evaluate  and .

Figure : Right triangle with sides 33, 56, and 65. Angle t is also labeled which is opposite to the side labeled 33.

Answer

Finding Trigonometric Functions of Special Angles Using Side Lengths
Here we use unit circle relationships to evaluate triangles that contain special angles. We do this because when we evaluate the
special angles in trigonometric functions, they have relatively friendly values, values that contain either no or just one square root
in the ratio. Therefore, these are the angles often used in math and science problems. We will use multiples of  and ,
however, remember that when dealing with right triangles, we are limited to angles between .

Suppose we have a  triangle, which can also be described as a  triangle. The sides have lengths in the relation 
 The sides of a triangle, which can also be described as a  triangle, have lengths in the relation 

 These relations are shown in Figure .

sinα

cos α

tanα

sec α

csc α

cot α

= =
opposite α

hypotenuse

4

5

= =
adjacent to α

hypotenuse

3

5

= =
opposite α

adjacent to α

4

3

= =
hypotenuse

adjacent to α

5

3

= =
hypotenuse

opposite α

5

4

= =
adjacent to α

opposite α

3

4

 Exercise 2.11.2.2

2.11.2.7 sin t, cos t, tan t, sec t, csc t, cot t

2.11.2.7

sin t

sec t

= , cos t = , tan t = ,
33

65

56

65

33

56

= , csc t = , cot t =
65

56

65

33

56

33

30°, 60°, 45°
0° and 90°

30°, 60°, 90° , ,π

6
π

3
π

2

s, s, 2s.3
–

√ 45°, 45°, 90° , ,π

4
π

4
π

2
s, s, s.2

–
√ 2.11.2.8
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Figure : Side lengths of special triangles

We can then use the ratios of the side lengths to evaluate trigonometric functions of special angles.

1. Use the side lengths shown in Figure  for the special angle you wish to evaluate.
2. Use the ratio of side lengths appropriate to the function you wish to evaluate.

Find the exact value of the trigonometric functions of , using side lengths.

Solution

Find the exact value of the trigonometric functions of  using side lengths.

Answer

Using Equal Co-function of Complements
If we look more closely at the relationship between the sine and cosine of the special angles relative to the unit circle, we will

notice a pattern. In a right triangle with angles of  and , we see that the sine of , namely , is also the cosine of , while the

2.11.2.8

 Given trigonometric functions of a special angle, evaluate using side lengths.

2.11.2.8

 Example : Evaluating Trigonometric Functions of Special Angles Using Side Lengths2.11.2.3

π

3

sin( )
π

3

cos( )
π

3

tan( )
π

3

sec( )
π

3

csc( )
π

3

cot( )
π

3

= = =
opp

hyp

s3
–

√

2s

3
–

√

2

= = =
adj

hyp

s

2s

1

2

= = =
opp

adj

s3
–

√

s
3
–

√

= = = 2
hyp

adj

2s

s

= = = =
hyp

opp

2s

s3
–

√

2

3
–

√

2 3
–

√

3

= = = =
adj

opp

s

s3
–

√

1

3
–

√

3
–

√

3

 Exercise 2.11.2.3

π

4

sin( ) = , cos( ) = , tan( ) = 1,π

4

2√

2
π

4

2√

2
π

4

sec( ) = , csc( ) = , cot( ) = 1π

4
2
–

√ π

4
2
–

√ π

4

π

6
π

3
π

3

3√

2
π

6
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sine of , namely  is also the cosine of  (Figure ).

Figure : The sine of  equals the cosine of  and vice versa.

This result should not be surprising because, as we see from Figure , the side opposite the angle of  is also the side
adjacent to , so  and  are exactly the same ratio of the same two sides,  and  Similarly,  and 
are also the same ratio using the same two sides,  and .

The interrelationship between the sines and cosines of  and  also holds for the two acute angles in any right triangle, since in
every case, the ratio of the same two sides would constitute the sine of one angle and the cosine of the other. Since the three angles
of a triangle add to π, π,and the right angle is , the remaining two angles must also add up to . That means that a right triangle
can be formed with any two angles that add to —in other words, any two complementary angles. So we may state a cofunction
identity: If any two angles are complementary, the sine of one is the cosine of the other, and vice versa. This identity is illustrated in
Figure .

Figure : Co-function identity of sine and cosine of complementary angles

Using this identity, we can state without calculating, for instance, that the sine of  equals the cosine of , and that the sine of 
equals the cosine of . We can also state that if, for a certain angle  then  as well.

The co-function identities in radians are listed in Table .

Table 

π

6
,1

2
π

3
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sin
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2s
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sin( )π
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π
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π
2

π
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π
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π
12

5π
12

5π
12

π

12
t, cos t = ,5

13
sin( − t) =π

2
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 CO-FUNCTION IDENTITIES

2.11.2.1

2.11.2.1

cos t = sin( − t)π
2

sin t = cos( − t)
π

2
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1. To find the sine of the complementary angle, find the cosine of the original angle.
2. To find the cosine of the complementary angle, find the sine of the original angle.

If  find .

Solution

According to the cofunction identities for sine and cosine,

So

If  find 

Solution

2

Using Trigonometric Functions

In previous examples, we evaluated the sine and cosine in triangles where we knew all three sides. But the real power of right-
triangle trigonometry emerges when we look at triangles in which we know an angle but do not know all the sides.

1. For each side, select the trigonometric function that has the unknown side as either the numerator or the denominator. The
known side will in turn be the denominator or the numerator.

2. Write an equation setting the function value of the known angle equal to the ratio of the corresponding sides.
3. Using the value of the trigonometric function and the known side length, solve for the missing side length.

Find the unknown sides of the triangle in Figure .

tan t = cot( − t)
π

2
cot t = tan( − t)

π

2

sec t = csc( − t)
π

2
csc t = sec( − t)

π

2

 how to: Given the sine and cosine of an angle, find the sine or cosine of its complement.

 Example : Using Cofunction Identities2.11.2.4

sin t = ,5
12

(cos − t)π
2

sin t = cos( − t).
π

2

cos( − t) = .
π

2

5

12

 Exercise 2.11.2.4

csc( ) = 2,π
6

sec( ).π
3

 how to: Given a right triangle, the length of one side, and the measure of one acute angle, find the remaining
sides

 Example : Finding Missing Side Lengths Using Trigonometric Ratios2.11.2.5

2.11.2.11
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Figure : A right triangle with sides a, c, and 7. Angle of 30 degrees is also labeled which is opposite the side labeled
7.

Solution

We know the angle and the opposite side, so we can use the tangent to find the adjacent side.

We rearrange to solve for .

We can use the sine to find the hypotenuse.

Again, we rearrange to solve for .

A right triangle has one angle of  and a hypotenuse of 20. Find the unknown sides and angle of the triangle.

Answer

 missing angle is 

Using Right Triangle Trigonometry to Solve Applied Problems
Right-triangle trigonometry has many practical applications. For example, the ability to compute the lengths of sides of a triangle
makes it possible to find the height of a tall object without climbing to the top or having to extend a tape measure along its height.
We do so by measuring a distance from the base of the object to a point on the ground some distance away, where we can look up
to the top of the tall object at an angle. The angle of elevation of an object above an observer relative to the observer is the angle
between the horizontal and the line from the object to the observer's eye. The right triangle this position creates has sides that
represent the unknown height, the measured distance from the base, and the angled line of sight from the ground to the top of the
object. Knowing the measured distance to the base of the object and the angle of the line of sight, we can use trigonometric
functions to calculate the unknown height. Similarly, we can form a triangle from the top of a tall object by looking downward. The
angle of depression of an object below an observer relative to the observer is the angle between the horizontal and the line from
the object to the observer's eye. See Figure .

2.11.2.11

tan(30°) =
7

a

a

a =
7

tan(30°)

= 12.1

(2.11.2.6)

(2.11.2.7)

sin(30°) =
7

c

c

c = = 14
7

sin(30°)

 Exercise :2.11.2.5

π

3

adjacent = 10; opposite = 10 ;3
–√ π

6
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Figure : Diagram of a radio tower with line segments extending from the top and base of the tower to a point on the
ground some distance away. The two lines and the tower form a right triangle. The angle near the top of the tower is the angle of
depression. The angle on the ground at a distance from the tower is the angle of elevation.

1. Make a sketch of the problem situation to keep track of known and unknown information.
2. Lay out a measured distance from the base of the object to a point where the top of the object is clearly visible.
3. At the other end of the measured distance, look up to the top of the object. Measure the angle the line of sight makes with

the horizontal.
4. Write an equation relating the unknown height, the measured distance, and the tangent of the angle of the line of sight.
5. Solve the equation for the unknown height.

To find the height of a tree, a person walks to a point 30 feet from the base of the tree. She measures an angle of 57° 57°
between a line of sight to the top of the tree and the ground, as shown in Figure . Find the height of the tree.

Figure : A tree with angle of 57 degrees from vantage point. Vantage point is 30 feet from tree.

Solution

We know that the angle of elevation is  and the adjacent side is 30 ft long. The opposite side is the unknown height.

The trigonometric function relating the side opposite to an angle and the side adjacent to the angle is the tangent. So we will
state our information in terms of the tangent of , letting  be the unknown height.

The tree is approximately 46 feet tall.

2.11.2.12

 how to: Given a tall object, measure its height indirectly

 Example : Measuring a Distance Indirectly2.11.2.6 2

2.11.2.13

2.11.2.13

57°

57° h

tanθ =
opposite

adjacent

tan(57°) =
h

30
h = 30 tan(57°)

h ≈ 46.2

Solve for h.

Multiply.

Use a calculator.

(2.11.2.8)
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How long a ladder is needed to reach a windowsill 50 feet above the ground if the ladder rests against the building making an
angle of  with the ground? Round to the nearest foot.

Answer

About 52 ft

Key Equations
Co-function Identities

Glossary

adjacent side
in a right triangle, the side between a given angle and the right angle

angle of depression
the angle between the horizontal and the line from the object to the observer’s eye, assuming the object is positioned lower than
the observer

angle of elevation
the angle between the horizontal and the line from the object to the observer’s eye, assuming the object is positioned higher than
the observer

opposite side
in a right triangle, the side most distant from a given angle

hypotenuse
the side of a right triangle opposite the right angle

Other ways are "Oscar Had A Heap Of Apples" though this way you need to know sine, cosine, and tangent are in that order, or
"Studying Our Homework Can Always Help To Obtain Achievement." Wolfram Math has some more alternatives to
SOHCAHTOA which might be preferred by some.

A famous example of measuring indirectly does not require trigonometry but is nevertheless an interesting tale. That tale is about
Thales and his technique to measure the pyramid with the shadow of a stick (or himself). There is some question if it really
happened or not, though the technique was actually correct regardless.
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14.3.1: Basic Trigonometry is licensed CC BY 4.0.
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2.11.3: Scalars and Vectors
Vectors are essential to physics and engineering. Many fundamental physical quantities are vectors, including displacement,
velocity, force, and electric and magnetic vector fields. Scalar products of vectors define other fundamental scalar physical
quantities, such as energy. Vector products of vectors define still other fundamental vector physical quantities, such as torque and
angular momentum. In other words, vectors are a component part of physics in much the same way as sentences are a component
part of literature.

Figure : A signpost gives information about distances and directions to towns or to other locations relative to the location
of the signpost. Distance is a scalar quantity. Knowing the distance alone is not enough to get to the town; we must also know the
direction from the signpost to the town. The direction, together with the distance, is a vector quantity commonly called the
displacement vector. A signpost, therefore, gives information about displacement vectors from the signpost to towns. (credit:
modification of work by “studio tdes”/Flickr)

In introductory physics, vectors are Euclidean quantities that have geometric representations as arrows in one dimension (in a line),
in two dimensions (in a plane), or in three dimensions (in space). They can be added, subtracted, or multiplied.

Describe the difference between vector and scalar quantities.
Identify the magnitude and direction of a vector.
Explain the effect of multiplying a vector quantity by a scalar.
Describe how one-dimensional vector quantities are added or subtracted.
Explain the geometric construction for the addition or subtraction of vectors in a plane.
Distinguish between a vector equation and a scalar equation.

Many familiar physical quantities can be specified completely by giving a single number and the appropriate unit. For example, “a
class period lasts 50 min” or “the gas tank in my car holds 65 L” or “the distance between two posts is 100 m.” A physical quantity
that can be specified completely in this manner is called a scalar quantity. Scalar is a synonym of “number.” Time, mass, distance,
length, volume, temperature, and energy are examples of scalar quantities.

Scalar quantities that have the same physical units can be added or subtracted according to the usual rules of algebra for numbers.
For example, a class ending 10 min earlier than 50 min lasts 50 min − 10 min = 40 min. Similarly, a 60-cal serving of corn
followed by a 200-cal serving of donuts gives 60 cal + 200 cal = 260 cal of energy. When we multiply a scalar quantity by a
number, we obtain the same scalar quantity but with a larger (or smaller) value. For example, if yesterday’s breakfast had 200 cal of
energy and today’s breakfast has four times as much energy as it had yesterday, then today’s breakfast has 4(200 cal) = 800 cal of
energy. Two scalar quantities can also be multiplied or divided by each other to form a derived scalar quantity. For example, if a
train covers a distance of 100 km in 1.0 h, its speed is 100.0 km/1.0 h = 27.8 m/s, where the speed is a derived scalar quantity
obtained by dividing distance by time.

Many physical quantities, however, cannot be described completely by just a single number of physical units. For example, when
the U.S. Coast Guard dispatches a ship or a helicopter for a rescue mission, the rescue team must know not only the distance to the
distress signal, but also the direction from which the signal is coming so they can get to its origin as quickly as possible. Physical
quantities specified completely by giving a number of units (magnitude) and a direction are called vector quantities. Examples of

2.11.3.1
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vector quantities include displacement, velocity, position, force, and torque. In the language of mathematics, physical vector
quantities are represented by mathematical objects called vectors (Figure ). We can add or subtract two vectors, and we
can multiply a vector by a scalar or by another vector, but we cannot divide by a vector. The operation of division by a vector is not
defined.

Figure : We draw a vector from the initial point or origin (called the “tail” of a vector) to the end or terminal point (called
the “head” of a vector), marked by an arrowhead. Magnitude is the length of a vector and is always a positive scalar quantity.
(credit: modification of work by Cate Sevilla)

Let’s examine vector algebra using a graphical method to be aware of basic terms and to develop a qualitative understanding. In
practice, however, when it comes to solving physics problems, we use analytical methods. Analytical methods are more simple
computationally and more accurate than graphical methods. From now on, to distinguish between a vector and a scalar quantity, we
adopt the common convention that a letter with an arrow above it denotes a vector, and a letter without an arrow denotes a scalar.
For example, a distance of 2.0 km, which is a scalar quantity, is denoted by d = 2.0 km, whereas a displacement of 2.0 km in some
direction, which is a vector quantity, is denoted by .

Suppose you tell a friend on a camping trip that you have discovered a terrific fishing hole 6 km from your tent. It is unlikely your
friend would be able to find the hole easily unless you also communicate the direction in which it can be found with respect to your
campsite. You may say, for example, “Walk about 6 km northeast from my tent.” The key concept here is that you have to give not
one but two pieces of information—namely, the distance or magnitude (6 km) and the direction (northeast).

Displacement is a general term used to describe a change in position, such as during a trip from the tent to the fishing hole.
Displacement is an example of a vector quantity. If you walk from the tent (location A) to the hole (location B), as shown in Figure 

, the vector , representing your displacement, is drawn as the arrow that originates at point A and ends at point B. The
arrowhead marks the end of the vector. The direction of the displacement vector  is the direction of the arrow. The length of the
arrow represents the magnitude (or size) D of vector . Here, D = 6 km. Since the magnitude of a vector is its length, which is a
positive number, the magnitude is also indicated by placing the absolute value notation around the symbol that denotes the vector;
so, we can write equivalently that D ≡ | |. To solve a vector problem graphically, we need to draw the vector  to scale. For
example, if we assume 1 unit of distance (1 km) is represented in the drawing by a line segment of length u = 2 cm, then the total
displacement in this example is represented by a vector of length d = 6u = 6(2 cm) = 12 cm , as shown in Figure . Notice
that here, to avoid confusion, we used D = 6 km to denote the magnitude of the actual displacement and d = 12 cm to denote the
length of its representation in the drawing.

Figure : The displacement vector from point A (the initial position at the campsite) to point B (the final position at the
fishing hole) is indicated by an arrow with origin at point A and end at point B. The displacement is the same for any of the actual
paths (dashed curves) that may be taken between points A and B.

2.11.3.1

2.11.3.1

d ⃗ 

2.11.3.2 D⃗ 

D⃗ 

D⃗ 

D⃗  D⃗ 
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2.11.3.2
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Figure : A displacement of magnitude 6 km is drawn to scale as a vector of length 12 cm when the length of 2 cm
represents 1 unit of displacement (which in this case is 1 km).

Suppose your friend walks from the campsite at A to the fishing pond at B and then walks back: from the fishing pond at B to the
campsite at A. The magnitude of the displacement vector  from A to B is the same as the magnitude of the displacement
vector  from B to A (it equals 6 km in both cases), so we can write  = . However, vector  is not equal to vector 

 because these two vectors have different directions:  ≠ . In Figure 2.3, vector  would be represented by a
vector with an origin at point B and an end at point A, indicating vector  points to the southwest, which is exactly 180°
opposite to the direction of vector . We say that vector  is antiparallel to vector  and write  = , where
the minus sign indicates the antiparallel direction.

Two vectors that have identical directions are said to be parallel vectors—meaning, they are parallel to each other. Two parallel
vectors  and  are equal, denoted by  = , if and only if they have equal magnitudes | | = | |. Two vectors with directions
perpendicular to each other are said to be orthogonal vectors. These relations between vectors are illustrated in Figure .

Figure : Various relations between two vectors  and . (a)  ≠  because A ≠ B . (b)  ≠  because they are not
parallel and A ≠ B . (c)  ≠  because they have different directions (even though |  | = |  | = A) . (d)  =  because they
are parallel and have identical magnitudes A = B. (e)  ≠  because they have different directions (are not parallel); here, their
directions differ by 90° —meaning, they are orthogonal.

Two motorboats named Alice and Bob are moving on a lake. Given the information about their velocity vectors in each of the
following situations, indicate whether their velocity vectors are equal or otherwise.

a. Alice moves north at 6 knots and Bob moves west at 6 knots.
b. Alice moves west at 6 knots and Bob moves west at 3 knots.
c. Alice moves northeast at 6 knots and Bob moves south at 3 knots.
d. Alice moves northeast at 6 knots and Bob moves southwest at 6 knots.
e. Alice moves northeast at 2 knots and Bob moves closer to the shore northeast at 2 knots.

2.11.3.1 Algebra of Vectors in One Dimension
Vectors can be multiplied by scalars, added to other vectors, or subtracted from other vectors. We can illustrate these vector
concepts using an example of the fishing trip seen in Figure .

2.11.3.3 D⃗ 

D⃗ 
AB

D⃗ 
BA D⃗ 

AB D⃗ 
BA D⃗ 

AB

D⃗ 
BA D⃗ 

AB D⃗ 
BA D⃗ 

BA

D⃗ 
BA

D⃗ 
AB D⃗ 

BA D⃗ 
AB D⃗ 

AB −D⃗ 
BA

A ⃗  B⃗  A ⃗  B⃗  A ⃗  B⃗ 

2.11.3.4

2.11.3.4 A ⃗  B⃗  A ⃗  B⃗  A ⃗  B⃗ 

A ⃗  −A ⃗  A ⃗  −A ⃗  A ⃗  B⃗ 

A ⃗  B⃗ 

 Exercise 2.1
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Figure : Displacement vectors for a fishing trip. (a) Stopping to rest at point C while walking from camp (point A) to the
pond (point B). (b) Going back for the dropped tackle box (point D). (c) Finishing up at the fishing pond.

Suppose your friend departs from point A (the campsite) and walks in the direction to point B (the fishing pond), but, along the
way, stops to rest at some point C located three-quarters of the distance between A and B, beginning from point A (Figure 

). What is his displacement vector  when he reaches point C? We know that if he walks all the way to B, his
displacement vector relative to A is , which has magnitude D  = 6 km and a direction of northeast. If he walks only a 0.75
fraction of the total distance, maintaining the northeasterly direction, at point C he must be 0.75 D  = 4.5 km away from the
campsite at A. So, his displacement vector at the rest point C has magnitude D  = 4.5 km = 0.75 D  and is parallel to the
displacement vector . All of this can be stated succinctly in the form of the following vector equation:

In a vector equation, both sides of the equation are vectors. The previous equation is an example of a vector multiplied by a
positive scalar (number)  = 0.75. The result, , of such a multiplication is a new vector with a direction parallel to the
direction of the original vector . In general, when a vector  is multiplied by a positive scalar , the result is a new vector 

 that is parallel to :

The magnitude | | of this new vector is obtained by multiplying the magnitude | | of the original vector, as expressed by the
scalar equation:

In a scalar equation, both sides of the equation are numbers. Equation  is a scalar equation because the magnitudes of
vectors are scalar quantities (and positive numbers). If the scalar  is negative in the vector equation Equation , then the
magnitude | | of the new vector is still given by Equation , but the direction of the new vector  is antiparallel to the
direction of . These principles are illustrated in Figure  by two examples where the length of vector  is 1.5 units.
When  = 2, the new vector  = 2  has length B = 2A = 3.0 units (twice as long as the original vector) and is parallel to the
original vector. When  = −2, the new vector  = −2  has length C = |−2| A = 3.0 units (twice as long as the original vector) and
is antiparallel to the original vector.

Figure : Algebra of vectors in one dimension. (a) Multiplication by a scalar. (b) Addition of two vectors (  is called the
resultant of vectors (  and ( ). (c) Subtraction of two vectors (  is the difference of vectors (  and ).

Now suppose your fishing buddy departs from point A (the campsite), walking in the direction to point B (the fishing hole), but he
realizes he lost his tackle box when he stopped to rest at point C (located three-quarters of the distance between A and B, beginning

2.11.3.5

2.11.3.5a D⃗ 
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D⃗ 
AB AB

AB

AC AB

D⃗ 
AB

= 0.75 .D⃗ 
AC D⃗ 

AB

α D⃗ 
AC

D⃗ 
AB D⃗ 

A α

D⃗ 
B D⃗ 

A

= αB⃗  A ⃗  (2.11.3.1)

B⃗  A ⃗ 

B = |α|A. (2.11.3.2)
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from point A). So, he turns back and retraces his steps in the direction toward the campsite and finds the box lying on the path at
some point D only 1.2 km away from point C (see Figure ). What is his displacement vector  when he finds the box
at point D? What is his displacement vector  from point D to the hole? We have already established that at rest point C his
displacement vector is  = 0.75 . Starting at point C, he walks southwest (toward the campsite), which means his new
displacement vector  from point C to point D is antiparallel to . Its magnitude | | is D  = 1.2 km = 0.2 D , so his
second displacement vector is  = −0.2 . His total displacement  relative to the campsite is the vector sum of the two
displacement vectors: vector  (from the campsite to the rest point) and vector  (from the rest point to the point where he
finds his box):

The vector sum of two (or more vectors is called the resultant vector or, for short, the resultant. When the vectors on the right-
hand-side of Equation  are known, we can find the resultant  as follows:

When your friend finally reaches the pond at B, his displacement vector  from point A is the vector sum of his displacement
vector  from point A to point D and his displacement vector  from point D to the fishing hole:  =  +  (see
Figure ). This means his displacement vector  is the difference of two vectors:

Notice that a difference of two vectors is nothing more than a vector sum of two vectors because the second term in Equation 
 is vector  (which is antiparallel to ). When we substitute Equation  into Equation , we obtain

the second displacement vector:

This result means your friend walked D  = 0.45 D  = 0.45(6.0 km) = 2.7 km from the point where he finds his tackle box to the
fishing hole.

When vectors  and  lie along a line (that is, in one dimension), such as in the camping example, their resultant  =  +  and
their difference  =  −  both lie along the same direction. We can illustrate the addition or subtraction of vectors by drawing
the corresponding vectors to scale in one dimension, as shown in Figure .

To illustrate the resultant when  and  are two parallel vectors, we draw them along one line by placing the origin of one vector
at the end of the other vector in head-to-tail fashion (see Figure (\PageIndex{6b}\)). The magnitude of this resultant is the sum of
their magnitudes: R = A + B. The direction of the resultant is parallel to both vectors. When vector  is antiparallel to vector , we
draw them along one line in either head-to-head fashion (Figure (\PageIndex{6c}\)) or tail-to-tail fashion. The magnitude of the
vector difference, then, is the absolute value D = |A − B| of the difference of their magnitudes. The direction of the difference
vector  is parallel to the direction of the longer vector.

In general, in one dimension—as well as in higher dimensions, such as in a plane or in space—we can add any number of vectors
and we can do so in any order because the addition of vectors is commutative,

and associative,

Moreover, multiplication by a scalar is distributive:

We used the distributive property in Equation  and Equation .

When adding many vectors in one dimension, it is convenient to use the concept of a unit vector. A unit vector, which is denoted
by a letter symbol with a hat, such as , has a magnitude of one and does not have any physical unit so that | | ≡ u = 1. The only
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role of a unit vector is to specify direction. For example, instead of saying vector  has a magnitude of 6.0 km and a direction
of northeast, we can introduce a unit vector  that points to the northeast and say succinctly that  = (6.0 km) . Then the
southwesterly direction is simply given by the unit vector . In this way, the displacement of 6.0 km in the southwesterly direction
is expressed by the vector

A long measuring stick rests against a wall in a physics laboratory with its 200-cm end at the floor. A ladybug lands on the
100-cm mark and crawls randomly along the stick. It first walks 15 cm toward the floor, then it walks 56 cm toward the wall,
then it walks 3 cm toward the floor again. Then, after a brief stop, it continues for 25 cm toward the floor and then, again, it
crawls up 19 cm toward the wall before coming to a complete rest (Figure ). Find the vector of its total displacement
and its final resting position on the stick.

Strategy

If we choose the direction along the stick toward the floor as the direction of unit vector , then the direction toward the floor
is  and the direction toward the wall is . The ladybug makes a total of five displacements:

The total displacement  is the resultant of all its displacement vectors.

Figure : Five displacements of the ladybug. Note that in this schematic drawing, magnitudes of displacements are not
drawn to scale. (credit: modification of work by “Persian Poet Gal”/Wikimedia Commons)

Solution
The resultant of all the displacement vectors is

In this calculation, we use the distributive law given by Equation 2.2.9. The result reads that the total displacement vector
points away from the 100-cm mark (initial landing site) toward the end of the meter stick that touches the wall. The end that
touches the wall is marked 0 cm, so the final position of the ladybug is at the (100 – 32) cm = 68-cm mark.

D⃗ 
AB

û D⃗ 
AB û

−û

= (−6.0 km) .D⃗ 
BA û

 Example : A Ladybug Walker2.11.3.1
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A cave diver enters a long underwater tunnel. When her displacement with respect to the entry point is 20 m, she accidentally
drops her camera, but she doesn’t notice it missing until she is some 6 m farther into the tunnel. She swims back 10 m but
cannot find the camera, so she decides to end the dive. How far from the entry point is she? Taking the positive direction out of
the tunnel, what is her displacement vector relative to the entry point?

2.11.3.2 Algebra of Vectors in Two Dimensions
When vectors lie in a plane—that is, when they are in two dimensions—they can be multiplied by scalars, added to other vectors,
or subtracted from other vectors in accordance with the general laws expressed by Equation 2.2.1, Equation 2..2.2, Equation 2.2.7,
and Equation 2.2.8. However, the addition rule for two vectors in a plane becomes more complicated than the rule for vector
addition in one dimension. We have to use the laws of geometry to construct resultant vectors, followed by trigonometry to find
vector magnitudes and directions. This geometric approach is commonly used in navigation (Figure ). In this section, we
need to have at hand two rulers, a triangle, a protractor, a pencil, and an eraser for drawing vectors to scale by geometric
constructions.

Figure : In navigation, the laws of geometry are used to draw resultant displacements on nautical maps.

For a geometric construction of the sum of two vectors in a plane, we follow the parallelogram rule. Suppose two vectors  and 
 are at the arbitrary positions shown in Figure . Translate either one of them in parallel to the beginning of the other

vector, so that after the translation, both vectors have their origins at the same point. Now, at the end of vector  we draw a line
parallel to vector  and at the end of vector  we draw a line parallel to vector  (the dashed lines in Figure ). In this
way, we obtain a parallelogram. From the origin of the two vectors we draw a diagonal that is the resultant  of the two vectors: 
=  +  (Figure ). The other diagonal of this parallelogram is the vector difference of the two vectors  =  − , as
shown in Figure . Notice that the end of the difference vector is placed at the end of vector .

Figure : The parallelogram rule for the addition of two vectors. Make the parallel translation of each vector to a point
where their origins (marked by the dot) coincide and construct a parallelogram with two sides on the vectors and the other two
sides (indicated by dashed lines) parallel to the vectors. (a) Draw the resultant vector  along the diagonal of the parallelogram
from the common point to the opposite corner. Length R of the resultant vector is not equal to the sum of the magnitudes of the two
vectors. (b) Draw the difference vector  =  −  along the diagonal connecting the ends of the vectors. Place the origin of vector

 at the end of vector  and the end (arrowhead) of vector  at the end of vector . Length D of the difference vector is not equal
to the difference of magnitudes of the two vectors.

It follows from the parallelogram rule that neither the magnitude of the resultant vector nor the magnitude of the difference vector
can be expressed as a simple sum or difference of magnitudes A and B, because the length of a diagonal cannot be expressed as a
simple sum of side lengths. When using a geometric construction to find magnitudes | | and | |, we have to use trigonometry laws
for triangles, which may lead to complicated algebra. There are two ways to circumvent this algebraic complexity. One way is to
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use the method of components, which we examine in the next section. The other way is to draw the vectors to scale, as is done in
navigation, and read approximate vector lengths and angles (directions) from the graphs. In this section we examine the second
approach.

If we need to add three or more vectors, we repeat the parallelogram rule for the pairs of vectors until we find the resultant of all of
the resultants. For three vectors, for example, we first find the resultant of vector 1 and vector 2, and then we find the resultant of
this resultant and vector 3. The order in which we select the pairs of vectors does not matter because the operation of vector
addition is commutative and associative (see Equation 2.2.7 and Equation 2.2.8). Before we state a general rule that follows from
repetitive applications of the parallelogram rule, let’s look at the following example.

Suppose you plan a vacation trip in Florida. Departing from Tallahassee, the state capital, you plan to visit your uncle Joe in
Jacksonville, see your cousin Vinny in Daytona Beach, stop for a little fun in Orlando, see a circus performance in Tampa, and visit
the University of Florida in Gainesville. Your route may be represented by five displacement vectors , , , , and , which
are indicated by the red vectors in Figure . What is your total displacement when you reach Gainesville? The total
displacement is the vector sum of all five displacement vectors, which may be found by using the parallelogram rule four times.
Alternatively, recall that the displacement vector has its beginning at the initial position (Tallahassee) and its end at the final
position (Gainesville), so the total displacement vector can be drawn directly as an arrow connecting Tallahassee with Gainesville
(see the green vector in Figure ). When we use the parallelogram rule four times, the resultant  we obtain is exactly this
green vector connecting Tallahassee with Gainesville:  =  +  +  +  + .

Figure : When we use the parallelogram rule four times, we obtain the resultant vector  =  +  +  +  + , which is
the green vector connecting Tallahassee with Gainesville.

Drawing the resultant vector of many vectors can be generalized by using the following tail-to-head geometric construction.
Suppose we want to draw the resultant vector  of four vectors , , , and  (Figure ). We select any one of the
vectors as the first vector and make a parallel translation of a second vector to a position where the origin (“tail”) of the second
vector coincides with the end (“head”) of the first vector. Then, we select a third vector and make a parallel translation of the third
vector to a position where the origin of the third vector coincides with the end of the second vector. We repeat this procedure until
all the vectors are in a head-to-tail arrangement like the one shown in Figure . We draw the resultant vector  by
connecting the origin (“tail”) of the first vector with the end (“head”) of the last vector. The end of the resultant vector is at the end
of the last vector. Because the addition of vectors is associative and commutative, we obtain the same resultant vector regardless of
which vector we choose to be first, second, third, or fourth in this construction.

A ⃗  B⃗  C ⃗  D⃗  E ⃗ 

2.11.3.4

2.11.3.4 R⃗ 
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2.11.3.4 R⃗  A ⃗  B⃗  C ⃗  D⃗  E ⃗ 

R⃗  A ⃗  B⃗  C ⃗  D⃗  2.11.3.5a
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Figure : Tail-to-head method for drawing the resultant vector  =  +  +  + . (a) Four vectors of different
magnitudes and directions. (b) Vectors in (a) are translated to new positions where the origin (“tail”) of one vector is at the end
(“head”) of another vector. The resultant vector is drawn from the origin (“tail”) of the first vector to the end (“head”) of the last
vector in this arrangement.

The three displacement vectors , , and  in Figure  are specified by their magnitudes A = 10.0, B = 7.0, and C =
8.0, respectively, and by their respective direction angles with the horizontal direction  = 35°,  = −110°, and  = 30°. The
physical units of the magnitudes are centimeters. Choose a convenient scale and use a ruler and a protractor to find the
following vector sums: (a)  =  + , (b)  =  − , and (c)  =  −  + .

Figure : Vectors used in Example  and in the Exercise feature that follows.

Strategy

In geometric construction, to find a vector means to find its magnitude and its direction angle with the horizontal direction. The
strategy is to draw to scale the vectors that appear on the right-hand side of the equation and construct the resultant vector.
Then, use a ruler and a protractor to read the magnitude of the resultant and the direction angle. For parts (a) and (b) we use the
parallelogram rule. For (c) we use the tail-to-head method.

Solution
For parts (a) and (b), we attach the origin of vector  to the origin of vector , as shown in Figure , and construct a
parallelogram. The shorter diagonal of this parallelogram is the sum  + . The longer of the diagonals is the difference  − 

. We use a ruler to measure the lengths of the diagonals, and a protractor to measure the angles with the horizontal. For the
resultant , we obtain R = 5.8 cm and  ≈ 0°. For the difference , we obtain D = 16.2 cm and  = 49.3°, which are shown
in Figure .

Figure : Using the parallelogram rule to solve (a) (finding the resultant, red) and (b) (finding the difference, blue).

For (c), we can start with vector −3  and draw the remaining vectors tail-to-head as shown in Figure . In vector
addition, the order in which we draw the vectors is unimportant, but drawing the vectors to scale is very important. Next, we
draw vector  from the origin of the first vector to the end of the last vector and place the arrowhead at the end of . We use a

2.11.3.5 R⃗  A ⃗  B⃗  C ⃗  D⃗ 

 Example : Geometric Construction of the Resultant2.11.3.2
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ruler to measure the length of , and find that its magnitude is S = 36.9 cm. We use a protractor and find that its direction angle
is  = 52.9°. This solution is shown in Figure .

Figure : Using the tail-to-head method to solve (c) (finding vector , green).

Using the three displacement vectors , , and  in Figure , choose a convenient scale, and use a ruler and a
protractor to find vector  given by the vector equation  =  +  − .

This page titled 2.11.3: Scalars and Vectors is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.
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2.11.4: Coordinate Systems and Components of a Vector

Describe vectors in two and three dimensions in terms of their components, using unit vectors along the axes.
Distinguish between the vector components of a vector and the scalar components of a vector.
Explain how the magnitude of a vector is defined in terms of the components of a vector.
Identify the direction angle of a vector in a plane.
Explain the connection between polar coordinates and Cartesian coordinates in a plane.

Vectors are usually described in terms of their components in a coordinate system. Even in everyday life we naturally invoke the
concept of orthogonal projections in a rectangular coordinate system. For example, if you ask someone for directions to a particular
location, you will more likely be told to go 40 km east and 30 km north than 50 km in the direction 37° north of east.

In a rectangular (Cartesian) xy-coordinate system in a plane, a point in a plane is described by a pair of coordinates (x, y). In a
similar fashion, a vector  in a plane is described by a pair of its vector coordinates. The x-coordinate of vector  is called its x-
component and the y-coordinate of vector  is called its y-component. The vector x-component is a vector denoted by . The
vector y-component is a vector denoted by . In the Cartesian system, the x and y vector components of a vector are the
orthogonal projections of this vector onto the - and -axes, respectively. In this way, following the parallelogram rule for vector
addition, each vector on a Cartesian plane can be expressed as the vector sum of its vector components:

As illustrated in Figure , vector  is the diagonal of the rectangle where the x-component  is the side parallel to the x-
axis and the y-component  is the side parallel to the y-axis. Vector component  is orthogonal to vector component .

Figure : Vector  in a plane in the Cartesian coordinate system is the vector sum of its vector x- and y-components. The x-
vector component  is the orthogonal projection of vector  onto the x-axis. The y-vector component  is the orthogonal
projection of vector  onto the y-axis. The numbers A  and A  that multiply the unit vectors are the scalar components of the
vector.

It is customary to denote the positive direction on the x-axis by the unit vector  and the positive direction on the y-axis by the unit
vector . Unit vectors of the axes,  and , define two orthogonal directions in the plane. As shown in Figure , the x- and
y- components of a vector can now be written in terms of the unit vectors of the axes:

The vectors  and  defined by Equation 2.11 are the vector components of vector . The numbers A  and A  that define the
vector components in Equation  are the scalar components of vector . Combining Equation  with Equation 

, we obtain the component form of a vector:

 Learning Objectives
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If we know the coordinates  of the origin point of a vector (where b stands for “beginning”) and the coordinates e(x , y )
of the end point of a vector (where e stands for “end”), we can obtain the scalar components of a vector simply by subtracting the
origin point coordinates from the end point coordinates:

A mouse pointer on the display monitor of a computer at its initial position is at point (6.0 cm, 1.6 cm) with respect to the
lower left-side corner. If you move the pointer to an icon located at point (2.0 cm, 4.5 cm), what is the displacement vector of
the pointer?

Strategy

The origin of the xy-coordinate system is the lower left-side corner of the computer monitor. Therefore, the unit vector  on the
x-axis points horizontally to the right and the unit vector  on the y-axis points vertically upward. The origin of the
displacement vector is located at point b(6.0, 1.6) and the end of the displacement vector is located at point e(2.0, 4.5).
Substitute the coordinates of these points into Equation  to find the scalar components D  and D of the displacement
vector . Finally, substitute the coordinates into Equation  to write the displacement vector in the vector component
form.

Solution
We identify x  = 6.0, x  = 2.0, y  = 1.6, and y  = 4.5, where the physical unit is 1 cm. The scalar x- and y-components of the
displacement vector are

The vector component form of the displacement vector is

This solution is shown in Figure .

Figure : The graph of the displacement vector. The vector points from the origin point at  to the end point at .

Significance

Notice that the physical unit—here, 1 cm—can be placed either with each component immediately before the unit vector or
globally for both components, as in Equation . Often, the latter way is more convenient because it is simpler.

The vector x-component  = −4.0  = 4.0( ) of the displacement vector has the magnitude | | = |− 4.0|| | = 4.0 because
the magnitude of the unit vector is | | = 1. Notice, too, that the direction of the x-component is , which is antiparallel to the
direction of the +x-axis; hence, the x-component vector  points to the left, as shown in Figure . The scalar x-
component of vector  is D  = −4.0. Similarly, the vector y-component  =  of the displacement vector has magnitude
| | = |2.9|| | = 2.9 because the magnitude of the unit vector is | | = 1. The direction of the y-component is , which is

b( , )xb yb e e

{
= −Ax xe xb

= − .Ay ye yb
(2.11.4.4)

 Example : Displacement of a Mouse Pointer2.11.4.1

î

ĵ

2.11.4.4 x y 

D⃗  2.11.4.3

b e b e

= − = (2.0 −6.0) cm = −4.0 cm,Dx xe xb (2.11.4.5)

= − = (4.5 −1.6) cm = +2.9 cm.Dy ye yb (2.11.4.6)

= + = (−4.0 cm) +(2.9 cm) = (−4.0 +2.9 ) cm.D⃗  Dx î Dy ĵ î ĵ î ĵ (2.11.4.7)

2.11.4.2

2.11.4.2 b e

2.11.4.7

D⃗ 
x î −î D⃗ 

x î

î −î

D⃗ 
x 2.11.4.2

D⃗  x D⃗ 
y +2.9 ĵ

D⃗ 
y ĵ ĵ +ĵ
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parallel to the direction of the +y-axis. Therefore, the y-component vector  points up, as seen in Figure . The scalar
y-component of vector  is D  = + 2.9. The displacement vector  is the resultant of its two vector components.

The vector component form of the displacement vector Equation  tells us that the mouse pointer has been moved on
the monitor 4.0 cm to the left and 2.9 cm upward from its initial position.

A blue fly lands on a sheet of graph paper at a point located 10.0 cm to the right of its left edge and 8.0 cm above its bottom
edge and walks slowly to a point located 5.0 cm from the left edge and 5.0 cm from the bottom edge. Choose the rectangular
coordinate system with the origin at the lower left-side corner of the paper and find the displacement vector of the fly. Illustrate
your solution by graphing.

When we know the scalar components A  and A  of a vector , we can find its magnitude A and its direction angle . The
direction angle—or direction, for short—is the angle the vector forms with the positive direction on the x-axis. The angle  is
measured in the counterclockwise direction from the +x-axis to the vector (Figure ). Because the lengths A, A , and A
form a right triangle, they are related by the Pythagorean theorem:

This equation works even if the scalar components of a vector are negative. The direction angle  of a vector is defined via the
tangent function of angle  in the triangle shown in Figure :

Figure : For vector , its magnitude A and its direction angle  are related to the magnitudes of its scalar components
because A, A , and A  form a right triangle.

When the vector lies either in the first quadrant or in the fourth quadrant, where component A  is positive (Figure ), the
angle  in Equation ) is identical to the direction angle . For vectors in the fourth quadrant, angle  is negative, which
means that for these vectors, direction angle  is measured clockwise from the positive x-axis. Similarly, for vectors in the second
quadrant, angle  is negative. When the vector lies in either the second or third quadrant, where component A  is negative, the
direction angle is  =  + 180° (Figure ).

D⃗ 
y 2.11.4.2

D⃗  y D⃗ 

2.11.4.7

 Exercise 2.4

x y A ⃗  θA

θA

2.11.4.3 x y

= + ⇔ A = .A2 A2
x A2

y +A2
x A2

y

− −−−−−−
√ (2.11.4.8)

θA

θA 2.11.4.3

tanθ = ⇒ θ = ( ).
Ay

Ax

tan−1 Ay

Ax

(2.11.4.9)

2.11.4.3 A ⃗  θA

x y

x 2.11.4.4

θ 2.11.4.9 θA θ

θA

θ x
θA θ 2.11.4.4
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Figure : Scalar components of a vector may be positive or negative. Vectors in the first quadrant (I) have both scalar
components positive and vectors in the third quadrant have both scalar components negative. For vectors in quadrants II and III, the
direction angle of a vector is  =  + 180°.

You move a mouse pointer on the display monitor from its initial position at point (6.0 cm, 1.6 cm) to an icon located at point
(2.0 cm, 4.5 cm). What is the magnitude and direction of the displacement vector of the pointer?

Strategy

In Example , we found the displacement vector  of the mouse pointer (see Equation ). We identify its scalar
components D  = −4.0 cm and D  = + 2.9 cm and substitute into Equation  and Equation  to find the
magnitude D and direction , respectively.

Solution
The magnitude of vector  is

The direction angle is

Vector  lies in the second quadrant, so its direction angle is

If the displacement vector of a blue fly walking on a sheet of graph paper is  cm, find its magnitude
and direction.

In many applications, the magnitudes and directions of vector quantities are known and we need to find the resultant of many
vectors. For example, imagine 400 cars moving on the Golden Gate Bridge in San Francisco in a strong wind. Each car gives the
bridge a different push in various directions and we would like to know how big the resultant push can possibly be. We have
already gained some experience with the geometric construction of vector sums, so we know the task of finding the resultant by
drawing the vectors and measuring their lengths and angles may become intractable pretty quickly, leading to huge errors. Worries
like this do not appear when we use analytical methods. The very first step in an analytical approach is to find vector components
when the direction and magnitude of a vector are known.

Let us return to the right triangle in Figure . The quotient of the adjacent side A  to the hypotenuse A is the cosine function
of direction angle , A /A = cos , and the quotient of the opposite side A  to the hypotenuse A is the sine function of , A /A
= sin . When magnitude A and direction  are known, we can solve these relations for the scalar components:

2.11.4.4

θA θ

 Example : Magnitude and Direction of the Displacement Vector2.11.4.2

2.11.4.1 D⃗  2.11.4.7

x y 2.11.4.8 2.11.4.9

θD

D⃗ 

D = = = cm = 4.9 cm.+D2
x D2

y

− −−−−−−
√ (−4.0 cm +(2.9 cm)2 )2

− −−−−−−−−−−−−−−−−−−
√ (4.0 +(2.9)2 )2

− −−−−−−−−−−
√ (2.11.4.10)

tanθ = = = −0.725 ⇒ θ = (−0.725) = − .
Dy

Dx

+2.9 cm

−4.0 cm
tan−1 35.9o (2.11.4.11)

D⃗ 

= θ + = − + = .θD 180o 35.9o 180o 144.1o (2.11.4.12)

 Exercise 2.5

= (−5.00 −3.00 )D⃗  î ĵ

2.11.4.3 x
θA x θA y θA y

θA θA

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76321?pdf


2.11.4.5 https://phys.libretexts.org/@go/page/76321

When calculating vector components with Equation , care must be taken with the angle. The direction angle  of a
vector is the angle measured counterclockwise from the positive direction on the x-axis to the vector. The clockwise measurement
gives a negative angle.

A rescue party for a missing child follows a search dog named Trooper. Trooper wanders a lot and makes many trial sniffs
along many different paths. Trooper eventually finds the child and the story has a happy ending, but his displacements on
various legs seem to be truly convoluted. On one of the legs he walks 200.0 m southeast, then he runs north some 300.0 m. On
the third leg, he examines the scents carefully for 50.0 m in the direction 30° west of north. On the fourth leg, Trooper goes
directly south for 80.0 m, picks up a fresh scent and turns 23° west of south for 150.0 m. Find the scalar components of
Trooper’s displacement vectors and his displacement vectors in vector component form for each leg.

Strategy

Let’s adopt a rectangular coordinate system with the positive x-axis in the direction of geographic east, with the positive y-
direction pointed to geographic north. Explicitly, the unit vector  of the x-axis points east and the unit vector  of the y-axis
points north. Trooper makes five legs, so there are five displacement vectors. We start by identifying their magnitudes and
direction angles, then we use Equation  to find the scalar components of the displacements and Equation  for
the displacement vectors.

Solution
On the first leg, the displacement magnitude is L  = 200.0 m and the direction is southeast. For direction angle  we can take
either 45° measured clockwise from the east direction or 45° + 270° measured counterclockwise from the east direction. With
the first choice,  = −45°. With the second choice,  = + 315°. We can use either one of these two angles. The components
are

The displacement vector of the first leg is

On the second leg of Trooper’s wanderings, the magnitude of the displacement is L  = 300.0 m and the direction is north. The
direction angle is  = + 90°. We obtain the following results:

On the third leg, the displacement magnitude is L  = 50.0 m and the direction is 30° west of north. The direction angle
measured counterclockwise from the eastern direction is  = 30° + 90° = + 120°. This gives the following answers:

On the fourth leg of the excursion, the displacement magnitude is L  = 80.0 m and the direction is south. The direction angle
can be taken as either  = −90° or \(\theta_{4} = + 270°. We obtain

{
= A cosAx θA

= A sin .Ay θA
(2.11.4.13)

2.11.4.13 θA

 Example : Components of Displacement Vectors2.11.4.3

î ĵ

2.11.4.13 2.11.4.3

1 θ1

θ1 θ1

= cos = (200.0 m) cos = 141.4 m,L1x L1 θ1 315o (2.11.4.14)

= sin = (200.0 m) sin = −141.4 m,L1y L1 θ1 315o (2.11.4.15)

= + = (14.4 −141.4 ) m.L⃗ 
1 L1x î L1y ĵ î ĵ (2.11.4.16)

2
θ2

= cos = (300.0 m) cos = 0.0,L2x L2 θ2 90o (2.11.4.17)

= sin = (300.0 m) sin = 300.0 m,L2y L2 θ2 90o (2.11.4.18)

= + = (300.0 m) .L⃗ 
2 L2x î L2y ĵ ĵ (2.11.4.19)

3
θ3

= cos = (50.0 m) cos = −25.0 m,L3x L3 θ3 120o (2.11.4.20)

= sin = (50.0 m) sin = +43.3 m,L3y L3 θ3 120o (2.11.4.21)

= + = (−25.0 +43.3 ) m.L⃗ 
3 L3x î L3y ĵ î ĵ (2.11.4.22)

4
θ4

= cos = (80.0 m) cos(− ) = 0,L4x L4 θ4 90o (2.11.4.23)

= sin = (80.0 m) sin(− ) = −80.0 m,L4y L4 θ4 90o (2.11.4.24)
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On the last leg, the magnitude is L  = 150.0 m and the angle is  = −23° + 270° = + 247° (23° west of south), which gives

If Trooper runs 20 m west before taking a rest, what is his displacement vector?

2.11.4.1 Polar Coordinates
To describe locations of points or vectors in a plane, we need two orthogonal directions. In the Cartesian coordinate system these
directions are given by unit vectors  and  along the x-axis and the y-axis, respectively. The Cartesian coordinate system is very
convenient to use in describing displacements and velocities of objects and the forces acting on them. However, it becomes
cumbersome when we need to describe the rotation of objects. When describing rotation, we usually work in the polar coordinate
system.

In the polar coordinate system, the location of point P in a plane is given by two polar coordinates (Figure ). The first
polar coordinate is the radial coordinate r, which is the distance of point P from the origin. The second polar coordinate is an
angle  that the radial vector makes with some chosen direction, usually the positive x-direction. In polar coordinates, angles are
measured in radians, or rads. The radial vector is attached at the origin and points away from the origin to point P. This radial
direction is described by a unit radial vector . The second unit vector  is a vector orthogonal to the radial direction . The
positive +  direction indicates how the angle  changes in the counterclockwise direction. In this way, a point P that has
coordinates (x, y) in the rectangular system can be described equivalently in the polar coordinate system by the two polar
coordinates (r, ). Equation 2.4.13 is valid for any vector, so we can use it to express the x- and y-coordinates of vector . In this
way, we obtain the connection between the polar coordinates and rectangular coordinates of point P:

Figure : Using polar coordinates, the unit vector  defines the positive direction along the radius r (radial direction) and,
orthogonal to it, the unit vector  defines the positive direction of rotation by the angle .

A treasure hunter finds one silver coin at a location 20.0 m away from a dry well in the direction 20° north of east and finds
one gold coin at a location 10.0 m away from the well in the direction 20° north of west. What are the polar and rectangular
coordinates of these findings with respect to the well?

Strategy

The well marks the origin of the coordinate system and east is the +x-direction. We identify radial distances from the locations
to the origin, which are r  = 20.0 m (for the silver coin) and r  = 10.0 m (for the gold coin). To find the angular coordinates, we

= + = (−80.0 m) .L⃗ 
4 L4x î L4y ĵ ĵ (2.11.4.25)

5 θ5

= cos = (150.0 m) cos = −58.6 m,L5x L5 θ5 247o (2.11.4.26)

= sin = (150.0 m) sin = −138.1 m,L5y L5 θ5 247o (2.11.4.27)

= + = (−58.6 −138.1 ) m.L⃗ 
5 L5x î L5y ĵ î ĵ (2.11.4.28)

 Exercise 2.6

î ĵ

2.11.4.1

φ

r̂ t̂ r̂

t̂ φ

φ r ⃗ 

{ .
x = r cos φ

y = r sinφ
(2.11.4.29)

2.11.4.1 r̂

t̂ φ

 Example : Polar Coordinates2.11.4.1
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convert 20° to radians: 20° =  = . We use Equation  to find the x- and y-coordinates of the coins.

Solution

The angular coordinate of the silver coin is  = , whereas the angular coordinate of the gold coin is  =  −  = .
Hence, the polar coordinates of the silver coin are (r , ) = (20.0 m, ) and those of the gold coin are (r , ) = (10.0 m,
\frac{8 \pi}{9}\)). We substitute these coordinates into Equation  to obtain rectangular coordinates. For the gold coin,
the coordinates are

For the silver coin, the coordinates are

2.11.4.2 Vectors in Three Dimensions
To specify the location of a point in space, we need three coordinates (x, y, z), where coordinates x and y specify locations in a
plane, and coordinate z gives a vertical positions above or below the plane. Three-dimensional space has three orthogonal
directions, so we need not two but three unit vectors to define a three-dimensional coordinate system. In the Cartesian coordinate
system, the first two unit vectors are the unit vector of the x-axis  and the unit vector of the y-axis . The third unit vector  is the
direction of the z-axis (Figure ). The order in which the axes are labeled, which is the order in which the three unit vectors
appear, is important because it defines the orientation of the coordinate system. The order x-y-z, which is equivalent to the order  -

 - , defines the standard right-handed coordinate system (positive orientation).

Figure : Three unit vectors define a Cartesian system in three-dimensional space. The order in which these unit vectors
appear defines the orientation of the coordinate system. The order shown here defines the right-handed orientation.

In three-dimensional space, vector  has three vector components: the x-component  = A  , which is the part of vector  along
the x-axis; the y-component  = A  , which is the part of  along the y-axis; and the z-component  = A  , which is the part
of the vector along the z-axis. A vector in three-dimensional space is the vector sum of its three vector components (Figure 

):

If we know the coordinates of its origin b(x , y , z ) and of its end e(x  y , z ), its scalar components are obtained by taking their
differences: A  and A  are given by

and the z-component is given by

π 20
180

π

9
2.11.4.29

φS
π
9

φG π π
9

8π

9

S φS
π
9 G φG

2.11.4.29

{ ⇒ ( , ) = (−9.4 m, 3.4 m).
= cos = (10.0 m) cos = −9.4 mxG rG φG

8π
9

= sin = (10.0 m) sin = 3.4 myG rG φG
8π
9

xG yG (2.11.4.30)

{ ⇒ ( , ) = (18.9 m, 6.8 m).
= cos = (20.0 m) cos = 18.9 mxS rS φS

π

9

= sin = (20.0 m) sin = 6.8 myS rS φS
π
9

xS yS (2.11.4.31)

î ĵ k̂

2.11.4.2

î

ĵ k̂

2.11.4.2

A ⃗  A ⃗ 
x x î A ⃗ 

A ⃗ 
y y ĵ A ⃗  A ⃗ 

z z k̂

2.11.4.3

= + + .A ⃗  Ax î Ay ĵ Azk̂ (2.11.4.32)

b b b e e e

x y

{
= −Ax xe xb

= − .Ay ye yb

= − .Az ze zb (2.11.4.33)
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Magnitude A is obtained by generalizing Equation 2.4.8 to three dimensions:

This expression for the vector magnitude comes from applying the Pythagorean theorem twice. As seen in Figure , the

diagonal in the xy-plane has length  and its square adds to the square A  to give A . Note that when the z-component

is zero, the vector lies entirely in the xy-plane and its description is reduced to two dimensions.

Figure : A vector in three-dimensional space is the vector sum of its three vector components.

During a takeoff of IAI Heron (Figure ), its position with respect to a control tower is 100 m above the ground, 300 m
to the east, and 200 m to the north. One minute later, its position is 250 m above the ground, 1200 m to the east, and 2100 m to
the north. What is the drone’s displacement vector with respect to the control tower? What is the magnitude of its displacement
vector?

Figure : The drone IAI Heron in flight. (credit: SSgt Reynaldo Ramon, USAF)

Strategy

We take the origin of the Cartesian coordinate system as the control tower. The direction of the +x-axis is given by unit vector 
 to the east, the direction of the +y-axis is given by unit vector  to the north, and the direction of the +z-axis is given by unit

vector , which points up from the ground. The drone’s first position is the origin (or, equivalently, the beginning) of the
displacement vector and its second position is the end of the displacement vector.

Solution
We identify b(300.0 m, 200.0 m, 100.0 m) and e(480.0 m, 370.0 m, 250.0m), and use Equation 2.4.4 and Equation  to
find the scalar components of the drone’s displacement vector:

We substitute these components into Equation  to find the displacement vector:

We substitute into Equation  to find the magnitude of the displacement:

A = .+ +A2
x A2

y A2
z

− −−−−−−−−−−
√ (2.11.4.34)

2.11.4.3

+A2
x A2

y

− −−−−−−
√ z

2 2

2.11.4.3

 Example : Takeoff of a Drone2.11.4.2

2.11.4.4

2.11.4.4

î ĵ

k̂

2.11.4.33

⎧

⎩
⎨

= − = 1200.0 m −300.0 m = 900.0 m,Dx xe xb

= − = 2100.0 m −200.0 m = 1900.0 m,Dy ye yb

= − = 250.0 m −100.0 m = 150 m.Dz ze zb

(2.11.4.35)

2.11.4.32

= + + = 900.0 +1900.0 +150.0 = (0.90 +1.90 +0.15 ) km.D⃗  Dx î Dy ĵ Dz k̂ î ĵ k̂ î ĵ k̂ (2.11.4.36)

2.11.4.34

D = = = 4.44 km.+ +D2
x D2

y D2
z

− −−−−−−−−−−−
√ (0.90 km +(1.90 km +(0.15 km)2 )2 )2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√ (2.11.4.37)
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If the average velocity vector of the drone in the displacement in Example 2.7 is  = (15.0  + 31.7  + 2.5 ) m/s, what is the
magnitude of the drone’s velocity vector?

This page titled 2.11.4: Coordinate Systems and Components of a Vector is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

2.4: Coordinate Systems and Components of a Vector (Part 1) by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
2.5: Coordinate Systems and Components of a Vector (Part 2) by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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2.11.5: Algebra of Vectors

Apply analytical methods of vector algebra to find resultant vectors and to solve vector equations for unknown vectors.
Interpret physical situations in terms of vector expressions.

Vectors can be added together and multiplied by scalars. Vector addition is associative (Equation 2.2.8) and commutative (Equation 2.2.7), and
vector multiplication by a sum of scalars is distributive (Equation 2.2.9). Also, scalar multiplication by a sum of vectors is distributive:

In this equation,  is any number (a scalar). For example, a vector antiparallel to vector  = A   + A   + A   can be expressed simply by
multiplying  by the scalar  = −1:

In a Cartesian coordinate system where  denotes geographic east,  denotes geographic north, and  denotes altitude above sea level, a
military convoy advances its position through unknown territory with velocity  = (4.0  + 3.0  + 0.1 ) km/h. If the convoy had to retreat, in
what geographic direction would it be moving?

Solution
The velocity vector has the third component  = (+ 0.1 km/h) , which says the convoy is climbing at a rate of 100 m/h through mountainous
terrain. At the same time, its velocity is 4.0 km/h to the east and 3.0 km/h to the north, so it moves on the ground in direction tan (3 /4) ≈ 37°
north of east. If the convoy had to retreat, its new velocity vector  would have to be antiparallel to  and be in the form , where  is
a positive number. Thus, the velocity of the retreat would be  = (−4.0  − 3.0  − 0.1 ) km/h. The negative sign of the third component
indicates the convoy would be descending. The direction angle of the retreat velocity is tan (−3  − 4 ) ≈ 37° south of west. Therefore, the
convoy would be moving on the ground in direction 37° south of west while descending on its way back.

The generalization of the number zero to vector algebra is called the null vector, denoted by . All components of the null vector are zero,  = 0 +
0  + 0 , so the null vector has no length and no direction.

Two vectors  and  are equal vectors if and only if their difference is the null vector:  =  −  = (A   + A   + A  ) − (B   + B   + B  )
= (A  − B )  + (A  − B )  + (A  − B ) . This vector equation means we must have simultaneously A  − B  = 0, A  − B  = 0, and A  − B  = 0.
Hence, we can write  if and only if the corresponding components of vectors  and  are equal:

Two vectors are equal when their corresponding scalar components are equal. Resolving vectors into their scalar components (i.e., finding their
scalar components) and expressing them analytically in vector component form (given by Equation 2.5.4) allows us to use vector algebra to find
sums or differences of many vectors analytically (i.e., without using graphical methods). For example, to find the resultant of two vectors  and ,
we simply add them component by component, as follows:

In this way, using Equation , scalar components of the resultant vector  = R   + R   + R   are the sums of corresponding scalar
components of vectors  and :

Analytical methods can be used to find components of a resultant of many vectors. For example, if we are to sum up N vectors , , , … , 
, where each vector is  = F   + F   + F  , the resultant vector  is

 Learning Objectives

α( + ) = α +αB.A ⃗  B⃗  A ⃗  (2.11.5.1)

α A ⃗ 
x î y ĵ z k̂

A ⃗  α

− = − − .A ⃗  Ax î Ay ĵ Azk̂ (2.11.5.2)

 Example : Direction of Motion2.11.5.1

î ĵ k̂

v ⃗  î ĵ k̂

v ⃗ z k̂
−1 

u⃗  v ⃗  = −αu⃗  v ⃗  α

u⃗  α î ĵ k̂
−1 α α

0⃗  0⃗  î

ĵ k̂

A ⃗  B⃗  0⃗  A ⃗  B⃗ 
x î y ĵ z k̂ x î y ĵ z k̂

x x î y y ĵ z z k̂ x x y y z z

=A ⃗  B⃗  A ⃗  B⃗ 

= ⇔ .A ⃗  B⃗ 
⎧

⎩
⎨

=Ax Bx

=Ay By

=Az Bz

(2.11.5.3)

A ⃗  B⃗ 

= + = ( + + ) +( + + ) = ( + ) +( + ) +( + ) .R⃗  A ⃗  B⃗  Ax î Ay ĵ Az k̂ Bx î By ĵ Bz k̂ Ax Bx î Ay By ĵ Az Bz k̂ (2.11.5.4)

2.11.5.3 R⃗  x î y ĵ z k̂

A ⃗  B⃗ 

.
⎧

⎩
⎨

= + ,Rx Ax Bx

= + ,Ry Ay By

= +Rz Az Bz

(2.11.5.5)

F ⃗ 
1 F ⃗ 

2 F ⃗ 
3

F ⃗ 
N F ⃗ 

k kx î ky ĵ kz k̂ F ⃗ 
R

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76322?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.05%3A_Algebra_of_Vectors
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/02%3A_Vectors/2.02%3A_Scalars_and_Vectors_(Part_1)#Equation%2B2.8
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/02%3A_Vectors/2.02%3A_Scalars_and_Vectors_(Part_1)#Equation+2.7
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/02%3A_Vectors/2.02%3A_Scalars_and_Vectors_(Part_1)#Equation%2B2.9
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/02%3A_Vectors/2.05%3A__Coordinate_Systems_and_Components_of_a_Vector_(Part_2)#Equation+2.19


2.11.5.2 https://phys.libretexts.org/@go/page/76322

Therefore, scalar components of the resultant vector are

Having found the scalar components, we can write the resultant in vector component form:

Analytical methods for finding the resultant and, in general, for solving vector equations are very important in physics because many physical
quantities are vectors. For example, we use this method in kinematics to find resultant displacement vectors and resultant velocity vectors, in
mechanics to find resultant force vectors and the resultants of many derived vector quantities, and in electricity and magnetism to find resultant
electric or magnetic vector fields.

In many physical situations, we often need to know the direction of a vector. For example, we may want to know the direction of a magnetic field
vector at some point or the direction of motion of an object. We have already said direction is given by a unit vector, which is a dimensionless entity
—that is, it has no physical units associated with it. When the vector in question lies along one of the axes in a Cartesian system of coordinates, the
answer is simple, because then its unit vector of direction is either parallel or antiparallel to the direction of the unit vector of an axis. For example,
the direction of vector  = −5 m  is unit vector  = − . The general rule of finding the unit vector  of direction for any vector  is to divide it
by its magnitude V:

We see from this expression that the unit vector of direction is indeed dimensionless because the numerator and the denominator in Equation 
 have the same physical unit. In this way, Equation  allows us to express the unit vector of direction in terms of unit vectors of the

axes. Example 2.7.6 illustrates this principle.

Three displacement vectors , , and  in a plane (Figure 2.3.6) are specified by their magnitudes A = 10.0, B = 7.0, and C = 8.0,
respectively, and by their respective direction angles with the horizontal direction  = 35°,  = −110°, and  = 30°. The physical units of the
magnitudes are centimeters. Resolve the vectors to their scalar components and find the following vector sums:

a.  =  +  + ,
b.  =  − , and
c.  =  − 3  + .

Strategy

First, we use Equation 2.4.13 to find the scalar components of each vector and then we express each vector in its vector component form given

by . Then, we use analytical methods of vector algebra to find the resultants.

Solution

We resolve the given vectors to their scalar components:

For (a) we may substitute directly into Equation 2.6.7 to find the scalar components of the resultant:

= + + +… + = = ( + + )=( ) +( )F ⃗ 
R F ⃗ 

1 F ⃗ 
2 F ⃗ 

3 F ⃗ 
N ∑

k=1

N

F ⃗ 
k ∑

k=1

N

Fkx î Fky ĵ Fkzk̂ ∑
k=1

N

Fkx î ∑
k=1

N

Fky ĵ

+( ) .∑
k=1

N

Fkz k̂

(2.11.5.6)

⎧

⎩
⎨
⎪

⎪

= = + +… +FRx ∑N
k=1 Fkx F1x F2x FNx

= = + +… +FRy ∑N
k=1 Fky F1y F2y FNy

= = + +… + .FRz ∑N
k=1 Fkz F1z F2z FNz

(2.11.5.7)

= + + .F ⃗ 
R FRx î FRy ĵ FRz k̂ (2.11.5.8)

d ⃗  î d̂ î V̂ V ⃗ 

= .V̂
V ⃗ 

V
(2.11.5.9)

2.11.5.9 2.11.5.9

 Example : Analytical Computation of a Resultant2.11.5.1

A ⃗  B⃗  C ⃗ 

α β γ

R⃗  A ⃗  B⃗  C ⃗ 

D⃗  A ⃗  B⃗ 

S ⃗  A ⃗  B⃗  C ⃗ 

= +A
→

Ax î Ay ĵ

{
= A cosα = (10.0 cm) cos = 8.19 cmAx 35o

= A sinα = (10.0 cm) sin = 5.73 cmAy 35o
(2.11.5.10)

{
= B cosβ = (7.0 cm) cos(− ) = −2.39 cmBx 110o

= B sinβ = (7.0 cm) sin(− ) = −6.58 cmBy 110o
(2.11.5.11)

{
= C cosγ = (8.0 cm) cos( ) = 6.93 cmCx 30o

= C sinγ = (8.0 cm) sin( ) = 4.00 cmCy 30o
(2.11.5.12)

{ = + + = 8.19 cm−2.39 cm+6.93 cm = 12.73 cmRx Ax Bx Cx

= + + = 5.73 cm−6.58 cm+4.00 cm = 3.15 cmRy Ay By Cy

(2.11.5.13)
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Therefore, the resultant vector is cm. For (b), we may want to write the vector difference as

Hence the difference vector is cm.

For (c), we can write vector  in the following explicit form:

Then, the scalar components of  are

The vector is cm.

Significance

Having found the vector components, we can illustrate the vectors by graphing or we can compute magnitudes and direction angles, as shown
in Figure . Results for the magnitudes in (b) and (c) can be compared with results for the same problems obtained with the graphical
method, shown in Figure 2.3.7 and Figure 2.3.8. Notice that the analytical method produces exact results and its accuracy is not limited by the
resolution of a ruler or a protractor, as it was with the graphical method used in Example 2.3.2 for finding this same resultant.

Figure : Graphical illustration of the solutions obtained analytically.

Three displacement vectors , , and  (Figure 2.3.6) are specified by their magnitudes A = 10.00, B = 7.00, and F = 20.00, respectively, and
by their respective direction angles with the horizontal direction  = 35°,  = −110°, and  = 110°. The physical units of the magnitudes are
centimeters. Use the analytical method to find vector  =  + 2  − . Verify that G = 28.15 cm and that  = −68.65°.

Four dogs named Astro, Balto, Clifford, and Dug play a tug-of-war game with a toy (Figure ). Astro pulls on the toy in direction  =
55° south of east, Balto pulls in direction  = 60° east of north, and Clifford pulls in direction  = 55° west of north. Astro pulls strongly with
160.0 units of force (N), which we abbreviate as A = 160.0 N. Balto pulls even stronger than Astro with a force of magnitude B = 200.0 N, and
Clifford pulls with a force of magnitude C = 140.0 N. When Dug pulls on the toy in such a way that his force balances out the resultant of the
other three forces, the toy does not move in any direction. With how big a force and in what direction must Dug pull on the toy for this to
happen?

Figure : Four dogs play a tug-of-war game with a toy.

= + = (12.7 +3.1 )R⃗  Rx î Ry ĵ î ĵ

= − = ( + ) −( + ) = ( − ) +( − ) .D⃗  A ⃗  B⃗  Ax î Ay ĵ Bx î By ĵ Ax Bx î Ay By ĵ (2.11.5.14)

= + = (10.6 +12.3 )D⃗  Dx î Dy ĵ î ĵ

S ⃗ 

= −3 + = ( + ) −3( + ) +( + ) = ( −3 + ) +( −3 + ) .S ⃗  A ⃗  B⃗  C ⃗  Ax î Ay ĵ Bx î By ĵ Cx î Cy ĵ Ax Bx Cx î Ay By Cy ĵ (2.11.5.15)

S ⃗ 

{
= −3 + = 8.19 cm−3(−2.39 cm) +6.93 cm = 22.29 cmSx Ax Bx Cx

= −3 + = 5.73 cm−3(−6.58 cm) +4.00 cm = 29.47 cmSy Ay By Cy
(2.11.5.16)

= + = (22.3 +29.5 )S ⃗  Sx î Sy ĵ î ĵ

2.11.5.1

2.11.5.1

 Exercise 2.8

A ⃗  B⃗  F ⃗ 

α β φ

F ⃗  A ⃗  B⃗  F ⃗  θG

 Example : The Tug-of-War Game2.11.5.2

2.11.5.2 α

β γ

2.11.5.2
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Strategy

We assume that east is the direction of the positive x-axis and north is the direction of the positive y-axis. As in Example , we have to
resolve the three given forces —  (the pull from Astro),  (the pull from Balto), and  (the pull from Clifford)—into their scalar components
and then find the scalar components of the resultant vector  =  +  + . When the pulling force  from Dug balances out this resultant, the
sum of  and  must give the null vector  +  = . This means that  =  so the pull from Dug must be antiparallel to .

Solution
The direction angles are  =  = −55°,  = 90° −  = 30°, and  = 90° +  = 145°, and substituting them into Equation 2.4.13 gives the
scalar components of the three given forces:

Now we compute scalar components of the resultant vector :

The antiparallel vector to the resultant  is

The magnitude of Dug's pulling force is

The direction of Dug's pulling force is

Dug pulls in the direction 18.1° south of west because both components are negative, which means the pull vector lies in the third quadrant
(Figure 2.4.4).

Suppose that Balto in Example  leaves the game to attend to more important matters, but Astro, Clifford, and Dug continue playing.
Astro and Clifford’s pull on the toy does not change, but Dug runs around and bites on the toy in a different place. With how big a force and in
what direction must Dug pull on the toy now to balance out the combined pulls from Clifford and Astro? Illustrate this situation by drawing a
vector diagram indicating all forces involved.

Find the magnitude of the vector  that satisfies the equation 2  − 6  + 3  = 2 ,  =  − 2  and  = −  + .

Strategy

We first solve the given equation for the unknown vector . Then we substitute  and ; group the terms along each of the three directions , 
, and ; and identify the scalar components C , C , and C . Finally, we substitute into Equation 2.5.6 to find magnitude C.

Solution

2.11.5.1

A ⃗  B⃗  C ⃗ 

R⃗  A ⃗  B⃗  C ⃗  D⃗ 

D⃗  R⃗  D⃗  R⃗  0⃗  D⃗  −R⃗  R⃗ 

θA −α θB β θC γ

{
= A cos = (160.0 N) cos(− ) = +91.8 NAx θA 55o

= A sin = (160.0 N) sin(− ) = −131.1 NAy θA 55o
(2.11.5.17)

{
= B cos = (200.0 N) cos = +173.2 NBx θB 30o

= B sin = (200.0 N) sin = +100.0 NBy θB 30o
(2.11.5.18)

{
= C cos = (140.0 N) cos = −114.7 NCx θC 145o

= C sin = (140.0 N) sin = +80.3 NCy θC 145o
(2.11.5.19)

= + +R⃗  A ⃗  B⃗  C ⃗ 

{
= + + = +91.8 N +173.2 N −114.7 N = +150.3 NRx Ax Bx Cx

= + + = −131.1 N +100.0 N +80.3 N = +49.2 NRy Ay By Cy
(2.11.5.20)

R⃗ 

= − = − − = (−150.3 −49.2 )N .D⃗  R⃗  Rx î Ry ĵ î ĵ (2.11.5.21)

D = = N = 158.1 N .+D2
x D2

y

− −−−−−−
√ (−150.3 +(−49.2)2 )2

− −−−−−−−−−−−−−−−−
√ (2.11.5.22)

θ = ( ) = ( ) = ( ) = .tan−1
Dy

Dx

tan−1 −49.2 N

−150.3 N
tan−1 49.2

150.3
18.1o (2.11.5.23)

 Exercise 2.9

2.11.5.2

 Example : Vector Algebra2.11.5.3

C ⃗  A ⃗  B⃗  C ⃗  ĵ A ⃗  î k̂ B⃗  ĵ k̂

2

C ⃗  A ⃗  B⃗  î

ĵ k̂ x y z
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The components are C  = , C  = , and C  = , and substituting into Equation 2.5.6 gives

Starting at a ski lodge, a cross-country skier goes 5.0 km north, then 3.0 km west, and finally 4.0 km southwest before taking a rest. Find his
total displacement vector relative to the lodge when he is at the rest point. How far and in what direction must he ski from the rest point to
return directly to the lodge?

Strategy

We assume a rectangular coordinate system with the origin at the ski lodge and with the unit vector  pointing east and the unit vector 
pointing north. There are three displacements: , , and . We identify their magnitudes as D  = 5.0 km , D  = 3.0 km , and D  = 4.0 km .
We identify their directions are the angles  = 90°,  = 180°, and  = 180° + 45° = 225°. We resolve each displacement vector to its scalar
components and substitute the components into Equation 2.6.5 to obtain the scalar components of the resultant displacement  from the lodge
to the rest point. On the way back from the rest point to the lodge, the displacement is  = − . Finally, we find the magnitude and direction of

.

Solution

Scalar components of the displacement vectors are

Scalar components of the net displacement vector are

Hence, the skier’s net displacement vector is  = D   + D   = (−5.8  + 2.2 )km . On the way back to the lodge, his displacement is  = − 

 = −(−5.8 + 2.2 )km = (5.8  − 2.2 )km. Its magnitude is B =  =  km = 6.2 km and its direction angle is 

= tan  = −20.8°. Therefore, to return to the lodge, he must go 6.2 km in a direction about 21° south of east.

Significance

Notice that no figure is needed to solve this problem by the analytical method. Figures are required when using a graphical method; however,
we can check if our solution makes sense by sketching it, which is a useful final step in solving any vector problem.

2 −6 +A ⃗  B⃗  3 = 2C ⃗  ĵ

3 = 2 −2 +6C ⃗  ĵ A ⃗  B⃗ 

= − +2C ⃗  2

3
ĵ

2

3
A ⃗  B⃗ 

= − ( −2 ) +2(− + )
2

3
ĵ

2

3
î k̂ ĵ

k̂

2

= − + −2 +
2

3
ĵ

2

3
î

4

3
k̂ ĵ k̂

= − +( −2) +(   +1)
2

3
î

2

3
ĵ

4

3
k̂

= − − +
2

3
î

4

3
ĵ

7

3
k̂

x − 2
3 y − 4

3 z
7
3

C = = = .+ +C 2
x C 2

y C 2
z

− −−−−−−−−−−
√ + +(− )

2

3

2

(− )
4

3

2

( )
7

3

2
− −−−−−−−−−−−−−−−−−−−−−

√
23

3

−−−
√ (2.11.5.24)

 Example : Displacement of a Skier2.11.5.4

î ĵ

D⃗ 
1 D⃗ 

2 D⃗ 
3 1 2 3

θ1 θ2 θ3

D⃗ 

B⃗  D⃗ 

B⃗ 

{
= cos = (5.0 km) cos = 0D1x D1 θ1 90o

= sin = (5.0 km) sin = 5.0 kmD1y D1 θ1 90o
(2.11.5.25)

{
= cos = (3.0 km) cos = −3.0 kmD2x D2 θ2 180o

= sin = (3.0 km) sin = 0D2y D2 θ2 180o
(2.11.5.26)

{
= cos = (4.0 km) cos = −2.8 kmD3x D3 θ3 225o

= sin = (4.0 km) sin = −2.8 kmD3y D3 θ3 225o
(2.11.5.27)

{
= + + = (0 −3.0 −2.8)km = −5.8 kmDx D1x D2x D3x

= + + = (5.0 +0 −2.8)km = +2.2 kmDy D1y D2y D3y
(2.11.5.28)

D⃗  x î y ĵ î ĵ B⃗ 

D⃗  î ĵ î ĵ +B2
x B2

y

− −−−−−−
√ (5.8 +(−2.2)2 )2− −−−−−−−−−−−−

√

θ −1( )
−2.2

5.8
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A jogger runs up a flight of 200 identical steps to the top of a hill and then runs along the top of the hill 50.0 m before he stops at a drinking
fountain (Figure ). His displacement vector from point A at the bottom of the steps to point B at the fountain is  = (−90.0  + 30.0

)m. What is the height and width of each step in the flight? What is the actual distance the jogger covers? If he makes a loop and returns to
point A, what is his net displacement vector?

Figure : A jogger runs up a flight of steps.

Strategy

The displacement vector  is the vector sum of the jogger’s displacement vector  along the stairs (from point A at the bottom of the
stairs to point T at the top of the stairs) and his displacement vector  on the top of the hill (from point T at the top of the stairs to the
fountain at point B). We must find the horizontal and the vertical components of . If each step has width w and height h, the horizontal
component of  must have a length of 200w and the vertical component must have a length of 200h. The actual distance the jogger covers
is the sum of the distance he runs up the stairs and the distance of 50.0 m that he runs along the top of the hill.

Solution
In the coordinate system indicated in Figure , the jogger’s displacement vector on the top of the hill is  = (−50.0 m) . His net
displacement vector is

Therefore, his displacement vector  along the stairs is

Its scalar components are D  = −40.0 m and D  = 30.0 m. Therefore, we must have

Hence, the step width is w =  = 0.2 m = 20 cm, and the step height is w =  = 0.15 m = 15 cm. The distance that the jogger covers
along the stairs is

Thus, the actual distance he runs is D  + D  = 50.0 m + 50.0 m = 100.0 m. When he makes a loop and comes back from the fountain to his
initial position at point A, the total distance he covers is twice this distance,or 200.0 m. However, his net displacement vector is zero, because
when his final position is the same as his initial position, the scalar components of his net displacement vector are zero (Equation 2.4.4).

In many physical situations, we often need to know the direction of a vector. For example, we may want to know the direction of a magnetic field
vector at some point or the direction of motion of an object. We have already said direction is given by a unit vector, which is a dimensionless entity
—that is, it has no physical units associated with it. When the vector in question lies along one of the axes in a Cartesian system of coordinates, the
answer is simple, because then its unit vector of direction is either parallel or antiparallel to the direction of the unit vector of an axis. For example,
the direction of vector  = -5 m  is unit vector  = - . The general rule of finding the unit vector  of direction for any vector  is to divide it by
its magnitude V:

We see from this expression that the unit vector of direction is indeed dimensionless because the numerator and the denominator in Equation 
 have the same physical unit. In this way, Equation  allows us to express the unit vector of direction in terms of unit vectors of the

axes. The following example illustrates this principle.

 Example : Displacement of a Jogger2.11.5.5

2.11.5.3 D⃗ 
AB î

ĵ

2.11.5.3

D⃗ 
AB D⃗ 

AT

D⃗ 
RB

D⃗ 
TB

D⃗ 
TB

2.11.5.3 D⃗ 
RB î

= + .D⃗ 
AB D⃗ 

AT D⃗ 
TB

D⃗ 
TB

D⃗ 
AT = − = (−90.0 +30.0 )m−(−50.0m) ) = [(−90.050.0)hati+30.0 )]mD⃗ 

AB D⃗ 
TB î ĵ î ĵ

= (−40.0 +30.0 )m.î ĵ

ATx ATy

200w = | −40.0|m and 200h = 30.0 m.

40.0 m

200
30.0 m

200

= = m = 50.0 m.D⃗ 
AT +D⃗ 2

ATx D⃗ 2
ATy

− −−−−−−−−−−
√ (−40.0 +(30.0)2 )2

− −−−−−−−−−−−−−−
√

AT TB

d ⃗  î d ⃗  î V ⃗  V ⃗ 

\widehat{\mathbf{V}}=\frac{\overrightarrow{\mathbf{V}}}{V} \label{2.26} \cdot

2.11.5.9 2.11.5.9
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If the velocity vector of the military convoy in Example 2.6.1 is  = (4.000  + 3.000  + 0.100 )km/h, what is the unit vector of its direction
of motion.

Strategy

The unit vector of the convoy’s direction of motion is the unit vector  that is parallel to the velocity vector. The unit vector is obtained by
dividing a vector by its magnitude, in accordance with Equation .

Solution

The magnitude of the vector  is

To obtain the unit vector , divide  by its magnitude:

Significance

Note that when using the analytical method with a calculator, it is advisable to carry out your calculations to at least three decimal places and
then round off the final answer to the required number of significant figures, which is the way we performed calculations in this example. If
you round off your partial answer too early, you risk your final answer having a huge numerical error, and it may be far off from the exact
answer or from a value measured in an experiment.

Verify that vector  obtained in Example  is indeed a unit vector by computing its magnitude. If the convoy in Example 2.6.1 was
moving across a desert flatland—that is, if the third component of its velocity was zero—what is the unit vector of its direction of motion?
Which geographic direction does it represent?

2.11.5.1 Contributors
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 Example : The Unit Vector of Direction2.11.5.6

v ⃗  î ĵ k̂

v̂

2.11.5.9

v ⃗ 

v= = km/h = 5.001 km/h.+ +v2
x v2

y v2
z

− −−−−−−−−−
√ + +4.0002 3.0002 0.1002− −−−−−−−−−−−−−−−−−−

√

v̂ v ⃗ 

v̂ = =
v ⃗ 

v

(4.000 +3.00 +0.100 )km/hî ĵ k̂

5.001 km/h

=
(4.000 +3.000 +0.1100 )î ĵ k̂

5.001

= + +
4.000

5.001
î

3.000

5.001
ĵ

0.100

5.001
k̂

= (79.98 +59.99 +2.00 ) × .î ĵ k̂ 10−2

 Exercise 2.10

v̂ 2.11.5.3
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2.11.6: Products of Vectors

Explain the difference between the scalar product and the vector product of two vectors.
Determine the scalar product of two vectors.
Determine the vector product of two vectors.
Describe how the products of vectors are used in physics.

A vector can be multiplied by another vector but may not be divided by another vector. There are two kinds of products of vectors
used broadly in physics and engineering. One kind of multiplication is a scalar multiplication of two vectors. Taking a scalar
product of two vectors results in a number (a scalar), as its name indicates. Scalar products are used to define work and energy
relations. For example, the work that a force (a vector) performs on an object while causing its displacement (a vector) is defined as
a scalar product of the force vector with the displacement vector. A quite different kind of multiplication is a vector multiplication
of vectors. Taking a vector product of two vectors returns as a result a vector, as its name suggests. Vector products are used to
define other derived vector quantities. For example, in describing rotations, a vector quantity called torque is defined as a vector
product of an applied force (a vector) and its lever arm (a vector). It is important to distinguish between these two kinds of vector
multiplications because the scalar product is a scalar quantity and a vector product is a vector quantity.

2.11.6.1 The Scalar Product of Two Vectors (the Dot Product)
Scalar multiplication of two vectors yields a scalar product.

The scalar product  of two vectors  and  is a number defined by the equation

where  is the angle between the vectors (shown in Figure ). The scalar product is also called the dot product because
of the dot notation that indicates it.

In the definition of the dot product, the direction of angle  does not matter, and  can be measured from either of the two vectors
to the other because  =  = . The dot product is a negative number when 90° <  ≤ 180° and is a positive
number when 0° ≤  < 90°. Moreover, the dot product of two parallel vectors is  = AB cos 0° = AB, and the dot product of
two antiparallel vectors is  = AB cos 180° = −AB. The scalar product of two orthogonal vectors vanishes:  = AB cos
90° = 0. The scalar product of a vector with itself is the square of its magnitude:

Figure : The scalar product of two vectors. (a) The angle between the two vectors. (b) The orthogonal projection A  of
vector  onto the direction of vector . (c) The orthogonal projection B  of vector  onto the direction of vector .

For the vectors shown in Figure 2.3.6, find the scalar product .

Strategy

 Learning Objectives

 Definition: Scalar Product (Dot Product)

⋅A ⃗  B⃗  A ⃗  B⃗ 

⋅ = AB cosφ,A ⃗  B⃗  (2.11.6.1)

ϕ 2.11.6.1

φ φ

cosφ cos(−φ) cos(2π−φ) φ

ϕ ⋅A ⃗  B⃗ 

⋅A ⃗  B⃗  ⋅A ⃗  B⃗ 

≡ ⋅ = AA cos =A ⃗ 2 A ⃗  A ⃗  0o A2 (2.11.6.2)

2.11.6.1 ⊥

A ⃗  B⃗ 
⊥ B⃗  A ⃗ 

 Example : The Scalar Product2.11.6.1

⋅A ⃗  F ⃗ 
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From Figure 2.3.6, the magnitudes of vectors  and  are A = 10.0 and F = 20.0. Angle , between them, is the difference: 
 = 110° − 35° = 75°. Substituting these values into Equation  gives the scalar product.

Solution
A straightforward calculation gives us

For the vectors given in Figure 2.3.6, find the scalar products  and .

In the Cartesian coordinate system, scalar products of the unit vector of an axis with other unit vectors of axes always vanish
because these unit vectors are orthogonal:

In these equations, we use the fact that the magnitudes of all unit vectors are one:  = 1. For unit vectors of the axes,
Equation  gives the following identities:

The scalar product  can also be interpreted as either the product of B with the projection A  of vector  onto the direction of
vector  (Figure (b)) or the product of A with the projection B  of vector  onto the direction of vector  (Figure 

(c)):

For example, in the rectangular coordinate system in a plane, the scalar x-component of a vector is its dot product with the unit
vector , and the scalar y-component of a vector is its dot product with the unit vector :

Scalar multiplication of vectors is communtative,

and obeys the distributive law:

We can use the commutative and distributive laws to derive various relations for vectors, such as expressing the dot product of two
vectors in terms of their scalar components.

For vector  in a rectangular coordinate system, use Equation  through Equation  to
show that  and .

When the vectors in Equation  are given in their vector component forms,

A ⃗  B⃗  θ

θ = φ−α 2.11.6.1

⋅ = AF cosθ = (10.0)(20.0) cos = 51.76.A ⃗  F ⃗  75o (2.11.6.3)

 Exercise 2.11

⋅A ⃗  B⃗  ⋅B⃗  C ⃗ 

⋅ = | || | cos = (1)(1)(0) = 0,î ĵ î ĵ 90o (2.11.6.4)

⋅ = | || | cos = (1)(1)(0) = 0,î k̂ î k̂ 90o (2.11.6.5)

⋅ = | || | cos = (1)(1)(0) = 0.k̂ ĵ k̂ ĵ 90o (2.11.6.6)

| | = | | = | |î ĵ k̂

2.11.6.2

⋅ = = ⋅ = = ⋅ = 1.î î i2 ĵ ĵ j2 k̂ k̂ (2.11.6.7)

⋅A ⃗  B⃗ 
∥ A ⃗ 

B⃗  2.11.6.1 ∥ B⃗  A ⃗ 

2.11.6.1

⋅A ⃗  B⃗ = AB cosφ

= B(A cosφ) = BA∥

= A(B cosφ) = A .B∥

î ĵ

{
⋅ = | || | cos = A cos = A cos =A ⃗  î A ⃗  î θA θA θA Ax

⋅ = | || | cos( − ) = A sin =A ⃗  ĵ A ⃗  ĵ 90o θA θA Ay

(2.11.6.8)

⋅ = ⋅ ,A ⃗  B⃗  B⃗  A ⃗  (2.11.6.9)

⋅ ( + ) = ⋅ + ⋅ .A ⃗  B⃗  C ⃗  A ⃗  B⃗  A ⃗  C ⃗  (2.11.6.10)

 Exercise 2.12

= + +A ⃗  Ax î Ay ĵ Az k̂ 2.11.6.4 2.11.6.10

⋅ = ⋅ =A ⃗  î AxA ⃗  ĵ Ay ⋅ =A ⃗  k̂ Az

2.11.6.1
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we can compute their scalar product as follows:

Since scalar products of two different unit vectors of axes give zero, and scalar products of unit vectors with themselves give one
(see Equation  and Equation ), there are only three nonzero terms in this expression. Thus, the scalar product
simplifies to

We can use Equation  for the scalar product in terms of scalar components of vectors to find the angle between two
vectors. When we divide Equation  by AB, we obtain the equation for cos , into which we substitute Equation :

Angle  between vectors  and  is obtained by taking the inverse cosine of the expression in Equation .

Three dogs are pulling on a stick in different directions, as shown in Figure . The first dog pulls with force  = (10.0 
 − 20.4  + 2.0 )N, the second dog pulls with force  = (−15.0  − 6.2 )N , and the third dog pulls with force  = (5.0 

+ 12.5 )N . What is the angle between forces  and ?

Figure : Three dogs are playing with a stick.

Strategy

The components of force vector  are F  = 10.0 N, F = −20.4 N, and F  = 2.0 N, whereas those of force vector  are F
= −15.0 N, F  = 0.0 N, and F  = −6.2 N. Computing the scalar product of these vectors and their magnitudes, and substituting
into Equation  gives the angle of interest.

Solution
The magnitudes of forces  and  are

and

Substituting the scalar components into Equation  yields the scalar product

= + + and = + + ,A ⃗  Ax î Ay ĵ Az k̂ B⃗  Bx î By ĵ Bz k̂ (2.11.6.11)

⋅A ⃗  B⃗  = ( + + ) ⋅ ( + + )Ax î Ay ĵ Az k̂ Bx î By ĵ Bz k̂

= ⋅ + ⋅ + ⋅AxBx î î AxBy î ĵ AxBz î k̂

+ ⋅ + ⋅ + ⋅AyBx ĵ î AyBy ĵ ĵ AyBz ĵ k̂

+ ⋅ + ⋅ + ⋅ .AzBx k̂ î AzBy k̂ ĵ AzBz k̂ k̂

2.11.6.4 2.11.6.7

⋅ = + + .A ⃗  B⃗  AxBx AyBy AzBz (2.11.6.12)

2.11.6.12
2.11.6.1 φ 2.11.6.12

cosφ = = .
⋅A ⃗  B⃗ 

AB

+ +AxBx AyBy AzBz

AB
(2.11.6.13)

φ A ⃗  B⃗  2.11.6.13

 Example 2.11.6.2

2.11.6.2 F ⃗ 
1

î ĵ k̂ F ⃗ 
2 î k̂ F ⃗ 

3 î

ĵ F ⃗ 
1 F ⃗ 

2

2.11.6.2

F ⃗ 
1 1x 1y 1z F ⃗ 

2 2x

2y 2z
2.11.6.13

F ⃗ 
1 F ⃗ 

2

= = N = 22.8 NF1 + +F 2
1x

F 2
1y

F 2
1z

− −−−−−−−−−−−
√ + +10.02 20.42 2.02− −−−−−−−−−−−−−−−

√ (2.11.6.14)

= = N = 16.2 N .F2 + +F 2
2x F 2

2y F 2
2z

− −−−−−−−−−−−
√ +15.02 6.22− −−−−−−−−−

√ (2.11.6.15)

2.11.6.12
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Finally, substituting everything into Equation  gives the angle

Significance

Notice that when vectors are given in terms of the unit vectors of axes, we can find the angle between them without knowing
the specifics about the geographic directions the unit vectors represent. Here, for example, the +x-direction might be to the east
and the +y-direction might be to the north. But, the angle between the forces in the problem is the same if the +x-direction is to
the west and the +y-direction is to the south.

Find the angle between forces  and  in Example .

When force  pulls on an object and when it causes its displacement , we say the force performs work. The amount of work
the force does is the scalar product . If the stick in Example  moves momentarily and gets displaced by vector 
= (−7.9  − 4.2 )cm, how much work is done by the third dog in Example ?

Strategy

We compute the scalar product of displacement vector  with force vector  = (5.0  + 12.5 )N, which is the pull from the
third dog. Let’s use W  to denote the work done by force  on displacement .

Solution
Calculating the work is a straightforward application of the dot product:

Significance

The SI unit of work is called the joule (J) , where 1 J = 1 N · m. The unit cm · N can be written as 10 m · N = 10  J, so the
answer can be expressed as W  = −0.9875 J ≈ −1.0 J.

How much work is done by the first dog and by the second dog in Example  on the displacement in Example 
?

2.11.6.2 The Vector Products of Two Vectors (the Cross Product)
Vector multiplication of two vectors yields a vector product.

The vector product of two vectors  and  is denoted by  ×  and is often referred to as a cross product. The vector product
is a vector that has its direction perpendicular to both vectors  and . In other words, vector  ×  is perpendicular to the
plane that contains vectors  and , as shown in Figure . The magnitude of the vector product is defined as

⋅F ⃗ 
1 F ⃗ 

2 = + +F1xF2x F1yF2y F1zF2z

= (10.0 N)(−15.0 N) +(−20.4 N)(0.0 N) +(2.0 N)(−6.2 N)

= −162.4 .N 2

2.11.6.13

cosφ = = = −0.439 ⇒ φ = (−0.439) = .
⋅F ⃗ 

1 F ⃗ 
2

F1F2

−162.4 N 2

(22.8 N)(16.2 N)
cos−1 116.0o (2.11.6.16)

 Exercise 2.13

F ⃗ 
1 F ⃗ 

3 2.11.6.2

 Example : The Work of a Force2.11.6.3

F ⃗  D⃗ 

⋅F ⃗  D⃗  2.11.6.2 D⃗ 

ĵ k̂ 2.11.6.2

D⃗  F ⃗ 
3 î ĵ

3 F ⃗ 
3 D⃗ 

W3 = ⋅ = + +F ⃗ 
3 D⃗  F3xDx F3yDy F3zDz

= (5.0 N)(0.0 cm) +(12.5 N)(−7.9 cm) +(0.0 N)(−4.2 cm)

= −98.7 N ⋅ cm.

−2 −2

3

 Exercise 2.14

2.11.6.2
2.11.6.3

 Vector Product (Cross Product)

A ⃗  B⃗  A ⃗  B⃗ 

A ⃗  B⃗  A ⃗  B⃗ 

A ⃗  B⃗  2.11.6.1
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where angle , between the two vectors, is measured from vector  (first vector in the product) to vector  (second vector in
the product), as indicated in Figure , and is between 0° and 180°.

According to Equation , the vector product vanishes for pairs of vectors that are either parallel (  = 0°) or antiparallel (
= 180°) because sin 0° = sin 180° = 0.

Figure : The vector product of two vectors is drawn in three-dimensional space. (a) The vector product  is a vector
perpendicular to the plane that contains vectors  and . Small squares drawn in perspective mark right angles between  and ,
and between  and  so that if  and  lie on the floor, vector  points vertically upward to the ceiling. (b) The vector product 

 is a vector antiparallel to vector .

On the line perpendicular to the plane that contains vectors  and  there are two alternative directions—either up or down, as
shown in Figure —and the direction of the vector product may be either one of them. In the standard right-handed
orientation, where the angle between vectors is measured counterclockwise from the first vector, vector  points upward, as
seen in Figure (a). If we reverse the order of multiplication, so that now  comes first in the product, then vector 
must point downward, as seen in Figure (b). This means that vectors  and  are antiparallel to each other
and that vector multiplication is not commutative but anticommutative. The anticommutative property means the vector product
reverses the sign when the order of multiplication is reversed:

The corkscrew right-hand rule is a common mnemonic used to determine the direction of the vector product. As shown in Figure 
, a corkscrew is placed in a direction perpendicular to the plane that contains vectors  and , and its handle is turned in

the direction from the first to the second vector in the product. The direction of the cross product is given by the progression of the
corkscrew.

Figure : The corkscrew right-hand rule can be used to determine the direction of the cross product . Place a
corkscrew in the direction perpendicular to the plane that contains vectors  and , and turn it in the direction from the first to the
second vector in the product. The direction of the cross product is given by the progression of the corkscrew. (a) Upward
movement means the cross-product vector points up. (b) Downward movement means the cross-product vector points downward.

| × | = AB sinφ,A ⃗  B⃗  (2.11.6.17)

φ A ⃗  B⃗ 

2.11.6.1

2.11.6.17 φ φ

2.11.6.1 ×A ⃗  B⃗ 

A ⃗  B⃗  A ⃗  C ⃗ 

B⃗  C ⃗  A ⃗  B⃗  B⃗ 

×B⃗  A ⃗  ×A ⃗  B⃗ 

A ⃗  B⃗ 

2.11.6.1

×A ⃗  B⃗ 

2.11.6.1 B⃗  ×B⃗  A ⃗ 

2.11.6.1 ×A ⃗  B⃗  ×B⃗  A ⃗ 

× = − × .A ⃗  B⃗  B⃗  A ⃗  (2.11.6.18)

2.11.6.2 A ⃗  B⃗ 

2.11.6.2 ×A ⃗  B⃗ 

A ⃗  B⃗ 
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The mechanical advantage that a familiar tool called a wrench provides (Figure ) depends on magnitude F of the
applied force, on its direction with respect to the wrench handle, and on how far from the nut this force is applied. The distance
R from the nut to the point where force vector  is attached is called the lever arm and is represented by the radial vector .
The physical vector quantity that makes the nut turn is called torque (denoted by ), and it is the vector product of the lever
arm with the force: .

To loosen a rusty nut, a 20.00-N force is applied to the wrench handle at angle  = 40° and at a distance of 0.25 m from the
nut, as shown in Figure (a). Find the magnitude and direction of the torque applied to the nut. What would the
magnitude and direction of the torque be if the force were applied at angle  = 45°, as shown in Figure (b)? For what
value of angle  does the torque have the largest magnitude?

Figure : A wrench provides grip and mechanical advantage in applying torque to turn a nut. (a) Turn counterclockwise
to loosen the nut. (b) Turn clockwise to tighten the nut.

Strategy

We adopt the frame of reference shown in Figure , where vectors  and  lie in the xy-plane and the origin is at the
position of the nut. The radial direction along vector  (pointing away from the origin) is the reference direction for measuring
the angle  because  is the first vector in the vector product  = . Vector  must lie along the z-axis because this is the
axis that is perpendicular to the xy-plane, where both  and  lie. To compute the magnitude , we use Equation .
To find the direction of , we use the corkscrew right-hand rule (Figure ).

Solution
For the situation in (a), the corkscrew rule gives the direction of  in the positive direction of the z-axis. Physically, it
means the torque vector  points out of the page, perpendicular to the wrench handle. We identify F = 20.00 N and R = 0.25 m,
and compute the magnitude using Equation :

For the situation in (b), the corkscrew rule gives the direction of  in the negative direction of the z-axis. Physically, it
means the vector  points into the page, perpendicular to the wrench handle. The magnitude of this torque is

The torque has the largest value when sin  = 1, which happens when  = 90°. Physically, it means the wrench is most
effective—giving us the best mechanical advantage—when we apply the force perpendicular to the wrench handle. For the
situation in this example, this best-torque value is  = RF = (0.25 m)(20.00 N) = 5.00 N • m.

Significance

When solving mechanics problems, we often do not need to use the corkscrew rule at all, as we’ll see now in the following
equivalent solution. Notice that once we have identified that vector  lies along the z-axis, we can write this vector in
terms of the unit vector  of the z-axis:

 Example : The Torque of a Force2.11.6.1

2.11.6.3

F ⃗  R⃗ 

τ ⃗ 

= ×τ ⃗  R⃗  F ⃗ 

φ

2.11.6.3
φ 2.11.6.3

φ

2.11.6.3

2.11.6.3 R⃗  F ⃗ 

R⃗ 

φ R⃗  τ ⃗  ×R⃗  F ⃗  τ ⃗ 

R⃗  F ⃗  τ 2.11.6.17
τ ⃗  2.11.6.2

×R⃗  F ⃗ 

τ ⃗ 

2.11.6.17

τ = | × | = RF sinφ = (0.25 m)(20.00 N) sin = 3.21 N ⋅m.R⃗  F ⃗  40o (2.11.6.19)

×R⃗  F ⃗ 

τ ⃗ 

τ = | × | = RF sinφ = (0.25 m)(20.00 N) sin = 3.53 N ⋅m.R⃗  F ⃗  45o (2.11.6.20)

φ φ

τbest

×R⃗  F ⃗ 

k̂
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In this equation, the number that multiplies  is the scalar z-component of the vector . In the computation of this
component, care must be taken that the angle  is measured counterclockwise from  (first vector) to  (second vector)
Following this principle for the angles, we obtain RF sin (+ 40°) = + 3.2 N • m for the situation in (a), and we obtain RF sin
(−45°) = −3.5 N • m for the situation in (b). In the latter case, the angle is negative because the graph in Figure 
indicates the angle is measured clockwise; but, the same result is obtained when this angle is measured counterclockwise
because +(360° − 45°) = + 315° and sin (+ 315°) = sin (−45°). In this way, we obtain the solution without reference to the
corkscrew rule. For the situation in (a), the solution is  = + 3.2 N • m ; for the situation in (b), the solution is  =
−3.5 N • m .

For the vectors given in Figure 2.3.6, find the vector products  and .

Similar to the dot product (Equation 2.8.10), the cross product has the following distributive property:

The distributive property is applied frequently when vectors are expressed in their component forms, in terms of unit vectors of
Cartesian axes. When we apply the definition of the cross product, Equation , to unit vectors , , and  that define the
positive x-, y-, and z-directions in space, we find that

All other cross products of these three unit vectors must be vectors of unit magnitudes because , , and  are orthogonal. For
example, for the pair  and , the magnitude is | | = ij sin 90° = (1)(1)(1) = 1. The direction of the vector product  must
be orthogonal to the xy-plane, which means it must be along the z-axis. The only unit vectors along the z-axis are −  or + . By the
corkscrew rule, the direction of vector  must be parallel to the positive z-axis. Therefore, the result of the multiplication 
is identical to + . We can repeat similar reasoning for the remaining pairs of unit vectors. The results of these multiplications are

Notice that in Equation , the three unit vectors , , and  appear in the cyclic order shown in a diagram in Figure 
(a). The cyclic order means that in the product formula,  follows  and comes before , or  follows  and comes before 

, or  follows  and comes before . The cross product of two different unit vectors is always a third unit vector. When two unit
vectors in the cross product appear in the cyclic order, the result of such a multiplication is the remaining unit vector, as illustrated
in Figure (b). When unit vectors in the cross product appear in a different order, the result is a unit vector that is
antiparallel to the remaining unit vector (i.e., the result is with the minus sign, as shown by the examples in Figure (c) and
Figure (d). In practice, when the task is to find cross products of vectors that are given in vector component form, this rule
for the cross-multiplication of unit vectors is very useful.

× = RF sinφ .R⃗  F ⃗  k̂ (2.11.6.21)

k̂ ×R⃗  F ⃗ 

φ R⃗  F ⃗ 

2.11.6.3

×R⃗  F ⃗  k̂ ×R⃗  F ⃗ 

k̂

 Exercise 2.15

×A ⃗  B⃗  ×C ⃗  F ⃗ 

×( + ) = × + × .A ⃗  B⃗  C ⃗  A ⃗  B⃗  A ⃗  C ⃗  (2.11.6.22)

2.11.6.17 î ĵ k̂

× = × = × = 0.î î ĵ ĵ k̂ k̂ (2.11.6.23)

î ĵ k̂

î ĵ ×î ĵ ×î ĵ

k̂ k̂

×î ĵ ×î ĵ

k̂

⎧

⎩
⎨
⎪

⎪

× = + ,î ĵ k̂

× = + ,ĵ k̂ î

× = + .k̂ î ĵ

(2.11.6.24)

2.11.6.24 î ĵ k̂

2.11.6.4 î k̂ ĵ k̂ ĵ

î ĵ î k̂

2.11.6.4
2.11.6.4

2.11.6.4
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Figure : (a) The diagram of the cyclic order of the unit vectors of the axes. (b) The only cross products where the unit
vectors appear in the cyclic order. These products have the positive sign. (c, d) Two examples of cross products where the unit
vectors do not appear in the cyclic order. These products have the negative sign.

Suppose we want to find the cross product  for vectors = A + A  + A  and  = B  + B  + B . We can use the
distributive property (Equation ), the anticommutative property (Equation ), and the results in Equation 

 and Equation  for unit vectors to perform the following algebra:

When performing algebraic operations involving the cross product, be very careful about keeping the correct order of
multiplication because the cross product is anticommutative. The last two steps that we still have to do to complete our task are,
first, grouping the terms that contain a common unit vector and, second, factoring. In this way we obtain the following very useful
expression for the computation of the cross product:

In this expression, the scalar components of the cross-product vector are

When finding the cross product, in practice, we can use either Equation  or Equation , depending on which one
of them seems to be less complex computationally. They both lead to the same final result. One way to make sure if the final result
is correct is to use them both.

When moving in a magnetic field, some particles may experience a magnetic force. Without going into details—a detailed
study of magnetic phenomena comes in later chapters—let’s acknowledge that the magnetic field  is a vector, the magnetic
force  is a vector, and the velocity  of the particle is a vector. The magnetic force vector is proportional to the vector product
of the velocity vector with the magnetic field vector, which we express as  = . In this equation, a constant  takes care
of the consistency in physical units, so we can omit physical units on vectors  and . In this example, let’s assume the

2.11.6.4

×A ⃗  B⃗  A ⃗ 
x î y ĵ z k̂ B⃗ 

x î y ĵ z k̂

2.11.6.22 2.11.6.18
2.11.6.23 2.11.6.24

×A ⃗  B⃗  = ( + + ) ×( + + )Ax î Ay ĵ Az k̂ Bx î By ĵ Bz k̂

= ×( + + ) + ×( + + ) + ×( + + )Ax î Bx î By ĵ Bz k̂ Ay ĵ Bx î By ĵ Bz k̂ Az k̂ Bx î By ĵ Bz k̂

= × + × + ×AxBx î î AxBy î ĵ AzBz î k̂

+ × + × + ×AyBx ĵ î AyBy ĵ ĵ AyBz ĵ k̂

+ × + × + ×AzBx k̂ î AzBy k̂ ĵ AzBz k̂ k̂

= (0) + (+ ) + (− )AxBx AxBy k̂ AxBz ĵ

+ (− ) + (0) + (+ )AyBx k̂ AyBy AyBz î

+ (+ ) + (− ) + (0).AzBx ĵ AzBy î AzBz

= × = ( − ) +( − ) +( − ) .C ⃗  A ⃗  B⃗  AyBz AzBy î AzBx AxBz ĵ AxBy AyBx k̂ (2.11.6.25)

⎧

⎩
⎨
⎪

⎪

= − ,Cx AyBz AzBy

= − ,Cy AzBx AxBz

= − .Cz AxBy AyBx

(2.11.6.26)

2.11.6.17 2.11.6.25

 Example : A Particle in a Magnetic Field2.11.6.2

B⃗ 

F ⃗  u⃗ 

F ⃗  ζ ×u⃗  B⃗  ζ

u⃗  B⃗ 
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constant  is positive. A particle moving in space with velocity vector  = −5.0  − 2.0 + 3.5  enters a region with a
magnetic field and experiences a magnetic force. Find the magnetic force  on this particle at the entry point to the region
where the magnetic field vector is (a)  = 7.2  −  − 2.4  and (b)  = 4.5 . In each case, find magnitude F of the magnetic
force and angle  the force vector  makes with the given magnetic field vector .

Strategy

First, we want to find the vector product , because then we can determine the magnetic force using  = .

Magnitude F can be found either by using components, F = , or by computing the magnitude | |

directly using Equation . In the latter approach, we would have to find the angle between vectors  and . When we
have , the general method for finding the direction angle  involves the computation of the scalar product  and
substitution into Equation 2.8.13. To compute the vector product we can either use Equation  or compute the product
directly, whichever way is simpler.

Solution
The components of the velocity vector are u  = −5.0, u  = −2.0, and u  = 3.5. (a) The components of the magnetic field vector
are B  = 7.2, B  = −1.0, and B  = −2.4. Substituting them into Equation  gives the scalar components of vector 

:

Thus, the magnetic force is  = (8.3  + 13.2  + 19.4 ) and its magnitude is

To compute angle , we may need to find the magnitude of the magnetic field vector

and the scalar product :

Now, substituting into Equation 2.8.13 gives angle :

Hence, the magnetic force vector is perpendicular to the magnetic field vector. (We could have saved some time if we had
computed the scalar product earlier.)

(b) Because vector  = 4.5  has only one component, we can perform the algebra quickly and find the vector product
directly:

The magnitude of the magnetic force is

Because the scalar product is

ζ u⃗  î ĵ k̂

F ⃗ 

B⃗  î ĵ k̂ B⃗  k̂

θ F ⃗  B⃗ 

×u⃗  B⃗  F ⃗  ζ ×u⃗  B⃗ 

+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ ×u⃗  B⃗ 

2.11.6.17 u⃗  B⃗ 

F ⃗  θ ⋅F ⃗  B⃗ 

2.11.6.25

x y z

x y z 2.11.6.26

= ζ ×F ⃗  u⃗  B⃗ 

⎧

⎩
⎨
⎪

⎪

= ζ( − ) = ζ[(−2.0)(−2.4) −(3.5)(−1.0)] = 8.3ζFx uyBz uzBy

= ζ( − ) = ζ[(3.5)(7.2) −(−5.0)(−2.4)] = 13.2ζFy uzBx uxBz

= ζ( − ) = ζ[(−5.0)(−1.0) −(−2.0)(7.2)] = 19.4ζFz uxBy uyBx

(2.11.6.27)

F ⃗  ζ î ĵ k̂

F = = ζ = 24.9ζ.+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ (8.3 +(13.2 +(19.4)2 )2 )2

− −−−−−−−−−−−−−−−−−−−
√ (2.11.6.28)

θ

B = = = 7.6,+ +B2
x B2

y B2
z

− −−−−−−−−−−
√ (7.2 +(−1.0 +(−2.4)2 )2 )2

− −−−−−−−−−−−−−−−−−−−−
√ (2.11.6.29)

⋅F ⃗  B⃗ 

⋅ = + + = (8.3ζ)(7.2) +(13.2ζ)(−1.0) +(19.4ζ)(−2.4) =.F ⃗  B⃗  FxBx FyBy FzBz (2.11.6.30)

θ

cosθ = = = 0 ⇒ θ = .
⋅F ⃗  B⃗ 

FB

0

(18.2ζ)(7.6)
90o (2.11.6.31)

B⃗  k̂

F ⃗  = ζ × = ζ(−5.0 −2.0 +3.5 ) ×(4.5 )u⃗  B⃗  î ĵ k̂ k̂

= ζ[(−5.0)(4.5) × +(−2.0)(4.5) × +(3.5)(4.5) × ]î k̂ ĵ k̂ k̂ k̂

= ζ[−22.5(− ) −9.0(+ ) +0] = ζ(−9.0 +22.5 ).ĵ î î ĵ

F = = ζ = 24.2ζ.+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ (−9.0 +(22.5 +(0.0)2 )2 )2

− −−−−−−−−−−−−−−−−−−−
√ (2.11.6.32)

⋅ = + + = (−9.0ζ)(90) +(22.5ζ)(0) +(0)(4.5) = 0,F ⃗  B⃗  FxBx FyBy FzBz (2.11.6.33)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76323?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/02%3A_Vectors/2.08%3A_Products_of_Vectors_(Part_1)#Eq.+2.34
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/02%3A_Vectors/2.08%3A_Products_of_Vectors_(Part_1)#Eq.+2.34


2.11.6.10 https://phys.libretexts.org/@go/page/76323

the magnetic force vector  is perpendicular to the magnetic field vector .

Significance

Even without actually computing the scalar product, we can predict that the magnetic force vector must always be
perpendicular to the magnetic field vector because of the way this vector is constructed. Namely, the magnetic force vector is
the vector product  =  and, by the definition of the vector product (see Figure ), vector  must be
perpendicular to both vectors  and .

Given two vectors  and  = 3  − , find (a) , (b) | |, (c) the angle between  and , and (d) the
angle between  and vector .

In conclusion to this section, we want to stress that “dot product” and “cross product” are entirely different mathematical objects
that have different meanings. The dot product is a scalar; the cross product is a vector. Later chapters use the terms dot product
and scalar product interchangeably. Similarly, the terms cross product and vector product are used interchangeably.
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F ⃗  B⃗ 

F ⃗  ζ ×u⃗  B⃗  2.11.6.1 F ⃗ 

u⃗  B⃗ 

 Exercise 2.16

= − +A ⃗  î ĵ B⃗  î ĵ ×A ⃗  B⃗  ×(A ⃗  B⃗  A ⃗  B⃗ 

×A ⃗  B⃗  = +C ⃗  î k̂
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2.11.7: Further Topics

Vector Basics

Classical mechanics describes the motion of bodies as they move through space. To describe a motion in space it is not sufficient to
give a position and a speed: you need a direction as well. Therefore we work with vectors: mathematical objects that have both a
magnitude and a direction. If you tell me you’re moving, I know something, but not much; I’ll know more if you tell me you’re
moving at walking speed, and have full information of your velocity once you tell me that you’re moving at walking speed towards
the coffee machine. Although in principle we could make do with specifying a magnitude and direction of every vector in this way,
it is often more convenient to express our vectors in a basis. To do so, we choose an (arbitrary) origin, and as many basis vectors as
we have spatial dimensions, in such a way that they are not parallel to one another, and usually mutually perpendicular (orthogonal)
and of unit length (orthonormal). Then we decompose our vector by giving its components along each of the basis vectors. The
most common choice is to use a Cartesian basis, of two or three (depending on spatial dimension) basis vectors of unit length
pointing in the standard x, y and z directions, and indicated as  and , or (rather annoyingly) sometimes as  and , the latter
especially in American textbooks. Other often encountered systems are polar coordinates (2D) and cylindrical and spherical
coordinates (3D), see the mathematical appendix for more background on those. To write our vectors, we now specify the
components in each direction, writing for example  for a vector (in boldface) representing a speed of  and a
direction making an angle of  with the horizontal.

Vectors can be added and subtracted just like scalars - simply add and subtract them by component. Graphically, you add two
vectors by putting them head-to-tail: you can find the sum of two vectors  and  by putting the start of  at the end of , the sum

 then points from the start of  to the end of . You can also multiply a vector by a scalar, by multiplying every component
of the vector with that scalar. Graphically, this means that you extend the length of the vector with the scalar factor you just
multiplied with.

You can’t take the product of two vectors like you would two scalars. There are however two vector operations that closely
resemble the product, known as the inner (or dot) and outer (or cross) product, see Figure 16.A.1. The dot product represents the
length of the projection of one vector on another (and thus gives a scalar); it is zero for perpendicular vectors, and the dot product
of a vector with itself gives the square of its length. To calculate the dot product of two vectors, sum the products of their
components: if  and , then . You can use the dot product to find the angle
between two vectors, using standard geometry, which gives

where  and  are the lengths of vectors  and , respectively. The cross product is only defined for three-dimensional vectors,
say  and . The result is another vector, with a direction perpendicular to the plane
spanned by  and , and a magnitude equal to the area of the parallelogram bounded by them. The cross product is most easily
expressed in column vector form:

The cross product of a vector with itself is zero.

,x̂ ŷ ẑ i, j k

v = 3 +3x̂ ŷ 3 2
–

√

45∘

v w w v

v +w v w

v = +vxx̂ vyŷ w = +wxx̂ wy ŷ v ⋅ w = +vxwx vywy

cos θ = =
v ⋅ w

|v||w|

+vxwx vywy

|v||w|
(2.11.7.1)

|v| |w| v w

v = + +vxx̂ vyŷ vzẑ w = + +wxx̂ wyŷ wz ẑ

v w

v ×w = × =
⎛

⎝
⎜

vx

vy

vz

⎞

⎠
⎟

⎛

⎝
⎜

wx

wy

wz

⎞

⎠
⎟

⎛

⎝
⎜

−vywz vzwy

−vzwx vxwz

−vxwy vywx

⎞

⎠
⎟ (2.11.7.2)
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Figure : Products and derivatives of vectors. (a) The dot product of two vectors  and  gives the length of the projection
of  on  (or vice versa). (b) The cross product of two vectors  and  gives a vector perpendicular to the plane spanned by  and 

 and with a magnitude equal to the area of the parallelogram spanned by  and . (c-f ) Acceleration as a change in velocity. In
every panel, the original velocity is shown in black, the velocity a short time ∆t later is shown in blue, and the acceleration is
shown in red. (c) Acceleration for an increase in the magnitude of the velocity. (d) Acceleration for a decrease in the magnitude of
the velocity. (e) Acceleration for a change in direction of the velocity at constant magnitude. (f ) Acceleration for a change in
velocity that involves both a change in direction and a decrease in magnitude.

Vectors can be functions, just like scalar quantities: they can depend on one or more parameters, like position or time. Also, again
just like scalar functions, you can calculate a rate of change of vector function as you move through parameter values, for instance
asking how the velocity of a car changes as a function of time. An instantaneous rate of change is simply a derivative, which is
calculated in exactly the same manner as the derivative of a scalar function. For example, the rate of change of the velocity, known
as the acceleration , is defined as:

Since the velocity itself is the derivative of the position , the acceleration is also the second derivative of the position. Time
derivatives occur so frequently in classical mechanics that we use a special notation for them: a first derivative is indicated by a dot
on top of the quantity, and a second derivative by a double dot - so we have .

Vector derivatives are somewhat richer than those of scalar functions, since there are more ways that a vector can change. Like a
scalar function, the magnitude of a vector can increase or decrease. Moreover, its direction can also change, which also means that
it has a nonzero derivative, and of course, you can have a combination of a change in magnitude and a change in direction, see
Figure 16.A.1.

Figure : Examples of scalar and vector fields. (a) Temperature (a scalar) at every point in the Netherlands at 11:30 on
October 28, 2013. Lines of equal temperature are drawn in black; the gradient of the temperature field is everywhere perpendicular
to these lines. (b) Wind velocity (a vector) at every point in the Netherlands at the same time as the temperature map. Colors
correspond to the magnitude of the velocity. (a and b) from [30]. (c) Example of a vector field with a large divergence and zero
curl. (d) Example of a vector field with a large curl (and low but nonzero divergence).

Functions (scalar or vector) that are defined at every point in space are sometimes called fields. Examples are the temperature
(scalar) and wind (vector) at every point on the planet, see Figure 16.A.2. Just like you can calculate the rate of change of a
function in time, you can also consider how a function changes in space. For a scalar function, this quantity is a vector, known as
the gradient, defined as the vector of partial derivatives. For a function f (x, y, z), we have:

2.11.7.1 a b
a b a b a

b a b

a

a = lim
Δt→0

v(t +Δt) −v

Δt
(2.11.7.3)

x(t)

a = =ẋ ẍ
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The direction of  is the direction of maximal change, and its magnitude tells you how quickly the function changes in that
direction. For a vector field , we can’t take the gradient, but we can use the ‘vector’  of partial derivatives combined with either
the dot or cross product. The first option is known as the divergence of , and tells you how quickly  spreads out; the second is
the curl of  and tells you how much  rotates:

where , and so on.

Polar Coordinates
You can specify any point in the plane by specifying its projection on two perpendicular axes - we typically call these the x and y-
axes and x and y coordinates. In this Cartesian system (named after Descartes), we identify unit vectors  and , pointing along
their respective axes, and being of unit length. A position  can then be decomposed in the two directions: , with 

 and . Alternatively, we can write  and , which gives for :

Instead of specifying the x and y coordinates of our position, we could also uniquely identify it by giving two different numbers: its
distance to the origin r, and the angle  the line to the origin makes with a fixed reference axis (typically the x-axis), see Figure
16.A.3. Invoking the Pythagorean theorem and basic trigonometry, 

we readily find  and . We call r the length of the vector . We could also invert the relations for r and 

so we can get the Cartesian components if the length and angle are known:  and .

Like the Cartesian basis vectors  and (\hat{\boldsymbol{y}}\), which point in the direction of increasing x and y values, we can
also define unit vectors pointing in the direction of increasing r and . These directions do depend on our position in space, but they
do have a clear geometrical interpretation: \hat{\boldsymbol{r}} always points radially outward from the origin, and
\hat{\boldsymbol{\theta}} in the direction you’d move if you’d be making a counterclockwise rotation about the origin. Given a
position vector , finding the vector in the direction of increasing r is very easy: . The expression for r in our new polar
basis  is almost tautological: .

Relating the polar basis vectors to the Cartesian ones is straightforward. We have:

and using  we also have

We thus find that .

For \(\hat{\boldsymbol{\theta}\) we note that to rotate around the origin, the direction of motion needs to be perpendicular to .
There are of course two such directions - we pick the sign by demanding that the counterclockwise rotation is positive. This gives 

. Written out as vectors, we have:

Note that

∇f = + + =
∂f

∂x
x̂

∂f

∂y
ŷ

∂f

∂z
ẑ

⎛

⎝
⎜

∂f/∂x

∂f/∂y

∂f/∂z

⎞

⎠
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Naturally, we can also express the Cartesian basis in terms of the polar ones:

Figure : Polar coordinate system and polar unit vectors. A position  in the plane can be specified either by giving its
projections on two reference axes (along the  and  direction), or by giving its distance r to the origin, and the angle  the line to
the origin makes with the x axis. The polar basis vectors are defined as pointing in the direction of increasing r (i.e., radially
outward), and increasing  (i.e., rotating counterclockwise around the origin).

2.11.7: Further Topics is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

16.A: Math by Timon Idema is licensed CC BY-NC-SA 4.0. Original source: https://textbooks.open.tudelft.nl/textbooks/catalog/book/14.
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2.11.E: Practice

2.11.E.1 Conceptual Questions

2.11.E.1.1 Scalars and Vectors
1. A weather forecast states the temperature is predicted to be −5 °C the following day. Is this temperature a vector or a

scalar quantity? Explain.
2. Which of the following is a vector: a person’s height, the altitude on Mt. Everest, the velocity of a fly, the age of Earth,

the boiling point of water, the cost of a book, Earth’s population, or the acceleration of gravity?
3. Give a specific example of a vector, stating its magnitude, units, and direction.
4. What do vectors and scalars have in common? How do they differ?
5. Suppose you add two vectors  and . What relative direction between them produces the resultant with the greatest

magnitude? What is the maximum magnitude? What relative direction between them produces the resultant with the
smallest magnitude? What is the minimum magnitude?

6. Is it possible to add a scalar quantity to a vector quantity?
7. Is it possible for two vectors of different magnitudes to add to zero? Is it possible for three vectors of different magnitudes

to add to zero? Explain.
8. Does the odometer in an automobile indicate a scalar or a vector quantity?
9. When a 10,000-m runner competing on a 400-m track crosses the finish line, what is the runner’s net displacement? Can

this displacement be zero? Explain.
10. A vector has zero magnitude. Is it necessary to specify its direction? Explain.
11. Can a magnitude of a vector be negative?
12. Can the magnitude of a particle’s displacement be greater that the distance traveled?
13. If two vectors are equal, what can you say about their components? What can you say about their magnitudes? What can

you say about their directions?
14. If three vectors sum up to zero, what geometric condition do they satisfy?

2.11.E.1.2 Coordinate Systems and Components of a Vector
15. Give an example of a nonzero vector that has a component of zero.
16. Explain why a vector cannot have a component greater than its own magnitude.
17. If two vectors are equal, what can you say about their components?
18. If vectors  and  are orthogonal, what is the component of  along the direction of ? What is the component of 

along the direction of ?
19. If one of the two components of a vector is not zero, can the magnitude of the other vector component of this vector be

zero?
20. If two vectors have the same magnitude, do their components have to be the same?

2.11.E.1.3 Products of Vectors
21. What is wrong with the following expressions? How can you correct them?

a. ,
b. ,
c. ,
d. ,
e. ,
f. ,
g. ,
h. ,
i. , and
j. .

22. If the cross product of two vectors vanishes, what can you say about their directions?

A ⃗  B⃗ 

A ⃗  B⃗  B⃗  A ⃗  A ⃗ 

B⃗ 

C = A ⃗ B⃗ 

=C ⃗  A ⃗ B⃗ 

C = ×A ⃗  B⃗ 

C = AB⃗ 

C +2 = BA ⃗ 

= A ×C ⃗  B⃗ 

⋅ = ×A ⃗  B⃗  A ⃗  B⃗ 

= 2 ⋅C ⃗  A ⃗  B⃗ 

C = /A ⃗  B⃗ 

C = /BA ⃗ 
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23. If the dot product of two vectors vanishes, what can you say about their directions?
24. What is the dot product of a vector with the cross product that this vector has with another vector?

2.11.E.2 Problems

2.11.E.2.1 Scalars and Vectors
25. A scuba diver makes a slow descent into the depths of the ocean. His vertical position with respect to a boat on the

surface changes several times. He makes the first stop 9.0 m from the boat but has a problem with equalizing the
pressure, so he ascends 3.0 m and then continues descending for another 12.0 m to the second stop. From there, he
ascends 4 m and then descends for 18.0 m, ascends again for 7 m and descends again for 24.0 m, where he makes a stop,
waiting for his buddy. Assuming the positive direction up to the surface, express his net vertical displacement vector in
terms of the unit vector. What is his distance to the boat?

26. In a tug-of-war game on one campus, 15 students pull on a rope at both ends in an effort to displace the central knot to
one side or the other. Two students pull with force 196 N each to the right, four students pull with force 98 N each to the
left, five students pull with force 62 N each to the left, three students pull with force 150 N each to the right, and one
student pulls with force 250 N to the left. Assuming the positive direction to the right, express the net pull on the knot in
terms of the unit vector. How big is the net pull on the knot? In what direction?

27. Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point and what
is the compass direction of a line connecting your starting point to your final position? Use a graphical method.

28. For the vectors given in the following figure, use a graphical method to find the following resultants:

a. ,
b. ,
c. ,
d. ,
e. ,
f. ,
g. .

29. A delivery man starts at the post office, drives 40 km north, then 20 km west, then 60 km northeast, and finally 50 km
north to stop for lunch. Use a graphical method to find his net displacement vector.

30. An adventurous dog strays from home, runs three blocks east, two blocks north, one block east, one block north, and two
blocks west. Assuming that each block is about 100 m, how far from home and in what direction is the dog? Use a
graphical method.

31. In an attempt to escape a desert island, a castaway builds a raft and sets out to sea. The wind shifts a great deal during the
day and he is blown along the following directions: 2.50 km and 45.0° north of west, then 4.70 km and 60.0° south of
east, then 1.30 km and 25.0° south of west, then 5.10 km straight east, then 1.70 km and 5.00° east of north, then 7.20 km
and 55.0° south of west, and finally 2.80 km and 10.0° north of east. Use a graphical method to find the castaway’s final
position relative to the island.

+A ⃗  B⃗ 

+C ⃗  B⃗ 

+D⃗  F ⃗ 

−A ⃗  B⃗ 

−D⃗  F ⃗ 

+2A ⃗  F ⃗ 

−4 +2A ⃗  D⃗  F ⃗ 

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76325?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/02%3A_Vectors/2.02%3A_Scalars_and_Vectors_(Part_1)


2.11.E.3 https://phys.libretexts.org/@go/page/76325

32. A small plane flies 40.0 km in a direction 60° north of east and then flies 30.0 km in a direction 15° north of east. Use a
graphical method to find the total distance the plane covers from the starting point and the direction of the path to the
final position.

33. A trapper walks a 5.0-km straight-line distance from his cabin to the lake, as shown in the following figure. Use a
graphical method (the parallelogram rule) to determine the trapper’s displacement directly to the east and displacement
directly to the north that sum up to his resultant displacement vector. If the trapper walked only in directions east and
north, zigzagging his way to the lake, how many kilometers would he have to walk to get to the lake?

34. A surveyor measures the distance across a river that flows straight north by the following method. Starting directly across
from a tree on the opposite bank, the surveyor walks 100 m along the river to establish a baseline. She then sights across
to the tree and reads that the angle from the baseline to the tree is 35°. How wide is the river?

35. A pedestrian walks 6.0 km east and then 13.0 km north. Use a graphical method to find the pedestrian’s resultant
displacement and geographic direction.

36. The magnitudes of two displacement vectors are A = 20 m and B = 6 m. What are the largest and the smallest values of
the magnitude of the resultant ?

2.11.E.2.2 Coordinate Systems and Components of a Vector
37. Assuming the +x-axis is horizontal and points to the right, resolve the vectors given in the following figure to their scalar

components and express them in vector component form.

38. Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point? What is
your displacement vector? What is the direction of your displacement? Assume the +x-axis is to the east.

39. You drive 7.50 km in a straight line in a direction 15° east of north. (a) Find the distances you would have to drive
straight east and then straight north to arrive at the same point. (b) Show that you still arrive at the same point if the east
and north legs are reversed in order. Assume the +xaxis is to the east.

40. A sledge is being pulled by two horses on a flat terrain. The net force on the sledge can be expressed in the Cartesian
coordinate system as vector = (−2980.0  + 8200.0 )N , where  and  denote directions to the east and north,
respectively. Find the magnitude and direction of the pull.

41. A trapper walks a 5.0-km straight-line distance from her cabin to the lake, as shown in the following figure. Determine
the east and north components of her displacement vector. How many more kilometers would she have to walk if she
walked along the component displacements? What is her displacement vector?

= +R⃗  A ⃗  B⃗ 

F ⃗  î ĵ î ĵ
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42. The polar coordinates of a point are  and 5.50 m. What are its Cartesian coordinates?
43. Two points in a plane have polar coordinates P (2.500 m, ) and P  (3.800 m, ). Determine their Cartesian

coordinates and the distance between them in the Cartesian coordinate system. Round the distance to a nearest centimeter.
44. A chameleon is resting quietly on a lanai screen, waiting for an insect to come by. Assume the origin of a Cartesian

coordinate system at the lower left-hand corner of the screen and the horizontal direction to the right as the +x-direction.
If its coordinates are (2.000 m, 1.000 m), (a) how far is it from the corner of the screen? (b) What is its location in polar
coordinates?

45. Two points in the Cartesian plane are A(2.00 m, −4.00 m) and B(−3.00 m, 3.00 m). Find the distance between them and
their polar coordinates.

46. A fly enters through an open window and zooms around the room. In a Cartesian coordinate system with three axes along
three edges of the room, the fly changes its position from point b(4.0 m, 1.5 m, 2.5 m) to point e(1.0 m, 4.5 m, 0.5 m).
Find the scalar components of the fly’s displacement vector and express its displacement vector in vector component
form. What is its magnitude?

2.11.E.2.3 Algebra of Vectors

47. For vectors  and , calculate (a)  and its magnitude and direction angle, and (b) 
 and its magnitude and direction angle.

48. A particle undergoes three consecutive displacements given by vectors  = (3.0  − 4.0  − 2.0 )mm,  = (1.0  −
7.0  + 4.0 )mm, and  = (−7.0  + 4.0  + 1.0 )mm. (a) Find the resultant displacement vector of the particle. (b)
What is the magnitude of the resultant displacement? (c) If all displacements were along one line, how far would the
particle travel?

49. Given two displacement vectors  = (3.00  − 4.00  + 4.00 )m and  = (2.00  + 3.00  − 7.00 )m, find the
displacements and their magnitudes for (a)  and (b) .

50. A small plane flies 40.0 km in a direction 60° north of east and then flies 30.0 km in a direction 15° north of east. Use the
analytical method to find the total distance the plane covers from the starting point, and the geographic direction of its
displacement vector. What is its displacement vector?

51. . In an attempt to escape a desert island, a castaway builds a raft and sets out to sea. The wind shifts a great deal during
the day, and she is blown along the following straight lines: 2.50 km and 45.0° north of west, then 4.70 km and 60.0°
south of east, then 1.30 km and 25.0° south of west, then 5.10 km due east, then 1.70 km and 5.00° east of north, then
7.20 km and 55.0° south of west, and finally 2.80 km and 10.0° north of east. Use the analytical method to find the
resultant vector of all her displacement vectors. What is its magnitude and direction?

52. Assuming the +x-axis is horizontal to the right for the vectors given in the following figure, use the analytical method to
find the following resultants:

a. ,
b. ,
c. ,
d. ,
e. ,
f. ,
g. , and
h. .

4π

3

1 
π
6 2

2π
3

= − −4B⃗  î ĵ = −3 −2A ⃗  î ĵ +A ⃗  B⃗ 

−A ⃗  B⃗ 

D⃗ 
1 î ĵ k̂ D⃗ 

2 î

ĵ î D⃗ 
3 î ĵ k̂

A ⃗  î ĵ k̂ B⃗  î ĵ k̂

= +C ⃗  A ⃗  B⃗  = 2 −D⃗  A ⃗  B⃗ 

+A ⃗  B⃗ 

+C ⃗  B⃗ 

+D⃗  F ⃗ 

−A ⃗  B⃗ 

−D⃗  F ⃗ 

+2A ⃗  F ⃗ 

−2 +3C ⃗  B⃗  F ⃗ 

−4 +2A ⃗  D⃗  F ⃗ 
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53. Given the vectors in the preceding figure, find vector  that solves equations (a)  and (b) 
. Assume the +x-axis is horizontal to the right.

54. A delivery man starts at the post office, drives 40 km north, then 20 km west, then 60 km northeast, and finally 50 km
north to stop for lunch. Use the analytical method to determine the following: (a) Find his net displacement vector. (b)
How far is the restaurant from the post office? (c) If he returns directly from the restaurant to the post office, what is his
displacement vector on the return trip? (d) What is his compass heading on the return trip? Assume the +x-axis is to the
east.

55. An adventurous dog strays from home, runs three blocks east, two blocks north, and one block east, one block north, and
two blocks west. Assuming that each block is about a 100 yd, use the analytical method to find the dog’s net displacement
vector, its magnitude, and its direction. Assume the +x-axis is to the east. How would your answer be affected if each
block was about 100 m?

56. If  = (6.00  − 8.00 m,  = (−8.00  + 3.00 )m , and  = (26.0  + 19.0 )m, find the unknown constants a and b
such that a .

57. Given the displacement vector  = (3  − 4 )m, find the displacement vector  so that  +  = −4D .
58. Find the unit vector of direction for the following vector quantities: (a) Force  = (3.0  − 2.0 )N, (b) displacement  =

(−3.0  − 4.0 )m, and (c) velocity  = (−5.00  + 4.00 )m/s.
59. At one point in space, the direction of the electric field vector is given in the Cartesian system by the unit vector 

. If the magnitude of the electric field vector is E = 400.0 V/m, what are the scalar components E , E ,

and E  of the electric field vector  at this point? What is the direction angle  of the electric field vector at this point?
60. A barge is pulled by the two tugboats shown in the following figure. One tugboat pulls on the barge with a force of

magnitude 4000 units of force at 15° above the line AB (see the figure and the other tugboat pulls on the barge with a
force of magnitude 5000 units of force at 12° below the line AB. Resolve the pulling forces to their scalar components
and find the components of the resultant force pulling on the barge. What is the magnitude of the resultant pull? What is
its direction relative to the line AB?

61. In the control tower at a regional airport, an air traffic controller monitors two aircraft as their positions change with
respect to the control tower. One plane is a cargo carrier Boeing 747 and the other plane is a Douglas DC-3. The Boeing
is at an altitude of 2500 m, climbing at 10° above the horizontal, and moving 30° north of west. The DC-3 is at an altitude
of 3000 m, climbing at 5° above the horizontal, and cruising directly west. (a) Find the position vectors of the planes
relative to the control tower. (b) What is the distance between the planes at the moment the air traffic controller makes a
note about their positions?

2.11.E.2.4 Products of Vectors
62. Assuming the +x-axis is horizontal to the right for the vectors in the following figure, find the following scalar products:

a. ,
b. ,
c. ,
d. ,
e. ,
f. ,
g.  and
h. .

R⃗  + =D⃗  R⃗  F ⃗ 

−2 +5 = 3C ⃗  D⃗  R⃗  F ⃗ 

D⃗  î ĵ B⃗  î ĵ A ⃗  î ĵ

+b + =D⃗  B⃗  A ⃗  0⃗ 

D⃗  î ĵ R⃗  D⃗  R⃗  ĵ

F ⃗  î ĵ D⃗ 

î ĵ v ⃗  î ĵ

= −Ê 1
5√

î 2
5√

ĵ x y

z E ⃗  θE

⋅A ⃗  C ⃗ 

⋅A ⃗  F ⃗ 

⋅D⃗  C ⃗ 

⋅ ( +2 )A ⃗  F ⃗  C ⃗ 

⋅î B⃗ 

⋅ĵ B⃗ 

(3 − )⋅î ĵ B⃗ 

⋅B̂ B⃗ 
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63. Assuming the +x-axis is horizontal to the right for the vectors in the preceding figure, find (a) the component of vector 
along vector , (b) the component of vector  along vector , (c) the component of vector  along vector , and (d) the
component of vector  along vector .

64. Find the angle between vectors for

a.  = (−3.0  − 4.0 )m and  = (−3.0  + 4.0 )m and
b.  = (2.0  − 4.0  + )m and  = (−2.0  + 3.0  + 2.0 )m.

65. Find the angles that vector  = (2.0  − 4.0  + )m makes with the x-, y-, and z-axes.
66. Show that the force vector  = (2.0  − 4.0  + )N is orthogonal to the force vector  = (3.0  + 4.0 + 10.0 )N.
67. Assuming the +x-axis is horizontal to the right for the vectors in the following figure, find the following vector products:

a. ,
b. ,
c. 
d. ,
e. ,
f. ,
g.  and
h. .

68. Find the cross product  for

a.  = 2.0  − 4.0  +  and  = 3.0  + 4.0  + 10.0 ,
b.  = 3.0  + 4.0  + 10.0  and  = 2.0  − 4.0  + ,
c.  = −3.0  − 4.0  and  = −3.0  + 4.0 , and
d.  = −2.0  + 3.0  + 2.0  and  = −9.0 .

A ⃗ 

C ⃗  C ⃗  A ⃗  î F ⃗ 

F ⃗  î

D⃗  î ĵ A ⃗  î ĵ

D⃗  î ĵ k̂ B⃗  î ĵ k̂

D⃗  î ĵ k̂

D⃗  î ĵ k̂ G⃗  î ĵ k̂

×A ⃗  C ⃗ 

×A ⃗  F ⃗ 

×D⃗  C ⃗ 

×( +2 )A ⃗  F ⃗  C ⃗ 

×î B⃗ 

×ĵ B⃗ 

(3 − ) ×î ĵ B⃗ 

×B̂ B⃗ 

×A ⃗  C ⃗ 

A ⃗  î ĵ k̂ C ⃗  î ĵ k̂

A ⃗  î ĵ k̂ C ⃗  î ĵ k̂

A ⃗  î ĵ C ⃗  î ĵ

C ⃗  î ĵ k̂ A ⃗  ĵ
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69. For the vectors in the following figure, find (a) ( ), (b) ( ), and (c) ( ).

70. (a) If , can we conclude  = ? (b) If  = , can we conclude  = ? (c) If  = , can we
conclude  = ? Why or why not?

2.11.E.3 Additional Problems
71. You fly 32.0 km in a straight line in still air in the direction 35.0° south of west. (a) Find the distances you would have to

fly due south and then due west to arrive at the same point. (b) Find the distances you would have to fly first in a
direction 45.0° south of west and then in a direction 45.0° west of north. Note these are the components of the
displacement along a different set of axes—namely, the one rotated by 45° with respect to the axes in (a).

72. Rectangular coordinates of a point are given by (2, y) and its polar coordinates are given by (r, ). Find y and r.
73. If the polar coordinates of a point are (r, ) and its rectangular coordinates are (x, y), determine the polar coordinates of

the following points: (a) (−x, y), (b) (−2x, −2y), and (c) (3x, −3y).
74. Vectors  and  have identical magnitudes of 5.0 units. Find the angle between them if  +  = 5 2 .
75. Starting at the island of Moi in an unknown archipelago, a fishing boat makes a round trip with two stops at the islands of

Noi and Poi. It sails from Moi for 4.76 nautical miles (nmi) in a direction 37° north of east to Noi. From Noi, it sails 69°
west of north to Poi. On its return leg from Poi, it sails 28° east of south. What distance does the boat sail between Noi
and Poi? What distance does it sail between Moi and Poi? Express your answer both in nautical miles and in kilometers.
Note: 1 nmi = 1852 m.

76. An air traffic controller notices two signals from two planes on the radar monitor. One plane is at altitude 800 m and in a
19.2-km horizontal distance to the tower in a direction 25° south of west. The second plane is at altitude 1100 m and its
horizontal distance is 17.6 km and 20° south of west. What is the distance between these planes?

77. Show that when  +  = , then C  = A  + B  + 2AB cos , where  is the angle between vectors  and .
78. Four force vectors each have the same magnitude f. What is the largest magnitude the resultant force vector may have

when these forces are added? What is the smallest magnitude of the resultant? Make a graph of both situations.
79. A skater glides along a circular path of radius 5.00 m in clockwise direction. When he coasts around one-half of the

circle, starting from the west point, find (a) the magnitude of his displacement vector and (b) how far he actually skated.
(c) What is the magnitude of his displacement vector when he skates all the way around the circle and comes back to the
west point?

80. A stubborn dog is being walked on a leash by its owner. At one point, the dog encounters an interesting scent at some
spot on the ground and wants to explore it in detail, but the owner gets impatient and pulls on the leash with force  =
(98.0  + 132.0  + 32.0 )N along the leash. (a) What is the magnitude of the pulling force? (b) What angle does the
leash make with the vertical?

81. If the velocity vector of a polar bear is  = (−18.0  − 13.0 )km/h , how fast and in what geographic direction is it
heading? Here,  and  are directions to geographic east and north, respectively.

82. Find the scalar components of three-dimensional vectors  and  in the following figure and write the vectors in vector
component form in terms of the unit vectors of the axes.

× ⋅A ⃗  F ⃗  D⃗  × )⋅ ( ×A ⃗  F ⃗  A ⃗  C ⃗  ⋅ )( ×A ⃗  F ⃗  D⃗  B⃗ 

× = ×A ⃗  F ⃗  B⃗  F ⃗  A ⃗  B⃗  ⋅A ⃗  F ⃗  ⋅B⃗  F ⃗  A ⃗  B⃗  F A ⃗  FB⃗ 

A ⃗  B⃗ 

π

6

φ

A ⃗  B⃗  A ⃗  B⃗  ĵ

A ⃗  B⃗  C ⃗  2 2 2 φ φ A ⃗  B⃗ 

F ⃗ 

î ĵ ĵ

u⃗  î ĵ

î ĵ

G⃗  H⃗ 
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83. A diver explores a shallow reef off the coast of Belize. She initially swims 90.0 m north, makes a turn to the east and
continues for 200.0 m, then follows a big grouper for 80.0 m in the direction 30° north of east. In the meantime, a local
current displaces her by 150.0 m south. Assuming the current is no longer present, in what direction and how far should
she now swim to come back to the point where she started?

84. A force vector  has x- and y-components, respectively, of −8.80 units of force and 15.00 units of force. The x- and y-
components of force vector  are, respectively, 13.20 units of force and −6.60 units of force. Find the components of
force vector  that satisfies the vector equation −  + 3  = 0.

85. Vectors  and  are two orthogonal vectors in the xy-plane and they have identical magnitudes. If  = 3.0  + 4.0 ,
find .

86. For the three-dimensional vectors in the following figure, find (a) , (b) | | , and (c) .

A ⃗ 

B⃗ 

C ⃗  A ⃗  B⃗  C ⃗ 

A ⃗  B⃗  A ⃗  î ĵ

B⃗ 

×G⃗  H⃗  ×G⃗  H⃗  ⋅G⃗  H⃗ 
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87. Show that  is the volume of the parallelepiped, with edges formed by the three vectors in the following
figure.

2.11.E.4 Challenge Problems

88. Vector  is 5.0 cm long and vector  is 4.0 cm long. Find the angle between these two vectors when | | = 3.0 cm
and |  − | = 3.0 cm.

89. What is the component of the force vector  = (3.0  + 4.0  + 10.0 )N along the force vector  = (1.0  + 4.0 )N?
90. The following figure shows a triangle formed by the three vectors ,  and . If vector  is drawn between the

midpoints of vectors  and , show that  = .

91. Distances between points in a plane do not change when a coordinate system is rotated. In other words, the magnitude of
a vector is invariant under rotations of the coordinate system. Suppose a coordinate system S is rotated about its origin
by angle  to become a new coordinate system S′, as shown in the following figure. A point in a plane has coordinates (x,
y) in S and coordinates (x′, y′) in S′.
a. Show that, during the transformation of rotation, the coordinates in S′ are expressed in terms of the coordinates in S

by the following relations: $

( × )⋅B⃗  C ⃗  A ⃗ 

B⃗  A ⃗  +A ⃗  B⃗ 

A ⃗  B⃗ 

G⃗  î ĵ k̂ H⃗  î ĵ

A ⃗  B⃗  C ⃗  C ⃗ ′

A ⃗  B⃗  C ⃗ ′ C ⃗ 

2

φ
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\ldotp$
b. Show that the distance of point P to the origin is invariant under rotations of the coordinate system. Here, you have to

show that $\sqrt{x^{2} + y^{2}} = \sqrt{x'^{2} + y'^{2}} \ldotp$
c. Show that the distance between points P and Q is invariant under rotations of the coordinate system. Here, you have to

show that $\sqrt{(x_{P} - x_{Q})^{2} + (y_{P} - y_{Q})^{2}} = \sqrt{(x'_{P} - x'_{Q})^{2} + (y'_{P} -
y'_{Q})^{2}} \ldotp$
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2.12: Math-vector basics and diffrential equations

2.12.1 Solving Differential Equations

A differential equation is an equation which contains derivatives of the function to be determined. They can be very simple. For
example, you may be given the (constant) velocity of a car, which is the derivative of its position, which we’d write mathematically
as:

To determine where the car ends up after one hour, we need to solve this differential equation. We also need a second piece of
information: where the car was at some reference time (usually t = 0), the initial condition. If , you don’t need advanced
maths skills to figure out that . Unfortunately, things aren’t usually this easy.

Before we proceed to a few techniques for solving differential equations, we need some terminology. The order of a differential
equation is the order of the highest derivative found in the equation; Equation  is thus of first order. A differential equation is
called ordinary if it only contains derivatives with respect to one variable, and partial if it contains derivatives to multiple variables.
The equation is linear if it does not contain any products of (derivatives of) the unknown function. Finally, a differential equation is
homogeneous if it only contains terms that contain the unknown function, and inhomogeneous if it also contains other terms.
Equation  is ordinary and inhomogeneous, as the  term on the right does not contain the unknown function . In the
sections below,we discuss the various cases you’ll encounter in this book; there are many others (many of which can’t be solved
explicitly) to which a whole subfield of mathematics is dedicated.

2.12.1.1 FIRST-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Suppose we have a general equation of the form

where  and  are known functions of , and  is our unknown function. Equation  is a first-order, ordinary,
linear, inhomogeneous differential equation. In order to solve it we will use two techniques that are tremendously useful: separation
of variables and separation into homogeneous and particular solutions.

Suppose we had . Then, if we had two solutions  and  of Equation , we could construct a third as 
 (or any linear combination of  and  ), since the equation is linear. Now since  is not zero, we can’t do

this, but we can do something else. First, we find the most general solution to the equation where , which we call the
homogeneous solution . Second, we find a solution (any at all) of the full Equation , which we call the particular
solution . The full solution is then the sum of these two solutions, . You may worry that there may be
multiple particular solutions: how would we pick the ‘right’ one? Fortunately, we don’t need to worry: the homogeneous solution
will contain an unknown variable, which will be set by the initial condition. Changing the particular solution will change the value
of the variable, such that the final solution will be the same and satisfy both the differential equation and the initial condition.

To find the solution to the homogeneous equation

we’re going to use a technique called separation of variables. There are two variables in this system: the independent parameter t
and the dependent parameter x. The trick is to get everything depending on t on one side of the equals sign, and everything
depending on x on the other. To do so, we’re going to treat dx/dt as if it were an actual fraction . In that case, it’s not hard to see
that we can re-arrange Equation  to

By itself, Equation  means little, but if we integrate both sides, we get something that makes sense:

v= =
dx

dt
v0 (2.12.1)

x(0) = 0
x(1hour) = v0 ⋅ (1hour)

2.12.1

2.12.1 v0 x(t)

a(t) +b(t)x(t) = f(t)
dx

dt
(2.12.2)

a(t), b(t) f(t) t x(t) 2.12.2

f(t) = 0 (t)x1 (t)x2 2.12.2
(t) + (t)x1 x2 (t)x1 (t)x2 f(t)

f(t) = 0
(t)xh 2.12.2

(t)xp x(t) = (t) + (t)xh xp

a(t) +b(t) (t) = 0
dxh

dt
xh (2.12.3)

1

2.12.3

d = − dt
1

xh
xh

b(t)

a(t)
(2.12.4)

2.12.4
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or

where  is an integration constant (the unknown constant that will be set by our initial condition). Of course, in
principle it may not be possible to evaluate the integral in Equation , but even then the solution is valid. In practice, you’ll
often encounter situations in which  and  are simple functions or even constants, and the evaluation of the integral is
straightforward. Now that we have our homogeneous solution, we still need a particular one. Sometimes you’re lucky, and you can
easily guess one - for instance one in which  doesn’t depend on  at all. In case you’re not lucky, there’s are two other
techniques you may try, either using variation of constants or finding an integrating factor. To demonstrate variation of constants,
we’ll pick a specific example, to not get lost in a bunch of abstract functions. Let  be a constant and  be linear.
The homogeneous solution then becomes . The constant we’re going to vary is our integration constant ,
so our guess for the particular solution will be

We substitute  back into the full differential Equation , which gives:

A big part of the left-hand side thus cancels, and that’s not a coincidence - that’s because it is based on the homogeneous equation.
What remains is a differential equation in  that can be trivially solved by direct integration:

Again, it may not be possible to evaluate the integral in Equation , but in principle the solution could be inserted in Equation 
 to give us our particular solution, and the whole differential equation will be solved.

Alternatively, we may try to find an integration factor for Equation . This means that we try to rewrite the left hand side of
the equation as a total derivative, after which we can simply integrate to get the solution. To do so, we first divide the whole
equation by , then look for a function  that satisfies the condition that

from which we can read off that we need to solve the homogeneous equation

We can solve  by separation of constants, which gives us

where we set the integration constant to one, as it drops out of the equation for  anyway. With this function , we can
rewrite Equation  as

which we can integrate to find :

∫ d = log( ) +C = −∫ dt
1

xh
xh xh

b(t)

a(t)
(2.12.5)

(t) = A exp[−∫ dt]xh
b(t)

a(t)
(2.12.6)

A = exp(C)
2.12.6

a(t) b(t)

(t)xp t

a(t) = a b(t) = bt

(t) = A exp[− ]xh
1
2

b
a t

2 A

(t) = A(t) exp[− ]xp
1

2

b

a
t2 (2.12.7)

2.12.7 2.12.2

[a −aA(t) +btA(t)] exp[− ] = a exp[− ] = f(t)
dA

dt

bt

a

1

2

b

a
t2 dA

dt

1

2

b

a
t2 (2.12.8)

A(t)

A(t) = ∫ dt = ∫ f(t) exp[ ]dt
dA

dt

1

a

1

2

b

a
t2 (2.12.9)

2.12.9
2.12.7

2.12.2

a(t) μ(t)

[μ(t)x(t)] = μ(t) +x(t) mod elsμ(t) +μ(t) x(t)
d

dt

dx

dt

dμ

dt

dx

dt

b(t)

a(t)
(2.12.10)

= μ(t)
dμ

dt

b(t)

a(t)
(2.12.11)

2.12.11

μ(t) = exp(∫ dt)
b(t)

a(t)
(2.12.12)

x(t) μ(t)
2.12.2

[μ(t)x(t)] = μ(t)
d

dt

f(t)

a(t)
(2.12.13)

x(t)

x(t) = ∫ μ(t) dt
1

μ(t)

f(t)

a(t)
(2.12.14)
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2.12.1.2 SECOND-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Second order ordinary differential equations are essential for the study of mechanics, as its central equation, Newton’s second law
of motion (Equation 2.1.4) is of this type. In the case that the equation is also linear, we have some hopes of solving it analytically.
There are several examples of this type of equation in the main text, especially in Section 2.6, where we solve the equation of
motion resulting from Newton’s second law for three special cases, and Section 8.1, where we study a number of variants of the
harmonic oscillator. For the case that the equation is homogeneous and has constant coefficients, we can write down the general
solution . The equation to be solved is of the form

For the case that , we retrieve a first-order differential equation, whose solution is an exponential (as can be found by
separation of variables and integration): . In many cases an exponential is also a solution of Equation .
To figure out which exponential, let’s start with the trial function (or ‘Ansatz’) , where  is an unknown parameter.
Substituting this Ansatz into Equation  yields the characteristic polynomial for this ode:

which almost always has two solutions:

Note that the solutions can be real or complex. If there are two of them, we can write the general solution  of Equation  as a
linear combination of the Ansatz with the two cases:

where A and B are set by either initial or boundary conditions. Since the  may be complex, so may A and B; it’s their
combination that should give a real number (as  is real), see problem A.3.1a.

In the case that Equation  gives only one solution, the corresponding exponential function is still a solution of Equation 
, but it is not the most general one, as we only can put a single undetermined constant in front of it. We therefore need a

second, independent solution. To guess one, here’s a third useful trick : take the derivative of our known solution, , with respect
to the parameter . This gives a second Ansatz: , where . Substituting this Ansatz into Equation  for the
case that , we find:

so our Ansatz is again a solution. For this special case, the general solution is therefore given by

In Section 8.2, where we discuss the damped harmonic oscillator, the special case corresponds to the critically damped oscillator.
We get an underdamped oscillator when the roots of the characteristic polynomial are complex, and an overdamped one when they
are real.

2.12.1.3 SECOND-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF EULER TYPE

There’s a second class of linear ordinary differential equations that we can solve explicitly: those of Euler (or Cauchy-Euler) type,
where the coefficient in front of a derivative contains the variable to the power of the derivative, i.e., for a second-order differential
equation, we have as the most general form:

Note that we are now solving for ; we do so because this type of equation typically occurs in the context of position- rather
than time-dependent functions. An example is the Laplace equation  in polar coordinates. Like for the second order ode
with constant coefficients, the ode of Euler type can be generalized to higher-order equations.

2

a +b +cx(t) = 0
xd2

dt2

dx

dt
(2.12.15)

a = 0
x(t) = Cexp(ct/b) 2.12.15

x(t) = exp(λt) λ

2.12.15

a +bλ+c = 0λ2 (2.12.16)

= − ±λ±
b

2a

−4acb2− −−−−−−
√

2a
(2.12.17)

3 2.12.15

x(t) = A +Be tλ+ e tλ− (2.12.18)

λ±

x(t)

2.12.17
2.12.15

4 eλt

λ teλt λ = −b/2a 2.12.15
c = /2ab2

+b + x(t) = a(− + t) +b(1 − t) + t = 0
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There are (at least) two ways to solve Equation : through an Ansatz, and through a change of variables. For the Ansatz, note
that for any polynomial, the derivative of each term reduces the power by one, and here we’re multiplying each such term with the
variable to the power the number of derivatives . This suggests we simply try a polynomial, so our Ansatz here will be .
Substituting in Equation  gives:

so we get another second order polynomial to solve, this time in :

If the roots in Equation  are both real (the most common case in physics problems), we have two independent solutions, and
we are done. If the roots are complex, we also have two independent solutions, though they involve complex powers of ; like for
the equation with constant coefficients, we can rewrite these as real functions with Euler’s formula (see problem A.3.1b). For the
case that we have only one root, we again apply our trick to get a second: we try , which turns out to be indeed a
solution (problem A.3.1c), and the general solution is again a linear combination of the two solutions found.

Alternatively, we could have solved Equation  by a change of variables. Although this method is occasionally useful (and
so it’s good to be aware of its existence), there is no systematic way of deriving which change of variables will do the trick, so
you’ll have to go by trial-and-error (without a priori guarantee of success). In this case, this process leads to the following
substitution:

where we introduce  for convenience. Taking derivatives of  with the chain rule gives

which is a second order differential equation with constant coefficients, and thus of the form given in Equation . We
therefore know how to find its solutions, and can use Equation  to transform those solutions back to functions .

2.12.1.4 Reduction of Order

If you find yourself with a non-homogeneous second order differential equation where the homogeneous equation either has
constant coefficients or is of Euler type, you can again use the technique of variation of constants to find a particular solution. A
similar technique, known as reduction of order, may help you find solutions to a second (or higher) order equation where the
coefficients are not constant. In order to be able to use this technique, you need to know a solution to the homogeneous equation, so
it is not as universally applicable as the techniques in the previous two sections, but still frequently very helpful.

Let us write the general non-homogeneous second-order linear differential equation as

Note that this is the most general form: if there is a coefficient (constant or otherwise) in front of the second derivative, we simply
divide the whole equation by that coefficient and redefine the coefficients to match Equation . Now suppose we have a
solution  of the homogeneous equation (so for the case that  ). As the equation is homogeneous, for any constant 
the function  will also be a solution. As an Ansatz for the second solution, we’ll try a variant of variation of constants, and
take

where  is an arbitrary function. Substituting  back into , we find

We recognize the prefactor of  as exactly the homogeneous equation, which  satisfies, so this term vanishes. Now
defining , we are left with a first-order equation for :
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Equation  is a first-order linear differential equation, and can be solved by the techniques from Section A.3.1. Integrating
the equation  then gives us , and hence the second solution  of the (inhomogeneous) second order
differential equation.

2.12.1.5 POWER SERIES Solutions

If none of the techniques in the sections above apply to your differential equation, there’s one last Ansatz you can try: a power
series expansion of your solution. To illustrate, we’ll again pick a concrete example: Legendre’s differential equation, given by

where  is an integer. As an Ansatz for the solution, we’ll try a power series expansion of :

Our task is now to find numbers  (many of which may be zero) such that  is a solution of . Fortunately, we can
simply substitute our trial solution and re-arrange to get

where in the last line, we ‘shifted’ the index of the last term . We do so in order to get at an expression for the coefficient of  for
any value of . As the functions  are linearly independent  (i.e., you can’t write  as a linear combination of other functions 
where ), the coefficient of each of the powers in the sum in Equation  has to vanish for the sum to be identically
zero. This gives us a recurrence relation between the coefficients :

Given the values of  and  (the two degrees of freedom that our second-order differential equation allows us), we can
repeatedly apply Equation  to get all coefficients. Note that for  the coefficient equals zero. Therefore, if for an even
value of , we set , and for an odd value of , we set , we get a finite number of nonzero coefficients. The resulting
solutions are polynomials, characterized by the number ; in this case, they’re known as the Legendre polynomials, typically
denoted , and normalized (by setting the value of the remaining free coefficient) such that . Table A.1 lists the first
five, which are also plotted in Figure 16.A.4a.

Legendre polynomials have many other interesting properties (many of which can be found in either math textbooks or on their
Wikipedia page). They occur frequently in physics, for example in solving problems involving Newtonian gravity or Laplace’s
equation from electrostatics.

If we replace the  factor in the Legendre differential equation with an arbitrary number , the series solution remains a
solution, but it no longer terminates . There are many other differential equations that lead to both infinite series and polynomial
solutions. A well-known example is the Bessel differential equation:
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The solutions to this equation are known as the Bessel functions of the first and second kind (see Problem A.3.3, where you’ll
prove that for these functions the series never terminates). These functions generalize the sine and cosine function and occur in the
vibrations of two-dimensional surfaces. Other examples include the Hermite and Laguerre polynomials, which feature in quantum
mechanics, and Airy functions, which you can encounter when studying optics.

Table A.1: : The first five (and zeroth, for good measure) Legendre polynomials, the solutions of Equation  for the given value of n and
the appropriate choice of  and .

0 1

1 x

2

3

4

5

Figure : Solutions to the Legendre and Bessel differential equations. (a) The first five Legendre polynomials (Table A.1).
Note that the polynomials with even n are all even, and those with odd n are all odd. (b-c) The first five Bessel functions of the first
(b) and second (c) kind.
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3.1: Electrical Charge

By the end of this section, you will be able to:

Describe the concept of electric charge
Explain qualitatively the force electric charge creates

In this chapter, we begin the study of the electric force, which acts on all objects with a property called charge. The electric force is
much stronger than gravity (in most systems where both appear), but it can be a force of attraction or a force of repulsion, which
leads to very different effects on objects. The electric force helps keep atoms together, so it is of fundamental importance in matter.
But it also governs most everyday interactions we deal with, from chemical interactions to biological processes.

Figure : Electric charges exist all around us. They
can cause objects to be repelled from each other or to be attracted to each other. (credit: modification of work by Sean McGrath)

You are certainly familiar with electronic devices that you activate with the click of a switch, from computers to cell phones to
television. And you have certainly seen electricity in a flash of lightning during a heavy thunderstorm. But you have also most
likely experienced electrical effects in other ways, maybe without realizing that an electric force was involved. Let’s take a look at
some of these activities and see what we can learn from them about electric charges and forces.

Discoveries
You have probably experienced the phenomenon of static electricity: When you first take clothes out of a dryer, many (not all) of
them tend to stick together; for some fabrics, they can be very difficult to separate. Another example occurs if you take a woolen
sweater off quickly—you can feel (and hear) the static electricity pulling on your clothes, and perhaps even your hair. If you comb
your hair on a dry day and then put the comb close to a thin stream of water coming out of a faucet, you will find that the water
stream bends toward (is attracted to) the comb (Figure ).
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Figure : An electrically charged comb attracts a stream of water from a distance. Note that the water is not touching the comb.
(credit: Jane Whitney)

Suppose you bring the comb close to some small strips of paper; the strips of paper are attracted to the comb and even cling to it
(Figure ). In the kitchen, quickly pull a length of plastic cling wrap off the roll; it will tend to cling to most any nonmetallic
material (such as plastic, glass, or food). If you rub a balloon on a wall for a few seconds, it will stick to the wall. Probably the most
annoying effect of static electricity is getting shocked by a doorknob (or a friend) after shuffling your feet on some types of
carpeting.

Figure : After being used to comb hair, this comb attracts small strips of paper from a distance, without physical contact.
Investigation of this behavior helped lead to the concept of the electric force.

Many of these phenomena have been known for centuries. The ancient Greek philosopher Thales of Miletus (624–546 BCE)
recorded that when amber (a hard, translucent, fossilized resin from extinct trees) was vigorously rubbed with a piece of fur, a force
was created that caused the fur and the amber to be attracted to each other (Figure ). Additionally, he found that the rubbed
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amber would not only attract the fur, and the fur attract the amber, but they both could affect other (nonmetallic) objects, even if not
in contact with those objects (Figure ).

Figure : Borneo amber is mined in Sabah, Malaysia, from shale-sandstone-mudstone veins. When a piece of amber is rubbed
with a piece of fur, the amber gains more electrons, giving it a net negative charge. At the same time, the fur, having lost electrons,
becomes positively charged. (credit: “Sebakoamber”/Wikimedia Commons)

The English physicist William Gilbert (1544–1603) also studied this attractive force, using various substances. He worked with
amber, and, in addition, he experimented with rock crystal and various precious and semi-precious gemstones. He also
experimented with several metals. He found that the metals never exhibited this force, whereas the minerals did. Moreover,
although an electrified amber rod would attract a piece of fur, it would repel another electrified amber rod; similarly, two electrified
pieces of fur would repel each other.

Figure : When materials are rubbed together, charges can be separated, particularly if one material has a greater affinity for
electrons than another. (a) Both the amber and cloth are originally neutral, with equal positive and negative charges. Only a tiny
fraction of the charges are involved, and only a few of them are shown here. (b) When rubbed together, some negative charge is
transferred to the amber, leaving the cloth with a net positive charge. (c) When separated, the amber and cloth now have net
charges, but the absolute value of the net positive and negative charges will be equal.

This suggested there were two types of an electric property; this property eventually came to be called electric charge. The
difference between the two types of electric charge is in the directions of the electric forces that each type of charge causes: These
forces are repulsive when the same type of charge exists on two interacting objects and attractive when the charges are of opposite
types. The SI unit of electric charge is the coulomb (C), after the French physicist Charles Augustine de Coulomb (1736–1806).

The most peculiar aspect of this new force is that it does not require physical contact between the two objects in order to cause an
acceleration. This is an example of a so-called “long-range” force. (Or, as James Clerk Maxwell later phrased it, “action at a
distance.”) With the exception of gravity, all other forces we have discussed so far act only when the two interacting objects
actually touch.
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The American physicist and statesman Benjamin Franklin found that he could concentrate charge in a “Leyden jar,” which was
essentially a glass jar with two sheets of metal foil, one inside and one outside, with the glass between them (Figure        ). This
created a large electric force between the two foil sheets.

Figure        : A Leyden jar (an early version of what is now called a capacitor) allowed experimenters to store large amounts of
electric charge. Benjamin Franklin used such a jar to demonstrate that lightning behaved exactly like the electricity he got from the
equipment in his laboratory.

Franklin pointed out that the observed behavior could be explained by supposing that one of the two types of charge remained
motionless, while the other type of charge flowed from one piece of foil to the other. He further suggested that an excess of what he
called this “electrical fluid” be called “positive electricity” and the deficiency of it be called “negative electricity.” His suggestion,
with some minor modifications, is the model we use today. (With the experiments that he was able to do, this was a pure guess; he
had no way of actually determining the sign of the moving charge. Unfortunately, he guessed wrong; we now know that the charges
that flow are the ones Franklin labeled negative, and the positive charges remain largely motionless. Fortunately, as we’ll see, it
makes no practical or theoretical difference which choice we make, as long as we stay consistent with our choice.)

Let’s list the specific observations that we have of this electric force:

The force acts without physical contact between the two objects.
The force can be either attractive or repulsive: If two interacting objects carry the same sign of charge, the force is repulsive; if
the charges are of opposite sign, the force is attractive. These interactions are referred to as electrostatic repulsion and
electrostatic attraction, respectively.
Not all objects are affected by this force.
The magnitude of the force decreases (rapidly) with increasing separation distance between the objects.

To be more precise, we find experimentally that the magnitude of the force decreases as the square of the distance between the two
interacting objects increases. Thus, for example, when the distance between two interacting objects is doubled, the force between
them decreases to one fourth what it was in the original system. We can also observe that the surroundings of the charged objects
affect the magnitude of the force. However, we will explore this issue in a later chapter.

Properties of Electric Charge
In addition to the existence of two types of charge, several other properties of charge have been discovered.
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Charge is quantized. This means that electric charge comes in discrete amounts, and there is a smallest possible amount of
charge that an object can have. In the SI system, this smallest amount is . No free particle can have less
charge than this, and, therefore, the charge on any object—the charge on all objects—must be an integer multiple of this
amount. All macroscopic, charged objects have charge because electrons have either been added or taken away from them,
resulting in a net charge.
The magnitude of the charge is independent of the type. Phrased another way, the smallest possible positive charge (to four
significant figures) is , and the smallest possible negative charge is ; these values are
exactly equal. This is simply how the laws of physics in our universe turned out.
Charge is conserved. Charge can neither be created nor destroyed; it can only be transferred from place to place, from one
object to another. Frequently, we speak of two charges “canceling”; this is verbal shorthand. It means that if two objects that
have equal and opposite charges are physically close to each other, then the (oppositely directed) forces they apply on some
other charged object cancel, for a net force of zero. It is important that you understand that the charges on the objects by no
means disappear, however. The net charge of the universe is constant.
Charge is conserved in closed systems. In principle, if a negative charge disappeared from your lab bench and reappeared on
the Moon, conservation of charge would still hold. However, this never happens. If the total charge you have in your local
system on your lab bench is changing, there will be a measurable flow of charge into or out of the system. Again, charges can
and do move around, and their effects can and do cancel, but the net charge in your local environment (if closed) is conserved.
The last two items are both referred to as the law of conservation of charge.

The Source of Charges: The Structure of the Atom

Once it became clear that all matter was composed of particles that came to be called atoms, it also quickly became clear that the
constituents of the atom included both positively charged particles and negatively charged particles. The next question was, what
are the physical properties of those electrically charged particles?

The negatively charged particle was the first one to be discovered. In 1897, the English physicist J. J. Thomson was studying what
was then known as cathode rays. Some years before, the English physicist William Crookes had shown that these “rays” were
negatively charged, but his experiments were unable to tell any more than that. (The fact that they carried a negative electric charge
was strong evidence that these were not rays at all, but particles.) Thomson prepared a pure beam of these particles and sent them
through crossed electric and magnetic fields, and adjusted the various field strengths until the net deflection of the beam was zero.
With this experiment, he was able to determine the charge-to-mass ratio of the particle. This ratio showed that the mass of the
particle was much smaller than that of any other previously known particle—1837 times smaller, in fact. Eventually, this particle
came to be called the electron.

Since the atom as a whole is electrically neutral, the next question was to determine how the positive and negative charges are
distributed within the atom. Thomson himself imagined that his electrons were embedded within a sort of positively charged paste,
smeared out throughout the volume of the atom. However, in 1908, the New Zealand physicist Ernest Rutherford showed that the
positive charges of the atom existed within a tiny core—called a nucleus—that took up only a very tiny fraction of the overall
volume of the atom, but held over 99% of the mass (see Linear Momentum and Collisions.) In addition, he showed that the
negatively charged electrons perpetually orbited about this nucleus, forming a sort of electrically charged cloud that surrounds the
nucleus (Figure        ). Rutherford concluded that the nucleus was constructed of small, massive particles that he named protons.

e ≡ 1.602 × C10−19

+1.602 × C10−19 −1.602 ×10−19
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Figure        : This simplified model of a hydrogen atom shows a positively charged nucleus (consisting, in the case of hydrogen, of
a single proton), surrounded by an electron “cloud.” The charge of the electron cloud is equal (and opposite in sign) to the charge of
the nucleus, but the electron does not have a definite location in space; hence, its representation here is as a cloud. Normal
macroscopic amounts of matter contain immense numbers of atoms and molecules, and, hence, even greater numbers of individual
negative and positive charges.

Since it was known that different atoms have different masses, and that ordinarily atoms are electrically neutral, it was natural to
suppose that different atoms have different numbers of protons in their nucleus, with an equal number of negatively charged
electrons orbiting about the positively charged nucleus, thus making the atoms overall electrically neutral. However, it was soon
discovered that although the lightest atom, hydrogen, did indeed have a single proton as its nucleus, the next heaviest atom—
helium—has twice the number of protons (two), but four times the mass of hydrogen.

This mystery was resolved in 1932 by the English physicist James Chadwick, with the discovery of the neutron. The neutron is,
essentially, an electrically neutral twin of the proton, with no electric charge, but (nearly) identical mass to the proton. The helium
nucleus therefore has two neutrons along with its two protons. (Later experiments were to show that although the neutron is
electrically neutral overall, it does have an internal charge structure. Furthermore, although the masses of the neutron and the
proton are nearly equal, they aren’t exactly equal: The neutron’s mass is very slightly larger than the mass of the proton. That
slight mass excess turned out to be of great importance. That, however, is a story that will have to wait until our study of modern
physics in Nuclear Physics.)

Thus, in 1932, the picture of the atom was of a small, massive nucleus constructed of a combination of protons and neutrons,
surrounded by a collection of electrons whose combined motion formed a sort of negatively charged “cloud” around the nucleus
(Figure        ). In an electrically neutral atom, the total negative charge of the collection of electrons is equal to the total positive
charge in the nucleus. The very low-mass electrons can be more or less easily removed or added to an atom, changing the net
charge on the atom (though without changing its type). An atom that has had the charge altered in this way is called an ion. Positive
ions have had electrons removed, whereas negative ions have had excess electrons added. We also use this term to describe
molecules that are not electrically neutral.
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Figure        : The nucleus of a carbon atom is composed of six protons and six neutrons. As in hydrogen, the surrounding six
electrons do not have definite locations and so can be considered to be a sort of cloud surrounding the nucleus.

The story of the atom does not stop there, however. In the latter part of the twentieth century, many more subatomic particles were
discovered in the nucleus of the atom: pions, neutrinos, and quarks, among others. With the exception of the photon, none of these
particles are directly relevant to the study of electromagnetism, so we defer further discussion of them until the chapter on particle
physics.

As noted previously, electric charge is a property that an object can have. This is similar to how an object can have a property
that we call mass, a property that we call density, a property that we call temperature, and so on. Technically, we should always
say something like, “Suppose we have a particle that carries a charge of .” However, it is very common to say instead,
“Suppose we have a  charge.” Similarly, we often say something like, “Six charges are located at the vertices of a regular
hexagon.” A charge is not a particle; rather, it is a property of a particle. Nevertheless, this terminology is extremely common
(and is frequently used in this book, as it is everywhere else). So, keep in the back of your mind what we really mean when we
refer to a “charge.”

This page titled 3.1: Electrical Charge is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

5.2: Electric Charge by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.
5.1: Prelude to Electric Charges and Fields by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
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3.2: Conductors, Insulators, and Charging by Induction

By the end of this section, you will be able to:

Explain what a conductor is
Explain what an insulator is
List the differences and similarities between conductors and insulators
Describe the process of charging by induction

In the preceding section, we said that scientists were able to create electric charge only on nonmetallic materials and never on
metals. To understand why this is the case, you have to understand more about the nature and structure of atoms. In this section, we
discuss how and why electric charges do—or do not—move through materials (Figure ). A more complete description is
given in a later chapter.

Figure : This power adapter uses metal wires and connectors to conduct electricity from the wall socket to a laptop computer.
The conducting wires allow electrons to move freely through the cables, which are shielded by rubber and plastic. These materials
act as insulators that don’t allow electric charge to escape outward. (credit: modification of work by “Evan-Amos”/Wikimedia
Commons)

Conductors and Insulators

As discussed in the previous section, electrons surround the tiny nucleus in the form of a (comparatively) vast cloud of negative
charge. However, this cloud does have a definite structure to it. Let’s consider an atom of the most commonly used conductor,
copper.

For reasons that will become clear in Atomic Structure, there is an outermost electron that is only loosely bound to the atom’s
nucleus. It can be easily dislodged; it then moves to a neighboring atom. In a large mass of copper atoms (such as a copper wire or
a sheet of copper), these vast numbers of outermost electrons (one per atom) wander from atom to atom, and are the electrons that
do the moving when electricity flows. These wandering, or “free,” electrons are called conduction electrons, and copper is therefore
an excellent conductor (of electric charge). All conducting elements have a similar arrangement of their electrons, with one or two
conduction electrons. This includes most metals.

Insulators, in contrast, are made from materials that lack conduction electrons; charge flows only with great difficulty, if at all.
Even if excess charge is added to an insulating material, it cannot move, remaining indefinitely in place. This is why insulating
materials exhibit the electrical attraction and repulsion forces described earlier, whereas conductors do not; any excess charge
placed on a conductor would instantly flow away (due to mutual repulsion from existing charges), leaving no excess charge around
to create forces. Charge cannot flow along or through an insulator, so its electric forces remain for long periods of time. (Charge
will dissipate from an insulator, given enough time.) As it happens, amber, fur, and most semi-precious gems are insulators, as are
materials like wood, glass, and plastic.

 Learning Objectives
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Charging by Induction
Let’s examine in more detail what happens in a conductor when an electrically charged object is brought close to it. As mentioned,
the conduction electrons in the conductor are able to move with nearly complete freedom. As a result, when a charged insulator
(such as a positively charged glass rod) is brought close to the conductor, the (total) charge on the insulator exerts an electric force
on the conduction electrons. Since the rod is positively charged, the conduction electrons (which themselves are negatively
charged) are attracted, flowing toward the insulator to the near side of the conductor (Figure ).

Now, the conductor is still overall electrically neutral; the conduction electrons have changed position, but they are still in the
conducting material. However, the conductor now has a charge distribution; the near end (the portion of the conductor closest to
the insulator) now has more negative charge than positive charge, and the reverse is true of the end farthest from the insulator. The
relocation of negative charges to the near side of the conductor results in an overall positive charge in the part of the conductor
farthest from the insulator. We have thus created an electric charge distribution where one did not exist before. This process is
referred to as inducing polarization—in this case, polarizing the conductor. The resulting separation of positive and negative
charge is called polarization, and a material, or even a molecule, that exhibits polarization is said to be polarized. A similar
situation occurs with a negatively charged insulator, but the resulting polarization is in the opposite direction.

Figure : Induced polarization. A positively charged glass rod is brought near the left side of the conducting sphere, attracting
negative charge and leaving the other side of the sphere positively charged. Although the sphere is overall still electrically neutral,
it now has a charge distribution, so it can exert an electric force on other nearby charges. Furthermore, the distribution is such that
it will be attracted to the glass rod.

The result is the formation of what is called an electric dipole, from a Latin phrase meaning “two ends.” The presence of electric
charges on the insulator—and the electric forces they apply to the conduction electrons—creates, or “induces,” the dipole in the
conductor.

Neutral objects can be attracted to any charged object. The pieces of straw attracted to polished amber are neutral, for example. If
you run a plastic comb through your hair, the charged comb can pick up neutral pieces of paper. Figure  shows how the
polarization of atoms and molecules in neutral objects results in their attraction to a charged object.

Figure : Both positive and negative objects attract a neutral object by polarizing its molecules. (a) A positive object brought
near a neutral insulator polarizes its molecules. There is a slight shift in the distribution of the electrons orbiting the molecule, with
unlike charges being brought nearer and like charges moved away. Since the electrostatic force decreases with distance, there is a
net attraction. (b) A negative object produces the opposite polarization, but again attracts the neutral object. (c) The same effect
occurs for a conductor; since the unlike charges are closer, there is a net attraction.

When a charged rod is brought near a neutral substance, an insulator in this case, the distribution of charge in atoms and molecules
is shifted slightly. Opposite charge is attracted nearer the external charged rod, while like charge is repelled. Since the electrostatic
force decreases with distance, the repulsion of like charges is weaker than the attraction of unlike charges, and so there is a net
attraction. Thus, a positively charged glass rod attracts neutral pieces of paper, as will a negatively charged rubber rod. Some
molecules, like water, are polar molecules. Polar molecules have a natural or inherent separation of charge, although they are
neutral overall. Polar molecules are particularly affected by other charged objects and show greater polarization effects than
molecules with naturally uniform charge distributions.
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When the two ends of a dipole can be separated, this method of charging by induction may be used to create charged objects
without transferring charge. In Figure , we see two neutral metal spheres in contact with one another but insulated from the
rest of the world. A positively charged rod is brought near one of them, attracting negative charge to that side, leaving the other
sphere positively charged.

Figure : Charging by induction. (a) Two uncharged or neutral metal spheres are in contact with each other but insulated from
the rest of the world. (b) A positively charged glass rod is brought near the sphere on the left, attracting negative charge and leaving
the other sphere positively charged. (c) The spheres are separated before the rod is removed, thus separating negative and positive
charges. (d) The spheres retain net charges after the inducing rod is removed—without ever having been touched by a charged
object.

Another method of charging by induction is shown in Figure . The neutral metal sphere is polarized when a charged rod is
brought near it. The sphere is then grounded, meaning that a conducting wire is run from the sphere to the ground. Since Earth is
large and most of the ground is a good conductor, it can supply or accept excess charge easily. In this case, electrons are attracted to
the sphere through a wire called the ground wire, because it supplies a conducting path to the ground. The ground connection is
broken before the charged rod is removed, leaving the sphere with an excess charge opposite to that of the rod. Again, an opposite
charge is achieved when charging by induction, and the charged rod loses none of its excess charge.
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Figure : Charging by induction using a ground connection. (a) A positively charged rod is brought near a neutral metal sphere,
polarizing it. (b) The sphere is grounded, allowing electrons to be attracted from Earth’s ample supply. (c) The ground connection
is broken. (d) The positive rod is removed, leaving the sphere with an induced negative charge.

This page titled 3.2: Conductors, Insulators, and Charging by Induction is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

5.3: Conductors, Insulators, and Charging by Induction by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
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3.3: Electrostatic Force - Coulomb's Law

By the end of this section, you will be able to:

Describe the electric force, both qualitatively and quantitatively
Calculate the force that charges exert on each other
Determine the direction of the electric force for different source charges
Correctly describe and apply the superposition principle for multiple source charges

Coulomb Force
Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force on each other. The
magnitude of the force is linearly proportional to the net charge on each object and inversely proportional to the square of the distance between
them. (Interestingly, the force does not depend on the mass of the objects.) The direction of the force vector is along the imaginary line joining
the two objects and is dictated by the signs of the charges involved.

Let

 the net electric charge of the two objects;
 the vector displacement from  to .

The electric force  on one of the charges is proportional to the magnitude of its own charge and the magnitude of the other charge, and is
inversely proportional to the square of the distance between them:

This proportionality becomes an equality with the introduction of a proportionality constant:

The electric force (or Coulomb force) experienced by charge  due to charge  is equal to

The unit vector  has a magnitude of 1 and points along the axis as the charges from  to  (same direction as vector ).

Figure: The vector  between point charges  and  .

If the charges have the same sign, the force is in the same direction as  showing a repelling force. If the charges have different signs, the
force is in the opposite direction of  showing an attracting force. (Figure ).
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Figure : The electrostatic force  between point charges  and  separated by a distance  is given by Coulomb’s law. Note
that Newton’s third law (every force exerted creates an equal and opposite force) applies as usual—the force on  is equal in magnitude and
opposite in direction to the force it exerts on  - . (a) Like charges; (b) unlike charges.

It is important to note that the electric force is not constant; it is a function of the separation distance between the two charges. If either the test
charge or the source charge (or both) move, then  changes, and therefore so does the force. An immediate consequence of this is that direct
application of Newton’s laws with this force can be mathematically difficult, depending on the specific problem at hand. It can (usually) be
done, but we almost always look for easier methods of calculating whatever physical quantity we are interested in. (Conservation of energy is
the most common choice.)

Finally, the new constant  in Coulomb’s law is called the permittivity of free space, or (better) the permittivity of vacuum. It has a very
important physical meaning that we will discuss in a later chapter; for now, it is simply an empirical proportionality constant. Its numerical
value (to three significant figures) turns out to be

These units are required to give the force in Coulomb’s law the correct units of newtons. Note that in Coulomb’s law, the permittivity of vacuum
is only part of the proportionality constant. For convenience, we often define a Coulomb’s constant:

A hydrogen atom consists of a single proton and a single electron. The proton has a charge of  and the electron has . In the “ground
state” of the atom, the electron orbits the proton at most probable distance of  (Figure ). Calculate the electric force on
the electron due to the proton.

Figure : A schematic depiction of a hydrogen atom, showing the force on the electron. This depiction is only to enable us to calculate
the force; the hydrogen atom does not really look like this.

Strategy

For the purposes of this example, we are treating the electron and proton as two point particles, each with an electric charge, and we are
told the distance between them; we are asked to calculate the force on the electron. We thus use Coulomb’s law (Equation ).

Solution

Our two charges are,

3.3.1 F ⃗  q1 q2 | | = | |r ⃗ 12 r ⃗ 21
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and the distance between them

The magnitude of the force on the electron (Equation ) is

As for the direction, since the charges on the two particles are opposite, the force is attractive; the force on the electron points
radially directly toward the proton, everywhere in the electron’s orbit. The force is thus expressed as

Multiple Source Charges
The analysis that we have done for two particles can be extended to an arbitrary number of particles; we simply repeat the analysis, two charges
at a time. Specifically, we ask the question: Given N charges (which we refer to as source charge), what is the net electric force that they exert
on some other point charge (which we call the test charge)? Note that we use these terms because we can think of the test charge being used to
test the strength of the force provided by the source charges.

Like all forces that we have seen up to now, the net electric force on our test charge is simply the vector sum of each individual electric force
exerted on it by each of the individual test charges. Thus, we can calculate the net force on the test charge Q by calculating the force on it from
each source charge, taken one at a time, and then adding all those forces together (as vectors). This ability to simply add up individual forces in
this way is referred to as the principle of superposition, and is one of the more important features of the electric force. In mathematical form,
this becomes

In this expression, Q represents the charge of the particle that is experiencing the electric force , and is located at  from the origin; the  are
the N source charges, and the vectors  are the displacements from the position of the ith charge to the position of . Each of the N unit
vectors points directly from its associated source charge toward the test charge. All of this is depicted in Figure . Please note that there is
no physical difference between Q and ; the difference in labels is merely to allow clear discussion, with Q being the charge we are
determining the force on.

q1

q2

= +e

= +1.602 × C10−19

= −e

= −1.602 × C10−19

r = 5.29 × m.10−11

3.3.2

F =
1

4πϵ0

| |q1q2

r2
12

=
1

4π (8.85 × )10−12 C 2

N ⋅m2

(1.602 × C10−19 )2

(5.29 × m10−11 )2

= 8.25 ×10−8

= −(8.25 × N) .F ⃗  10−8 r̂

(r) = Q .F ⃗  1

4πϵ0
∑
i=1

N qi

r2
i

r̂2
i (3.3.5)

F ⃗  r ⃗  sq ′
i

=r ⃗ i ri r̂ i Q

3.3.2

qi

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76514?pdf


3.3.4 https://phys.libretexts.org/@go/page/76514

Figure : The eight source charges each apply a force on the single test charge Q. Each force can be calculated independently of the other
seven forces. This is the essence of the superposition principle.

(Note that the force vector  does not necessarily point in the same direction as the unit vector ; it may point in the opposite direction, .
The signs of the source charge and test charge determine the direction of the force on the test charge.)

There is a complication, however. Just as the source charges each exert a force on the test charge, so too (by Newton’s third law) does the test
charge exert an equal and opposite force on each of the source charges. As a consequence, each source charge would change position. However,
by Equation , the force on the test charge is a function of position; thus, as the positions of the source charges change, the net force on the
test charge necessarily changes, which changes the force, which again changes the positions. Thus, the entire mathematical analysis quickly
becomes intractable. Later, we will learn techniques for handling this situation, but for now, we make the simplifying assumption that the source
charges are fixed in place somehow, so that their positions are constant in time. (The test charge is allowed to move.) With this restriction in
place, the analysis of charges is known as electrostatics, where “statics” refers to the constant (that is, static) positions of the source charges and
the force is referred to as an electrostatic force.

Three different, small charged objects are placed as shown in Figure . The charges  and  are fixed in place;  is free to move.
Given , and , and that , what is the net force on the middle charge ?

Figure : Source charges  and  each apply a force on .

Strategy

We use Coulomb’s law again. The way the question is phrased indicates that  is our test charge, so that  and  are source charges.
The principle of superposition says that the force on  from each of the other charges is unaffected by the presence of the other charge.
Therefore, we write down the force on  from each and add them together as vectors.

Solution
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We have two source charges  and  a test charge , distances  and  and we are asked to find a force. This calls for
Coulomb’s law and superposition of forces. There are two forces:

We cannot add these forces directly because they don’t point in the same direction:  points only in the +y-direction, while 
points only in the -x-direction. The net force is obtained from applying the Pythagorean theorem to its x- and y-components:

Thus:

We find that

at an angle of

that is,  above the −x-axis, as shown in the diagram.

 

Shown below are 4 identical positive charges located at the corners of a square. The magnitude of the force on charge 1 by charge 4 is 
.  Find the magnitude of the total force on charge 3 exerted by charges 1, 2, and 4. 

Solution

Let the side of the square be distance a. The relevant distances and forces on charge 3 are shown below.
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Since the magnitude of the force on charge 1 by charge 4 is 4N, the same as the magnitude on charge 3 by charge 2 is also 4N, since the
distance between 1 and 4 is the same as between 2 and 3, and the charges are identical, all positive with the same charge . Thus, the
magnitude of the force on 3 by 2 is given by:

 

The magnitude of the force on 2 by both 1 and 4 are the same since the distance is the same:

Comparing the two equations above we see that the force by 1 and 4 is double the force by 2. Therefore:

The direction of the force by 1 is down since the forces are repulsive. In vector form this is written as:

The direction of the force by 4 is to the left:

These two vectors combined are:

One way to continue is to break down  into components, then add to the sum of the two other forces above, and then find the
magnitude. But there is a convenient shortcut when we recognize that the combined vector above will point in the same direction as 

, thus you can just add their magnitudes (it's now a 1D vector addition) to get the total magnitude of the force:

 

This page titled 3.3: Electrostatic Force - Coulomb's Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Taha Mzoughi
(OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

5.4: Coulomb's Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.
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3.4: Electric Field

By the end of this section, you will be able to:

Explain the purpose of the electric field concept
Describe the properties of the electric field
Calculate the field of a collection of source charges of either sign
Explain the purpose of an electric field diagram
Describe the relationship between a vector diagram and a field line diagram
Explain the rules for creating a field diagram and why these rules make physical sense
Sketch the field of an arbitrary source charge
Describe a permanent dipole
Describe an induced dipole
Define and calculate an electric dipole moment
Explain the physical meaning of the dipole moment

As we showed in the preceding section, the net electric force on a test charge is the vector sum of all the electric forces acting on it,
from all of the various source charges, located at their various positions. But what if we use a different test charge, one with a
different magnitude, or sign, or both? Or suppose we have a dozen different test charges we wish to try at the same location? We
would have to calculate the sum of the forces from scratch. Fortunately, it is possible to define a quantity, called the electric field,
which is independent of the test charge. It only depends on the configuration of the source charges, and once found, allows us to
calculate the force on any test charge.

Defining a Field
Suppose we have  source charges  located at positions , applying  electrostatic forces on a
test charge . The net force on  is

We can rewrite this as

where

or, more compactly,

This expression is called the electric field at position  of the  source charges. Here,  is the location of the point
in space where you are calculating the field and is relative to the positions  of the source charges (Figure ). Note that we
have to impose a coordinate system to solve actual problems.

 LEARNING OBJECTIVES
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Figure : Each of these five source charges creates its own electric field at every point in space; shown here are the field
vectors at an arbitrary point P. Like the electric force, the net electric field obeys the superposition principle.

Notice that the calculation of the electric field makes no reference to the test charge. Thus, the physically useful approach is to
calculate the electric field and then use it to calculate the force on some test charge later, if needed. Different test charges
experience different forces Equation , but it is the same electric field Equation . That being said, recall that there is no
fundamental difference between a test charge and a source charge; these are merely convenient labels for the system of interest.
Any charge produces an electric field; however, just as Earth’s orbit is not affected by Earth’s own gravity, a charge is not subject to
a force due to the electric field it generates. Charges are only subject to forces from the electric fields of other charges.

In this respect, the electric field  of a point charge is similar to the gravitational field  of Earth; once we have calculated the
gravitational field at some point in space, we can use it any time we want to calculate the resulting force on any mass we choose to
place at that point. In fact, this is exactly what we do when we say the gravitational field of Earth (near Earth’s surface) has a value
of  and then we calculate the resulting force (i.e., weight) on different masses. Also, the general expression for
calculating  at arbitrary distances from the center of Earth (i.e., not just near Earth’s surface) is very similar to the expression for 

:

where  is a proportionality constant, playing the same role for  as  does for . The value of  is calculated once and is

then used in an endless number of problems.

To push the analogy further, notice the units of the electric field: From , the units of E are newtons per coulomb, N/C, that
is, the electric field applies a force on each unit charge. Now notice the units of g: From  the units of g are newtons per
kilogram, N/kg, that is, the gravitational field applies a force on each unit mass. We could say that the gravitational field of Earth,
near Earth’s surface, has a value of 9.81 N/kg.

The Meaning of “Field

Recall from your studies of gravity that the word “field” in this context has a precise meaning. A field, in physics, is a physical
quantity whose value depends on (is a function of) position, relative to the source of the field. In the case of the electric field,
Equation  shows that the value of  (both the magnitude and the direction) depends on where in space the point  is located,
measured from the locations  of the source charges .

In addition, since the electric field is a vector quantity, the electric field is referred to as a vector field. (The gravitational field is
also a vector field.) In contrast, a field that has only a magnitude at every point is a scalar field. The temperature in a room is an
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example of a scalar field. It is a field because the temperature, in general, is different at different locations in the room, and it is a
scalar field because temperature is a scalar quantity.

Also, as you did with the gravitational field of an object with mass, you should picture the electric field of a charge-bearing object
(the source charge) as a continuous, immaterial substance that surrounds the source charge, filling all of space—in principle, to 

 in all directions. The field exists at every physical point in space. To put it another way, the electric charge on an object alters
the space around the charged object in such a way that all other electrically charged objects in space experience an electric force as
a result of being in that field. The electric field, then, is the mechanism by which the electric properties of the source charge are
transmitted to and through the rest of the universe. (Again, the range of the electric force is infinite.)

We will see in subsequent chapters that the speed at which electrical phenomena travel is the same as the speed of light. There is a
deep connection between the electric field and light.

Superposition
Yet another experimental fact about the field is that it obeys the superposition principle. In this context, that means that we can (in
principle) calculate the total electric field of many source charges by calculating the electric field of only  at position P, then
calculate the field of  at P, while—and this is the crucial idea—ignoring the field of, and indeed even the existence of, . We can
repeat this process, calculating the field of each individual source charge, independently of the existence of any of the other
charges. The total electric field, then, is the vector sum of all these fields. That, in essence, is what Equation  says.

In the next section, we describe how to determine the shape of an electric field of a source charge distribution and how to sketch it.

The Direction of the Field
Equation  enables us to determine the magnitude of the electric field, but we need the direction also. We use the convention
that the direction of any electric field vector is the same as the direction of the electric force vector that the field would apply to a
positive test charge placed in that field. Such a charge would be repelled by positive source charges (the force on it would point
away from the positive source charge) but attracted to negative charges (the force points toward the negative source).

By convention, all electric fields  point away from positive source charges and point toward negative source charges.

Electric Field Lines

Now that we have some experience calculating electric fields, let’s try to gain some insight into the geometry of electric fields. As
mentioned earlier, our model is that the charge on an object (the source charge) alters space in the region around it in such a way
that when another charged object (the test charge) is placed in that region of space, that test charge experiences an electric force.
The concept of electric field lines, and of electric field line diagrams, enables us to visualize the way in which the space is altered,
allowing us to visualize the field. The purpose of this section is to enable you to create sketches of this geometry, so we will list the
specific steps and rules involved in creating an accurate and useful sketch of an electric field.

It is important to remember that electric fields are three-dimensional. Although in this book we include some pseudo-three-
dimensional images, several of the diagrams that you’ll see (both here, and in subsequent chapters) will be two-dimensional
projections, or cross-sections. Always keep in mind that in fact, you’re looking at a three-dimensional phenomenon.

Our starting point is the physical fact that the electric field of the source charge causes a test charge in that field to experience a
force. By definition, electric field vectors point in the same direction as the electric force that a (hypothetical) positive test charge
would experience, if placed in the field (Figure ).
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Figure : The electric field of a positive point charge. A large number of field vectors are shown. Like all vector arrows, the
length of each vector is proportional to the magnitude of the field at each point. (a) Field in two dimensions; (b) field in three
dimensions.

We’ve plotted many field vectors in the figure, which are distributed uniformly around the source charge. Since the electric field is
a vector, the arrows that we draw correspond at every point in space to both the magnitude and the direction of the field at that
point. As always, the length of the arrow that we draw corresponds to the magnitude of the field vector at that point. For a point
source charge, the length decreases by the square of the distance from the source charge. In addition, the direction of the field
vector is radially away from the source charge, because the direction of the electric field is defined by the direction of the force that
a positive test charge would experience in that field. (Again, keep in mind that the actual field is three-dimensional; there are also
field lines pointing out of and into the page.)

This diagram is correct, but it becomes less useful as the source charge distribution becomes more complicated. For example,
consider the vector field diagram of a dipole (Figure ).

Figure : The vector field of a dipole. Even with just two identical charges, the vector field diagram becomes difficult to
understand.
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There is a more useful way to present the same information. Rather than drawing a large number of increasingly smaller vector
arrows, we instead connect all of them together, forming continuous lines and curves, as shown in Figure .

Figure : (a) The electric field line diagram of a positive point charge. (b) The field line diagram of a dipole. In both diagrams,
the magnitude of the field is indicated by the field line density. The field vectors (not shown here) are everywhere tangent to the
field lines.

Although it may not be obvious at first glance, these field diagrams convey the same information about the electric field as do the
vector diagrams. First, the direction of the field at every point is simply the direction of the field vector at that same point. In other
words, at any point in space, the field vector at each point is tangent to the field line at that same point. The arrowhead placed on a
field line indicates its direction.

As for the magnitude of the field, that is indicated by the field line density—that is, the number of field lines per unit area passing
through a small cross-sectional area perpendicular to the electric field. This field line density is drawn to be proportional to the
magnitude of the field at that cross-section. As a result, if the field lines are close together (that is, the field line density is greater),
this indicates that the magnitude of the field is large at that point. If the field lines are far apart at the cross-section, this indicates
the magnitude of the field is small. Figure  shows the idea.
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Figure : Electric field lines passing through imaginary areas. Since the number of lines passing through each area is the same,
but the areas themselves are different, the field line density is different. This indicates different magnitudes of the electric field at
these points.

In Figure , the same number of field lines passes through both surfaces (S and ), but the surface S is larger than surface .
Therefore, the density of field lines (number of lines per unit area) is larger at the location of , indicating that the electric field is
stronger at the location of  than at S. The rules for creating an electric field diagram are as follows.

1. Electric field lines either originate on positive charges or come in from infinity, and either terminate on negative charges or
extend out to infinity.

2. The number of field lines originating or terminating at a charge is proportional to the magnitude of that charge. A charge of
2q will have twice as many lines as a charge of q.

3. At every point in space, the field vector at that point is tangent to the field line at that same point.
4. The field line density at any point in space is proportional to (and therefore is representative of) the magnitude of the field

at that point in space.
5. Field lines can never cross. Since a field line represents the direction of the field at a given point, if two field lines crossed

at some point, that would imply that the electric field was pointing in two different directions at a single point. This in turn
would suggest that the (net) force on a test charge placed at that point would point in two different directions. Since this is
obviously impossible, it follows that field lines must never cross.

Always keep in mind that field lines serve only as a convenient way to visualize the electric field; they are not physical entities.
Although the direction and relative intensity of the electric field can be deduced from a set of field lines, the lines can also be
misleading. For example, the field lines drawn to represent the electric field in a region must, by necessity, be discrete. However,
the actual electric field in that region exists at every point in space.

Field lines for three groups of discrete charges are shown in Figure . Since the charges in parts (a) and (b) have the same
magnitude, the same number of field lines are shown starting from or terminating on each charge. In (c), however, we draw three
times as many field lines leaving the  charge as entering the . The field lines that do not terminate at  emanate outward
from the charge configuration, to infinity.
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Figure : Three typical electric field diagrams. (a) A dipole. (b) Two identical charges. (c) Two charges with opposite signs and
different magnitudes. Can you tell from the diagram which charge has the larger magnitude?

The ability to construct an accurate electric field diagram is an important, useful skill; it makes it much easier to estimate, predict,
and therefore calculate the electric field of a source charge. The best way to develop this skill is with software that allows you to
place source charges and then will draw the net field upon request. We strongly urge you to search the Internet for a program. Once
you’ve found one you like, run several simulations to get the essential ideas of field diagram construction. Then practice drawing
field diagrams, and checking your predictions with the computer-drawn diagrams.

Rotation of a Dipole due to an Electric Field

In example  we discussed, and calculated, the electric field of a dipole: two equal and opposite charges that are “close” to
each other. (In this context, “close” means that the distance d between the two charges is much, much less than the distance of the
field point P, the location where you are calculating the field.) Let’s now consider what happens to a dipole when it is placed in an
external field . We assume that the dipole is a permanent dipole; it exists without the field, and does not break apart in the
external field.

For now, we deal with only the simplest case: The external field is uniform in space. Suppose we have the situation depicted in
Figure , where we denote the distance between the charges as the vector , pointing from the negative charge to the positive
charge.

Figure : A dipole in an external electric field. (a) The net force on the dipole is zero, but the net torque is not. As a result, the
dipole rotates, becoming aligned with the external field. (b) The dipole moment is a convenient way to characterize this effect. The 

 points in the same direction as .

The forces on the two charges are equal and opposite, so there is no net force on the dipole. However, there is a torque:
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The quantity  (the magnitude of each charge multiplied by the vector distance between them) is a property of the dipole; its
value, as you can see, determines the torque that the dipole experiences in the external field. It is useful, therefore, to define this
product as the so-called dipole moment of the dipole:

We can therefore write

Recall that a torque changes the angular velocity of an object, the dipole, in this case. In this situation, the effect is to rotate the
dipole (that is, align the direction of ) so that it is parallel to the direction of the external field.

Induced Dipoles
Neutral atoms are, by definition, electrically neutral; they have equal amounts of positive and negative charge. Furthermore, since
they are spherically symmetrical, they do not have a “built-in” dipole moment the way most asymmetrical molecules do. They
obtain one, however, when placed in an external electric field, because the external field causes oppositely directed forces on the
positive nucleus of the atom versus the negative electrons that surround the nucleus. The result is a new charge distribution of the
atom, and therefore, an induced dipole moment (Figure ).

Figure : A dipole is induced in a neutral atom by an external electric field. The induced dipole moment is aligned with the
external field.

An important fact here is that, just as for a rotated polar molecule, the result is that the dipole moment ends up aligned parallel to
the external electric field. Generally, the magnitude of an induced dipole is much smaller than that of an inherent dipole. For both
kinds of dipoles, notice that once the alignment of the dipole (rotated or induced) is complete, the net effect is to decrease the total
electric field

in the regions outside the dipole charges (Figure ). By “outside” we mean further from the charges than they are from each
other. This effect is crucial for capacitors, as you will see in Capacitance.

Figure : The net electric field is the vector sum of the field of the dipole plus the external field.
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Recall that we found the electric field of a dipole in example . If we rewrite it in terms of the dipole moment we get:

The form of this field is shown in Figure . Notice that along the plane perpendicular to the axis of the dipole and midway
between the charges, the direction of the electric field is opposite that of the dipole and gets weaker the further from the axis one
goes. Similarly, on the axis of the dipole (but outside it), the field points in the same direction as the dipole, again getting weaker
the further one gets from the charges.

 

Examples

In an ionized helium atom, the most probable distance between the nucleus and the electron is . What is
the electric field due to the nucleus at the location of the electron?

Strategy

Note that although the electron is mentioned, it is not used in any calculation. The problem asks for an electric field, not a
force; hence, there is only one charge involved, and the problem specifically asks for the field due to the nucleus. Thus, the
electron is a red herring; only its distance matters. Also, since the distance between the two protons in the nucleus is much,
much smaller than the distance of the electron from the nucleus, we can treat the two protons as a single charge +2e (Figure

).

Figure : A schematic representation of a helium atom. Again, helium physically looks nothing like this, but this sort of
diagram is helpful for calculating the electric field of the nucleus.

Solution

The electric field is calculated by

Since there is only one source charge (the nucleus), this expression simplifies to

Here,  (since there are two protons) and r is given; substituting gives
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The direction of  is radially away from the nucleus in all directions. Why? Because a positive test charge placed in this
field would accelerate radially away from the nucleus (since it is also positively charged), and again, the convention is
that the direction of the electric field vector is defined in terms of the direction of the force it would apply to positive
test charges.

 

a. Find the electric field (magnitude and direction) a distance z above the midpoint between two equal charges  that are a
distance d apart (Figure ). Check that your result is consistent with what you’d expect when .

b. The same as part (a), only this time make the right-hand charge  instead of .

Figure : Finding the field of two identical source charges at the point . Due to the symmetry, the net field at \(P\) is
entirely vertical. (Notice that this is not true away from the midline between the charges.)

Strategy

We add the two fields as vectors, per Equation . Notice that the system (and therefore the field) is symmetrical about
the vertical axis; as a result, the horizontal components of the field vectors cancel. This simplifies the math. Also, we take
care to express our final answer in terms of only quantities that are given in the original statement of the problem: , , ,
and constants .

E ⃗ =
1

4π(8.85 × )10−12 C 2

N ⋅m2

2(1.6 × C)10−19

26.5 × m10−12 )2
r̂

= 4.1 × .1012 N

C
r̂

E ⃗ 

 Example : The E-Field above Two Equal Charges (Dipole)3.4.1B

+q

3.4.3 z ≫ d

−q +q

3.4.3 P

3.4.6

q z d

(π, )ϵ0
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Figure . Note that the horizontal components of the electric fields from the two charges cancel each other out,
while the vertical components add together.

Solution

a. By symmetry, the horizontal (x)-components of  cancel (Figure );

The vertical (z)-component is given by

Since none of the other components survive, this is the entire electric field, and it points in the  direction. Notice that
this calculation uses the principle of superposition; we calculate the fields of the two charges independently and then
add them together.

What we want to do now is replace the quantities in this expression that we don’t know (such as ), or can’t easily
measure (such as  with quantities that we do know, or can measure. In this case, by geometry,

and

Thus, substituting,

Simplifying, the desired answer is

3.4.4

E ⃗  3.4.4

Ex = sin θ− sin θ
1

4πϵ0

q

r2

1

4πϵ0

q

r2

= 0.

Ez = cos θ+ cos θ
1

4πϵ0

q

r2

1

4πϵ0

q

r2

= cos θ.
1

4πϵ0

2q

r2

k̂

r

cos θ

= +r2 z2 ( )
d

2

2

cos θ = = .
z

R

z

[ + ]z2 ( )
d

2

2 1/2

(z) = .E ⃗  1

4πϵ0

2q

[ + ]z2 ( )
d

2

2 2

z

[ + ]z2 ( )
d

2

2 1/2
k̂
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b. If the source charges are equal and opposite, the vertical components cancel because

and we get, for the horizontal component of .

Significance

It is a very common and very useful technique in physics to check whether your answer is reasonable by evaluating it at
extreme cases. In this example, we should evaluate the field expressions for the cases , and , and
confirm that the resulting expressions match our physical expectations. Let’s do so:

Let’s start with Equation , the field of two identical charges. From far away (i.e., ), the two source charges
should “merge” and we should then “see” the field of just one charge, of size 2q. So, let ; then we can neglect 
in Equation  to obtain

which is the correct expression for a field at a distance z away from a charge .

Next, we consider the field of equal and opposite charges, Equation . It can be shown (via a Taylor expansion)
that for , , this becomes

which is the field of a dipole, a system that we will study in more detail later in this section. (Note that the units of  are
still correct in this expression, since the units of d in the numerator cancel the unit of the “extra” z in the denominator.)
If z is very large , then , as it should; the two charges “merge” and so cancel out.

What is the electric field due to a single point particle?

Answer

This page titled 3.4: Electric Field is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

5.5: Electric Field by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.

(z) = .E ⃗  1

4πϵ0

2qz

[ + ]z2 ( )
d

2

2 3/2
k̂ (3.4.15)

= cos θ− cos θ = 0Ez

1

4πϵ0

q

r2

1

4πϵ0

q

r2

E ⃗ 

(z) = .E ⃗  1

4πϵ0

qd

[ + ]z2 ( )
d

2

2 3/2
î (3.4.16)

d = 0, z ≫ d z → ∞

3.4.15 z >> d

z ≫ d d2

3.4.15

lim
d→0

E ⃗ =
1

4πϵ0

2qz

[z2]3/2
k̂

=
1

4πϵ0

2qz

z3
k̂

= ,
1

4πϵ0

2q

z2
k̂

2q

3.4.16

d ≪ z ≪ ∞

(z) = ,E ⃗  1

4πϵ0

qd

z3
î

E ⃗ 

(z → ∞) E → 0

 Exercise 3.4.1

=E ⃗  1

4πϵ0

q

r2
r̂
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3.5: Calculating Electric Fields of Charge Distributions

By the end of this section, you will be able to:

Explain what a continuous source charge distribution is and how it is related to the concept of quantization of charge
Describe line charges, surface charges, and volume charges
Calculate the field of a continuous source charge distribution of either sign

The charge distributions we have seen so far have been discrete: made up of individual point particles. This is in contrast with a
continuous charge distribution, which has at least one nonzero dimension. If a charge distribution is continuous rather than
discrete, we can generalize the definition of the electric field. We simply divide the charge into infinitesimal pieces and treat each
piece as a point charge.

Note that because charge is quantized, there is no such thing as a “truly” continuous charge distribution. However, in most practical
cases, the total charge creating the field involves such a huge number of discrete charges that we can safely ignore the discrete
nature of the charge and consider it to be continuous. This is exactly the kind of approximation we make when we deal with a
bucket of water as a continuous fluid, rather than a collection of  molecules.

Our first step is to define a charge density for a charge distribution along a line, across a surface, or within a volume, as shown in
Figure .

Figure : The configuration of charge differential elements for a (a) line charge, (b) sheet of charge, and (c) a volume of charge.
Also note that (d) some of the components of the total electric field cancel out, with the remainder resulting in a net electric field.

Definitions of charge density:

linear charge density:  charge per unit length (Figure ); units are coulombs per meter ( )
surface charge density:  charge per unit area (Figure ); units are coulombs per square meter 
volume charge density:  charge per unit volume (Figure ); units are coulombs per square meter 

For a line charge, a surface charge, and a volume charge, the summation in the definition of an Electric field discussed previously
becomes an integral and  is replaced by , , or , respectively:

 LEARNING OBJECTIVES

OH2

3.5.1

3.5.1

 Definitions: Charge Densities

λ ≡ 3.5.1a C/m
σ ≡ 3.5.1b (C/ )m2

ρ ≡ 3.5.1c (C/ )m3

qi dq = λdl σdA ρdV
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The integrals in Equations -  are generalizations of the expression for the field of a point charge. They implicitly include
and assume the principle of superposition. The “trick” to using them is almost always in coming up with correct expressions for , 

, or , as the case may be, expressed in terms of r, and also expressing the charge density function appropriately. It may be
constant; it might be dependent on location.

Note carefully the meaning of  in these equations: It is the distance from the charge element ( ) to the location
of interest,  (the point in space where you want to determine the field). However, don’t confuse this with the meaning of 

; we are using it and the vector notation  to write three integrals at once. That is, Equation  is actually

Examples

Find the electric field a distance  above the midpoint of a straight line segment of length  that carries a uniform line charge
density .

Strategy

Since this is a continuous charge distribution, we conceptually break the wire segment into differential pieces of length ,
each of which carries a differential amount of charge

Then, we calculate the differential field created by two symmetrically placed pieces of the wire, using the symmetry of the
setup to simplify the calculation (Figure ). Finally, we integrate this differential field expression over the length of the
wire (half of it, actually, as we explain below) to obtain the complete electric field expression.

(P )E ⃗ 

(P )E ⃗ 

(P )E ⃗ 

(P )E ⃗ 

= ( )
1

4πϵ0
∑
i=1

N
qi

r2
r̂

  
Point charges

= ( )
1

4πϵ0
∫
line

λ dl

r2
r̂

  
Line charge

= ( )
1

4πϵ0
∫
surface

σ dA

r2
r̂

  
Surface charge

= ( )
1

4πϵ0
∫
volume

ρ dV

r2
r̂

  
Volume charge

(3.5.1)

(3.5.2)

(3.5.3)

(3.5.4)

3.5.1 3.5.4
dl

dA dV

r , λ dl, σ dA, ρ dVqi
P (x, y, z)

r̂ E ⃗  3.5.2

(P )Ex

(P )Ey

(P )Ez

= ,
1

4πϵ0
∫
line

( )
λ dl

r2
x

= ,
1

4πϵ0
∫
line

( )
λ dl

r2
y

=
1

4πϵ0
∫
line

( )
λ dl

r2
z

(3.5.5)

(3.5.6)

(3.5.7)

 Example : Electric Field of a Line Segment3.5.1a

z L

λ

dl

dq = λ dl.

3.5.2
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Figure : A uniformly charged segment of wire. The electric field at point  can be found by applying the
superposition principle to symmetrically placed charge elements and integrating.

Solution

Before we jump into it, what do we expect the field to “look like” from far away? Since it is a finite line segment, from
far away, it should look like a point charge. We will check the expression we get to see if it meets this expectation.

The electric field for a line charge is given by the general expression

The symmetry of the situation (our choice of the two identical differential pieces of charge) implies the horizontal ( )-
components of the field cancel, so that the net field points in the -direction. Let’s check this formally.

The total field  is the vector sum of the fields from each of the two charge elements (call them  and , for
now):

Because the two charge elements are identical and are the same distance away from the point  where we want to
calculate the field, , so those components cancel. This leaves

These components are also equal, so we have

where our differential line element  is , in this example, since we are integrating along a line of charge that lies on
the -axis. (The limits of integration are 0 to , not  to , because we have constructed the net field from two
differential pieces of charge . If we integrated along the entire length, we would pick up an erroneous factor of 2.)

In principle, this is complete. However, to actually calculate this integral, we need to eliminate all the variables that are
not given. In this case, both  and  change as we integrate outward to the end of the line charge, so those are the
variables to get rid of. We can do that the same way we did for the two point charges: by noticing that

and

3.5.2 P

(P ) = .E ⃗  1

4πϵ0
∫
line

λdl

r2
r̂

x

z

(P )E ⃗  E ⃗ 
1 E ⃗ 

2

(P )E ⃗  = +E ⃗ 
1 E ⃗ 

2

= + + (− ) + .E1x î E1zk̂ E2x î E2zk̂

P

=E1x E2x

(P )E ⃗  = +E1zk̂ E2zk̂

= cos θ + cos θ .E1 k̂ E2 k̂

(P )E ⃗  = ∫ cos θ + ∫ cos θ
1

4πϵ0

λdl

r2
k̂

1

4πϵ0

λdl

r2
k̂

= cos θ
1

4πϵ0
∫

L/2

0

2λdx

r2
k̂

dl dx

x L

2
− L

2
+ L

2

dq

r θ

r = ( +z2 x2)1/2
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Substituting, we obtain

which simplifies to

Significance

Notice, once again, the use of symmetry to simplify the problem. This is a very common strategy for calculating electric
fields. The fields of nonsymmetrical charge distributions have to be handled with multiple integrals and may need to be
calculated numerically by a computer.

Find the electric field a distance  above the midpoint of a straight line segment of length  that carries a uniform positive line
charge density .

Figure : A uniformly charged segment of wire. Symmetry implies that the electric field at point  is along the x-axis.

Strategy

Since this is a continuous charge distribution, we conceptually break the wire segment into differential pieces of length ,
each of which carries a differential amount of charge

Then, we conclude that because of symmetry, the field due to each segment is along the x-axis and directed towards .
The field will point towards  if the charge were negative. We then integrate the differential field expression over the
length of the wire, from  to  to obtain the complete electric field expression.

Figure : A uniformly charged segment of wire. The electric field at point  can be found by applying the
superposition principle to symmetrically placed charge elements and integrating.

Solution

The electric field for a line charge is given by the general expression

cos θ = = .
z

r

z

( +z2 x2)1/2

(P )E ⃗  =
1

4πϵ0
∫

L/2

0

2λdx

( + )z2 x2

z

( +z2 x2)1/2
k̂

= dx
1

4πϵ0
∫

L/2

0

2λz

( +z2 x2)3/2
k̂

= .
2λz

4πϵ0
[ ]

x

z2 +z2 x2
− −−−−−√

L/2

0

k̂

(z) = .E ⃗  1

4πϵ0

λL

z +z2
L2

4

− −−−−−−
√

k̂ (3.5.8)

 Example : Electric Field of a Line Segment along the axis of the segment3.5.1b

z L

λ

3.5.3 P

dl

dq = λ dl.

(− )î

(+ )î
x = a x = b

3.5.4 P

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76516?pdf


3.5.5 https://phys.libretexts.org/@go/page/76516

The symmetry of the situation implies that there are only horizontal ( )-components of the field. Since the charge is
positive, the direction of the field is .

So we have

where our differential line element  is , in this example, since we are integrating along a line of charge that lies on
the -axis. (The limits of integration are  to .

In principle, this is complete. However, to actually calculate this integral, we need to eliminate all the variables that are
not given. In this case, both  and  change as we integrate outward to the end of the line charge, so those are the
variables to get rid of. We can do that the same way we did for the two point charges: by noticing that

The result is then:

How would the strategy used above change to calculate the electric field at a point a distance  above one end of the finite line
segment?

Answer

We will no longer be able to take advantage of symmetry. Instead, we will need to calculate each of the two components of
the electric field with their own integral.

Find the electric field a distance  above the midpoint of a straight line segment of length  that carries a uniform line charge
density .

(P ) = .E ⃗  1

4πϵ0
∫
line

λdl

r2
r̂

x

(− )î

(P )E ⃗  = ∫
−1

4πϵ0

λdl

r2
î

=
−1

4πϵ0
∫

b

a

λdx

x2
î

dl dx

x a b

r θ

(P )E ⃗  =
−1

4πϵ0
∫

b

a

λdx

x2
î

=
−λ

4πϵ0
[ ]

−1

x

b

a

î

= [ − ]
−λ

4πϵ0

−1

b

−1

a
î

= [ − ] .
−λ

4πϵ0

1

a

1

b
î

(x) = − ( − ) .E ⃗  λ

4πϵ0

1

a

1

b
î (3.5.9)

 Exercise 3.5.1

z

 Example : Electric Field of a Line Segment With No Symmetry3.5.1c

z L

λ
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Figure : A uniformly charged segment of wire. The electric field at point  can be found by applying the superposition
principle to symmetrically placed charge elements and integrating.

Strategy

Since this is a continuous charge distribution, we conceptually break the wire segment into differential pieces of length ,
each of which carries a differential amount of charge

Then, we calculate the  and  components of the differential field created by a piece of the wire. We then integrate
these differential field expressions over the length of the wire.

Figure : A uniformly charged segment of wire. The electric field at point  can be found by applying the
superposition principle to symmetrically placed charge elements and integrating.

Solution

Before we jump into it, what do we expect the field to “look like” from far away? Since it is a finite line segment, from
far away, it should look like a point charge. We will check the expression we get to see if it meets this expectation.

The electric field for a line charge is given by the general expression

The symmetry of the situation (our choice of the two identical differential pieces of charge) implies the horizontal ( )-
components of the field cancel, so that the net field points in the -direction. Let’s check this formally.

The total field  is the vector sum of the fields from each of the two charge elements (call them  and , for
now):

Because the two charge elements are identical and are the same distance away from the point  where we want to
calculate the field, , so those components cancel. This leaves

These components are also equal, so we have

3.5.5 P

dl

dq = λ dl.

x y

3.5.2 P

(P ) = .E ⃗  1

4πϵ0
∫
line

λdl

r2
r̂

x

z

(P )E ⃗  E ⃗ 
1 E ⃗ 

2

(P )E ⃗  = +E ⃗ 
1 E ⃗ 

2

= + + (− ) + .E1x î E1zk̂ E2x î E2zk̂

P

=E1x E2x

(P )E ⃗  = +E1zk̂ E2zk̂

= cos θ + cos θ .E1 k̂ E2 k̂
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where our differential line element  is , in this example, since we are integrating along a line of charge that lies on
the -axis. (The limits of integration are 0 to , not  to , because we have constructed the net field from two
differential pieces of charge . If we integrated along the entire length, we would pick up an erroneous factor of 2.)

In principle, this is complete. However, to actually calculate this integral, we need to eliminate all the variables that are
not given. In this case, both  and  change as we integrate outward to the end of the line charge, so those are the
variables to get rid of. We can do that the same way we did for the two point charges: by noticing that

and

Substituting, we obtain

which simplifies to

Significance

Notice, once again, the use of symmetry to simplify the problem. This is a very common strategy for calculating electric
fields. The fields of nonsymmetrical charge distributions have to be handled with multiple integrals and may need to be
calculated numerically by a computer.

(P )E ⃗  = ∫ cos θ + ∫ cos θ
1

4πϵ0

λdl

r2
k̂

1

4πϵ0

λdl

r2
k̂

= cos θ
1

4πϵ0
∫

L/2

0

2λdx

r2
k̂

dl dx

x L

2
− L

2
+ L

2

dq

r θ

r = ( +z2 x2)1/2

cos θ = = .
z

r

z

( +z2 x2)1/2

(P )E ⃗  =
1

4πϵ0
∫

L/2

0

2λdx

( + )z2 x2

z

( +z2 x2)1/2
k̂

= dx
1

4πϵ0
∫

L/2

0

2λz

( +z2 x2)3/2
k̂

= .
2λz

4πϵ0
[ ]

x

z2 +z2 x2
− −−−−−

√

L/2

0

k̂

E(x) = [ − ] .
λ

4πϵ0

1

+a2 t2
− −−−−−

√

1

+b2 t2
− −−−−−

√
(3.5.10)

E(y) = [ − ] .
1

4πϵ0

λ

t

b

+b2 t2
− −−−−−

√

a

+a2 t2
− −−−−−

√
(3.5.11)
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Find the electric field a distance  above the midpoint of an infinite line of charge that carries a uniform line charge density .

Strategy

This is exactly like the preceding example, except the limits of integration will be  to .

Solution

Again, the horizontal components cancel out, so we wind up with

where our differential line element dl is dx, in this example, since we are integrating along a line of charge that lies on
the x-axis. Again,

Substituting, we obtain

which simplifies to

Significance

Our strategy for working with continuous charge distributions also gives useful results for charges with infinite
dimension.

In the case of a finite line of charge, note that for ,  dominates the L in the denominator, so that Equation  simplifies
to

If you recall that  the total charge on the wire, we have retrieved the expression for the field of a point charge, as expected.

In the limit  on the other hand, we get the field of an infinite straight wire, which is a straight wire whose length is much,
much greater than either of its other dimensions, and also much, much greater than the distance at which the field is to be
calculated:

 Example : Electric Field of an Infinite Line of Charge3.5.2

z λ

−∞ +∞

(P ) = cos θE ⃗  1

4πϵ0
∫

∞

−∞

λdx

r2
k̂

cos θ =
z

r

= .
z

( +z2 x2)1/2

(P )E ⃗  =
1

4πϵ0
∫

∞

−∞

λdx

( + )z2 x2

z

( +z2 x2)1/2
k̂

= dx
1

4πϵ0
∫

∞

−∞

λz

( +z2 x2)3/2
k̂

=
1

4πϵ0
[ ]

x

z2 +z2 x2
− −−−−−

√

∞

−∞

k̂

(z) = .E ⃗  1

4πϵ0

2λ

z
k̂

z ≫ L z2 3.5.8

≈ .E ⃗  1

4πϵ0

λL

z2
k̂ (3.5.12)

λL = q

L → ∞

(z) = .E ⃗  1

4πϵ0

2λ

z
k̂ (3.5.13)
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An interesting artifact of this infinite limit is that we have lost the usual  dependence that we are used to. This will become
even more intriguing in the case of an infinite plane.

A ring has a uniform charge density , with units of coulomb per unit meter of arc. Find the electric field at a point on the axis
passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a circle. We
divide the circle into infinitesimal elements shaped as arcs on the circle and use polar coordinates shown in Figure .

Figure : The system and variable for calculating the electric field due to a ring of charge.

Solution

The electric field for a line charge is given by the general expression

A general element of the arc between  and  is of length  and therefore contains a charge equal to .

The element is at a distance of  from , the angle is  and therefore the electric

field is

Significance

As usual, symmetry simplified this problem, in this particular case resulting in a trivial integral. Also, when we take the
limit of , we find that

as we expect.

1/r2

 Example : Electric Field due to a Ring of Charge3.5.3A

λ

3.5.3

3.5.3

(P ) = .E ⃗  1

4πϵ0
∫
line

λdl

r2
r̂

θ θ+dθ Rdθ λRdθ

r = +z2 R2
− −−−−−

√ P cos ϕ =
z

+z2 R2
− −−−−−

√

(P )E ⃗  = =
1

4πϵ0
∫
line

λdl

r2
r̂

1

4πϵ0
∫

2π

0

λRdθ

+z2 R2

z

+z2 R2
− −−−−−√

ẑ

= dθ
1

4πϵ0

λRz

( +z2 R2)3/2
ẑ ∫

2π

0

=
1

4πϵ0

2πλRz

( +z2 R2)3/2
ẑ

= .
1

4πϵ0

zqtot

( +z2 R2)3/2
ẑ

z ≫ R

≈ ,E ⃗  1

4πϵ0

qtot

z2
ẑ
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Find the electric field of a circular thin disk of radius  and uniform charge density at a distance  above the center of the disk
(Figure )

Figure : A uniformly charged disk. As in the line charge example, the field above the center of this disk can be calculated
by taking advantage of the symmetry of the charge distribution.

Strategy

The electric field for a surface charge is given by

To solve surface charge problems, we break the surface into symmetrical differential “stripes” that match the shape of the
surface; here, we’ll use rings, as shown in the figure. Again, by symmetry, the horizontal components cancel and the field is
entirely in the vertical  direction. The vertical component of the electric field is extracted by multiplying by , so

As before, we need to rewrite the unknown factors in the integrand in terms of the given quantities. In this case,

(Please take note of the two different “ ’s” here;  is the distance from the differential ring of charge to the point  where
we wish to determine the field, whereas  is the distance from the center of the disk to the differential ring of charge.)
Also, we already performed the polar angle integral in writing down .

Solution

Substituting all this in, we get

or, more simply,

 Example : The Field of a Disk3.5.3B

R z

3.5.4

3.5.4

(P ) = .E ⃗  1

4πϵ0
∫
surface

σdA

r2
r̂

( )k̂ θ

(P ) = cos θ .E ⃗  1

4πϵ0
∫
surface

σdA

r2
k̂

dA = 2π dr′ r′ (3.5.14)

= +r2 r′2 z2 (3.5.15)

cos θ = .
z

( +r′2 z2)1/2
(3.5.16)

r r P

r′

dA

(P )E ⃗  = (z)E ⃗ 

=
1

4πϵ0
∫

R

0

σ(2π d )zr′ r′

( +r′2 z2)3/2
k̂

= (2πσz) ( − )
1

4πϵ0

1

z

1

+R2 z2
− −−−−−

√
k̂
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Significance

Again, it can be shown (via a Taylor expansion) that when , this reduces to

which is the expression for a point charge .

How would the above limit change with a uniformly charged rectangle instead of a disk?

Answer

The point charge would be  where  and  are the sides of the rectangle but otherwise identical.

As , Equation  reduces to the field of an infinite plane, which is a flat sheet whose area is much, much greater than
its thickness, and also much, much greater than the distance at which the field is to be calculated:

Note that this field is constant. This surprising result is, again, an artifact of our limit, although one that we will make use of
repeatedly in the future. To understand why this happens, imagine being placed above an infinite plane of constant charge. Does the
plane look any different if you vary your altitude? No—you still see the plane going off to infinity, no matter how far you are from
it. It is important to note that Equation  is because we are above the plane. If we were below, the field would point in the 
direction.

Find the electric field everywhere resulting from two infinite planes with equal but opposite charge densities (Figure ).

Figure : Two charged infinite planes. Note the direction of the electric field.

Strategy

We already know the electric field resulting from a single infinite plane, so we may use the principle of superposition to
find the field from two.

Solution

(z) = (2πσ− ) .E ⃗  1

4πϵ0

2πσz

+R2 z2
− −−−−−

√
k̂ (3.5.17)

z ≫ R

(z) ≈ ,E ⃗  1

4πϵ0

σπR2

z2
k̂

Q = σπR2

 Exercise 3.5.3

Q = σab a b

R → ∞ 3.5.17

E ⃗ = (2πσ− )lim
R→∞

1

4πϵ0

2πσz

+R2 z2− −−−−−
√

k̂

= .
σ

2ϵ0
k̂

(3.5.18)

(3.5.19)

3.5.19 −k̂

 Example : The Field of Two Infinite Planes3.5.4

3.5.5

3.5.5
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The electric field points away from the positively charged plane and toward the negatively charged plane. Since
the  are equal and opposite, this means that in the region outside of the two planes, the electric fields cancel each other
out to zero. However, in the region between the planes, the electric fields add, and we get

for the electric field. The  is because in the figure, the field is pointing in the +x-direction.

Significance

Systems that may be approximated as two infinite planes of this sort provide a useful means of creating uniform electric
fields.

What would the electric field look like in a system with two parallel positively charged planes with equal charge densities?

Answer

The electric field would be zero in between, and have magnitude  everywhere else.

This page titled 3.5: Calculating Electric Fields of Charge Distributions is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

5.6: Calculating Electric Fields of Charge Distributions by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
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 Exercise 3.5.4
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3.6: Electric Flux

By the end of this section, you will be able to:

Define the concept of flux
Describe electric flux
Calculate electric flux for a given situation

The concept of flux describes how much of something goes through a given area. More formally, it is the dot product of a vector
field (in this chapter, the electric field) with an area. You may conceptualize the flux of an electric field as a measure of the number
of electric field lines passing through an area (Figure ). The larger the area, the more field lines go through it and, hence, the
greater the flux; similarly, the stronger the electric field is (represented by a greater density of lines), the greater the flux. On the
other hand, if the area rotated so that the plane is aligned with the field lines, none will pass through and there will be no flux.

Figure : The flux of an electric field through the shaded area captures information about the “number” of electric field lines
passing through the area. The numerical value of the electric flux depends on the magnitudes of the electric field and the area, as
well as the relative orientation of the area with respect to the direction of the electric field.

A macroscopic analogy that might help you imagine this is to put a hula hoop in a flowing river. As you change the angle of the
hoop relative to the direction of the current, more or less of the flow will go through the hoop. Similarly, the amount of flow
through the hoop depends on the strength of the current and the size of the hoop. Again, flux is a general concept; we can also use it
to describe the amount of sunlight hitting a solar panel or the amount of energy a telescope receives from a distant star, for
example.

To quantify this idea, Figure  shows a planar surface  of area  that is perpendicular to the uniform electric field 
. If N field lines pass through , then we know from the definition of electric field lines (Electric Charges and Fields) that

, or .

The quantity  is the electric flux through . We represent the electric flux through an open surface like  by the symbol .
Electric flux is a scalar quantity and has an SI unit of newton-meters squared per coulomb ( ). Notice that  may
also be written as , demonstrating that electric flux is a measure of the number of field lines crossing a surface.

Figure : (a) A planar surface  of area  is perpendicular to the electric field . N field lines cross surface . (b) A
surface  of area  whose projection onto the xz-plane is . The same number of field lines cross each surface.

Now consider a planar surface that is not perpendicular to the field. How would we represent the electric flux? Figure  shows
a surface  of area  that is inclined at an angle  to the xz-plane and whose projection in that plane is  (area ). The areas
are related by . Because the same number of field lines crosses both  and , the fluxes through both surfaces

 Learning Objectives

3.6.1

3.6.1

3.6.1a S1 A1

= EE ⃗  ŷ S1

N/A ∝ E N ∝ EA1

EA1 S1 S1 Φ

N ⋅ /Cm2 N ∝ EA1

N ∝ Φ
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must be the same. The flux through  is therefore . Designating  as a unit vector normal to  (see
Figure ), we obtain

Check out this video to observe what happens to the flux as the area changes in size and angle, or the electric field changes in
strength.

Area Vector

For discussing the flux of a vector field, it is helpful to introduce an area vector . This allows us to write the last equation in a
more compact form. What should the magnitude of the area vector be? What should the direction of the area vector be? What are
the implications of how you answer the previous question?

The area vector of a flat surface of area A has the following magnitude and direction:

Magnitude is equal to area (A)
Direction is along the normal to the surface ; that is, perpendicular to the surface.

Since the normal to a flat surface can point in either direction from the surface, the direction of the area vector of an open surface
needs to be chosen, as shown in Figure .

Figure : The direction of the area vector of an open surface needs to be chosen; it could be either of the two cases displayed
here. The area vector of a part of a closed surface is defined to point from the inside of the closed space to the outside. This rule
gives a unique direction.

Since  is a unit normal to a surface, it has two possible directions at every point on that surface (Figure ). For an open
surface, we can use either direction, as long as we are consistent over the entire surface.  of the figure shows several cases.

S2 Φ = E = E cos θA1 A2 n̂2 S2

3.6.2b

Φ = ⋅ .E ⃗  n̂2A2 (3.6.1)

 Note

A ⃗ 

( )n̂

3.6.3

3.6.3

n̂ 3.6.1a

3.6.1c
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Figure : (a) Two potential normal vectors arise at every point on a surface. (b) The outward normal is used to calculate the
flux through a closed surface. (c) Only  has been given a consistent set of normal vectors that allows us to define the flux
through the surface.

However, if a surface is closed, then the surface encloses a volume. In that case, the direction of the normal vector at any point on
the surface points from the inside to the outside. On a closed surface such as that of Figure ,  is chosen to be the outward
normal at every point, to be consistent with the sign convention for electric charge.

Electric Flux
Now that we have defined the area vector of a surface, we can define the electric flux of a uniform electric field through a flat area
as the scalar product of the electric field and the area vector:

Figure  shows the electric field of an oppositely charged, parallel-plate system and an imaginary box between the plates. The
electric field between the plates is uniform and points from the positive plate toward the negative plate. A calculation of the flux of
this field through various faces of the box shows that the net flux through the box is zero. Why does the flux cancel out here?

3.6.4
S3

3.6.1b n̂

Φ = ⋅ (uniform , flat surface).E ⃗  A ⃗  Ê (3.6.2)

3.6.5
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Figure : Electric flux through a cube, placed between two charged plates. Electric flux through the bottom face (ABCD) is
negative, because  is in the opposite direction to the normal to the surface. The electric flux through the top face (FGHK) is
positive, because the electric field and the normal are in the same direction. The electric flux through the other faces is zero, since
the electric field is perpendicular to the normal vectors of those faces. The net electric flux through the cube is the sum of fluxes
through the six faces. Here, the net flux through the cube is equal to zero. The magnitude of the flux through rectangle BCKF is
equal to the magnitudes of the flux through both the top and bottom faces.

The reason is that the sources of the electric field are outside the box. Therefore, if any electric field line enters the volume of the
box, it must also exit somewhere on the surface because there is no charge inside for the lines to land on. Therefore, quite generally,
electric flux through a closed surface is zero if there are no sources of electric field, whether positive or negative charges, inside the
enclosed volume. In general, when field lines leave (or “flow out of”) a closed surface,  is positive; when they enter (or “flow
into”) the surface,  is negative.

Any smooth, non-flat surface can be replaced by a collection of tiny, approximately flat surfaces, as shown in Figure . If we
divide a surface S into small patches, then we notice that, as the patches become smaller, they can be approximated by flat surfaces.
This is similar to the way we treat the surface of Earth as locally flat, even though we know that globally, it is approximately
spherical.

Figure : A surface is divided into patches to find the flux.

To keep track of the patches, we can number them from 1 through N . Now, we define the area vector for each patch as the area of
the patch pointed in the direction of the normal. Let us denote the area vector for the ith patch by . (We have used the symbol 

3.6.5

E ⃗ 

Φ

Φ

3.6.6

3.6.6

δA ⃗ 
i δ
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to remind us that the area is of an arbitrarily small patch.) With sufficiently small patches, we may approximate the electric field
over any given patch as uniform. Let us denote the average electric field at the location of the ith patch by .

Therefore, we can write the electric flux  through the area of the ith patch as

The flux through each of the individual patches can be constructed in this manner and then added to give us an estimate of the net
flux through the entire surface S, which we denote simply as .

This estimate of the flux gets better as we decrease the size of the patches. However, when you use smaller patches, you need more
of them to cover the same surface. In the limit of infinitesimally small patches, they may be considered to have area dA and unit
normal . Since the elements are infinitesimal, they may be assumed to be planar, and  may be taken as constant over any
element. Then the flux  through an area dA is given by . It is positive when the angle between  and  is less
than  and negative when the angle is greater than . The net flux is the sum of the infinitesimal flux elements over the entire
surface. With infinitesimally small patches, you need infinitely many patches, and the limit of the sum becomes a surface integral.
With  representing the integral over S,

In practical terms, surface integrals are computed by taking the antiderivatives of both dimensions defining the area, with the edges
of the surface in question being the bounds of the integral.

To distinguish between the flux through an open surface like that of Figure  and the flux through a closed surface (one that
completely bounds some volume), we represent flux through a closed surface by

where the circle through the integral symbol simply means that the surface is closed, and we are integrating over the entire thing. If
you only integrate over a portion of a closed surface, that means you are treating a subset of it as an open surface.

Examples

A constant electric field of magnitude  points in the direction of the positive z-axis (Figure ). What is the electric flux
through a rectangle with sides a and b in the (a) xy-plane and in the (b) xz-plane?

Figure : Calculating the flux of  through a rectangular surface.

Strategy

E ⃗ 
i

= average electric field over the ith patch.E ⃗ 
i (3.6.3)

Φ

= ⋅ δ (ith patch).Φi E ⃗ 
i A ⃗ 

i (3.6.4)

Φ

Φ = = ⋅ δ (N patch estimate).∑
i=1

N

Φi ∑
i=1

N

E ⃗ 
i A ⃗ 

i (3.6.5)

n̂ E ⃗ 
i

dΦ dΦ = ⋅ dAE ⃗  n̂ E ⃗ 
i n̂

90o 90o

∫
S

Φ = ⋅ dA = ⋅ d (open surface).∫
S

E ⃗  n̂ ∫
S

E ⃗  A ⃗  (3.6.6)

3.6.2

Φ = ⋅ dA = ⋅ d (closed surface)∮
S

E ⃗  n̂ ∮
S

E ⃗  A ⃗  (3.6.7)

 Example : Flux of a Uniform Electric Field3.6.1

E0 3.6.7

3.6.7 E0
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Apply the definition of flux: , where the definition of dot product is crucial.

Solution

1. In this case, .
2. Here, the direction of the area vector is either along the positive y-axis or toward the negative y-axis. Therefore, the

scalar product of the electric field with the area vector is zero, giving zero flux.

Significance

The relative directions of the electric field and area can cause the flux through the area to be zero.

A constant electric field of magnitude  points in the direction of the positive z-axis (Figure ). What is the net electric
flux through a cube?

Figure : Calculating the flux of  through a closed cubic surface.

Strategy

Apply the definition of flux: , noting that a closed surface eliminates the ambiguity in the
direction of the area vector.

Solution

Through the top face of the cube .

Through the bottom face of the cube, , because the area vector here points downward.

Along the other four sides, the direction of the area vector is perpendicular to the direction of the electric field.
Therefore, the scalar product of the electric field with the area vector is zero, giving zero flux.

The net flux is .

Significance

The net flux of a uniform electric field through a closed surface is zero.

Φ = ⋅ (uniform )E ⃗  A ⃗  E ⃗ 

Φ = ⋅ = A = abE ⃗ 
0 A ⃗  E0 E0

 Flux of a Uniform Electric Field through a Closed Surface

E0 3.6.8

3.6.8 E0

Φ = ⋅ (uniform )E ⃗  A ⃗  E ⃗ 

Φ = ⋅ = AE ⃗ 
0 A ⃗  E0

Φ = ⋅ = − AE ⃗ 
0 A ⃗  E0

= A− A+0 +0 +0 +0 = 0Φnet E0 E0
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A uniform electric field  of magnitude 10 N/C is directed parallel to the yz-plane at  above the xy-plane, as shown in
Figure . What is the electric flux through the plane surface of area  located in the xz-plane? Assume that  points
in the positive y-direction.

Figure : The electric field produces a net electric flux through the surface S.

Strategy

Apply , where the direction and magnitude of the electric field are constant.

Solution

The angle between the uniform electric field  and the unit normal  to the planar surface is . Since both the
direction and magnitude are constant, E comes outside the integral. All that is left is a surface integral over dA, which is
A. Therefore, using the open-surface equation, we find that the electric flux through the surface is

Significance

Again, the relative directions of the field and the area matter, and the general equation with the integral will simplify to
the simple dot product of area and electric field.

What angle should there be between the electric field and the surface shown in Figure  in the previous example so that no
electric flux passes through the surface?

Solution

Place it so that its unit normal is perpendicular to .

 Example : Electric Flux through a Plane, Integral Method3.6.3

E ⃗  30o

3.6.9 6.0 m2 n̂

3.6.9

Φ = ⋅ dA∫S E
⃗  n̂

E ⃗  n̂ 30o

Φ = ⋅ dA = EAcos θ∫
S

E ⃗  n̂ (3.6.8)

= (10 N/C)(6.0 )(cos ) = 52 N ⋅ /C.m2 30o m2 (3.6.9)

 Exercise 3.6.1

3.6.9

E ⃗ 
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What is the total flux of the electric field  through the rectangular surface shown in Figure ?

Figure : Since the electric field is not constant over the surface, an integration is necessary to determine the flux.

Strategy

Apply . We assume that the unit normal  to the given surface points in the positive z-direction, so .
Since the electric field is not uniform over the surface, it is necessary to divide the surface into infinitesimal strips along
which  is essentially constant. As shown in Figure , these strips are parallel to the x-axis, and each strip has an area 

.

Solution

From the open surface integral, we find that the net flux through the rectangular surface is

Significance

For a non-constant electric field, the integral method is required.

If the electric field in Example  is . what is the flux through the rectangular area?

Solution

This page titled 3.6: Electric Flux is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content
that was edited to the style and standards of the LibreTexts platform.

6.2: Electric Flux by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.

 Example  : Inhomogeneous Electric Field3.6.4
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3.7: Gauss’s Law

By the end of this section, you will be able to:

State Gauss’s law
Explain the conditions under which Gauss’s law may be used
Apply Gauss’s law in appropriate systems

Flux is a general and broadly applicable concept in physics. However, in this chapter, we concentrate on the flux of the electric
field. This allows us to introduce Gauss’s law, which is particularly useful for finding the electric fields of charge distributions
exhibiting spatial symmetry. The main topics discussed here are

1. Electric flux. We define electric flux for both open and closed surfaces.
2. Gauss’s law. We derive Gauss’s law for an arbitrary charge distribution and examine the role of electric flux in Gauss’s law.
3. Calculating electric fields with Gauss’s law. The main focus of this chapter is to explain how to use Gauss’s law to find the

electric fields of spatially symmetrical charge distributions. We discuss the importance of choosing a Gaussian surface and
provide examples involving the applications of Gauss’s law.

4. Electric fields in conductors. Gauss’s law provides useful insight into the absence of electric fields in conducting materials.

Figure : This chapter introduces the concept of flux, which relates a physical quantity and the area through which it is
flowing. Although we introduce this concept with the electric field, the concept may be used for many other quantities, such as
fluid flow. (credit: modification of work by “Alessandro”/Flickr)

So far, we have found that the electrostatic field begins and ends at point charges and that the field of a point charge varies
inversely with the square of the distance from that charge. These characteristics of the electrostatic field lead to an important
mathematical relationship known as Gauss’s law. This law is named in honor of the extraordinary German mathematician and
scientist Karl Friedrich Gauss (Figure ). Gauss’s law gives us an elegantly simple way of finding the electric field, and, as you
will see, it can be much easier to use than the integration method described in the previous chapter. However, there is a catch—
Gauss’s law has a limitation in that, while always true, it can be readily applied only for charge distributions with certain
symmetries.
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Figure : Karl Friedrich Gauss (1777–1855) was a legendary mathematician of the nineteenth century. Although his major
contributions were to the field of mathematics, he also did important work in physics and astronomy.

We can now determine the electric flux through an arbitrary closed surface due to an arbitrary charge distribution. We found that if
a closed surface does not have any charge inside where an electric field line can terminate, then any electric field line entering the
surface at one point must necessarily exit at some other point of the surface. Therefore, if a closed surface does not have any
charges inside the enclosed volume, then the electric flux through the surface is zero. Now, what happens to the electric flux if there
are some charges inside the enclosed volume? Gauss’s law gives a quantitative answer to this question.

To get a feel for what to expect, let’s calculate the electric flux through a spherical surface around a positive point charge , since
we already know the electric field in such a situation. Recall that when we place the point charge at the origin of a coordinate
system, the electric field at a point  that is at a distance  from the charge at the origin is given by

where  is the radial vector from the charge at the origin to the point P. We can use this electric field to find the flux through the
spherical surface of radius r, as shown in Figure .

Figure : A closed spherical surface surrounding a point charge q.

Then we apply  to this system and substitute known values. On the sphere,  and  so for an infinitesimal
area dA,

We now find the net flux by integrating this flux over the surface of the sphere:
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where the total surface area of the spherical surface is . This gives the flux through the closed spherical surface at radius  as

A remarkable fact about this equation is that the flux is independent of the size of the spherical surface. This can be directly
attributed to the fact that the electric field of a point charge decreases as  with distance, which just cancels the  rate of
increase of the surface area.

Electric Field Lines Picture
An alternative way to see why the flux through a closed spherical surface is independent of the radius of the surface is to look at the
electric field lines. Note that every field line from q that pierces the surface at radius  also pierces the surface at  (Figure 

).

Figure : Flux through spherical surfaces of radii  and  enclosing a charge q are equal, independent of the size of the
surface, since all E-field lines that pierce one surface from the inside to outside direction also pierce the other surface in the same
direction.

Therefore, the net number of electric field lines passing through the two surfaces from the inside to outside direction is equal. This
net number of electric field lines, which is obtained by subtracting the number of lines in the direction from outside to inside from
the number of lines in the direction from inside to outside gives a visual measure of the electric flux through the surfaces.

You can see that if no charges are included within a closed surface, then the electric flux through it must be zero. A typical field
line enters the surface at  and leaves at . Every line that enters the surface must also leave that surface. Hence the net
“flow” of the field lines into or out of the surface is zero (Figure ). The same thing happens if charges of equal and opposite
sign are included inside the closed surface, so that the total charge included is zero (Figure ). A surface that includes the
same amount of charge has the same number of field lines crossing it, regardless of the shape or size of the surface, as long as the
surface encloses the same amount of charge (Figure ).
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Figure : Understanding the flux in terms of field lines. (a) The electric flux through a closed surface due to a charge outside
that surface is zero. (b) Charges are enclosed, but because the net charge included is zero, the net flux through the closed surface is
also zero. (c) The shape and size of the surfaces that enclose a charge does not matter because all surfaces enclosing the same
charge have the same flux.

Statement of Gauss’s Law

Gauss’s law generalizes this result to the case of any number of charges and any location of the charges in the space inside the
closed surface. According to Gauss’s law, the flux of the electric field  through any closed surface, also called a Gaussian
surface, is equal to the net charge enclosed  divided by the permittivity of free space :

This equation holds for charges of either sign, because we define the area vector of a closed surface to point outward. If the
enclosed charge is negative (Figure ), then the flux through either  or  is negative.

Figure : The electric flux through any closed surface surrounding a point charge q is given by Gauss’s law. (a) Enclosed
charge is positive. (b) Enclosed charge is negative.

The Gaussian surface does not need to correspond to a real, physical object; indeed, it rarely will. It is a mathematical construct that
may be of any shape, provided that it is closed. However, since our goal is to integrate the flux over it, we tend to choose shapes
that are highly symmetrical.

If the charges are discrete point charges, then we just add them. If the charge is described by a continuous distribution, then we
need to integrate appropriately to find the total charge that resides inside the enclosed volume. For example, the flux through the
Gaussian surface  of Figure  is

3.7.3
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Note that  is simply the sum of the point charges. If the charge distribution were continuous, we would need to integrate
appropriately to compute the total charge within the Gaussian surface.

Figure : The flux through the Gaussian surface shown, due to the charge distribution, is .

Recall that the principle of superposition holds for the electric field. Therefore, the total electric field at any point, including those
on the chosen Gaussian surface, is the sum of all the electric fields present at this point. This allows us to write Gauss’s law in
terms of the total electric field.

The flux  of the electric field  through any closed surface S (a Gaussian surface) is equal to the net charge enclosed 
divided by the permittivity of free space :

To use Gauss’s law effectively, you must have a clear understanding of what each term in the equation represents. The field  is
the total electric field at every point on the Gaussian surface. This total field includes contributions from charges both inside and
outside the Gaussian surface. However,  is just the charge inside the Gaussian surface. Finally, the Gaussian surface is any
closed surface in space. That surface can coincide with the actual surface of a conductor, or it can be an imaginary geometric
surface. The only requirement imposed on a Gaussian surface is that it be closed (Figure ).Figure : A Klein bottle
partially filled with a liquid. Could the Klein bottle be used as a Gaussian surface?

Examples

Calculate the electric flux through each Gaussian surface shown in Figure .

Φ = ( + + )/ .q1 q2 q5 ϵ0 (3.7.5)
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Figure : Various Gaussian surfaces and charges.

Strategy
From Gauss’s law, the flux through each surface is given by , where  is the charge enclosed by that surface

Solution

For the surfaces and charges shown, we find

a. .

b. .

c. .

d. .

e. .

Significance

In the special case of a closed surface, the flux calculations become a sum of charges. In the next section, this will allow
us to work with more complex systems.

Calculate the electric flux through the closed cubical surface for each charge distribution shown in Figure .

3.7.7
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Figure : A cubical Gaussian surface with various charge distributions.

Answer a

Answer b

Answer c

Answer d

0

This page titled 3.7: Gauss’s Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content
that was edited to the style and standards of the LibreTexts platform.

6.3: Explaining Gauss’s Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-2.
6.1: Prelude to Gauss's Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-2.
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3.8: Applying Gauss’s Law

By the end of this section, you will be able to:

Explain what spherical, cylindrical, and planar symmetry are
Recognize whether or not a given system possesses one of these symmetries
Apply Gauss’s law to determine the electric field of a system with one of these symmetries

Gauss’s law is very helpful in determining expressions for the electric field, even though the law is not directly about the electric
field; it is about the electric flux. It turns out that in situations that have certain symmetries (spherical, cylindrical, or planar) in the
charge distribution, we can deduce the electric field based on knowledge of the electric flux. In these systems, we can find a
Gaussian surface S over which the electric field has constant magnitude. Furthermore, if  is parallel to  everywhere on the
surface, then . (If  and  are antiparallel everywhere on the surface, .) Gauss’s law then simplifies to

where A is the area of the surface. Note that these symmetries lead to the transformation of the flux integral into a product of the
magnitude of the electric field and an appropriate area. When you use this flux in the expression for Gauss’s law, you obtain an
algebraic equation that you can solve for the magnitude of the electric field, which looks like

The direction of the electric field at point P is obtained from the symmetry of the charge distribution and the type of charge in the
distribution. Therefore, Gauss’s law can be used to determine . Here is a summary of the steps we will follow:

1. Identify the spatial symmetry of the charge distribution. This is an important first step that allows us to choose the
appropriate Gaussian surface. As examples, an isolated point charge has spherical symmetry, and an infinite line of charge
has cylindrical symmetry.

2. Choose a Gaussian surface with the same symmetry as the charge distribution and identify its consequences. With
this choice,  is easily determined over the Gaussian surface.

3. Evaluate the integral  over the Gaussian surface, that is, calculate the flux through the surface. The
symmetry of the Gaussian surface allows us to factor  outside the integral.

4. Determine the amount of charge enclosed by the Gaussian surface. This is an evaluation of the right-hand side of the
equation representing Gauss’s law. It is often necessary to perform an integration to obtain the net enclosed charge.

5. Evaluate the electric field of the charge distribution. The field may now be found using the results of steps 3 and 4.

Basically, there are only three types of symmetry that allow Gauss’s law to be used to deduce the electric field. They are

A charge distribution with spherical symmetry
A charge distribution with cylindrical symmetry
A charge distribution with planar symmetry

To exploit the symmetry, we perform the calculations in appropriate coordinate systems and use the right kind of Gaussian surface
for that symmetry, applying the remaining four steps.

Charge Distribution with Spherical Symmetry

A charge distribution has spherical symmetry if the density of charge depends only on the distance from a point in space and not
on the direction. In other words, if you rotate the system, it doesn’t look different. For instance, if a sphere of radius R is uniformly
charged with charge density  then the distribution has spherical symmetry (Figure ). On the other hand, if a sphere of
radius R is charged so that the top half of the sphere has uniform charge density  and the bottom half has a uniform charge
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density  then the sphere does not have spherical symmetry because the charge density depends on the direction (Figure 
). Thus, it is not the shape of the object but rather the shape of the charge distribution that determines whether or not a system

has spherical symmetry.

Figure  shows a sphere with four different shells, each with its own uniform charge density. Although this is a situation
where charge density in the full sphere is not uniform, the charge density function depends only on the distance from the center and
not on the direction. Therefore, this charge distribution does have spherical symmetry.

Figure : Illustrations of spherically symmetrical and nonsymmetrical systems. Different shadings indicate different charge
densities. Charges on spherically shaped objects do not necessarily mean the charges are distributed with spherical symmetry. The
spherical symmetry occurs only when the charge density does not depend on the direction. In (a), charges are distributed uniformly
in a sphere. In (b), the upper half of the sphere has a different charge density from the lower half; therefore, (b) does not have
spherical symmetry. In (c), the charges are in spherical shells of different charge densities, which means that charge density is only
a function of the radial distance from the center; therefore, the system has spherical symmetry.

One good way to determine whether or not your problem has spherical symmetry is to look at the charge density function in
spherical coordinates, . If the charge density is only a function of r, that is , then you have spherical symmetry. If
the density depends on  or , you could change it by rotation; hence, you would not have spherical symmetry.

Consequences of symmetry

In all spherically symmetrical cases, the electric field at any point must be radially directed, because the charge and, hence, the field
must be invariant under rotation. Therefore, using spherical coordinates with their origins at the center of the spherical charge
distribution, we can write down the expected form of the electric field at a point P located at a distance r from the center:

where  is the unit vector pointed in the direction from the origin to the field point P. The radial component  of the electric field
can be positive or negative. When , the electric field at P points away from the origin, and when , the electric field
at P points toward the origin.

Gaussian surface and flux calculations

We can now use this form of the electric field to obtain the flux of the electric field through the Gaussian surface. For spherical
symmetry, the Gaussian surface is a closed spherical surface that has the same center as the center of the charge distribution. Thus,
the direction of the area vector of an area element on the Gaussian surface at any point is parallel to the direction of the electric
field at that point, since they are both radially directed outward (Figure ).
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Figure : The electric field at any point of the spherical Gaussian surface for a spherically symmetrical charge distribution is
parallel to the area element vector at that point, giving flux as the product of the magnitude of electric field and the value of the
area. Note that the radius R of the charge distribution and the radius r of the Gaussian surface are different quantities.

The magnitude of the electric field  must be the same everywhere on a spherical Gaussian surface concentric with the
distribution. For a spherical surface of radius r:

Using Gauss’s law

According to Gauss’s law, the flux through a closed surface is equal to the total charge enclosed within the closed surface divided
by the permittivity of vacuum . Let  be the total charge enclosed inside the distance r from the origin, which is the space
inside the Gaussian spherical surface of radius r. This gives the following relation for Gauss’s law:

Hence, the electric field at point P that is a distance r from the center of a spherically symmetrical charge distribution has the
following magnitude and direction:

Direction: radial from O to P or from P to O.

The direction of the field at point P depends on whether the charge in the sphere is positive or negative. For a net positive charge
enclosed within the Gaussian surface, the direction is from O to P, and for a net negative charge, the direction is from P to O. This
is all we need for a point charge, and you will notice that the result above is identical to that for a point charge. However, Gauss’s
law becomes truly useful in cases where the charge occupies a finite volume.

Computing Enclosed Charge

The more interesting case is when a spherical charge distribution occupies a volume, and asking what the electric field inside the
charge distribution is thus becomes relevant. In this case, the charge enclosed depends on the distance r of the field point relative to
the radius of the charge distribution R, such as that shown in Figure .
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Figure : A spherically symmetrical charge distribution and the Gaussian surface used for finding the field (a) inside and (b)
outside the distribution.

If point P is located outside the charge distribution—that is, if  —then the Gaussian surface containing P encloses all charges
in the sphere. In this case,  equals the total charge in the sphere. On the other hand, if point P is within the spherical charge
distribution, that is, if , then the Gaussian surface encloses a smaller sphere than the sphere of charge distribution. In this
case,  is less than the total charge present in the sphere. Referring to Figure , we can write  as

The field at a point outside the charge distribution is also called , and the field at a point inside the charge distribution is called 
. Focusing on the two types of field points, either inside or outside the charge distribution, we can now write the magnitude of

the electric field as

Note that the electric field outside a spherically symmetrical charge distribution is identical to that of a point charge at the center
that has a charge equal to the total charge of the spherical charge distribution. This is remarkable since the charges are not located
at the center only. We now work out specific examples of spherical charge distributions, starting with the case of a uniformly
charged sphere.

A sphere of radius R, such as that shown in Figure , has a uniform volume charge density . Find the electric field at a
point outside the sphere and at a point inside the sphere.

Strategy

Apply the Gauss’s law problem-solving strategy, where we have already worked out the flux calculation.

Solution

The charge enclosed by the Gaussian surface is given by

The answer for electric field amplitude can then be written down immediately for a point outside the sphere, labeled 
 and a point inside the sphere, labeled .
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It is interesting to note that the magnitude of the electric field increases inside the material as you go out, since the
amount of charge enclosed by the Gaussian surface increases with the volume. Specifically, the charge enclosed grows 

, whereas the field from each infinitesimal element of charge drops off  with the net result that the electric
field within the distribution increases in strength linearly with the radius. The magnitude of the electric field outside the
sphere decreases as you go away from the charges, because the included charge remains the same but the distance
increases. Figure  displays the variation of the magnitude of the electric field with distance from the center of a
uniformly charged sphere.

Figure : Electric field of a uniformly charged, non-conducting sphere increases inside the sphere to a maximum at
the surface and then decreases as . Here, . The electric field is due to a spherical charge distribution of

uniform charge density and total charge Q as a function of distance from the center of the distribution.

The direction of the electric field at any point P is radially outward from the origin if  is positive, and inward (i.e.,
toward the center) if  is negative. The electric field at some representative space points are displayed in Figure 
whose radial coordinates r are  and .

Figure : Electric field vectors inside and outside a uniformly charged sphere.
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Significance

Notice that  has the same form as the equation of the electric field of an isolated point charge. In determining the
electric field of a uniform spherical charge distribution, we can therefore assume that all of the charge inside the
appropriate spherical Gaussian surface is located at the center of the distribution.

A non-conducting sphere of radius R has a non-uniform charge density that varies with the distance from its center as given by

where a is a constant. We require  so that the charge density is not undefined at . Find the electric field at a point
outside the sphere and at a point inside the sphere.

Strategy

Apply the Gauss’s law strategy given above, where we work out the enclosed charge integrals separately for cases inside
and outside the sphere.

Solution

Since the given charge density function has only a radial dependence and no dependence on direction, we have a
spherically symmetrical situation. Therefore, the magnitude of the electric field at any point is given above and the
direction is radial. We just need to find the enclosed charge , which depends on the location of the field point.

A note about symbols: We use  for locating charges in the charge distribution and r for locating the field point(s) at
the Gaussian surface(s). The letter R is used for the radius of the charge distribution.

As charge density is not constant here, we need to integrate the charge density function over the volume enclosed by the
Gaussian surface. Therefore, we set up the problem for charges in one spherical shell, say between  and  as
shown in Figure . The volume of charges in the shell of infinitesimal width is equal to the product of the area of
surface  and the thickness . Multiplying the volume with the density at this location, which is , gives the
charge in the shell:

Eout
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Figure : Spherical symmetry with non-uniform charge distribution. In this type of problem, we need four radii: R is
the radius of the charge distribution, r is the radius of the Gaussian surface,  is the inner radius of the spherical shell,
and  is the outer radius of the spherical shell. The spherical shell is used to calculate the charge enclosed within
the Gaussian surface. The range for  is from 0 to r for the field at a point inside the charge distribution and from 0 to R
for the field at a point outside the charge distribution. If , then the Gaussian surface encloses more volume than
the charge distribution, but the additional volume does not contribute to .

(a) Field at a point outside the charge distribution. In this case, the Gaussian surface, which contains the field point
P, has a radius r that is greater than the radius R of the charge distribution, . Therefore, all charges of the charge
distribution are enclosed within the Gaussian surface. Note that the space between  and  is empty of
charges and therefore does not contribute to the integral over the volume enclosed by the Gaussian surface:

This is used in the general result for  above to obtain the electric field at a point outside the charge distribution as

where  is a unit vector in the direction from the origin to the field point at the Gaussian surface.

(b) Field at a point inside the charge distribution. The Gaussian surface is now buried inside the charge distribution,
with . Therefore, only those charges in the distribution that are within a distance r of the center of the spherical
charge distribution count in :

Now, using the general result above for , we find the electric field at a point that is a distance r from the center and
lies within the charge distribution as

where the direction information is included by using the unit radial vector.
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Check that the electric fields for the sphere reduce to the correct values for a point charge.

Solution

In this case, there is only . So, yes.

Charge Distribution with Cylindrical Symmetry

A charge distribution has cylindrical symmetry if the charge density depends only upon the distance r from the axis of a cylinder
and must not vary along the axis or with direction about the axis. In other words, if your system varies if you rotate it around the
axis, or shift it along the axis, you do not have cylindrical symmetry.

Figure  shows four situations in which charges are distributed in a cylinder. A uniform charge density  in an infinite straight
wire has a cylindrical symmetry, and so does an infinitely long cylinder with constant charge density . An infinitely long cylinder
that has different charge densities along its length, such as a charge density  for  and  for , does not have a
usable cylindrical symmetry for this course. Neither does a cylinder in which charge density varies with the direction, such as a
charge density  for  and  for . A system with concentric cylindrical shells, each with uniform
charge densities, albeit different in different shells, as in FiFigure , does have cylindrical symmetry if they are infinitely long.
The infinite length requirement is due to the charge density changing along the axis of a finite cylinder. In real systems, we don’t
have infinite cylinders; however, if the cylindrical object is considerably longer than the radius from it that we are interested in,
then the approximation of an infinite cylinder becomes useful.

Figure : To determine whether a given charge distribution has cylindrical symmetry, look at the cross-section of an “infinitely
long” cylinder. If the charge density does not depend on the polar angle of the cross-section or along the axis, then you have
cylindrical symmetry. (a) Charge density is constant in the cylinder; (b) upper half of the cylinder has a different charge density
from the lower half; (c) left half of the cylinder has a different charge density from the right half; (d) charges are constant in
different cylindrical rings, but the density does not depend on the polar angle. Cases (a) and (d) have cylindrical symmetry, whereas
(b) and (c) do not.

Consequences of SAymmetry

In all cylindrically symmetrical cases, the electric field  at any point  must also display cylindrical symmetry.

Cylindrical symmetry: , where  is the distance from the axis and  is a unit vector directed perpendicularly away
from the axis (Figure ).
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Figure : The electric field in a cylindrically symmetrical situation depends only on the distance from the axis. The direction of
the electric field is pointed away from the axis for positive charges and toward the axis for negative charges.

Gaussian surface and flux calculation

To make use of the direction and functional dependence of the electric field, we choose a closed Gaussian surface in the shape of a
cylinder with the same axis as the axis of the charge distribution. The flux through this surface of radius s and height L is easy to
compute if we divide our task into two parts: (a) a flux through the flat ends and (b) a flux through the curved surface (Figure 

).

Figure : The Gaussian surface in the case of cylindrical symmetry. The electric field at a patch is either parallel or
perpendicular to the normal to the patch of the Gaussian surface.

The electric field is perpendicular to the cylindrical side and parallel to the planar end caps of the surface. The flux through the
cylindrical part is

whereas the flux through the end caps is zero because  there. Thus, the flux is

Using Gauss’s law

According to Gauss’s law, the flux must equal the amount of charge within the volume enclosed by this surface, divided by the
permittivity of free space. When you do the calculation for a cylinder of length L, you find that  of Gauss’s law is directly
proportional to L. Let us write it as charge per unit length ( ) times length L:

Hence, Gauss’s law for any cylindrically symmetrical charge distribution yields the following magnitude of the electric field a
distance s away from the axis:

The charge per unit length  depends on whether the field point is inside or outside the cylinder of charge distribution, just as we
have seen for the spherical distribution.
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Computing enclosed charge

Let R be the radius of the cylinder within which charges are distributed in a cylindrically symmetrical way. Let the field point P be
at a distance s from the axis. (The side of the Gaussian surface includes the field point P.) When  (that is, when P is outside
the charge distribution), the Gaussian surface includes all the charge in the cylinder of radius R and length L. When  (P is
located inside the charge distribution), then only the charge within a cylinder of radius s and length L is enclosed by the Gaussian
surface:

A very long non-conducting cylindrical shell of radius R has a uniform surface charge density  Find the electric field (a) at a
point outside the shell and (b) at a point inside the shell.

Strategy

Apply the Gauss’s law strategy given earlier, where we treat the cases inside and outside the shell separately.

Solution

a.Electric field at a point outside the shell. For a point outside the cylindrical shell, the Gaussian surface is the surface
of a cylinder of radius  and length L, as shown in Figure . The charge enclosed by the Gaussian cylinder is
equal to the charge on the cylindrical shell of length L. Therefore,  is given by

Figure : A Gaussian surface surrounding a cylindrical shell.

Hence, the electric field at a point P outside the shell at a distance r away from the axis is

where  is a unit vector, perpendicular to the axis and pointing away from it, as shown in the figure. The electric field at
P points in the direction of  given in Figure  if  and in the opposite direction to  if .

b. Electric field at a point inside the shell. For a point inside the cylindrical shell, the Gaussian surface is a cylinder
whose radius r is less than R (Figure ). This means no charges are included inside the Gaussian surface:

r > R

r < R

= (total charge) if r ≥ Rλenc

= (only chargewithin t < R) if r < Rλenc
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Figure : A Gaussian surface within a cylindrical shell.

This gives the following equation for the magnitude of the electric field  at a point whose r is less than R of the shell
of charges.

This gives us

Significance

Notice that the result inside the shell is exactly what we should expect: No enclosed charge means zero electric field.
Outside the shell, the result becomes identical to a wire with uniform charge .

A thin straight wire has a uniform linear charge density . Find the electric field at a distance d from the wire, where d is
much less than the length of the wire.

Solution

; This agrees with the calculation of [link] where we found the electric field by integrating over the charged
wire. Notice how much simpler the calculation of this electric field is with Gauss’s law.

Charge Distribution with Planar Symmetry

A planar symmetry of charge density is obtained when charges are uniformly spread over a large flat surface. In planar symmetry,
all points in a plane parallel to the plane of charge are identical with respect to the charges.

Consequences of symmetry

We take the plane of the charge distribution to be the xy-plane and we find the electric field at a space point P with coordinates (x,
y, z). Since the charge density is the same at all (x, y)-coordinates in the  plane, by symmetry, the electric field at P cannot
depend on the x- or y-coordinates of point P, as shown in Figure . Therefore, the electric field at P can only depend on the
distance from the plane and has a direction either toward the plane or away from the plane. That is, the electric field at P has only a
nonzero z-component.

Uniform charges in xy plane:  where z is the distance from the plane and  is the unit vector normal to the plane. Note
that in this system, , although of course they point in opposite directions.
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Figure : The components of the electric field parallel to a plane of charges cancel out the two charges located symmetrically
from the field point P. Therefore, the field at any point is pointed vertically from the plane of charges. For any point P and charge 

, we can always find a  with this effect.

Gaussian surface and flux calculation

In the present case, a convenient Gaussian surface is a box, since the expected electric field points in one direction only. To keep
the Gaussian box symmetrical about the plane of charges, we take it to straddle the plane of the charges, such that one face
containing the field point P is taken parallel to the plane of the charges. In Figure , sides I and II of the Gaussian surface (the
box) that are parallel to the infinite plane have been shaded. They are the only surfaces that give rise to nonzero flux because the
electric field and the area vectors of the other faces are perpendicular to each other.

Figure : A thin charged sheet and the Gaussian box for finding the electric field at the field point P. The normal to each face
of the box is from inside the box to outside. On two faces of the box, the electric fields are parallel to the area vectors, and on the
other four faces, the electric fields are perpendicular to the area vectors.

Let A be the area of the shaded surface on each side of the plane and 

be the magnitude of the electric field at point P. Since sides I and II are at the same distance from the plane, the electric field has
the same magnitude at points in these planes, although the directions of the electric field at these points in the two planes are
opposite to each other.

Magnitude at I or II: .

If the charge on the plane is positive, then the direction of the electric field and the area vectors are as shown in Figure .
Therefore, we find for the flux of electric field through the box

where the zeros are for the flux through the other sides of the box. Note that if the charge on the plane is negative, the directions of
electric field and area vectors for planes I and II are opposite to each other, and we get a negative sign for the flux. According to
Gauss’s law, the flux must equal . From Figure , we see that the charges inside the volume enclosed by the Gaussian
box reside on an area A of the xy-plane. Hence,

Using the equations for the flux and enclosed charge in Gauss’s law, we can immediately determine the electric field at a point at
height z from a uniformly charged plane in the xy-plane:

3.8.12

q1 q2

3.8.13

3.8.13

E(z) = Ep

3.8.13

Φ = ⋅ dA = A+ A+0 +0 +0 +0 = 2 A∫
S

E ⃗ 
p n̂ Ep Ep Ep (3.8.19)

/qenc ϵ0 3.8.13

= A.qenc σ0

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76538?pdf


3.8.13 https://phys.libretexts.org/@go/page/76538

The direction of the field depends on the sign of the charge on the plane and the side of the plane where the field point P is located.
Note that above the plane, , while below the plane, .

You may be surprised to note that the electric field does not actually depend on the distance from the plane; this is an effect of the
assumption that the plane is infinite. In practical terms, the result given above is still a useful approximation for finite planes near
the center.

This page titled 3.8: Applying Gauss’s Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

6.4: Applying Gauss’s Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-2.
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3.9: Conductors in Electrostatic Equilibrium

By the end of this section, you will be able to:

Describe the electric field within a conductor at equilibrium
Describe the electric field immediately outside the surface of a charged conductor at equilibrium
Explain why if the field is not as described in the first two objectives, the conductor is not at equilibrium

So far, we have generally been working with charges occupying a volume within an insulator. We now study what happens when
free charges are placed on a conductor. Generally, in the presence of a (generally external) electric field, the free charge in a
conductor redistributes and very quickly reaches electrostatic equilibrium. The resulting charge distribution and its electric field
have many interesting properties, which we can investigate with the help of Gauss’s law and the concept of electric potential.

The Electric Field inside a Conductor Vanishes
If an electric field is present inside a conductor, it exerts forces on the free electrons (also called conduction electrons), which are
electrons in the material that are not bound to an atom. These free electrons then accelerate. However, moving charges by definition
means nonstatic conditions, contrary to our assumption. Therefore, when electrostatic equilibrium is reached, the charge is
distributed in such a way that the electric field inside the conductor vanishes.

If you place a piece of a metal near a positive charge, the free electrons in the metal are attracted to the external positive charge and
migrate freely toward that region. The region the electrons move to then has an excess of electrons over the protons in the atoms
and the region from where the electrons have migrated has more protons than electrons. Consequently, the metal develops a
negative region near the charge and a positive region at the far end (Figure ). As we saw in the preceding chapter, this
separation of equal magnitude and opposite type of electric charge is called polarization. If you remove the external charge, the
electrons migrate back and neutralize the positive region.

Figure : Polarization of a metallic sphere by an external point charge . The near side of the metal has an opposite surface
charge compared to the far side of the metal. The sphere is said to be polarized. When you remove the external charge, the
polarization of the metal also disappears.

The polarization of the metal happens only in the presence of external charges. You can think of this in terms of electric fields. The
external charge creates an external electric field. When the metal is placed in the region of this electric field, the electrons and
protons of the metal experience electric forces due to this external electric field, but only the conduction electrons are free to move
in the metal over macroscopic distances. The movement of the conduction electrons leads to the polarization, which creates an
induced electric field in addition to the external electric field (Figure ). The net electric field is a vector sum of the fields of 

 and the surface charge densities  and . This means that the net field inside the conductor is different from the field
outside the conductor.
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Figure : In the presence of an external charge q, the charges in a metal redistribute. The electric field at any point has three
contributions, from  and the induced charges  and . Note that the surface charge distribution will not be uniform in
this case.

The redistribution of charges is such that the sum of the three contributions at any point P inside the conductor is

Now, thanks to Gauss’s law, we know that there is no net charge enclosed by a Gaussian surface that is solely within the volume of
the conductor at equilibrium. That is,  and hence

Charge on a Conductor
An interesting property of a conductor in static equilibrium is that extra charges on the conductor end up on the outer surface of the
conductor, regardless of where they originate. Figure  illustrates a system in which we bring an external positive charge inside
the cavity of a metal and then touch it to the inside surface. Initially, the inside surface of the cavity is negatively charged and the
outside surface of the conductor is positively charged. When we touch the inside surface of the cavity, the induced charge is
neutralized, leaving the outside surface and the whole metal charged with a net positive charge.

Figure : Electric charges on a conductor migrate to the outside surface no matter where you put them initially.

To see why this happens, note that the Gaussian surface in iFigure  (the dashed line) follows the contour of the actual surface
of the conductor and is located an infinitesimal distance within it. Since  everywhere inside a conductor,

Thus, from Gauss’ law, there is no net charge inside the Gaussian surface. But the Gaussian surface lies just below the actual
surface of the conductor; consequently, there is no net charge inside the conductor. Any excess charge must lie on its surface.
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Figure : The dashed line represents a Gaussian surface that is just beneath the actual surface of the conductor.

This particular property of conductors is the basis for an extremely accurate method developed by Plimpton and Lawton in 1936 to
verify Gauss’s law and, correspondingly, Coulomb’s law. A sketch of their apparatus is shown in Figure . Two spherical shells
are connected to one another through an electrometer E, a device that can detect a very slight amount of charge flowing from one
shell to the other. When switch S is thrown to the left, charge is placed on the outer shell by the battery B. Will charge flow through
the electrometer to the inner shell?

No. Doing so would mean a violation of Gauss’s law. Plimpton and Lawton did not detect any flow and, knowing the sensitivity of
their electrometer, concluded that if the radial dependence in Coulomb’s law were ,  would be less than  . . More
recent measurements place  at less than   , a number so small that the validity of Coulomb’s law seems indisputable.

Figure : A representation of the apparatus used by Plimpton and Lawton. Any transfer of charge between the spheres is
detected by the electrometer E.

The Electric Field at the Surface of a Conductor

If the electric field had a component parallel to the surface of a conductor, free charges on the surface would move, a situation
contrary to the assumption of electrostatic equilibrium. Therefore, the electric field is always perpendicular to the surface of a
conductor.

At any point just above the surface of a conductor, the surface charge density  and the magnitude of the electric field E are related
by
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To see this, consider an infinitesimally small Gaussian cylinder that surrounds a point on the surface of the conductor, as in Figure 
. The cylinder has one end face inside and one end face outside the surface. The height and cross-sectional area of the cylinder

are  and , respectively. The cylinder’s sides are perpendicular to the surface of the conductor, and its end faces are parallel to
the surface. Because the cylinder is infinitesimally small, the charge density  is essentially constant over the surface enclosed, so
the total charge inside the Gaussian cylinder is . Now E is perpendicular to the surface of the conductor outside the conductor
and vanishes within it, because otherwise, the charges would accelerate, and we would not be in equilibrium. Electric flux therefore
crosses only the outer end face of the Gaussian surface and may be written as  since the cylinder is assumed to be small
enough that E is approximately constant over that area. From Gauss’ law,

Thus

Figure : An infinitesimally small cylindrical Gaussian surface surrounds point P, which is on the surface of the conductor. The
field  is perpendicular to the surface of the conductor outside the conductor and vanishes within it.

The infinite conducting plate in Figure  has a uniform surface charge density . Use Gauss’ law to find the electric field
outside the plate. Compare this result with that previously calculated directly.

3.9.6

δ ΔA

σ

σΔA

EΔA

EΔA = .
σΔA

ϵ0
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 Electric Field of a Conducting Plate
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Figure : A side view of an infinite conducting plate and Gaussian cylinder with cross-sectional area A.

Strategy

For this case, we use a cylindrical Gaussian surface, a side view of which is shown.

Solution

The flux calculation is similar to that for an infinite sheet of charge from the previous chapter with one major exception:
The left face of the Gaussian surface is inside the conductor where , so the total flux through the Gaussian
surface is EA rather than 2EA. Then from Gauss’ law,

and the electric field outside the plate is

Significance

This result is in agreement with the result from the previous section, and consistent with the rule stated above.

Two large conducting plates carry equal and opposite charges, with a surface charge density  of magnitude 
, as shown in Figure . The separation between the plates is . What is the electric field

between the plates?

3.9.7

=E ⃗  0⃗ 

EA =
σA

ϵ0

E = .
σ

ϵ0

 Electric Field between Oppositely Charged Parallel Plates
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Figure : The electric field between oppositely charged parallel plates. A test charge is released at the positive plate.

Strategy

Solution

Significance

This formula is applicable to more than just a plate. Furthermore, two-plate systems will be important later.

The isolated conducting sphere (Figure ) has a radius R and an excess charge q. What is the electric field both inside and
outside the sphere?

Figure : An isolated conducting sphere.

Strategy

3.9.8

E = = = 7.69 × N/C
σ

ϵ0

6.81 × C/10−7 m2
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104 (3.9.6)

 A Conducting Sphere
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Solution

Since r is constant and  on the sphere,

For , S is within the conductor, so , and Gauss’s law gives

as expected inside a conductor. If , S encloses the conductor so . From Gauss’s law,

The electric field of the sphere may therefore be written as

Significance Notice that in the region , the electric field due to a charge q placed on an isolated conducting sphere
of radius R is identical to the electric field of a point charge q located at the center of the sphere. The difference
between the charged metal and a point charge occurs only at the space points inside the conductor. For a point charge
placed at the center of the sphere, the electric field is not zero at points of space occupied by the sphere, but a conductor
with the same amount of charge has a zero electric field at those points (Figure ). However, there is no distinction
at the outside points in space where , and we can replace the isolated charged spherical conductor by a point
charge at its center with impunity.

Figure : Electric field of a positively charged metal sphere. The electric field inside is zero, and the electric field
outside is same as the electric field of a point charge at the center, although the charge on the metal sphere is at the
surface.

How will the system above change if there are charged objects external to the sphere?

Solution

If there are other charged objects around, then the charges on the surface of the sphere will not necessarily be spherically
symmetrical; there will be more in certain direction than in other directions.

For a conductor with a cavity, if we put a charge  inside the cavity, then the charge separation takes place in the conductor, with 
 amount of charge on the inside surface and a  amount of charge at the outside surface (Figure ). For the same

=n̂ r̂

⋅ dA = E(r) dA = E(r)4π .∮
S

E ⃗  n̂ ∮
S

r2 (3.9.7)

r < R = 0qenc

E(r) = 0, (3.9.8)

r > R = qqenc

E(r)4π = .r2 q

ϵ0
(3.9.9)
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conductor with a charge  outside it, there is no excess charge on the inside surface; both the positive and negative induced
charges reside on the outside surface (Figure ).

Figure : (a) A charge inside a cavity in a metal. The distribution of charges at the outer surface does not depend on how the
charges are distributed at the inner surface, since the E-field inside the body of the metal is zero. That magnitude of the charge on
the outer surface does depend on the magnitude of the charge inside, however. (b) A charge outside a conductor containing an inner
cavity. The cavity remains free of charge. The polarization of charges on the conductor happens at the surface.

If a conductor has two cavities, one of them having a charge  inside it and the other a charge the polarization of the
conductor results in on the inside surface of the cavity a,  on the inside surface of the cavity b, and  on the outside
surface (Figure ). The charges on the surfaces may not be uniformly spread out; their spread depends upon the geometry. The
only rule obeyed is that when the equilibrium has been reached, the charge distribution in a conductor is such that the electric field
by the charge distribution in the conductor cancels the electric field of the external charges at all space points inside the body of the
conductor.

Figure : The charges induced by two equal and opposite charges in two separate cavities of a conductor. If the net charge on
the cavity is nonzero, the external surface becomes charged to the amount of the net charge.

This page titled 3.9: Conductors in Electrostatic Equilibrium is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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3.10: Summary

Key Terms

charging by induction
process by which an electrically charged object brought near a

neutral object creates a charge separation in that object

conduction electron electron that is free to move away from its atomic orbit

conductor
material that allows electrons to move separately from their atomic

orbits; object with properties that allow charges to move about
freely within it

continuous charge distribution
total source charge composed of so large a number of elementary
charges that it must be treated as continuous, rather than discrete

coulomb SI unit of electric charge

Coulomb force another term for the electrostatic force

Coulomb’s law
mathematical equation calculating the electrostatic force vector

between two charged particles

dipole two equal and opposite charges that are fixed close to each other

dipole moment
property of a dipole; it characterizes the combination of distance
between the opposite charges, and the magnitude of the charges

electric charge
physical property of an object that causes it to be attracted toward

or repelled from another charged object; each charged object
generates and is influenced by a force called an electric force

electric field
physical phenomenon created by a charge; it “transmits” a force

between a two charges

electric force noncontact force observed between electrically charged objects

electron
particle surrounding the nucleus of an atom and carrying the

smallest unit of negative charge

electrostatic attraction
phenomenon of two objects with opposite charges attracting each

other

electrostatic force
amount and direction of attraction or repulsion between two

charged bodies; the assumption is that the source charges have no
acceleration

electrostatic repulsion phenomenon of two objects with like charges repelling each other

electrostatics study of charged objects which are not in motion

field line
smooth, usually curved line that indicates the direction of the

electric field

field line density
number of field lines per square meter passing through an

imaginary area; its purpose is to indicate the field strength at
different points in space

induced dipole
typically an atom, or a spherically symmetric molecule; a dipole

created due to opposite forces displacing the positive and negative
charges

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76521?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.10%3A_Summary


3.10.2 https://phys.libretexts.org/@go/page/76521

infinite straight wire
straight wire whose length is much, much greater than either of its
other dimensions, and also much, much greater than the distance at

which the field is to be calculated

insulator material that holds electrons securely within their atomic orbits

ion atom or molecule with more or fewer electrons than protons

law of conservation of charge net electric charge of a closed system is constant

linear charge density
amount of charge in an element of a charge distribution that is

essentially one-dimensional (the width and height are much, much
smaller than its length); its units are C/m

neutron
neutral particle in the nucleus of an atom, with (nearly) the same

mass as a proton

permanent dipole
typically a molecule; a dipole created by the arrangement of the

charged particles from which the dipole is created

permittivity of vacuum
also called the permittivity of free space, and constant describing

the strength of the electric force in a vacuum

polarization
slight shifting of positive and negative charges to opposite sides of

an object

principle of superposition
useful fact that we can simply add up all of the forces due to

charges acting on an object

proton
particle in the nucleus of an atom and carrying a positive charge

equal in magnitude to the amount of negative charge carried by an
electron

static electricity
buildup of electric charge on the surface of an object; the

arrangement of the charge remains constant (“static”)

superposition
concept that states that the net electric field of multiple source

charges is the vector sum of the field of each source charge
calculated individually

surface charge density
amount of charge in an element of a two-dimensional charge

distribution (the thickness is small); its units are 

volume charge density
amount of charge in an element of a three-dimensional charge

distribution; its units are 

area vector
vector with magnitude equal to the area of a surface and direction

perpendicular to the surface

cylindrical symmetry system only varies with distance from the axis, not direction

electric flux
dot product of the electric field and the area through which it is

passing

flux quantity of something passing through a given area

free electrons
also called conduction electrons, these are the electrons in a

conductor that are not bound to any particular atom, and hence are
free to move around

Gaussian surface any enclosed (usually imaginary) surface

planar symmetry system only varies with distance from a plane

C/m2

C/m3
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spherical symmetry
system only varies with the distance from the origin, not in

direction

Key Equations

Coulomb’s law

Superposition of electric forces

Electric force due to an electric field

Electric field at point P

Field of an infinite wire

Field of an infinite plane

Dipole moment

Torque on dipole in external E-field

Definition of electric flux, for uniform electric field

Electric flux through an open surface

Electric flux through a closed surface

Gauss’s law

Gauss’s Law for systems with symmetry

The magnitude of the electric field just outside the surface of a
conductor

Summary

5.2 Electric Charge
There are only two types of charge, which we call positive and negative. Like charges repel, unlike charges attract, and the force
between charges decreases with the square of the distance.
The vast majority of positive charge in nature is carried by protons, whereas the vast majority of negative charge is carried by
electrons. The electric charge of one electron is equal in magnitude and opposite in sign to the charge of one proton.
An ion is an atom or molecule that has nonzero total charge due to having unequal numbers of electrons and protons.
The SI unit for charge is the coulomb (C), with protons and electrons having charges of opposite sign but equal magnitude; the
magnitude of this basic charge is 
Both positive and negative charges exist in neutral objects and can be separated by bringing the two objects into physical
contact; rubbing the objects together can remove electrons from the bonds in one object and place them on the other object,
increasing the charge separation.
For macroscopic objects, negatively charged means an excess of electrons and positively charged means a depletion of
electrons.
The law of conservation of charge states that the net charge of a closed system is constant.
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5.3 Conductors, Insulators, and Charging by Induction
A conductor is a substance that allows charge to flow freely through its atomic structure.
An insulator holds charge fixed in place.
Polarization is the separation of positive and negative charges in a neutral object. Polarized objects have their positive and
negative charges concentrated in different areas, giving them a charge distribution.

5.4 Coulomb's Law
Coulomb’s law gives the magnitude of the force between point charges. It is

where  and  are two point charges separated by a distance r. This Coulomb force is extremely basic, since most
charges are due to point-like particles. It is responsible for all electrostatic effects and underlies most macroscopic
forces.

5.5 Electric Field
The electric field is an alteration of space caused by the presence of an electric charge. The electric field mediates the electric
force between a source charge and a test charge.
The electric field, like the electric force, obeys the superposition principle
The field is a vector; by definition, it points away from positive charges and toward negative charges.

5.6 Calculating Electric Fields of Charge Distributions
A very large number of charges can be treated as a continuous charge distribution, where the calculation of the field requires
integration. Common cases are:

one-dimensional (like a wire); uses a line charge density 
two-dimensional (metal plate); uses surface charge density 
three-dimensional (metal sphere); uses volume charge density 

The “source charge” is a differential amount of charge dq. Calculating dq depends on the type of source charge distribution:

.

Symmetry of the charge distribution is usually key.
Important special cases are the field of an “infinite” wire and the field of an “infinite” plane.

5.7 Electric Field Lines
Electric field diagrams assist in visualizing the field of a source charge.
The magnitude of the field is proportional to the field line density.
Field vectors are everywhere tangent to field lines.

5.8 Electric Dipoles
If a permanent dipole is placed in an external electric field, it results in a torque that aligns it with the external field.
If a nonpolar atom (or molecule) is placed in an external field, it gains an induced dipole that is aligned with the external field.
The net field is the vector sum of the external field plus the field of the dipole (physical or induced).
The strength of the polarization is described by the dipole moment of the dipole, .

6.2 Electric Flux
The electric flux through a surface is proportional to the number of field lines crossing that surface. Note that this means the
magnitude is proportional to the portion of the field perpendicular to the area.
The electric flux is obtained by evaluating the surface integral

,

where the notation used here is for a closed surface S.
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6.3 Explaining Gauss’s Law
Gauss’s law relates the electric flux through a closed surface to the net charge within that surface,

,

where qencqenc is the total charge inside the Gaussian surface S.
All surfaces that include the same amount of charge have the same number of field lines crossing it, regardless of the shape or
size of the surface, as long as the surfaces enclose the same amount of charge.

6.4 Applying Gauss’s Law
For a charge distribution with certain spatial symmetries (spherical, cylindrical, and planar), we can find a Gaussian surface
over which , where E is constant over the surface. The electric field is then determined with Gauss’s law.

For spherical symmetry, the Gaussian surface is also a sphere, and Gauss’s law simplifies to .

For cylindrical symmetry, we use a cylindrical Gaussian surface, and find that Gauss’s law simplifies to .

For planar symmetry, a convenient Gaussian surface is a box penetrating the plane, with two faces parallel to the plane and the
remainder perpendicular, resulting in Gauss’s law being .

6.5 Conductors in Electrostatic Equilibrium
The electric field inside a conductor vanishes.
Any excess charge placed on a conductor resides entirely on the surface of the conductor.
The electric field is perpendicular to the surface of a conductor everywhere on that surface.

The magnitude of the electric field just above the surface of a conductor is given by .
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3.11: Practice

Conceptual Questions

Electric Charge

1. There are very large numbers of charged particles in most objects. Why, then, don’t most objects exhibit static electricity?

2. Why do most objects tend to contain nearly equal numbers of positive and negative charges?

3. A positively charged rod attracts a small piece of cork.

(a) Can we conclude that the cork is negatively charged?

(b) The rod repels another small piece of cork. Can we conclude that this piece is positively charged?

4. Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel
one another.

5. How would you determine whether the charge on a particular rod is positive or negative?

Conductors, Insulators, and Charging by Induction

6. An eccentric inventor attempts to levitate a cork ball by wrapping it with foil and placing a large negative charge on the
ball and then putting a large positive charge on the ceiling of his workshop. Instead, while attempting to place a large
negative charge on the ball, the foil flies off. Explain.

7. When a glass rod is rubbed with silk, it becomes positive and the silk becomes negative—yet both attract dust. Does the
dust have a third type of charge that is attracted to both positive and negative? Explain.

8. Why does a car always attract dust right after it is polished? (Note that car wax and car tires are insulators.)

9. Does the uncharged conductor shown below experience a net electric force?

10. While walking on a rug, a person frequently becomes charged because of the rubbing between his shoes and the rug. This
charge then causes a spark and a slight shock when the person gets close to a metal object. Why are these shocks so much
more common on a dry day?

11. Compare charging by conduction to charging by induction.

12. Small pieces of tissue are attracted to a charged comb. Soon after sticking to the comb, the pieces of tissue are repelled
from it. Explain.

13. Trucks that carry gasoline often have chains dangling from their undercarriages and brushing the ground. Why?

14. Why do electrostatic experiments work so poorly in humid weather?

15. Why do some clothes cling together after being removed from the clothes dryer? Does this happen if they’re still damp?
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16. Can induction be used to produce charge on an insulator?

17. Suppose someone tells you that rubbing quartz with cotton cloth produces a third kind of charge on the quartz. Describe
what you might do to test this claim.

18. A handheld copper rod does not acquire a charge when you rub it with a cloth. Explain why.

19. Suppose you place a charge q near a large metal plate.

(a) If q is attracted to the plate, is the plate necessarily charged?

(b) If q is repelled by the plate, is the plate necessarily charged?

Coulomb's Law

20. Would defining the charge on an electron to be positive have any effect on Coulomb’s law?

21. An atomic nucleus contains positively charged protons and uncharged neutrons. Since nuclei do stay together, what must
we conclude about the forces between these nuclear particles?

22. Is the force between two fixed charges influenced by the presence of other charges?

Electric Field

23. When measuring an electric field, could we use a negative rather than a positive test charge?

24. During fair weather, the electric field due to the net charge on Earth points downward. Is Earth charged positively or
negatively?

25. If the electric field at a point on the line between two charges is zero, what do you know about the charges?

26. Two charges lie along the x-axis. Is it true that the net electric field always vanishes at some point (other than infinity)
along the x-axis?

Calculating Electric Fields of Charge Distributions

27. Give a plausible argument as to why the electric field outside an infinite charged sheet is constant.

28. Compare the electric fields of an infinite sheet of charge, an infinite, charged conducting plate, and infinite, oppositely
charged parallel plates.

29. Describe the electric fields of an infinite charged plate and of two infinite, charged parallel plates in terms of the electric
field of an infinite sheet of charge.

30. A negative charge is placed at the center of a ring of uniform positive charge. What is the motion (if any) of the charge?
What if the charge were placed at a point on the axis of the ring other than the center?

Electric Field Lines

31. If a point charge is released from rest in a uniform electric field, will it follow a field line? Will it do so if the electric
field is not uniform?

32. Under what conditions, if any, will the trajectory of a charged particle not follow a field line?

33. How would you experimentally distinguish an electric field from a gravitational field?

34. A representation of an electric field shows 10 field lines perpendicular to a square plate. How many field lines should
pass perpendicularly through the plate to depict a field with twice the magnitude?

35. What is the ratio of the number of electric field lines leaving a charge 10q and a charge q?

Electric Dipoles

36. What are the stable orientation(s) for a dipole in an external electric field? What happens if the dipole is slightly
perturbed from these orientations?

Electric Flux

1. Discuss how would orient a planar surface of area A in a uniform electric field of magnitude  to obtainE0

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76520?pdf


3.11.3 https://phys.libretexts.org/@go/page/76520

(a) the maximum flux and

(b) the minimum flux through the area.

2. What are the maximum and minimum values of the flux in the preceding question?

3. The net electric flux crossing a closed surface is always zero. True or false?

4. The net electric flux crossing an open surface is never zero. True or false?

Explaining Gauss’s Law

5. Two concentric spherical surfaces enclose a point charge q. The radius of the outer sphere is twice that of the inner one.
Compare the electric fluxes crossing the two surfaces.

6. Compare the electric flux through the surface of a cube of side length a that has a charge q at its center to the flux through
a spherical surface of radius a with a charge q at its center.

7. (a) If the electric flux through a closed surface is zero, is the electric field necessarily zero at all points on the surface?

(b) What is the net charge inside the surface?

8. Discuss how Gauss’s law would be affected if the electric field of a point charge did not vary as .

9. Discuss the similarities and differences between the gravitational field of a point mass m and the electric field of a point
charge q.

10. Discuss whether Gauss’s law can be applied to other forces, and if so, which ones.

11. Is the term  in Gauss’s law the electric field produced by just the charge inside the Gaussian surface?

12. Reformulate Gauss’s law by choosing the unit normal of the Gaussian surface to be the one directed inward.

Applying Gauss’s Law

13. Would Gauss’s law be helpful for determining the electric field of two equal but opposite charges a fixed distance apart?

14. Discuss the role that symmetry plays in the application of Gauss’s law. Give examples of continuous charge distributions
in which Gauss’s law is useful and not useful in determining the electric field.

15. Discuss the restrictions on the Gaussian surface used to discuss planar symmetry. For example, is its length important?
Does the cross-section have to be square? Must the end faces be on opposite sides of the sheet?

Conductors in Electrostatic Equilibrium

16. Is the electric field inside a metal always zero?

17. Under electrostatic conditions, the excess charge on a conductor resides on its surface. Does this mean that all the
conduction electrons in a conductor are on the surface?

18. A charge q is placed in the cavity of a conductor as shown below. Will a charge outside the conductor experience an
electric field due to the presence of q?

1/r2

E ⃗ 
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19. The conductor in the preceding figure has an excess charge of . If a  point charge is placed in the cavity,
what is the net charge on the surface of the cavity and on the outer surface of the conductor?

Problems

Electric Charge

37. Common static electricity involves charges ranging from nanocoulombs to microcoulombs.

(a) How many electrons are needed to form a charge of −2.00 nC?

(b) How many electrons must be removed from a neutral object to leave a net charge of 0.500μC?

38. If  electrons move through a pocket calculator during a full day’s operation, how many coulombs of charge
moved through it?

39. To start a car engine, the car battery moves  electrons through the starter motor. How many coulombs of
charge were moved?

40. A certain lightning bolt moves 40.0 C of charge. How many fundamental units of charge is this?

41. A 2.5-g copper penny is given a charge of .

(a) How many excess electrons are on the penny?

(b) By what percent do the excess electrons change the mass of the penny?

42. A 2.5-g copper penny is given a charge of .

(a) How many electrons are removed from the penny?

(b) If no more than one electron is removed from an atom, what percent of the atoms are ionized by this charging
process?

Conductors, Insulators, and Charging by Induction

43. Suppose a speck of dust in an electrostatic precipitator has  protons in it and has a net charge of −5.00 nC
(a very large charge for a small speck). How many electrons does it have?

44. An amoeba has  protons and a net charge of 0.300 pC.

(a) How many fewer electrons are there than protons?

(b) If you paired them up, what fraction of the protons would have no electrons?

45. A 50.0-g ball of copper has a net charge of 2.00μC. What fraction of the copper’s electrons has been removed? (Each
copper atom has 29 protons, and copper has an atomic mass of 63.5.)

46. What net charge would you place on a 100-g piece of sulfur if you put an extra electron on 1 in  of its atoms? (Sulfur
has an atomic mass of 32.1 u.)

– 5.0µC 2.0 − µC

1.80 ×1020

3.75 ×1021

−2.0 × C10−9

4.0 × C10−9

1.0000 ×1012

1.00 ×1016

1012
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47. How many coulombs of positive charge are there in 4.00 kg of plutonium, given its atomic mass is 244 and that each
plutonium atom has 94 protons?

Coulomb's Law

48. Two point particles with charges +3μC and +5μC are held in place by 3-N forces on each charge in appropriate
directions. (a) Draw a free-body diagram for each particle. (b) Find the distance between the charges.

49. Two charges +3μC and +12μC are fixed 1 m apart, with the second one to the right. Find the magnitude and direction of
the net force on a −2-nC charge when placed at the following locations:

(a) halfway between the two

(b) half a meter to the left of the +3μC charge

(c) half a meter above the +12μC charge in a direction perpendicular to the line joining the two fixed charges

50. In a salt crystal, the distance between adjacent sodium and chloride ions is . What is the force of
attraction between the two singly charged ions?

51. Protons in an atomic nucleus are typically  apart. What is the electric force of repulsion between nuclear protons?

52. Suppose Earth and the Moon each carried a net negative charge −Q. Approximate both bodies as point masses and point
charges.

(a) What value of Q is required to balance the gravitational attraction between Earth and the Moon?

(b) Does the distance between Earth and the Moon affect your answer? Explain.

(c) How many electrons would be needed to produce this charge?

53. Point charges  and  are placed 1.0 m apart. What is the force on a third charge 
placed midway between  and ?

54. Where must  of the preceding problem be placed so that the net force on it is zero?

55. Two small balls, each of mass 5.0 g, are attached to silk threads 50 cm long, which are in turn tied to the same point on
the ceiling, as shown below. When the balls are given the same charge Q, the threads hang at 5.0° to the vertical, as shown
below. What is the magnitude of Q? What are the signs of the two charges?

2.82 × m10−10

m10−15

= 50μCq1 = −25μCq2 = 20μCq3

q1 q2

q3
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56. Point charges  and  are located at  and 

. What is the force of  on ?

57. The net excess charge on two small spheres (small enough to be treated as point charges) is Q. Show that the force of
repulsion between the spheres is greatest when each sphere has an excess charge Q/2. Assume that the distance between the
spheres is so large compared with their radii that the spheres can be treated as point charges.

58. Two small, identical conducting spheres repel each other with a force of 0.050 N when they are 0.25 m apart. After a
conducting wire is connected between the spheres and then removed, they repel each other with a force of 0.060 N. What is
the original charge on each sphere?

59. A charge q=2.0μC is placed at the point P shown below. What is the force on q?

60. What is the net electric force on the charge located at the lower right-hand corner of the triangle shown here?

61. Two fixed particles, each of charge , are 24 cm apart. What force do they exert on a third particle of charge 
 that is 13 cm from each of them?

62. The charges , and  are placed at the corners of the triangle
shown below. What is the force on ?

63. What is the force on the charge q at the lower-right-hand corner of the square shown here?

= 2.0μCQ1 = 4.0μCQ2 = (4.0 −2.0 +5.0 )mr1
→

î ĵ k̂

= (8.0 +5.0 −9.0 )mr2
→

î ĵ k̂ Q2 Q1

5.0 × C10−6

−2.5 × C10−6

= 2.0 × C, = −4.0 × Cq1 10−7 q2 10−7 = −1.0 × Cq3 10−7

q1
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64. Point charges  and  are fixed at  and  What is the
force of  on ?

Electric Field

65. A particle of charge  experiences an upward force of magnitude  when it is placed in a
particular point in an electric field.

(a) What is the electric field at that point?

(b) If a charge  is placed there, what is the force on it?

66. On a typical clear day, the atmospheric electric field points downward and has a magnitude of approximately 100 N/C.
Compare the gravitational and electric forces on a small dust particle of mass  that carries a single electron
charge. What is the acceleration (both magnitude and direction) of the dust particle?

67. Consider an electron that is 10−10m10−10m from an alpha particle (q=3.2×10−19C).(q=3.2×10−19C).

(a) What is the electric field due to the alpha particle at the location of the electron?

(b) What is the electric field due to the electron at the location of the alpha particle?

(c) What is the electric force on the alpha particle? On the electron?

68. Each the balls shown below carries a charge q and has a mass m. The length of each thread is l, and at equilibrium, the
balls are separated by an angle . How does  vary with q and l? Show that  satisfies \(\displaystyle
sin(θ)^2tan(θ)=\frac{q^2}{16πε0gl^2m\).

69. What is the electric field at a point where the force on a  charge is ?

70. A proton is suspended in the air by an electric field at the surface of Earth. What is the strength of this electric field?

71. The electric field in a particular thundercloud is . What is the acceleration of an electron in this field?

72. A small piece of cork whose mass is 2.0 g is given a charge of . What electric field is needed to place the
cork in equilibrium under the combined electric and gravitational forces?

73. If the electric field is 100N/C at a distance of 50 cm from a point charge q, what is the value of q?

74. What is the electric field of a proton at the first Bohr orbit for hydrogen ? What is the force on the
electron in that orbit?

75. (a) What is the electric field of an oxygen nucleus at a point that is  from the nucleus?

(b) What is the force this electric field exerts on a second oxygen nucleus placed at that point?

76. Two point charges,  and , are held 25.0 cm apart.

(a) What is the electric field at a point 5.0 cm from the negative charge and along the line between the two charges?

(b)What is the force on an electron placed at that point?

= 10μCq1 = −30μCq2 = (3.0 −4.0 )mr1 î ĵ = (9.0 +6.0 )m.r2 î ĵ

q2 q1

2.0 × C10−8 4.0 × N10−6

q = −1.0 × C10−8

2.0 × g10−15

2θ θ θ

−2.0 × −C10−6 (4.0 −6.0 ) × Nî ĵ 10−6

2.0 × N/C105

5.0 × C10−7

(r = 5.29 × m)10−11

m10−10

= 2.0 × Cq1 10−7 = −6.0 × Cq2 10−8
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77. Point charges  and  are placed 1.0 m apart.

(a) What is the electric field at a point midway between them?

(b) What is the force on a charge  situated there?

78. Can you arrange the two point charges  and  along the x-axis so that  at the
origin?

79. Point charges  are fixed on the x-axis at  and . What charge q must be
placed at the origin so that the electric field vanishes at x=0,y=3.0m?

Calculating Electric Fields of Charge Distributions

80. A thin conducting plate 1.0 m on the side is given a charge of . An electron is placed 1.0 cm above the
center of the plate. What is the acceleration of the electron?

81. Calculate the magnitude and direction of the electric field 2.0 m from a long wire that is charged uniformly at 
.

82. Two thin conducting plates, each 25.0 cm on a side, are situated parallel to one another and 5.0 mm apart. If 
electrons are moved from one plate to the other, what is the electric field between the plates?

83. The charge per unit length on the thin rod shown below is . What is the electric field at the point P? (Hint: Solve this
problem by first considering the electric field  at P due to a small segment dx of the rod, which contains charge 

. Then find the net field by integrating  over the length of the rod.)

84. The charge per unit length on the thin semicircular wire shown below is λ. What is the electric field at the point P?

85. Two thin parallel conducting plates are placed 2.0 cm apart. Each plate is 2.0 cm on a side; one plate carries a net charge
of 8.0μC, and the other plate carries a net charge of −8.0μC. What is the charge density on the inside surface of each plate?
What is the electric field between the plates?

86. A thin conducting plate 2.0 m on a side is given a total charge of −10.0μC.

(a) What is the electric field 1.0cm above the plate?

(b) What is the force on an electron at this point?

(c) Repeat these calculations for a point 2.0 cm above the plate.

(d) When the electron moves from 1.0 to 2,0 cm above the plate, how much work is done on it by the electric field?

87. A total charge q is distributed uniformly along a thin, straight rod of length L (see below). What is the electric field at 
? At ?

= 50μCq1 = −25μCq2

= 20μCq3

= −2.0 × Cq1 10−6 = 4.0 × Cq2 10−6 E = 0

= = 4.0 × Cq1 q2 10−6 x = −3.0m x = 3.0m

−2.0 × C10−6

λ = 4.0 × C/m10−6

1011

λ

dE ⃗ 

dq = λdx dE ⃗ 

P1 P2
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88. Charge is distributed along the entire x-axis with uniform density λ. How much work does the electric field of this charge
distribution do on an electron that moves along the y-axis from  to ?

89. Charge is distributed along the entire x-axis with uniform density  and along the entire y-axis with uniform density .
Calculate the resulting electric field at

(a)  and

(b) .

90. A rod bent into the arc of a circle subtends an angle  at the center P of the circle (see below). If the rod is charged
uniformly with a total charge Q, what is the electric field at P?.

91. A proton moves in the electric field . (a) What are the force on and the acceleration of the proton? (b) Do
the same calculation for an electron moving in this field.

92. An electron and a proton, each starting from rest, are accelerated by the same uniform electric field of 200 N/C.
Determine the distance and time for each particle to acquire a kinetic energy of .

93. A spherical water droplet of radius 25μm carries an excess 250 electrons. What vertical electric field is needed to balance
the gravitational force on the droplet at the surface of the earth?

94. A proton enters the uniform electric field produced by the two charged plates shown below. The magnitude of the electric
field is , and the speed of the proton when it enters is . What distance d has the proton been
deflected downward when it leaves the plates?

95. Shown below is a small sphere of mass 0.25 g that carries a charge of . The sphere is attached to one end of
a very thin silk string 5.0 cm long. The other end of the string is attached to a large vertical conducting plate that has a charge
density of . What is the angle that the string makes with the vertical?

y = a y = b

λx λy

= a +br ⃗  î ĵ

= cr ⃗  k̂

2θ

= 200 N/CE ⃗  î

3.2 × J10−16

4.0 × N/C105 1.5 × m/s107

9.0 × C10−10

30 × C/10−6 m2
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96. Two infinite rods, each carrying a uniform charge density , are parallel to one another and perpendicular to the plane of
the page. (See below.) What is the electrical field at ? At ?

97. Positive charge is distributed with a uniform density  along the positive x-axis from  to , along the positive y-axis
from  to , and along a 90° arc of a circle of radius r, as shown below. What is the electric field at O?

98. From a distance of 10 cm, a proton is projected with a speed of  directly at a large, positively charged
plate whose charge density is .. (See below.)

(a) Does the proton reach the plate?

(b) If not, how far from the plate does it turn around?

λ

P1 P2

λ r ∞

r ∞

v= 4.0 × m/s106

σ = 2.0 × C/10−5 m2
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99. A particle of mass m and charge  moves along a straight line away from a fixed particle of charge Q. When the
distance between the two particles is  is moving with a speed .

(a) Use the work-energy theorem to calculate the maximum separation of the charges.

(b) What do you have to assume about  to make this calculation?

(c) What is the minimum value of  such that  escapes from Q?

Electric Field Lines

100. Which of the following electric field lines are incorrect for point charges? Explain why.

−q

, −qr0 v0

v0

v0 −q
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101. In this exercise, you will practice drawing electric field lines. Make sure you represent both the magnitude and direction
of the electric field adequately. Note that the number of lines into or out of charges is proportional to the charges.

(a) Draw the electric field lines map for two charges +20μC and −20μC situated 5 cm from each other.

(b) Draw the electric field lines map for two charges +20μC and +20μC situated 5 cm from each other.

(c) Draw the electric field lines map for two charges +20μC and −30μC situated 5 cm from each other.

102. Draw the electric field for a system of three particles of charges +1μC, +2μC and −3μC fixed at the corners of an
equilateral triangle of side 2 cm.

103. Two charges of equal magnitude but opposite sign make up an electric dipole. A quadrupole consists of two electric
dipoles that are placed anti-parallel at two edges of a square as shown. Draw the electric field of the charge distribution.

104. Suppose the electric field of an isolated point charge decreased with distance as  rather than as . Show that it
is then impossible to draw continuous field lines so that their number per unit area is proportional to E.

1/r2+δ 1/r2
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Electric Dipoles

105. Consider the equal and opposite charges shown below. (a) Show that at all points on the x-axis for which 
. (b) Show that at all points on the y-axis for which .

106. (a) What is the dipole moment of the configuration shown above? If Q=4.0μC,

(b) what is the torque on this dipole with an electric field of ?

(c) What is the torque on this dipole with an electric field of ?

(d) What is the torque on this dipole with an electric field of ?

107. A water molecule consists of two hydrogen atoms bonded with one oxygen atom. The bond angle between the two
hydrogen atoms is 104° (see below). Calculate the net dipole moment of a hypothetical water molecule where the charge at
the oxygen molecule is −2e and at each hydrogen atom is +e. The net dipole moment of the molecule is the vector sum of the
individual dipole moment between the two O-Hs. The separation O-H is 0.9578 angstroms.

Problems

Electric Flux

20. A uniform electric field of magnitude  is perpendicular to a square sheet with sides 2.0 m long. What is
the electric flux through the sheet?

21. Calculate the flux through the sheet of the previous problem if the plane of the sheet is at an angle of 60° to the field.
Find the flux for both directions of the unit normal to the sheet.

22. Find the electric flux through a rectangular area 3cm×2cm between two parallel plates where there is a constant electric
field of 30 N/C for the following orientations of the area: (a) parallel to the plates, (b) perpendicular to the plates, and (c) the
normal to the area making a 30° angle with the direction of the electric field. Note that this angle can also be given as 180°
+30°.

23. The electric flux through a square-shaped area of side 5 cm near a large charged sheet is found to be .
when the area is parallel to the plate. Find the charge density on the sheet.

|x| ≫ a,E ≈ Qa/2πε0x
3 |y| ≫ a,E ≈ Qa/πε0y

3

4.0 × N/C105 î

−4.0 × N/C105 î

±4.0 × N/C105 ĵ

1.1 × N/C104

3 × N ⋅ /C10−5 m2
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24. Two large rectangular aluminum plates of area  face each other with a separation of 3 mm between them. The
plates are charged with equal amount of opposite charges, ±20μC. The charges on the plates face each other. Find the flux
through a circle of radius 3 cm between the plates when the normal to the circle makes an angle of 5° with a line
perpendicular to the plates. Note that this angle can also be given as 180°+5°.

25. A square surface of area  is in a space of uniform electric field of magnitude . The amount of flux through
it depends on how the square is oriented relative to the direction of the electric field. Find the electric flux through the square,
when the normal to it makes the following angles with electric field: (a) 30°, (b) 90°, and (c) 0°. Note that these angles can
also be given as 180°+θ.

26. A vector field is pointed along the z-axis, \(\displaystyle \vec{v} =\frac{α}{x^2+y^2}\hat{z}.

(a) Find the flux of the vector field through a rectangle in the xy-plane between a<x<ba<x<b and c<y<dc<y<d.

(b) Do the same through a rectangle in the yz-plane between a<z<ba<z<b and c<y<dc<y<d. (Leave your answer as an
integral.)

27. Consider the uniform electric field . What is its electric flux through a circular area of
radius 2.0 m that lies in the xy-plane?

28. Repeat the previous problem, given that the circular area is (a) in the yz-plane and (b) 45° above the xy-plane.

29. An infinite charged wire with charge per unit length  lies along the central axis of a cylindrical surface of radius r and
length l. What is the flux through the surface due to the electric field of the charged wire?

Explaining Gauss’s Law

30. Determine the electric flux through each closed surface whose cross-section inside the surface is shown below.

31. Find the electric flux through the closed surface whose cross-sections are shown below.

150cm2

2cm2 N/C103

= (4.0 +3.0 ) × N/CE ⃗  ĵ k̂ 103

λ
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32. A point charge q is located at the center of a cube whose sides are of length a. If there are no other charges in this system,
what is the electric flux through one face of the cube?

33. A point charge of  is at an unspecified location inside a cube of side 2 cm. Find the net electric flux though the
surfaces of the cube.

34. A net flux of  passes inward through the surface of a sphere of radius 5 cm.

(a) How much charge is inside the sphere?

(b) How precisely can we determine the location of the charge from this information?

10μC

1.0 × N 2/C104 ⋅m
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35. A charge q is placed at one of the corners of a cube of side a, as shown below. Find the magnitude of the electric flux
through the shaded face due to q. Assume .

36. The electric flux through a cubical box 8.0 cm on a side is . What is the total charge enclosed by the
box?

37. The electric flux through a spherical surface is . What is the net charge enclosed by the surface?

38. A cube whose sides are of length d is placed in a uniform electric field of magnitude  so that the
field is perpendicular to two opposite faces of the cube. What is the net flux through the cube?

39. Repeat the previous problem, assuming that the electric field is directed along a body diagonal of the cube.

40. A total charge  is distributed uniformly throughout a cubical volume whose edges are 8.0 cm long.

(a) What is the charge density in the cube?

(b) What is the electric flux through a cube with 12.0-cm edges that is concentric with the charge distribution?

(c) Do the same calculation for cubes whose edges are 10.0 cm long and 5.0 cm long.

(d) What is the electric flux through a spherical surface of radius 3.0 cm that is also concentric with the charge
distribution?

Applying Gauss’s Law

41. Recall that in the example of a uniform charged sphere, . Rewrite the answers in terms of the total

charge Q on the sphere.

42. Suppose that the charge density of the spherical charge distribution shown in Figure 6.23 is  for  and
zero for . Obtain expressions for the electric field both inside and outside the distribution.

43. A very long, thin wire has a uniform linear charge density of . What is the electric field at a distance 2.0 cm
from the wire?

44. A charge of  is distributed uniformly throughout a spherical volume of radius 10.0 cm. Determine the electric
field due to this charge at a distance of

(a) 2.0 cm,

(b) 5.0 cm, and

(c) 20.0 cm from the center of the sphere.

45. Repeat your calculations for the preceding problem, given that the charge is distributed uniformly over the surface of a
spherical conductor of radius 10.0 cm.

46. A total charge Q is distributed uniformly throughout a spherical shell of inner and outer radii  and , respectively.
Show that the electric field due to the charge is

 ;

 ;

q > 0

1.2 × N ⋅ /C103 m2

4.0 × N ⋅ /C104 m2

E = 4.0 × N/C103

5.0 × C10−6

= Q/( π )ρ0

4

3
R3

ρ(r) = r/Rρ0 r ≤ R

r > R

50μC/m

−30μC

r1 r2

=E ⃗  0⃗  (r ≤ )r1

= ( )E ⃗  Q

4πε0r2

−r3 r3
1

−r3
2 r3

1

r̂ ( ≤ r ≤ )r1 r2
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 .

47. When a charge is placed on a metal sphere, it ends up in equilibrium at the outer surface. Use this information to
determine the electric field of  charge put on a 5.0-cm aluminum spherical ball at the following two points in space:

(a) a point 1.0 cm from the center of the ball (an inside point) and

(b) a point 10 cm from the center of the ball (an outside point).

48. A large sheet of charge has a uniform charge density of . What is the electric field due to this charge at a point
just above the surface of the sheet?

49. Determine if approximate cylindrical symmetry holds for the following situations. State why or why not.

(a) A 300-cm long copper rod of radius 1 cm is charged with +500 nC of charge and we seek electric field at a point 5
cm from the center of the rod.

(b) A 10-cm long copper rod of radius 1 cm is charged with +500 nC of charge and we seek electric field at a point 5
cm from the center of the rod.

(c) A 150-cm wooden rod is glued to a 150-cm plastic rod to make a 300-cm long rod, which is then painted with a
charged paint so that one obtains a uniform charge density. The radius of each rod is 1 cm, and we seek an electric field
at a point that is 4 cm from the center of the rod.

(d) Same rod as (c), but we seek electric field at a point that is 500 cm from the center of the rod.

50. A long silver rod of radius 3 cm has a charge of  on its surface.

(a) Find the electric field at a point 5 cm from the center of the rod (an outside point).

(b) Find the electric field at a point 2 cm from the center of the rod (an inside point).

51. The electric field at 2 cm from the center of long copper rod of radius 1 cm has a magnitude 3 N/C and directed outward
from the axis of the rod.

(a) How much charge per unit length exists on the copper rod?

(b) What would be the electric flux through a cube of side 5 cm situated such that the rod passes through opposite sides
of the cube perpendicularly?

52. A long copper cylindrical shell of inner radius 2 cm and outer radius 3 cm surrounds concentrically a charged long
aluminum rod of radius 1 cm with a charge density of 4 pC/m. All charges on the aluminum rod reside at its surface. The
inner surface of the copper shell has exactly opposite charge to that of the aluminum rod while the outer surface of the copper
shell has the same charge as the aluminum rod. Find the magnitude and direction of the electric field at points that are at the
following distances from the center of the aluminum rod:

(a) 0.5 cm, (b) 1.5 cm, (c) 2.5 cm, (d) 3.5 cm, and (e) 7 cm.

53. Charge is distributed uniformly with a density  throughout an infinitely long cylindrical volume of radius R. Show that
the field of this charge distribution is directed radially with respect to the cylinder and that

 ;

 

54. Charge is distributed throughout a very long cylindrical volume of radius R such that the charge density increases with
the distance r from the central axis of the cylinder according to , where  is a constant. Show that the field of this
charge distribution is directed radially with respect to the cylinder and that

 ;

 .

=E ⃗  Q

4πε0r2
r̂ (r ≥ )r2

+3.0μC

10μC/m2

−5μC/cm

ρ

E =
ρr

2ε0
(r ≤ R)

E =
ρR2

2 rε0
(r ≥ R)

ρ = αr α

E =
αr2

3ε0
(r ≤ R)

E =
αR3

3 rε0
(r ≥ R)
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55. The electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball’s center and has
magnitude . How much charge is on the surface of the ball?

56. Charge is distributed throughout a spherical shell of inner radius  and outer radius  with a volume density given by 
, where  is a constant. Determine the electric field due to this charge as a function of r, the distance from the

center of the shell.

57. Charge is distributed throughout a spherical volume of radius R with a density , where αα is a constant.
Determine the electric field due to the charge at points both inside and outside the sphere.

58. Consider a uranium nucleus to be sphere of radius  with a charge of 92e distributed uniformly
throughout its volume. (a) What is the electric force exerted on an electron when it is  from the center of the
nucleus? (b) What is the acceleration of the electron at this point?

59. The volume charge density of a spherical charge distribution is given by , where  and  are constants.
What is the electric field produced by this charge distribution?

Conductors in Electrostatic Equilibrium

60. An uncharged conductor with an internal cavity is shown in the following figure. Use the closed surface S along with
Gauss’ law to show that when a charge q is placed in the cavity a total charge –q is induced on the inner surface of the
conductor. What is the charge on the outer surface of the conductor?

61. An uncharged spherical conductor S of radius R has two spherical cavities A and B of radii a and b, respectively as
shown below. Two point charges  and  are placed at the center of the two cavities by using non-conducting supports.
In addition, a point charge  is placed outside at a distance r from the center of the sphere.

(a) Draw approximate charge distributions in the metal although metal sphere has no net charge.

(b) Draw electric field lines. Draw enough lines to represent all distinctly different places.

62. A positive point charge is placed at the angle bisector of two uncharged plane conductors that make an angle of 45°.See
below. Draw the electric field lines.

63. A long cylinder of copper of radius 3 cm is charged so that it has a uniform charge per unit length on its surface of 3 C/m.
(a) Find the electric field inside and outside the cylinder. (b) Draw electric field lines in a plane perpendicular to the rod.

64. An aluminum spherical ball of radius 4 cm is charged with 5μC of charge. A copper spherical shell of inner radius 6 cm
and outer radius 8 cm surrounds it. A total charge of −8μC is put on the copper shell.

4.0 × N/C102

r1 r2

ρ = /rρ0r1 ρ0

ρ = αr2

R = 7.4 × m10−15

3.0 × m10−15

ρ(r) = ρ0e
−αr ρ0 α

+qa +qb
+q0
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(a) Find the electric field at all points in space, including points inside the aluminum and copper shell when copper
shell and aluminum sphere are concentric.

(b) Find the electric field at all points in space, including points inside the aluminum and copper shell when the centers
of copper shell and aluminum sphere are 1 cm apart.

65. A long cylinder of aluminum of radius R meters is charged so that it has a uniform charge per unit length on its surface of
. (a) Find the electric field inside and outside the cylinder. (b) Plot electric field as a function of distance from the center of

the rod.

66. At the surface of any conductor in electrostatic equilibrium, . Show that this equation is consistent with the fact
that  at the surface of a spherical conductor.

67. Two parallel plates 10 cm on a side are given equal and opposite charges of magnitude . The plates are 1.5
mm apart. What is the electric field at the center of the region between the plates?

68. Two parallel conducting plates, each of cross-sectional area , are 2.0 cm apart and uncharged. If 
electrons are transferred from one plate to the other, what are (a) the charge density on each plate? (b) The electric field
between the plates?

69. The surface charge density on a long straight metallic pipe is . What is the electric field outside and inside the pipe?
Assume the pipe has a diameter of 2a.

70. A point charge  is placed at the center of a spherical conducting shell of inner radius 3.5 cm and
outer radius 4.0 cm. The electric field just above the surface of the conductor is directed radially outward and has magnitude
8.0 N/C.

(a) What is the charge density on the inner surface of the shell?

(b) What is the charge density on the outer surface of the shell?

(c) What is the net charge on the conductor?

71. A solid cylindrical conductor of radius a is surrounded by a concentric cylindrical shell of inner radius b. The solid
cylinder and the shell carry charges +Q and –Q, respectively. Assuming that the length L of both conductors is much greater
than a or b, determine the electric field as a function of r, the distance from the common central axis of the cylinders, for (a) 

; (b) ; and (c) .

λ

E = σ/ε0

E = kq/r2

5.0 × C10−9

400cm2 1.0 ×1012

σ

q = −5.0 × C10−12

r < a a < r < b r > b
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Additional Problems

108. Point charges  and  are located at  and 
. What is the force of  on ?

109. What is the force on the 5.0-μC charges shown below?

110. What is the force on the 2.0-μC charge placed at the center of the square shown below?

111. Four charged particles are positioned at the corners of a parallelogram as shown below. If  and ,
what is the net force on q?

112. A charge Q is fixed at the origin and a second charge q moves along the x-axis, as shown below. How much work is
done on q by the electric force when q moves from  to ?

113. A charge q=−2.0μC is released from rest when it is 2.0 m from a fixed charge . What is the kinetic energy
of q when it is 1.0 m from Q?

114. What is the electric field at the midpoint M of the hypotenuse of the triangle shown below?

= 2.0μCq1 = 4.0μCq1 = (4.0 −2.0 +2.0 )mr1 î ĵ k̂

= (8.0 +5.0 −9.0 )mr2 î ĵ k̂ q2 q1

q = 5.0μC Q = 8.0μC

x1 x2

Q = 6.0μC
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115. Find the electric field at P for the charge configurations shown below.

116. (a) What is the electric field at the lower-right-hand corner of the square shown below? (b) What is the force on a charge
q placed at that point?
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117. Point charges are placed at the four corners of a rectangle as shown below: 
 and . What is the electric field at P?

118. Three charges are positioned at the corners of a parallelogram as shown below. (a) If , what is the electric
field at the unoccupied corner? (b) What is the force on a 5.0-μC charge placed at this corner?

119. A positive charge q is released from rest at the origin of a rectangular coordinate system and moves under the influence
of the electric field  What is the kinetic energy of q when it passes through ?

120. A particle of charge  and mass m is placed at the center of a uniformaly charged ring of total charge Q and radius R.
The particle is displaced a small distance along the axis perpendicular to the plane of the ring and released. Assuming that the
particle is constrained to move along the axis, show that the particle oscillates in simple harmonic motion with a frequency 

.

121. Charge is distributed uniformly along the entire y-axis with a density  and along the positive x-axis from  to 
 with a density . What is the force between the two distributions?

122. The circular arc shown below carries a charge per unit length , where  is measured from the x-axis. What
is the electric field at the origin?

123. Calculate the electric field due to a uniformly charged rod of length L, aligned with the x-axis with one end at the
origin; at a point P on the z-axis.

124. The charge per unit length on the thin rod shown below is . What is the electric force on the point charge q? Solve this
problem by first considering the electric force  on q due to a small segment  of the rod, which contains charge 
Then, find the net force by integrating  over the length of the rod.

= 2.0 × C, = −2.0 × C, = 4.0 × C,q1 10−6 q2 10−6 q3 10−6 = 1.0 × Cq4 10−6

Q = 8.0μC

= (1 +x/a) .E ⃗  E0 î x = 3a

−q

f =
1

2π

qQ

4π mε0 R3

− −−−−−−−

√

yλ x = a

x = b λx

λ = cosθλ0 θ

λ

dF ⃗  dx λdx.

dF ⃗ 
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125. The charge per unit length on the thin rod shown here is . What is the electric force on the point charge q? (See the
preceding problem.)

126. The charge per unit length on the thin semicircular wire shown below is . What is the electric force on the point charge
q? (See the preceding problems.)

Additional Problems

72. A vector field  (not necessarily an electric field; note units) is given by . Calculate , where S is

the area shown below. Assume that .

73. Repeat the preceding problem, with .

74. A circular area S is concentric with the origin, has radius a, and lies in the yz-plane. Calculate  for .

75. (a) Calculate the electric flux through the open hemispherical surface due to the electric field  (see below).

(b) If the hemisphere is rotated by 90° around the x-axis, what is the flux through it?

λ

λ

E ⃗  = 3E ⃗  x2k̂ ⋅ da∫
S

E ⃗  n̂

=n̂ k̂

= 2x +3E ⃗  î x2k̂

⋅ dA∫
S

E ⃗  n̂ = 3E ⃗  z2 î

=E ⃗  E0k̂
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76. Suppose that the electric field of an isolated point charge were proportional to  rather than . Determine the
flux that passes through the surface of a sphere of radius R centered at the charge. Would Gauss’s law remain valid?

77. The electric field in a region is given by , where  and .What is the
net charge enclosed by the shaded volume shown below?

78. Two equal and opposite charges of magnitude Q are located on the x-axis at the points +a and –a, as shown below. What
is the net flux due to these charges through a square surface of side 2a that lies in the yz-plane and is centered at the origin?
(Hint: Determine the flux due to each charge separately, then use the principle of superposition. You may be able to make a
symmetry argument.)

79. A fellow student calculated the flux through the square for the system in the preceding problem and got 0. What went
wrong?

80. A 10cm×10cm piece of aluminum foil of 0.1 mm thickness has a charge of  that spreads on both wide side surfaces
evenly. You may ignore the charges on the thin sides of the edges.

(a) Find the charge density.

(b) Find the electric field 1 cm from the center, assuming approximate planar symmetry.

1/r2+σ 1/r2

= a/(b+cx)E ⃗  î a = 200N ⋅m/C, b = 2.0m, c = 2.0

20μC
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81. Two 10cm×10cm pieces of aluminum foil of thickness 0.1 mm face each other with a separation of 5 mm. One of the
foils has a charge of  and the other has .

(a) Find the charge density at all surfaces, i.e., on those facing each other and those facing away.

(b) Find the electric field between the plates near the center assuming planar symmetry.

82. Two large copper plates facing each other have charge densities  on the surface facing the other plate, and
zero in between the plates. Find the electric flux through a 3cm×4cm rectangular area between the plates, as shown below,
for the following orientations of the area.

(a) If the area is parallel to the plates, and

(b) if the area is tilted  from the parallel direction. Note, this angle can also be .

83. The infinite slab between the planes defined by  and  contains a uniform volume charge density (see
below). What is the electric field produced by this charge distribution, both inside and outside the distribution?

84. A total charge Q is distributed uniformly throughout a spherical volume that is centered at  and has a radius R.
Without disturbing the charge remaining, charge is removed from the spherical volume that is centered at  (see below).

Show that the electric field everywhere in the empty region is given by , where  is the displacement vector

directed from  to .

85. A non-conducting spherical shell of inner radius  and outer radius  is uniformly charged with charged density 
inside another non-conducting spherical shell of inner radius  and outer radius  that is also uniformly charged with
charge density . See below. Find the electric field at space point P at a distance r from the common center such that (a) 

, (b) , (c) , (d) , and (e) .

+30μC −30μC

±4.0C/m2

θ = 30° θ = 180° +30°

z = −a/2 z = a/2 ρ

O1

O2

=E ⃗  Qr ⃗ 

4πε0R3
r ⃗ 

O1 O2

a1 b1 ρ1

a2 b2

ρ2

r > b2 < r <a2 b2 < r <b1 a2 < r <a1 b1 r < a1
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86. Two non-conducting spheres of radii  and  are uniformly charged with charge densities  and , respectively.
They are separated at center-to-center distance a (see below). Find the electric field at point P located at a distance r from the
center of sphere 1 and is in the direction  from the line joining the two spheres assuming their charge densities are not
affected by the presence of the other sphere. (Hint: Work one sphere at a time and use the superposition principle.)

87. A disk of radius R is cut in a non-conducting large plate that is uniformly charged with charge density σ (coulomb per
square meter). See below. Find the electric field at a height h above the center of the disk. (  or ). (Hint:
Fill the hole with .)

88. Concentric conducting spherical shells carry charges Q and –Q, respectively (see below). The inner shell has negligible
thickness. Determine the electric field for (a)  (b) ; (c) ; and (d) .

89. Shown below are two concentric conducting spherical shells of radii  and , each of finite thickness much less than
either radius. The inner and outer shell carry net charges  and , respectively, where both  and  are positive. What is
the electric field for (a) ; (b) ; and (c) ? (d) What is the net charge on the inner surface of the
inner shell, the outer surface of the inner shell, the inner surface of the outer shell, and the outer surface of the outer shell?

R1 R2 ρ1 ρ2

θ

h >> R,h << l w

±σ

r < a; a < r < b b < r < c r > c

R1 R2

q1 q2 q1 q2

r < R1 < r <R1 R2 r > R2
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90. A point charge of q=5.0×10−8Cq=5.0×10−8C is placed at the center of an uncharged spherical conducting shell of inner
radius 6.0 cm and outer radius 9.0 cm. Find the electric field at (a) r=4.0cmr=4.0cm, (b) r=8.0cmr=8.0cm, and (c)
r=12.0cmr=12.0cm. (d) What are the charges induced on the inner and outer surfaces of the shell?

Challenge Problems

91. The Hubble Space Telescope can measure the energy flux from distant objects such as supernovae and stars. Scientists
then use this data to calculate the energy emitted by that object. Choose an interstellar object which scientists have observed
the flux at the Hubble with (for example, ) , find the distance to that object and the size of Hubble’s primary mirror,
and calculate the total energy flux. (Hint: The Hubble intercepts only a small part of the total flux.)

92. Re-derive Gauss’s law for the gravitational field, with  directed positively outward.

93. An infinite plate sheet of charge of surface charge density  is shown below. What is the electric field at a distance x
from the sheet? Compare the result of this calculation with that of worked out in the text.

94. A spherical rubber balloon carries a total charge Q distributed uniformly over its surface. At , the radius of the
balloon is R. The balloon is then slowly inflated until its radius reaches 2R at the time . Determine the electric field due to
this charge as a function of time

(a) at the surface of the balloon,

(b) at the surface of radius R, and

(c) at the surface of radius 2R. Ignore any effect on the electric field due to the material of the balloon and assume that
the radius increases uniformly with time.

95. Find the electric field of a large conducting plate containing a net charge q. Let A be area of one side of the plate and h
the thickness of the plate (see below). The charge on the metal plate will distribute mostly on the two planar sides and very
little on the edges if the plate is thin.

V ega 3

g ⃗ 

σ

t = 0

t0
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3.12: Electric Charges and Fields (Answer)

Check Your Understanding

5.1. The force would point outward.

5.2. The net force would point 58° below the −x-axis.

5.3. 

5.4. We will no longer be able to take advantage of symmetry. Instead, we will need to calculate each of the two components
of the electric field with their own integral.

5.5. The point charge would be  where a and b are the sides of the rectangle but otherwise identical.

5.6. The electric field would be zero in between, and have magnitude  everywhere else.

Conceptual Questions
1. There are mostly equal numbers of positive and negative charges present, making the object electrically neutral.

3. a. yes;

b. yes

5. Take an object with a known charge, either positive or negative, and bring it close to the rod. If the known charged object
is positive and it is repelled from the rod, the rod is charged positive. If the positively charged object is attracted to the rod,
the rod is negatively charged.

7. No, the dust is attracted to both because the dust particle molecules become polarized in the direction of the silk.

9. Yes, polarization charge is induced on the conductor so that the positive charge is nearest the charged rod, causing an
attractive force.

11. Charging by conduction is charging by contact where charge is transferred to the object. Charging by induction first
involves producing a polarization charge in the object and then connecting a wire to ground to allow some of the charge to
leave the object, leaving the object charged.

13. This is so that any excess charge is transferred to the ground, keeping the gasoline receptacles neutral. If there is excess
charge on the gasoline receptacle, a spark could ignite it.

15. The dryer charges the clothes. If they are damp, the presence of water molecules suppresses the charge.

17. There are only two types of charge, attractive and repulsive. If you bring a charged object near the quartz, only one of
these two effects will happen, proving there is not a third kind of charge.

19. a. No, since a polarization charge is induced. b. Yes, since the polarization charge would produce only an attractive force.

21. The force holding the nucleus together must be greater than the electrostatic repulsive force on the protons.

23. Either sign of the test charge could be used, but the convention is to use a positive test charge.

25. The charges are of the same sign.

27. At infinity, we would expect the field to go to zero, but because the sheet is infinite in extent, this is not the case.
Everywhere you are, you see an infinite plane in all directions.

29. The infinite charged plate would have  everywhere. The field would point toward the plate if it were negatively

charged and point away from the plate if it were positively charged. The electric field of the parallel plates would be zero

between them if they had the same charge, and E would be  everywhere else. If the charges were opposite, the

situation is reversed, zero outside the plates and  between them.

31. yes; no

=E ⃗  1

4πε0

q

r2
r̂

Q = σab

σ

ε0

E =
σ

2ε0

E =
σ

ε0

E =
σ

ε0
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33. At the surface of Earth, the gravitational field is always directed in toward Earth’s center. An electric field could move a
charged particle in a different direction than toward the center of Earth. This would indicate an electric field is present.

35. 10

Problems

37. a. ;

b. 

39. 

41. a. ;

b.  or 

43. .

45. atomic mass of copper atom times ; number of copper atoms = ; number of
electrons equals 29 times number of atoms or ; 

 or .

47. ;  

 

49. a. charge 1 is ; charge 2 is ,  to the left,

 to the right,

 to the right;

b.  to the right,

 to the right,

 to the right,

c. 

,

,

51. 

53. 

55. The tension is . The horizontal component of the tension is 

2.00 × C( e/C) = 1.248 × electrons210−9 1

1.602 ×10−19
1010

0.500 × C( e/C) = 3.121 × electrons10−6 1

1.602 ×10−19
1012

= −600.8C
3.750 × e1021

6.242 × e/C1018

2.0 × C(6.242 × e/C) = 1.248 × e10−9 1018 1010

9.109 × kg(1.248 × e) = 1.137 × kg, = 4.548 ×10−31 1010 10−20 1.137 × kg10−20

2.5 × kg10−3
10−18 4.545 ×10−16

5.00 × C(6.242 × e/C) = 3.121 × e; 3.121 × e+1.0000 × e = 1.0312 × e10−9 1018 1010 1010 1012 1012

1u = 1.055 × kg10−25 4.739 × atoms1023

1.374 × electrons1025

= 9.083 ×
2.00 × C(6.242 × e/C)10−6 1018

1.374 × e1025
10−13 9.083 ×10−11

244.00u(1.66 × kg/u) = 4.050 × kg10−27 10−25 = 9.877 × atoms
4.00kg

4.050 × kg10−25
1024

9.877 × (94) = 9.284 × protons1024 1026 9.284 × protons; 9.284 × (1.602 × C/p) = 1.487 × C1026 1026 10−19 108

3μC 12μC = 2.16 × NF31 10−4

= 8.63 × NF32 10−4

= 6.47 × NFnet 10−4

= 2.16 × NF31 10−4

= 9.59 × NF32 10−5

= 3.12 × NFnet 10−4

= −2.76 × N ,F ⃗ 
31x 10−5 î

= −1.38 × NF ⃗ 
31y 10−5 ĵ

= −8.63 × NF ⃗ 
32y 10−4 ĵ

= −2.76 × N −8.77 × NF ⃗ 
net 10−5 î 10−4 ĵ

F = 230.7N

F = 53.94N

T = 0.049N 0.0043N

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76519?pdf


3.12.3 https://phys.libretexts.org/@go/page/76519

.

The charges can be positive or negative, but both have to be the same sign.

57. Let the charge on one of the spheres be rQ, where r is a fraction between 0 and 1. In the numerator of Coulomb’s law, the
term involving the charges is . This is equal to . Finding the maximum of this term gives 

59. Define right to be the positive direction and hence left is the negative direction, then 

61. The particles form triangle of sides 13, 13, and 24 cm. The x-components cancel, whereas there is a contribution to the y-
component from both charges 24 cm apart. The y-axis passing through the third charge bisects the 24-cm line, creating two
right triangles of sides 5, 12, and 13 cm.  in the negative y-direction since the force is attractive. The net force
from both charges is 

63. The diagonal is  and the components of the force due to the diagonal charge has a factor ; 

65. ;

67. a. ;

b. ;

c.  on alpha particl

 on electron

69. 

71. ,

73. 

75. a. ;

b. 

77. If the  is to the right of , the electric field vector from both charges point to the right.

a. ;

b. 

79. There is 45° right triangle geometry. The x-components of the electric field at  cancel. The y-components give 
.

At the origin we have a a negative charge of magnitide 

81. 

83. 

85.  

87. At 

At : Put the origin at the end of L.

d = 0.088m, q = 6.1 × C10−8

rQ(1 −r)Q (r− )r2 Q2

1 −2r = 0 ⇒ r =
1

2

F = −0.05N

= 2.56NFy

= −5.12NF ⃗ 
net ĵ

a2
–

√ cosθ =
1

2
–

√

= [k +k ] − [k +k ]F ⃗ 
net

q2

a2

q2

2a2

1

2
–

√
î

q2

a2

q2

2a2

1

2
–

√
ĵ

a.E = 2.0 ×10−2 N

C

b.F = 2.0 × N10−19

E = 2.88 × N/C1011

E = 1.44 × N/C1011

F = 4.61 × N10−8

F = 4.61 × N10−8

E = (−2.0 +3.0 )Nî ĵ

F = 3.204 × N10−14

a = 3.517 × m/1016 s2

q = 2.78 × C10−9

E = 1.15 × N/C1012

F = 1.47 × N10−6

q2 q1

E = 2.70 × N/C106

F = 54.0N

y = 3m

E(y = 3m) = 2.83 × N/C103

q = −2.83 × C10−6

(z) = 3.6 × NE ⃗  104 k̂

dE = ,E = [ − ]
1

4πε0

λdx

(x+a)2

λ

4πε0

1

l+a

1

a

σ = 0.02C/m2 E = 2.26 × N/C109

: (y) = ⇒ =P1 E ⃗  1

4πε0

λL

y +y2 L2

4

− −−−−−
√

ĵ
1

4πε0

q

a

2
( +a

2
)2 L2

4

− −−−−−−−
√

ĵ
1

πε0

q

a +a2 L2
− −−−−−

√
ĵ

P2
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89. a. ;

b. 

91. a. ,

;

b. ,

93. ,

95. ,

,

,

This is independent of the length of the string.

97. circular arc ,

,

,

;

y-axis: ;

x-axis: ,

99. a. ;

b.  is negative; therefore, , and 

101.

dE = , = − [ − ]
1

4πε0

λdx

(x+a)2
E ⃗  q

4π lε0

1

l+a

1

a
î

( ) = +E ⃗ r ⃗ 
1

4πε0

2λx
a

î
1

4πε0

2λy

b
ĵ

1

4πε0

2( + )λx λy

c
k̂

= 3.2 × NF ⃗  10−17 î

= 1.92 × m/a⃗  1010 s2 î

= −3.2 × NF ⃗  10−17 î

= −3.51 × m/a⃗  1013 s2 î

m = 6.5 × kg10−11

E = 1.6 × N/C107

E = 1.70 × N/C106

F = 1.53 × NTcosθ = mgTsinθ = qE10−3

tanθ = 0.62 ⇒ θ = 32.0°

d (− ) = cosθ(−Ex î
1

4πε0

λds

r2
î

= (− )E ⃗ 
x

λ

4π rε0
î

dEy(− ˆ) = sinθ(− )î
1

4πε0

λds

r2
ĵ

= (− )E ⃗ 
y

λ

4π rε0
ĵ

= (− )E ⃗ 
x

λ

4π rε0
î

= (− )E ⃗ 
y

λ

4π rε0
ĵ

= (− ) + (− )E ⃗  λ

2π rε0
î

λ

2π rε0
ĵ

W = m( − ), ( − ) = m( − ) ⇒ −r = r m( − )
1

2
v2 v2

0

Qq

4πε0

1

r

1

r0

1

2
v2 v2

0 r0
4πε0

Qq

1

2
r0 v2 v2

0

−rr0 > v, r → ∞v0 v→ 0 : (− ) = − m ⇒ =
Qq

4πε0

1

r0

1

2
v2

0 v0
Qq

2π mε0 r0

− −−−−−−−

√
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103.

105. = 0, = [ ) ⇒ x ≫ a ⇒Ex Ey

1

4πε0

2q

( +x2 a2

a

( + )x2 a2− −−−−−−
√

1

2πε0

qa

x3

= [ ] ⇒ y ≫ a ⇒Ey

q

4πε0

2ya+2ya

(y−a (y+a)2 )2

1

πε0

qa

y3
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107. The net dipole moment of the molecule is the vector sum of the individual dipole moments between the two O-H. The
separation O-H is 0.9578 angstroms:

Additional Problems

109. 

111. Charges Q and q form a right triangle of sides 1 m and  Charges 2Q and q form a right triangle of sides 1 m
and .

,

113. W=0.054J

115. a. ;

b. ;

c. 

117. 

119.  ,

121. Electric field of wire at x: ,

123.

,

,

= 1.889 × Cmp ⃗  10−29 î

= [−8.99 × −8.99 × ] , −8.99F ⃗ 
net 109 3.0 × (5.0 × )10−6 10−6

(3.0m)2
109 9.0 × (5.0 × )10−6 10−6

(3.0m)2
î

× = −0.06N −0.03N109 6.0 × (5.0 × )10−6 10−6

(3.0m)2
ĵ î ĵ

3 + m.3
–

√
m3

–
√

= 0.049N ,Fx

= 0.09NFy

= 0.049N +0.09NF ⃗ 
net î ĵ

= ( − )E ⃗  1

4πε0

q

(2a)2

q

a2
î

= (− )E ⃗  3
–

√

4πε0

q

a2
ĵ

= (− )E ⃗  2

πε0

q

a2

1

2
–

√
ĵ

= 6.4 × ( ) +1.5 × ( )N/CE ⃗  106 î 107 ĵ

F = q (1 +x/a)E0 W = m( − )
1

2
v2 v2

0

m = q ( )J
1

2
v2 E0

15a

2

(x) =E ⃗  1

4πε0

2λy

x
î

dF = (lnb− lna)
λyλx

2πε0

dEx =
1

4πε0

λdx

( + )x2 a2

x

+x2 a2
− −−−−−

√

= [ − ]E ⃗ 
x

λ

4πε0

1

+L2 a2
− −−−−−

√

1

a
î
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,

,

Substituting z for a, we have:

125. There is a net force only in the y-direction. Let  be the angle the vector from dx to q makes with the x-axis. The
components along the x-axis cancel due to symmetry, leaving the y-component of the force.

,

Check Your Understanding

6.1. Place it so that its unit normal is perpendicular to .

6.2. 

6.3 a. 

b. 

c. 

d. 0

6.4. In this case, there is only . So,yes.

6.5. ; This agrees with the calculation of Example 5.5 where we found the electric field by integrating over the

charged wire. Notice how much simpler the calculation of this electric field is with Gauss’s law.

6.6. If there are other charged objects around, then the charges on the surface of the sphere will not necessarily be spherically
symmetrical; there will be more in certain direction than in other directions.

Conceptual Questions
1. a. If the planar surface is perpendicular to the electric field vector, the maximum flux would be obtained. b. If the planar
surface were parallel to the electric field vector, the minimum flux would be obtained.

3. true

5. Since the electric field vector has a  dependence, the fluxes are the same since .

7. a. no;

b. zero

9. Both fields vary as . Because the gravitational constant is so much smaller than , the gravitational field is orders

of magnitude weaker than the electric field.

11. No, it is produced by all charges both inside and outside the Gaussian surface.

13. No, since the situation does not have symmetry, making Gauss’s law challenging to simplify.

15. Any shape of the Gaussian surface can be used. The only restriction is that the Gaussian integral must be calculable;
therefore, a box or a cylinder are the most convenient geometrical shapes for the Gaussian surface.

17. yes

d =Ez

1

4πε0

λdx

( + )x2 a2

a

+x2 a2
− −−−−−

√

=E ⃗ 
z

λ

4π aε0

L

+L2 a2
− −−−−−

√
k̂

(z) = [ − ] +E ⃗  λ

4πε0

1

+L2 z2
− −−−−−

√

1

z
î

λ

4π zε0

L

+L2 z2
− −−−−−

√
k̂

θ

d =Fy

1

4πε0

aqλdx

( +x2 a2)3/2

Fy = [ ]
1

2πε0

qλ

a

l/2

((l/2 +)2 a2)1/2

E ⃗ 

ma /2b2

3.4 × N ⋅ /C;105 m2

−3.4 × N ⋅ /C;105 m2

3.4 × N ⋅ /C;105 m2

E ⃗ 
out

=E ⃗  λ0

2πε0

1

d
r̂

1

r2
A = 4πr2

1

r2

1

4πε0
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19. Since the electric field is zero inside a conductor, a charge of  is induced on the inside surface of the cavity. This
will put a charge of  on the outside surface leaving a net charge of  on the surface.

Problems

21.  electric field in direction of unit normal; 
 electric field opposite to unit normal

23. 

25. a. ;

b. ;

c. 

27. 

29. 

31. a. ;

b. ;

c. ;

d. 

33. 

35. Make a cube with q at the center, using the cube of side a. This would take four cubes of side a to make one side of the
large cube. The shaded side of the small cube would be 1/24th of the total area of the large cube; therefore, the flux through

the shaded area would be .

37. 

39. zero, also because flux in equals flux out

41. 

43. 

45. a. 0;

b. 0;

c. 

47. a. 0;

b. 

49. a. Yes, the length of the rod is much greater than the distance to the point in question.

b. No, The length of the rod is of the same order of magnitude as the distance to the point in question.

c. Yes, the length of the rod is much greater than the distance to the point in question.

d. No. The length of the rod is of the same order of magnitude as the distance to the point in question.

51. a. ;

b. 

−2.0μC
+2.0μC −3.0μC

Φ = ⋅ → EAcosθ = 2.2 × N ⋅ /CE ⃗  A ⃗  104 m2

Φ = ⋅ → EAcosθ = −2.2 × N ⋅ /CE ⃗  A ⃗  104 m2

= E ⇒ σ = 2.12 × C/
3 × N ⋅ /C10−5 m2

(0.05m)2
10−13 m2

Φ = 0.17N ⋅ /Cm2

Φ = 0

Φ = EAcos0° = 1.0 × N/C(2.0 × m cos0° = 0.20N ⋅ /C103 10−4 )2 m2

Φ = 3.8 × N ⋅ /C104 m2

(z) = , ∫ ⋅ dA = lE ⃗  1

4πε0

2λ

z
k̂ E ⃗  n̂

λ

ε0

Φ = 3.39 × N ⋅ /C103 m2

Φ = 0

Φ = −2.25 × N ⋅ /C105 m2

Φ = 90.4N ⋅ /Cm2

Φ = 1.13 × N ⋅ /C106 m2

Φ =
1

24

q

ε0

q = 3.54 × C10−7

r > R,E = ; r < R,E =
Q

4πε0r2

qr

4πε0R3

EA = ⇒ E = 4.50 × N/C
λl

ε0
107

= 6.74 × N/C(− )E ⃗  106 r̂

E = 2.70 × N/C106

= ⇒ = 5.31 × C/ ,λ = 3.33 × C/mE ⃗  Rσ0

ε0

1

r
r̂ σ0 10−11 m2 10−12

Φ = = = 0.019N ⋅ /C
qenc

ε0

3.33 × C/m(0.05m)10−12

ε+0
m2
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53. 

55. 

57. 

59. integrate by parts: 

61.

63. a. Outside: ; Inside ;

b.

65. a.  E inside equals 0;

b.

E2πrl = ⇒ E = (r ≤ R);E2πrl = ⇒ E = (r ≥ R)
ρπ lr2

ε0

ρr

2ε0

ρπ lR2

ε0

ρR2

2 rε0

Φ = ⇒ = −1.0 × C
qenc

ε0
qenc 10−9

= πα ,E4π = ⇒ E = (r ≤ R), = πα ,E4π = ⇒ E = (r ≥ R)qenc
4

5
r5 r2 4παr5

5ε0

αr3

5ε0
qenc

4

5
R5 r2 4παR5

5ε0

αR5

5ε0r2

= 4π [− ( + + ) + ] ⇒ E = [− ( + + ) + ]qenc ρ0 e−αr (r)2

α

2r

α2

2

α3

2

α3

ρ0

r2ε0
e−αr (r)2

α

2r

α2

2

α3

2

α3

E2πrl = ⇒ E =
λl

ε0

3.0C/m

2π rε0
= 0Ein

E2πrl = ⇒ E = r ≥ R
λl

ε0

λ

2π rε0
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67. 

69.  inside since  enclosed=0

71. a. ;

b. ; c.  since r would be either inside the second shell or if outside then q

enclosed equals 0.

Additional Problems

73. 

75. a. ; b. zero, since the flux through the upper half cancels the flux through the lower half of the

sphere

77. ; There are two contributions to the surface integral: one at the side of the rectangle at  and the other at

the side at ; 

where the minus sign indicates that at , the electric field is along positive x and the unit normal is along negative
x. At , the unit normal and the electric field vector are in the same direction: 

79. didn’t keep consistent directions for the area vectors, or the electric fields

81. a.  on one and  on the other;

b. 

83. Construct a Gaussian cylinder along the z-axis with cross-sectional area A.

,

85. a.  ;

b.  ;

c.  ;

d.  ;

e. 0

87. Electric field due to plate without hole: .

Electric field of just hole filled with \(\displaystyle −σE=\frac{−σ}{2ε_0}(1−\frac{z}{\sqrt{R^2+z^2}}).

Thus, 

89. a. ; b. ; c. ; d. 0 

E = 5.65 × N/C104

λ = ⇒ E = r ≥ a,E = 0
λl

ε0

aσ

rε0
q

E = 0

E2πrL = ⇒ E =
Q

ε0

Q

2π rLε0
E = 0

∫ ⋅ dA =E ⃗  n̂ a4

∫ ⋅ dA = πE ⃗  n̂ E0r
2

Φ =
qenc

ε0
x = 0

x = 2.0m −E(0)[1.5 ] +E(2.0m)[1.5 ] = = −100Nm Cm2 m2 qenc

ε0
2/

x = 0
x = 2 = Φ = −8.85 × Cqenc ε0 10−10

σ = 3.0 × C/ , +3 × C/10−3 m2 10−3 m2 −3 × C/10−3 m2

E = 3.39 × N/CE = 3.39 × N/C108 108

|z| ≥ = ρAa, Φ = ⇒ E =
a

2
qenc

ρAa

ε0

ρa

2ε0

|z| ≤ = ρA2z,E(2A) = ⇒ E =
a

2
qenc

ρA2z

ε0

ρz

ε0

r > b2 E4π = ⇒ E =r2
π[ ( − ) + ( − )4

3
ρ1 b3

1 a3
1 ρ2 b3

2 a3
2

ε0

( − ) + ( − )ρ1 b3
1 a3

1 ρ2 b3
2 a3
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σ
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Challenge Problems

91. Given the referenced link, using a distance to Vega of  and a diameter of 2.4 m for the primary mirror,  we
find that at a wavelength of 555.6 nm, Vega is emitting  at that wavelength. Note that the flux through the
mirror is essentially constant.

93. The symmetry of the system forces  to be perpendicular to the sheet and constant over any plane parallel to the sheet.
To calculate the electric field, we choose the cylindrical Gaussian surface shown. The cross-section area and the height of the
cylinder are A and 2x, respectively, and the cylinder is positioned so that it is bisected by the plane sheet. Since E is
perpendicular to each end and parallel to the side of the cylinder, we have EA as the flux through each end and there is no

flux through the side. The charge enclosed by the cylinder is , so from Gauss’s law, , and the electric field of

an infinite sheet of charge is

, in agreement with the calculation of in the text.

95. There is Q/2 on each side of the plate since the net charge is ,

Contributors and Attributions

Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

Contributors and Attributions
Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

This page titled 3.12: Electric Charges and Fields (Answer) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

5.11: Electric Charges and Fields (Answer) by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
6.8: Gauss's Law (Answers) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-2.

237 × m1015 4 5

2.44 × J/s1024

E ⃗ 

σA 2EA =
σA

ε0

E =
σ

2ε0

Q : σ =
Q

2A

⋅ dA = ⇒ = =∮
S

E ⃗  n̂
2σΔA

ε0
EP

σ

ε0

Q

2Aε0

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76519?pdf
http://webviz.u-strasbg.fr/viz-bin/VizieR-5?-source=I/311&HIP=91262
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19910003124.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.12%3A_Electric_Charges_and_Fields_(Answer)
https://creativecommons.org/licenses/by/4.0
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-2
https://phys.libretexts.org/@go/page/10248
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-2
https://phys.libretexts.org/@go/page/10250
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-2


1

CHAPTER OVERVIEW

4: Electric Potential and Capacitance
4.1: Electric Potential Energy
4.2: Electric Potential and Potential Difference
4.3: Equipotential Surfaces and Conductors
4.4: Determining Field from Potential
4.5: Applications of Electrostatics
4.6: Capacitors and Capacitance
4.7: Capacitors in Series and in Parallel
4.8: Energy Stored in a Capacitor
4.9: Capacitor with a Dielectric
4.E: Practice
4.S: Summary

This page titled 4: Electric Potential and Capacitance is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.01%3A_Electric_Potential_Energy
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.02%3A_Electric_Potential_and_Potential_Difference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.03%3A_Equipotential_Surfaces_and_Conductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.04%3A_Determining_Field_from_Potential
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.06%3A_Capacitors_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.07%3A_Capacitors_in_Series_and_in_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.08%3A_Energy_Stored_in_a_Capacitor
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.09%3A_Capacitor_with_a_Dielectric
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.E%3A_Practice
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.S%3A_Summary
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance
https://creativecommons.org/licenses/by/4.0
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-2


4.1.1 https://phys.libretexts.org/@go/page/76545

4.1: Electric Potential Energy

By the end of this section, you will be able to:

Define the work done by an electric force
Define electric potential energy
Apply work and potential energy in systems with electric charges

Two terms commonly used to describe electricity are its energy and voltage, which we show in this chapter is directly related to the
potential energy in a system. We know, for example, that great amounts of electrical energy can be stored in batteries, are
transmitted cross-country via currents through power lines, and may jump from clouds to explode the sap of trees. In a similar
manner, at the molecular level, ions cross cell membranes and transfer information.

Figure : The energy released in a lightning strike is an excellent illustration of the vast quantities of energy that may be stored
and released by an electric potential difference. In this chapter, we calculate just how much energy can be released in a lightning
strike and how this varies with the height of the clouds from the ground. (credit: Anthony Quintano)

We also know about voltages associated with electricity. Batteries are typically a few volts, the outlets in your home frequently
produce 120 volts, and power lines can be as high as hundreds of thousands of volts. But energy and voltage are not the same thing.
A motorcycle battery, for example, is small and would not be very successful in replacing a much larger car battery, yet each has
the same voltage. In this chapter, we examine the relationship between voltage and electrical energy, and begin to explore some of
the many applications of electricity.

When a free positive charge q is accelerated by an electric field, it is given kinetic energy (Figure ). The process is analogous
to an object being accelerated by a gravitational field, as if the charge were going down an electrical hill where its electric potential
energy is converted into kinetic energy, although of course the sources of the forces are very different. Let us explore the work done
on a charge q by the electric field in this process, so that we may develop a definition of electric potential energy.

Figure : A charge accelerated by an electric field is analogous to a mass going down a hill. In both cases, potential energy
decreases as kinetic energy increases, . Work is done by a force, but since this force is conservative, we can write 

.

 Learning Objectives

4.1.1

4.1.1

4.1.1
−ΔU = ΔK

W = −ΔU
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The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken, as we
will demonstrate later. This is exactly analogous to the gravitational force. When a force is conservative, it is possible to define a
potential energy associated with the force. It is usually easier to work with the potential energy (because it depends only on
position) than to calculate the work directly.

To show this explicitly, consider an electric charge  fixed at the origin and move another charge  toward q in such a manner
that, at each instant, the applied force  exactly balances the electric force  on Q (Figure ). The work done by the applied
force  on the charge Q changes the potential energy of Q. We call this potential energy the electrical potential energy of Q.

Figure : Displacement of “test” charge Q in the presence of fixed “source” charge q.

The work  done by the applied force  when the particle moves from  to  may be calculated by

Since the applied force  balances the electric force  on Q, the two forces have equal magnitude and opposite directions.
Therefore, the applied force is

where we have defined positive to be pointing away from the origin and r is the distance from the origin. The directions of both the
displacement and the applied force in the system in Figure  are parallel, and thus the work done on the system is positive.

We use the letter U to denote electric potential energy, which has units of joules (J). When a conservative force does negative work,
the system gains potential energy. When a conservative force does positive work, the system loses potential energy, . In
the system in Figure , the Coulomb force acts in the opposite direction to the displacement; therefore, the work is negative.
However, we have increased the potential energy in the two-charge system.

A  charge Q is initially at rest a distance of 10 cm ( ) from a  charge q fixed at the origin (Figure 
). Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm ( ).

Figure : The charge Q is repelled by q, thus having work done on it and gaining kinetic energy.
a. What is the work done by the electric field between  and ?
b. How much kinetic energy does Q have at ?
c. If Q has a mass of , what is the speed of Q at ?

Strategy

Calculate the work with the usual definition. Since Q started from rest, this is the same as the kinetic energy.

Solution

a) Integrating force over distance, we obtain

+q +Q

F ⃗  F ⃗ 
e 4.1.2

F ⃗ 

4.1.2

W12 F ⃗  P1 P2

= ⋅ d .W12 ∫
P2

P1

F ⃗  l ⃗  (4.1.1)

F ⃗  F ⃗ 
e

= − = − ,F ⃗  F ⃗ 
e

kqQ

r2
r̂ (4.1.2)

4.1.2

ΔU = −W

4.1.3

 Example : Kinetic Energy of a Charged Particle4.1.1

+3.0 −nC r1 +5.0 −nC

4.1.3 r2

4.1.3

r1 r2

r2

4.00 μg r2
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b) Since there are no other forces affecting the charge, the net Work on the charge is the same as the work done by the
electric field. Thus, using the work energy theorem, we can conclude that it is also the value of the kinetic energy at .

c) , 

Significance

Charge Q was initially at rest; the electric field of q did work on Q, so now Q has kinetic energy equal to the work done
by the electric field.

In this example, the work W done to accelerate a positive charge from rest is positive and results from a loss in U, or a negative 
. A value for U can be found at any point by taking one point as a reference and calculating the work needed to move a charge

to the other point.

Work W done to accelerate a positive charge from rest is positive and results from a loss in U, or a negative .
Mathematically,

Gravitational potential energy and electric potential energy are quite analogous. Potential energy accounts for work done by a
conservative force and gives added insight regarding energy and energy transformation without the necessity of dealing with the
force directly. It is much more common, for example, to use the concept of electric potential energy than to deal with the Coulomb
force directly in real-world applications.

In polar coordinates with q at the origin and Q located at r, the displacement element vector is  and thus the work
becomes

Notice that this result only depends on the endpoints and is otherwise independent of the path taken. To explore this further,
compare path  to  with path  in Figure .

W12 = ⋅ d∫
r2

r1

F ⃗  r ⃗ 

= dr∫
r2

r1

kqQ

r2

= −
kqQ

r

∣

∣
∣
r2

r1

= kqQ [ + ]
−1

r2

1

r1

= (8.99 × N / )(5.0 × C)(3.0 × C)[ + ]109 m2 C 2 10−9 10−9 −1

0.15 m

1

0.10 m

= 4.5 × J.10−7

r2

K = m1
2

v2 v= = = 15 m/s.2 K

m

−−−
√ 2 4.5× J10−7

4.00× kg10−9

− −−−−−−−−
√

ΔU

 Electric Potential Energy

ΔU

W = −ΔU. (4.1.3)

d = drl ⃗  r̂

W12 = kqQ ⋅ dr∫
r2

r1

1

r2
r̂ r̂

= − .kqQ
1

r2  
final point

kqQ
1

r1  
initial point

(4.1.4)

P1 P2 P1P3P4P2 4.1.4
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Figure :Two paths for displacement  to . The work on segments  and  are zero due to the electrical force
being perpendicular to the displacement along these paths. Therefore, work on paths  and  are equal.

The segments  and  are arcs of circles centered at q. Since the force on Q points either toward or away from q, no work
is done by a force balancing the electric force, because it is perpendicular to the displacement along these arcs. Therefore, the only
work done is along segment  which is identical to .

One implication of this work calculation is that if we were to go around the path , the net work would be zero (Figure 
). Recall that this is how we determine whether a force is conservative or not. Hence, because the electric force is related to

the electric field by , the electric field is itself conservative. That is,

Note that Q is a constant.

Figure : A closed path in an electric field. The net work around this path is zero.

Another implication is that we may define an electric potential energy. Recall that the work done by a conservative force is also
expressed as the difference in the potential energy corresponding to that force. Therefore, the work  to bring a charge from a
reference point to a point of interest may be written as

and, by Equation , the difference in potential energy ( ) of the test charge Q between the two points is

Therefore, we can write a general expression for the potential energy of two point charges (in spherical coordinates):

We may take the second term to be an arbitrary constant reference level, which serves as the zero reference:

A convenient choice of reference that relies on our common sense is that when the two charges are infinitely far apart, there is no
interaction between them. (Recall the discussion of reference potential energy in Potential Energy and Conservation of Energy.)
Taking the potential energy of this state to be zero removes the term  from the equation (just like when we say the ground is
zero potential energy in a gravitational potential energy problem), and the potential energy of Q when it is separated from q by a
distance r assumes the form

4.1.4 P1 P2 P1P3 P4P2
P1P2 P1P3P4P2

P1P3 P4P2

P3P4 P1P2

P1P3P4P2P1

4.1.5

= gF ⃗  E ⃗ 

∮ ⋅ d = 0.E ⃗  l ⃗  (4.1.5)

4.1.5

Wref

= ⋅ dWref ∫
r

rref

F ⃗  l ⃗  (4.1.6)

4.1.3 −U2 U1

ΔU = − ⋅ d .∫
r

rref

F ⃗  l ⃗  (4.1.7)

ΔU = − dr = − = kqQ [ − ] .∫
r

rref

kqQ

r2
[− ]

kqQ

r

r

rref

1

r

1

rref
(4.1.8)

U(r) = k − .
qQ

r
Uref (4.1.9)

Uref
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This formula is symmetrical with respect to  and , so it is best described as the potential energy of the two-charge system.

The Electrical Potential Energy of two charges  and  separated by  is given by,

A  charge Q is initially at rest a distance of 10 cm  from a  charge q fixed at the origin (Figure 
). Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm .

Figure : The charge  is repelled by , thus having work done on it and losing potential energy.

What is the change in the potential energy of the two-charge system from  to ?

Strategy

Calculate the potential energy with the definition given above:

. Since Q started from rest, this is the same as the kinetic energy.

Solution

We have

Significance

The change in the potential energy is negative, as expected, and equal in magnitude to the change in kinetic energy in
this system. Recall from Example  that the change in kinetic energy was positive.

.U(r) = k
qQ

r  
zero reference at r=∞

q Q

 Electric Potential Energy of a Two Charge System

q Q r

.U(r) = k
qQ

r  
zero reference at r=∞

(4.1.10)

 Example : Potential Energy of a Charged Particle4.1.2

+3.0 −nC ( )r1 +5.0 −nC

4.1.6 ( )r2

4.1.6 Q q

r1 r2

Δ = − ⋅ dU12 ∫ r2

r1
F ⃗  r ⃗ 

ΔU12 = − ⋅ d∫
r2

r1

F ⃗  r ⃗ 

= − dr∫
r2

r1

kqQ

r2

= −[− ]
kqQ

r

r2

r1

= kqQ [ − ]
1

r2

1

r1

= (8.99 × N / )(5.0 × C)(3.0 × C)[ − ]109 m2 C 2 10−9 10−9 1

0.15 m

1

0.10 m

= −4.5 × J.10−7 (4.1.11)
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What is the potential energy of Q relative to the zero reference at infinity at  in the above example?

Solution

It has kinetic energy of  at point  and potential energy of , which means that as Q approaches
infinity, its kinetic energy totals three times the kinetic energy at , since all of the potential energy gets converted to
kinetic.

Due to Coulomb’s law, the forces due to multiple charges on a test charge  superimpose; they may be calculated individually and
then added. This implies that the work integrals and hence the resulting potential energies exhibit the same behavior. To
demonstrate this, we consider an example of assembling a system of four charges.

Find the amount of work an external agent must do in assembling four charges , ,  and 
 at the vertices of a square of side 1.0 cm, starting each charge from infinity (Figure ).

Figure : How much work is needed to assemble this charge configuration?

Strategy

We bring in the charges one at a time, giving them starting locations at infinity and calculating the work to bring them in
from infinity to their final location. We do this in order of increasing charge.

Solution

Step 1. First bring the  charge to the origin. Since there are no other charges at a finite distance from this
charge yet, no work is done in bringing it from infinity,

Step 2. While keeping the  charge fixed at the origin, bring the  charge to 
 (Figure ). Now, the applied force must do work against the force exerted by the 

 charge fixed at the origin. The work done equals the change in the potential energy of the 
charge:

Figure : Step 2. Work  to bring the  charge from infinity.

 Exercise 4.1.2

r2

4.5 × J10−7 r2 9.0 × J10−7

r2

Q

 Example : Assembling Four Positive Charges4.1.3

+2.0 −μC +3.0 −μC +4.0 −μC

+5.0 −μC 4.1.7

4.1.7

+2.0 −μC

= 0.W1 (4.1.12)

+2.0 −μC +3.0 −μC

(x, y, z) = (1.0 cm, 0, 0) 4.1.8
+2.0 −μC +3.0 −μC

W2 = k
q1q2

r12

=(9.0 × )109 N ⋅m2

C 2

(2.0 × C)(3.0 × C)10−6 10−6

1.0 × m10−2

= 5.4 J.

4.1.8 W2 +3.0 −μC
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Step 3. While keeping the charges of  and  fixed in their places, bring in the  charge
to  (Figure) . The work done in this step is

Figure : Step 3. The work  to bring the  charge from infinity.

Step 4. Finally, while keeping the first three charges in their places, bring the  charge to 
 (Figure ). The work done here is

Figure : Step 4. The work  to bring the  charge from infinity.

Hence, the total work done by the applied force in assembling the four charges is equal to the sum of the work in
bringing each charge from infinity to its final position:

Significance

The work on each charge depends only on its pairwise interactions with the other charges. No more complicated
interactions need to be considered; the work on the third charge only depends on its interaction with the first and second
charges, the interaction between the first and second charge does not affect the third.

Is the electrical potential energy of two point charges positive or negative if the charges are of the same sign? Opposite signs?
How does this relate to the work necessary to bring the charges into proximity from infinity?

+2.0 −μC +3.0 −μC +4.0 −μC

(x, y, z) = (1.0 cm, 1.0 cm, 0) 4.1.9

W3 = k +k
q1q3

r13

q2q3

r23

=(9.0 × )[ + ]109 N ⋅m2

C 2

(2.0 × C)(4.0 × C)10−6 10−6

× m2
–

√ 10−2

(3.0 × C)(4.0 × C)10−6 10−6

1.0 × m10−2

= 15.9 J.

4.1.9 W3 +4.0 −μC

+5.0 −μC

(x, y, z) = (0, 1.0 cm, 0) 4.1.10

W4 = k [ + + ] ,q4
q1

r14

q2

r24

q3

r34

=(9.0 × ) (5.0 × C) [ + + ]109 N ⋅m2

C 2
10−6

(2.0 × C)10−6

1.0 × m10−2

(3.0 × C)10−6

× m2
–√ 10−2

(4.0 × C)10−6

1.0 × m10−2

= 36.5 J.

4.1.10 W4 +5.0 −μC

WT = + + +W1 W2 W3 W4

= 0 +5.4 J +15.9 J +36.5 J

= 57.8 J.

 Exercise 4.1.3
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Solution
positive, negative, and these quantities are the same as the work you would need to do to bring the charges in from infinity

Note that the electrical potential energy is positive if the two charges are of the same type, either positive or negative, and negative
if the two charges are of opposite types. This makes sense if you think of the change in the potential energy  as you bring the
two charges closer or move them farther apart. Depending on the relative types of charges, you may have to work on the system or
the system would do work on you, that is, your work is either positive or negative. If you have to do positive work on the system
(actually push the charges closer), then the energy of the system should increase. If you bring two positive charges or two negative
charges closer, you have to do positive work on the system, which raises their potential energy. Since potential energy is
proportional to 1/r, the potential energy goes up when r goes down between two positive or two negative charges.

On the other hand, if you bring a positive and a negative charge nearer, you have to do negative work on the system (the charges
are pulling you), which means that you take energy away from the system. This reduces the potential energy. Since potential energy
is negative in the case of a positive and a negative charge pair, the increase in 1/r makes the potential energy more negative, which
is the same as a reduction in potential energy.

The result from Example  may be extended to systems with any arbitrary number of charges. 

This page titled 4.1: Electric Potential Energy is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

7.2: Electric Potential Energy by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-2.
7.1: Prelude to Electric Potential by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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4.2: Electric Potential and Potential Difference

By the end of this section, you will be able to:

Define electric potential, voltage, and potential difference
Define the electron-volt
Calculate electric potential and potential difference from potential energy and electric field
Describe systems in which the electron-volt is a useful unit
Apply conservation of energy to electric systems

Recall that earlier we defined electric field to be a quantity independent of the test charge in a given system, which would
nonetheless allow us to calculate the force that would result on an arbitrary test charge. (The default assumption in the absence of
other information is that the test charge is positive.) We briefly defined a field for gravity, but gravity is always attractive, whereas
the electric force can be either attractive or repulsive. Therefore, although potential energy is perfectly adequate in a gravitational
system, it is convenient to define a quantity that allows us to calculate the work on a charge independent of the magnitude of the
charge. Calculating the work directly may be difficult, since  and the direction and magnitude of  can be complex for
multiple charges, for odd-shaped objects, and along arbitrary paths. But we do know that because , the work, and hence  is
proportional to the test charge . To have a physical quantity that is independent of test charge, we define electric potential  (or
simply potential, since electric is understood) to be the potential energy per unit charge:

The electric potential energy per unit charge is

Since U is proportional to q, the dependence on q cancels. Thus, V does not depend on q. The change in potential energy  is
crucial, so we are concerned with the difference in potential or potential difference  between two points, where

The electric potential difference between points A and B,  is defined to be the change in potential energy of a charge
q moved from A to B, divided by the charge. Units of potential difference are joules per coulomb, given the name volt (V)
after Alessandro Volta.

The familiar term voltage is the common name for electric potential difference. Keep in mind that whenever a voltage is quoted, it
is understood to be the potential difference between two points. For example, every battery has two terminals, and its voltage is the
potential difference between them. More fundamentally, the point you choose to be zero volts is arbitrary. This is analogous to the
fact that gravitational potential energy has an arbitrary zero, such as sea level or perhaps a lecture hall floor. It is worthwhile to
emphasize the distinction between potential difference and electrical potential energy.

The relationship between potential difference (or voltage) and electrical potential energy is given by

or

 Learning Objectives

W = ⋅F ⃗  d ⃗  F ⃗ 

F ⃗  ΔU

q V

 Electric Potential

V = .
U

q
(4.2.1)

ΔU

ΔV

 Electric Potential Difference

−VB VA

1 V = 1 J/C (4.2.2)

 Potential Difference and Electrical Potential Energy

ΔV =
ΔU

q
(4.2.3)

ΔU = qΔV . (4.2.4)
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Voltage is not the same as energy. Voltage is the energy per unit charge. Thus, a motorcycle battery and a car battery can both have
the same voltage (more precisely, the same potential difference between battery terminals), yet one stores much more energy than
the other because . The car battery can move more charge than the motorcycle battery, although both are 12-V
batteries.

You have a 12.0-V motorcycle battery that can move 5000 C of charge, and a 12.0-V car battery that can move 60,000 C of
charge. How much energy does each deliver? (Assume that the numerical value of each charge is accurate to three significant
figures.)

Strategy

To say we have a 12.0-V battery means that its terminals have a 12.0-V potential difference. When such a battery moves
charge, it puts the charge through a potential difference of 12.0 V, and the charge is given a change in potential energy equal
to . To find the energy output, we multiply the charge moved by the potential difference.

Solution

For the motorcycle battery,  and . The total energy delivered by the motorcycle battery is

Similarly, for the car battery,  and

Significance

Voltage and energy are related, but they are not the same thing. The voltages of the batteries are identical, but the energy
supplied by each is quite different. A car battery has a much larger engine to start than a motorcycle. Note also that as a
battery is discharged, some of its energy is used internally and its terminal voltage drops, such as when headlights dim
because of a depleted car battery. The energy supplied by the battery is still calculated as in this example, but not all of
the energy is available for external use.

How much energy does a 1.5-V AAA battery have that can move 100 C?

Answer

Note that the energies calculated in the previous example are absolute values. The change in potential energy for the battery is
negative, since it loses energy. These batteries, like many electrical systems, actually move negative charge—electrons in
particular. The batteries repel electrons from their negative terminals (A) through whatever circuitry is involved and attract them to
their positive terminals (B), as shown in Figure . The change in potential is  and the charge q is
negative, so that  is negative, meaning the potential energy of the battery has decreased when q has moved from A to
B.

ΔU = qΔV

 Example : Calculating Energy4.2.1

ΔU = qΔV

q = 5000 C ΔV = 12.0 V

Δ = (5000 C)(12.0 V ) = (5000 C)(12.0 J/C) = 6.00 × J.Ucycle 104

q = 60, 000 C

Δ = (60, 000 C)(12.0 V ) = 7.20 × J.Ucar 105

 Exercise 4.2.1

ΔU = qΔV = (100 C)(1.5 V ) = 150 J

4.2.1 ΔV = − = +12 VVB VA
ΔU = qΔV
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Figure : A battery moves negative charge from its negative terminal through a headlight to its positive terminal. Appropriate
combinations of chemicals in the battery separate charges so that the negative terminal has an excess of negative charge, which is
repelled by it and attracted to the excess positive charge on the other terminal. In terms of potential, the positive terminal is at a
higher voltage than the negative terminal. Inside the battery, both positive and negative charges move.

When a 12.0-V car battery powers a single 30.0-W headlight, how many electrons pass through it each second?

Strategy

To find the number of electrons, we must first find the charge that moves in 1.00 s. The charge moved is related to voltage
and energy through the equations . A 30.0-W lamp uses 30.0 joules per second. Since the battery loses energy,
we have  and, since the electrons are going from the negative terminal to the positive, we see that 

.

Solution

To find the charge q moved, we solve the equation :

Entering the values for  and , we get

The number of electrons  is the total charge divided by the charge per electron. That is,

Significance

This is a very large number. It is no wonder that we do not ordinarily observe individual electrons with so many being
present in ordinary systems. In fact, electricity had been in use for many decades before it was determined that the
moving charges in many circumstances were negative. Positive charge moving in the opposite direction of negative
charge often produces identical effects; this makes it difficult to determine which is moving or whether both are moving.

How many electrons would go through a 24.0-W lamp?

Answer

The Electron-Volt

The energy per electron is very small in macroscopic situations like that in the previous example—a tiny fraction of a joule. But on
a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of great importance. For example, even a tiny
fraction of a joule can be great enough for these particles to destroy organic molecules and harm living tissue. The particle may do

4.2.1

 Example : How Many Electrons Move through a Headlight Each Second?4.2.2

ΔU = qΔV

ΔU = −30 J

ΔV = +12.0 V

ΔU = qΔV

q = .
ΔU

ΔV
(4.2.5)

ΔU ΔV

q = = = −2.50 C.
−30.0 J

+12.0 V

−30.0 J

+12.0 J/C
(4.2.6)

ne

= = 1.56 × electrons.ne

−2.50 C

−1.60 × C/10−19 e−
1019 (4.2.7)

 Exercise 4.2.2

−2.00 C, = 1.25 × electronsne 1019

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76546?pdf


4.2.4 https://phys.libretexts.org/@go/page/76546

its damage by direct collision, or it may create harmful X-rays, which can also inflict damage. It is useful to have an energy unit
related to submicroscopic effects.

Figure  shows a situation related to the definition of such an energy unit. An electron is accelerated between two charged
metal plates, as it might be in an old-model television tube or oscilloscope. The electron gains kinetic energy that is later converted
into another form—light in the television tube, for example. (Note that in terms of energy, “downhill” for the electron is “uphill”
for a positive charge.) Since energy is related to voltage by , we can think of the joule as a coulomb-volt.

Figure : A typical electron gun accelerates electrons using a potential difference between two separated metal plates. By
conservation of energy, the kinetic energy has to equal the change in potential energy, so . The energy of the electron in
electron-volts is numerically the same as the voltage between the plates. For example, a 5000-V potential difference produces
5000-eV electrons. The conceptual construct, namely two parallel plates with a hole in one, is shown in (a), while a real electron
gun is shown in (b).

On the submicroscopic scale, it is more convenient to define an energy unit called the electron-volt (eV), which is the energy
given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

An electron accelerated through a potential difference of 1 V is given an energy of 1 eV. It follows that an electron accelerated
through 50 V gains 50 eV. A potential difference of 100,000 V (100 kV) gives an electron an energy of 100,000 eV (100 keV), and
so on. Similarly, an ion with a double positive charge accelerated through 100 V gains 200 eV of energy. These simple relationships
between accelerating voltage and particle charges make the electron-volt a simple and convenient energy unit in such
circumstances.

The electron-volt is commonly employed in submicroscopic processes—chemical valence energies and molecular and nuclear
binding energies are among the quantities often expressed in electron-volts. For example, about 5 eV of energy is required to break
up certain organic molecules. If a proton is accelerated from rest through a potential difference of 30 kV, it acquires an energy of 30
keV (30,000 eV) and can break up as many as 6000 of these molecules .
Nuclear decay energies are on the order of 1 MeV (1,000,000 eV) per event and can thus produce significant biological damage.

Conservation of Energy
The total energy of a system is conserved if there is no net addition (or subtraction) due to work or heat transfer. For conservative
forces, such as the electrostatic force, conservation of energy states that mechanical energy is a constant.

Mechanical energy is the sum of the kinetic energy and potential energy of a system; that is, . A loss of U for a
charged particle becomes an increase in its K. Conservation of energy is stated in equation form as

4.2.2

ΔU = qΔV

4.2.2
KE = qV

 The Electron-Volt Unit

1 eV = (1.60 × C)(1 V ) = (1.60 × C)(1 J/C) = 1.60 × J.10−19 10−19 10−19 (4.2.8)

(30, 000 eV : 5 eV permolecule = 6000 molecules)

K+U = constant
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or

where i and f stand for initial and final conditions. As we have found many times before, considering energy can give us insights
and facilitate problem solving.

a) Calculate the final speed of a free electron accelerated from rest through a potential difference of 100 V. (Assume that this
numerical value is accurate to three significant figures.)

b) How would this example change with a positron? A positron is identical to an electron except the charge is positive.

Strategy

We have a system with only conservative forces. Assuming the electron is accelerated in a vacuum, and neglecting the
gravitational force (we will check on this assumption later), all of the electrical potential energy is converted into kinetic
energy. We can identify the initial and final forms of energy to be

, , , .

Solution

a) Conservation of energy states that

Entering the forms identified above, we obtain

We solve this for v:

Entering values for q, V, and m gives

b) It would be going in the opposite direction, with no effect on the calculations as presented.

Significance

Note that both the charge and the initial voltage are negative, as in Figure . From the discussion of electric charge
and electric field, we know that electrostatic forces on small particles are generally very large compared with the
gravitational force. The large final speed confirms that the gravitational force is indeed negligible here. The large speed
also indicates how easy it is to accelerate electrons with small voltages because of their very small mass. Voltages much
higher than the 100 V in this problem are typically used in electron guns. These higher voltages produce electron speeds
so great that effects from special relativity must be taken into account and will be discussed elsewhere. That is why we
consider a low voltage (accurately) in this example.

Voltage and Electric Field
So far, we have explored the relationship between voltage and energy. Now we want to explore the relationship between voltage
and electric field. We will start with the general case for a non-uniform  field. Recall that our general formula for the potential
energy of a test charge q at point P relative to reference point R is

K+U = constant (4.2.9)

+ = +Ki Ui Kf Uf (4.2.10)

 Example : Electrical Potential Energy Converted into Kinetic Energy4.2.3

= 0Ki = mKf
1

2
v2 = qVUi = 0Uf

+ = + .Ki Ui Kf Uf (4.2.11)

qV = .
mv2

2
(4.2.12)

v= .
2qV

m

− −−−
√ (4.2.13)

v= = 5.93 × m/s.
2(−1.60 × C)(−100 J/C)10−19

9.11 × kg10−31

− −−−−−−−−−−−−−−−−−−−−−−−−

√ 106 (4.2.14)

4.2.2

E ⃗ 
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When we substitute in the definition of electric field , this becomes

Applying our definition of potential  to this potential energy, we find that, in general,

From our previous discussion of the potential energy of a charge in an electric field, the result is independent of the path chosen,
and hence we can pick the integral path that is most convenient.

Consider the special case of a positive point charge q at the origin. To calculate the potential caused by q at a distance r from the
origin relative to a reference of 0 at infinity (recall that we did the same for potential energy), let  and , with 

 and use . When we evaluate the integral

for this system, we have

This result,

is the standard form of the potential of a point charge. This will be explored further in the next section.

To examine another interesting special case, suppose a uniform electric field  is produced by placing a potential difference (or
voltage)  across two parallel metal plates, labeled A and B (Figure ). Examining this situation will tell us what voltage is
needed to produce a certain electric field strength. It will also reveal a more fundamental relationship between electric potential and
electric field.

= − ⋅ d .Up ∫
p

R

F ⃗  l ⃗  (4.2.15)

( = /q)E ⃗  F ⃗ 

= −q ⋅ d .Up ∫
p

R

E ⃗  l ⃗  (4.2.16)

(V = U/q)

= − ⋅ d .Vp ∫
p

R

E ⃗  l ⃗ 

 Relationship Between Voltage and Electric Field

= − ⋅ d .Vp ∫
p

R

E ⃗  l ⃗  (4.2.17)

P = r R = ∞

d = d = drl ⃗  r ⃗  r̂ =E ⃗  kq

r2 r̂

= − ⋅ dVp ∫
p

R

E ⃗  l ⃗  (4.2.18)

= − dr = − = .Vr ∫
r

∞

kq

r2

kq

r

kq

∞

kq

r
(4.2.19)

=Vr
kq

r
(4.2.20)

E ⃗ 

ΔV 4.2.3
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Figure : The relationship between V and E for parallel conducting plates is . (Note that  in magnitude.
For a charge that is moved from plate A at higher potential to plate B at lower potential, a minus sign needs to be included as
follows: .)

From a physicist’s point of view, either  or  can be used to describe any interaction between charges. However,  is a scalar
quantity and has no direction, whereas  is a vector quantity, having both magnitude and direction. (Note that the magnitude of the
electric field, a scalar quantity, is represented by E.) The relationship between  and  is revealed by calculating the work done
by the electric force in moving a charge from point A to point B. But, as noted earlier, arbitrary charge distributions require
calculus. We therefore look at a uniform electric field as an interesting special case.

The work done by the electric field in Figure  to move a positive charge q from A, the positive plate, higher potential, to B,
the negative plate, lower potential, is

The potential difference between points A and B is

Entering this into the expression for work yields

Work is : here , since the path is parallel to the field. Thus, . Since  we see that 
.

Substituting this expression for work into the previous equation gives

The charge cancels, so we obtain for the voltage between points A and B.

where d is the distance from A to B, or the distance between the plates in Figure .

Note that this equation implies that the units for electric field are volts per meter. We already know the units for electric field are
newtons per coulomb; thus, the following relation among units is valid:

4.2.3 E = V /d ΔV = VAB

−ΔV = − =VA VB VAB

ΔV E ⃗  ΔV

E ⃗ 

ΔV E ⃗ 

4.2.3

W = −ΔU = −qΔV . (4.2.21)

−ΔV = −( − ) = − = .VB VA VA VB VAB (4.2.22)

W = q .VAB (4.2.23)

W = ⋅ = Fd cos θF ⃗  d ⃗  cos θ = 1 W = Fd F = qE

W = qEd

qEd = q .VAB (4.2.24)

 In uniform E-field only:

= EdVAB (4.2.25)

E =
VAB

d
(4.2.26)

4.2.3

1 N/C = 1 V /m. (4.2.27)
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Furthermore, we may extend this to the integral form. Substituting Equation  into our definition for the potential difference
between points A and B, we obtain

which simplifies to

As a demonstration, from this we may calculate the potential difference between two points (A and B) equidistant from a point
charge q at the origin, as shown in Figure .

Figure : The arc for calculating the potential difference between two points that are equidistant from a point charge at the
origin.

To do this, we integrate around an arc of the circle of constant radius r between A and B, which means we let , while
using . Thus,

for this system becomes

However,  and therefore

This result, that there is no difference in potential along a constant radius from a point charge, will come in handy when we map
potentials.

Dry air can support a maximum electric field strength of about . Above that value, the field creates enough
ionization in the air to make the air a conductor. This allows a discharge or spark that reduces the field. What, then, is the
maximum voltage between two parallel conducting plates separated by 2.5 cm of dry air?

Strategy

We are given the maximum electric field E between the plates and the distance d between them. We can use the equation 
 to calculate the maximum voltage.

Solution

The potential difference or voltage between the plates is

Entering the given values for E and d gives

or

4.2.3

= − = − ⋅ d + ⋅ dVAB VB VA ∫
B

R

E ⃗  l ⃗  ∫
A

R

E ⃗  l ⃗  (4.2.28)

− = − ⋅ d .VB VA ∫
B

A

E ⃗  l ⃗  (4.2.29)

4.2.4

4.2.4

d = r dφl ⃗  φ̂

=E ⃗  kq

r2 r̂

ΔV = − = − ⋅ d .VB VA ∫
B

A

E ⃗  l ⃗  (4.2.30)

− = − ⋅ r dφ.VB VA ∫
B

A

kq

r2
φ̂ (4.2.31)

⋅r̂ φ̂

− = 0.VB VA (4.2.32)

 Example : What Is the Highest Voltage Possible between Two Plates?4.2.4A

3.0 × V /m106

= EdVAB

= Ed.VAB (4.2.33)

= (3.0 × V /m)(0.025 m) = 7.5 × VVAB 106 104 (4.2.34)
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(The answer is quoted to only two digits, since the maximum field strength is approximate.)

Significance

One of the implications of this result is that it takes about 75 kV to make a spark jump across a 2.5-cm (1-in.) gap, or
150 kV for a 5-cm spark. This limits the voltages that can exist between conductors, perhaps on a power transmission
line. A smaller voltage can cause a spark if there are spines on the surface, since sharp points have larger field strengths
than smooth surfaces. Humid air breaks down at a lower field strength, meaning that a smaller voltage will make a spark
jump through humid air. The largest voltages can be built up with static electricity on dry days (Figure ).

Figure : A spark chamber is used to trace the paths of high-energy particles. Ionization created by the particles as
they pass through the gas between the plates allows a spark to jump. The sparks are perpendicular to the plates,
following electric field lines between them. The potential difference between adjacent plates is not high enough to cause
sparks without the ionization produced by particles from accelerator experiments (or cosmic rays). This form of detector
is now archaic and no longer in use except for demonstration purposes. (credit b: modification of work by Jack Collins)

An electron gun (Figure ) has parallel plates separated by 4.00 cm and gives electrons 25.0 keV of energy. (a) What is the
electric field strength between the plates? (b) What force would this field exert on a piece of plastic with a  charge
that gets between the plates?

Strategy

Strategy

Since the voltage and plate separation are given, the electric field strength can be calculated directly from the expression
. Once we know the electric field strength, we can find the force on a charge by using . Since the

electric field is in only one direction, we can write this equation in terms of the magnitudes, .

Solution
a. The expression for the magnitude of the electric field between two uniform metal plates is

Since the electron is a single charge and is given 25.0 keV of energy, the potential difference must be 25.0 kV. Entering
this value for  and the plate separation of 0.0400 m, we obtain

b. The magnitude of the force on a charge in an electric field is obtained from the equation

Substituting known values gives

= 75 kV .VAB (4.2.35)

4.2.5

4.2.5

 Example : Field and Force inside an Electron Gun4.2.4B

4.2.2

0.500 −μC

E =
VAB

d
= qF ⃗  E ⃗ 

F = qE

E = .
VAB

d
(4.2.36)

VAB

E = = 6.25 × V /m.
25.0 kV

0.0400 m
105 (4.2.37)

F = qE. (4.2.38)
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Significance Note that the units are newtons, since . Because the electric field is uniform between the
plates, the force on the charge is the same no matter where the charge is located between the plates.

Given a point charge  at the origin, calculate the potential difference between point  a distance 
from q, and  a distance  from q, where the two points have an angle of  between them (Figure ).

Figure : Find the difference in potential between  and .

Strategy

Do this in two steps. The first step is to use  and let  (point ) and 

 (point , not marked, in the direction of  but a distance  away) , with  and 
Then perform the integral. 
The second step is to integrate  around an arc of constant radius r, which means we let 

 with limits , still using .

Then add the two results together.

Solution

For the first part,  for this system becomes  which computes to

.

For the second step,  becomes , but  and therefore 
. Adding the two parts together, we get 300 V.

Significance/Important

We have demonstrated the use of the integral form of the potential difference to obtain a numerical result. Notice that, in
this particular system, we could have also used the formula for the potential due to a point charge at the two points and
simply taken the difference.

1. Examine the situation to determine if static electricity is involved; this may concern separated stationary charges, the forces
among them, and the electric fields they create.

2. Identify the system of interest. This includes noting the number, locations, and types of charges involved.
3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful. Determine

whether the Coulomb force is to be considered directly—if so, it may be useful to draw a free-body diagram, using electric
field lines.

F = (0.500 × C)(6.25 × V /m) = 0.313 N .10−6 105 (4.2.39)

1 V /m = 1 N/C

 Example : Calculating Potential of a Point Charge4.2.4C

q = +2.0 −nC P1 a = 4.0 cm

P2 b = 12.0 cm φ = 24o 4.2.6

4.2.6 P1 P2

− = − ⋅ dVB VA ∫ B

A
E ⃗  l ⃗  A = a = 4.0 cm P1

B = b = 12.0 cm P0 â b d = d = drl ⃗  r ⃗  r̂ = .E ⃗  kq

r2
r̂

− = − ⋅ dVB VA ∫ B

A
E ⃗  l ⃗ 

d = r dφl ⃗  φ ⃗  0 ≤ φ ≤ 24o =E ⃗  kq

r2
r̂

− = − ⋅ dVB VA ∫ B

A
E ⃗  l ⃗  − = − ⋅ drVb Va ∫ b

a

kq

r2
r̂ r̂

ΔV = − dr = kq [ − ]∫ b

a

kq

r2

1

b

1
a

= (8.99 × N / )(2.0 × C)[ − ]= −300 V109 m2 C 2 10−9 1

0.12 m

1

0.040 m

− = − ⋅ dVB VA ∫ B

A
E ⃗  l ⃗  ΔV = − ⋅ r dφ∫ 24o

0o
kq

r2
r̂ φ̂ ⋅ = 0r̂ φ̂

ΔV = 0

ΔV = − = k −k = (8.99 × N / )(2.0 × C)[ − ]= −300 VVP2 VP1
q

b

q

a
109 m2 C 2 10−9 1

0.12 m

1

0.040 m

 Problem-Solving Strategy: Electrostatics
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4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). It is important to
distinguish the Coulomb force F from the electric field E, for example.

5. Solve the appropriate equation for the quantity to be determined (the unknown) or draw the field lines as requested.
6. Examine the answer to see if it is reasonable: Does it make sense? Are units correct and the numbers involved reasonable?

Calculations of Electric Potential

The electric potential due to a point charge is can be deduced from .

The electric potential  of a point charge is given by

The potential in Equation  at infinity is chosen to be zero. Thus,  for a point charge decreases with distance, whereas  for
a point charge decreases with distance squared:

Recall that the electric potential V is a scalar and has no direction, whereas the electric field  is a vector. To find the voltage due
to a combination of point charges, you add the individual voltages as numbers. To find the total electric field, you must add the
individual fields as vectors, taking magnitude and direction into account. This is consistent with the fact that V is closely associated
with energy, a scalar, whereas  is closely associated with force, a vector.

Charges in static electricity are typically in the nanocoulomb (nC) to microcoulomb  range. What is the voltage 5.00 cm
away from the center of a 1-cm-diameter solid metal sphere that has a –3.00-nC static charge?

Strategy

As we discussed in Electric Charges and Fields, charge on a metal sphere spreads out uniformly and produces a field like

that of a point charge located at its center. Thus, we can find the voltage using the equation .

Solution

Entering known values into the expression for the potential of a point charge (Equation ), we obtain

Significance

The negative value for voltage means a positive charge would be attracted from a larger distance, since the potential is
lower (more negative) than at larger distances. Conversely, a negative charge would be repelled, as expected.

4.2.1

 Electric Potential  of a Point ChargeV

V

V =
kq

r  
point charge

(4.2.40)

4.2.40 V E ⃗ 

E = =
F

qt

kq

r2
(4.2.41)

E ⃗ 

E ⃗ 

 Example : What Voltage Is Produced by a Small Charge on a Metal Sphere?4.2.5

(μC)

V =
kq

r

4.2.40

V = k
q

r

= (9.00 × N ⋅ / )( )109 m2 C 2 −3.00 × C10−9

5.00 × m10−2

= −539 V .
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A demonstration Van de Graaff generator has a 25.0-cm-diameter metal sphere that produces a voltage of 100 kV near its
surface (Figure).

a) What excess charge resides on the sphere? (Assume that each numerical value here is shown with three significant figures.) 
b) What is the potential inside the metal sphere?

Figure : The voltage of this demonstration Van de Graaff generator is measured between the charged sphere and ground.
Earth’s potential is taken to be zero as a reference. The potential of the charged conducting sphere is the same as that of an
equal point charge at its center.

Strategy

The potential on the surface is the same as that of a point charge at the center of the sphere, 12.5 cm away. (The radius of
the sphere is 12.5 cm.) We can thus determine the excess charge using Equation 

Solution

a) Solving for  and entering known values gives

b) 

Recall that the electric field inside a conductor is zero. Hence, any path from a point on the surface to any point in the
interior will have an integrand of zero when calculating the change in potential, and thus the potential in the interior of
the sphere is identical to that on the surface.

Significance

 Example : What Is the Excess Charge on a Van de Graaff Generator?4.2.6

4.2.1

4.2.40

V = .
kq

r
(4.2.42)

q

q =
rV

k

=
(0.125 m)(100 × V )103

8.99 × N ⋅ /109 m2 C 2

= 1.39 × C10−6

= 1.39 μC.

V = k
q

r

= (8.99 × N ⋅ / )( )109 m2 C 2 −3.00 × C10−9

5.00 × m10−3

= −5390 V

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76546?pdf


4.2.13 https://phys.libretexts.org/@go/page/76546

This is a relatively small charge, but it produces a rather large voltage. We have another indication here that it is difficult
to store isolated charges.

The voltages in both of these examples could be measured with a meter that compares the measured potential with ground
potential. Ground potential is often taken to be zero (instead of taking the potential at infinity to be zero). It is the potential
difference between two points that is of importance, and very often there is a tacit assumption that some reference point, such as
Earth or a very distant point, is at zero potential. As noted earlier, this is analogous to taking sea level as  when considering
gravitational potential energy .

Systems of Multiple Point Charges
Just as the electric field obeys a superposition principle, so does the electric potential. Consider a system consisting of N charges 

. What is the net electric potential V at a space point P from these charges? Each of these charges is a source charge
that produces its own electric potential at point P, independent of whatever other changes may be doing. Let  be the
electric potentials at P produced by the charges , respectively. Then, the net electric potential  at that point is equal
to the sum of these individual electric potentials. You can easily show this by calculating the potential energy of a test charge when
you bring the test charge from the reference point at infinity to point P:

Note that electric potential follows the same principle of superposition as electric field and electric potential energy. To show this
more explicitly, note that a test charge  at the point P in space has distances of  from the N charges fixed in space
above, as shown in Figure . Using our formula for the potential of a point charge for each of these (assumed to be point)
charges, we find that

Therefore, the electric potential energy of the test charge is

which is the same as the work to bring the test charge into the system, as found in the first section of the chapter.

Figure : Notation for direct distances from charges to a space point P.

An electric dipole is a system of two equal but opposite charges a fixed distance apart. This system is used to model many
real-world systems, including atomic and molecular interactions. One of these systems is the water molecule, under certain
circumstances. These circumstances are met inside a microwave oven, where electric fields with alternating directions make
the water molecules change orientation. This vibration is the same as heat at the molecular level.

Consider the dipole in Figure  with the charge magnitude of  and separation distance  
a) What is the potential at the following locations in space? (a) (0, 0, 1.0 cm); (b) (0, 0, –5.0 cm); (c) (3.0 cm, 0, 2.0 cm). 

h = 0

= mghUg

, , . . . ,q1 q2 qN
, , . . . ,V1 V2 VN

, , . . . ,q1 q2 qN Vp

= + +. . . + = .Vp V1 V2 VN ∑
1

N

Vi (4.2.43)

qi , , . . . ,r1 r2 rN
4.2.2

 Electric Potential Due to Multiple Point Charges

= k = k .Vp ∑
1

N qi

ri
∑

1

N qi

ri
(4.2.44)

= = k ,Up qtVp qt ∑
1

N
qi

ri
(4.2.45)

4.2.2

 Example : Electric Potential of a Dipole4.2.7

4.2.3 q = 3.0 μC d = 4.0 cm.
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d) What is the potential on the x-axis? 

Figure : A general diagram of an electric dipole, and the notation for the distances from the individual charges to a point
P in space.

Strategy

Apply  to each of these three points.

Solution

a. 

b. 

c. 

d. The x-axis the potential is zero, due to the equal and opposite charges the same distance from it. 

Significance

Note that evaluating potential is significantly simpler than electric field, due to potential being a scalar instead of a
vector.

 

Potential of Continuous Charge Distributions
We have been working with point charges a great deal, but what about continuous charge distributions? Recall from Equation 

 that

We may treat a continuous charge distribution as a collection of infinitesimally separated individual points. This yields the integral

4.2.3

= kVp ∑N
1

qi

ri

= k = (9.0 × N ⋅ / )( − ) = 1.8 × VVp ∑N
1

qi

ri
109 m2 C 2 3.0 nC

0.010 m

3.0 nC

0.030 m
103

= k = (9.0 × N ⋅ / )( − ) = −5.1 × VVp ∑N
1

qi

ri
109 m2 C 2 3.0 nC

0.070 m

3.0 nC

0.030 m
102

= k = (9.0 × N ⋅ / )( − ) = 3.6 × VVp ∑N
1

qi

ri
109 m2 C 2 3.0 nC

0.030 m

3.0 nC

0.050 m
102

4.2.44

= k∑ .Vp
qi

ri
(4.2.46)

= ∫Vp
dq

r

 Electric Potential Due to a Continuous Charge Distribution

= ∫Vp
dq

r
(4.2.47)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76546?pdf


4.2.15 https://phys.libretexts.org/@go/page/76546

for the potential at a point P. Note that  is the distance from each individual point in the charge distribution to the point P. As we
saw in Electric Charges and Fields, the infinitesimal charges are given by

where  is linear charge density,  is the charge per unit area, and  is the charge per unit volume.

Find the electric potential of a uniformly charged, nonconducting wire with linear density  (coulomb/meter) and length L at a
point that lies on a line that divides the wire into two equal parts.

Strategy

To set up the problem, we choose Cartesian coordinates in such a way as to exploit the symmetry in the problem as much as
possible. We place the origin at the center of the wire and orient the y-axis along the wire so that the ends of the wire are at 

. The field point P is in the xy-plane and since the choice of axes is up to us, we choose the x-axis to pass
through the field point P, as shown in Figure .

Figure : We want to calculate the electric potential due to a line of charge.

Solution

Consider a small element of the charge distribution between y and . The charge in this cell is  and the
distance from the cell to the field point P is . Therefore, the potential becomes

r

dq = λ dl
  
one dimension

(4.2.48)

dq = σ dA
  
two dimensions

(4.2.49)

dq = ρ dV  
  

three dimensions

(4.2.50)

λ σ ρ

 Example : Potential of a Line of Charge4.2.8

λ

y = ±L/2

4.2.6

4.2.6

y+dy dq = λ dy

+x2 y2
− −−−−−

√

Vp = k∫
dq

r

= k∫
L/2

−L/2

λ dy

+x2 y2− −−−−−
√

= kλ[ln(y+ )]+y2 x2
− −−−−−

√
L/2

−L/2

= kλ[ln(( )+ ) − ln((− )+ )]
L

2
+( )

L

2

2

x2

− −−−−−−−−−

√
L

2
+(− )

L

2

2

x2

− −−−−−−−−−−

√

= kλln[ ] .
L+ +4L2 x2

− −−−−−−
√

−L+ +4L2 x2
− −−−−−−

√
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Significance

Note that this was simpler than the equivalent problem for electric field, due to the use of scalar quantities. Recall that
we expect the zero level of the potential to be at infinity, when we have a finite charge. To examine this, we take the
limit of the above potential as x approaches infinity; in this case, the terms inside the natural log approach one, and
hence the potential approaches zero in this limit. Note that we could have done this problem equivalently in cylindrical
coordinates; the only effect would be to substitute r for x and z for y.

A ring has a uniform charge density , with units of coulomb per unit meter of arc. Find the electric potential at a point on the
axis passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a circle. We
divide the circle into infinitesimal elements shaped as arcs on the circle and use cylindrical coordinates shown in Figure 

.

Figure : We want to calculate the electric potential due to a ring of charge.

Solution

A general element of the arc between  and  is of length  and therefore contains a charge equal to .
The element is at a distance of  from P, and therefore the potential is

Significance

This result is expected because every element of the ring is at the same distance from point P. The net potential at P is
that of the total charge placed at the common distance, .

 Example : Potential Due to a Ring of Charge4.2.9

λ

4.2.7

4.2.7

θ θ+dθ Rdθ λRdθ

+z2 R2
− −−−−−

√

Vp = k∫
dq

r

= k∫
2π

0

λRdθ

+z2 R2
− −−−−−

√

= dθ
kλR

+z2 R2
− −−−−−

√
∫

2π

0

=
2πkλR

+z2 R2
− −−−−−

√

= k .
qtot

+z2 R2
− −−−−−√

+z2 R2
− −−−−−

√
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A disk of radius R has a uniform charge density  with units of coulomb meter squared. Find the electric potential at any point
on the axis passing through the center of the disk.

Strategy

We divide the disk into ring-shaped cells, and make use of the result for a ring worked out in the previous example, then
integrate over r in addition to . This is shown in Figure .

Figure : We want to calculate the electric potential due to a disk of charge.

Solution

An infinitesimal width cell between cylindrical coordinates r and  shown in Figure  will be a ring of charges
whose electric potential  at the field point has the following expression

where

The superposition of potential of all the infinitesimal rings that make up the disk gives the net potential at point P. This
is accomplished by integrating from  to :

Significance

The basic procedure for a disk is to first integrate around  and then over r. This has been demonstrated for uniform
(constant) charge density. Often, the charge density will vary with r, and then the last integral will give different results.

Find the electric potential due to an infinitely long uniformly charged wire.

Strategy

Since we have already worked out the potential of a finite wire of length L in Example , we might wonder if taking 
 in our previous result will work:

 Example : Potential Due to a Uniform Disk of Charge4.2.10

σ

θ 4.2.8

4.2.8

r+dr 4.2.8

dVp

d = kVp
dq

+z2 r2
− −−−−−

√
(4.2.51)

dq = σ2πrdr. (4.2.52)

r = 0 r = R

Vp = ∫ d = k2πσ ,Vp ∫
R

0

r dr

+z2 r2
− −−−−−

√

= k2πσ( − ).+z2 R2− −−−−−
√ z2−−

√

 Example : Potential Due to an Infinite Charged Wire4.2.11

4.2.4

L → ∞
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However, this limit does not exist because the argument of the logarithm becomes [2/0] as , so this way of finding
V of an infinite wire does not work. The reason for this problem may be traced to the fact that the charges are not localized
in some space but continue to infinity in the direction of the wire. Hence, our (unspoken) assumption that zero potential
must be an infinite distance from the wire is no longer valid.

To avoid this difficulty in calculating limits, let us use the definition of potential by integrating over the electric field from
the previous section, and the value of the electric field from this charge configuration from the previous chapter.

Solution

We use the integral

where R is a finite distance from the line of charge, as shown in Figure .

Figure : Points of interest for calculating the potential of an infinite line of charge.

With this setup, we use  and  to obtain

Now, if we define the reference potential  at , this simplifies to

Note that this form of the potential is quite usable; it is 0 at 1 m and is undefined at infinity, which is why we could not
use the latter as a reference.

Significance

Although calculating potential directly can be quite convenient, we just found a system for which this strategy does not
work well. In such cases, going back to the definition of potential in terms of the electric field may offer a way forward.

What is the potential on the axis of a nonuniform ring of charge, where the charge density is ?

Solution

It will be zero, as at all points on the axis, there are equal and opposite charges equidistant from the point of interest. Note
that this distribution will, in fact, have a dipole moment.

= kλ ln( ).Vp lim
L→∞

L+ +4L2 x2
− −−−−−−

√

−L+ +4L2 x2
− −−−−−−

√
(4.2.53)

L → ∞

= − ⋅ dVp ∫
p

R

E ⃗  l ⃗  (4.2.54)

4.2.9

4.2.9

= 2kλE ⃗ 
p

1

s
ŝ d = dl ⃗  s ⃗ 

−Vp VR = − 2kλ ds∫
p

R

1

s

= −2kλ ln .
sp

sR

= 0VR = 1 msR

= −2kλ ln .Vp sp (4.2.55)

 Exercise 4.2.3

λ(θ) = λ cos θ
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4.3: Equipotential Surfaces and Conductors

By the end of this section, you will be able to:

Define equipotential surfaces and equipotential lines
Explain the relationship between equipotential lines and electric field lines
Map equipotential lines for one or two point charges
Describe the potential of a conductor
Compare and contrast equipotential lines and elevation lines on topographic maps

We can represent electric potentials (voltages) pictorially, just as we drew pictures to illustrate electric fields. This is not surprising,
since the two concepts are related. Consider Figure , which shows an isolated positive point charge and its electric field lines,
which radiate out from a positive charge and terminate on negative charges. We use blue arrows to represent the magnitude and
direction of the electric field, and we use green lines to represent places where the electric potential is constant. These are called
equipotential surfaces in three dimensions, or equipotential lines in two dimensions. The term equipotential is also used as a
noun, referring to an equipotential line or surface. The potential for a point charge is the same anywhere on an imaginary sphere of
radius r surrounding the charge. This is true because the potential for a point charge is given by  and thus has the same
value at any point that is a given distance r from the charge. An equipotential sphere is a circle in the two-dimensional view of
Figure . Because the electric field lines point radially away from the charge, they are perpendicular to the equipotential lines.

Figure : An isolated point charge Q with its electric field lines in blue and equipotential lines in green. The potential is the
same along each equipotential line, meaning that no work is required to move a charge anywhere along one of those lines. Work is
needed to move a charge from one equipotential line to another. Equipotential lines are perpendicular to electric field lines in every
case. For a three-dimensional version, explore the first media link.

It is important to note that equipotential lines are always perpendicular to electric field lines. No work is required to move a charge
along an equipotential, since . Thus, the work is

Work is zero if the direction of the force is perpendicular to the displacement. Force is in the same direction as , so motion along
an equipotential must be perpendicular to . More precisely, work is related to the electric field by

Note that in Equation ,  and  symbolize the magnitudes of the electric field and force, respectively. Neither  nor  is zero
and  is also not zero. So  must be 0, meaning  must be . In other words, motion along an equipotential is perpendicular
to E.

One of the rules for static electric fields and conductors is that the electric field must be perpendicular to the surface of any
conductor. This implies that a conductor is an equipotential surface in static situations. There can be no voltage difference across
the surface of a conductor, or charges will flow. One of the uses of this fact is that a conductor can be fixed at what we consider

 Learning Objectives

4.3.1

V = kq/r

4.3.1

4.3.1

ΔV = 0

W = −ΔU = −qΔV = 0. (4.3.1)

E

E

W = ⋅F ⃗  d ⃗ 
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= qEd cos θ
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zero volts by connecting it to the earth with a good conductor—a process called grounding. Grounding can be a useful safety tool.
For example, grounding the metal case of an electrical appliance ensures that it is at zero volts relative to Earth.

Figure : The electric field lines and equipotential lines for two equal but opposite charges. The equipotential lines can be
drawn by making them perpendicular to the electric field lines, if those are known. Note that the potential is greatest (most
positive) near the positive charge and least (most negative) near the negative charge. For a three-dimensional version, explore the
first media link.

Because a conductor is an equipotential, it can replace any equipotential surface. For example, in Figure , a charged spherical
conductor can replace the point charge, and the electric field and potential surfaces outside of it will be unchanged, confirming the
contention that a spherical charge distribution is equivalent to a point charge at its center.

Figure  shows the electric field and equipotential lines for two equal and opposite charges. Given the electric field lines, the
equipotential lines can be drawn simply by making them perpendicular to the electric field lines. Conversely, given the
equipotential lines, as in Figure , the electric field lines can be drawn by making them perpendicular to the equipotentials, as
in Figure .

Figure : (a) These equipotential lines might be measured with a voltmeter in a laboratory experiment. (b) The corresponding
electric field lines are found by drawing them perpendicular to the equipotentials. Note that these fields are consistent with two
equal negative charges. For a three-dimensional version, play with the first media link.

To improve your intuition, we show a three-dimensional variant of the potential in a system with two opposing charges. Figure 
 displays a three-dimensional map of electric potential, where lines on the map are for equipotential surfaces. The hill is at the

positive charge, and the trough is at the negative charge. The potential is zero far away from the charges. Note that the cut off at a
particular potential implies that the charges are on conducting spheres with a finite radius.

A two-dimensional map of the cross-sectional plane that contains both charges is shown in Figure . The line that is equidistant
from the two opposite charges corresponds to zero potential, since at the points on the line, the positive potential from the positive
charge cancels the negative potential from the negative charge. Equipotential lines in the cross-sectional plane are closed loops,
which are not necessarily circles, since at each point, the net potential is the sum of the potentials from each charge.

4.3.2

4.3.2

4.3.2

4.3.2a

4.3.2b

4.3.3

4.3.4

4.3.5
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Figure : The Figure shows two-dimensional field and voltage patterns. Top: A uniformly charged rod. Middle: A dipole. In
both cases, the diagram on the left shows the field vectors and constant-voltage curves, while the one on the right shows the voltage
(up-down coordinate) as a function of x and y. Interpreting the field diagrams: Each arrow represents the field at the point where its
tail has been positioned. For clarity, some of the arrows in regions of very strong field strength are not shown --- they would be too
long to show. Interpreting the constant-voltage curves: In regions of very strong fields, the curves are not shown because they
would merge together to make solid black regions. Interpreting the perspective plots: Keep in mind that even though we're
visualizing things in three dimensions, these are really two-dimensional voltage patterns being represented. The third (up-down)
dimension represents voltage, not position. 
Bottom: a cross-section of the electric potential map of two opposite charges of equal magnitude. The potential is negative near the
negative charge and positive near the positive charge.

One of the most important cases is that of the familiar parallel conducting plates shown in Figure . Between the plates, the
equipotentials are evenly spaced and parallel. The same field could be maintained by placing conducting plates at the equipotential
lines at the potentials shown.

4.3.5

4.3.6
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Figure : The electric field and equipotential lines between two metal plates. Note that the electric field is perpendicular to the
equipotentials and hence normal to the plates at their surface as well as in the center of the region between them.

Consider the parallel plates Figure . These have equipotential lines that are parallel to the plates in the space between and
evenly spaced. An example of this (with sample values) is given in Figure . We could draw a similar set of equipotential
isolines for gravity on hills . If the hill has any extent at the same slope, the isolines along that extent would be parallel to each
other. Furthermore, in regions of constant slope, the isolines would be evenly spaced. An example of real topographic lines is
shown in Figure .

Figure . (a) A topographical map of Devil’s Tower, Wyoming. Lines that are close together indicate very steep terrain. (b) A
perspective photo of Devil’s Tower shows just how steep its sides are. Notice the top of the tower has the same shape as the center
of the topographical map.

You have seen the equipotential lines of a point charge in Figure . How do we calculate them? For example, if we have a 
 charge at the origin, what are the equipotential surfaces at which the potential is (a) 100 V, (b) 50 V, (c) 20 V, and

(d) 10 V?

Strategy

Set the equation for the potential of a point charge equal to a constant and solve for the remaining variable(s). Then
calculate values as needed.

Solution

In , let V be a constant. The only remaining variable is r; hence, . Thus, the equipotential

surfaces are spheres about the origin. Their locations are:

a. ;

b. ;

c. ;

4.3.6

4.3.6

4.3.6

4.3.7

4.3.6

Example : Calculating Equipotential Lines4.3.1

4.3.1

+10 −nC

V = k
q

r
r = k = constant

q

V

r = k = (8.99 × N / ) = 0.90 m
q

V
109 m2 C 2

(10 × C)10−9

100 V

r = k = (8.99 × N / ) = 1.8 m
q

V
109 m2 C 2

(10 × C)10−9

50 V

r = k = (8.99 × N / ) = 4.5 m
q

V
109 m2 C 2

(10 × C)10−9

20 V
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d. .

Significance

This means that equipotential surfaces around a point charge are spheres of constant radius, as shown earlier, with well-
defined locations.

Two large conducting plates carry equal and opposite charges, with a surface charge density  of magnitude ,
as shown in Figure . The separation between the plates is .

a. What is the electric field between the plates?
b. What is the potential difference between the plates?
c. What is the distance between equipotential planes which differ by 100 V?

Figure : The electric field between oppositely charged parallel plates. A portion is released at the positive plate.

Strategy
1. Since the plates are described as “large” and the distance between them is not, we will approximate each of them as an

infinite plane, and apply the result from Gauss’s law in the previous chapter.
2. Use .
3. Since the electric field is constant, find the ratio of 100 V to the total potential difference; then calculate this fraction of

the distance.

Solution

a. The electric field is directed from the positive to the negative plate as shown in the figure, and its magnitude is given
by

b. To find the potential difference  between the plates, we use a path from the negative to the positive plate that is
directed against the field. The displacement vector  and the electric field  are antiparallel so . The
potential difference between the positive plate and the negative plate is then

r = k = (8.99 × N / ) = 9.0 m
q

V
109 m2 C 2

(10 × C)10−9

10 V

Example : Potential Difference between Oppositely Charged Parallel Plates4.3.2

σ 6.81 × C/m10−7

4.3.8 l = 6.50 mm

4.3.8

Δ = − ⋅ dVAB ∫ B

A
E ⃗  l ⃗ 

E =
σ

ϵ0

=
6.81 × C/10−7 m2

8.85 × /N ⋅10−12C 2 m2

= 7.69 × V /m.104

ΔV

dl ⃗  E ⃗  ⋅ d = −E dlE ⃗  l ⃗ 

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76549?pdf


4.3.6 https://phys.libretexts.org/@go/page/76549

c. The total potential difference is 500 V, so 1/5 of the distance between the plates will be the distance between 100-V
potential differences. The distance between the plates is 6.5 mm, so there will be 1.3 mm between 100-V potential
differences.

Significance

You have now seen a numerical calculation of the locations of equipotentials between two charged parallel plates.

Distribution of Charges on Conductors
In Example  with a point charge, we found that the equipotential surfaces were in the form of spheres, with the point charge at
the center. Given that a conducting sphere in electrostatic equilibrium is a spherical equipotential surface, we should expect that we
could replace one of the surfaces in Example  with a conducting sphere and have an identical solution outside the sphere.
Inside will be rather different, however.

Figure : An isolated conducting sphere.

To investigate this, consider the isolated conducting sphere of Figure  that has a radius R and an excess charge q. To find the
electric field both inside and outside the sphere, note that the sphere is isolated, so its surface change distribution and the electric
field of that distribution are spherically symmetric. We can therefore represent the field as . To calculate , we
apply Gauss’s law over a closed spherical surface S of radius r that is concentric with the conducting sphere. Since  is constant
and  on the sphere,

For ,  is within the conductor, so recall from our previous study of Gauss’s law that  and Gauss’s law gives 
, as expected inside a conductor at equilibrium. If , S encloses the conductor so . From Gauss’s law,

The electric field of the sphere may therefore be written as

and

ΔV = −∫ E ⋅ dl

= E ∫ dl

= El

= (7.69 × V /m)(6.50 × m)104 10−3

= 500 V

4.3.1

4.3.2

4.3.9

4.3.9

= E(r)E ⃗  r̂ E(r)

r

=n̂ r̂

∮ ⋅ daE ⃗  n̂ = E(r)∮ da

= E(r)4π .r2

(4.3.3)

(4.3.4)

r < R S = 0qenc
E(r) = 0 r > R = qqenc

E(r)4π = .r2 q

ϵ0
(4.3.5)

E = 0 (r < R), (4.3.6)

E = (r ≥ R).
1

4πϵ0

q

r2
r̂ (4.3.7)
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As expected, in the region , the electric field due to a charge q placed on an isolated conducting sphere of radius R is
identical to the electric field of a point charge q located at the center of the sphere.

To find the electric potential inside and outside the sphere, note that for , the potential must be the same as that of an isolated
point charge q located at ,

simply due to the similarity of the electric field.

For , so V(r) is constant in this region. Since ,

We will use this result to show that

for two conducting spheres of radii  and , with surface charge densities  and  respectively, that are connected by a thin
wire, as shown in Figure . The spheres are sufficiently separated so that each can be treated as if it were isolated (aside from
the wire). Note that the connection by the wire means that this entire system must be an equipotential.

Figure : Two conducting spheres are connected by a thin conducting wire.

We have just seen that the electrical potential at the surface of an isolated, charged conducting sphere of radius R is

The electrical potential is the same along all materials connect by a conductor

Now, the spheres are connected by a conductor and are therefore at the same potential; hence

and

The net charge on a conducting sphere and its surface charge density are related by . Substituting this equation into
the previous one, we find

 indicates that the surface charge density is higher at locations with a small radius of curvature than at locations
with a large radius of curvature.

r ≥ R

r ≥ R

r = 0

V (r) = (r ≥ R)
1

4πϵ0

q

r
(4.3.8)

r < R, E = 0 V (R) = q/4π Rϵ0

V (r) = (r < R).
1

4πϵ0

q

R
(4.3.9)

= ,σ1R1 σ2R2 (4.3.10)

R1 R2 σ1 σ2

4.3.10

4.3.10

V = .
1

4πϵ0

q

R
(4.3.11)

 Electric Potential Along Conducting Surfaces

= ,
1

4πϵ0

q1

R1

1

4πrϵ0

q2

R2
(4.3.12)

= .
q1

R1

q2

R2
(4.3.13)

q = σ(4π )R2

= .σ1R1 σ2R2 (4.3.14)

 Distribution of charge along surfaces
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Obviously, two spheres connected by a thin wire do not constitute a typical conductor with a variable radius of curvature.
Nevertheless, this result does at least provide a qualitative idea of how charge density varies over the surface of a conductor. The
equation indicates that where the radius of curvature is large (points B and D in Figure ),  and E are small.

Similarly, the charges tend to be denser where the curvature of the surface is greater, as demonstrated by the charge distribution on
oddly shaped metal (Figure ). The surface charge density is higher at locations with a small radius of curvature than at
locations with a large radius of curvature.

Figure : The surface charge density and the electric field of a conductor are greater at regions with smaller radii of curvature.

A practical application of this phenomenon is the lightning rod, which is simply a grounded metal rod with a sharp end pointing
upward. As positive charge accumulates in the ground due to a negatively charged cloud overhead, the electric field around the
sharp point gets very large. When the field reaches a value of approximately  (the dielectric strength of the air),
the free ions in the air are accelerated to such high energies that their collisions with air molecules actually ionize the molecules.
The resulting free electrons in the air then flow through the rod to Earth, thereby neutralizing some of the positive charge. This
keeps the electric field between the cloud and the ground from getting large enough to produce a lightning bolt in the region around
the rod.

An important application of electric fields and equipotential lines involves the heart. The heart relies on electrical signals to
maintain its rhythm. The movement of electrical signals causes the chambers of the heart to contract and relax. When a person has
a heart attack, the movement of these electrical signals may be disturbed. An artificial pacemaker and a defibrillator can be used to
initiate the rhythm of electrical signals. The equipotential lines around the heart, the thoracic region, and the axis of the heart are
useful ways of monitoring the structure and functions of the heart. An electrocardiogram (ECG) measures the small electric signals
being generated during the activity of the heart.
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4.4: Determining Field from Potential

By the end of this section, you will be able to:

Explain how to calculate the electric field in a system from the given potential
Calculate the electric field in a given direction from a given potential
Calculate the electric field throughout space from a given potential

Recall that we were able, in certain systems, to calculate the potential by integrating over the electric field. As you may already
suspect, this means that we may calculate the electric field by taking derivatives of the potential, although going from a scalar to a
vector quantity introduces some interesting wrinkles. We frequently need  to calculate the force in a system; since it is often
simpler to calculate the potential directly, there are systems in which it is useful to calculate V and then derive  from it.

In general, regardless of whether the electric field is uniform, it points in the direction of decreasing potential, because the force on
a positive charge is in the direction of  and also in the direction of lower potential V. Furthermore, the magnitude of  equals the
rate of decrease of V with distance. The faster V decreases over distance, the greater the electric field. This gives us the following
result.

In equation form, the relationship between voltage and uniform electric field is

where  is the distance over which the change in potential  takes place. The minus sign tells us that  points in the
direction of decreasing potential. The electric field is said to be the gradient (as in grade or slope) of the electric potential.

Figure : The electric field component along the displacement  is given by . Note that A and B are assumed to

be so close together that the field is constant along .

For continually changing potentials,  and  become infinitesimals, and we need differential calculus to determine the electric
field. As shown in Figure , if we treat the distance  as very small so that the electric field is essentially constant over it, we
find that

Therefore, the electric field components in the Cartesian directions are given by

This allows us to define the “grad” or “del” vector operator, which allows us to compute the gradient in one step. In Cartesian
coordinates, it takes the form

 Learning Objectives

E ⃗ 

E ⃗ 

E ⃗  E ⃗ 

 Relationship between Voltage and Uniform Electric Field
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With this notation, we can calculate the electric field from the potential with

a process we call calculating the gradient of the potential.

If we have a system with either cylindrical or spherical symmetry, we only need to use the del operator in the appropriate
coordinates:

Calculate the electric field of a point charge from the potential.

Strategy

The potential is known to be , which has a spherical symmetry. Therefore, we use the spherical del operator

(Equation ) into Equation :

Solution

Performing this calculation gives us

This equation simplifies to

as expected.

Significance

We not only obtained the equation for the electric field of a point particle that we’ve seen before, we also have a
demonstration that  points in the direction of decreasing potential, as shown in Figure .

= − V ,E ⃗  ∇⃗  (4.4.5)
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 Example : Electric Field of a Point Charge4.4.1
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Figure : Electric field vectors inside and outside a uniformly charged sphere.

Use the potential found previously to calculate the electric field along the axis of a ring of charge (Figure ).

Figure : We want to calculate the electric field from the electric potential due to a ring charge.

Strategy

In this case, we are only interested in one dimension, the z-axis. Therefore, we use

with the potential

found previously.

Solution

Taking the derivative of the potential yields

4.4.2

 Example : Electric Field of a Ring of Charge4.4.2

4.4.3

4.4.3
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Significance

Again, this matches the equation for the electric field found previously. It also demonstrates a system in which using the
full del operator is not necessary.

Which coordinate system would you use to calculate the electric field of a dipole?

Answer

Any, but cylindrical is closest to the symmetry of a dipole.

 

This page titled 4.4: Determining Field from Potential is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

7.5: Determining Field from Potential by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.

Ez = −
∂

∂z

kqtot

+z2 R2
− −−−−−

√

= k .
zqtot

( +z2 R2)3/2

 Exercise 4.4.1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76548?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.04%3A_Determining_Field_from_Potential
https://creativecommons.org/licenses/by/4.0
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-2
https://phys.libretexts.org/@go/page/4389
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-2


4.5.1 https://phys.libretexts.org/@go/page/76550

4.5: Applications of Electrostatics

By the end of this section, you will be able to:

Describe some of the many practical applications of electrostatics, including several printing technologies
Relate these applications to Newton’s second law and the electric force

The study of electrostatics has proven useful in many areas. This module covers just a few of the many applications of
electrostatics.

The Van de Graaff Generator
Van de Graaff generators (or Van de Graaffs) are not only spectacular devices used to demonstrate high voltage due to static
electricity—they are also used for serious research. The first was built by Robert Van de Graaff in 1931 (based on original
suggestions by Lord Kelvin) for use in nuclear physics research. Figure  shows a schematic of a large research version. Van de
Graaffs use both smooth and pointed surfaces, and conductors and insulators to generate large static charges and, hence, large
voltages.

A very large excess charge can be deposited on the sphere because it moves quickly to the outer surface. Practical limits arise
because the large electric fields polarize and eventually ionize surrounding materials, creating free charges that neutralize excess
charge or allow it to escape. Nevertheless, voltages of 15 million volts are well within practical limits.

Figure : Schematic of Van de Graaff generator. A battery (A) supplies excess positive charge to a pointed conductor, the
points of which spray the charge onto a moving insulating belt near the bottom. The pointed conductor (B) on top in the large
sphere picks up the charge. (The induced electric field at the points is so large that it removes the charge from the belt.) This can be
done because the charge does not remain inside the conducting sphere but moves to its outside surface. An ion source inside the
sphere produces positive ions, which are accelerated away from the positive sphere to high velocities.

Xerography
Most copy machines use an electrostatic process called xerography—a word coined from the Greek words xeros for dry and
graphos for writing. The heart of the process is shown in simplified form in Figure .
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Figure : Xerography is a dry copying process based on electrostatics. The major steps in the process are the charging of the
photoconducting drum, transfer of an image, creating a positive charge duplicate, attraction of toner to the charged parts of the
drum, and transfer of toner to the paper. Not shown are heat treatment of the paper and cleansing of the drum for the next copy.

A selenium-coated aluminum drum is sprayed with positive charge from points on a device called a corotron. Selenium is a
substance with an interesting property—it is a photoconductor. That is, selenium is an insulator when in the dark and a conductor
when exposed to light.

In the first stage of the xerography process, the conducting aluminum drum is grounded so that a negative charge is induced under
the thin layer of uniformly positively charged selenium. In the second stage, the surface of the drum is exposed to the image of
whatever is to be copied. In locations where the image is light, the selenium becomes conducting, and the positive charge is
neutralized. In dark areas, the positive charge remains, so the image has been transferred to the drum.

The third stage takes a dry black powder, called toner, and sprays it with a negative charge so that it is attracted to the positive
regions of the drum. Next, a blank piece of paper is given a greater positive charge than on the drum so that it will pull the toner
from the drum. Finally, the paper and electrostatically held toner are passed through heated pressure rollers, which melt and
permanently adhere the toner to the fibers of the paper.

Laser Printers
Laser printers use the xerographic process to make high-quality images on paper, employing a laser to produce an image on the
photoconducting drum as shown in Figure . In its most common application, the laser printer receives output from a computer,
and it can achieve high-quality output because of the precision with which laser light can be controlled. Many laser printers do
significant information processing, such as making sophisticated letters or fonts, and in the past may have contained a computer
more powerful than the one giving them the raw data to be printed.

Figure : In a laser printer, a laser beam is scanned across a photoconducting drum, leaving a positively charged image. The
other steps for charging the drum and transferring the image to paper are the same as in xerography. Laser light can be very
precisely controlled, enabling laser printers to produce high-quality images.
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Ink Jet Printers and Electrostatic Painting
The ink jet printer, commonly used to print computer-generated text and graphics, also employs electrostatics. A nozzle makes a
fine spray of tiny ink droplets, which are then given an electrostatic charge (Figure ).

Once charged, the droplets can be directed, using pairs of charged plates, with great precision to form letters and images on paper.
Ink jet printers can produce color images by using a black jet and three other jets with primary colors, usually cyan, magenta, and
yellow, much as a color television produces color. (This is more difficult with xerography, requiring multiple drums and toners.)

Figure : The nozzle of an ink-jet printer produces small ink droplets, which are sprayed with electrostatic charge. Various
computer-driven devices are then used to direct the droplets to the correct positions on a page.

Electrostatic painting employs electrostatic charge to spray paint onto oddly shaped surfaces. Mutual repulsion of like charges
causes the paint to fly away from its source. Surface tension forms drops, which are then attracted by unlike charges to the surface
to be painted. Electrostatic painting can reach hard-to-get-to places, applying an even coat in a controlled manner. If the object is a
conductor, the electric field is perpendicular to the surface, tending to bring the drops in perpendicularly. Corners and points on
conductors will receive extra paint. Felt can similarly be applied.

Smoke Precipitators and Electrostatic Air Cleaning
Another important application of electrostatics is found in air cleaners, both large and small. The electrostatic part of the process
places excess (usually positive) charge on smoke, dust, pollen, and other particles in the air and then passes the air through an
oppositely charged grid that attracts and retains the charged particles (Figure )

Large electrostatic precipitators are used industrially to remove over  of the particles from stack gas emissions associated
with the burning of coal and oil. Home precipitators, often in conjunction with the home heating and air conditioning system, are
very effective in removing polluting particles, irritants, and allergens.
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Figure : (a) Schematic of an electrostatic precipitator. Air is passed through grids of opposite charge. The first grid charges
airborne particles, while the second attracts and collects them. (b) The dramatic effect of electrostatic precipitators is seen by the
absence of smoke from this power plant. (credit b: modification of work by “Cmdalgleish”/Wikimedia Commons)

Contributors and Attributions

Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

This page titled 4.5: Applications of Electrostatics is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

7.7: Applications of Electrostatics by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.

4.5.5

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76550?pdf
http://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://creativecommons.org/licenses/by/4.0
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-2
https://phys.libretexts.org/@go/page/4391
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-2


4.6.1 https://phys.libretexts.org/@go/page/76735

4.6: Capacitors and Capacitance

By the end of this section, you will be able to:

Explain the concepts of a capacitor and its capacitance
Describe how to evaluate the capacitance of a system of conductors

Capacitors are important components of electrical circuits in many electronic devices, including pacemakers, cell phones, and
computers. In this chapter, we study their properties, and, over the next few chapters, we examine their function in combination
with other circuit elements. By themselves, capacitors are often used to store electrical energy and release it when needed; with
other circuit components, capacitors often act as part of a filter that allows some electrical signals to pass while blocking others.
You can see why capacitors are considered one of the fundamental components of electrical circuits.

Figure : The tree-like branch patterns in this clear acrylic block are created by irradiating the block with an electron beam.
This tree is known as a Lichtenberg figure, named for the German physicist Georg Christof Lichtenberg (1742–1799), who was the
first to study these patterns. The “branches” are created by the dielectric breakdown produced by a strong electric field. (Bert
Hickman).

A capacitor is a device used to store electrical charge and electrical energy. It consists of at least two electrical conductors
separated by a distance. (Note that such electrical conductors are sometimes referred to as “electrodes,” but more correctly, they are
“capacitor plates.”) The space between capacitors may simply be a vacuum, and, in that case, a capacitor is then known as a
“vacuum capacitor.” However, the space is usually filled with an insulating material known as a dielectric. (You will learn more
about dielectrics in the sections on dielectrics later in this chapter.) The amount of storage in a capacitor is determined by a
property called capacitance, which you will learn more about a bit later in this section.

Capacitors have applications ranging from filtering static from radio reception to energy storage in heart defibrillators. Typically,
commercial capacitors have two conducting parts close to one another but not touching, such as those in Figure . Most of the
time, a dielectric is used between the two plates. When battery terminals are connected to an initially uncharged capacitor, the
battery potential moves a small amount of charge of magnitude  from the positive plate to the negative plate. The capacitor
remains neutral overall, but with charges  and  residing on opposite plates.
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Figure : Both capacitors shown here were initially uncharged before being connected to a battery. They now have charges of 
 and  (respectively) on their plates. (a) A parallel-plate capacitor consists of two plates of opposite charge with area A

separated by distance d. (b) A rolled capacitor has a dielectric material between its two conducting sheets (plates).

A system composed of two identical parallel-conducting plates separated by a distance is called a parallel-plate capacitor (Figure 
). The magnitude of the electrical field in the space between the parallel plates is , where  denotes the surface

charge density on one plate (recall that  is the charge Q per the surface area A). Thus, the magnitude of the field is directly
proportional to Q.

Figure : The charge separation in a capacitor shows that the charges remain on the surfaces of the capacitor plates. Electrical
field lines in a parallel-plate capacitor begin with positive charges and end with negative charges. The magnitude of the electrical
field in the space between the plates is in direct proportion to the amount of charge on the capacitor.
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Capacitors with different physical characteristics (such as shape and size of their plates) store different amounts of charge for the
same applied voltage  across their plates. The capacitance  of a capacitor is defined as the ratio of the maximum charge  that
can be stored in a capacitor to the applied voltage  across its plates. In other words, capacitance is the largest amount of charge
per volt that can be stored on the device:

The SI unit of capacitance is the farad ( ), named after Michael Faraday (1791–1867). Since capacitance is the charge per unit
voltage, one farad is one coulomb per one volt, or

By definition, a 1.0-F capacitor is able to store 1.0 C of charge (a very large amount of charge) when the potential difference
between its plates is only 1.0 V. One farad is therefore a very large capacitance. Typical capacitance values range from picofarads (

) to millifarads , which also includes microfarads .. Capacitors can be
produced in various shapes and sizes (Figure ).

Figure : These are some typical capacitors used in electronic devices. A capacitor’s size is not necessarily related to its
capacitance value.

Calculation of Capacitance
We can calculate the capacitance of a pair of conductors with the standard approach that follows.

1. Assume that the capacitor has a charge .
2. Determine the electrical field  between the conductors. If symmetry is present in the arrangement of conductors, you may

be able to use Gauss’s law for this calculation.
3. Find the potential difference between the conductors from

where the path of integration leads from one conductor to the other. The magnitude of the potential difference is then 
.

4. With  known, obtain the capacitance directly from Equation .

To show how this procedure works, we now calculate the capacitances of parallel-plate, spherical, and cylindrical capacitors. In all
cases, we assume vacuum capacitors (empty capacitors) with no dielectric substance in the space between conductors.

Parallel-Plate Capacitor

The parallel-plate capacitor (Figure ) has two identical conducting plates, each having a surface area , separated by a
distance . When a voltage  is applied to the capacitor, it stores a charge , as shown. We can see how its capacitance may
depend on  and  by considering characteristics of the Coulomb force. We know that force between the charges increases with
charge values and decreases with the distance between them. We should expect that the bigger the plates are, the more charge they

V C Q

V

C =
Q

V
(4.6.1)

F

1 F = .
1 C

1 V
(4.6.2)

1 pF = 10−12F (1 mF = F )10−3 (1 μC = F )10−6
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can store. Thus,  should be greater for a larger value of . Similarly, the closer the plates are together, the greater the attraction of
the opposite charges on them. Therefore,  should be greater for a smaller .

Figure : In a parallel-plate capacitor with plates separated by a distance \(d\), each plate has the same surface area \(A\).

We define the surface charge density  on the plates as

We know from previous chapters that when  is small, the electrical field between the plates is fairly uniform (ignoring edge
effects) and that its magnitude is given by

where the constant  is the permittivity of free space, . The SI unit of F/m is equivalent to .
Since the electrical field  between the plates is uniform, the potential difference between the plates is

Therefore Equation  gives the capacitance of a parallel-plate capacitor as

Notice from this equation that capacitance is a function only of the geometry and what material fills the space between the plates
(in this case, vacuum) of this capacitor. In fact, this is true not only for a parallel-plate capacitor, but for all capacitors: The
capacitance is independent of  or . If the charge changes, the potential changes correspondingly so that  remains constant.

a. What is the capacitance of an empty parallel-plate capacitor with metal plates that each have an area of , separated
by 1.00 mm?

b. How much charge is stored in this capacitor if a voltage of  is applied to it?

Strategy

C A

C d
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Finding the capacitance  is a straightforward application of Equation . Once we find , we can find the charge
stored by using Equation .

Solution

1. Entering the given values into Equation  yields

This small capacitance value indicates how difficult it is to make a device with a large capacitance.
2. Inverting Equation  and entering the known values into this equation gives

Significance

This charge is only slightly greater than those found in typical static electricity applications. Since air breaks down
(becomes conductive) at an electrical field strength of about 3.0 MV/m, no more charge can be stored on this capacitor
by increasing the voltage.

Suppose you wish to construct a parallel-plate capacitor with a capacitance of 1.0 F. What area must you use for each plate if
the plates are separated by 1.0 mm?

Solution

Rearranging Equation , we obtain

Each square plate would have to be 10 km across. It used to be a common prank to ask a student to go to the laboratory
stockroom and request a 1-F parallel-plate capacitor, until stockroom attendants got tired of the joke.

The capacitance of a parallel-plate capacitor is 2.0 pF. If the area of each plate is , what is the plate separation?

Answer

Verify that  and  have the same physical units.

Spherical Capacitor
A spherical capacitor is another set of conductors whose capacitance can be easily determined (Figure ). It consists of two
concentric conducting spherical shells of radii  (inner shell) and  (outer shell). The shells are given equal and opposite
charges  and , respectively. From symmetry, the electrical field between the shells is directed radially outward. We can
obtain the magnitude of the field by applying Gauss’s law over a spherical Gaussian surface of radius r concentric with the shells.
The enclosed charge is ; therefore we have

C 4.6.7 C

4.6.1

4.6.7

C = =(8.85 × ) = 8.85 × F = 8.85 nF .ϵ0
A

d
10−12 F

m
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10−9

4.6.1
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 Example : A 1-F Parallel-Plate Capacitor4.6.1B
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Thus, the electrical field between the conductors is

We substitute this  into Equation  and integrate along a radial path between the shells:

In this equation, the potential difference between the plates is

We substitute this result into Equation  to find the capacitance of a spherical capacitor:

Figure : A spherical capacitor consists of two concentric conducting spheres. Note that the charges on a conductor reside
on its surface.

Calculate the capacitance of a single isolated conducting sphere of radius  and compare it with Equation  in the limit
as .

Strategy

We assume that the charge on the sphere is , and so we follow the four steps outlined earlier. We also assume the other
conductor to be a concentric hollow sphere of infinite radius.

Solution

On the outside of an isolated conducting sphere, the electrical field is given by Equation . The magnitude of the
potential difference between the surface of an isolated sphere and infinity is

= .E ⃗  1

4πϵ0
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The capacitance of an isolated sphere is therefore

Significance

The same result can be obtained by taking the limit of Equation  as . A single isolated sphere is
therefore equivalent to a spherical capacitor whose outer shell has an infinitely large radius.

The radius of the outer sphere of a spherical capacitor is five times the radius of its inner shell. What are the dimensions of this
capacitor if its capacitance is 5.00 pF?

Answer

3.59 cm, 17.98 cm

 
 

Cylindrical Capacitor

A cylindrical capacitor consists of two concentric, conducting cylinders (Figure ). The inner cylinder, of radius , may either
be a shell or be completely solid. The outer cylinder is a shell of inner radius . We assume that the length of each cylinder is l
and that the excess charges  and  reside on the inner and outer cylinders, respectively.

Figure : A cylindrical capacitor consists of two concentric, conducting cylinders. Here, the charge on the outer surface of the
inner cylinder is positive (indicated by ) and the charge on the inner surface of the outer cylinder is negative (indicated by ).

With edge effects ignored, the electrical field between the conductors is directed radially outward from the common axis of the
cylinders. Using the Gaussian surface shown in Figure , we have

Therefore, the electrical field between the cylinders is

where  is the unit radial vector along the radius of the cylinder. We can substitute into Equation  and find the potential
difference between the cylinders:

Thus, the capacitance of a cylindrical capacitor is

C = = Q = 4π .
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As in other cases, this capacitance depends only on the geometry of the conductor arrangement. An important application of
Equation  is the determination of the capacitance per unit length of a coaxial cable, which is commonly used to transmit
time-varying electrical signals. A coaxial cable consists of two concentric, cylindrical conductors separated by an insulating
material. (Here, we assume a vacuum between the conductors, but the physics is qualitatively almost the same when the space
between the conductors is filled by a dielectric.) This configuration shields the electrical signal propagating down the inner
conductor from stray electrical fields external to the cable. Current flows in opposite directions in the inner and the outer
conductors, with the outer conductor usually grounded. Now, from Equation , the capacitance per unit length of the coaxial
cable is given by

In practical applications, it is important to select specific values of . This can be accomplished with appropriate choices of radii
of the conductors and of the insulating material between them.

When a cylindrical capacitor is given a charge of 0.500 nC, a potential difference of 20.0 V is measured between the cylinders.

a. What is the capacitance of this system?
b. If the cylinders are 1.0 m long, what is the ratio of their radii?

Answer a

25.0 pF

Answer b

9.2

 

Several types of practical capacitors are shown in Figure . Common capacitors are often made of two small pieces of metal
foil separated by two small pieces of insulation (Figure ). The metal foil and insulation are encased in a protective coating,
and two metal leads are used for connecting the foils to an external circuit. Some common insulating materials are mica, ceramic,
paper, and Teflon™ non-stick coating.

Another popular type of capacitor is an electrolytic capacitor. It consists of an oxidized metal in a conducting paste. The main
advantage of an electrolytic capacitor is its high capacitance relative to other common types of capacitors. For example,
capacitance of one type of aluminum electrolytic capacitor can be as high as 1.0 F. However, you must be careful when using an
electrolytic capacitor in a circuit, because it only functions correctly when the metal foil is at a higher potential than the conducting
paste. When reverse polarization occurs, electrolytic action destroys the oxide film. This type of capacitor cannot be connected
across an alternating current source, because half of the time, ac voltage would have the wrong polarity, as an alternating current
reverses its polarity (see Alternating-Current Circuts on alternating-current circuits).

A variable air capacitor (Figure ) has two sets of parallel plates. One set of plates is fixed (indicated as “stator”), and the
other set of plates is attached to a shaft that can be rotated (indicated as “rotor”). By turning the shaft, the cross-sectional area in the
overlap of the plates can be changed; therefore, the capacitance of this system can be tuned to a desired value. Capacitor tuning has
applications in any type of radio transmission and in receiving radio signals from electronic devices. Any time you tune your car
radio to your favorite station, think of capacitance.

C = = .
Q

V

2π lϵ0

ln( / )R2 R1

(4.6.16)

4.6.16

4.6.16

= .
C

l

2πϵ0

ln( / )R2 R1
(4.6.17)
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Figure : In a variable air capacitor, capacitance can be tuned by changing the effective area of the plates. (credit: modification
of work by Robbie Sproule)

The symbols shown in Figure  are circuit representations of various types of capacitors. We generally use the symbol shown
in Figure . The symbol in Figure  represents a variable-capacitance capacitor. Notice the similarity of these symbols to
the symmetry of a parallel-plate capacitor. An electrolytic capacitor is represented by the symbol in part Figure , where the
curved plate indicates the negative terminal.

Figure : This shows three different circuit representations of capacitors. The symbol in (a) is the most commonly used one.
The symbol in (b) represents an electrolytic capacitor. The symbol in (c) represents a variable-capacitance capacitor.

An interesting applied example of a capacitor model comes from cell biology and deals with the electrical potential in the plasma
membrane of a living cell (Figure ). Cell membranes separate cells from their surroundings, but allow some selected ions to
pass in or out of the cell. The potential difference across a membrane is about 70 mV. The cell membrane may be 7 to 10 nm thick.
Treating the cell membrane as a nano-sized capacitor, the estimate of the smallest electrical field strength across its ‘plates’ yields
the value

This magnitude of electrical field is great enough to create an electrical spark in the air.

Figure : The semipermeable membrane of a biological cell has different concentrations of ions on its interior surface than on
its exterior. Diffusion moves the  (potassium) and  (chloride) ions in the directions shown, until the Coulomb force halts
further transfer. In this way, the exterior of the membrane acquires a positive charge and its interior surface acquires a negative
charge, creating a potential difference across the membrane. The membrane is normally impermeable to  (sodium ions).
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4.6.8

4.6.8a 4.6.8c

4.6.8b
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4.7: Capacitors in Series and in Parallel

By the end of this section, you will be able to:

Explain how to determine the equivalent capacitance of capacitors in series and in parallel combinations
Compute the potential difference across the plates and the charge on the plates for a capacitor in a network and determine
the net capacitance of a network of capacitors

Several capacitors can be connected together to be used in a variety of applications. Multiple connections of capacitors behave as a
single equivalent capacitor. The total capacitance of this equivalent single capacitor depends both on the individual capacitors and
how they are connected. Capacitors can be arranged in two simple and common types of connections, known as series and
parallel, for which we can easily calculate the total capacitance. These two basic combinations, series and parallel, can also be
used as part of more complex connections.

The Series Combination of Capacitors
Figure  illustrates a series combination of three capacitors, arranged in a row within the circuit. As for any capacitor, the
capacitance of the combination is related to both charge and voltage:

When this series combination is connected to a battery with voltage V, each of the capacitors acquires an identical charge Q. To
explain, first note that the charge on the plate connected to the positive terminal of the battery is  and the charge on the plate
connected to the negative terminal is . Charges are then induced on the other plates so that the sum of the charges on all plates,
and the sum of charges on any pair of capacitor plates, is zero. However, the potential drop  on one capacitor may be
different from the potential drop  on another capacitor, because, generally, the capacitors may have different
capacitances. The series combination of two or three capacitors resembles a single capacitor with a smaller capacitance. Generally,
any number of capacitors connected in series is equivalent to one capacitor whose capacitance (called the equivalent capacitance)
is smaller than the smallest of the capacitances in the series combination. Charge on this equivalent capacitor is the same as the
charge on any capacitor in a series combination: That is, all capacitors of a series combination have the same charge. This
occurs due to the conservation of charge in the circuit. When a charge Q in a series circuit is removed from a plate of the first
capacitor (which we denote as ), it must be placed on a plate of the second capacitor (which we denote as ), and so on.

Figure : (a) Three capacitors are connected in series. The magnitude of the charge on each plate is Q. (b) The network of
capacitors in (a) is equivalent to one capacitor that has a smaller capacitance than any of the individual capacitances in (a), and the
charge on its plates is Q.

We can find an expression for the total (equivalent) capacitance by considering the voltages across the individual capacitors. The
potentials across capacitors 1, 2, and 3 are, respectively, , , and . These potentials must sum up
to the voltage of the battery, giving the following potential balance:

 Learning Objectives
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Potential  is measured across an equivalent capacitor that holds charge  and has an equivalent capacitance . Entering the
expressions for , , and , we get

Canceling the charge Q, we obtain an expression containing the equivalent capacitance, , of three capacitors connected in series:

This expression can be generalized to any number of capacitors in a series network.

For capacitors connected in a series combination, the reciprocal of the equivalent capacitance is the sum of reciprocals of
individual capacitances:

Find the total capacitance for three capacitors connected in series, given their individual capacitances are , ,
and .

Strategy

Because there are only three capacitors in this network, we can find the equivalent capacitance by using Equation 
with three terms.

Solution

We enter the given capacitances into Equation :

Now we invert this result and obtain

Significance

Note that in a series network of capacitors, the equivalent capacitance is always less than the smallest individual
capacitance in the network.

The Parallel Combination of Capacitors
A parallel combination of three capacitors, with one plate of each capacitor connected to one side of the circuit and the other plate
connected to the other side, is illustrated in Figure . Since the capacitors are connected in parallel, they all have the same
voltage V across their plates. However, each capacitor in the parallel network may store a different charge. To find the equivalent

V = + + .V1 V2 V3 (4.7.2)

V Q CS

V1 V2 V3

= + + .
Q

CS

Q

C1

Q

C2

Q

C3
(4.7.3)
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= + + .
1
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1

C1

1

C2

1

C3
(4.7.4)

 Series Combination

= + + +…
1
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1

C1

1

C2

1

C3
(4.7.5)

 Example : Equivalent Capacitance of a Series Network4.7.1
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capacitance  of the parallel network, we note that the total charge Q stored by the network is the sum of all the individual
charges:

On the left-hand side of this equation, we use the relation , which holds for the entire network. On the right-hand side of
the equation, we use the relations , , and  for the three capacitors in the network. In this way we
obtain

This equation, when simplified, is the expression for the equivalent capacitance of the parallel network of three capacitors:

This expression is easily generalized to any number of capacitors connected in parallel in the network.

For capacitors connected in a parallel combination, the equivalent (net) capacitance is the sum of all individual capacitances in
the network,

Figure : (a) Three capacitors are connected in parallel. Each capacitor is connected directly to the battery. (b) The charge on
the equivalent capacitor is the sum of the charges on the individual capacitors.

Find the net capacitance for three capacitors connected in parallel, given their individual capacitances are , , and 
.

Strategy

Because there are only three capacitors in this network, we can find the equivalent capacitance by using Equation 
with three terms.

Solution

Entering the given capacitances into Equation  yields

Significance

Note that in a parallel network of capacitors, the equivalent capacitance is always larger than any of the individual
capacitances in the network.

Capacitor networks are usually some combination of series and parallel connections, as shown in Figure . To find the net
capacitance of such combinations, we identify parts that contain only series or only parallel connections, and find their equivalent

Cp

Q = + + .Q1 Q2 Q3 (4.7.6)

Q = VCp

= VQ1 C1 = VQ2 C2 = VQ3 C3

V = V + V + V .Cp C1 C2 C3 (4.7.7)

= + + .Cp C1 C2 C3 (4.7.8)

 Parallel Combination

= + + +. . .Cp C1 C2 C3 (4.7.9)

4.7.2

 Example : Equivalent Capacitance of a Parallel Network4.7.2

1.0μF 5.0μF

8.0μF

4.7.9

4.7.9

Cp = + +C1 C2 C3

= 1.0μF +5.0μF +8.0μF
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capacitances. We repeat this process until we can determine the equivalent capacitance of the entire network. The following
example illustrates this process.

Figure : (a) This circuit contains both series and parallel connections of capacitors. (b)  and  are in series; their
equivalent capacitance is  c) The equivalent capacitance  is connected in parallel with . Thus, the equivalent capacitance
of the entire network is the sum of  and .

Find the total capacitance of the combination of capacitors shown in Figure . Assume the capacitances are known to three
decimal places ( ). Round your answer to three decimal places.

Strategy

We first identify which capacitors are in series and which are in parallel. Capacitors  and  are in series. Their
combination, labeled  is in parallel with .

Solution

Since  and  are in series, their equivalent capacitance  is obtained with Equation :

Therefor

Capacitance  is connected in parallel with the third capacitance , so we use Equation  find the equivalent
capacitance C of the entire network:

Determine the net capacitance C of the capacitor combination shown in Figure  when the capacitances are 
, and . When a 12.0-V potential difference is maintained across the combination, find

the charge and the voltage across each capacitor.

4.7.3 C1 C2

CS CS C3

CS C3

 Example : Equivalent Capacitance of a Network4.7.3

4.7.3

= 1.000μF , = 5.000μF , = 8.000μFC1 C2 C3

C1 C2

CS C3

C1 C2 CS 4.7.5
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= +
1

C1

1

C2

= +
1

1.000μF

1
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=
1.200

μF

= 0.833μF .CS

CS C3 4.7.9
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= 8.833μF .

 Example : Network of Capacitors4.7.4
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Figure : (a) A capacitor combination. (b) An equivalent two-capacitor combination.

Strategy

We first compute the net capacitance  of the parallel connection  and . Then C is the net capacitance of the series
connection  and . We use the relation  to find the charges , and , and the voltages , and 

 across capacitors 1, 2, and 3, respectively.

Solution

The equivalent capacitance for  and  is

The entire three-capacitor combination is equivalent to two capacitors in series,

Consider the equivalent two-capacitor combination in Figure . Since the capacitors are in series, they have the
same charge, . Also, the capacitors share the 12.0-V potential difference, so

Now the potential difference across capacitor 1 is

Because capacitors 2 and 3 are connected in parallel, they are at the same potential difference:

Hence, the charges on these two capacitors are, respectively,

Significance As expected, the net charge on the parallel combination of  and  is 

Determine the net capacitance C of each network of capacitors shown below. Assume that 
, and . Find the charge on each capacitor, assuming there is a potential

difference of 12.0 V across each network.

4.7.4

C23 C2 C3

C1 C23 C = Q/V ,Q1 Q2 Q3 ,V1 V2

V3

C2 C3

= + = 2.0μF +4.0μF = 6.0μF .C23 C2 C3 (4.7.10)

= + = ⇒ C = 4.0μF .
1

C

1

12.0μF

1

6.0μF

1

4.0μF
(4.7.11)

4.7.2b
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= = = 4.0V .V1

Q1

C1

48.0μC
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(4.7.13)

= = 12.0V −4.0V = 8.0V .V2 V3 (4.7.14)

= = (2.0μF )(8.0V ) = 16.0μC,Q2 C2V2 (4.7.15)

= = (4.0μF )(8.0V ) = 32.0μC.Q3 C3V3 (4.7.16)

C2 C3 = + = 48.0μC.Q23 Q2 Q3

 Exercise 4.7.1
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Answer a

Answer b

Answer c

This page titled 4.7: Capacitors in Series and in Parallel is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

8.3: Capacitors in Series and in Parallel by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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4.8: Energy Stored in a Capacitor

By the end of this section, you will be able to:

Explain how energy is stored in a capacitor
Use energy relations to determine the energy stored in a capacitor network

Most of us have seen dramatizations of medical personnel using a defibrillator to pass an electrical current through a patient’s heart
to get it to beat normally. Often realistic in detail, the person applying the shock directs another person to “make it 400 joules this
time.” The energy delivered by the defibrillator is stored in a capacitor and can be adjusted to fit the situation. SI units of joules are
often employed. Less dramatic is the use of capacitors in microelectronics to supply energy when batteries are charged (Figure 

). Capacitors are also used to supply energy for flash lamps on cameras.

Figure : The capacitors on the circuit board for an electronic device follow a labeling convention that identifies each one with
a code that begins with the letter “C.”

The energy  stored in a capacitor is electrostatic potential energy and is thus related to the charge Q and voltage V between the
capacitor plates. A charged capacitor stores energy in the electrical field between its plates. As the capacitor is being charged, the
electrical field builds up. When a charged capacitor is disconnected from a battery, its energy remains in the field in the space
between its plates.

To gain insight into how this energy may be expressed (in terms of Q and V), consider a charged, empty, parallel-plate capacitor;
that is, a capacitor without a dielectric but with a vacuum between its plates. The space between its plates has a volume Ad, and it
is filled with a uniform electrostatic field E. The total energy  of the capacitor is contained within this space. The energy
density  in this space is simply  divided by the volume Ad. If we know the energy density, the energy can be found as 

. We will learn in Electromagnetic Waves (after completing the study of Maxwell’s equations) that the energy
density  in a region of free space occupied by an electrical field E depends only on the magnitude of the field and is

If we multiply the energy density by the volume between the plates, we obtain the amount of energy stored between the plates of a
parallel-plate capacitor .

In this derivation, we used the fact that the electrical field between the plates is uniform so that  and .
Because , we can express this result in other equivalent forms:

The expression in Equation  for the energy stored in a parallel-plate capacitor is generally valid for all types of capacitors. To
see this, consider any uncharged capacitor (not necessarily a parallel-plate type). At some instant, we connect it across a battery,
giving it a potential difference  between its plates. Initially, the charge on the plates is . As the capacitor is being
charged, the charge gradually builds up on its plates, and after some time, it reaches the value Q. To move an infinitesimal charge

 Learning Objectives
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dq from the negative plate to the positive plate (from a lower to a higher potential), the amount of work dW that must be done on
dq is .

This work becomes the energy stored in the electrical field of the capacitor. In order to charge the capacitor to a charge Q, the total
work required is

Since the geometry of the capacitor has not been specified, this equation holds for any type of capacitor. The total work W needed
to charge a capacitor is the electrical potential energy  stored in it, or . When the charge is expressed in coulombs,
potential is expressed in volts, and the capacitance is expressed in farads, this relation gives the energy in joules.

Knowing that the energy stored in a capacitor is , we can now find the energy density  stored in a vacuum
between the plates of a charged parallel-plate capacitor. We just have to divide  by the volume Ad of space between its plates
and take into account that for a parallel-plate capacitor, we have  and . Therefore, we obtain

We see that this expression for the density of energy stored in a parallel-plate capacitor is in accordance with the general relation
expressed in Equation . We could repeat this calculation for either a spherical capacitor or a cylindrical capacitor—or other
capacitors—and in all cases, we would end up with the general relation given by Equation .

Calculate the energy stored in the capacitor network in Figure 8.3.4a when the capacitors are fully charged and when the
capacitances are , and , respectively.

Strategy

We use Equation  to find the energy , and  stored in capacitors 1, 2, and 3, respectively. The total energy is
the sum of all these energies.

Solution

The total energy stored in this network is

Significance

We can verify this result by calculating the energy stored in the single  capacitor, which is found to be
equivalent to the entire network. The voltage across the network is 12.0 V. The total energy obtained in this way agrees
with our previously obtained result, 

The potential difference across a 5.0-pF capacitor is 0.40 V. (a) What is the energy stored in this capacitor? (b) The potential
difference is now increased to 1.20 V. By what factor is the stored energy increased?

Answer
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a. ; b. 9 times

In a cardiac emergency, a portable electronic device known as an automated external defibrillator (AED) can be a lifesaver. A
defibrillator (Figure ) delivers a large charge in a short burst, or a shock, to a person’s heart to correct abnormal heart rhythm
(an arrhythmia). A heart attack can arise from the onset of fast, irregular beating of the heart—called cardiac or ventricular
fibrillation. Applying a large shock of electrical energy can terminate the arrhythmia and allow the body’s natural pacemaker to
resume its normal rhythm. Today, it is common for ambulances to carry AEDs. AEDs are also found in many public places. These
are designed to be used by lay persons. The device automatically diagnoses the patient’s heart rhythm and then applies the shock
with appropriate energy and waveform. CPR (cardiopulmonary resuscitation) is recommended in many cases before using a
defibrillator.

Figure : Automated external defibrillators are found in many public places. These portable units provide verbal instructions
for use in the important first few minutes for a person suffering a cardiac attack.

A heart defibrillator delivers  of energy by discharging a capacitor initially at . What is its
capacitance?

Strategy

We are given  and V, and we are asked to find the capacitance C. We solve Equation  for C and substitute.

Solution

Solving this expression for C and entering the given values yields .

Contributors and Attributions
Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

This page titled 4.8: Energy Stored in a Capacitor is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.
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4.9: Capacitor with a Dielectric

By the end of this section, you will be able to:

Describe the effects a dielectric in a capacitor has on capacitance and other properties
Calculate the capacitance of a capacitor containing a dielectric

As we discussed earlier, an insulating material placed between the plates of a capacitor is called a dielectric. Inserting a dielectric
between the plates of a capacitor affects its capacitance. To see why, let’s consider an experiment described in Figure .
Initially, a capacitor with capacitance  when there is air between its plates is charged by a battery to voltage . When the
capacitor is fully charged, the battery is disconnected. A charge  then resides on the plates, and the potential difference between
the plates is measured to be . Now, suppose we insert a dielectric that totally fills the gap between the plates. If we monitor the
voltage, we find that the voltmeter reading has dropped to a smaller value . We write this new voltage value as a fraction of the
original voltage , with a positive number .

The constant  in this equation is called the dielectric constant of the material between the plates, and its value is characteristic for
the material. A detailed explanation for why the dielectric reduces the voltage is given in the next section. Different materials have
different dielectric constants (a table of values for typical materials is provided in the next section). Once the battery becomes
disconnected, there is no path for a charge to flow to the battery from the capacitor plates. Hence, the insertion of the dielectric has
no effect on the charge on the plate, which remains at a value of . Therefore, we find that the capacitance of the capacitor with a
dielectric is

This equation tells us that the capacitance  of an empty (vacuum) capacitor can be increased by a factor of  when we
insert a dielectric material to completely fill the space between its plates. Note that Equation  can also be used for an
empty capacitor by setting . In other words, we can say that the dielectric constant of the vacuum is 1, which is a reference
value.

Figure : (a) When fully charged, a vacuum capacitor has a voltage  and charge  (the charges remain on plate’s inner
surfaces; the schematic indicates the sign of charge on each plate). (b) In step 1, the battery is disconnected. Then, in step 2, a
dielectric (that is electrically neutral) is inserted into the charged capacitor. When the voltage across the capacitor is now measured,
it is found that the voltage value has decreased to . The schematic indicates the sign of the induced charge that is now
present on the surfaces of the dielectric material between the plates.

 Learning Objectives
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The principle expressed by Equation  is widely used in the construction industry (Figure ). Metal plates in an electronic
stud finder act effectively as a capacitor. You place a stud finder with its flat side on the wall and move it continually in the
horizontal direction. When the finder moves over a wooden stud, the capacitance of its plates changes, because wood has a
different dielectric constant than a gypsum wall. This change triggers a signal in a circuit, and thus the stud is detected.

Figure : An electronic stud finder is used to detect wooden studs behind drywall.

The electrical energy stored by a capacitor is also affected by the presence of a dielectric. When the energy stored in an empty
capacitor is , the energy  stored in a capacitor with a dielectric is smaller by a factor of .

As a dielectric material sample is brought near an empty charged capacitor, the sample reacts to the electrical field of the charges
on the capacitor plates. Just as we learned in Electric Charges and Fields on electrostatics, there will be the induced charges on the
surface of the sample; however, they are not free charges like in a conductor, because a perfect insulator does not have freely
moving charges. These induced charges on the dielectric surface are of an opposite sign to the free charges on the plates of the
capacitor, and so they are attracted by the free charges on the plates. Consequently, the dielectric is “pulled” into the gap, and the
work to polarize the dielectric material between the plates is done at the expense of the stored electrical energy, which is reduced,
in accordance with Equation .

An empty 20.0-pF capacitor is charged to a potential difference of 40.0 V. The charging battery is then disconnected, and a
piece of Teflon™ with a dielectric constant of 2.1 is inserted to completely fill the space between the capacitor plates (see
Figure ). What are the values of:

a. the capacitance,
b. the charge of the plate,
c. the potential difference between the plates, and
d. the energy stored in the capacitor with and without dielectric?

Strategy
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We identify the original capacitance  and the original potential difference  between the plates.
We combine Equation  with other relations involving capacitance and substitute.

Solution

a. The capacitance increases to

b. Without dielectric, the charge on the plates is

Since the battery is disconnected before the dielectric is inserted, the plate charge is unaffected by the dielectric and
remains at 0.8 nC.

c. With the dielectric, the potential difference becomes

d. The stored energy without the dielectric is

With the dielectric inserted, we use Equation  to find that the stored energy decreases to

Significance

Notice that the effect of a dielectric on the capacitance of a capacitor is a drastic increase of its capacitance. This effect
is far more profound than a mere change in the geometry of a capacitor.

When a dielectric is inserted into an isolated and charged capacitor, the stored energy decreases to 33% of its original value.

a. What is the dielectric constant?
b. How does the capacitance change?

Answer

a. 3.0; b. 

This page titled 4.9: Capacitor with a Dielectric is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

8.5: Capacitor with a Dielectric by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-2.
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4.E: Practice

Electric Potential Practice

Conceptual Questions

Electric Potential Energy

1. Would electric potential energy be meaningful if the electric field were not conservative?

2. Why do we need to be careful about work done on the system versus work done by the system in calculations?

3. Does the order in which we assemble a system of point charges affect the total work done?

Electric Potential and Potential Difference

4. Discuss how potential difference and electric field strength are related. Give an example.

5. What is the strength of the electric field in a region where the electric potential is constant?

6. If a proton is released from rest in an electric field, will it move in the direction of increasing or decreasing potential? Also
answer this question for an electron and a neutron. Explain why.

7. Voltage is the common word for potential difference. Which term is more descriptive, voltage or potential difference?

8. If the voltage between two points is zero, can a test charge be moved between them with zero net work being done? Can
this necessarily be done without exerting a force? Explain.

9. What is the relationship between voltage and energy? More precisely, what is the relationship between potential difference
and electric potential energy?

10. Voltages are always measured between two points. Why?

11. How are units of volts and electron-volts related? How do they differ?

12. Can a particle move in a direction of increasing electric potential, yet have its electric potential energy decrease? Explain

Calculations of Electric Potential

13. Compare the electric dipole moments of charges  separated by a distance d and charges  separated by a
distance d/2.

14. Would Gauss’s law be helpful for determining the electric field of a dipole? Why?

15. In what region of space is the potential due to a uniformly charged sphere the same as that of a point charge? In what
region does it differ from that of a point charge?

16. Can the potential of a nonuniformly charged sphere be the same as that of a point charge? Explain.

Determining Field from Potential

17. If the electric field is zero throughout a region, must the electric potential also be zero in that region?

18. Explain why knowledge of  is not sufficient to determine . What about the other way around?

Equipotential Surfaces and Conductors

19. If two points are at the same potential, are there any electric field lines connecting them?

20. Suppose you have a map of equipotential surfaces spaced 1.0 V apart. What do the distances between the surfaces in a
particular region tell you about the strength of the  in that region?

21. Is the electric potential necessarily constant over the surface of a conductor?

22. Under electrostatic conditions, the excess charge on a conductor resides on its surface. Does this mean that all of the
conduction electrons in a conductor are on the surface?

23. Can a positively charged conductor be at a negative potential? Explain.

±Q ±Q/2

(x, y, z)E ⃗  V (x, y, z)

E ⃗ 
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24. Can equipotential surfaces intersect?

Applications of Electrostatics

25. Why are the metal support rods for satellite network dishes generally grounded?

26. (a) Why are fish reasonably safe in an electrical storm?

(b) Why are swimmers nonetheless ordered to get out of the water in the same circumstance?

27. What are the similarities and differences between the processes in a photocopier and an electrostatic precipitator?

28. About what magnitude of potential is used to charge the drum of a photocopy machine? A web search for “xerography”
may be of use.

Problems

Electric Potential Energy

29. Consider a charge  fixed at a site with another charge  (charge , mass ) moving in the
neighboring space. (a) Evaluate the potential energy of  when it is 4.0 cm from . (b) If  starts from rest from a point
4.0 cm from , what will be its speed when it is 8.0 cm from ? (Note:  is held fixed in its place.)

30. Two charges  and  are placed symmetrically along the x-axis at . Consider a
charge  of charge  and mass 10.0 mg moving along the y-axis. If  starts from rest at , what is its
speed when it reaches ?

31. To form a hydrogen atom, a proton is fixed at a point and an electron is brought from far away to a distance of 
, the average distance between proton and electron in a hydrogen atom. How much work is done?

32. (a) What is the average power output of a heart defibrillator that dissipates 400 J of energy in 10.0 ms? (b) Considering
the high-power output, why doesn’t the defibrillator produce serious burns?

Electric Potential and Potential Difference

33. Find the ratio of speeds of an electron and a negative hydrogen ion (one having an extra electron) accelerated through the
same voltage, assuming non-relativistic final speeds. Take the mass of the hydrogen ion to be .

34. An evacuated tube uses an accelerating voltage of 40 kV to accelerate electrons to hit a copper plate and produce X-rays.
Non-relativistically, what would be the maximum speed of these electrons?

35. Show that units of V/m and N/C for electric field strength are indeed equivalent.

36. What is the strength of the electric field between two parallel conducting plates separated by 1.00 cm and having a
potential difference (voltage) between them of ?

37. The electric field strength between two parallel conducting plates separated by 4.00 cm is .

(a) What is the potential difference between the plates?

(b) The plate with the lowest potential is taken to be zero volts. What is the potential 1.00 cm from that plate and 3.00
cm from the other?

38. The voltage across a membrane forming a cell wall is 80.0 mV and the membrane is 9.00 nm thick. What is the electric
field strength? (The value is surprisingly large, but correct.) You may assume a uniform electric field.

39. Two parallel conducting plates are separated by 10.0 cm, and one of them is taken to be at zero volts.

(a) What is the electric field strength between them, if the potential 8.00 cm from the zero volt plate (and 2.00 cm from
the other) is 450 V?

(b) What is the voltage between the plates?

40. Find the maximum potential difference between two parallel conducting plates separated by 0.500 cm of air, given the
maximum sustainable electric field strength in air to be .

41. An electron is to be accelerated in a uniform electric field having a strength of .

(+5.0μC)Q1 Q2 +3.0μC 6.0μg
Q2 Q1 Q2

Q1 Q1 Q1

(+2.00μC)Q1 (+2.00μC)Q2 x = ±3.00cm
Q3 +4.00μC Q3 y = 2.00cm

y = 4.00cm

0.529 × m10−10

1.67 × kg10−27

1.50 × V104

7.50 × V104

3.0 × V /m106

2.00 × V /m106
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(a) What energy in keV is given to the electron if it is accelerated through 0.400 m?

(b) Over what distance would it have to be accelerated to increase its energy by 50.0 GeV?

42. Use the definition of potential difference in terms of electric field to deduce the formula for potential difference between 
 and  for a point charge located at the origin. Here r is the spherical radial coordinate.

43. The electric field in a region is pointed away from the z-axis and the magnitude depends upon the distance  from the

axis. The magnitude of the electric field is given as  where  is a constant. Find the potential difference between

points  and , explicitly stating the path over which you conduct the integration for the line integral.

44. Singly charged gas ions are accelerated from rest through a voltage of 13.0 V. At what temperature will the average
kinetic energy of gas molecules be the same as that given these ions?

Calculations of Electric Potential

45. A 0.500-cm-diameter plastic sphere, used in a static electricity demonstration, has a uniformly distributed 40.0-pC charge
on its surface. What is the potential near its surface?

46. How far from a  point charge is the potential 100 V? At what distance is it ?

47. If the potential due to a point charge is  at a distance of 15.0 m, what are the sign and magnitude of the
charge?

48. In nuclear fission, a nucleus splits roughly in half. (a) What is the potential  from a fragment that has 46
protons in it? (b) What is the potential energy in MeV of a similarly charged fragment at this distance?

49. A research Van de Graaff generator has a 2.00-m-diameter metal sphere with a charge of 5.00 mC on it. Assume the
potential energy is zero at a reference point infinitely far away from the Van de Graaff.

(a) What is the potential near its surface?

(b) At what distance from its center is the potential 1.00 MV?

(c) An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its kinetic
energy in MeV when the atom is at the distance found in part b?

50. An electrostatic paint sprayer has a 0.200-m-diameter metal sphere at a potential of 25.0 kV that repels paint droplets
onto a grounded object.

(a) What charge is on the sphere?

(b) What charge must a 0.100-mg drop of paint have to arrive at the object with a speed of 10.0 m/s?

51. (a) What is the potential between two points situated 10 cm and 20 cm from a  point charge?

(b) To what location should the point at 20 cm be moved to increase this potential difference by a factor of two?

52. Find the potential at points , and  in the diagram due to the two given charges.

r = ra r = rb

s

E =
α

s
α

P1 P2

1.00 −μC 2.00 × V102

5.00 × V102

2.00 × m10−14

3.0 −μC

, ,P1 P2 P3 P4
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53. Two charges  and  are separated by 4.0 cm on the z-axis symmetrically about origin, with the positive
one uppermost. Two space points of interest  and  are located 3.0 cm and 30 cm from origin at an angle 30° with
respect to the z-axis. Evaluate electric potentials at  and  in two ways:

(a) Using the exact formula for point charges, and

(b) using the approximate dipole potential formula.

54. (a) Plot the potential of a uniformly charged 1-m rod with 1 C/m charge as a function of the perpendicular distance from
the center. Draw your graph from  to .

(b) On the same graph, plot the potential of a point charge with a 1-C charge at the origin.

(c) Which potential is stronger near the rod? (d) What happens to the difference as the distance increases? Interpret
your result.

Determining Field from Potential

55. Throughout a region, equipotential surfaces are given by . The surfaces are equally spaced with 
 for  for  for . What is the electric field in this region?

56. In a particular region, the electric potential is given by . What is the electric field in this region?

57. Calculate the electric field of an infinite line charge, throughout space.

Equipotential Surfaces and Conductors

58. Two very large metal plates are placed 2.0 cm apart, with a potential difference of 12 V between them. Consider one plate
to be at 12 V, and the other at 0 V. (a) Sketch the equipotential surfaces for 0, 4, 8, and 12 V.

(b) Next sketch in some electric field lines, and confirm that they are perpendicular to the equipotential lines.

59. A very large sheet of insulating material has had an excess of electrons placed on it to a surface charge density of 
.

(a) As the distance from the sheet increases, does the potential increase or decrease? Can you explain why without any
calculations? Does the location of your reference point matter?

(b) What is the shape of the equipotential surfaces?

(c) What is the spacing between surfaces that differ by 1.00 V?

60. A metallic sphere of radius 2.0 cm is charged with  charge, which spreads on the surface of the sphere
uniformly. The metallic sphere stands on an insulated stand and is surrounded by a larger metallic spherical shell, of inner
radius 5.0 cm and outer radius 6.0 cm. Now, a charge of  is placed on the inside of the spherical shell, which
spreads out uniformly on the inside surface of the shell. If potential is zero at infinity, what is the potential of

(a) the spherical shell,

(b) the sphere,

(c) the space between the two,

(d) inside the sphere, and

– 2.0µC +2.0µC
P1 P2

P1 P2

s = 0.1m s = 1.0m

z = constant

V = 100V z = 0.00m,V = 200V z = 0.50m,V = 300V z = 1.00m

V = −x z+4xyy2

– 3.00nC/m2

+5.0 −μC

−5.0 −μC
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(e) outside the shell?

61. Two large charged plates of charge density  face each other at a separation of 5.0 mm.

(a) Find the electric potential everywhere.

(b) An electron is released from rest at the negative plate; with what speed will it strike the positive plate?

62. A long cylinder of aluminum of radius R meters is charged so that it has a uniform charge per unit length on its surface of
.

(a) Find the electric field inside and outside the cylinder.

(b) Find the electric potential inside and outside the cylinder. (c) Plot electric field and electric potential as a function
of distance from the center of the rod.

63. Two parallel plates 10 cm on a side are given equal and opposite charges of magnitude .The plates are 1.5
mm apart. What is the potential difference between the plates?

64. The surface charge density on a long straight metallic pipe is . What is the electric potential outside and inside the pipe?
Assume the pipe has a diameter of 2a.

±30μC/m2

λ

5.0 × C10−9

σ
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65. Concentric conducting spherical shells carry charges Q and –Q, respectively. The inner shell has negligible thickness.
What is the potential difference between the shells?

66. Shown below are two concentric spherical shells of negligible thicknesses and radii  and . The inner and outer shell
carry net charges  and , respectively, where both  and  are positive. What is the electric potential in the regions (a) 

, (b) , and (c) ?

67. A solid cylindrical conductor of radius a is surrounded by a concentric cylindrical shell of inner radius b. The solid
cylinder and the shell carry charges Q and –Q, respectively. Assuming that the length L of both conductors is much greater
than a or b, what is the potential difference between the two conductors?

Applications of Electrostatics

68. (a) What is the electric field 5.00 m from the center of the terminal of a Van de Graaff with a 3.00-mC charge, noting that
the field is equivalent to that of a point charge at the center of the terminal?

(b) At this distance, what force does the field exert on a  charge on the Van de Graaff’s belt?

69. (a) What is the direction and magnitude of an electric field that supports the weight of a free electron near the surface of
Earth?

(b) Discuss what the small value for this field implies regarding the relative strength of the gravitational and
electrostatic forces.

70. A simple and common technique for accelerating electrons is shown in Figure , where there is a uniform electric
field between two plates. Electrons are released, usually from a hot filament, near the negative plate, and there is a small hole
in the positive plate that allows the electrons to continue moving.

(a) Calculate the acceleration of the electron if the field strength is .

(b) Explain why the electron will not be pulled back to the positive plate once it moves through the hole.

R1 R2

q1 q2 q1 q2

r < R1 < r <R1 R2 r > R2

2.00 −μC

4.E. 1

2.50 × N/C104
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Figure : Parallel conducting plates with opposite charges on them create a relatively uniform electric field used to accelerate
electrons to the right. Those that go through the hole can be used to make a TV or computer screen glow or to produce X-rays.

71. In a Geiger counter, a thin metallic wire at the center of a metallic tube is kept at a high voltage with respect to the metal
tube. Ionizing radiation entering the tube knocks electrons off gas molecules or sides of the tube that then accelerate towards
the center wire, knocking off even more electrons. This process eventually leads to an avalanche that is detectable as a
current. A particular Geiger counter has a tube of radius R and the inner wire of radius a is at a potential of  volts with
respect to the outer metal tube. Consider a point P at a distance s from the center wire and far away from the ends.

(a) Find a formula for the electric field at a point P inside using the infinite wire approximation.

(b) Find a formula for the electric potential at a point P inside.

(c) Use , and find the value of the electric field at a point 1.00 cm from the
center.

72. The practical limit to an electric field in air is about . Above this strength, sparking takes place because
air begins to ionize.

(a) At this electric field strength, how far would a proton travel before hitting the speed of light (ignore relativistic
effects)?

(b) Is it practical to leave air in particle accelerators?

73. To form a helium atom, an alpha particle that contains two protons and two neutrons is fixed at one location, and two
electrons are brought in from far away, one at a time. The first electron is placed at  from the alpha particle

4.E. 1

V0

= 900V , a = 3.00mm,R = 2.00cmV0

3.00 × N/C106

0.600 × m10−10
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and held there while the second electron is brought to  from the alpha particle on the other side from the
first electron. See the final configuration below.

(a) How much work is done in each step?

(b) What is the electrostatic energy of the alpha particle and two electrons in the final configuration?

74. Find the electrostatic energy of eight equal charges  each fixed at the corners of a cube of side 2 cm.

75. The probability of fusion occurring is greatly enhanced when appropriate nuclei are brought close together, but mutual
Coulomb repulsion must be overcome. This can be done using the kinetic energy of high-temperature gas ions or by
accelerating the nuclei toward one another.

(a) Calculate the potential energy of two singly charged nuclei separated by .

(b) At what temperature will atoms of a gas have an average kinetic energy equal to this needed electrical potential
energy?

76. A bare helium nucleus has two positive charges and a mass of .

(a) Calculate its kinetic energy in joules at  of the speed of light.

(b) What is this in electron-volts?

(c) What voltage would be needed to obtain this energy?

77. An electron enters a region between two large parallel plates made of aluminum separated by a distance of 2.0 cm and
kept at a potential difference of 200 V. The electron enters through a small hole in the negative plate and moves toward the
positive plate. At the time the electron is near the negative plate, its speed is . Assume the electric field
between the plates to be uniform, and find the speed of electron at

(a) 0.10 cm,

(b) 0.50 cm,

(c) 1.0 cm, and

(d) 1.5 cm from the negative plate, and

(e) immediately before it hits the positive plate.

78. How far apart are two conducting plates that have an electric field strength of  between them, if their
potential difference is 15.0 kV?

0.600 × m10−10

(+3µC)

1.00 × m10−12

6.64 × kg10–27

2.00

4.0 × m/s105

4.50 × V /m103

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76552?pdf


4.E.9 https://phys.libretexts.org/@go/page/76552

79. (a) Will the electric field strength between two parallel conducting plates exceed the breakdown strength of dry air, which
is , if the plates are separated by 2.00 mm and a potential difference of  is applied?

(b) How close together can the plates be with this applied voltage?

80. Membrane walls of living cells have surprisingly large electric fields across them due to separation of ions. What is the
voltage across an 8.00-nm-thick membrane if the electric field strength across it is 5.50 MV/m? You may assume a uniform
electric field.

81. A double charged ion is accelerated to an energy of 32.0 keV by the electric field between two parallel conducting plates
separated by 2.00 cm. What is the electric field strength between the plates?

82. The temperature near the center of the Sun is thought to be 15 million degrees Celsius ( ) (or kelvin).
Through what voltage must a singly charged ion be accelerated to have the same energy as the average kinetic energy of ions
at this temperature?

83. A lightning bolt strikes a tree, moving 20.0 C of charge through a potential difference of 1 .

(a) What energy was dissipated?

(b) What mass of water could be raised from 15°C to the boiling point and then boiled by this energy?

(c) Discuss the damage that could be caused to the tree by the expansion of the boiling steam.

84. What is the potential  from a proton (the average distance between the proton and electron in a hydrogen
atom)?

85. (a) A sphere has a surface uniformly charged with 1.00 C. At what distance from its center is the potential 5.00 MV? (b)
What does your answer imply about the practical aspect of isolating such a large charge?

86. What are the sign and magnitude of a point charge that produces a potential of –2.00 V at a distance of 1.00 mm?

87. In one of the classic nuclear physics experiments at the beginning of the twentieth century, an alpha particle was
accelerated toward a gold nucleus, and its path was substantially deflected by the Coulomb interaction. If the energy of the
doubly charged alpha nucleus was 5.00 MeV, how close to the gold nucleus (79 protons) could it come before being
deflected?

Additional Problems

88. A 12.0-V battery-operated bottle warmer heats 50.0 g of glass,  of baby formula, and  of
aluminum from 20.0°C to 90.0°C.

(a) How much charge is moved by the battery?

(b) How many electrons per second flow if it takes 5.00 min to warm the formula? (Hint: Assume that the specific heat
of baby formula is about the same as the specific heat of water.)

89. A battery-operated car uses a 12.0-V system. Find the charge the batteries must be able to move in order to accelerate the
750 kg car from rest to 25.0 m/s, make it climb a  high hill, and finally cause it to travel at a constant 25.0
m/s while climbing with  force for an hour.

90. (a) Find the voltage near a 10.0 cm diameter metal sphere that has 8.00 C of excess positive charge on it.

(b) What is unreasonable about this result?

(c) Which assumptions are responsible?

91. A uniformly charged half-ring of radius 10 cm is placed on a nonconducting table. It is found that 3.0 cm above the
center of the half-ring the potential is –3.0 V with respect to zero potential at infinity. How much charge is in the half-ring?

92. A glass ring of radius 5.0 cm is painted with a charged paint such that the charge density around the ring varies
continuously given by the following function of the polar angle . Find the potential at a
point 15 cm above the center.

93. A CD disk of radius ( ) is sprayed with a charged paint so that the charge varies continually with radial
distance rfrom the center in the following manner: . Find the potential at a point 4 cm above the center.

3.00 × V /m106 5.0 × V103

1.5 × °C107

.00 × 2MV10

0.530 × m10−10

2.50 × g102 2.00 × g102

2.00 × −m102

5.00 × −N102

θ,λ = (3.0 × C/m)co θ.10−6 s2

R = 3.0cm
σ = −(6.0C/m)r/R
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94. (a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van
de Graff terminal? (b) What is unreasonable about this result? (c) Which assumptions are responsible?

95. A large metal plate is charged uniformly to a density of . How far apart are the equipotential
surfaces that represent a potential difference of 25 V?

96. Your friend gets really excited by the idea of making a lightning rod or maybe just a sparking toy by connecting two
spheres as shown in Figure 7.39, and making  so small that the electric field is greater than the dielectric strength of air,
just from the usual 150 V/m electric field near the surface of the Earth. If  is 10 cm, how small does  need to be, and
does this seem practical? (Hint: recall the calculation for electric field at the surface of a conductor from Gauss’s Law.)

97. (a) Find  limit of the potential of a finite uniformly charged rod and show that it coincides with that of a point
charge formula. (b) Why would you expect this result?

98. A small spherical pith ball of radius 0.50 cm is painted with a silver paint and then  of charge is placed on it. The
charged pith ball is put at the center of a gold spherical shell of inner radius 2.0 cm and outer radius 2.2 cm.

(a) Find the electric potential of the gold shell with respect to zero potential at infinity.

(b) How much charge should you put on the gold shell if you want to make its potential 100 V?

99. Two parallel conducting plates, each of cross-sectional area , are 2.0 cm apart and uncharged. If 
electrons are transferred from one plate to the other,

(a) what is the potential difference between the plates?

(b) What is the potential difference between the positive plate and a point 1.25 cm from it that is between the plates?

100. A point charge of  is placed at the center of an uncharged spherical conducting shell of inner radius
6.0 cm and outer radius 9.0 cm. Find the electric potential at

(a) 

(b) 

(c) .

101. Earth has a net charge that produces an electric field of approximately 150 N/C downward at its surface.

(a) What is the magnitude and sign of the excess charge, noting the electric field of a conducting sphere is equivalent
to a point charge at its center?

(b) What acceleration will the field produce on a free electron near Earth’s surface?

(c) What mass object with a single extra electron will have its weight supported by this field?

102. Point charges of  and  are placed 0.500 m apart.

(a) At what point along the line between them is the electric field zero?

(b) What is the electric field halfway between them?

103. What can you say about two charges  and , if the electric field one-fourth of the way from  to  is zero?

104. Calculate the angular velocity  of an electron orbiting a proton in the hydrogen atom, given the radius of the orbit is 
. You may assume that the proton is stationary and the centripetal force is supplied by Coulomb attraction.

105. An electron has an initial velocity of  in a uniform  electric field. The field
accelerates the electron in the direction opposite to its initial velocity.

(a) What is the direction of the electric field?

(b) How far does the electron travel before coming to rest?

(c) How long does it take the electron to come to rest?

(d) What is the electron’s velocity when it returns to its starting point?

σ = 2.0 × C/10−9 m2

R2

R1 R2

x >> L

−10μC

400cm2 1.0 ×1012

q = 5.0 × C10−8

r = 4.0cm,

r = 8.0cm,

r = 12.0cm

25.0μC 45.0μC

q1 q2 q1 q2

ω

0.530 × m10−10

5.00 × m/s106 2.00 × −N/C105
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Challenge Problems
106. Three  and three  ions are placed alternately and equally spaced around a circle of radius 50 nm. Find the
electrostatic energy stored.

107. Look up (presumably online, or by dismantling an old device and making measurements) the magnitude of the potential
deflection plates (and the space between them) in an ink jet printer. Then look up the speed with which the ink comes out the
nozzle. Can you calculate the typical mass of an ink drop?

108. Use the electric field of a finite sphere with constant volume charge density to calculate the electric potential,
throughout space. Then check your results by calculating the electric field from the potential.

109. Calculate the electric field of a dipole throughout space from the potential.

Contributors and Attributions
Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

Capacitors and Capacitance Practice

Conceptual Questions

Capacitors and Capacitance

1. Does the capacitance of a device depend on the applied voltage? Does the capacitance of a device depend on the charge
residing on it?

2. Would you place the plates of a parallel-plate capacitor closer together or farther apart to increase their capacitance?

3. The value of the capacitance is zero if the plates are not charged. True or false?

4. If the plates of a capacitor have different areas, will they acquire the same charge when the capacitor is connected across a
battery?

5. Does the capacitance of a spherical capacitor depend on which sphere is charged positively or negatively?

Capacitors in Series and in Parallel

6. If you wish to store a large amount of charge in a capacitor bank, would you connect capacitors in series or in parallel?
Explain.

7. What is the maximum capacitance you can get by connecting three 1.0-μF capacitors? What is the minimum capacitance?

Energy Stored in a Capacitor

8. If you wish to store a large amount of energy in a capacitor bank, would you connect capacitors in series or parallel?
Explain.

Capacitor with a Dielectric

9. Discuss what would happen if a conducting slab rather than a dielectric were inserted into the gap between the capacitor
plates.

10. Discuss how the energy stored in an empty but charged capacitor changes when a dielectric is inserted if (a) the capacitor
is isolated so that its charge does not change; (b) the capacitor remains connected to a battery so that the potential difference
between its plates does not change.

Molecular Model of a Dielectric

11. Distinguish between dielectric strength and dielectric constant.

12. Water is a good solvent because it has a high dielectric constant. Explain.

13. Water has a high dielectric constant. Explain why it is then not used as a dielectric material in capacitors.

Na+ Cl−
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14. Elaborate on why molecules in a dielectric material experience net forces on them in a non-uniform electrical field but
not in a uniform field.

15. Explain why the dielectric constant of a substance containing permanent molecular electric dipoles decreases with
increasing temperature.

16. Give a reason why a dielectric material increases capacitance compared with what it would be with air between the plates
of a capacitor. How does a dielectric material also allow a greater voltage to be applied to a capacitor? (The dielectric thus
increases C and permits a greater V.)

17. Elaborate on the way in which the polar character of water molecules helps to explain water’s relatively large dielectric
constant.

18. Sparks will occur between the plates of an air-filled capacitor at a lower voltage when the air is humid than when it is dry.
Discuss why, considering the polar character of water molecules.

Problems

Capacitors and Capacitance

19. What charge is stored in a 180.0-μF capacitor when 120.0 V is applied to it?

20. Find the charge stored when 5.50 V is applied to an 8.00-pF capacitor.

21. Calculate the voltage applied to a 2.00-μF capacitor when it holds 3.10μC of charge.

22. What voltage must be applied to an 8.00-nF capacitor to store 0.160 mC of charge?

23. What capacitance is needed to store 3.00μC of charge at a voltage of 120 V?

24. What is the capacitance of a large Van de Graaff generator’s terminal, given that it stores 8.00 mC of charge at a voltage
of 12.0 MV?

25. The plates of an empty parallel-plate capacitor of capacitance 5.0 pF are 2.0 mm apart. What is the area of each plate?

26. A 60.0-pF vacuum capacitor has a plate area of . What is the separation between its plates?

27. A set of parallel plates has a capacitance of 5.0µF. How much charge must be added to the plates to increase the potential
difference between them by 100 V?

28. Consider Earth to be a spherical conductor of radius 6400 km and calculate its capacitance.

29. If the capacitance per unit length of a cylindrical capacitor is 20 pF/m, what is the ratio of the radii of the two cylinders?

30. An empty parallel-plate capacitor has a capacitance of 20µF. How much charge must leak off its plates before the voltage
across them is reduced by 100 V?

Capacitors in Series and in Parallel

31. A 4.00-pF is connected in series with an 8.00-pF capacitor and a 400-V potential difference is applied across the pair. (a)
What is the charge on each capacitor?

(b) What is the voltage across each capacitor?

32. Three capacitors, with capacitances of  and , respectively, are connected in
parallel. A 500-V potential difference is applied across the combination. Determine the voltage across each capacitor and the
charge on each capacitor.

33. Find the total capacitance of this combination of series and parallel capacitors shown below.

0.010m2

= 2.0μF , = 3.0μF ,C1 C2 = 6.0μFC3
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34. Suppose you need a capacitor bank with a total capacitance of 0.750 F but you have only 1.50-mF capacitors at your
disposal. What is the smallest number of capacitors you could connect together to achieve your goal, and how would you
connect them?

35. What total capacitances can you make by connecting a 5.00-μF and a 8.00-μF capacitor?

36. Find the equivalent capacitance of the combination of series and parallel capacitors shown below.

37. Find the net capacitance of the combination of series and parallel capacitors shown below.

38. A 40-pF capacitor is charged to a potential difference of 500 V. Its terminals are then connected to those of an uncharged
10-pF capacitor. Calculate:

(a) the original charge on the 40-pF capacitor;

(b) the charge on each capacitor after the connection is made; and

(c) the potential difference across the plates of each capacitor after the connection.

39. A 2.0-μF capacitor and a 4.0-μF capacitor are connected in series across a 1.0-kV potential. The charged capacitors are
then disconnected from the source and connected to each other with terminals of like sign together. Find the charge on each
capacitor and the voltage across each capacitor.

Energy Stored in a Capacitor

40. How much energy is stored in an 8.00-μF capacitor whose plates are at a potential difference of 6.00 V?

41. A capacitor has a charge of 2.5μC when connected to a 6.0-V battery. How much energy is stored in this capacitor?

42. How much energy is stored in the electrical field of a metal sphere of radius 2.0 m that is kept at a 10.0-V potential?

43. (a) What is the energy stored in the 10.0-μF capacitor of a heart defibrillator charged to ?

(b) Find the amount of the stored charge.

44. In open-heart surgery, a much smaller amount of energy will defibrillate the heart.

(a) What voltage is applied to the 8.00-μF capacitor of a heart defibrillator that stores 40.0 J of energy?

(b) Find the amount of the stored charge.

9.00 × V103
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45. A 165-μF capacitor is used in conjunction with a dc motor. How much energy is stored in it when 119 V is applied?

46. Suppose you have a 9.00-V battery, a 2.00-μF capacitor, and a 7.40-μF capacitor.

(a) Find the charge and energy stored if the capacitors are connected to the battery in series.

(b) Do the same for a parallel connection.

47. An anxious physicist worries that the two metal shelves of a wood frame bookcase might obtain a high voltage if charged
by static electricity, perhaps produced by friction.

(a) What is the capacitance of the empty shelves if they have area  and are 0.200 m apart?

(b) What is the voltage between them if opposite charges of magnitude 2.00 nC are placed on them?

(c) To show that this voltage poses a small hazard, calculate the energy stored.

(d) The actual shelves have an area 100 times smaller than these hypothetical shelves. Are his fears justified?

48. A parallel-plate capacitor is made of two square plates 25 cm on a side and 1.0 mm apart. The capacitor is connected to a
50.0-V battery. With the battery still connected, the plates are pulled apart to a separation of 2.00 mm. What are the energies
stored in the capacitor before and after the plates are pulled farther apart? Why does the energy decrease even though work is
done in separating the plates?

49. Suppose that the capacitance of a variable capacitor can be manually changed from 100 pF to 800 pF by turning a dial,
connected to one set of plates by a shaft, from 0° to 180°. With the dial set at 180°180° (corresponding to C=800pF), the
capacitor is connected to a 500-V source. After charging, the capacitor is disconnected from the source, and the dial is turned
to 0°. If friction is negligible, how much work is required to turn the dial from 180° to 0°?

Capacitor with a Dielectric

50. Show that for a given dielectric material, the maximum energy a parallel-plate capacitor can store is directly proportional
to the volume of dielectric.

51. An air-filled capacitor is made from two flat parallel plates 1.0 mm apart. The inside area of each plate is 8.0cm28.0cm2.

(a) What is the capacitance of this set of plates?

(b) If the region between the plates is filled with a material whose dielectric constant is 6.0, what is the new
capacitance?

52. A capacitor is made from two concentric spheres, one with radius 5.00 cm, the other with radius 8.00 cm.

(a) What is the capacitance of this set of conductors?

(b) If the region between the conductors is filled with a material whose dielectric constant is 6.00, what is the
capacitance of the system?

53. A parallel-plate capacitor has charge of magnitude 9.00μC on each plate and capacitance 3.00μF when there is air
between the plates. The plates are separated by 2.00 mm. With the charge on the plates kept constant, a dielectric with 
is inserted between the plates, completely filling the volume between the plates.

(a) What is the potential difference between the plates of the capacitor, before and after the dielectric has been
inserted?

(b) What is the electrical field at the point midway between the plates before and after the dielectric is inserted?

54. Some cell walls in the human body have a layer of negative charge on the inside surface. Suppose that the surface charge
densities are , the cell wall is  thick, and the cell wall material has a dielectric constant of
κ=5.4.

(a) Find the magnitude of the electric field in the wall between two charge layers.

(b) Find the potential difference between the inside and the outside of the cell. Which is at higher potential?

(c) A typical cell in the human body has volume . Estimate the total electrical field energy stored in the wall
of a cell of this size when assuming that the cell is spherical. (Hint: Calculate the volume of the cell wall.)

1.00 × m102

κ = 5

±0.50 × C/10−3 m2 5.0 × m10−9

10−16m3
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55. A parallel-plate capacitor with only air between its plates is charged by connecting the capacitor to a battery. The
capacitor is then disconnected from the battery, without any of the charge leaving the plates.

(a) A voltmeter reads 45.0 V when placed across the capacitor. When a dielectric is inserted between the plates,
completely filling the space, the voltmeter reads 11.5 V. What is the dielectric constant of the material?

(b) What will the voltmeter read if the dielectric is now pulled away out so it fills only one-third of the space between
the plates?

Molecular Model of a Dielectric

56. Two flat plates containing equal and opposite charges are separated by material 4.0 mm thick with a dielectric constant of
5.0. If the electrical field in the dielectric is 1.5 MV/m, what are

(a) the charge density on the capacitor plates, and

(b) the induced charge density on the surfaces of the dielectric?

57. For a Teflon™-filled, parallel-plate capacitor, the area of the plate is  and the spacing between the plates is 0.50
mm. If the capacitor is connected to a 200-V battery, find

(a) the free charge on the capacitor plates,

(b) the electrical field in the dielectric, and

(c) the induced charge on the dielectric surfaces.

58. Find the capacitance of a parallel-plate capacitor having plates with a surface area of  and separated by 0.100 mm
of Teflon™.

59. (a) What is the capacitance of a parallel-plate capacitor with plates of area  that are separated by 0.0200 mm of
neoprene rubber?

(b) What charge does it hold when 9.00 V is applied to it?

60. Two parallel plates have equal and opposite charges. When the space between the plates is evacuated, the electrical field
is . When the space is filled with dielectric, the electrical field is .

(a) What is the surface charge density on each surface of the dielectric?

(b) What is the dielectric constant?

61. The dielectric to be used in a parallel-plate capacitor has a dielectric constant of 3.60 and a dielectric strength of 
. The capacitor has to have a capacitance of 1.25 nF and must be able to withstand a maximum potential

difference 5.5 kV. What is the minimum area the plates of the capacitor may have?

62. When a 360-nF air capacitor is connected to a power supply, the energy stored in the capacitor is 18.5μJ. While the
capacitor is connected to the power supply, a slab of dielectric is inserted that completely fills the space between the plates.
This increases the stored energy by 23.2μJ.

(a) What is the potential difference between the capacitor plates?

(b) What is the dielectric constant of the slab?

63. A parallel-plate capacitor has square plates that are 8.00 cm on each side and 3.80 mm apart. The space between the
plates is completely filled with two square slabs of dielectric, each 8.00 cm on a side and 1.90 mm thick. One slab is Pyrex
glass and the other slab is polystyrene. If the potential difference between the plates is 86.0 V, find how much electrical
energy can be stored in this capacitor.

Additional Problems

64. A capacitor is made from two flat parallel plates placed 0.40 mm apart. When a charge of 0.020μC is placed on the plates
the potential difference between them is 250 V.

(a) What is the capacitance of the plates?

(b) What is the area of each plate?

50.0cm2

5.00m2

1.50m2

E = 3.20 × V /m105 E = 2.50 × V /m105

1.60 × V /m107
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(c) What is the charge on the plates when the potential difference between them is 500 V?

(d) What maximum potential difference can be applied between the plates so that the magnitude of electrical fields
between the plates does not exceed 3.0 MV/m?

65. An air-filled (empty) parallel-plate capacitor is made from two square plates that are 25 cm on each side and 1.0 mm
apart. The capacitor is connected to a 50-V battery and fully charged. It is then disconnected from the battery and its plates
are pulled apart to a separation of 2.00 mm.

(a) What is the capacitance of this new capacitor?

(b) What is the charge on each plate?

(c) What is the electrical field between the plates?

66. Suppose that the capacitance of a variable capacitor can be manually changed from 100 to 800 pF by turning a dial
connected to one set of plates by a shaft, from 0° to 180°. With the dial set at 180° (corresponding to C=800pF), the
capacitor is connected to a 500-V source. After charging, the capacitor is disconnected from the source, and the dial is turned
to 0°. (a) What is the charge on the capacitor? (b) What is the voltage across the capacitor when the dial is set to 0°?

67. Earth can be considered as a spherical capacitor with two plates, where the negative plate is the surface of Earth and the
positive plate is the bottom of the ionosphere, which is located at an altitude of approximately 70 km. The potential
difference between Earth’s surface and the ionosphere is about 350,000 V.

(a) Calculate the capacitance of this system.

(b) Find the total charge on this capacitor.

(c) Find the energy stored in this system.

68. A 4.00-μF capacitor and a 6.00-μF capacitor are connected in parallel across a 600-V supply line.

(a) Find the charge on each capacitor and voltage across each.

(b) The charged capacitors are disconnected from the line and from each other. They are then reconnected to each other
with terminals of unlike sign together. Find the final charge on each capacitor and the voltage across each.

69. Three capacitors having capacitances of 8.40, 8.40, and 4.20 μF, respectively, are connected in series across a 36.0-V
potential difference.

(a) What is the charge on the 4.20-μF capacitor?

(b) The capacitors are disconnected from the potential difference without allowing them to discharge. They are then
reconnected in parallel with each other with the positively charged plates connected together. What is the voltage
across each capacitor in the parallel combination?

70. A parallel-plate capacitor with capacitance 5.0μF is charged with a 12.0-V battery, after which the battery is
disconnected. Determine the minimum work required to increase the separation between the plates by a factor of 3.

71. (a) How much energy is stored in the electrical fields in the capacitors (in total) shown below?

(b) Is this energy equal to the work done by the 400-V source in charging the capacitors?

72. Three capacitors having capacitances 8.4, 8.4, and 4.2 μF are connected in series across a 36.0-V potential difference.

(a) What is the total energy stored in all three capacitors?

(b) The capacitors are disconnected from the potential difference without allowing them to discharge. They are then
reconnected in parallel with each other with the positively charged plates connected together. What is the total energy
now stored in the capacitors?

73. (a) An 8.00-μF capacitor is connected in parallel to another capacitor, producing a total capacitance of 5.00μF. What is
the capacitance of the second capacitor?

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?
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74. (a) On a particular day, it takes  of electrical energy to start a truck’s engine. Calculate the capacitance of a
capacitor that could store that amount of energy at 12.0 V.

(b) What is unreasonable about this result?

(c) Which assumptions are responsible?

75. (a) A certain parallel-plate capacitor has plates of area , separated by 0.0100 mm of nylon, and stores 0.170 C of
charge. What is the applied voltage?

(b) What is unreasonable about this result?

(c) Which assumptions are responsible or inconsistent?

76. A prankster applies 450 V to an 80.0-μF capacitor and then tosses it to an unsuspecting victim. The victim’s finger is
burned by the discharge of the capacitor through 0.200 g of flesh. Estimate, what is the temperature increase of the flesh? Is
it reasonable to assume that no thermodynamic phase change happened?

Challenge Problems

77. A spherical capacitor is formed from two concentric spherical conducting spheres separated by vacuum. The inner sphere
has radius 12.5 cm and the outer sphere has radius 14.8 cm. A potential difference of 120 V is applied to the capacitor.

(a) What is the capacitance of the capacitor?

(b) What is the magnitude of the electrical field at r=12.6cm, just outside the inner sphere?

(c) What is the magnitude of the electrical field at r=14.7cm, just inside the outer sphere?

(d) For a parallel-plate capacitor the electrical field is uniform in the region between the plates, except near the edges
of the plates. Is this also true for a spherical capacitor?

78. The network of capacitors shown below are all uncharged when a 300-V potential is applied between points A and B
with the switch S open.

(a) What is the potential difference ?

(b) What is the potential at point E after the switch is closed?

(c) How much charge flows through the switch after it is closed?

79. Electronic flash units for cameras contain a capacitor for storing the energy used to produce the flash. In one such unit the
flash lasts for 1/675 fraction of a second with an average light power output of 270 kW.

(a) If the conversion of electrical energy to light is 95% efficient (because the rest of the energy goes to thermal
energy), how much energy must be stored in the capacitor for one flash?

9.60 × J103

4.00m2

−VE VD
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(b) The capacitor has a potential difference between its plates of 125 V when the stored energy equals the value stored
in part (a). What is the capacitance?

80. A spherical capacitor is formed from two concentric spherical conducting shells separated by a vacuum. The inner sphere
has radius 12.5 cm and the outer sphere has radius 14.8 cm. A potential difference of 120 V is applied to the capacitor.

(a) What is the energy density at r=12.6cm, just outside the inner sphere?

(b) What is the energy density at r=14.7cm, just inside the outer sphere?

(c) For the parallel-plate capacitor the energy density is uniform in the region between the plates, except near the edges
of the plates. Is this also true for the spherical capacitor?

81. A metal plate of thickness t is held in place between two capacitor plates by plastic pegs, as shown below. The effect of
the pegs on the capacitance is negligible. The area of each capacitor plate and the area of the top and bottom surfaces of the
inserted plate are all A. What is the capacitance of this system?

82. A parallel-plate capacitor is filled with two dielectrics, as shown below. When the plate area is A and separation between

plates is d, show that the capacitance is given by .

83. A parallel-plate capacitor is filled with two dielectrics, as shown below. Show that the capacitance is given by 

.

C = ε0
A

d

+κ1 κ2

2

C = 2ε0
A

d

κ1κ2

+κ1 κ2
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84. A capacitor has parallel plates of area  separated by 2.0 mm. The space between the plates is filled with
polystyrene.

(a) Find the maximum permissible voltage across the capacitor to avoid dielectric breakdown.

(b) When the voltage equals the value found in part (a), find the surface charge density on the surface of the dielectric.

Contributors and Attributions
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authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

Practice Answers

Check Your Understanding

1. 

2. It has kinetic energy of  at point  and potential energy of J, which means that as Q approaches
infinity, its kinetic energy totals three times the kinetic energy at , since all of the potential energy gets converted to kinetic.

3. positive, negative, and these quantities are the same as the work you would need to do to bring the charges in from infinity

4. 

5. –2.00 C, 

6. It would be going in the opposite direction, with no effect on the calculations as presented.

7. Given a fixed maximum electric field strength, the potential at which a strike occurs increases with increasing height
above the ground. Hence, each electron will carry more energy. Determining if there is an effect on the total number of
electrons lies in the future.

8. ; recall that the electric field inside a conductor is

zero. Hence, any path from a point on the surface to any point in the interior will have an integrand of zero when calculating
the change in potential, and thus the potential in the interior of the sphere is identical to that on the surface.

9. The x-axis the potential is zero, due to the equal and opposite charges the same distance from it. On the z-axis, we may
superimpose the two potentials; we will find that for , again the potential goes to zero due to cancellation.

10. It will be zero, as at all points on the axis, there are equal and opposite charges equidistant from the point of interest. Note
that this distribution will, in fact, have a dipole moment.

11. Any, but cylindrical is closest to the symmetry of a dipole.

12. infinite cylinders of constant radius, with the line charge as the axis

12cm2

K = m , v= = = 15m/s
1

2
v2 2

K

m

− −−−
√ 2

4.5 × J10−7

4.00 × kg10−9

− −−−−−−−−−−−−

√

4.5 × J10−7 r2 9.0 × J10−7

r2

ΔU = qΔV = (100C)(1.5V ) = 150J

= 1.25 × electronsnene 1019

V = k = (8.99 × N ⋅ / )( ) = −5390V
q

r
109 m2 C 2 −3.00 × C10−9

5.00 × m10−3

z >> d
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Conceptual Questions
1. No. We can only define potential energies for conservative fields.

3. No, though certain orderings may be simpler to compute.

5. The electric field strength is zero because electric potential differences are directly related to the field strength. If the
potential difference is zero, then the field strength must also be zero.

7. Potential difference is more descriptive because it indicates that it is the difference between the electric potential of two
points.

9. They are very similar, but potential difference is a feature of the system; when a charge is introduced to the system, it will
have a potential energy which may be calculated by multiplying the magnitude of the charge by the potential difference.

11. An electron-volt is a volt multiplied by the charge of an electron. Volts measure potential difference, electron-volts are a
unit of energy.

13. The second has 1/4 the dipole moment of the first.

15. The region outside of the sphere will have a potential indistinguishable from a point charge; the interior of the sphere will
have a different potential.

17. No. It will be constant, but not necessarily zero.

19. no

21. No; it might not be at electrostatic equilibrium.

23. Yes. It depends on where the zero reference for potential is. (Though this might be unusual.)

25. So that lightning striking them goes into the ground instead of the television equipment.

27. They both make use of static electricity to stick small particles to another surface. However, the precipitator has to charge
a wide variety of particles, and is not designed to make sure they land in a particular place.

Problems

29. a. ;

b. 

31. 

33. so that  or .

35. 

37. a. ;

b. 

39. a. ;

b. 

41. a.  and ,so that ;

b. 

43. One possibility is to stay at constant radius and go along the arc from  to , which will have zero potential due to the

path being perpendicular to the electric field. Then integrate from a to b: 

45. 

47. ; The charge is positive because the potential is positive.

U = 3.4J

m = k ( − ) → v= 750m/s
1

2
v2 Q1Q2

1

ri

1

rf

U = 4.36 × J10−18

= qV , = qV ,
1

2
mev

2
e

1

2
mHv

2
H = 1

mev
2
e

mHv2
H

= 42.8
ve

vH

1V = 1J/C; 1J = 1N ⋅m → 1V /m = 1N/C

= 3.00kVVAB

= 7.50kVVAB

= Ed → E = 5.63kV /mVAB

= 563VVAB

ΔK = qΔV = EdVAB ΔK = 800keV

d = 25.0km

P1 P2

= αln( )Vab
b

a

V = 144V

V = → Q = 8.33 × C
kQ

r
10−7
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49. a. ;

b. ;

c. 

51. ; a. Relative to origin, find the potential at each point and then calculate the difference. ;

b. To double the potential difference, move the point from 20 cm to infinity; the potential at 20 cm is halfway between
zero and that at 10 cm.

53. a.  and ;

b.  and 

55. The problem is describing a uniform field, so  in the –z-direction.

57. Apply  with  to the potential calculated earlier, 

 as expected.

59. a. increases; the constant (negative) electric field has this effect, the reference point only matters for magnitude; b. they
are planes parallel to the sheet; c. 0.006 m

61. a. from the previous chapter, the electric field has magnitude  in the region between the plates and zero outside;

defining the negatively charged plate to be at the origin and zero potential, with the positively charged plate located at +5mm
in the z-direction, V=1.7×104VV=1.7×104Vso the potential is 0 for  for 

 for 

b. 

63. 

65. In the region , and E is zero elsewhere; hence, the potential difference is .

67. From previous results ., note that b is a very convenient location to define the zero level of

potential: .

69. a. ;The electric field is towards the surface of Earth.

b. The coulomb force is much stronger than gravity.

71. We know from the Gauss’s law chapter that the electric field for an infinite line charge is , and from earlier

in this chapter that the potential of a wire-cylinder system of this sort is  by integration. We are not given 

, but we are given a fixed ; thus, we know that  and hence . We may substitute this

back in to find a. ;

b. ;

c. 

73. a. ;

b. 

75. a. \(\displaystyle U=2.30×10^{−16}J;

V = 45.0MV

V = → r = 45.0m
kQ

r

ΔU = 132MeV

V = kQ/r ΔV = 135 × V103

= 7.4 × VVP1 105 = 6.9 × VVP2 103

= 6.9 × VVP1 105 = 6.9 × VVP2 103

E = 200V /m

vecE = − V∇⃗  = + +∇⃗  r̂
∂

∂r
φ̂

1

r

∂

∂φ
ẑ

∂

∂z

V = −2kλlns : = 2kλE ⃗  1

r
r̂

σ

ε0

z < 0, 1.7 × V ( )104 z

5mm
0 ≤ z ≤ 5mm, 1.7 × V104 z > 5mm;

qV = m → v= 7.7 × m/s
1

2
v2 107

V = 85V

a ≤ r ≤ b, =E ⃗  kQ

r2
r̂ V = kQ( − )

1

a

1

b

− = −2kλlnVP VR
sP

sR

ΔV = −2k ln
Q

L

a

b

F = 5.58 × N/C10−11

= 2kλE ⃗ 
P

1

s
ŝ

= −2kλlnVP
sP

R

λ V0 = −2kλlnV0
a

R
λ = −

V0

2kln( )a
R

= −E ⃗ 
P

V0

ln( )a

R

1

s
ŝ

=VP V0

ln( )sP
R

ln( )a

R

4.74 × N/C104

= 7.68 × J, = 5.76 × JU1 10−18 U2 10−18

+ = −1.34 × JU1 U2 10−17
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b. 

77. a. ;

b. ;

c. ;

d. ;

e. 

79. a.  No, the field strength is smaller than the breakdown strength for air.

b. 

81. 

83. a. Energy= ;

b.  ;

c. The expansion of the steam upon boiling can literally blow the tree apart.

85. a. ;

b. A 1-C charge is a very large amount of charge; a sphere of 1.80 km is impractical.

87. The alpha particle approaches the gold nucleus until its original energy is converted to potential energy. 

, so 

(Size of gold nucleus is about ).

Additional Problems

89.  

91. 

93. 

95. Recall from the previous chapter that the electric field  is uniform throughout space, and that for uniform fields

we have  for the relation. Thus, we get  for the distance between 25-V

equipotentials.

97. a. Take the result from Example 7.13, divide both the numerator and the denominator by x, take the limit of that, and then

apply a Taylor expansion to the resulting log to get: ;

b. which is the result we expect, because at great distances, this should look like a point charge of 

99. a. ;

b. 

101. a. ;

b. ;

c. 

= kT → T = 1.11 ×K
¯ ¯¯̄¯ 3

2
107

1.9 × m/s106

4.2 × m/s106

5.9 × m/s106

7.3 × m/s106

8.4 × m/s106

E = 2.5 × V /m < 3 × V /m106 106

d = 1.7mm

= q = qEd → E = 8.00 × V /mKf VAB 105

2.00 × J109

Q = m(cΔT + )L∇ m = 766kg

V = → r = 1.80km
kQ

r

5.00MeV = 8.00 × J10−13 = → r = 4.54 × mE0
qkQ

r
10−14

7 × m10−15

= 4.67 × JEtot 107 = qV → q = = 3.89 × CEtot

Etot

V
106

= k → = −3.5 × CVP
qtot

+z2 R2
− −−−−−

√
qtot 10−11

= −2.2GVVP

=EP

σ0

2ε0

E = −
ΔV

Δz
= → Δz = 0.22m

σ

2ε0

ΔV

Δz

≈ kλVP
L

x

q = λL

V = 9.0 × V103

−9.0 × V ( ) = −5.7 × V103 1.25cm

2.0cm
103

E = → Q = −6.76 × C
KQ

r2
105

F = ma = qE → a = = 2.63 × m/ (upwards)
qE

m
1013 s2

F = −mg = qE → m = = 2.45 × kg
−qE

g
10−18
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103. If the electric field is zero ¼ from the way of  and , then we know from  that 

 so that ; the charge  is 9 times larger than .

105. a. The field is in the direction of the electron’s initial velocity.

b. . Also, , ;

c. ;

d.  (opposite its initial velocity)

Challenge Problems
107. Answers will vary. This appears to be proprietary information, and ridiculously difficult to find. Speeds will be 20 m/s
or less, and there are claims of  grams for the mass of a drop.

109. Apply  with  to the potential calculated earlier,  with 

, and assume that the axis of the dipole is aligned with the z-axis of the coordinate system. Thus, the potential is 

.

Contributors and Attributions
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Check Your Understanding

1. 

3. 3.59 cm, 17.98 cm

4. a. 25.0 pF;

b. 9.2

5. a. ;

b. ;

c. 

6. a. ; b. 9 times

7. a. 3.0; b. 

9. a. ;

b. ;

c. ; d. 

Conceptual Questions
1. no; yes

3. false

5. no

q1 q2 E = k
Q

r2

| | = | | → =E1 E2
Kq1

x2

Kq2

(3x)2
= = 9

q2

q1

(3x)2

x2
q2 q1

= +2ax → x = − (v= 0)v2 v2
0

v2
0

2a
F = ma = qE → a =

qE

m
x = 3.56 × m10−4

= +at → t = − (v= 0), ∴ t = 1.42 × sv2 v0
mv0

qE
10−10

v= −( −5.00 × m/s
2qEx

m
)1/2 106

 10−7

= − VE ⃗  ∇⃗  = + +∇⃗  r̂
∂

∂r
θ̂

1

r

∂

∂θ
φ̂

1

rsinθ

∂

∂φ
= kVP

⋅p ⃗  r̂

r2

= qp ⃗  d ⃗ 

= k = kVP
q ⋅d ⃗  r̂

r2

qdcosθ

r2

= 2kqd( ) +kqd( )E ⃗  cosθ

r3
r̂

sinθ

r3
θ̂

1.1 × m10−3

C = 0.86pF , = 10pC, = 3.4pC, = 6.8pCQ1 Q2 Q3

C = 2.3pF , = 12pC, = = 16pCQ1 Q2 Q3

C = 2.3pF , = 9.0pC, = 18pC, = 12pC, = 15pCQ1 Q2 Q3 Q4

4.0 × J10−13

C = 3.0C0

= 20pF ,C = 42pFC0

= 0.8nC,Q = 1.7nCQ0

= V = 40VV0 = 16nJ,U = 34nJU0

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76552?pdf
http://creativecommons.org/licenses/by/4.0/


4.E.24 https://phys.libretexts.org/@go/page/76552

7. 

9. answers may vary

11. Dielectric strength is a critical value of an electrical field above which an insulator starts to conduct; a dielectric constant
is the ratio of the electrical field in vacuum to the net electrical field in a material.

13. Water is a good solvent.

15. When energy of thermal motion is large (high temperature), an electrical field must be large too in order to keep electric
dipoles aligned with it.

17. answers may vary

Problems
19. 21.6 mC

21. 1.55 V

23. 25.0 nF

25. 

27. 500 µC

29. 1:16

31. a. 1.07 nC;

b. 267 V, 133 V

33. 

34. 500 capacitors; connected in parallel

35.  (series) and  (parallel)

37. 

39. 0.89 mC; 1.78 mC; 444 V

41. 

43. a. 405 J; b. 90.0 mC

45. 1.15 J

47. a. ;

b. 0.453 V;

c. ;

d. no

49. 0.7 mJ

51. a. 7.1 pF;

b. 42 pF

53. a. before 3.00 V; after 0.600 V;

b. before 1500 V/m; after 300 V/m

55. a. 3.91;

b. 22.8 V

57. a. 37 nC;

b. 0.4 MV/m;

3.0μF , 0.33μF

1.1 ×10−3m2

0.29μF

3.08μF 13.0μ

11.4μF

7.5μJ

4.43 × F10−9

4.53 × J10−10
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c. 19 nC

59. a. ;

b. 

61. 

63. 

Additional Problems
65. a. 0.277 nF;

b. 27.7 nC;

c. 50 kV/m

67. a. 0.065 F;

b. 23,000 C;

c. 4.0 GJ

69. a. ; b. 10.8 V

71. a. 0.13 J;

b. no, because of resistive heating in connecting wires that is always present, but the circuit schematic does not indicate
resistors

73. a. ;

b. You cannot have a negative  capacitance.

c. The assumption that they were hooked up in parallel, rather than in series, is incorrect. A parallel connection always
produces a greater capacitance, while here a smaller capacitance was assumed. This could only happen if the
capacitors are connected in series.

75. a. 14.2 kV;

b. The voltage is unreasonably large, more than 100 times the breakdown voltage of nylon.

c. The assumed charge is unreasonably large and cannot be stored in a capacitor of these dimensions.

Challenge Problems

77. a. 89.6 pF;

b. 6.09 kV/m;

c. 4.47 kV/m;

d. no

79. a. 421 J;

4.4μF

4.0 × C10−5

0.0135m2

0.185μJ

75.6μC

−3.00μF

C2
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b. 53.9 mF

81. 

83. proof
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4.S: Summary

Key Terms
electric dipole system of two equal but opposite charges a fixed distance apart

electric dipole moment quantity defined as  for all dipoles, where the vector
points from the negative to positive charge

electric potential potential energy per unit charge

electric potential difference
the change in potential energy of a charge q moved between two

points, divided by the charge.

electric potential energy
potential energy stored in a system of charged objects due to the

charges

electron-volt
energy given to a fundamental charge accelerated through a

potential difference of one volt

electrostatic precipitators
filters that apply charges to particles in the air, then attract those

charges to a filter, removing them from the airstream

equipotential line two-dimensional representation of an equipotential surface

equipotential surface
surface (usually in three dimensions) on which all points are at the

same potential

grounding
process of attaching a conductor to the earth to ensure that there is

no potential difference between it and Earth

ink jet printer
small ink droplets sprayed with an electric charge are controlled by

electrostatic plates to create images on paper

photoconductor
substance that is an insulator until it is exposed to light, when it

becomes a conductor

Van de Graaff generator
machine that produces a large amount of excess charge, used for

experiments with high voltage

voltage
change in potential energy of a charge moved from one point to
another, divided by the charge; units of potential difference are

joules per coulomb, known as volt

xerography dry copying process based on electrostatics

capacitance amount of charge stored per unit volt

capacitor device that stores electrical charge and electrical energy

dielectric insulating material used to fill the space between two plates

dielectric breakdown
phenomenon that occurs when an insulator becomes a conductor in

a strong electrical field

dielectric constant
factor by which capacitance increases when a dielectric is inserted

between the plates of a capacitor

dielectric strength
critical electrical field strength above which molecules in insulator

begin to break down and the insulator starts to conduct

energy density
energy stored in a capacitor divided by the volume between the

plates

induced electric-dipole moment
dipole moment that a nonpolar molecule may acquire when it is

placed in an electrical field

{vecp = qd ⃗ 
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induced electrical field
electrical field in the dielectric due to the presence of induced

charges

induced surface charges charges that occur on a dielectric surface due to its polarization

parallel combination
components in a circuit arranged with one side of each component

connected to one side of the circuit and the other sides of the
components connected to the other side of the circuit

parallel-plate capacitor
system of two identical parallel conducting plates separated by a

distance

series combination
components in a circuit arranged in a row one after the other in a

circuit

Key Equations

Potential energy of a two-charge system

Work done to assemble a system of charges  for 

Potential difference  or 

Electric potential

Potential difference between two points

Electric potential of a point charge

Electric potential of a system of point charges

Electric dipole moment

Electric potential due to a dipole

Electric potential of a continuous charge distribution

Electric field components

Del operator in Cartesian coordinates

Electric field as gradient of potential

Del operator in cylindrical coordinates

Del operator in spherical coordinates

Capacitance

Capacitance of a parallel-plate capacitor

Capacitance of a vacuum spherical capacitor

U(r) = k
qQ

r

=W12⋯N

k

2
∑
i

N

∑
j

N qiqj

rij
i ≠ j

ΔV =
ΔU

q
ΔU = qΔV

V = = − ⋅
U

q
∫

P

R

E ⃗  dl
→

Δ = − = − ⋅VAB VB VA ∫
B

A

E ⃗  dl
→

V =
kq

r

= kVP ∑
1

N
qi

ri

= qp ⃗  d ⃗ 

= kVP
⋅p ⃗  r̂

r2

= k ∫VP
dq

r

= − , = − , = −Ex

∂V
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Capacitance of a vacuum cylindrical capacitor

Capacitance of a series combination

Capacitance of a parallel combination

Energy density

Energy stored in a capacitor

Capacitance of a capacitor with dielectric

Energy stored in an isolated capacitor with dielectric

Dielectric constant

Induced electrical field in a dielectric

Summary

Electric Potential Energy
The work done to move a charge from point A to B in an electric field is path independent, and the work around a closed path is
zero. Therefore, the electric field and electric force are conservative.

We can define an electric potential energy, which between point charges is , with the zero reference taken to be at

infinity.
The superposition principle holds for electric potential energy; the potential energy of a system of multiple charges is the sum of
the potential energies of the individual pairs.

Electric Potential and Potential Difference
Electric potential is potential energy per unit charge.
The potential difference between points A and B, , that is, the change in potential of a charge q moved from A to B, is
equal to the change in potential energy divided by the charge.
Potential difference is commonly called voltage, represented by the symbol :

 or 

An electron-volt is the energy given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

..

Calculations of Electric Potential
Electric potential is a scalar whereas electric field is a vector.
Addition of voltages as numbers gives the voltage due to a combination of point charges, allowing us to use the principle of
superposition: \(\displaystyle V_P=k\sum_1^N\frac{q_i}{r_i}|).
An electric dipole consists of two equal and opposite charges a fixed distance apart, with a dipole moment .

Continuous charge distributions may be calculated with .

Determining Field from Potential
Just as we may integrate over the electric field to calculate the potential, we may take the derivative of the potential to calculate
the electric field.
This may be done for individual components of the electric field, or we may calculate the entire electric field vector with the
gradient operator.

C =
2π lε0

ln( / )R2 R1

= + + + ⋯
1

CS

1

C1

1

C2

1
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= + + + ⋯CP C1 C2 C3

=uE
1

2
ε0E

2

= C = = QVUC
1

2
V 2 1

2

Q2

C
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2

C = κC0

U =
1

κ
U0

κ =
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E

= ( − 1)Ei
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E0

→
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qQ

r

−VB VA

ΔV

ΔV =
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q
ΔU = qΔV .

1eV = (1.60 × C)(1V ) = (1.60 × C)(1J/C) = 1.60 × J10−19 10−19 10−19

= qp ⃗  d ⃗ 

= k∫VP
dq

r

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76553?pdf


4.S.4 https://phys.libretexts.org/@go/page/76553

Equipotential Surfaces and Conductors
An equipotential surface is the collection of points in space that are all at the same potential. Equipotential lines are the two-
dimensional representation of equipotential surfaces.
Equipotential surfaces are always perpendicular to electric field lines.
Conductors in static equilibrium are equipotential surfaces.
Topographic maps may be thought of as showing gravitational equipotential lines.

Applications of Electrostatics
Electrostatics is the study of electric fields in static equilibrium.
In addition to research using equipment such as a Van de Graaff generator, many practical applications of electrostatics exist,
including photocopiers, laser printers, ink jet printers, and electrostatic air filters.

Capacitors and Capacitance
A capacitor is a device that stores an electrical charge and electrical energy. The amount of charge a vacuum capacitor can store
depends on two major factors: the voltage applied and the capacitor’s physical characteristics, such as its size and geometry.
The capacitance of a capacitor is a parameter that tells us how much charge can be stored in the capacitor per unit potential
difference between its plates. Capacitance of a system of conductors depends only on the geometry of their arrangement and
physical properties of the insulating material that fills the space between the conductors. The unit of capacitance is the farad,
where .

Capacitors in Series and in Parallel
When several capacitors are connected in a series combination, the reciprocal of the equivalent capacitance is the sum of the
reciprocals of the individual capacitances.
When several capacitors are connected in a parallel combination, the equivalent capacitance is the sum of the individual
capacitances.
When a network of capacitors contains a combination of series and parallel connections, we identify the series and parallel
networks, and compute their equivalent capacitances step by step until the entire network becomes reduced to one equivalent
capacitance.

Energy Stored in a Capacitor
Capacitors are used to supply energy to a variety of devices, including defibrillators, microelectronics such as calculators, and
flash lamps.
The energy stored in a capacitor is the work required to charge the capacitor, beginning with no charge on its plates. The energy
is stored in the electrical field in the space between the capacitor plates. It depends on the amount of electrical charge on the
plates and on the potential difference between the plates.
The energy stored in a capacitor network is the sum of the energies stored on individual capacitors in the network. It can be
computed as the energy stored in the equivalent capacitor of the network.

Capacitor with a Dielectric
The capacitance of an empty capacitor is increased by a factor of  when the space between its plates is completely filled by a
dielectric with dielectric constant .
Each dielectric material has its specific dielectric constant.
The energy stored in an empty isolated capacitor is decreased by a factor of κκ when the space between its plates is completely
filled with a dielectric with dielectric constant .

This page titled 4.S: Summary is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content
that was edited to the style and standards of the LibreTexts platform.

7.8: Electric Potential (Summary) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
8.7: Capacitance (Summary) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-2.
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5.1: Electrical Current

By the end of this section, you will be able to:

Describe an electrical current
Define the unit of electrical current
Explain the direction of current flow

In this chapter, we study the electrical current through a material, where the electrical current is the rate of flow of charge. We also
examine a characteristic of materials known as the resistance. Resistance is a measure of how much a material impedes the flow of
charge, and it will be shown that the resistance depends on temperature. In general, a good conductor, such as copper, gold, or
silver, has very low resistance. Some materials, called superconductors, have zero resistance at very low temperatures.

Figure : Magnetic resonance imaging (MRI) uses superconducting magnets and produces high-resolution images without the
danger of radiation. The image on the left shows the spacing of vertebrae along a human spinal column, with the circle indicating
where the vertebrae are too close due to a ruptured disc. On the right is a picture of the MRI instrument, which surrounds the
patient on all sides. A large amount of electrical current is required to operate the electromagnets (credit right: modification of work
by “digital cat”/Flickr).

High currents are required for the operation of electromagnets. Because of the resistance of the wires, high currents make the wires
of the electromagnet very hot limiting the strength that can possibly be obtained. Superconductors can be used to make
electromagnets that are 10 times stronger than the strongest electromagnets made out from conventional conductors. These
superconducting magnets are used in the construction of magnetic resonance imaging (MRI) devices that can be used to make high-
resolution images of the human body. The chapter-opening picture shows an MRI image of the vertebrae of a human subject and
the MRI device itself.

When charges move, they are accelerated in response to an electrical field created by a voltage difference. The charges lose
potential energy and gain kinetic energy as they travel through a potential difference where the electrical field does work on the
charge.

Although charges do not require a material to flow through, the majority of this chapter deals with understanding the movement of
charges through a material.

The rate at which the charges flow past a location—that is, the amount of charge per unit time—is known as the electrical current.
When charges flow through a medium, the current depends on the voltage applied, the material through which the charges flow,
and the state of the material. Of particular interest is the motion of charges in a conducting wire.

Defining Current and the Ampere

Electrical current is defined to be the rate at which charge flows. When there is a large current present, such as that used to run a
refrigerator, a large amount of charge moves through the wire in a small amount of time. If the current is small, such as that used to
operate a handheld calculator, a small amount of charge moves through the circuit over a long period of time.

 LEARNING OBJECTIVES

5.1.1
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The average electrical current  is the rate at which charge flows,

where  is the amount of net charge passing through a given cross-sectional area in time  (Figure ). The SI unit for

current is the ampere (A), named for the French physicist André-Marie Ampère (1775–1836). Since , we see that an

ampere is defined as one coulomb of charge passing through a given area per second:

The instantaneous electrical current, or simply the electrical current, is the time derivative of the charge that flows and is
found by taking the limit of the average electrical current as .

Most electrical appliances are rated in amperes (or amps) required for proper operation, as are fuses and circuit breakers.

Figure : The rate of flow of charge is current. An ampere is the flow of one coulomb of charge through an area in one second.
A current of one amp would result from  electrons flowing through the area A each second.

The main purpose of a battery in a car or truck is to run the electric starter motor, which starts the engine. The operation of
starting the vehicle requires a large current to be supplied by the battery. Once the engine starts, a device called an alternator
takes over supplying the electric power required for running the vehicle and for charging the battery.

a. What is the average current involved when a truck battery sets in motion 720 C of charge in 4.00 s while starting an engine?
b. How long does it take 1.00 C of charge to flow from the battery?

Strategy

We can use the definition of the average current in Equation  to find the average current in part (a), since charge and
time are given. For part (b), once we know the average current, we use Equation  to find the time required for 1.00 C
of charge to flow from the battery.

Solution

a. Entering the given values for charge and time into the definition of current gives

 Electrical Current

I

= ,Iave
ΔQ

Δt
(5.1.1)

ΔQ Δt 5.1.1

I =
ΔQ

Δt

1A ≡ 1 .
C

s
(5.1.2)

Δt → 0

I = = .lim
Δt→0

ΔQ

Δt

dQ

dt
(5.1.3)

5.1.1
6.25 × 1018

 Example : Calculating the Average Current5.1.1

5.1.1

5.1.1

I =
ΔQ

Δt

=
720 C

4.00 s

= 180 C/s

= 180 A.
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b. Solving the relationship  for time  and entering the known values for charge and current gives

Significance

a. This large value for current illustrates the fact that a large charge is moved in a small amount of time. The currents in
these “starter motors” are fairly large to overcome the inertia of the engine.

b. A high current requires a short time to supply a large amount of charge. This large current is needed to supply the
large amount of energy needed to start the engine.

Consider a charge moving through a cross-section of a wire where the charge is modeled as . Here, 
 is the charge after a long period of time, as time approaches infinity, with units of coulombs, and  is a time constant with

units of seconds (Figure ). What is the current through the wire?

Figure : A graph of the charge moving through a cross-section of a wire over time.

Strategy

The current through the cross-section can be found from . Notice from the figure that the charge increases to 

and the derivative decreases, approaching zero, as time increases (Figure ).

Solution

The derivative can be found using .

I =
ΔQ

Δt
Δt

Δt =
ΔQ

I

=
1.00 C

180 C/s

= 5.56 × s10−3

= 5.56 ms.

 Example : Calculating Instantaneous Currents5.1.2

Q(t) = (1 − )QM e−t/τ

QM τ

5.1.2

5.1.2

I =
dQ

dt
QM

5.1.2

=
d

dx
eu eu

du

dx

I =
dQ

dt

= [ (1 − )]
d

dt
QM e−t/τ

= .
QM

τ
e−t/τ
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Figure : A graph of the current flowing through the wire over time.

Significance

The current through the wire in question decreases exponentially, as shown in Figure . In later chapters, it will be
shown that a time-dependent current appears when a capacitor charges or discharges through a resistor. Recall that a
capacitor is a device that stores charge. You will learn about the resistor in Model of Conduction in Metals.

Handheld calculators often use small solar cells to supply the energy required to complete the calculations needed to complete
your next physics exam. The current needed to run your calculator can be as small as 0.30 mA. How long would it take for
1.00 C of charge to flow from the solar cells? Can solar cells be used, instead of batteries, to start traditional internal
combustion engines presently used in most cars and trucks?

Answer

The time for 1.00 C of charge to flow would be

This is slightly less than an hour. This is quite different from the 5.55 ms for the truck battery. The calculator takes a very
small amount of energy to operate, unlike the truck’s starter motor. There are several reasons that vehicles use batteries and
not solar cells. Aside from the obvious fact that a light source to run the solar cells for a car or truck is not always available,
the large amount of current needed to start the engine cannot easily be supplied by present-day solar cells. Solar cells can
possibly be used to charge the batteries. Charging the battery requires a small amount of energy when compared to the
energy required to run the engine and the other accessories such as the heater and air conditioner. Present day solar-
powered cars are powered by solar panels, which may power an electric motor, instead of an internal combustion engine.

Circuit breakers in a home are rated in amperes, normally in a range from 10 amps to 30 amps, and are used to protect the
residents from harm and their appliances from damage due to large currents. A single 15-amp circuit breaker may be used to
protect several outlets in the living room, whereas a single 20-amp circuit breaker may be used to protect the refrigerator in the
kitchen. What can you deduce from this about current used by the various appliances?

Answer

The total current needed by all the appliances in the living room (a few lamps, a television, and your laptop) draw less
current and require less power than the refrigerator.

Current in a Circuit
In order for charge to flow through an appliance, such as the headlight shown in Figure , there must be a complete path (or
circuit) from the positive terminal to the negative terminal. Consider a simple circuit of a car battery, a switch, a headlight lamp,
and wires that provide a current path between the components. In order for the lamp to light, there must be a complete path for

5.1.3

5.1.3

 Exercise 5.1.1A

Δt = = = 3.33 × s.
ΔQ

I

1.00 C

0.300 × C/s10−3
103 (5.1.4)

 Exercise 5.1.1B

5.1.4
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current flow. In other words, a charge must be able to leave the positive terminal of the battery, travel through the component, and
back to the negative terminal of the battery. The switch is there to control the circuit. Part (a) of the figure shows the simple circuit
of a car battery, a switch, a conducting path, and a headlight lamp. Also shown is the schematic of the circuit [part (b)]. A
schematic is a graphical representation of a circuit and is very useful in visualizing the main features of a circuit. Schematics use
standardized symbols to represent the components in a circuits and solid lines to represent the wires connecting the components.
The battery is shown as a series of long and short lines, representing the historic voltaic pile. The lamp is shown as a circle with a
loop inside, representing the filament of an incandescent bulb. The switch is shown as two points with a conducting bar to connect
the two points and the wires connecting the components are shown as solid lines. The schematic in part (c) shows the direction of
current flow when the switch is closed.

Figure : (a) A simple electric circuit of a headlight (lamp), a battery, and a switch. When the switch is closed, an uninterrupted
path for current to flow through is supplied by conducting wires connecting a load to the terminals of a battery. (b) In this
schematic, the battery is represented by parallel lines, which resemble plates in the original design of a battery. The longer lines
indicate the positive terminal. The conducting wires are shown as solid lines. The switch is shown, in the open position, as two
terminals with a line representing a conducting bar that can make contact between the two terminals. The lamp is represented by a
circle encompassing a filament, as would be seen in an incandescent light bulb. (c) When the switch is closed, the circuit is
complete and current flows from the positive terminal to the negative terminal of the battery.

When the switch is closed in Figure , there is a complete path for charges to flow, from the positive terminal of the battery,
through the switch, then through the headlight and back to the negative terminal of the battery. Note that the direction of current
flow is from positive to negative. The direction of conventional current is always represented in the direction that positive charge
would flow, from the positive terminal to the negative terminal.

The conventional current flows from the positive terminal to the negative terminal, but depending on the actual situation, positive
charges, negative charges, or both may move. In metal wires, for example, current is carried by electrons—that is, negative
charges move. In ionic solutions, such as salt water, both positive and negative charges move. This is also true in nerve cells.

A closer look at the current flowing through a wire is shown in Figure . The figure illustrates the movement of charged
particles that compose a current. The fact that conventional current is taken to be in the direction that positive charge would flow is
because electricity was discovered before electrons and protons were.

Figure : Current I is the rate at which charge moves through an area A, such as the cross-section of a wire. Conventional
current is defined to move in the direction of the electrical field. (a) Positive charges move in the direction of the electrical field,
which is the same direction as conventional current. (b) Negative charges move in the direction opposite to the electrical field.
Conventional current is in the direction opposite to the movement of negative charge. The flow of electrons is sometimes referred
to as electronic flow.

In a conducting metal, the current flow is due primarily to electrons flowing from the negative material to the positive material, but
for historical reasons, we consider the positive current flow and the current is shown to flow from the positive terminal of the
battery to the negative terminal.

5.1.4

5.1.4c

5.1.5

5.1.5

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76557?pdf


5.1.6 https://phys.libretexts.org/@go/page/76557

It is important to realize that an electrical field is present in conductors and is responsible for producing the current (Figure ).
In previous chapters, we considered the static electrical case, where charges in a conductor quickly redistribute themselves on the
surface of the conductor in order to cancel out the external electrical field and restore equilibrium. In the case of an electrical
circuit, the charges are prevented from ever reaching equilibrium by an external source of electric potential, such as a battery. The
energy needed to move the charge is supplied by the electric potential from the battery.

Although the electrical field is responsible for the motion of the charges in the conductor, the work done on the charges by the
electrical field does not increase the kinetic energy of the charges. We will show that the electrical field is responsible for keeping
the electric charges moving at a “drift velocity.”

This page titled 5.1: Electrical Current is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

9.2: Electrical Current by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.
9.1: Prelude to Current and Resistance by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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5.2: Model of Conduction in Metals

By the end of this section, you will be able to:

Define the drift velocity of charges moving through a metal
Define the vector current density
Describe the operation of an incandescent lamp

When electrons move through a conducting wire, they do not move at a constant velocity, that is, the electrons do not move in a
straight line at a constant speed. Rather, they interact with and collide with atoms and other free electrons in the conductor. Thus,
the electrons move in a zig-zag fashion and drift through the wire. We should also note that even though it is convenient to discuss
the direction of current, current is a scalar quantity. When discussing the velocity of charges in a current, it is more appropriate to
discuss the current density.

Drift Velocity
Electrical signals move very rapidly. Telephone conversations carried by currents in wires cover large distances without noticeable
delays. Lights come on as soon as a light switch is moved to the ‘on’ position. Most electrical signals carried by currents travel at
speeds on the order of  a significant fraction of the speed of light. Interestingly, the individual charges that make up the
current move much slower on average, typically drifting at speeds on the order of . How do we reconcile these two
speeds, and what does it tell us about standard conductors?

The high speed of electrical signals results from the fact that the force between charges acts rapidly at a distance. Thus, when a free
charge is forced into a wire, as in Figure , the incoming charge pushes other charges ahead of it due to the repulsive force
between like charges. These moving charges push on charges farther down the line. The density of charge in a system cannot easily
be increased, so the signal is passed on rapidly. The resulting electrical shock wave moves through the system at nearly the speed of
light. To be precise, this fast-moving signal, or shock wave, is a rapidly propagating change in the electrical field.

Figure : When charged particles are forced into this volume of a conductor, an equal number are quickly forced to leave. The
repulsion between like charges makes it difficult to increase the number of charges in a volume. Thus, as one charge enters, another
leaves almost immediately, carrying the signal rapidly forward.

Good conductors have large numbers of free charges. In metals, the free charges are free electrons. (In fact, good electrical
conductors are often good heat conductors too, because large numbers of free electrons can transport thermal energy as well as
carry electrical current.) Figure  shows how free electrons move through an ordinary conductor. The distance that an
individual electron can move between collisions with atoms or other electrons is quite small. The electron paths thus appear nearly
random, like the motion of atoms in a gas. But there is an electrical field in the conductor that causes the electrons to drift in the
direction shown (opposite to the field, since they are negative). The drift velocity  is the average velocity of the free charges.
Drift velocity is quite small, since there are so many free charges. If we have an estimate of the density of free electrons in a
conductor, we can calculate the drift velocity for a given current. The larger the density, the lower the velocity required for a given
current.
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Figure : Free electrons moving in a conductor make many collisions with other electrons and other particles. A typical path of
one electron is shown. The average velocity of the free charges is called the drift velocity  and for electrons, it is in the direction
opposite to the electrical field. The collisions normally transfer energy to the conductor, requiring a constant supply of energy to
maintain a steady current.

Free-electron collisions transfer energy to the atoms of the conductor. The electrical field does work in moving the electrons
through a distance, but that work does not increase the kinetic energy (nor speed) of the electrons. The work is transferred to the
conductor’s atoms, often increasing temperature. Thus, a continuous power input is required to keep a current flowing. (An
exception is superconductors, for reasons we shall explore in a later chapter. Superconductors can have a steady current without a
continual supply of energy—a great energy savings.) For a conductor that is not a superconductor, the supply of energy can be
useful, as in an incandescent light bulb filament (Figure ). The supply of energy is necessary to increase the temperature of the
tungsten filament, so that the filament glows.

Figure : The incandescent lamp is a simple design. A tungsten filament is placed in a partially evacuated glass envelope. One
end of the filament is attached to the screw base, which is made out of a conducting material. The second end of the filament is
attached to a second contact in the base of the bulb. The two contacts are separated by an insulating material. Current flows through
the filament, and the temperature of the filament becomes large enough to cause the filament to glow and produce light. However,
these bulbs are not very energy efficient, as evident from the heat coming from the bulb. In the year 2012, the United States, along
with many other countries, began to phase out incandescent lamps in favor of more energy-efficient lamps, such as light-emitting
diode (LED) lamps and compact fluorescent lamps (CFL) (credit right: modification of work by Serge Saint).

We can obtain an expression for the relationship between current and drift velocity by considering the number of free charges in a
segment of wire, as illustrated in Figure . The number of free charges per unit volume, or the number density of free charges,
is given the symbol  where

The value of  depends on the material. The shaded segment has a volume , so that the number of free charges in the
volume is . The charge  in this segment is thus , where  is the amount of charge on each carrier. (The
magnitude of the charge of electrons is .) Current is charge moved per unit time; thus, if all the original
charges move out of this segment in time dt, the current is

Rearranging terms gives

where

 is the drift velocity,
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 is the free charge density,
 is the cross-sectional area of the wire, and

 is the current through the wire.

The carriers of the current each have charge q and move with a drift velocity of magnitude .

Figure : All the charges in the shaded volume of this wire move out in a time dt, having a drift velocity of magnitude .

Note that simple drift velocity is not the entire story. The speed of an electron is sometimes much greater than its drift velocity. In
addition, not all of the electrons in a conductor can move freely, and those that do move might move somewhat faster or slower
than the drift velocity. So what do we mean by free electrons?

Atoms in a metallic conductor are packed in the form of a lattice structure. Some electrons are far enough away from the atomic
nuclei that they do not experience the attraction of the nuclei as strongly as the inner electrons do. These are the free electrons.
They are not bound to a single atom but can instead move freely among the atoms in a “sea” of electrons. When an electrical field
is applied, these free electrons respond by accelerating. As they move, they collide with the atoms in the lattice and with other
electrons, generating thermal energy, and the conductor gets warmer. In an insulator, the organization of the atoms and the structure
do not allow for such free electrons.

As you know, electric power is usually supplied to equipment and appliances through round wires made of a conducting material
(copper, aluminum, silver, or gold) that are stranded or solid. The diameter of the wire determines the current-carrying capacity—
the larger the diameter, the greater the current-carrying capacity. Even though the current-carrying capacity is determined by the
diameter, wire is not normally characterized by the diameter directly. Instead, wire is commonly sold in a unit known as “gauge.”
Wires are manufactured by passing the material through circular forms called “drawing dies.” In order to make thinner wires,
manufacturers draw the wires through multiple dies of successively thinner diameter. Historically, the gauge of the wire was related
to the number of drawing processes required to manufacture the wire. For this reason, the larger the gauge, the smaller the
diameter. In the United States, the American Wire Gauge (AWG) was developed to standardize the system. Household wiring
commonly consists of 10-gauge (2.588-mm diameter) to 14-gauge (1.628-mm diameter) wire. A device used to measure the gauge
of wire is shown in Figure .

Figure : A device for measuring the gauge of electrical wire. As you can see, higher gauge numbers indicate thinner wires.

Calculate the drift velocity of electrons in a copper wire with a diameter of 2.053 mm (12-gauge) carrying a 20.0-A current,
given that there is one free electron per copper atom. (Household wiring often contains 12-gauge copper wire, and the
maximum current allowed in such wire is usually 20.0 A.) The density of copper is  and the atomic mass of
copper is 63.54 g/mol.
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Strategy

We can calculate the drift velocity using the equation . The current is  and  is
the charge of an electron. We can calculate the area of a cross-section of the wire using the formula , where  is
one-half the diameter. The given diameter is 2.053 mm, so r is 1.0265 mm. We are given the density of copper, 

, and the atomic mass of copper is . We can use these two quantities along with Avogadro’s
number, , to determine n, the number of free electrons per cubic meter.

Solution

First, we calculate the density of free electrons in copper. There is one free electron per copper atom. Therefore, the
number of free electrons is the same as the number of copper atoms per . We can now find n as follows:

The cross-sectional area of the wire is

Rearranging  to isolate drift velocity gives

Significance

The minus sign indicates that the negative charges are moving in the direction opposite to conventional current. The
small value for drift velocity (on the order of  confirms that the signal moves on the order of  times faster
(about  than the charges that carry it.

In Example , the drift velocity was calculated for a 2.053-mm diameter (12-gauge) copper wire carrying a 20-amp
current. Would the drift velocity change for a 1.628-mm diameter (14-gauge) wire carrying the same 20-amp current?

Answer

The diameter of the 14-gauge wire is smaller than the diameter of the 12-gauge wire. Since the drift velocity is inversely
proportional to the cross-sectional area, the drift velocity in the 14-gauge wire is larger than the drift velocity in the 12-
gauge wire carrying the same current. The number of electrons per cubic meter will remain constant.

Current Density

Although it is often convenient to attach a negative or positive sign to indicate the overall direction of motion of the charges,

current is a scalar quantity,  It is often necessary to discuss the details of the motion of the charge, instead of discussing

the overall motion of the charges. In such cases, it is necessary to discuss the current density, , a vector quantity. The current
density is the flow of charge through an infinitesimal area, divided by the area. The current density must take into account the local
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magnitude and direction of the charge flow, which varies from point to point. The unit of current density is ampere per meter
squared, and the direction is defined as the direction of net flow of positive charges through the area.

Figure : The current density  is defined as the current passing through an infinitesimal cross-sectional area divided by the
area. The direction of the current density is the direction of the net flow of positive charges and the magnitude is equal to the
current divided by the infinitesimal area.

The relationship between the current and the current density can be seen in Figure . The differential current flow through the
area  is found as

where  is the angle between the area and the current density. The total current passing through area  can be found by
integrating over the area,

Consider the magnitude of the current density, which is the current divided by the area:

Thus, the current density is . If q is positive,  is in the same direction as the electrical field . If q is negative,  is in
the opposite direction of . Either way, the direction of the current density  is in the direction of the electrical field .

The current supplied to a lamp with a 100-W light bulb is 0.87 amps. The lamp is wired using a copper wire with diameter
2.588 mm (10-gauge). Find the magnitude of the current density.

Strategy

The current density is the current moving through an infinitesimal cross-sectional area divided by the area. We can

calculate the magnitude of the current density using . The current is given as 0.87 A. The cross-sectional area can

be calculated to be .

Solution

Calculate the current density using the given current  and the area, found to be .

Significance

The current density in a conducting wire depends on the current through the conducting wire and the cross-sectional
area of the wire. For a given current, as the diameter of the wire increases, the charge density decreases.

The current density is proportional to the current and inversely proportional to the area. If the current density in a conducting
wire increases, what would happen to the drift velocity of the charges in the wire?

Answer

5.2.6 J ⃗ 

5.2.6

dA ⃗ 

dI = ⋅ d = JdA cos θ,J ⃗  A ⃗  (5.2.4)

θ dA ⃗ 

I = ⋅ d .∬
area

J ⃗  A ⃗  (5.2.5)

J = = = n|q| .
I

A

n|q|Avd

A
vd (5.2.6)

= nqJ ⃗  v ⃗ d v ⃗ d E ⃗  v ⃗ d

E ⃗  J ⃗  E ⃗ 

 Example : Calculating the Current Density in a Wire5.2.2
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The current density in a conducting wire increases due to an increase in current. The drift velocity is inversely proportional

to the current , so the drift velocity would decrease.

What is the significance of the current density? The current density is proportional to the current, and the current is the number of
charges that pass through a cross-sectional area per second. The charges move through the conductor, accelerated by the electric
force provided by the electrical field. The electrical field is created when a voltage is applied across the conductor. In Ohm’s Law,
we will use this relationship between the current density and the electrical field to examine the relationship between the current
through a conductor and the voltage applied.

 

This page titled 5.2: Model of Conduction in Metals is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

9.3: Model of Conduction in Metals by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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5.3: Resistivity and Resistance

By the end of this section, you will be able to:

Differentiate between resistance and resistivity
Define the term conductivity
Describe the electrical component known as a resistor
State the relationship between resistance of a resistor and its length, cross-sectional area, and resistivity
State the relationship between resistivity and temperature

What drives current? We can think of various devices—such as batteries, generators, wall outlets, and so on—that are necessary to
maintain a current. All such devices create a potential difference and are referred to as voltage sources. When a voltage source is
connected to a conductor, it applies a potential difference V that creates an electrical field. The electrical field, in turn, exerts force
on free charges, causing current. The amount of current depends not only on the magnitude of the voltage, but also on the
characteristics of the material that the current is flowing through. The material can resist the flow of the charges, and the measure
of how much a material resists the flow of charges is known as the resistivity. This resistivity is crudely analogous to the friction
between two materials that resists motion.

Resistivity

When a voltage is applied to a conductor, an electrical field  is created, and charges in the conductor feel a force due to the
electrical field. The current density  that results depends on the electrical field and the properties of the material. This dependence
can be very complex. In some materials, including metals at a given temperature, the current density is approximately proportional
to the electrical field. In these cases, the current density can be modeled as

where  is the electrical conductivity. The electrical conductivity is analogous to thermal conductivity and is a measure of a
material’s ability to conduct or transmit electricity. Conductors have a higher electrical conductivity than insulators. Since the
electrical conductivity is , the units are

Here, we define a unit named the ohm with the Greek symbol uppercase omega, . The unit is named after Georg Simon Ohm,
whom we will discuss later in this chapter. The  is used to avoid confusion with the number 0. One ohm equals one volt per amp: 

. The units of electrical conductivity are therefore .

Conductivity is an intrinsic property of a material. Another intrinsic property of a material is the resistivity, or electrical resistivity.
The resistivity of a material is a measure of how strongly a material opposes the flow of electrical current. The symbol for
resistivity is the lowercase Greek letter rho, , and resistivity is the reciprocal of electrical conductivity:

The unit of resistivity in SI units is the ohm-meter . We can define the resistivity in terms of the electrical field and the
current density.

The greater the resistivity, the larger the field needed to produce a given current density. The lower the resistivity, the larger the
current density produced by a given electrical field. Good conductors have a high conductivity and low resistivity. Good insulators
have a low conductivity and a high resistivity. Table  lists resistivity and conductivity values for various materials.

Table : Resistivities and Conductivities of Various Materials at 20 °C[1] Values depend strongly on amounts and types of impurities.
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Material Conductivity,  Resistivity,  
Temperature Coefficient  

Material Conductivity,  Resistivity,  
Temperature Coefficient  

Conductors

Silver 0.0038

Copper 0.0039

Gold 0.0034

Aluminum 0.0039

Tungsten 0.0045

Iron 0.0065

Platinum 0.0039

Steel  

Lead  

Manganin (Cu, Mn. Ni alloy) 0.000002

Constantan (Cu, Ni alloy) 0.00003

Mercury 0.0009

Nichrome (Ni, Fe, Cr alloy) 0.0004

Semiconductors [1]

Carbon (pure) -0.0005

Carbon -0.0005

Germanium (pure)  -0.048

Germanium  -0.050

Silicon (pure)  2300 -0.075

Silicon  0.1 - 2300 -0.07

Insulators

Amber  

Glass  

Lucite  

Mica  

Quartz (fused)  

Rubber (hard)  

Sulfur  

Teflon  

Wood  

The materials listed in the table are separated into categories of conductors, semiconductors, and insulators, based on broad
groupings of resistivity. Conductors have the smallest resistivity, and insulators have the largest; semiconductors have intermediate
resistivity. Conductors have varying but large, free charge densities, whereas most charges in insulators are bound to atoms and are

σσ (Ω ⋅ m(Ω ⋅ m))−1−1 ρρ (Ω ⋅ m)(Ω ⋅ m)
αα

CC((oo ))−1−1

6.29 × 107 1.59 × 10−8

5.95 × 107 1.68 × 10−8

4.10 × 107 2.44 × 10−8

3.77 × 107 2.65 × 10−8

1.79 × 107 5.60 × 10−8

1.03 × 107 9.71 × 10−8

0.94 × 107 10.60 × 10−8

0.50 × 107 20.00 × 10−8

0.45 × 107 22.00 × 10−8

0.21 × 107 48.20 × 10−8

0.20 × 107 49.00 × 10−8

0.10 × 107 98.00 × 10−8

0.10 × 107 100.00 × 10−8

2.86 × 104 3.50 × 10−5

(2.86 − 1.67) × 10−6 (3.5 − 60) × 10−5

600 × 10−3

(1 − 600) × 10−3

2.00 × 10−15 5 × 1014

−10−9 19−14 −109 1014

< 10−13 > 1013

−10−11 10−15 −1011 1015

1.33 × 10−18 75 × 1016

−10−13 10−16 −1013 1016

10−15 1015

TM < 10−13 > 1013

−10−8 10−11 −108 1011
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not free to move. Semiconductors are intermediate, having far fewer free charges than conductors, but having properties that make
the number of free charges depend strongly on the type and amount of impurities in the semiconductor. These unique properties of
semiconductors are put to use in modern electronics, as we will explore in later chapters.

Temperature Dependence of Resistivity
Looking back at Table , you will see a column labeled “Temperature Coefficient.” The resistivity of some materials has a
strong temperature dependence. In some materials, such as copper, the resistivity increases with increasing temperature. In fact, in
most conducting metals, the resistivity increases with increasing temperature. The increasing temperature causes increased
vibrations of the atoms in the lattice structure of the metals, which impede the motion of the electrons. In other materials, such as
carbon, the resistivity decreases with increasing temperature. In many materials, the dependence is approximately linear and can be
modeled using a linear equation:

where  is the resistivity of the material at temperature T,  is the temperature coefficient of the material, and  is the resistivity
at , usually taken as .

Note also that the temperature coefficient  is negative for the semiconductors listed in Table , meaning that their resistivity
decreases with increasing temperature. They become better conductors at higher temperature, because increased thermal agitation
increases the number of free charges available to carry current. This property of decreasing  with temperature is also related to the
type and amount of impurities present in the semiconductors.

Resistance
We now consider the resistance of a wire or component. The resistance is a measure of how difficult it is to pass current through a
wire or component. Resistance depends on the resistivity. The resistivity is a characteristic of the material used to fabricate a wire
or other electrical component, whereas the resistance is a characteristic of the wire or component.

To calculate the resistance, consider a section of conducting wire with cross-sectional area A, length L, and resistivity . A battery
is connected across the conductor, providing a potential difference  across it (Figure ). The potential difference produces
an electrical field that is proportional to the current density, according to .

Figure : A potential provided by a battery is applied to a segment of a conductor with a cross-sectional area  and a length .

The magnitude of the electrical field across the segment of the conductor is equal to the voltage divided by the length, ,
and the magnitude of the current density is equal to the current divided by the cross-sectional area, . Using this
information and recalling that the electrical field is proportional to the resistivity and the current density, we can see that the voltage
is proportional to the current:

The ratio of the voltage to the current is defined as the resistance :

5.3.1

ρ ≈ [1 +α(T − )],ρ0 T0 (5.3.5)

ρ α ρ0

T0 = CT0 20.00o

α 5.3.1

ρ

ρ

ΔV 5.3.1

= ρE ⃗  J ⃗ 

5.3.1 A L

E = V /L

J = I/A

E

V

L

V

= ρJ

= ρ
I

A

=(ρ ) I.
L

A

 Definition: Resistance

R
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The resistance of a cylindrical segment of a conductor is equal to the resistivity of the material times the length divided by the
area:

The unit of resistance is the ohm, . For a given voltage, the higher the resistance, the lower the current.

Resistors

A common component in electronic circuits is the resistor. The resistor can be used to reduce current flow or provide a voltage
drop. Figure  shows the symbols used for a resistor in schematic diagrams of a circuit. Two commonly used standards for
circuit diagrams are provided by the American National Standard Institute (ANSI, pronounced “AN-see”) and the International
Electrotechnical Commission (IEC). Both systems are commonly used. We use the ANSI standard in this text for its visual
recognition, but we note that for larger, more complex circuits, the IEC standard may have a cleaner presentation, making it easier
to read.

Figure : Symbols for a resistor used in circuit diagrams. (a) The ANSI symbol; (b) the IEC symbol.

Material and shape dependence of resistance

A resistor can be modeled as a cylinder with a cross-sectional area A and a length L, made of a material with a resistivity  (Figure 

). The resistance of the resistor is 

Figure : A model of a resistor as a uniform cylinder of length L and cross-sectional area A. Its resistance to the flow of current
is analogous to the resistance posed by a pipe to fluid flow. The longer the cylinder, the greater its resistance. The larger its cross-
sectional area A, the smaller its resistance.

The most common material used to make a resistor is carbon. A carbon track is wrapped around a ceramic core, and two copper
leads are attached. A second type of resistor is the metal film resistor, which also has a ceramic core. The track is made from a
metal oxide material, which has semiconductive properties similar to carbon. Again, copper leads are inserted into the ends of the
resistor. The resistor is then painted and marked for identification. A resistor has four colored bands, as shown in Figure .

Figure : Many resistors resemble the figure shown above. The four bands are used to identify the resistor. The first two
colored bands represent the first two digits of the resistance of the resistor. The third color is the multiplier. The fourth color
represents the tolerance of the resistor. The resistor shown has a resistance of 

R ≡ .
V

I
(5.3.6)

R ≡ = ρ .
V

I

L

A
(5.3.7)

Ω

5.3.2

5.3.2

ρ

5.3.3 R = ρ
L

A

5.3.3

5.3.4

5.3.4

20 × Ω ± 10%105
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Resistances range over many orders of magnitude. Some ceramic insulators, such as those used to support power lines, have
resistances of  or more. A dry person may have a hand-to-foot resistance of  whereas the resistance of the human heart
is about  A meter-long piece of large-diameter copper wire may have a resistance of , and superconductors have no
resistance at all at low temperatures. As we have seen, resistance is related to the shape of an object and the material of which it is
composed.

The resistance of an object also depends on temperature, since  is directly proportional to . For a cylinder, we know ,

so if L and A do not change greatly with temperature, R has the same temperature dependence as . (Examination of the
coefficients of linear expansion shows them to be about two orders of magnitude less than typical temperature coefficients of
resistivity, so the effect of temperature on L and A is about two orders of magnitude less than on .) Thus,

is the temperature dependence of the resistance of an object, where  is the original resistance (usually taken to be 
and R is the resistance after a temperature change . The color code gives the resistance of the resistor at a temperature of 

.

Numerous thermometers are based on the effect of temperature on resistance (Figure ). One of the most common
thermometers is based on the thermistor, a semiconductor crystal with a strong temperature dependence, the resistance of which is
measured to obtain its temperature. The device is small, so that it quickly comes into thermal equilibrium with the part of a person
it touches.

Figure : These familiar thermometers are based on the automated measurement of a thermistor’s temperature-dependent
resistance.

Examples

A car headlight filament is made of tungsten and has a cold resistance of 0.350Ω. If the filament is a cylinder 4.00 cm long (it
may be coiled to save space), what is its diameter?

Strategy

We can rearrange the equation  to find the cross-sectional area  of the filament from the given information. Then
its diameter can be found by assuming it has a circular cross-section.

Solution

The cross-sectional area, found by rearranging the expression for the resistance of a cylinder given in , is

.

Substituting the given values, and taking ρ from Table , yields

.

The area of a circle is related to its diameter  by

.

Ω1012 Ω105

Ω103 Ω10−5

R0 ρ R = ρ
L

A
ρ

ρ

R = (1 +αΔT )R0 (5.3.8)

R0 T = C20.00o

ΔT

T = C20.00o

5.3.5

5.3.5

Example :Calculating Resistor Diameter: A Headlight Filament5.3.1. a

R =
ρL

A
A

R =
ρL

A

A =
ρL

R

5.3.1

A = = 6.40 ×
(5.6× Ω⋅m)(4.00× m)10–8 10–2

0.350Ω
10–9m2

D

A = πD2

4
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Solving for the diameter , and substituting the value found for , gives

.

Discussion

The diameter is just under a tenth of a millimeter. It is quoted to only two digits, because ρ is known to only two digits.

Calculate the current density, resistance, and electrical field of a 5-m length of copper wire with a diameter of 2.053 mm (12-
gauge) carrying a current of .

Strategy

We can calculate the current density by first finding the cross-sectional area of the wire, which is , and the

definition of current density . The resistance can be found using the length of the wire , the area, and

the resistivity of copper , where . The resistivity and current density can be used to find

the electrical field.

Solution

First, we calculate the current density:

The resistance of the wire is

Finally, we can find the electrical field:

Significance

From these results, it is not surprising that copper is used for wires for carrying current because the resistance is quite
small. Note that the current density and electrical field are independent of the length of the wire, but the voltage depends
on the length.

D A

D = 2( = 2( = 9.0 × mA

p
)

1

2
6.40×10–9m2

3.14
)

1

2 10–5

 Example : Current Density, Resistance, and Electrical field for a Current-Carrying Wire5.3.1. b

I −10 mA

A = 3.31 mm2

J =
I

A
L = 5.00 m

ρ = 1.68 × Ω ⋅m10−8 R = ρ
L

A

J =
I

A

=
10 × A10−3

3.31 ×10−6m2

= 3.02 × .103 A

m2

R = ρ
L

A

= (1.68 × Ω ⋅m)10−8 5.00 m

3.31 ×10−6m2

= 0.025 Ω.

E = ρJ

= 1.68 × Ω ⋅m(3.02 × )10−8 103 A

m2

= 5.07 × .10−5 V

m
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A common type of wire found in DC applications is 22AWG (“American Wire Gauge”; see “Additional Resources” at the end
of this section) copper solid-conductor hookup wire. This type of wire has circular cross-section with diameter 0.644 mm.
What is the resistance of 3 m of this wire? Assume copper conductivity of .

Solution

From the problem statement, the diameter  mm, , and  m. 

The cross-sectional area is  m . 

Using the Equation , we obtain  m .

A pipe is 3 m long and has inner and outer radii of 5 mm and 7 mm respectively. It is made from steel having conductivity 
. What is the DC resistance of this pipe?

Solution

We can use Equation  if we can determine the cross-sectional area  through which the current flows. 

This area is simply the area defined by the outer radius, , minus the area defined by the inner radius . 

Thus,  m . 

From the problem statement, we also determine that  and  m. 

Using Equation  we obtain  m .

Copper wires use routinely used for extension cords and house wiring for several reasons. Copper has the highest electrical
conductivity rating, and therefore the lowest resistivity rating, of all nonprecious metals. Also important is the tensile strength,
where the tensile strength is a measure of the force required to pull an object to the point where it breaks. The tensile strength
of a material is the maximum amount of tensile stress it can take before breaking. Copper has a high tensile strength, 

. A third important characteristic is ductility. Ductility is a measure of a material’s ability to be drawn into wires

and a measure of the flexibility of the material, and copper has a high ductility. Summarizing, for a conductor to be a suitable
candidate for making wire, there are at least three important characteristics: low resistivity, high tensile strength, and high
ductility. What other materials are used for wiring and what are the advantages and disadvantages?

Answer

Silver, gold, and aluminum are all used for making wires. All four materials have a high conductivity, silver having the
highest. All four can easily be drawn into wires and have a high tensile strength, though not as high as copper. The obvious
disadvantage of gold and silver is the cost, but silver and gold wires are used for special applications, such as speaker wires.
Gold does not oxidize, making better connections between components. Aluminum wires do have their drawbacks.
Aluminum has a higher resistivity than copper, so a larger diameter is needed to match the resistance per length of copper
wires, but aluminum is cheaper than copper, so this is not a major drawback. Aluminum wires do not have as high of a
ductility and tensile strength as copper, but the ductility and tensile strength is within acceptable levels. There are a few
concerns that must be addressed in using aluminum and care must be used when making connections. Aluminum has a
higher rate of thermal expansion than copper, which can lead to loose connections and a possible fire hazard. The oxidation
of aluminum does not conduct and can cause problems. Special techniques must be used when using aluminum wires and
components, such as electrical outlets, must be designed to accept aluminum wires.

 Example :Resistance of 22 AWG hookup wire5.3.1. c

σ = 58 × (Ωm106 )−1

2a = 0.644 σ = 58 × (Ωm106 )−1 l = 3

A = π ≅3.26 ×a2 10−7 2

R = =
ρL

A

L

σA
R = 159 Ω

 Example : Resistance of steel pipe5.3.1. d

σ = 4 × (Ωm106 )−1

R = =
ρL

A

L

σA
A

πb2 πa2

A = π −π ≅7.54 ×b2 a2 10−5 2

σ = 4 × (Ωm106 )−1 l = 3

R = =
ρL

A

L

σA
R ≅9.95 Ω

 Exercise 5.3.1

2 ×108 N

m2
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Although caution must be used in applying  and  for temperature changes greater than 
, for tungsten, the equations work reasonably well for very large temperature changes. A tungsten filament at  has

a resistance of . What would the resistance be if the temperature is increased to ?

Strategy

This is a straightforward application of Equation , since the original resistance of the filament is given as 
 and the temperature change is .

Solution

The resistance of the hotter filament  is obtained by entering known values into the above equation:

Significance

Notice that the resistance changes by more than a factor of 10 as the filament warms to the high temperature and the
current through the filament depends on the resistance of the filament and the voltage applied. If the filament is used in
an incandescent light bulb, the initial current through the filament when the bulb is first energized will be higher than
the current after the filament reaches the operating temperature.

A strain gauge is an electrical device to measure strain, as shown below. It consists of a flexible, insulating backing that
supports a conduction foil pattern. The resistance of the foil changes as the backing is stretched. How does the strain gauge
resistance change? Is the strain gauge affected by temperature changes?

Answer

The foil pattern stretches as the backing stretches, and the foil tracks become longer and thinner. Since the resistance is

calculated as , the resistance increases as the foil tracks are stretched. When the temperature changes, so does the

resistivity of the foil tracks, changing the resistance. One way to combat this is to use two strain gauges, one used as a
reference and the other used to measure the strain. The two strain gauges are kept at a constant temperature

 Example : Calculating Resistance5.3.2

ρ = (1 +αΔT )ρ0 R = (1 +αΔT )R0

C100o C20o

0.350 Ω C2850o

5.3.8

= 0.350 ΩR0 ΔT = C2830o

R

R = (1 +αΔT )R0

= (0.350 Ω)(1 +( ) ( C))
4.5 ×10−3

Co
2830o

= 4.8 Ω

 Exercise 5.3.2

R = ρ
L

A
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Long cables can sometimes act like antennas, picking up electronic noise, which are signals from other equipment and
appliances. Coaxial cables are used for many applications that require this noise to be eliminated. For example, they can be
found in the home in cable TV connections or other audiovisual connections. Coaxial cables consist of an inner conductor of
radius  surrounded by a second, outer concentric conductor with radius  (Figure ). The space between the two is
normally filled with an insulator such as polyethylene plastic. A small amount of radial leakage current occurs between the two
conductors. Determine the resistance of a coaxial cable of length L.

Figure : Coaxial cables consist of two concentric conductors separated by insulation. They are often used in cable TV or
other audiovisual connections.

Strategy

We cannot use the equation  directly. Instead, we look at concentric cylindrical shells, with thickness dr, and

integrate.

Solution

We first find an expression for  and then integrate from  to ,

Integrating both sides

Significance

The resistance of a coaxial cable depends on its length, the inner and outer radii, and the resistivity of the material
separating the two conductors. Since this resistance is not infinite, a small leakage current occurs between the two
conductors. This leakage current leads to the attenuation (or weakening) of the signal being sent through the cable.

The resistance between the two conductors of a coaxial cable depends on the resistivity of the material separating the two
conductors, the length of the cable and the inner and outer radius of the two conductor. If you are designing a coaxial cable,
how does the resistance between the two conductors depend on these variables?

 Example : The Resistance of Coaxial Cable5.3.3

ri r0 5.3.6

5.3.6

R = ρ
L

A

dR ri r0

dR = dr
ρ

A

= dr,
ρ

2πrL

R = dR∫
r0

ri

= dr∫
r0

ri

ρ

2πrL

= dr
ρ

2πL
∫

r0

ri

1

r

= ln .
ρ

2πL

r0

ri

 Exercise 5.3.3
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Answer

The longer the length, the smaller the resistance. The greater the resistivity, the higher the resistance. The larger the
difference between the outer radius and the inner radius, that is, the greater the ratio between the two, the greater the
resistance. If you are attempting to maximize the resistance, the choice of the values for these variables will depend on the
application. For example, if the cable must be flexible, the choice of materials may be limited.
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5.4: Ohm's Law

By the end of this section, you will be able to:

Describe Ohm’s law
Recognize when Ohm’s law applies and when it does not

We have been discussing three electrical properties so far in this chapter: current, voltage, and resistance. It turns out that many
materials exhibit a simple relationship among the values for these properties, known as Ohm’s law. Many other materials do not
show this relationship, so despite being called Ohm’s law, it is not considered a law of nature, like Newton’s laws or the laws of
thermodynamics. But it is very useful for calculations involving materials that do obey Ohm’s law.

Description of Ohm’s Law
The current that flows through most substances is directly proportional to the voltage V applied to it. The German physicist Georg
Simon Ohm (1787–1854) was the first to demonstrate experimentally that the current in a metal wire is directly proportional to
the voltage applied:

This important relationship is the basis for Ohm’s law. It can be viewed as a cause-and-effect relationship, with voltage the cause
and current the effect. This is an empirical law, which is to say that it is an experimentally observed phenomenon, like friction.
Such a linear relationship doesn’t always occur. Any material, component, or device that obeys Ohm’s law, where the current
through the device is proportional to the voltage applied, is known as an ohmic material or ohmic component. Any material or
component that does not obey Ohm’s law is known as a nonohmic material or nonohmic component.

Ohm’s Experiment

In a paper published in 1827, Georg Ohm described an experiment in which he measured voltage across and current through
various simple electrical circuits containing various lengths of wire. A similar experiment is shown in Figure . This
experiment is used to observe the current through a resistor that results from an applied voltage. In this simple circuit, a resistor is
connected in series with a battery. The voltage is measured with a voltmeter, which must be placed across the resistor (in parallel
with the resistor). The current is measured with an ammeter, which must be in line with the resistor (in series with the resistor).

Figure : The experimental set-up used to determine if a resistor is an ohmic or nonohmic device. (a) When the battery is
attached, the current flows in the clockwise direction and the voltmeter and ammeter have positive readings. (b) When the leads of
the battery are switched, the current flows in the counterclockwise direction and the voltmeter and ammeter have negative readings.

In this updated version of Ohm’s original experiment, several measurements of the current were made for several different
voltages. When the battery was hooked up as in Figure , the current flowed in the clockwise direction and the readings of the
voltmeter and ammeter were positive. Does the behavior of the current change if the current flowed in the opposite direction? To
get the current to flow in the opposite direction, the leads of the battery can be switched. When the leads of the battery were
switched, the readings of the voltmeter and ammeter readings were negative because the current flowed in the opposite direction, in
this case, counterclockwise. Results of a similar experiment are shown in Figure .

 Learning Objectives

I ∝ V . (5.4.1)

5.4.1

5.4.1

5.4.1a

5.4.2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76560?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law


5.4.2 https://phys.libretexts.org/@go/page/76560

Figure : A resistor is placed in a circuit with a battery. The voltage applied varies from −10.00 V to +10.00 V, increased by
1.00-V increments. A plot shows values of the voltage versus the current typical of what a casual experimenter might find.

In this experiment, the voltage applied across the resistor varies from −10.00 to +10.00 V, by increments of 1.00 V. The current
through the resistor and the voltage across the resistor are measured. A plot is made of the voltage versus the current, and the result
is approximately linear. The slope of the line is the resistance, or the voltage divided by the current. This result is known as Ohm’s
law:

where V is the voltage measured in volts across the object in question, I is the current measured through the object in amps, and R
is the resistance in units of ohms. As stated previously, any device that shows a linear relationship between the voltage and the
current is known as an ohmic device. A resistor is therefore an ohmic device.

A carbon resistor at room temperature  is attached to a 9.00-V battery and the current measured through the resistor is
3.00 mA. (a) What is the resistance of the resistor measured in ohms? (b) If the temperature of the resistor is increased to 
by heating the resistor, what is the current through the resistor?

Strategy

(a) The resistance can be found using Ohm’s law. Ohm’s law states that , so the resistance can be found using 
.

(b) First, the resistance is temperature dependent so the new resistance after the resistor has been heated can be found using 
. The current can be found using Ohm’s law in the form .

Solution

1. Using Ohm’s law and solving for the resistance yields the resistance at room temperature:

2. The resistance at  can be found using  where the temperature coefficient for carbon is 
.

The current through the heated resistor is

Significance

5.4.1

V = IR (5.4.2)

 Example : Measuring Resistance5.4.1

( C)20o

C60o

V = IR

R = V /I

R = (1 +αΔT )R0 I = V /R

R = = = 3.00 × Ω = 3.00kΩ
V

I

9.00 V

3.00 × A10−3
103 (5.4.3)

C60o R = (1 +αΔT )R0

α = −0.0005

R = (1 +αΔT ) = 3.00 × (1 −0.0005( C − C)) = 2.94 kΩ.R0 103 60o 20o (5.4.4)

I = = = 3.06 × A = 3.06 mA.
V

R

9.00 V

2.94 × Ω103
10−3 (5.4.5)
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A change in temperature of  resulted in a 2.00% change in current. This may not seem like a very great change, but
changing electrical characteristics can have a strong effect on the circuits. For this reason, many electronic appliances, such as
computers, contain fans to remove the heat dissipated by components in the electric circuits.

The voltage supplied to your house varies as . If a resistor is connected across this voltage, will
Ohm’s law  still be valid?

Answer

Yes, Ohm’s law is still valid. At every point in time the current is equal to , so the current is also a function

of time, .

Nonohmic devices do not exhibit a linear relationship between the voltage and the current. One such device is the semiconducting
circuit element known as a diode. A diode is a circuit device that allows current flow in only one direction. A diagram of a simple
circuit consisting of a battery, a diode, and a resistor is shown in Figure . Although we do not cover the theory of the diode in
this section, the diode can be tested to see if it is an ohmic or a nonohmic device.

Figure : A diode is a semiconducting device that allows current flow only if the diode is forward biased, which means that the
anode is positive and the cathode is negative.

A plot of current versus voltage is shown in Figure . Note that the behavior of the diode is shown as current versus voltage,
whereas the resistor operation was shown as voltage versus current. A diode consists of an anode and a cathode. When the anode is
at a negative potential and the cathode is at a positive potential, as shown in part (a), the diode is said to have reverse bias. With
reverse bias, the diode has an extremely large resistance and there is very little current flow—essentially zero current—through the
diode and the resistor. As the voltage applied to the circuit increases, the current remains essentially zero, until the voltage reaches
the breakdown voltage and the diode conducts current. When the battery and the potential across the diode are reversed, making the
anode positive and the cathode negative, the diode conducts and current flows through the diode if the voltage is greater than 0.7 V.
The resistance of the diode is close to zero. (This is the reason for the resistor in the circuit; if it were not there, the current would
become very large.) You can see from the graph in Figure  that the voltage and the current do not have a linear relationship.
Thus, the diode is an example of a nonohmic device.

Figure : When the voltage across the diode is negative and small, there is very little current flow through the diode. As the
voltage reaches the breakdown voltage, the diode conducts. When the voltage across the diode is positive and greater than 0.7 V
(the actual voltage value depends on the diode), the diode conducts. As the voltage applied increases, the current through the diode
increases, but the voltage across the diode remains approximately 0.7 V.

Ohm’s law is commonly stated as , but originally it was stated as a microscopic view, in terms of the current density, the
conductivity, and the electrical field. This microscopic view suggests the proportionality  comes from the drift velocity of

C40o

 Exercise 5.4.1

V (t) = sin (2π ft)Vmax

V = IR

I(t) = V (t)/R

I(t) = sin (2π ft)
Vmax

R

5.4.3

5.4.3

5.4.4

5.4.4

5.4.4

V = IR

V ∝ I

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76560?pdf


5.4.4 https://phys.libretexts.org/@go/page/76560

the free electrons in the metal that results from an applied electrical field. As stated earlier, the current density is proportional to the
applied electrical field. The reformulation of Ohm’s law is credited to Gustav Kirchhoff, whose name we will see again in the next
chapter.

This page titled 5.4: Ohm's Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content
that was edited to the style and standards of the LibreTexts platform.

9.5: Ohm's Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76560?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law
https://creativecommons.org/licenses/by/4.0
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-2
https://phys.libretexts.org/@go/page/4403
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-2


5.5.1 https://phys.libretexts.org/@go/page/76561

5.5: Electrical Energy and Power

By the end of this section, you will be able to:

Express electrical power in terms of the voltage and the current
Describe the power dissipated by a resistor in an electric circuit
Calculate the energy efficiency and cost effectiveness of appliances and equipment

In an electric circuit, electrical energy is continuously converted into other forms of energy. For example, when a current flows in a
conductor, electrical energy is converted into thermal energy within the conductor. The electrical field, supplied by the voltage
source, accelerates the free electrons, increasing their kinetic energy for a short time. This increased kinetic energy is converted
into thermal energy through collisions with the ions of the lattice structure of the conductor. Previously, we defined power as the
rate at which work is done by a force measured in watts. Power can also be defined as the rate at which energy is transferred. In this
section, we discuss the time rate of energy transfer, or power, in an electric circuit.

Power in Electric Circuits
Power is associated by many people with electricity. Power transmission lines might come to mind. We also think of light bulbs in
terms of their power ratings in watts. What is the expression for electric power?

Let us compare a 25-W bulb with a 60-W bulb (Figure ). The 60-W bulb glows brighter than the 25-W bulb. Although it is
not shown, a 60-W light bulb is also warmer than the 25-W bulb. The heat and light is produced by from the conversion of
electrical energy. The kinetic energy lost by the electrons in collisions is converted into the internal energy of the conductor and
radiation. How are voltage, current, and resistance related to electric power?

Figure : (a) Pictured above are two incandescent bulbs: a 25-W bulb (left) and a 60-W bulb (right). The 60-W bulb provides a
higher intensity light than the 25-W bulb. The electrical energy supplied to the light bulbs is converted into heat and light. (b) This
compact fluorescent light (CFL) bulb puts out the same intensity of light as the 60-W bulb, but at 1/4 to 1/10 the input power.
(credit a: modification of works by “Dickbauch”/Wikimedia Commons and Greg Westfall; credit b: modification of work by
“dbgg1979”/Flickr)

To calculate electric power, consider a voltage difference existing across a material (Figure ). The electric potential  is
higher than the electric potential at , and the voltage difference is negative . As discussed in Electric Potential, an
electrical field exists between the two potentials, which points from the higher potential to the lower potential. Recall that the
electrical potential is defined as the potential energy per charge, , and the charge  loses potential energy moving
through the potential difference.

 LEARNING OBJECTIVES
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Figure : When there is a potential difference across a conductor, an electrical field is present that points in the direction from
the higher potential to the lower potential.

If the charge is positive, the charge experiences a force due to the electrical field . This force is necessary to keep
the charge moving. This force does not act to accelerate the charge through the entire distance  because of the interactions of
the charge with atoms and free electrons in the material. The speed, and therefore the kinetic energy, of the charge do not increase
during the entire trip across , and charge passing through area  has the same drift velocity  as the charge that passes
through area . However, work is done on the charge, by the electrical field, which changes the potential energy. Since the change
in the electrical potential difference is negative, the electrical field is found to be

The work done on the charge is equal to the electric force times the length at which the force is applied,

The charge moves at a drift velocity  so the work done on the charge results in a loss of potential energy, but the average kinetic
energy remains constant. The lost electrical potential energy appears as thermal energy in the material. On a microscopic scale, the
energy transfer is due to collisions between the charge and the molecules of the material, which leads to an increase in temperature
in the material. The loss of potential energy results in an increase in the temperature of the material, which is dissipated as
radiation. In a resistor, it is dissipated as heat, and in a light bulb, it is dissipated as heat and light.

The power dissipated by the material as heat and light is equal to the time rate of change of the work:

or

If a resistor is connected to a battery, the power dissipated as radiant energy by the wires and the resistor is equal to

The power supplied from the battery is equal to current times the voltage, .

The electric power gained or lost by any device has the form

The power dissipated by a resistor has the form

Different insights can be gained from the three different expressions for electric power. For example,  implies that the
lower the resistance connected to a given voltage source, the greater the power delivered. Furthermore, since voltage is squared in 

, the effect of applying a higher voltage is perhaps greater than expected. Thus, when the voltage is doubled to a 25-W

5.5.2
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 Definition: Electric Power
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bulb, its power nearly quadruples to about 100 W, burning it out. If the bulb’s resistance remained constant, its power would be
exactly 100 W, but at the higher temperature, its resistance is higher, too.

A DC winch motor is rated at 20.00 A with a voltage of 115 V. When the motor is running at its maximum power, it can lift an
object with a weight of 4900.00 N a distance of 10.00 m, in 30.00 s, at a constant speed.

a. What is the power consumed by the motor?
b. What is the power used in lifting the object? Ignore air resistance. (c) Assuming that the difference in the power consumed

by the motor and the power used lifting the object are dissipated as heat by the resistance of the motor, estimate the
resistance of the motor?

Strategy
a. The power consumed by the motor can be found using .
b. The power used in lifting the object at a constant speed can be found using , where the speed is the distance

divided by the time. The upward force supplied by the motor is equal to the weight of the object because the
acceleration is zero. (c) The resistance of the motor can be found using .

Solution
1. The power consumed by the motor is equal to  and the current is given as 20.00 A and the voltage is 115.00

V:

2. The power used lifting the object is equal to  where the force is equal to the weight of the object (1960 N)
and the magnitude of the velocity is

3. The difference in the power equals  and the resistance can be found using 
:

Significance The resistance of the motor is quite small. The resistance of the motor is due to many windings of copper
wire. The power dissipated by the motor can be significant since the thermal power dissipated by the motor is
proportional to the square of the current .

Electric motors have a reasonably high efficiency. A 100-hp motor can have an efficiency of 90% and a 1-hp motor can have
an efficiency of 80%. Why is it important to use high-performance motors?

Answer

Even though electric motors are highly efficient 10–20% of the power consumed is wasted, not being used for doing useful
work. Most of the 10–20% of the power lost is transferred into heat dissipated by the copper wires used to make the coils of
the motor. This heat adds to the heat of the environment and adds to the demand on power plants providing the power. The
demand on the power plant can lead to increased greenhouse gases, particularly if the power plant uses coal or gas as fuel.

A fuse (Figure ) is a device that protects a circuit from currents that are too high. A fuse is basically a short piece of wire
between two contacts. As we have seen, when a current is running through a conductor, the kinetic energy of the charge carriers is
converted into thermal energy in the conductor. The piece of wire in the fuse is under tension and has a low melting point. The wire

 Example : Calculating Power in Electric Devices5.5.1

P = IV

P = Fv
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P = IV
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is designed to heat up and break at the rated current. The fuse is destroyed and must be replaced, but it protects the rest of the
circuit. Fuses act quickly, but there is a small time delay while the wire heats up and breaks.

Figure : A fuse consists of a piece of wire between two contacts. When a current passes through the wire that is greater than
the rated current, the wire melts, breaking the connection. Pictured is a “blown” fuse where the wire broke protecting a circuit
(credit: modification of work by “Shardayyy”/Flickr).

Circuit breakers are also rated for a maximum current, and open to protect the circuit, but can be reset. Circuit breakers react much
faster. The operation of circuit breakers is not within the scope of this chapter and will be discussed in later chapters. Another
method of protecting equipment and people is the ground fault circuit interrupter (GFCI), which is common in bathrooms and
kitchens. The GFCI outlets respond very quickly to changes in current. These outlets open when there is a change in magnetic field
produced by current-carrying conductors, which is also beyond the scope of this chapter and is covered in a later chapter.

The Cost of Electricity
The more electric appliances you use and the longer they are left on, the higher your electric bill. This familiar fact is based on the

relationship between energy and power. You pay for the energy used. Since , we see that

is the energy used by a device using power P for a time interval t. If power is delivered at a constant rate, then then the energy can
be found by . For example, the more light bulbs burning, the greater P used; the longer they are on, the greater t is.

The energy unit on electric bills is the kilowatt-hour , consistent with the relationship . It is easy to estimate the
cost of operating electrical appliances if you have some idea of their power consumption rate in watts or kilowatts, the time they
are on in hours, and the cost per kilowatt-hour for your electric utility. Kilowatt-hours, like all other specialized energy units such
as food calories, can be converted into joules. You can prove to yourself that .

The electrical energy (E) used can be reduced either by reducing the time of use or by reducing the power consumption of that
appliance or fixture. This not only reduces the cost but also results in a reduced impact on the environment. Improvements to
lighting are some of the fastest ways to reduce the electrical energy used in a home or business. About 20% of a home’s use of
energy goes to lighting, and the number for commercial establishments is closer to 40%. Fluorescent lights are about four times
more efficient than incandescent lights—this is true for both the long tubes and the compact fluorescent lights (CFLs), e.g., Figure 

. Thus, a 60-W incandescent bulb can be replaced by a 15-W CFL, which has the same brightness and color. CFLs have a
bent tube inside a globe or a spiral-shaped tube, all connected to a standard screw-in base that fits standard incandescent light
sockets. (Original problems with color, flicker, shape, and high initial investment for CFLs have been addressed in recent years.)

The heat transfer from these CFLs is less, and they last up to 10 times longer than incandescent bulbs. The significance of an
investment in such bulbs is addressed in the next example. New white LED lights (which are clusters of small LED bulbs) are even
more efficient (twice that of CFLs) and last five times longer than CFLs.

The typical replacement for a 100-W incandescent bulb is a 20-W LED bulb. The 20-W LED bulb can provide the same
amount of light output as the 100-W incandescent light bulb. What is the cost savings for using the LED bulb in place of the
incandescent bulb for one year, assuming $0.10 per kilowatt-hour is the average energy rate charged by the power company?
Assume that the bulb is turned on for three hours a day.

Strategy
a. Calculate the energy used during the year for each bulb, using .
b. Multiply the energy by the cost.

5.5.3

P =
dE

dt

E = ∫ Pdt (5.5.12)

E = Pt

(kW ⋅h) E = Pt

1 kW ⋅h = 3.6 × J106

5.5.1b

 Example : Calculating the Cost Effectiveness of LED Bulb5.5.2

E = Pt

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76561?pdf


5.5.5 https://phys.libretexts.org/@go/page/76561

Solution

a. Calculate the power for each bulb.

b. Calculate the cost for each.

Significance

A LED bulb uses 80% less energy than the incandescent bulb, saving $8.76 over the incandescent bulb for one year. The
LED bulb can cost $20.00 and the 100-W incandescent bulb can cost $0.75, which should be calculated into the
computation. A typical lifespan of an incandescent bulb is 1200 hours and is 50,000 hours for the LED bulb. The
incandescent bulb would last 1.08 years at 3 hours a day and the LED bulb would last 45.66 years. The initial cost of the
LED bulb is high, but the cost to the home owner will be $0.69 for the incandescent bulbs versus $0.44 for the LED
bulbs per year. (Note that the LED bulbs are coming down in price.) The cost savings per year is approximately $8.50,
and that is just for one bulb.

Is the efficiency of the various light bulbs the only consideration when comparing the various light bulbs?

Answer

No, the efficiency is a very important consideration of the light bulbs, but there are many other considerations. As
mentioned above, the cost of the bulbs and the life span of the bulbs are important considerations. For example, CFL bulbs
contain mercury, a neurotoxin, and must be disposed of as hazardous waste. When replacing incandescent bulbs that are
being controlled by a dimmer switch with LED, the dimmer switch may need to be replaced. The dimmer switches for LED
lights are comparably priced to the incandescent light switches, but this is an initial cost which should be considered. The
spectrum of light should also be considered, but there is a broad range of color temperatures available, so you should be
able to find one that fits your needs. None of these considerations mentioned are meant to discourage the use of LED or
CFL light bulbs, but they are considerations.

Changing light bulbs from incandescent bulbs to CFL or LED bulbs is a simple way to reduce energy consumption in homes and
commercial sites. CFL bulbs operate with a much different mechanism than do incandescent lights. The mechanism is complex and
beyond the scope of this chapter, but here is a very general description of the mechanism. CFL bulbs contain argon and mercury
vapor housed within a spiral-shaped tube. The CFL bulbs use a “ballast” that increases the voltage used by the CFL bulb. The
ballast produce an electrical current, which passes through the gas mixture and excites the gas molecules. The excited gas
molecules produce ultraviolet (UV) light, which in turn stimulates the fluorescent coating on the inside of the tube. This coating
fluoresces in the visible spectrum, emitting visible light. Traditional fluorescent tubes and CFL bulbs had a short time delay of up
to a few seconds while the mixture was being “warmed up” and the molecules reached an excited state. It should be noted that
these bulbs do contain mercury, which is poisonous, but if the bulb is broken, the mercury is never released. Even if the bulb is
broken, the mercury tends to remain in the fluorescent coating. The amount is also quite small and the advantage of the energy
saving may outweigh the disadvantage of using mercury.

The CFL light bulbs are being replaced with LED light bulbs, where LED stands for “light-emitting diode.” The diode was briefly
discussed as a nonohmic device, made of semiconducting material, which essentially permits current flow in one direction. LEDs

= Pt = 100 W ( )( ) (365 days) = 109.5 kW ⋅hEIncandescent

1 kW

1000 W

3 h

day
(5.5.13)
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are a special type of diode made of semiconducting materials infused with impurities in combinations and concentrations that
enable the extra energy from the movement of the electrons during electrical excitation to be converted into visible light.
Semiconducting devices will be explained in greater detail in Condensed Matter Physics.

Commercial LEDs are quickly becoming the standard for commercial and residential lighting, replacing incandescent and CFL
bulbs. They are designed for the visible spectrum and are constructed from gallium doped with arsenic and phosphorous atoms.
The color emitted from an LED depends on the materials used in the semiconductor and the current. In the early years of LED
development, small LEDs found on circuit boards were red, green, and yellow, but LED light bulbs can now be programmed to
produce millions of colors of light as well as many different hues of white light.

Comparison of Incandescent, CFL, and LED Light Bulbs

The energy savings can be significant when replacing an incandescent light bulb or a CFL light bulb with an LED light. Light bulbs
are rated by the amount of power that the bulb consumes, and the amount of light output is measured in lumens. The lumen (lm) is
the SI -derived unit of luminous flux and is a measure of the total quantity of visible light emitted by a source. A 60-W
incandescent light bulb can be replaced with a 13- to 15-W CFL bulb or a 6- to 8-W LED bulb, all three of which have a light
output of approximately 800 lm. A table of light output for some commonly used light bulbs appears in Table .

The life spans of the three types of bulbs are significantly different. An LED bulb has a life span of 50,000 hours, whereas the CFL
has a lifespan of 8000 hours and the incandescent lasts a mere 1200 hours. The LED bulb is the most durable, easily withstanding
rough treatment such as jarring and bumping. The incandescent light bulb has little tolerance to the same treatment since the
filament and glass can easily break. The CFL bulb is also less durable than the LED bulb because of its glass construction. The
amount of heat emitted is 3.4 btu/h for the 8-W LED bulb, 85 btu/h for the 60-W incandescent bulb, and 30 btu/h for the CFL bulb.
As mentioned earlier, a major drawback of the CFL bulb is that it contains mercury, a neurotoxin, and must be disposed of as
hazardous waste. From these data, it is easy to understand why the LED light bulb is quickly becoming the standard in lighting.

Table : Light Output of LED, Incandescent, and CFL Light Bulbs

Light Output (lumens) LED Light Bulbs (watts)
Incandescent Light Bulbs

(watts)
CFL Light Bulbs (watts)

450 4-5 40 9-13

800 6-8 60 13-15

1100 9-13 75 18-25

1600 16-20 100 23-30

2600 25-28 150 30-55

This page titled 5.5: Electrical Energy and Power is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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5.6: Superconductors

By the end of this section, you will be able to:
Describe the phenomenon of superconductivity
List applications of superconductivity

Touch the power supply of your laptop computer or some other device. It probably feels slightly warm. That heat is an unwanted
byproduct of the process of converting household electric power into a current that can be used by your device. Although electric
power is reasonably efficient, other losses are associated with it. As discussed in the section on power and energy, transmission of
electric power produces  line losses. These line losses exist whether the power is generated from conventional power plants
(using coal, oil, or gas), nuclear plants, solar plants, hydroelectric plants, or wind farms. These losses can be reduced, but not
eliminated, by transmitting using a higher voltage. It would be wonderful if these line losses could be eliminated, but that would
require transmission lines that have zero resistance. In a world that has a global interest in not wasting energy, the reduction or
elimination of this unwanted thermal energy would be a significant achievement. Is this possible?

The Resistance of Mercury
In 1911, Heike Kamerlingh Onnes of Leiden University, a Dutch physicist, was looking at the temperature dependence of the
resistance of the element mercury. He cooled the sample of mercury and noticed the familiar behavior of a linear dependence of
resistance on temperature; as the temperature decreased, the resistance decreased. Kamerlingh Onnes continued to cool the sample
of mercury, using liquid helium. As the temperature approached , the resistance abruptly went to zero (Figure 

). This temperature is known as the critical temperature  for mercury. The sample of mercury entered into a phase where
the resistance was absolutely zero. This phenomenon is known as superconductivity. (Note: If you connect the leads of a three-
digit ohmmeter across a conductor, the reading commonly shows up as . The resistance of the conductor is not actually zero,
it is less than .) There are various methods to measure very small resistances, such as the four-point method, but an
ohmmeter is not an acceptable method to use for testing resistance in superconductivity.

Figure : The resistance of a sample of mercury is zero at very low temperatures—it is a superconductor up to the temperature
of about 4.2 K. Above that critical temperature, its resistance makes a sudden jump and then increases nearly linearly with
temperature.

Other Superconducting Materials
As research continued, several other materials were found to enter a superconducting phase, when the temperature reached near
absolute zero. In 1941, an alloy of niobium-nitride was found that could become superconducting at  and in
1953, vanadium-silicon was found to become superconductive at . The temperatures for the transition
into superconductivity were slowly creeping higher. Strangely, many materials that make good conductors, such as copper, silver,
and gold, do not exhibit superconductivity. Imagine the energy savings if transmission lines for electric power-generating stations
could be made to be superconducting at temperatures near room temperature! A resistance of zero ohms means no  losses and
a great boost to reducing energy consumption. The problem is that  is still very cold and in the range of liquid helium
temperatures. At this temperature, it is not cost effective to transmit electrical energy because of the cooling requirements.

A large jump was seen in 1986, when a team of researchers, headed by Dr. Ching Wu Chu of Houston University, fabricated a
brittle, ceramic compound with a transition temperature of . The ceramic material, composed of yttrium
barium copper oxide (YBCO), was an insulator at room temperature. Although this temperature still seems quite cold, it is near the
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boiling point of liquid nitrogen, a liquid commonly used in refrigeration. You may have noticed refrigerated trucks traveling down
the highway labeled as “Liquid Nitrogen Cooled.”

YBCO ceramic is a material that could be useful for transmitting electrical energy because the cost saving of reducing the 
losses are larger than the cost of cooling the superconducting cable, making it financially feasible. There were and are many
engineering problems to overcome. For example, unlike traditional electrical cables, which are flexible and have a decent tensile
strength, ceramics are brittle and would break rather than stretch under pressure. Processes that are rather simple with traditional
cables, such as making connections, become difficult when working with ceramics. The problems are difficult and complex, and
material scientists and engineers are coming up with innovative solutions.

An interesting consequence of the resistance going to zero is that once a current is established in a superconductor, it persists
without an applied voltage source. Current loops in a superconductor have been set up and the current loops have been observed to
persist for years without decaying.

Zero resistance is not the only interesting phenomenon that occurs as the materials reach their transition temperatures. A second
effect is the exclusion of magnetic fields. This is known as the Meissner effect (Figure ). A light, permanent magnet placed
over a superconducting sample will levitate in a stable position above the superconductor. High-speed trains have been developed
that levitate on strong superconducting magnets, eliminating the friction normally experienced between the train and the tracks. In
Japan, the Yamanashi Maglev test line opened on April 3, 1997. In April 2015, the MLX01 test vehicle attained a speed of 374 mph
(603 km/h).

Figure : A small, strong magnet levitates over a superconductor cooled to liquid nitrogen temperature. The magnet levitates
because the superconductor excludes magnetic fields.

Table  shows a select list of elements, compounds, and high-temperature superconductors, along with the critical temperatures
for which they become superconducting. Each section is sorted from the highest critical temperature to the lowest. Also listed is the
critical magnetic field for some of the materials. This is the strength of the magnetic field that destroys superconductivity. Finally,
the type of the superconductor is listed.

There are two types of superconductors. There are 30 pure metals that exhibit zero resistivity below their critical temperature and
exhibit the Meissner effect, the property of excluding magnetic fields from the interior of the superconductor while the
superconductor is at a temperature below the critical temperature. These metals are called Type I superconductors. The
superconductivity exists only below their critical temperatures and below a critical magnetic field strength. Type I superconductors
are well described by the BCS theory (described next). Type I superconductors have limited practical applications because the
strength of the critical magnetic field needed to destroy the superconductivity is quite low.

Type II superconductors are found to have much higher critical magnetic fields and therefore can carry much higher current
densities while remaining in the superconducting state. A collection of various ceramics containing barium-copper-oxide have
much higher critical temperatures for the transition into a superconducting state. Superconducting materials that belong to this
subcategory of the Type II superconductors are often categorized as high-temperature superconductors.

Introduction to BCS Theory
Type I superconductors, along with some Type II superconductors can be modeled using the BCS theory, proposed by John
Bardeen, Leon Cooper, and Robert Schrieffer. Although the theory is beyond the scope of this chapter, a short summary of the
theory is provided here. (More detail is provided in Condensed Matter Physics.) The theory considers pairs of electrons and how
they are coupled together through lattice-vibration interactions. Through the interactions with the crystalline lattice, electrons near
the Fermi energy level feel a small attractive force and form pairs (Cooper pairs), and the coupling is known as a phonon
interaction. Single electrons are fermions, which are particles that obey the Pauli exclusion principle. The Pauli exclusion principle
in quantum mechanics states that two identical fermions (particles with half-integer spin) cannot occupy the same quantum state
simultaneously. Each electron has four quantum numbers . The principal quantum number ( ) describes the energy
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of the electron, the orbital angular momentum quantum number ( ) indicates the most probable distance from the nucleus, the
magnetic quantum number  describes the energy levels in the subshell, and the electron spin quantum number  describes the
orientation of the spin of the electron, either up or down. As the material enters a superconducting state, pairs of electrons act more
like bosons, which can condense into the same energy level and need not obey the Pauli exclusion principle. The electron pairs
have a slightly lower energy and leave an energy gap above them on the order of 0.001 eV. This energy gap inhibits collision
interactions that lead to ordinary resistivity. When the material is below the critical temperature, the thermal energy is less than the
band gap and the material exhibits zero resistivity.

Table : Superconductor Critical Temperatures

Material Symbol or Formula
Critical Temperature Critical Magnetic Field 

Type

Elements

Lead Pb 7.19 0.08 I

Lanthanum La  4.90 -  6.30  I

Tantalum Ta 4.48 0.09 I

Mercury Hg  4.15 -  3.95 0.04 I

Tin Sn 3.72 0.03 I

Indium In 3.40 0.03 I

Thallium Tl 2.39 0.03 I

Rhenium Re 2.40 0.03 I

Thorium Th 1.37 0.013 I

Protactinium Pa 1.40  I

Aluminum Al 1.20 0.01 I

Gallium Ga 1.10 0.005 I

Zinc Zn 0.86 0.014 I

Titanium Ti 0.39 0.01 I

Uranium U  0.68 -  1.80  I

Cadmium Cd 11.4 4.00 I

Compounds

Niobium-germanium 23.20 37.00 II

Niobium-tin 18.30 30.00 II

Niobium-nitrite NbN 16.00  II

Niobium-titanium NbTi 10.00 15.00 II

High-Temperature
Oxides

    

 134.00  II

 125.00  II

 92.00 120.00 II

ℓ

mℓ ms
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Applications of Superconductors
Superconductors can be used to make superconducting magnets. These magnets are 10 times stronger than the strongest
electromagnets. These magnets are currently in use in magnetic resonance imaging (MRI), which produces high-quality images of
the body interior without dangerous radiation. For more information about other applications, you can consult this page.

This page titled 5.6: Superconductors is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

9.7: Superconductors by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.
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5.7: Practice

Conceptual Questions

Electrical Current

1. Can a wire carry a current and still be neutral—that is, have a total charge of zero? Explain.

2. Car batteries are rated in ampere-hours (A⋅h). To what physical quantity do ampere-hours correspond (voltage, current,
charge, energy, power,…)?

3. When working with high-power electric circuits, it is advised that whenever possible, you work “one-handed” or “keep
one hand in your pocket.” Why is this a sensible suggestion?

Model of Conduction in Metals

4. Incandescent light bulbs are being replaced with more efficient LED and CFL light bulbs. Is there any obvious evidence
that incandescent light bulbs might not be that energy efficient? Is energy converted into anything but visible light?

5. It was stated that the motion of an electron appears nearly random when an electrical field is applied to the conductor.
What makes the motion nearly random and differentiates it from the random motion of molecules in a gas?

6. Electric circuits are sometimes explained using a conceptual model of water flowing through a pipe. In this conceptual
model, the voltage source is represented as a pump that pumps water through pipes and the pipes connect components in the
circuit. Is a conceptual model of water flowing through a pipe an adequate representation of the circuit? How are electrons
and wires similar to water molecules and pipes? How are they different?

7. An incandescent light bulb is partially evacuated. Why do you suppose that is?

Resistivity and Resistance

8. The IR drop across a resistor means that there is a change in potential or voltage across the resistor. Is there any change in
current as it passes through a resistor? Explain.

9. Do impurities in semiconducting materials listed in Table 9.1 supply free charges? (Hint: Examine the range of resistivity
for each and determine whether the pure semiconductor has the higher or lower conductivity.)

10. Does the resistance of an object depend on the path current takes through it? Consider, for example, a rectangular bar—is
its resistance the same along its length as across its width?

11. If aluminum and copper wires of the same length have the same resistance, which has the larger diameter? Why?

Ohm's Law

12. In Determining Field from Potential, resistance was defined as . In this section, we presented Ohm’s law, which is
commonly expressed as V=IR. The equations look exactly alike. What is the difference between Ohm’s law and the
definition of resistance?

13. Shown below are the results of an experiment where four devices were connected across a variable voltage source. The
voltage is increased and the current is measured. Which device, if any, is an ohmic device?

R ≡ V

I
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14. The current I is measured through a sample of an ohmic material as a voltage V is applied. (a) What is the current when
the voltage is doubled to 2V (assume the change in temperature of the material is negligible)? (b) What is the voltage applied
is the current measured is 0.2I (assume the change in temperature of the material is negligible)? What will happen to the
current if the material if the voltage remains constant, but the temperature of the material increases significantly?

Electrical Energy and Power

15. Common household appliances are rated at 110 V, but power companies deliver voltage in the kilovolt range and then
step the voltage down using transformers to 110 V to be used in homes. You will learn in later chapters that transformers
consist of many turns of wire, which warm up as current flows through them, wasting some of the energy that is given off as
heat. This sounds inefficient. Why do the power companies transport electric power using this method?

16. Your electric bill gives your consumption in units of kilowatt-hour (kW ⋅· h). Does this unit represent the amount of
charge, current, voltage, power, or energy you buy?

17. Resistors are commonly rated at , 1 W and 2 W for use in electrical circuits. If a current of I=2.00A is
accidentally passed through a R=1.00Ω resistor rated at 1 W, what would be the most probable outcome? Is there anything
that can be done to prevent such an accident?

18. An immersion heater is a small appliance used to heat a cup of water for tea by passing current through a resistor. If the
voltage applied to the appliance is doubled, will the time required to heat the water change? By how much? Is this a good
idea?

Superconductors

19. What requirement for superconductivity makes current superconducting devices expensive to operate?

20. Name two applications for superconductivity listed in this section and explain how superconductivity is used in the
application. Can you think of a use for superconductivity that is not listed?

Problems

Electrical Current

21. A Van de Graaff generator is one of the original particle accelerators and can be used to accelerate charged particles like
protons or electrons. You may have seen it used to make human hair stand on end or produce large sparks. One application of
the Van de Graaff generator is to create X-rays by bombarding a hard metal target with the beam. Consider a beam of protons
at 1.00 keV and a current of 5.00 mA produced by the generator.

(a) What is the speed of the protons?

(b) How many protons are produced each second?

22. A cathode ray tube (CRT) is a device that produces a focused beam of electrons in a vacuum. The electrons strike a
phosphor-coated glass screen at the end of the tube, which produces a bright spot of light. The position of the bright spot of
light on the screen can be adjusted by deflecting the electrons with electrical fields, magnetic fields, or both. Although the
CRT tube was once commonly found in televisions, computer displays, and oscilloscopes, newer appliances use a liquid
crystal display (LCD) or plasma screen. You still may come across a CRT in your study of science. Consider a CRT with an
electron beam average current of 25.00μA25.00μA. How many electrons strike the screen every minute?

W , W , W1
8

1
4

1
2
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23. How many electrons flow through a point in a wire in 3.00 s if there is a constant current of I=4.00A?

24. A conductor carries a current that is decreasing exponentially with time. The current is modeled as , where 
 is the current at time t=0.00s and τ=0.50s is the time constant. How much charge flows through the conductor

between t=0.00s and t=3τ?

25. The quantity of charge through a conductor is modeled as . What is the current at
time t=3.00s?

26. The current through a conductor is modeled as . Write an equation for the charge as a function
of time.

27. The charge on a capacitor in a circuit is modeled as . What is the current through the circuit as
a function of time?

Model of Conduction in Metals

28. An aluminum wire 1.628 mm in diameter (14-gauge) carries a current of 3.00 amps.

(a) What is the absolute value of the charge density in the wire?

(b) What is the drift velocity of the electrons?

(c) What would be the drift velocity if the same gauge copper were used instead of aluminum? The density of copper is
 and the density of aluminum is . The molar mass of aluminum is 26.98 g/mol and the molar

mass of copper is 63.5 g/mol. Assume each atom of metal contributes one free electron.

29. The current of an electron beam has a measured current of I=50.00μA with a radius of  mm. What is the magnitude
of the current density of the beam?

30. A high-energy proton accelerator produces a proton beam with a radius of r=0.90mm. The beam current is I=9.00μA and
is constant. The charge density of the beam is  protons per cubic meter.

(a) What is the current density of the beam?

(b) What is the drift velocity of the beam?

(c) How much time does it take for  protons to be emitted by the accelerator?

31. Consider a wire of a circular cross-section with a radius of R=3.00mm. The magnitude of the current density is modeled
as . What is the current through the inner section of the wire from the center to r=0.5R?

32. A cylindrical wire has a current density from the center of the wire’s cross section as  where  is in meters, 
is in amps per square meter, and  A/m . This current density continues to the end of the wire at a radius of 1.0 mm.
Calculate the current just outside of this wire.

33. The current supplied to an air conditioner unit is 4.00 amps. The air conditioner is wired using a 10-gauge (diameter
2.588 mm) wire. The charge density is . Find the magnitude of

(a) current density and

(b) the drift velocity.

Resistivity and Resistance

34. What current flows through the bulb of a 3.00-V flashlight when its hot resistance is 3.60Ω?

35. Calculate the effective resistance of a pocket calculator that has a 1.35-V battery and through which 0.200 mA flows.

36. How many volts are supplied to operate an indicator light on a DVD player that has a resistance of 140Ω, given that 25.0
mA passes through it?

37. What is the resistance of a 20.0-m-long piece of 12-gauge copper wire having a 2.053-mm diameter?

38. The diameter of 0-gauge copper wire is 8.252 mm. Find the resistance of a 1.00-km length of such wire used for power
transmission.

I = I0e
−t/τ

= 3.00AI0

Q = 4.00 −1.00 t+6.00mCC

s4
t4 C

s

I(t) = sin(2π[60Hz]t)Im

Q(t) = cos(ωt+ϕ)Qmax

8.96g/cm3 2.70g/cm3

1.00

n = 6.00 ×1011

1.00 ×1010

J = c = 5.00 ×r2 106 A

m4 r
2

J(r) = Cr2 r J

C = 103 4

n = 8.48 ×1028 electrons

m3
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39. If the 0.100-mm-diameter tungsten filament in a light bulb is to have a resistance of 0.200Ω at 20.0°C, how long should
it be?

40. A lead rod has a length of 30.00 cm and a resistance of 5.00μΩ. What is the radius of the rod?

41. Find the ratio of the diameter of aluminum to copper wire, if they have the same resistance per unit length (as they might
in household wiring).

42. What current flows through a 2.54-cm-diameter rod of pure silicon that is 20.0 cm long, when  is applied to
it? (Such a rod may be used to make nuclear-particle detectors, for example.)

43. (a) To what temperature must you raise a copper wire, originally at 20.0°C, to double its resistance, neglecting any
changes in dimensions? (b) Does this happen in household wiring under ordinary circumstances?

44. A resistor made of nichrome wire is used in an application where its resistance cannot change more than 1.00% from its
value at 20.0°C. Over what temperature range can it be used?

45. Of what material is a resistor made if its resistance is 40.0% greater at 100.0°C than at 20.0°C?

46. An electronic device designed to operate at any temperature in the range from −10.0°C to 55.0°C contains pure carbon
resistors. By what factor does their resistance increase over this range?47.

(a) Of what material is a wire made, if it is 25.0 m long with a diameter of 0.100 mm and has a resistance of 77.7Ω at
20.0°C? (b) What is its resistance at 150.0°C?

48. Assuming a constant temperature coefficient of resistivity, what is the maximum percent decrease in the resistance of a
constantan wire starting at 20.0°C?

49. A copper wire has a resistance of 0.500Ω at 20.0°C, and an iron wire has a resistance of 0.525Ω at the same temperature.
At what temperature are their resistances equal?

Ohm's Law

50. A 2.2-kΩ resistor is connected across a D cell battery (1.5 V). What is the current through the resistor?

51. A resistor rated at 250kΩ is connected across two D cell batteries (each 1.50 V) in series, with a total voltage of 3.00 V.
The manufacturer advertises that their resistors are within 5% of the rated value. What are the possible minimum current and
maximum current through the resistor?

52. A resistor is connected in series with a power supply of 20.00 V. The current measure is 0.50 A. What is the resistance of
the resistor?

53. A resistor is placed in a circuit with an adjustable voltage source. The voltage across and the current through the resistor
and the measurements are shown below. Estimate the resistance of the resistor.

54. The following table show the measurements of a current through and the voltage across a sample of material. Plot the
data, and assuming the object is an ohmic device, estimate the resistance.

Table: Measurements of current through and the voltage across a sample of material

I(A) V(V)

0 3

1.00 ×103
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2 23

4 39

6 58

8 77

10 100

12 119

14 142

16 162

Electrical Energy and Power

55. A 20.00-V battery is used to supply current to a 10-kΩ resistor. Assume the voltage drop across any wires used for
connections is negligible.

(a) What is the current through the resistor?

(b) What is the power dissipated by the resistor?

(c) What is the power input from the battery, assuming all the electrical power is dissipated by the resistor?

(d) What happens to the energy dissipated by the resistor?

56. What is the maximum voltage that can be applied to a 20-kΩ resistor rated at ?

57. A heater is being designed that uses a coil of 14-gauge nichrome wire to generate 300 W using a voltage of V=110V.
How long should the engineer make the wire?

58. An alternative to CFL bulbs and incandescent bulbs are light-emitting diode (LED) bulbs. A 100-W incandescent bulb
can be replaced by a 16-W LED bulb. Both produce 1600 lumens of light. Assuming the cost of electricity is $0.10 per
kilowatt-hour, how much does it cost to run the bulb for one year if it runs for four hours a day?

59. The power dissipated by a resistor with a resistance of R=100Ω is P=2.0W. What are the current through and the voltage
drop across the resistor?

60. Running late to catch a plane, a driver accidentally leaves the headlights on after parking the car in the airport parking lot.
During takeoff, the driver realizes the mistake. Having just replaced the battery, the driver knows that the battery is a 12-V
automobile battery, rated at 100 A⋅h. The driver, knowing there is nothing that can be done, estimates how long the lights
will shine, assuming there are two 12-V headlights, each rated at 40 W. What did the driver conclude?

61. A physics student has a single-occupancy dorm room. The student has a small refrigerator that runs with a current of 3.00
A and a voltage of 110 V, a lamp that contains a 100-W bulb, an overhead light with a 60-W bulb, and various other small
devices adding up to 3.00 W.

(a) Assuming the power plant that supplies 110 V electricity to the dorm is 10 km away and the two aluminum
transmission cables use 0-gauge wire with a diameter of 8.252 mm, estimate the percentage of the total power supplied
by the power company that is lost in the transmission.

(b) What would be the result is the power company delivered the electric power at 110 kV?

62. A 0.50-W, 220-Ω resistor carries the maximum current possible without damaging the resistor. If the current were
reduced to half the value, what would be the power consumed?

Superconductors

63. Consider a power plant is located 60 km away from a residential area uses 0-gauge  wire of copper to
transmit power at a current of I=100.00A. How much more power is dissipated in the copper wires than it would be in
superconducting wires?

64. A wire is drawn through a die, stretching it to four times its original length. By what factor does its resistance increase?

W1
4

(A = 42.40m )m2
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65. Digital medical thermometers determine temperature by measuring the resistance of a semiconductor device called a
thermistor (which has α=−0.06/°C) when it is at the same temperature as the patient. What is a patient’s temperature if the
thermistor’s resistance at that temperature is 82.0% of its value at 37°C (normal body temperature)?

66. Electrical power generators are sometimes “load tested” by passing current through a large vat of water. A similar
method can be used to test the heat output of a resistor. A R=30Ω resistor is connected to a 9.0-V battery and the resistor
leads are waterproofed and the resistor is placed in 1.0 kg of room temperature water (T=20°C). Current runs through the
resistor for 20 minutes. Assuming all the electrical energy dissipated by the resistor is converted to heat, what is the final
temperature of the water?

67. A 12-guage gold wire has a length of 1 meter.

(a) What would be the length of a silver 12-gauge wire with the same resistance?

(b) What are their respective resistances at the temperature of boiling water?

68. What is the change in temperature required to decrease the resistance for a carbon resistor by 10%?

Additional Problems
69. A coaxial cable consists of an inner conductor with radius  and an outer radius of  and has a
length of 10 meters. Plastic, with a resistivity of , separates the two conductors. What is the resistance
of the cable?

70. A 10.00-meter long wire cable that is made of copper has a resistance of 0.051 ohms.

(a) What is the weight if the wire was made of copper?

(b) What is the weight of a 10.00-meter-long wire of the same gauge made of aluminum?

(c)What is the resistance of the aluminum wire? The density of copper is  and the density of aluminum is 
.

71. A nichrome rod that is 3.00 mm long with a cross-sectional area of  is used for a digital thermometer.

(a) What is the resistance at room temperature?

(b) What is the resistance at body temperature?

72. The temperature in Philadelphia, PA can vary between 68.00°F and 100.00°F in one summer day. By what percentage
will an aluminum wire’s resistance change during the day?

73. When 100.0 V is applied across a 5-gauge (diameter 4.621 mm) wire that is 10 m long, the magnitude of the current
density is . What is the resistivity of the wire?

74. A wire with a resistance of 5.0Ω is drawn out through a die so that its new length is twice times its original length. Find
the resistance of the longer wire. You may assume that the resistivity and density of the material are unchanged.

75. What is the resistivity of a wire of 5-gauge wire ( ), 5.00 m length, and 5.10mΩ resistance?

76. Coils are often used in electrical and electronic circuits. Consider a coil which is formed by winding 1000 turns of
insulated 20-gauge copper wire (area  in a single layer on a cylindrical non-conducting core of radius 2.0 mm.
What is the resistance of the coil? Neglect the thickness of the insulation.

77. Currents of approximately 0.06 A can be potentially fatal. Currents in that range can make the heart fibrillate (beat in an
uncontrolled manner). The resistance of a dry human body can be approximately 100kΩ.

(a) What voltage can cause 0.2 A through a dry human body?

(b) When a human body is wet, the resistance can fall to 100Ω. What voltage can cause harm to a wet body?

78. A 20.00-ohm, 5.00-watt resistor is placed in series with a power supply.

(a) What is the maximum voltage that can be applied to the resistor without harming the resistor?

(b) What would be the current through the resistor?

= 0.25cmri = 0.5cmro

ρ = 2.00 × Ω ⋅m1013

8960kg/m3

2760kg/m3

1.00mm2

2.0 × A/108 m2

A = 16.8 ×10−6m2

0.52m )m2
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79. A battery with an emf of 24.00 V delivers a constant current of 2.00 mA to an appliance. How much work does the
battery do in three minutes?

80. A 12.00-V battery has an internal resistance of a tenth of an ohm.

(a) What is the current if the battery terminals are momentarily shorted together?

(b) What is the terminal voltage if the battery delivers 0.25 amps to a circuit?

Challenge Problems

81. A 10-gauge copper wire has a cross-sectional area  and carries a current of I=5.00A. The density of
copper is . One mole of copper atoms ( ) has a mass of approximately 63.50 g. What is
the magnitude of the drift velocity of the electrons, assuming that each copper atom contributes one free electron to the
current?

82. The current through a 12-gauge wire is given as I(t)=(5.00A)sin(2π60Hzt). What is the current density at time 15.00 ms?

83. A particle accelerator produces a beam with a radius of 1.25 mm with a current of 2.00 mA. Each proton has a kinetic
energy of 10.00 MeV.

(a) What is the velocity of the protons?

(b) What is the number (n) of protons per unit volume?

(c) How many electrons pass a cross sectional area each second?

84. In this chapter, most examples and problems involved direct current (DC). DC circuits have the current flowing in one
direction, from positive to negative. When the current was changing, it was changed linearly from  to 
and the voltage changed linearly from  to , where . Suppose a voltage source is
placed in series with a resistor of R=10Ω that supplied a current that alternated as a sine wave, for example, 

. (a) What would a graph of the voltage drop across the resistor V(t) versus time look like? (b)
What would a plot of V(t) versus I(t) for one period look like? (Hint: If you are not sure, try plotting V(t) versus I(t) using a
spreadsheet.)

85. A current of I=25A is drawn from a 100-V battery for 30 seconds. By how much is the chemical energy reduced?

86. Consider a square rod of material with sides of length L=3.00cm with a current density of 
 as shown below. Find the current that passes through the face of

87. A resistor of an unknown resistance is placed in an insulated container filled with 0.75 kg of water. A voltage source is
connected in series with the resistor and a current of 1.2 amps flows through the resistor for 10 minutes. During this time, the
temperature of the water is measured and the temperature change during this time is ΔT=10.00°C.

(a) What is the resistance of the resistor?

A = 5.26mm2

ρ = 89.50g/cm3 6.02 × atoms1023

I = −Imax I = +Imax

V = −Vmax V = +Vmax = RVmax Imax

I(t) = (3.00A)sin( t)2π
4.00s

J = k ̂ = (0.35 k ̂ J0e
αx A

m2
)e(2.1× )x10−3m−1
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(b) What is the voltage supplied by the power supply?

88. The charge that flows through a point in a wire as a function of time is modeled as .

(a) What is the initial current through the wire at time t=0.00s?

(b) Find the current at time .

(c) At what time t will the current be reduced by one-half ?

89. Consider a resistor made from a hollow cylinder of carbon as shown below. The inner radius of the cylinder is
Ri=0.20mmRi=0.20mm and the outer radius is . The length of the resistor is L=0.90mm. The resistivity of
the carbon is . (a) Prove that the resistance perpendicular from the axis is . (b) What is
the resistance?

90. What is the current through a cylindrical wire of radius R=0.1mm if the current density is , where 
?

91. A student uses a 100.00-W, 115.00-V radiant heater to heat the student’s dorm room, during the hours between sunset and
sunrise, 6:00 p.m. to 7:00 a.m.

(a) What current does the heater operate at?

(b) How many electrons move through the heater?

(c) What is the resistance of the heater?

(d) How much heat was added to the dorm room?

92. A 12-V car battery is used to power a 20.00-W, 12.00-V lamp during the physics club camping trip/star party. The cable
to the lamp is 2.00 meters long, 14-gauge copper wire with a charge density of .

(a) What is the current draw by the lamp?

(b) How long would it take an electron to get from the battery to the lamp?

93. A physics student uses a 115.00-V immersion heater to heat 400.00 grams (almost two cups) of water for herbal tea.
During the two minutes it takes the water to heat, the physics student becomes bored and decides to figure out the resistance
of the heater. The student starts with the assumption that the water is initially at the temperature of the room 
and reaches . The specific heat of the water is . What is the resistance of the heater?
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Practice Answers

Check Your Understanding

1. The time for 1.00 C of charge to flow would be , slightly less than an

hour. This is quite different from the 5.55 ms for the truck battery. The calculator takes a very small amount of energy to

q(t) = = 10.0Cq0e
−t/T e−t/5s

t = T1
2

I = 1
2
I0

= 0.30mmR0

ρ = 3.5 × Ω ⋅m10−5 R = ln( )
ρ

2πL

R0

Ri

J = r
J0

R

= 32000J0
A

m2

n = 9.50 ×1028m−3

= 25.00°CTi

= 100.00°CTf c = 4180 J

kg

Δt = = = 3.33 × s
ΔQ

I

1.00C

0.300 × C/s10−3
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operate, unlike the truck’s starter motor. There are several reasons that vehicles use batteries and not solar cells. Aside from
the obvious fact that a light source to run the solar cells for a car or truck is not always available, the large amount of current
needed to start the engine cannot easily be supplied by present-day solar cells. Solar cells can possibly be used to charge the
batteries. Charging the battery requires a small amount of energy when compared to the energy required to run the engine
and the other accessories such as the heater and air conditioner. Present day solar-powered cars are powered by solar panels,
which may power an electric motor, instead of an internal combustion engine.

2. The total current needed by all the appliances in the living room (a few lamps, a television, and your laptop) draw less
current and require less power than the refrigerator.

3. The diameter of the 14-gauge wire is smaller than the diameter of the 12-gauge wire. Since the drift velocity is inversely
proportional to the cross-sectional area, the drift velocity in the 14-gauge wire is larger than the drift velocity in the 12-gauge
wire carrying the same current. The number of electrons per cubic meter will remain constant.

4. The current density in a conducting wire increases due to an increase in current. The drift velocity is inversely proportional

to the current ( ), so the drift velocity would decrease.

5. Silver, gold, and aluminum are all used for making wires. All four materials have a high conductivity, silver having the
highest. All four can easily be drawn into wires and have a high tensile strength, though not as high as copper. The obvious
disadvantage of gold and silver is the cost, but silver and gold wires are used for special applications, such as speaker wires.
Gold does not oxidize, making better connections between components. Aluminum wires do have their drawbacks.
Aluminum has a higher resistivity than copper, so a larger diameter is needed to match the resistance per length of copper
wires, but aluminum is cheaper than copper, so this is not a major drawback. Aluminum wires do not have as high of a
ductility and tensile strength as copper, but the ductility and tensile strength is within acceptable levels. There are a few
concerns that must be addressed in using aluminum and care must be used when making connections. Aluminum has a
higher rate of thermal expansion than copper, which can lead to loose connections and a possible fire hazard. The oxidation
of aluminum does not conduct and can cause problems. Special techniques must be used when using aluminum wires and
components, such as electrical outlets, must be designed to accept aluminum wires.

6. The foil pattern stretches as the backing stretches, and the foil tracks become longer and thinner. Since the resistance is

calculated as , the resistance increases as the foil tracks are stretched. When the temperature changes, so does the

resistivity of the foil tracks, changing the resistance. One way to combat this is to use two strain gauges, one used as a
reference and the other used to measure the strain. The two strain gauges are kept at a constant temperature

7. The longer the length, the smaller the resistance. The greater the resistivity, the higher the resistance. The larger the
difference between the outer radius and the inner radius, that is, the greater the ratio between the two, the greater the
resistance. If you are attempting to maximize the resistance, the choice of the values for these variables will depend on the
application. For example, if the cable must be flexible, the choice of materials may be limited.

8. Yes, Ohm’s law is still valid. At every point in time the current is equal to I(t)=V(t)/RI(t)=V(t)/R, so the current is also a

function of time, .

9. Even though electric motors are highly efficient 10–20% of the power consumed is wasted, not being used for doing useful
work. Most of the 10–20% of the power lost is transferred into heat dissipated by the copper wires used to make the coils of
the motor. This heat adds to the heat of the environment and adds to the demand on power plants providing the power. The
demand on the power plant can lead to increased greenhouse gases, particularly if the power plant uses coal or gas as fuel.

10. No, the efficiency is a very important consideration of the light bulbs, but there are many other considerations. As
mentioned above, the cost of the bulbs and the life span of the bulbs are important considerations. For example, CFL bulbs
contain mercury, a neurotoxin, and must be disposed of as hazardous waste. When replacing incandescent bulbs that are
being controlled by a dimmer switch with LED, the dimmer switch may need to be replaced. The dimmer switches for LED
lights are comparably priced to the incandescent light switches, but this is an initial cost which should be considered. The
spectrum of light should also be considered, but there is a broad range of color temperatures available, so you should be able
to find one that fits your needs. None of these considerations mentioned are meant to discourage the use of LED or CFL light
bulbs, but they are considerations.

=vd
I

nqA

R = ρ
L

A

I(t) = sin(2πft)
Vmax

R
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Conceptual Questions
1. If a wire is carrying a current, charges enter the wire from the voltage source’s positive terminal and leave at the negative
terminal, so the total charge remains zero while the current flows through it.

3. Using one hand will reduce the possibility of “completing the circuit” and having current run through your body,
especially current running through your heart.

5. Even though the electrons collide with atoms and other electrons in the wire, they travel from the negative terminal to the
positive terminal, so they drift in one direction. Gas molecules travel in completely random directions.

7. In the early years of light bulbs, the bulbs are partially evacuated to reduce the amount of heat conducted through the air to
the glass envelope. Dissipating the heat would cool the filament, increasing the amount of energy needed to produce light
from the filament. It also protects the glass from the heat produced from the hot filament. If the glass heats, it expands, and as
it cools, it contacts. This expansion and contraction could cause the glass to become brittle and crack, reducing the life of the
bulbs. Many bulbs are now partially filled with an inert gas. It is also useful to remove the oxygen to reduce the possibility of
the filament actually burning. When the original filaments were replaced with more efficient tungsten filaments, atoms from
the tungsten would evaporate off the filament at such high temperatures. The atoms collide with the atoms of the inert gas
and land back on the filament.

9. In carbon, resistivity increases with the amount of impurities, meaning fewer free charges. In silicon and germanium,
impurities decrease resistivity, meaning more free electrons.

11. Copper has a lower resistivity than aluminum, so if length is the same, copper must have the smaller diameter.

13. Device B shows a linear relationship and the device is ohmic.

15. Although the conductors have a low resistance, the lines from the power company can be kilometers long. Using a high
voltage reduces the current that is required to supply the power demand and that reduces line losses.

17. The resistor would overheat, possibly to the point of causing the resistor to burn. Fuses are commonly added to circuits to
prevent such accidents.

19. Very low temperatures necessitate refrigeration. Some materials require liquid nitrogen to cool them below their critical
temperatures. Other materials may need liquid helium, which is even more costly.

Problems

21. a. ;

b. ,no. of protons=

23. , no. of electrons=

25.  

27. 

29. 

31. 

33. a. ;

b. 

35. 

37. 

39. ; 

v= 4.38 ×105 m

s

Δq = 5.00 × C10−3 3.13 ×1016

I = , ΔQ = 12.00C
ΔQ

Δt
7.46 ×1019

I(t) = 0.016 −0.001
C

s4
t3 C

s
I(3.00s) = 0.431A

I(t) = − sin(ωt+ϕ)Imax

|J| = 15.92A/m2

I = 3.98 × A10−5

|J| = 7.60 ×105 A

m2

= 5.60 ×vd 10−5 m

s

R = 6.750kΩ

R = 0.10Ω

R = ρ
L

A
L = 3cm
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41. 

43. a. ;

b. Under normal conditions, no it should not occur.

45.  , iron

47. a. , gold; 

b. 

49. 

51. 

53. 

55. a. ;

b. ;

c. ;

d. It is converted into heat.

57. 

59. 

61. a. 

b. 

63.  

65. 

67. a. ;

b. 

/RAl LAl

/RCu LCu

=

ρAl
1

π(
DAl

2
)

2

ρCu
1

π(
DCu

2
)2

= ( = 1
ρAl

ρCu

DCu

DAl

)2 , =
DAl

DCu

ρAI

ρCu

− −−−
√

R = (1 +αΔT ), 2 = 1 +αΔT , ΔT = 256.4°C,T = 276.4°CR0

R = (1 +αΔT )R0 α = 0.006°C−1

R = ρ , ρ = 2.44 × 8Ω ⋅m
L

A
10− R = ρ (1 +αΔT )

L

A

R = 2.44 × Ω ⋅m( )(1 +0.0034° (150°C −20°C))R = 112Ω10−8 25m

π( 0.100× m10−3

2
)2

C−1

= 0.525Ω, = 0.500Ω, = 0.0065° , = 0.0039° , = , (1 + (T − ))RFe RCu αFe C−1 αCu C−1 RFe RCu R0Fe αFe T0

= (1 + (T − )), (1 + (T − )) = 1 + (T − ),T = 2.91°CR0Cu αCu T0
R0Fe

R0Cu
αFe T0 αCu T0

= 2.375 × Ω, = 12.63μARmin 105 Imin

= 2.625 × Ω, = 11.43μARmax 105 Imax

R = 100Ω

I = 2mA

P = 0.04mW

P = 0.04mW

P = ,R = 40Ω,A = 2.08m , ρ = 100 × Ω ⋅m,R = ρ ,L = 83m
V 2

R
m2 10−8 L

A

I = 0.14A,V = 14V

I ≈ 3.00A+ + + = 4.48A
100W

110V

60W

110V

3.00W

110V

P = 493W

R = 9.91Ω,

= 200.WPloss

P = 493W

I = 0.0045A

R = 9.91Ω

= 201μWPloss

= 23.77ΩRcopper P = 2.377 × W105

R = (1 +α(T − )R0 T0

0.82 = (1 +α(T − )), 0.82 = 1 −0.06(T −37°C),T = 40°CR0 R0 T0

= , = , = 1.53mRAu RAg ρAu
LAu

AAu

ρAg
LAg

AAg

LAg

= 0.0074Ω, = 0.0094Ω, = 0.0096ΩRAu,20°C RAu,100°C RAg,100°C
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Additional Problems

69. 

71. a. ;

b.  

73. 

75. 

77. ;

b. 

79. 

Challenge Problems

81.   

83. a. ;

b. ;

c. 1.25 

85. 

87. a.  ;

b. 

89. a. ;

b. 

91. a. ;

b. #electrons 

c. ;

d. 

93. 
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authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).
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5.A: Current and Resistance (Answers)

Check Your Understanding

9.1. The time for 1.00 C of charge to flow would be , slightly less than an

hour. This is quite different from the 5.55 ms for the truck battery. The calculator takes a very small amount of energy to
operate, unlike the truck’s starter motor. There are several reasons that vehicles use batteries and not solar cells. Aside from
the obvious fact that a light source to run the solar cells for a car or truck is not always available, the large amount of current
needed to start the engine cannot easily be supplied by present-day solar cells. Solar cells can possibly be used to charge the
batteries. Charging the battery requires a small amount of energy when compared to the energy required to run the engine
and the other accessories such as the heater and air conditioner. Present day solar-powered cars are powered by solar panels,
which may power an electric motor, instead of an internal combustion engine.

9.2. The total current needed by all the appliances in the living room (a few lamps, a television, and your laptop) draw less
current and require less power than the refrigerator.

9.3. The diameter of the 14-gauge wire is smaller than the diameter of the 12-gauge wire. Since the drift velocity is inversely
proportional to the cross-sectional area, the drift velocity in the 14-gauge wire is larger than the drift velocity in the 12-gauge
wire carrying the same current. The number of electrons per cubic meter will remain constant.

9.4. The current density in a conducting wire increases due to an increase in current. The drift velocity is inversely

proportional to the current ( ), so the drift velocity would decrease.

9.5. Silver, gold, and aluminum are all used for making wires. All four materials have a high conductivity, silver having the
highest. All four can easily be drawn into wires and have a high tensile strength, though not as high as copper. The obvious
disadvantage of gold and silver is the cost, but silver and gold wires are used for special applications, such as speaker wires.
Gold does not oxidize, making better connections between components. Aluminum wires do have their drawbacks.
Aluminum has a higher resistivity than copper, so a larger diameter is needed to match the resistance per length of copper
wires, but aluminum is cheaper than copper, so this is not a major drawback. Aluminum wires do not have as high of a
ductility and tensile strength as copper, but the ductility and tensile strength is within acceptable levels. There are a few
concerns that must be addressed in using aluminum and care must be used when making connections. Aluminum has a
higher rate of thermal expansion than copper, which can lead to loose connections and a possible fire hazard. The oxidation
of aluminum does not conduct and can cause problems. Special techniques must be used when using aluminum wires and
components, such as electrical outlets, must be designed to accept aluminum wires.

9.6. The foil pattern stretches as the backing stretches, and the foil tracks become longer and thinner. Since the resistance is

calculated as , the resistance increases as the foil tracks are stretched. When the temperature changes, so does the

resistivity of the foil tracks, changing the resistance. One way to combat this is to use two strain gauges, one used as a
reference and the other used to measure the strain. The two strain gauges are kept at a constant temperature

9.7. The longer the length, the smaller the resistance. The greater the resistivity, the higher the resistance. The larger the
difference between the outer radius and the inner radius, that is, the greater the ratio between the two, the greater the
resistance. If you are attempting to maximize the resistance, the choice of the values for these variables will depend on the
application. For example, if the cable must be flexible, the choice of materials may be limited.

9.8. Yes, Ohm’s law is still valid. At every point in time the current is equal to I(t)=V(t)/RI(t)=V(t)/R, so the current is also a

function of time, .

9.9. Even though electric motors are highly efficient 10–20% of the power consumed is wasted, not being used for doing
useful work. Most of the 10–20% of the power lost is transferred into heat dissipated by the copper wires used to make the
coils of the motor. This heat adds to the heat of the environment and adds to the demand on power plants providing the
power. The demand on the power plant can lead to increased greenhouse gases, particularly if the power plant uses coal or
gas as fuel.
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9.10. No, the efficiency is a very important consideration of the light bulbs, but there are many other considerations. As
mentioned above, the cost of the bulbs and the life span of the bulbs are important considerations. For example, CFL bulbs
contain mercury, a neurotoxin, and must be disposed of as hazardous waste. When replacing incandescent bulbs that are
being controlled by a dimmer switch with LED, the dimmer switch may need to be replaced. The dimmer switches for LED
lights are comparably priced to the incandescent light switches, but this is an initial cost which should be considered. The
spectrum of light should also be considered, but there is a broad range of color temperatures available, so you should be able
to find one that fits your needs. None of these considerations mentioned are meant to discourage the use of LED or CFL light
bulbs, but they are considerations.

Conceptual Questions
1. If a wire is carrying a current, charges enter the wire from the voltage source’s positive terminal and leave at the negative
terminal, so the total charge remains zero while the current flows through it.

3. Using one hand will reduce the possibility of “completing the circuit” and having current run through your body,
especially current running through your heart.

5. Even though the electrons collide with atoms and other electrons in the wire, they travel from the negative terminal to the
positive terminal, so they drift in one direction. Gas molecules travel in completely random directions.

7. In the early years of light bulbs, the bulbs are partially evacuated to reduce the amount of heat conducted through the air to
the glass envelope. Dissipating the heat would cool the filament, increasing the amount of energy needed to produce light
from the filament. It also protects the glass from the heat produced from the hot filament. If the glass heats, it expands, and as
it cools, it contacts. This expansion and contraction could cause the glass to become brittle and crack, reducing the life of the
bulbs. Many bulbs are now partially filled with an inert gas. It is also useful to remove the oxygen to reduce the possibility of
the filament actually burning. When the original filaments were replaced with more efficient tungsten filaments, atoms from
the tungsten would evaporate off the filament at such high temperatures. The atoms collide with the atoms of the inert gas
and land back on the filament.

9. In carbon, resistivity increases with the amount of impurities, meaning fewer free charges. In silicon and germanium,
impurities decrease resistivity, meaning more free electrons.

11. Copper has a lower resistivity than aluminum, so if length is the same, copper must have the smaller diameter.

13. Device B shows a linear relationship and the device is ohmic.

15. Although the conductors have a low resistance, the lines from the power company can be kilometers long. Using a high
voltage reduces the current that is required to supply the power demand and that reduces line losses.

17. The resistor would overheat, possibly to the point of causing the resistor to burn. Fuses are commonly added to circuits to
prevent such accidents.

19. Very low temperatures necessitate refrigeration. Some materials require liquid nitrogen to cool them below their critical
temperatures. Other materials may need liquid helium, which is even more costly.

Problems

21. a. ;

b. ,no. of protons=

23. , no. of electrons=

25.  

27. 

29. 

31. 

v= 4.38 ×105 m

s

Δq = 5.00 × C10−3 3.13 ×1016

I = , ΔQ = 12.00C
ΔQ

Δt
7.46 ×1019

I(t) = 0.016 −0.001
C

s4
t3 C

s
I(3.00s) = 0.431A

I(t) = − sin(ωt+ϕ)Imax

|J| = 15.92A/m2
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33. a. ;

b. 

35. 

37. 

39. ; 

41. 

43. a. ;

b. Under normal conditions, no it should not occur.

45.  , iron

47. a. , gold; 

b. 

49. 

51. 

53. 

55. a. ;

b. ;

c. ;

d. It is converted into heat.

57. 

59. 

61. a. 

b. 

|J| = 7.60 ×105 A
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= 5.60 ×vd 10−5 m
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R = 0.10Ω

R = ρ
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5.S: Summary

Key Terms
ampere (amp) SI unit for current; 

circuit complete path that an electrical current travels along

conventional current
current that flows through a circuit from the positive terminal of a
battery through the circuit to the negative terminal of the battery

critical temperature temperature at which a material reaches superconductivity

current density flow of charge through a cross-sectional area divided by the area

diode
nonohmic circuit device that allows current flow in only one

direction

drift velocity

velocity of a charge as it moves nearly randomly through a
conductor, experiencing multiple collisions, averaged over a length

of a conductor, whose magnitude is the length of conductor
traveled divided by the time it takes for the charges to travel the

length

electrical conductivity measure of a material’s ability to conduct or transmit electricity

electrical current rate at which charge flows, 

electrical power time rate of change of energy in an electric circuit

Josephson junction
junction of two pieces of superconducting material separated by a
thin layer of insulating material, which can carry a supercurrent

Meissner effect
phenomenon that occurs in a superconducting material where all

magnetic fields are expelled

nonohmic type of a material for which Ohm’s law is not valid

ohm ( ) unit of electrical resistance, 

ohmic
type of a material for which Ohm’s law is valid, that is, the voltage
drop across the device is equal to the current times the resistance

Ohm’s law
empirical relation stating that the current I is proportional to the
potential difference V; it is often written as , where R is

the resistance

resistance
electric property that impedes current; for ohmic materials, it is the

ratio of voltage to current, 

resistivity
intrinsic property of a material, independent of its shape or size,

directly proportional to the resistance, denoted by 

schematic
graphical representation of a circuit using standardized symbols

for components and solid lines for the wire connecting the
components

SQUID
(Superconducting Quantum Interference Device) device that is a
very sensitive magnetometer, used to measure extremely subtle

magnetic fields

superconductivity
phenomenon that occurs in some materials where the resistance
goes to exactly zero and all magnetic fields are expelled, which

occurs dramatically at some low critical temperature 

1A = 1C/s

I =
dQ

dt

Ω 1Ω = 1V /A

V = IR

R = V /I

ρ

( )TC
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Key Equations

Average electrical current

Definition of an ampere

Electrical current

Drift velocity

Current density

Resistivity

Common expression of Ohm’s law

Resistivity as a function of temperature

Definition of resistance

Resistance of a cylinder of material

Temperature dependence of resistance

Electric power

Power dissipated by a resistor

Summary

Electrical Current

The average electrical current  is the rate at which charge flows, given by , where  is the amount of charge

passing through an area in time .
The instantaneous electrical current, or simply the current I, is the rate at which charge flows. Taking the limit as the change in

time approaches zero, we have , where  is the time derivative of the charge.

The direction of conventional current is taken as the direction in which positive charge moves. In a simple direct-current (DC)
circuit, this will be from the positive terminal of the battery to the negative terminal.
The SI unit for current is the ampere, or simply the amp (A), where .
Current consists of the flow of free charges, such as electrons, protons, and ions.

Model of Conduction in Metals
The current through a conductor depends mainly on the motion of free electrons.
When an electrical field is applied to a conductor, the free electrons in a conductor do not move through a conductor at a
constant speed and direction; instead, the motion is almost random due to collisions with atoms and other free electrons.
Even though the electrons move in a nearly random fashion, when an electrical field is applied to the conductor, the overall
velocity of the electrons can be defined in terms of a drift velocity.
The current density is a vector quantity defined as the current through an infinitesimal area divided by the area.

The current can be found from the current density, .

An incandescent light bulb is a filament of wire enclosed in a glass bulb that is partially evacuated. Current runs through the
filament, where the electrical energy is converted to light and heat.

=Iave
ΔQ

Δt

1A = 1C/s

I =
dQ

dt

=vd
I

nqA

I = ⋅ d∬
area

J ⃗  A ⃗ 

ρ =
E

J
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ρ = [1 +α(T − )]ρ0 T0

R ≡
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I
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Resistivity and Resistance
Resistance has units of ohms ( ), related to volts and amperes by .

The resistance R of a cylinder of length L and cross-sectional area A is , where  is the resistivity of the material.

Values of  in Table 9.1 show that materials fall into three groups—conductors, semiconductors, and insulators.
Temperature affects resistivity; for relatively small temperature changes , resistivity is , where  is the
original resistivity and  is the temperature coefficient of resistivity.
The resistance R of an object also varies with temperature: , where  is the original resistance, and R is
the resistance after the temperature change.

Ohm's Law
Ohm’s law is an empirical relationship for current, voltage, and resistance for some common types of circuit elements,
including resistors. It does not apply to other devices, such as diodes.
One statement of Ohm’s law gives the relationship among current I, voltage V, and resistance R in a simple circuit as .
Another statement of Ohm’s law, on a microscopic level, is .

Electrical Energy and Power
Electric power is the rate at which electric energy is supplied to a circuit or consumed by a load.

Power dissipated by a resistor depends on the square of the current through the resistor and is equal to .

The SI unit for electric power is the watt and the SI unit for electric energy is the joule. Another common unit for electric
energy, used by power companies, is the kilowatt-hour (kW ⋅· h).

The total energy used over a time interval can be found by .

Superconductors
Superconductivity is a phenomenon that occurs in some materials when cooled to very low critical temperatures, resulting in a
resistance of exactly zero and the expulsion of all magnetic fields.
Materials that are normally good conductors (such as copper, gold, and silver) do not experience superconductivity.
Superconductivity was first observed in mercury by Heike Kamerlingh Onnes in 1911. In 1986, Dr. Ching Wu Chu of Houston
University fabricated a brittle, ceramic compound with a critical temperature close to the temperature of liquid nitrogen.
Superconductivity can be used in the manufacture of superconducting magnets for use in MRIs and high-speed, levitated trains.
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CHAPTER OVERVIEW

6: Resistive Networks
In the preceding few chapters, we discussed electric components, including capacitors, resistors, and diodes. In this chapter, we use
these electric components in circuits. A circuit is a collection of electrical components connected to accomplish a specific task. The
second section of this chapter covers the analysis of series and parallel circuits that consist of resistors. Later in this chapter, we
introduce the basic equations and techniques to analyze any circuit, including those that are not reducible through simplifying
parallel and series elements. But first, we need to understand how to power a circuit.

6.1: Electromotive Force
6.2: Resistors in Series and Parallel
6.3: Kirchhoff's Rules
6.4: Household Wiring and Electrical Safety
6.5: Electrical Measuring Instruments
6.6: RC Circuits
6.7: Practice
6.S: Summary

This page titled 6: Resistive Networks is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.
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6.1: Electromotive Force

By the end of the section, you will be able to:

Describe the electromotive force (emf) and the internal resistance of a battery
Explain the basic operation of a battery

If you forget to turn off your car lights, they slowly dim as the battery runs down. Why don’t they suddenly blink off when the
battery’s energy is gone? Their gradual dimming implies that the battery output voltage decreases as the battery is depleted. The
reason for the decrease in output voltage for depleted batteries is that all voltage sources have two fundamental parts—a source of
electrical energy and an internal resistance. In this section, we examine the energy source and the internal resistance.

Introduction to Electromotive Force
Voltage has many sources, a few of which are shown in Figure . All such devices create a potential difference and can supply
current if connected to a circuit. A special type of potential difference is known as electromotive force (emf). The emf is not a
force at all, but the term ‘electromotive force’ is used for historical reasons. It was coined by Alessandro Volta in the 1800s, when
he invented the first battery, also known as the voltaic pile. Because the electromotive force is not a force, it is common to refer to
these sources simply as sources of emf (pronounced as the letters “ee-em-eff”), instead of sources of electromotive force.

Figure : A variety of voltage sources. (a) The Brazos Wind Farm in Fluvanna, Texas; (b) the Krasnoyarsk Dam in Russia; (c)
a solar farm; (d) a group of nickel metal hydride batteries. The voltage output of each device depends on its construction and load.
The voltage output equals emf only if there is no load. (credit a: modification of work by “Leaflet”/Wikimedia Commons; credit b:
modification of work by Alex Polezhaev; credit c: modification of work by US Department of Energy; credit d: modification of
work by Tiaa Monto)

If the electromotive force is not a force at all, then what is the emf and what is a source of emf? To answer these questions, consider
a simple circuit of a 12-V lamp attached to a 12-V battery, as shown in Figure . The battery can be modeled as a two-terminal
device that keeps one terminal at a higher electric potential than the second terminal. The higher electric potential is sometimes
called the positive terminal and is labeled with a plus sign. The lower-potential terminal is sometimes called the negative terminal
and labeled with a minus sign. This is the source of the emf.

 Learning Objectives
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6.1.1

6.1.2
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Figure : A source of emf maintains one terminal at a higher electric potential than the other terminal, acting as a source of
current in a circuit.

When the emf source is not connected to the lamp, there is no net flow of charge within the emf source. Once the battery is
connected to the lamp, charges flow from one terminal of the battery, through the lamp (causing the lamp to light), and back to the
other terminal of the battery. If we consider positive (conventional) current flow, positive charges leave the positive terminal, travel
through the lamp, and enter the negative terminal.

Positive current flow is useful for most of the circuit analysis in this chapter, but in metallic wires and resistors, electrons contribute
the most to current, flowing in the opposite direction of positive current flow. Therefore, it is more realistic to consider the
movement of electrons for the analysis of the circuit in Figure . The electrons leave the negative terminal, travel through the
lamp, and return to the positive terminal. In order for the emf source to maintain the potential difference between the two terminals,
negative charges (electrons) must be moved from the positive terminal to the negative terminal. The emf source acts as a charge
pump, moving negative charges from the positive terminal to the negative terminal to maintain the potential difference. This
increases the potential energy of the charges and, therefore, the electric potential of the charges.

The force on the negative charge from the electric field is in the opposite direction of the electric field, as shown in Figure . In
order for the negative charges to be moved to the negative terminal, work must be done on the negative charges. This requires
energy, which comes from chemical reactions in the battery. The potential is kept high on the positive terminal and low on the
negative terminal to maintain the potential difference between the two terminals. The emf is equal to the work done on the charge

per unit charge  when there is no current flowing. Since the unit for work is the joule and the unit for charge is the

coulomb, the unit for emf is the volt .

The terminal voltage  of a battery is voltage measured across the terminals of the battery when there is no load connected
to the terminal. An ideal battery is an emf source that maintains a constant terminal voltage, independent of the current between the
two terminals. An ideal battery has no internal resistance, and the terminal voltage is equal to the emf of the battery. In the next
section, we will show that a real battery does have internal resistance and the terminal voltage is always less than the emf of the
battery.

The Origin of Battery Potential

The combination of chemicals and the makeup of the terminals in a battery determine its emf. The lead acid battery used in cars
and other vehicles is one of the most common combinations of chemicals. Figure  shows a single cell (one of six) of this
battery. The cathode (positive) terminal of the cell is connected to a lead oxide plate, whereas the anode (negative) terminal is
connected to a lead plate. Both plates are immersed in sulfuric acid, the electrolyte for the system.

6.1.2

6.1.2

6.1.2
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(1 V = 1 J/C)
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Figure : Chemical reactions in a lead-acid cell separate charge, sending negative charge to the anode, which is connected to
the lead plates. The lead oxide plates are connected to the positive or cathode terminal of the cell. Sulfuric acid conducts the charge,
as well as participates in the chemical reaction.

Knowing a little about how the chemicals in a lead-acid battery interact helps in understanding the potential created by the battery.
Figure  shows the result of a single chemical reaction. Two electrons are placed on the anode, making it negative, provided
that the cathode supplies two electrons. This leaves the cathode positively charged, because it has lost two electrons. In short, a
separation of charge has been driven by a chemical reaction.

Note that the reaction does not take place unless there is a complete circuit to allow two electrons to be supplied to the cathode.
Under many circumstances, these electrons come from the anode, flow through a resistance, and return to the cathode. Note also
that since the chemical reactions involve substances with resistance, it is not possible to create the emf without an internal
resistance.

Figure : In a lead-acid battery, two electrons are forced onto the anode of a cell, and two electrons are removed from the
cathode of the cell. The chemical reaction in a lead-acid battery places two electrons on the anode and removes two from the
cathode. It requires a closed circuit to proceed, since the two electrons must be supplied to the cathode.

Internal Resistance and Terminal Voltage

The amount of resistance to the flow of current within the voltage source is called the internal resistance. The internal resistance r
of a battery can behave in complex ways. It generally increases as a battery is depleted, due to the oxidation of the plates or the
reduction of the acidity of the electrolyte. However, internal resistance may also depend on the magnitude and direction of the
current through a voltage source, its temperature, and even its history. The internal resistance of rechargeable nickel-cadmium cells,
for example, depends on how many times and how deeply they have been depleted. A simple model for a battery consists of an
idealized emf source  and an internal resistance r (Figure ).
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Figure : A battery can be modeled as an idealized emf  with an internal resistance (r). The terminal voltage of the battery is
.

Suppose an external resistor, known as the load resistance R, is connected to a voltage source such as a battery, as in Figure .
The figure shows a model of a battery with an emf , an internal resistance r, and a load resistor R connected across its terminals.
Using conventional current flow, positive charges leave the positive terminal of the battery, travel through the resistor, and return to
the negative terminal of the battery. The terminal voltage of the battery depends on the emf, the internal resistance, and the current,
and is equal to

For a given emf and internal resistance, the terminal voltage decreases as the current increases due to the potential drop Ir of the
internal resistance.

Figure : Schematic of a voltage source and its load resistor R. Since the internal resistance r is in series with the load, it can
significantly affect the terminal voltage and the current delivered to the load.

A graph of the potential difference across each element the circuit is shown in Figure . A current I runs through the circuit,
and the potential drop across the internal resistor is equal to Ir. The terminal voltage is equal to , which is equal to the
potential drop across the load resistor . As with potential energy, it is the change in voltage that is important. When
the term “voltage” is used, we assume that it is actually the change in the potential, or . However,  is often omitted for
convenience.

6.1.5 (ϵ)
= ϵ− IrVterminal

6.1.6

 Note

= ϵ−IrVterminal (6.1.1)

6.1.6

6.1.7

ϵ−Ir

IR = ϵ−Ir

ΔV Δ

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76568?pdf


6.1.5 https://phys.libretexts.org/@go/page/76568

Figure : A graph of the voltage through the circuit of a battery and a load resistance. The electric potential increases the emf
of the battery due to the chemical reactions doing work on the charges. There is a decrease in the electric potential in the battery
due to the internal resistance. The potential decreases due to the internal resistance , making the terminal voltage of the battery
equal to . The voltage then decreases by (IR). The current is equal to .

The current through the load resistor is . We see from this expression that the smaller the internal resistance r, the greater
the current the voltage source supplies to its load R. As batteries are depleted, r increases. If r becomes a significant fraction of the
load resistance, then the current is significantly reduced, as the following example illustrates.

A given battery has a 12.00-V emf and an internal resistance of . (a) Calculate its terminal voltage when connected to a
 load. (b) What is the terminal voltage when connected to a  load? (c) What power does the  load

dissipate? (d) If the internal resistance grows to , find the current, terminal voltage, and power dissipated by a 
load.

Strategy

The analysis above gave an expression for current when internal resistance is taken into account. Once the current is found,
the terminal voltage can be calculated by using the equation . Once current is found, we can also find
the power dissipated by the resistor.

Solution

1. Entering the given values for the emf, load resistance, and internal resistance into the expression above yields

Enter the known values into the equation  to get the terminal voltage:

The terminal voltage here is only slightly lower than the emf, implying that the current drawn by this light load is
not significant.

2. Similarly, with , the current is

The terminal voltage is now

The terminal voltage exhibits a more significant reduction compared with emf, implying  is a heavy load for
this battery. A “heavy load” signifies a larger draw of current from the source but not a larger resistance.

3. The power dissipated by the  load can be found using the formula . Entering the known values
gives

6.1.7

−Ir
(ϵ− Ir) I = ϵ

r+R

I = ϵ

r+R

 Example : Analyzing a Circuit with a Battery and a Load6.1.1

0.100 Ω

10.00 Ω 0.500 Ω 0.500 Ω

0.500 Ω 0.500 Ω

= ϵ−IrVterminal

I = = = 1.188 A.
ϵ

R+r

12.00 V

10.10 Ω
(6.1.2)

= ϵ−IrVterminal

= ϵ−Ir = 12.00 V −(1.188 A)(0.100 Ω) = 11.90 V .Vterminal (6.1.3)

= 0.500 ΩRload

I = = = 20.00 A.
ϵ

R+r

12.00 V

0.600 Ω
(6.1.4)

= ϵ−Ir = 12.00 V −(20.00 A)(0.100 Ω) = 10.00 V .Vterminal (6.1.5)

0.500 Ω

0.500 Ω P = RI 2

P = R = (20.0 A (0.500 Ω) = 2.00 × W .I 2 )2 102 (6.1.6)
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Note that this power can also be obtained using the expression  or , where V is the terminal voltage (10.0 V in
this case).

4. Here, the internal resistance has increased, perhaps due to the depletion of the battery, to the point where it is as
great as the load resistance. As before, we first find the current by entering the known values into the expression,
yielding

Now the terminal voltage is

and the power dissipated by the load is

We see that the increased internal resistance has significantly decreased the terminal voltage, current, and power
delivered to a load.

Significance

The internal resistance of a battery can increase for many reasons. For example, the internal resistance of a rechargeable
battery increases as the number of times the battery is recharged increases. The increased internal resistance may have
two effects on the battery. First, the terminal voltage will decrease. Second, the battery may overheat due to the
increased power dissipated by the internal resistance.

If you place a wire directly across the two terminal of a battery, effectively shorting out the terminals, the battery will begin to
get hot. Why do you suppose this happens?

Solution

If a wire is connected across the terminals, the load resistance is close to zero, or at least considerably less than the internal
resistance of the battery. Since the internal resistance is small, the current through the circuit will be large, 

. The large current causes a high power to be dissipated by the internal resistance . The
power is dissipated as heat.

Battery Testers

Battery testers, such as those in Figure , use small load resistors to intentionally draw current to determine whether the
terminal potential drops below an acceptable level. Although it is difficult to measure the internal resistance of a battery, battery
testers can provide a measurement of the internal resistance of the battery. If internal resistance is high, the battery is weak, as
evidenced by its low terminal voltage.

V 2

R
IV

I = = = 12.00 A.
ϵ

R+r

12.00 V

1.00 Ω
(6.1.7)

= ϵ−Ir = 12.00 V −(12.00 A)(0.500 Ω) = 6.00 V ,Vterminal (6.1.8)

P = R = (12.00 A (0.500 Ω) = 72.00 W .I 2 )2 (6.1.9)

 Exercise 6.1.1

I = = =ϵ

R+r

ϵ

0+r

ϵ

r
(P = r)I 2

6.1.8
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Figure : Battery testers measure terminal voltage under a load to determine the condition of a battery. (a) A US Navy
electronics technician uses a battery tester to test large batteries aboard the aircraft carrier USS Nimitz. The battery tester she uses
has a small resistance that can dissipate large amounts of power. (b) The small device shown is used on small batteries and has a
digital display to indicate the acceptability of the terminal voltage. (credit a: modification of work by Jason A. Johnston; credit b:
modification of work by Keith Williamson)

Some batteries can be recharged by passing a current through them in the direction opposite to the current they supply to an
appliance. This is done routinely in cars and in batteries for small electrical appliances and electronic devices (Figure ). The
voltage output of the battery charger must be greater than the emf of the battery to reverse the current through it. This causes the
terminal voltage of the battery to be greater than the emf, since  and I is now negative.

Figure : A car battery charger reverses the normal direction of current through a battery, reversing its chemical reaction and
replenishing its chemical potential.

It is important to understand the consequences of the internal resistance of emf sources, such as batteries and solar cells, but often,
the analysis of circuits is done with the terminal voltage of the battery, as we have done in the previous sections. The terminal
voltage is referred to as simply as V, dropping the subscript “terminal.” This is because the internal resistance of the battery is
difficult to measure directly and can change over time.

 

Multiple Voltage Sources
Many devices require more than one battery. Multiple voltage sources, such as batteries, can be connected in series configurations,
parallel configurations, or a combination of the two.

In series, the positive terminal of one battery is connected to the negative terminal of another battery. Any number of voltage
sources, including batteries, can be connected in series. Two batteries connected in series are shown in Figure . Using
Kirchhoff’s loop rule for the circuit in part (b) gives the result

6.1.8

6.1.9

V = ϵ−Ir

6.1.9

6.1.10

−I + −I −IR = 0,ϵ1 r1 ϵ2 r2 (6.1.10)

[( + ) −I( + )] −IR = 0.ϵ1 ϵ2 r1 r2 (6.1.11)
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Figure : (a) Two batteries connected in series with a load resistor. (b) The circuit diagram of the two batteries and the load
resistor, with each battery modeled as an idealized emf source and an internal resistance.

When voltage sources are in series, their internal resistances can be added together and their emfs can be added together to get the
total values. Series connections of voltage sources are common—for example, in flashlights, toys, and other appliances. Usually,
the cells are in series in order to produce a larger total emf. In Figure , the terminal voltage is

Note that the same current I is found in each battery because they are connected in series. The disadvantage of series connections
of cells is that their internal resistances are additive.

Batteries are connected in series to increase the voltage supplied to the circuit. For instance, an LED flashlight may have two AAA
cell batteries, each with a terminal voltage of 1.5 V, to provide 3.0 V to the flashlight.

Any number of batteries can be connected in series. For N batteries in series, the terminal voltage is equal to

where the equivalent resistance is

When a load is placed across voltage sources in series, as in Figure , we can find the current:

As expected, the internal resistances increase the equivalent resistance.

6.1.10

6.1.10

= ( −I ) +( −I ) = [( + ) −I( + ) −I( + )] = ( + ) +I .Vterminal ϵ1 r1 ϵ2 r2 ϵ1 ϵ2 r1 r2 r1 r2 ϵ1 ϵ2 req (6.1.12)

 Note

= ( + +. . . + + ) −I( + +. . . + + ) = −IVterminal ϵ1 ϵ2 ϵN−1 ϵN r1 r2 rN−1 rN ∑
i=1

N

ϵi req (6.1.13)

=req ∑
i=1

N

ri (6.1.14)

6.1.11

( −I ) +( −I ) = IR,ϵ1 r1 ϵ2 r2 (6.1.15)

I +I +IR = + ,r1 r2 ϵ1 ϵ2 (6.1.16)

I = .
+ϵ1 ϵ2

+ +Rr1 r2
(6.1.17)
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Figure : Two batteries connect in series to an LED bulb, as found in a flashlight.

Voltage sources, such as batteries, can also be connected in parallel. Figure  shows two batteries with identical emfs in
parallel and connected to a load resistance. When the batteries are connect in parallel, the positive terminals are connected together
and the negative terminals are connected together, and the load resistance is connected to the positive and negative terminals.
Normally, voltage sources in parallel have identical emfs. In this simple case, since the voltage sources are in parallel, the total emf
is the same as the individual emfs of each battery.

Figure : (a) Two batteries connect in parallel to a load resistor. (b) The circuit diagram shows the shows battery as an emf
source and an internal resistor. The two emf sources have identical emfs (each labeled by ) connected in parallel that produce the
same emf.

Consider the Kirchhoff analysis of the circuit in Figure . There are two loops and a node at point b and .

Node b: .

Loop abcfa: .

Loop fcdef:  

Solving for the current through the load resistor results in , where . The terminal voltage is equal to

the potential drop across the load resistor .

The parallel connection reduces the internal resistance and thus can produce a larger current.

Any number of batteries can be connected in parallel. For N batteries in parallel, the terminal voltage is equal to

where the equivalent resistance is

6.1.11

6.1.12

6.1.12
ϵ

6.1.12b ϵ = =ϵ1 ϵ2

+ −I = 0I1 I2

− + − ϵ = 0, =ϵ2 I1r1 I2r2 I1r1 I2r2

− −IR = 0,ϵ2 I2r2 ϵ− −IR = 0.I2r2

I = ϵ
+Rreq

=req ( + )1
r1

1
r2

−1

IR = ( )ϵ

+Rreq

 Note

= ϵ−I = ϵ−IVterminal ( + +. . . + + )
1

r1

1

r2

1

rN−1

1

rN

−1

req (6.1.18)
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As an example, some diesel trucks use two 12-V batteries in parallel; they produce a total emf of 12 V but can deliver the larger
current needed to start a diesel engine.

In summary, the terminal voltage of batteries in series is equal to the sum of the individual emfs minus the sum of the internal
resistances times the current. When batteries are connected in parallel, they usually have equal emfs and the terminal voltage is
equal to the emf minus the equivalent internal resistance times the current, where the equivalent internal resistance is smaller than
the individual internal resistances. Batteries are connected in series to increase the terminal voltage to the load. Batteries are
connected in parallel to increase the current to the load.

Solar Cell Arrays

Another example dealing with multiple voltage sources is that of combinations of solar cells - wired in both series and parallel
combinations to yield a desired voltage and current. Photovoltaic generation, which is the conversion of sunlight directly into
electricity, is based upon the photoelectric effect. The photoelectric effect is beyond the scope of this chapter and is covered in
Photons and Matter Waves, but in general, photons hitting the surface of a solar cell create an electric current in the cell.

Most solar cells are made from pure silicon. Most single cells have a voltage output of about 0.5 V, while the current output is a
function of the amount of sunlight falling on the cell (the incident solar radiation known as the insolation). Under bright noon
sunlight, a current per unit area of about  of cell surface area is produced by typical single-crystal cells.

Individual solar cells are connected electrically in modules to meet electrical energy needs. They can be wired together in series or
in parallel - connected like the batteries discussed earlier. A solar-cell array or module usually consists of between 36 and 72 cells,
with a power output of 50 W to 140 W.

Solar cells, like batteries, provide a direct current (dc) voltage. Current from a dc voltage source is unidirectional. Most household
appliances need an alternating current (ac) voltage.
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6.2: Resistors in Series and Parallel

By the end of the section, you will be able to:

Define the term equivalent resistance
Calculate the equivalent resistance of resistors connected in series
Calculate the equivalent resistance of resistors connected in parallel

In Current and Resistance, we described the term ‘resistance’ and explained the basic design of a resistor. Basically, a resistor limits
the flow of charge in a circuit and is an ohmic device where . Most circuits have more than one resistor. If several resistors
are connected together and connected to a battery, the current supplied by the battery depends on the equivalent resistance of the
circuit.

The equivalent resistance of a combination of resistors depends on both their individual values and how they are connected. The
simplest combinations of resistors are series and parallel connections (Figure ). In a series circuit, the output current of the
first resistor flows into the input of the second resistor; therefore, the current is the same in each resistor. In a parallel circuit, all of
the resistor leads on one side of the resistors are connected together and all the leads on the other side are connected together. In the
case of a parallel configuration, each resistor has the same potential drop across it, and the currents through each resistor may be
different, depending on the resistor. The sum of the individual currents equals the current that flows into the parallel connections.

Figure : (a) For a series connection of resistors, the current is the same in each resistor. (b) For a parallel connection of
resistors, the voltage is the same across each resistor.

Resistors in Series
Resistors are said to be in series whenever the current flows through the resistors sequentially. Consider Figure , which shows
three resistors in series with an applied voltage equal to . Since there is only one path for the charges to flow through, the
current is the same through each resistor. The equivalent resistance of a set of resistors in a series connection is equal to the
algebraic sum of the individual resistances.

Figure : (a) Three resistors connected in series to a voltage source. (b) The original circuit is reduced to an equivalent
resistance and a voltage source.

In Figure , the current coming from the voltage source flows through each resistor, so the current through each resistor is the
same. The current through the circuit depends on the voltage supplied by the voltage source and the resistance of the resistors. For
each resistor, a potential drop occurs that is equal to the loss of electric potential energy as a current travels through each resistor.
According to Ohm’s law, the potential drop  across a resistor when a current flows through it is calculated using the equation 

, where  is the current in amps ( ) and  is the resistance in ohms . Since energy is conserved, and the voltage is

 Learning Objectives
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equal to the potential energy per charge, the sum of the voltage applied to the circuit by the source and the potential drops across
the individual resistors around a loop should be equal to zero:

This equation is often referred to as Kirchhoff’s loop law, which we will look at in more detail later in this chapter. For Figure 
, the sum of the potential drop of each resistor and the voltage supplied by the voltage source should equal zero:

Solving for 

Since the current through each component is the same, the equality can be simplified to an equivalent resistance ( ), which is just
the sum of the resistances of the individual resistors.

Any number of resistors can be connected in series. If  resistors are connected in series, the equivalent resistance is

One result of components connected in a series circuit is that if something happens to one component, it affects all the other
components. For example, if several lamps are connected in series and one bulb burns out, all the other lamps go dark.

A battery with a terminal voltage of 9 V is connected to a circuit consisting of four  and one  resistors all in series
(Figure ). Assume the battery has negligible internal resistance.

a. Calculate the equivalent resistance of the circuit.
b. Calculate the current through each resistor.
c. Calculate the potential drop across each resistor.
d. Determine the total power dissipated by the resistors and the power supplied by the battery.

Figure : A simple series circuit with five resistors.

Strategy

In a series circuit, the equivalent resistance is the algebraic sum of the resistances. The current through the circuit can be
found from Ohm’s law and is equal to the voltage divided by the equivalent resistance. The potential drop across each
resistor can be found using Ohm’s law. The power dissipated by each resistor can be found using , and the total
power dissipated by the resistors is equal to the sum of the power dissipated by each resistor. The power supplied by the
battery can be found using .

= 0.∑
i=1

N

Vi (6.2.1)

6.2.2

V − − −V1 V2 V3

V

= 0,

= + + ,V1 V2 V3

= I +I +I ,R1 R2 R3

I

I =
V

+ +R1 R2 R3

= .
V

RS

RS

 Equivalent Resistance in Series Circuits

N

= + + +. . . + + = .RS R1 R2 R3 RN−1 RN ∑
i=1

N

Ri (6.2.2)

 Example : Equivalent Resistance, Current, and Power in a Series Circuit6.2.1

20 Ω 10 Ω
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Solution

1. The equivalent resistance is the algebraic sum of the resistances (Equation ):

2. The current through the circuit is the same for each resistor in a series circuit and is equal to the applied voltage
divided by the equivalent resistance:

Note that the sum of the potential drops across each resistor is equal to the voltage supplied by the battery.
3. The power dissipated by a resistor is equal to , and the power supplied by the battery is equal to .

Significance

There are several reasons why we would use multiple resistors instead of just one resistor with a resistance equal to the
equivalent resistance of the circuit. Perhaps a resistor of the required size is not available, or we need to dissipate the
heat generated, or we want to minimize the cost of resistors. Each resistor may cost a few cents to a few dollars, but
when multiplied by thousands of units, the cost saving may be appreciable.

Some strings of miniature holiday lights are made to short out when a bulb burns out. The device that causes the short is called
a shunt, which allows current to flow around the open circuit. A “short” is like putting a piece of wire across the component.
The bulbs are usually grouped in series of nine bulbs. If too many bulbs burn out, the shunts eventually open. What causes
this?

Answer

The equivalent resistance of nine bulbs connected in series is 9R. The current is . If one bulb burns out, the
equivalent resistance is 8R, and the voltage does not change, but the current increases . As more bulbs burn
out, the current becomes even higher. Eventually, the current becomes too high, burning out the shunt.

Let’s briefly summarize the major features of resistors in series:

1. Series resistances add together to get the equivalent resistance (Equation ):

2. The same current flows through each resistor in series.
3. Individual resistors in series do not get the total source voltage, but divide it. The total potential drop across a series

configuration of resistors is equal to the sum of the potential drops across each resistor.

Resistors in Parallel

Figure  shows resistors in parallel, wired to a voltage source. Resistors are in parallel when one end of all the resistors are
connected by a continuous wire of negligible resistance and the other end of all the resistors are also connected to one another
through a continuous wire of negligible resistance. The potential drop across each resistor is the same. Current through each

6.2.2

RS = + + + +R1 R2 R3 R4 R5

= 20 Ω +20 Ω +20 Ω +20 Ω +10 Ω = 90 Ω.

I = = = 0.1 A.
V

RS

9 V

90 Ω

P = RI 2 P = Iϵ

= = = = (0.1 A (20 Ω) = 0.2 W ,P1 P2 P3 P4 )2

= (0.1 A (10 Ω) = 0.1 W ,P5 )2

= 0.2 W +0.2 W +0.2 W +0.2 W +0.1 W = 0.9 W ,Pdissipated

= Iϵ = (0.1 A)(9 V ) = 0.9 W .Psource

 Exercise 6.2.1

I = V /9 R

(I = V /8 R

6.2.2

= + + +. . . + + = .RS R1 R2 R3 RN−1 RN ∑
i=1

N
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resistor can be found using Ohm’s law , where the voltage is constant across each resistor. For example, an automobile’s
headlights, radio, and other systems are wired in parallel, so that each subsystem utilizes the full voltage of the source and can
operate completely independently. The same is true of the wiring in your house or any building.

Figure : Two resistors connected in parallel to a voltage source. (b) The original circuit is reduced to an equivalent resistance
and a voltage source.

The current flowing from the voltage source in Figure  depends on the voltage supplied by the voltage source and the
equivalent resistance of the circuit. In this case, the current flows from the voltage source and enters a junction, or node, where the
circuit splits flowing through resistors  and . As the charges flow from the battery, some go through resistor  and some
flow through resistor . The sum of the currents flowing into a junction must be equal to the sum of the currents flowing out of
the junction:

This equation is referred to as Kirchhoff’s junction rule and will be discussed in detail in the next section. In Figure , the
junction rule gives . There are two loops in this circuit, which leads to the equations  and .
Note the voltage across the resistors in parallel are the same ( ) and the current is additive:

Solving for the 

Generalizing to any number of  resistors, the equivalent resistance  of a parallel connection is related to the individual
resistances by

This relationship results in an equivalent resistance  that is less than the smallest of the individual resistances. When resistors
are connected in parallel, more current flows from the source than would flow for any of them individually, so the total resistance is
lower.

I = V /R

6.2.4

6.2.4
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 Equivalent Resistance in Parallel Circuits
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Three resistors , , and , are connected in parallel. The parallel connection is attached to
a  voltage source.

a. What is the equivalent resistance?
b. Find the current supplied by the source to the parallel circuit.
c. Calculate the currents in each resistor and show that these add together to equal the current output of the source.
d. Calculate the power dissipated by each resistor.
e. Find the power output of the source and show that it equals the total power dissipated by the resistors.

Strategy

(a) The total resistance for a parallel combination of resistors is found using Equation . (Note that in these calculations,
each intermediate answer is shown with an extra digit.)

(b) The current supplied by the source can be found from Ohm’s law, substituting  for the total resistance .

(c) The individual currents are easily calculated from Ohm’s law , since each resistor gets the full voltage. The

total current is the sum of the individual currents:

(d) The power dissipated by each resistor can be found using any of the equations relating power to current, voltage, and
resistance, since all three are known. Let us use , since each resistor gets full voltage.

(e) The total power can also be calculated in several ways, use .

Solution

1. The total resistance for a parallel combination of resistors is found using Equation . Entering known values
gives

The total resistance with the correct number of significant digits is . As predicted,  is less than the
smallest individual resistance.

2. The total current can be found from Ohm’s law, substituting  for the total resistance. This gives

Current I for each device is much larger than for the same devices connected in series (see the previous example). A
circuit with parallel connections has a smaller total resistance than the resistors connected in series.

3. The individual currents are easily calculated from Ohm’s law, since each resistor gets the full voltage. Thus,

Similarly,

and

The total current is the sum of the individual currents:

 Example : Analysis of a parallel circuit6.2.2
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4. The power dissipated by each resistor can be found using any of the equations relating power to current, voltage, and
resistance, since all three are known. Let us use , since each resistor gets full voltage. Thus,

Similarly,

and

5. The total power can also be calculated in several ways. Choosing  and entering the total current yields

Significance

Total power dissipated by the resistors is also 18.00 W:

Notice that the total power dissipated by the resistors equals the power supplied by the source.

Consider the same potential difference  applied to the same three resistors connected in series. Would the
equivalent resistance of the series circuit be higher, lower, or equal to the three resistor in parallel? Would the current through
the series circuit be higher, lower, or equal to the current provided by the same voltage applied to the parallel circuit? How
would the power dissipated by the resistor in series compare to the power dissipated by the resistors in parallel?

Solution

The equivalent of the series circuit would be , which is higher than the
equivalent resistance of the parallel circuit . The equivalent resistor of any number of resistors is always
higher than the equivalent resistance of the same resistors connected in parallel. The current through for the series circuit
would be , which is lower than the sum of the currents through each resistor in the parallel circuit, 

. This is not surprising since the equivalent resistance of the series circuit is higher. The current through a series
connection of any number of resistors will always be lower than the current into a parallel connection of the same resistors,
since the equivalent resistance of the series circuit will be higher than the parallel circuit. The power dissipated by the
resistors in series would be , which is lower than the power dissipated in the parallel circuit .

How would you use a river and two waterfalls to model a parallel configuration of two resistors? How does this analogy break
down?

Solution

A river, flowing horizontally at a constant rate, splits in two and flows over two waterfalls. The water molecules are
analogous to the electrons in the parallel circuits. The number of water molecules that flow in the river and falls must be
equal to the number of molecules that flow over each waterfall, just like sum of the current through each resistor must be
equal to the current flowing into the parallel circuit. The water molecules in the river have energy due to their motion and

+ + = 6.00 A.I1 I2 I3

P = /RV 2

= = = 9.00 W .P1
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height. The potential energy of the water molecules in the river is constant due to their equal heights. This is analogous to
the constant change in voltage across a parallel circuit. Voltage is the potential energy across each resistor.

The analogy quickly breaks down when considering the energy. In the waterfall, the potential energy is converted into
kinetic energy of the water molecules. In the case of electrons flowing through a resistor, the potential drop is converted
into heat and light, not into the kinetic energy of the electrons.

Let us summarize the major features of resistors in parallel:

1. Equivalent resistance is found from Equation  and is smaller than any individual resistance in the combination.
2. The potential drop across each resistor in parallel is the same.
3. Parallel resistors do not each get the total current; they divide it. The current entering a parallel combination of resistors is equal

to the sum of the current through each resistor in parallel.

In this chapter, we introduced the equivalent resistance of resistors connect in series and resistors connected in parallel. You may
recall from the Section on Capacitance, we introduced the equivalent capacitance of capacitors connected in series and parallel.
Circuits often contain both capacitors and resistors. Table  summarizes the equations used for the equivalent resistance and
equivalent capacitance for series and parallel connections.

Table : Summary for Equivalent Resistance and Capacitance in Series and Parallel Combinations

 Series combination Parallel combination

Equivalent capacitance

Equivalent resistance

Combinations of Series and Parallel
More complex connections of resistors are often just combinations of series and parallel connections. Such combinations are
common, especially when wire resistance is considered. In that case, wire resistance is in series with other resistances that are in
parallel.

Combinations of series and parallel can be reduced to a single equivalent resistance using the technique illustrated in Figure .
Various parts can be identified as either series or parallel connections, reduced to their equivalent resistances, and then further
reduced until a single equivalent resistance is left. The process is more time consuming than difficult. Here, we note the equivalent
resistance as .
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Figure : (a) The original circuit of four resistors. (b) Step 1: The resistors  and  are in series and the equivalent
resistance is  (c) Step 2: The reduced circuit shows resistors  and  are in parallel, with an equivalent resistance
of . (d) Step 3: The reduced circuit shows that  and  are in series with an equivalent resistance of 
which is the equivalent resistance . (e) The reduced circuit with a voltage source of  with an equivalent resistance of 

. This results in a current of  from the voltage source.

Notice that resistors  and  are in series. They can be combined into a single equivalent resistance. One method of keeping
track of the process is to include the resistors as subscripts. Here the equivalent resistance of  and  is

The circuit now reduces to three resistors, shown in Figure . Redrawing, we now see that resistors  and  constitute a
parallel circuit. Those two resistors can be reduced to an equivalent resistance:

This step of the process reduces the circuit to two resistors, shown in in Figure . Here, the circuit reduces to two resistors,
which in this case are in series. These two resistors can be reduced to an equivalent resistance, which is the equivalent resistance of
the circuit:

The main goal of this circuit analysis is reached, and the circuit is now reduced to a single resistor and single voltage source.

Now we can analyze the circuit. The current provided by the voltage source is . This current runs through

resistor  and is designated as . The potential drop across  can be found using Ohm’s law:

Looking at Figure , this leaves  to be dropped across the parallel combination of  and . The
current through  can be found using Ohm’s law:
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The resistors  and  are in series so the currents  and  are equal to

Using Ohm’s law, we can find the potential drop across the last two resistors. The potential drops are  and 
. The final analysis is to look at the power supplied by the voltage source and the power dissipated by the

resistors. The power dissipated by the resistors is

The total energy is constant in any process. Therefore, the power supplied by the voltage source is

Analyzing the power supplied to the circuit and the power dissipated by the resistors is a good check for the validity of the analysis;
they should be equal.

Figure  shows resistors wired in a combination of series and parallel. We can consider  to be the resistance of wires
leading to  and .

a. Find the equivalent resistance of the circuit.
b. What is the potential drop  across resistor ?
c. Find the current  through resistor .
d. What power is dissipated by ?

Figure : These three resistors are connected to a voltage source so that  and  are in parallel with one another and
that combination is in series with .

Strategy

(a) To find the equivalent resistance, first find the equivalent resistance of the parallel connection of  and . Then use
this result to find the equivalent resistance of the series connection with .

(b) The current through  can be found using Ohm’s law and the voltage applied. The current through  is equal to the
current from the battery. The potential drop  across the resistor  (which represents the resistance in the connecting
wires) can be found using Ohm’s law.

(c) The current through  can be found using Ohm’s law . The voltage across  can be found using 
.

(d) Using Ohm’s law , the power dissipated by the resistor can also be found using .
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Solution

1. To find the equivalent resistance of the circuit, notice that the parallel connection of  and  is in series with ,
so the equivalent resistance is

The total resistance of this combination is intermediate between the pure series and pure parallel values (  and 
, respectively).

2. The current through  is equal to the current supplied by the battery:

The voltage across  is

The voltage applied to  and  is less than the voltage supplied by the battery by an amount . When wire
resistance is large, it can significantly affect the operation of the devices represented by  and .

3. To find the current through , we must first find the voltage applied to it. The voltage across the two resistors in
parallel is the same:

Now we can find the current  through resistance  using Ohm’s law:

The current is less than the 2.00 A that flowed through  when it was connected in parallel to the battery in the
previous parallel circuit example.

4. The power dissipated by  is given by

Significance

The analysis of complex circuits can often be simplified by reducing the circuit to a voltage source and an equivalent
resistance. Even if the entire circuit cannot be reduced to a single voltage source and a single equivalent resistance,
portions of the circuit may be reduced, greatly simplifying the analysis.

Consider the electrical circuits in your home. Give at least two examples of circuits that must use a combination of series and
parallel circuits to operate efficiently.

Solution

All the overhead lighting circuits are in parallel and connected to the main supply line, so when one bulb burns out, all the
overhead lighting does not go dark. Each overhead light will have at least one switch in series with the light, so you can
turn it on and off.

A refrigerator has a compressor and a light that goes on when the door opens. There is usually only one cord for the
refrigerator to plug into the wall. The circuit containing the compressor and the circuit containing the lighting circuit are in
parallel, but there is a switch in series with the light. A thermostat controls a switch that is in series with the compressor to
control the temperature of the refrigerator.
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Practical Implications
One implication of this last example is that resistance in wires reduces the current and power delivered to a resistor. If wire
resistance is relatively large, as in a worn (or a very long) extension cord, then this loss can be significant. If a large current is
drawn, the IR drop in the wires can also be significant and may become apparent from the heat generated in the cord.

For example, when you are rummaging in the refrigerator and the motor comes on, the refrigerator light dims momentarily.
Similarly, you can see the passenger compartment light dim when you start the engine of your car (although this may be due to
resistance inside the battery itself).

What is happening in these high-current situations is illustrated in Figure . The device represented by  has a very low
resistance, so when it is switched on, a large current flows. This increased current causes a larger IR drop in the wires represented
by , reducing the voltage across the light bulb (which is ), which then dims noticeably.

Figure : Why do lights dim when a large appliance is switched on? The answer is that the large current the appliance motor
draws causes a significant IR drop in the wires and reduces the voltage across the light.

1. Draw a clear circuit diagram, labeling all resistors and voltage sources. This step includes a list of the known values for the
problem, since they are labeled in your circuit diagram.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
3. Determine whether resistors are in series, parallel, or a combination of both series and parallel. Examine the circuit diagram

to make this assessment. Resistors are in series if the same current must pass sequentially through them.
4. Use the appropriate list of major features for series or parallel connections to solve for the unknowns. There is one list for

series and another for parallel.
5. Check to see whether the answers are reasonable and consistent.

Two resistors connected in series  are connected to two resistors that are connected in parallel . The series-
parallel combination is connected to a battery. Each resistor has a resistance of 10.00 Ohms. The wires connecting the resistors
and battery have negligible resistance. A current of 2.00 Amps runs through resistor . What is the voltage supplied by the
voltage source?

Strategy

Use the steps in the preceding problem-solving strategy to find the solution for this example.

Solution

6.2.7 R3

R1 R2
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 Example : Combining Series and Parallel circuits6.2.4
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Figure : To find the unknown voltage, we must first find the equivalent resistance of the circuit.

1. Draw a clear circuit diagram (Figure ).
2. The unknown is the voltage of the battery. In order to find the voltage supplied by the battery, the equivalent

resistance must be found.
3. In this circuit, we already know that the resistors  and  are in series and the resistors  and  are in parallel.

The equivalent resistance of the parallel configuration of the resistors  and  is in series with the series
configuration of resistors  and .

4. The voltage supplied by the battery can be found by multiplying the current from the battery and the equivalent
resistance of the circuit. The current from the battery is equal to the current through  and is equal to 2.00 A. We
need to find the equivalent resistance by reducing the circuit. To reduce the circuit, first consider the two resistors in
parallel. The equivalent resistance is

This parallel combination is in series with the other two resistors, so the equivalent resistance of the circuit is 
. The voltage supplied by the battery is therefore 

.
5. One way to check the consistency of your results is to calculate the power supplied by the battery and the power

dissipated by the resistors. The power supplied by the battery is .

Since they are in series, the current through  equals the current through . Since , the current through
each will be 1.00 Amps. The power dissipated by the resistors is equal to the sum of the power dissipated by each
resistor:

Since the power dissipated by the resistors equals the power supplied by the battery, our solution seems consistent.

Significance

If a problem has a combination of series and parallel, as in this example, it can be reduced in steps by using the
preceding problem-solving strategy and by considering individual groups of series or parallel connections. When
finding  for a parallel connection, the reciprocal must be taken with care. In addition, units and numerical results
must be reasonable. Equivalent series resistance should be greater, whereas equivalent parallel resistance should be
smaller, for example. Power should be greater for the same devices in parallel compared with series, and so on.

This page titled 6.2: Resistors in Series and Parallel is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

10.3: Resistors in Series and Parallel by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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6.3: Kirchhoff's Rules

By the end of the section, you will be able to:

State Kirchhoff’s junction rule
State Kirchhoff’s loop rule
Analyze complex circuits using Kirchhoff’s rules

We have just seen that some circuits may be analyzed by reducing a circuit to a single voltage source and an equivalent resistance.
Many complex circuits cannot be analyzed with the series-parallel techniques developed in the preceding sections. In this section,
we elaborate on the use of Kirchhoff’s rules to analyze more complex circuits. For example, the circuit in Figure  is known as
a multi-loop circuit, which consists of junctions. A junction, also known as a node, is a connection of three or more wires. In this
circuit, the previous methods cannot be used, because not all the resistors are in clear series or parallel configurations that can be
reduced. Give it a try. The resistors  and  are in series and can be reduced to an equivalent resistance. The same is true of
resistors  and . But what do you do then?

Even though this circuit cannot be analyzed using the methods already learned, two circuit analysis rules can be used to analyze
any circuit, simple or complex. The rules are known as Kirchhoff’s rules, after their inventor Gustav Kirchhoff (1824–1887).

Figure : This circuit cannot be reduced to a combination of series and parallel connections. However, we can use Kirchhoff’s
rules to analyze it.

Kirchhoff’s first rule—the junction rule. The sum of all currents entering a junction must equal the sum of all currents
leaving the junction:

Kirchhoff’s second rule—the loop rule. The algebraic sum of changes in potential around any closed circuit path (loop)
must be zero:

We now provide explanations of these two rules, followed by problem-solving hints for applying them and a worked example that
uses them.

Kirchhoff’s First Rule
Kirchhoff’s first rule (the junction rule) applies to the charge entering and leaving a junction (Figure ). As stated earlier, a
junction, or node, is a connection of three or more wires. Current is the flow of charge, and charge is conserved; thus, whatever
charge flows into the junction must flow out.

 Learning Objectives
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Figure : Charge must be conserved, so the sum of currents into a junction must be equal to the sum of currents out of the
junction.

Although it is an over-simplification, an analogy can be made with water pipes connected in a plumbing junction. If the wires in
Figure  were replaced by water pipes, and the water was assumed to be incompressible, the volume of water flowing into the
junction must equal the volume of water flowing out of the junction.

Kirchhoff’s Second Rule
Kirchhoff’s second rule (the loop rule) applies to potential differences. The loop rule is stated in terms of potential V rather than
potential energy, but the two are related since . In a closed loop, whatever energy is supplied by a voltage source, the
energy must be transferred into other forms by the devices in the loop, since there are no other ways in which energy can be
transferred into or out of the circuit. Kirchhoff’s loop rule states that the algebraic sum of potential differences, including voltage
supplied by the voltage sources and resistive elements, in any loop must be equal to zero. For example, consider a simple loop with
no junctions, as in Figure .

Figure : A simple loop with no junctions. Kirchhoff’s loop rule states that the algebraic sum of the voltage differences is equal
to zero.

The circuit consists of a voltage source and three external load resistors. The labels a, b, c, and d serve as references, and have no
other significance. The usefulness of these labels will become apparent soon. The loop is designated as Loop abcda, and the labels
help keep track of the voltage differences as we travel around the circuit. Start at point a and travel to point b. The voltage of the
voltage source is added to the equation and the potential drop of the resistor  is subtracted. From point b to c, the potential drop
across  is subtracted. From c to d, the potential drop across  is subtracted. From points d to a, nothing is done because there
are no components.

Figure  shows a graph of the voltage as we travel around the loop. Voltage increases as we cross the battery, whereas voltage
decreases as we travel across a resistor. The potential drop, or change in the electric potential, is equal to the current through the
resistor times the resistance of the resistor. Since the wires have negligible resistance, the voltage remains constant as we cross the
wires connecting the components.

Figure : A voltage graph as we travel around the circuit. The voltage increases as we cross the battery and decreases as we
cross each resistor. Since the resistance of the wire is quite small, we assume that the voltage remains constant as we cross the
wires connecting the components.

Then Kirchhoff’s loop rule states
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The loop equation can be used to find the current through the loop:

This loop could have been analyzed using the previous methods, but we will demonstrate the power of Kirchhoff’s method in the
next section.

Applying Kirchhoff’s Rules
By applying Kirchhoff’s rules, we generate a set of linear equations that allow us to find the unknown values in circuits. These may
be currents, voltages, or resistances. Each time a rule is applied, it produces an equation. If there are as many independent equations
as unknowns, then the problem can be solved.

Using Kirchhoff’s method of analysis requires several steps, as listed in the following procedure.

1. Label points in the circuit diagram using lowercase letters a, b, c, …. These labels simply help with orientation.
2. Locate the junctions in the circuit. The junctions are points where three or more wires connect. Label each junction with the

currents and directions into and out of it. Make sure at least one current points into the junction and at least one current
points out of the junction.

3. Choose the loops in the circuit. Every component must be contained in at least one loop, but a component may be contained
in more than one loop.

4. Apply the junction rule. Again, some junctions should not be included in the analysis. You need only use enough nodes to
include every current.

5. Apply the loop rule. Use the map in Figure .

Figure : Each of these resistors and voltage sources is traversed from a to b. (a) When moving across a resistor in the same
direction as the current flow, subtract the potential drop. (b) When moving across a resistor in the opposite direction as the current
flow, add the potential drop. (c) When moving across a voltage source from the negative terminal to the positive terminal, add the
potential drop. (d) When moving across a voltage source from the positive terminal to the negative terminal, subtract the potential
drop.

Let’s examine some steps in this procedure more closely. When locating the junctions in the circuit, do not be concerned about the
direction of the currents. If the direction of current flow is not obvious, choosing any direction is sufficient as long as at least one
current points into the junction and at least one current points out of the junction. If the arrow is in the opposite direction of the
conventional current flow, the result for the current in question will be negative but the answer will still be correct.

The number of nodes depends on the circuit. Each current should be included in a node and thus included in at least one junction
equation. Do not include nodes that are not linearly independent, meaning nodes that contain the same information.

Consider Figure . There are two junctions in this circuit: Junction b and Junction e. Points a, c, d, and f are not junctions,
because a junction must have three or more connections. The equation for Junction b is , and the equation for Junction

V −I −I −I = 0.R1 R2 R3 (6.3.3)

I = = = 2.00 A.
V

+ +R1 R2 R3

12.00 V

1.00 Ω +2.00 Ω +3.00 Ω
(6.3.4)

 Problem-Solving Strategy: Kirchhoff’s Rules

6.3.5

6.3.5

6.3.6

= +I1 I2 I3
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e is . These are equivalent equations, so it is necessary to keep only one of them.

Figure : At first glance, this circuit contains two junctions, Junction b and Junction e, but only one should be considered
because their junction equations are equivalent.

When choosing the loops in the circuit, you need enough loops so that each component is covered once, without repeating loops.
Figure  shows four choices for loops to solve a sample circuit; choices (a), (b), and (c) have a sufficient amount of loops to
solve the circuit completely. Option (d) reflects more loops than necessary to solve the circuit.

Figure : Panels (a)–(c) are sufficient for the analysis of the circuit. In each case, the two loops shown contain all the circuit
elements necessary to solve the circuit completely. Panel (d) shows three loops used, which is more than necessary. Any two loops
in the system will contain all information needed to solve the circuit. Adding the third loop provides redundant information.

Consider the circuit in Figure . Let us analyze this circuit to find the current through each resistor. First, label the circuit as
shown in part (b).

Figure : (a) A multi-loop circuit. (b) Label the circuit to help with orientation.

Next, determine the junctions. In this circuit, points b and e each have three wires connected, making them junctions. Start to apply
Kirchhoff’s junction rule  by drawing arrows representing the currents and labeling each arrow, as shown in
Figure . Junction b shows that  and Junction e shows that . Since Junction e gives the same

+ =I2 I3 I1

6.3.6

6.3.7

6.3.7

6.3.8a

6.3.8

(∑ =∑ )Iin Iout
6.3.9 = +I1 I2 I3 + =I2 I3 I1
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information of Junction b, it can be disregarded. This circuit has three unknowns, so we need three linearly independent equations
to analyze it.

Figure : (a) This circuit has two junctions, labeled b and e, but only node b is used in the analysis. (b) Labeled arrows
represent the currents into and out of the junctions.

Next we need to choose the loops. In Figure , Loop abefa includes the voltage source  and resistors  and . The loop
starts at point a, then travels through points b, e, and f, and then back to point a. The second loop, Loop ebcde, starts at point e and
includes resistors  and , and the voltage source .

Figure : Choose the loops in the circuit.

Now we can apply Kirchhoff’s loop rule, using the map in Figure . Starting at point a and moving to point b, the resistor  is
crossed in the same direction as the current flow , so the potential drop  is subtracted. Moving from point b to point e, the
resistor  is crossed in the same direction as the current flow  so the potential drop  is subtracted. Moving from point e to
point f, the voltage source  is crossed from the negative terminal to the positive terminal, so  is added. There are no
components between points f and a. The sum of the voltage differences must equal zero:

Finally, we check loop ebcde. We start at point e and move to point b, crossing  in the opposite direction as the current flow .
The potential drop  is added. Next, we cross  and  in the same direction as the current flow  and subtract the potential
drops  and . Note that the current is the same through resistors  and ,because they are connected in series. Finally,
the voltage source is crossed from the positive terminal to the negative terminal, and the voltage source  is subtracted. The sum
of these voltage differences equals zero and yields the loop equation

We now have three equations, which we can solve for the three unknowns.

To solve the three equations for the three unknown currents, start by eliminating current . First add Equation  times  to
Equation . The result is Equation :

6.3.9

6.3.10 V1 R1 R2

R2 R3 V2

6.3.10

6.3.5 R1

I1 I1R1

R2 I2 I2R2

V1 V1

Loop abefa : − − + = 0 or = + .I1R1 I2R2 V1 V1 I1R1 I2R2 (6.3.5)

R2 I2

I2R2 R3 R4 I3

I3R3 I3R4 R3 R4

V2

Loop ebcde : − ( + ) − = 0.I2R2 I3 R3 R4 V2 (6.3.6)

Junction b: − − = 0.I1 I2 I3 (6.3.7)

Loop abefa: + = .I1R1 I2R2 V1 (6.3.8)

Loop ebcde: − ( + ) = .I2R2 I3 R3 R4 V2 (6.3.9)

I2 6.3.7 R2

6.3.8 6.3.11

( + ) − = .R1 R2 I1 R2I3 V1 (6.3.10)
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Next, subtract Equation  from Equation . The result is Equation :

We can solve Equations  and  for current . Adding seven times Equation  and three times Equation 
results in , or . Using Equation  results in . Finally, Equation  yields 

. One way to check that the solutions are consistent is to check the power supplied by the voltage sources
and the power dissipated by the resistors:

Note that the solution for the current  is negative. This is the correct answer, but suggests that the arrow originally drawn in the
junction analysis is the direction opposite of conventional current flow. The power supplied by the second voltage source is 58 W
and not -58 W.

Find the currents flowing in the circuit in Figure .

Figure : This circuit is combination of series and parallel configurations of resistors and voltage sources. This circuit
cannot be analyzed using the techniques discussed in Electromotive Force but can be analyzed using Kirchhoff’s rules.

Strategy

This circuit is sufficiently complex that the currents cannot be found using Ohm’s law and the series-parallel techniques—it
is necessary to use Kirchhoff’s rules. Currents have been labeled , and  in the figure, and assumptions have been
made about their directions. Locations on the diagram have been labeled with letters a through h. In the solution, we apply
the junction and loop rules, seeking three independent equations to allow us to solve for the three unknown currents.

Solution

Applying the junction and loop rules yields the following three equations. We have three unknowns, so three equations
are required.

Simplify the equations by placing the unknowns on one side of the equations.

6 Ω −3Ω = 24 V .I1 I3 (6.3.11)

6.3.9 6.3.8 6.3.13

+ ( + ) = − .I1R1 I3 R3 R4 V1 V2 (6.3.12)

3Ω +7Ω = −5 V .I1 I3 (6.3.13)

6.3.11 6.3.13 I1 6.3.11 6.3.13

51 Ω = 153 VI1 = 3.00 AI1 6.3.11 = −2.00 AI3 6.3.7

= − = 5.00 AI2 I1 I3

= + = 130 W ,Pin I1V1 I3V2

= + + + = 130 W .Pout I 2
1 R1 I 2

2 R2 I 2
3 R3 I 2

3 R4

I3

 Example : Calculating Current by Using Kirchhoff’s Rules6.3.1

6.3.11

6.3.11

,I1 I2 I3

Junction c : + = .I1 I2 I3 (6.3.14)

Loop abcdefa : ( + ) − ( + + ) = − .I1 R1 R4 I2 R2 R5 R6 V1 V3 (6.3.15)

Loop cdefc : ( + + ) + = + .I2 R2 R5 R6 I3R3 V2 V3 (6.3.16)

Junction c : + − = 0.I1 I2 I3 (6.3.17)
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Simplify the equations. The first loop equation can be simplified by dividing both sides by 3.00. The second loop
equation can be simplified by dividing both sides by 6.00.

The results are

Significance

A method to check the calculations is to compute the power dissipated by the resistors and the power supplied by the
voltage sources:

The power supplied equals the power dissipated by the resistors.

In considering the following schematic and the power supplied and consumed by a circuit, will a voltage source always provide
power to the circuit, or can a voltage source consume power?

Answer

The circuit can be analyzed using Kirchhoff’s loop rule. The first voltage source supplies power: .
The second voltage source consumes power: 

Find the current flowing in the circuit in Figure .

Loop abcdefa : (3Ω) − (8Ω) = 0.5 V −2.30 V .I1 I2 (6.3.18)

Loop cdefc : (8Ω) + (1Ω) = 0.6 V +2.30 V .I2 I3 (6.3.19)

Junction c : + − = 0.I1 I2 I3 (6.3.20)

Loop abcdefa : (3Ω) − (8Ω) = −1.8 V .I1 I2 (6.3.21)

Loop cdefc : (8Ω) + (1Ω) = 2.90 V .I2 I3 (6.3.22)

= 0.20 A, = 0.30 A, = 0.50 A.I1 I2 I3 (6.3.23)

= = 0.04 W .PR1
I 2

1
R1 (6.3.24)

= = 0.45 W .PR2
I 2

2 R2 (6.3.25)

= = 0.25 W .PR3
I 2

3 R3 (6.3.26)

= = 0.08 W .PR4
I 2

1 R4 (6.3.27)

= = 0.09 W .PR5
I 2

2 R5 (6.3.28)

= = 0.18 W .PR6
I 2

2 R1 (6.3.29)

= 1.09 W .Pdissipated (6.3.30)

= + + = 0.10 +0.69 W +0.30 W = 1.09 W .Psource I1V1 I2V3 I3V2 (6.3.31)

 Exercise 6.3.1

= I = 7.20 mWPin V1

= I + + = 7.2 mW .Pout V2 I 2R1 I 2R2

 Example : Calculating Current by Using Kirchhoff’s Rules6.3.2

6.3.12
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Figure : This circuit consists of three resistors and two batteries connected in series. Note that the batteries are connected
with opposite polarities.

Strategy

This circuit can be analyzed using Kirchhoff’s rules. There is only one loop and no nodes. Choose the direction of current
flow. For this example, we will use the clockwise direction from point a to point b. Consider Loop abcda and use Figure 

 to write the loop equation. Note that according to Figure , battery  will be added and battery  will be
subtracted.

Solution

Applying the junction rule yields the following three equations. We have one unknown, so one equation is required:

Simplify the equations by placing the unknowns on one side of the equations. Use the values given in the figure.

Significance

The power dissipated or consumed by the circuit equals the power supplied to the circuit, but notice that the current in
the battery  is flowing through the battery from the positive terminal to the negative terminal and consumes power.

The power supplied equals the power dissipated by the resistors and consumed by the battery .

When using Kirchhoff’s laws, you need to decide which loops to use and the direction of current flow through each loop. In
analyzing the circuit in Example , the direction of current flow was chosen to be clockwise, from point a to point b. How
would the results change if the direction of the current was chosen to be counterclockwise, from point b to point a?

Answer

The current calculated would be equal to  instead of . The sum of the power dissipated and the
power consumed would still equal the power supplied.

6.3.12

6.3.5 6.3.5 V1 V2

Loop abcda : −I − −I + −I = 0.R1 V1 R2 V2 R3 (6.3.32)

I( + + ) = − .R1 R2 R3 V2 V1 (6.3.33)

I = = = 0.20 A.
−V2 V1

+ +R1 R2 R3

24 V −12 V

10.0 Ω +30.0 Ω +10.0 Ω
(6.3.34)

V1

= = 0.40 WPR1 I 2R1 (6.3.35)

= = 1.20 WPR2 I 2R2 (6.3.36)

= = 0.80 WPR3
I 2R3 (6.3.37)

= I = 2.40 WPV1
V1 (6.3.38)

= 4.80 WPdissipated (6.3.39)

= I = 4.80 WPsource V2 (6.3.40)

V1

 Exercise 6.3.2

6.3.2

I = −0.20 A I = 0.20 A
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6.4: Household Wiring and Electrical Safety

By the end of the section, you will be able to:

List the basic concepts involved in house wiring
Define the terms thermal hazard and shock hazard
Describe the effects of electrical shock on human physiology and their relationship to the amount of current through the
body
Explain the function of fuses and circuit breakers

Electricity presents two known hazards: thermal and shock. A thermal hazard is one in which an excessive electric current causes
undesired thermal effects, such as starting a fire in the wall of a house. A shock hazard occurs when an electric current passes
through a person. Shocks range in severity from painful, but otherwise harmless, to heart-stopping lethality. In this section, we
consider these hazards and the various factors affecting them in a quantitative manner. We also examine systems and devices for
preventing electrical hazards.

Thermal Hazards
Electric power causes undesired heating effects whenever electric energy is converted into thermal energy at a rate faster than it can
be safely dissipated. A classic example of this is the short circuit, a low-resistance path between terminals of a voltage source. An
example of a short circuit is shown in Figure . A toaster is plugged into a common household electrical outlet. Insulation on
wires leading to an appliance has worn through, allowing the two wires to come into contact, or “short.” As a result, thermal energy
can quickly raise the temperature of surrounding materials, melting the insulation and perhaps causing a fire.

The circuit diagram shows a symbol that consists of a sine wave enclosed in a circle. This symbol represents an alternating current
(ac) voltage source. In an ac voltage source, the voltage oscillates between a positive and negative maximum amplitude. Up to now,
we have been considering direct current (dc) voltage sources, but many of the same concepts are applicable to ac circuits.

Figure : A short circuit is an undesired low-resistance path across a voltage source. (a) Worn insulation on the wires of a
toaster allow them to come into contact with a low resistance r. Since , thermal power is created so rapidly that the cord
melts or burns. (b) A schematic of the short circuit.

Another serious thermal hazard occurs when wires supplying power to an appliance are overloaded. Electrical wires and appliances
are often rated for the maximum current they can safely handle. The term “overloaded” refers to a condition where the current
exceeds the rated maximum current. As current flows through a wire, the power dissipated in the supply wires is ,
where  is the resistance of the wires and I is the current flowing through the wires. If either I or  is too large, the wires
overheat. Fuses and circuit breakers are used to limit excessive currents.

Shock Hazards
Electric shock is the physiological reaction or injury caused by an external electric current passing through the body. The effect of
an electric shock can be negative or positive. When a current with a magnitude above 300 mA passes through the heart, death may
occur. Most electrical shock fatalities occur because a current causes ventricular fibrillation, a massively irregular and often fatal,
beating of the heart. On the other hand, a heart attack victim, whose heart is in fibrillation, can be saved by an electric shock from a
defibrillator.

The effects of an undesirable electric shock can vary in severity: a slight sensation at the point of contact, pain, loss of voluntary
muscle control, difficulty breathing, heart fibrillation, and possibly death. The loss of voluntary muscle control can cause the victim

 Learning Objectives
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to not be able to let go of the source of the current.

The major factors upon which the severity of the effects of electrical shock depend are

1. The amount of current I
2. The path taken by the current
3. The duration of the shock
4. The frequency f of the current  for dc)

Our bodies are relatively good electric conductors due to the body’s water content. A dangerous condition occurs when the body is
in contact with a voltage source and “ground.” The term “ground” refers to a large sink or source of electrons, for example, the
earth (thus, the name). When there is a direct path to ground, large currents will pass through the parts of the body with the lowest
resistance and a direct path to ground. A safety precaution used by many professions is the wearing of insulated shoes. Insulated
shoes prohibit a pathway to ground for electrons through the feet by providing a large resistance. Whenever working with high-
power tools, or any electric circuit, ensure that you do not provide a pathway for current flow (especially across the heart). A
common safety precaution is to work with one hand, reducing the possibility of providing a current path through the heart.

Very small currents pass harmlessly and unfelt through the body. This happens to you regularly without your knowledge. The
threshold of sensation is only 1 mA and, although unpleasant, shocks are apparently harmless for currents less than 5 mA. A great
number of safety rules take the 5-mA value for the maximum allowed shock. At 5–30 mA and above, the current can stimulate
sustained muscular contractions, much as regular nerve impulses do. Very large currents (above 300 mA) cause the heart and
diaphragm of the lung to contract for the duration of the shock. Both the heart and respiration stop. Both often return to normal
following the shock.

Current is the major factor determining shock severity. A larger voltage is more hazardous, but since , the severity of the
shock depends on the combination of voltage and resistance. For example, a person with dry skin has a resistance of about .
If he comes into contact with 120-V ac, a current

passes harmlessly through him. The same person soaking wet may have a resistance of  and the same 120 V will produce a
current of 12 mA—above the “can’t let go” threshold and potentially dangerous.

Electrical Safety: Systems and Devices
Figure  shows the schematic for a simple ac circuit with no safety features. This is not how power is distributed in practice.
Modern household and industrial wiring requires the three-wire system, shown schematically in part (b), which has several safety
features, with live, neutral, and ground wires. First is the familiar circuit breaker (or fuse) to prevent thermal overload. Second is a
protective case around the appliance, such as a toaster or refrigerator. The case’s safety feature is that it prevents a person from
touching exposed wires and coming into electrical contact with the circuit, helping prevent shocks.

Figure : (a) Schematic of a simple ac circuit with a voltage source and a single appliance represented by the resistance R.
There are no safety features in this circuit. (b) The three-wire system connects the neutral wire to ground at the voltage source and
user location, forcing it to be at zero volts and supplying an alternative return path for the current through ground. Also grounded to
zero volts is the case of the appliance. A circuit breaker or fuse protects against thermal overload and is in series on the active
(live/hot) wire.

There are three connections to ground shown in . Recall that a ground connection is a low-resistance path directly to
ground. The two ground connections on the neutral wire force it to be at zero volts relative to ground, giving the wire its name.

(f = 0

I = V /R

200 kΩ

I = (120 V )(200 kΩ) = 0.6 mA (6.4.1)

10.0 kΩ

6.4.2(a)

6.4.2

6.4.2(b)
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This wire is therefore safe to touch even if its insulation, usually white, is missing. The neutral wire is the return path for the
current to follow to complete the circuit. Furthermore, the two ground connections supply an alternative path through ground (a
good conductor) to complete the circuit. The ground connection closest to the power source could be at the generating plant,
whereas the other is at the user’s location. The third ground is to the case of the appliance, through the green ground wire, forcing
the case, too, to be at zero volts. The live or hot wire (hereafter referred to as “live/hot”) supplies voltage and current to operate the
appliance. Figure  shows a more pictorial version of how the three-wire system is connected through a three-prong plug to an
appliance.

Figure : The standard three-prong plug can only be inserted in one way, to ensure proper function of the three-wire system.

Insulating plastic is color-coded to identify live/hot, neutral, and ground wires, but these codes vary around the world. It is essential
to determine the color code in your region. Striped coatings are sometimes used for the benefit of those who are colorblind.

Grounding the case solves more than one problem. The simplest problem is worn insulation on the live/hot wire that allows it to
contact the case, as shown in Figure . Lacking a ground connection, a severe shock is possible. This is particularly dangerous
in the kitchen, where a good connection to ground is available through water on the floor or a water faucet. With the ground
connection intact, the circuit breaker will trip, forcing repair of the appliance.

Figure : Worn insulation allows the live/hot wire to come into direct contact with the metal case of this appliance. (a) The
ground connection being broken, the person is severely shocked. The appliance may operate normally in this situation. (b) With a
proper ground, the circuit breaker trips, forcing repair of the appliance.

A ground fault circuit interrupter (GFCI) is a safety device found in updated kitchen and bathroom wiring that works based on
electromagnetic induction. GFCIs compare the currents in the live/hot and neutral wires. When live/hot and neutral currents are not
equal, it is almost always because current in the neutral is less than in the live/hot wire. Then some of the current, called a leakage
current, is returning to the voltage source by a path other than through the neutral wire. It is assumed that this path presents a
hazard. GFCIs are usually set to interrupt the circuit if the leakage current is greater than 5 mA, the accepted maximum harmless
shock. Even if the leakage current goes safely to ground through an intact ground wire, the GFCI will trip, forcing repair of the
leakage.
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6.5: Electrical Measuring Instruments

By the end of the section, you will be able to:

Describe how to connect a voltmeter in a circuit to measure voltage
Describe how to connect an ammeter in a circuit to measure current
Describe the use of an ohmmeter

Ohm’s law and Kirchhoff’s method are useful to analyze and design electrical circuits, providing you with the voltages across, the
current through, and the resistance of the components that compose the circuit. To measure these parameters require instruments,
and these instruments are described in this section.

DC Voltmeters and Ammeters
Whereas voltmeters measure voltage, ammeters measure current. Some of the meters in automobile dashboards, digital cameras,
cell phones, and tuner-amplifiers are actually voltmeters or ammeters (Figure ). The internal construction of the simplest of
these meters and how they are connected to the system they monitor give further insight into applications of series and parallel
connections.

Figure : The fuel and temperature gauges (far right and far left, respectively) in this 1996 Volkswagen are voltmeters that
register the voltage output of “sender” units. These units are proportional to the amount of gasoline in the tank and to the engine
temperature. (credit: Christian Giersing)

Measuring Current with an Ammeter

To measure the current through a device or component, the ammeter is placed in series with the device or component. A series
connection is used because objects in series have the same current passing through them. (See Figure , where the ammeter is
represented by the symbol A.)

Figure : (a) When an ammeter is used to measure the current through two resistors connected in series to a battery, a single
ammeter is placed in series with the two resistors because the current is the same through the two resistors in series. (b) When two
resistors are connected in parallel with a battery, three meters, or three separate ammeter readings, are necessary to measure the
current from the battery and through each resistor. The ammeter is connected in series with the component in question.

Ammeters need to have a very low resistance, a fraction of a milliohm. If the resistance is not negligible, placing the ammeter in
the circuit would change the equivalent resistance of the circuit and modify the current that is being measured. Since the current in
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the circuit travels through the meter, ammeters normally contain a fuse to protect the meter from damage from currents which are
too high.

Measuring Voltage with a Voltmeter
A voltmeter is connected in parallel with whatever device it is measuring. A parallel connection is used because objects in parallel
experience the same potential difference. (See Figure , where the voltmeter is represented by the symbol V.)

Figure : To measure potential differences in this series circuit, the voltmeter (V) is placed in parallel with the voltage source
or either of the resistors. Note that terminal voltage is measured between the positive terminal and the negative terminal of the
battery or voltage source. It is not possible to connect a voltmeter directly across the emf without including the internal resistance r
of the battery.

Since voltmeters are connected in parallel, the voltmeter must have a very large resistance. Digital voltmeters convert the analog
voltage into a digital value to display on a digital readout (Figure ). Inexpensive voltmeters have resistances on the order of 

, whereas high-precision voltmeters have resistances on the order of . The value of the resistance may
vary, depending on which scale is used on the meter.

Figure : (a) An analog voltmeter uses a galvanometer to measure the voltage. (b) Digital meters use an analog-to-digital
converter to measure the voltage. (credit a and credit b: Joseph J. Trout)

Analog and Digital Meters

You may encounter two types of meters in the physics lab: analog and digital. The term ‘analog’ refers to signals or information
represented by a continuously variable physical quantity, such as voltage or current. An analog meter uses a galvanometer, which is
essentially a coil of wire with a small resistance, in a magnetic field, with a pointer attached that points to a scale. Current flows
through the coil, causing the coil to rotate. To use the galvanometer as an ammeter, a small resistance is placed in parallel with the
coil. For a voltmeter, a large resistance is placed in series with the coil. A digital meter uses a component called an analog-to-digital
(A to D) converter and expresses the current or voltage as a series of the digits 0 and 1, which are used to run a digital display.
Most analog meters have been replaced by digital meters.

Digital meters are able to detect smaller currents than analog meters employing galvanometers. How does this explain their
ability to measure voltage and current more accurately than analog meters?
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[Hide Solution]

Since digital meters require less current than analog meters, they alter the circuit less than analog meters. Their resistance as a
voltmeter can be far greater than an analog meter, and their resistance as an ammeter can be far less than an analog meter. Consult
Figure  and Figure  and their discussion in the text

Ohmmeters
An ohmmeter is an instrument used to measure the resistance of a component or device. The operation of the ohmmeter is based on
Ohm’s law. Traditional ohmmeters contained an internal voltage source (such as a battery) that would be connected across the
component to be tested, producing a current through the component. A galvanometer was then used to measure the current and the
resistance was deduced using Ohm’s law. Modern digital meters use a constant current source to pass current through the
component, and the voltage difference across the component is measured. In either case, the resistance is measured using Ohm’s
law  where the voltage is known and the current is measured, or the current is known and the voltage is measured.

The component of interest should be isolated from the circuit; otherwise, you will be measuring the equivalent resistance of the
circuit. An ohmmeter should never be connected to a “live” circuit, one with a voltage source connected to it and current running
through it. Doing so can damage the meter.

Contributors and Attributions
Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

This page titled 6.5: Electrical Measuring Instruments is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

10.5: Electrical Measuring Instruments by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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6.6: RC Circuits

By the end of the section, you will be able to:

Describe the charging process of a capacitor
Describe the discharging process of a capacitor
List some applications of RC circuits

When you use a flash camera, it takes a few seconds to charge the capacitor that powers the flash. The light flash discharges the
capacitor in a tiny fraction of a second. Why does charging take longer than discharging? This question and several other phenomena
that involve charging and discharging capacitors are discussed in this module.

Circuits with Resistance and Capacitance
An RC circuit is a circuit containing resistance and capacitance. As presented in Capacitance, the capacitor is an electrical component
that stores electric charge, storing energy in an electric field.

Figure  shows a simple RC circuit that employs a dc (direct current) voltage source , a resistor , a capacitor , and a two-
position switch. The circuit allows the capacitor to be charged or discharged, depending on the position of the switch. When the switch
is moved to position \(A\), the capacitor charges, resulting in the circuit in Figure . When the switch is moved to position B, the
capacitor discharges through the resistor.

Figure : (a) An RC circuit with a two-pole switch that can be used to charge and discharge a capacitor. (b) When the switch is
moved to position A, the circuit reduces to a simple series connection of the voltage source, the resistor, the capacitor, and the switch.
(c) When the switch is moved to position B, the circuit reduces to a simple series connection of the resistor, the capacitor, and the
switch. The voltage source is removed from the circuit.

Charging a Capacitor
We can use Kirchhoff’s loop rule to understand the charging of the capacitor. This results in the equation . This
equation can be used to model the charge as a function of time as the capacitor charges. Capacitance is defined as , so the
voltage across the capacitor is . Using Ohm’s law, the potential drop across the resistor is , and the current is defined
as .

This differential equation can be integrated to find an equation for the charge on the capacitor as a function of time.

Let , then . The result is
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Simplifying results in an equation for the charge on the charging capacitor as a function of time:

A graph of the charge on the capacitor versus time is shown in Figure . First note that as time approaches infinity, the exponential
goes to zero, so the charge approaches the maximum charge  and has units of coulombs. The units of RC are seconds, units of
time. This quantity is known as the time constant:

At time , the charge equal to  of the maximum charge . Notice that the time rate
change of the charge is the slope at a point of the charge versus time plot. The slope of the graph is large at time  and
approaches zero as time increases.

As the charge on the capacitor increases, the current through the resistor decreases, as shown in Figure . The current through the
resistor can be found by taking the time derivative of the charge.

At time , the current through the resistor is . As time approaches infinity, the current approaches zero. At time ,
the current through the resistor is .
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Figure : (a) Charge on the capacitor versus time as the capacitor charges. (b) Current through the resistor versus time. (c) Voltage
difference across the capacitor. (d) Voltage difference across the resistor.

Figures  and Figure  show the voltage differences across the capacitor and the resistor, respectively. As the charge on the
capacitor increases, the current decreases, as does the voltage difference across the resistor . The voltage
difference across the capacitor increases as .

Discharging a Capacitor
When the switch in Figure  is moved to position B, the circuit reduces to the circuit in part (c), and the charged capacitor is
allowed to discharge through the resistor. A graph of the charge on the capacitor as a function of time is shown in Figure . Using
Kirchhoff’s loop rule to analyze the circuit as the capacitor discharges results in the equation , which simplifies to 

. Using the definition of current  and integrating the loop equation yields an equation for the charge on the
capacitor as a function of time:

Here, Q is the initial charge on the capacitor and  is the time constant of the circuit. As shown in the graph, the charge
decreases exponentially from the initial charge, approaching zero as time approaches infinity.

The current as a function of time can be found by taking the time derivative of the charge:

The negative sign shows that the current flows in the opposite direction of the current found when the capacitor is charging. Figure 
 shows an example of a plot of charge versus time and current versus time. A plot of the voltage difference across the capacitor

and the voltage difference across the resistor as a function of time are shown in Figures  and . Note that the magnitudes of
the charge, current, and voltage all decrease exponentially, approaching zero as time increases.
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Figure : (a) Charge on the capacitor versus time as the capacitor discharges. (b) Current through the resistor versus time. (c)
Voltage difference across the capacitor. (d) Voltage difference across the resistor.

Now we can explain why the flash camera mentioned at the beginning of this section takes so much longer to charge than discharge:
The resistance while charging is significantly greater than while discharging. The internal resistance of the battery accounts for most of
the resistance while charging. As the battery ages, the increasing internal resistance makes the charging process even slower.

Examples

High-speed flash photography was pioneered by Doc Edgerton in the 1930s, while he was a professor of electrical engineering at
MIT. You might have seen examples of his work in the amazing shots of hummingbirds in motion, a drop of milk splattering on a
table, or a bullet penetrating an apple (see Figure). To stop the motion and capture these pictures, one needs a high-intensity, very
short pulsed flash, as mentioned earlier in this module.

Suppose one wished to capture the picture of a bullet (moving at ) that was passing through an apple. The duration of
the flash is related to the  time constant . What size capacitor would one need in the  circuit to succeed, if the resistance of
the flash tube was ? Assume the apple is a sphere with a diameter of .

Strategy

We begin by identifying the physical principles involved. This example deals with the strobe light, as discussed above. Figure
shows the circuit for this probe. The characteristic time  of the strobe is given as .

Solution

We wish to find , but we don’t know . We want the flash to be on only while the bullet traverses the apple. So we need to
use the kinematic equations that describe the relationship between distance , velocity , and time :

The bullet’s velocity is given as , and the distance  is . The traverse time, then, is

We set this value for the crossing time  equal to . Therefore,

6.6.3

 Example 6.6.1 : Integrated Concept Problem: Calculating Capacitor Size—Strobe Lights
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(Note: Capacitance  is typically measured in farads, , defined as Coulombs per volt. From the equation, we see that 
can also be stated in units of seconds per ohm.)

Discussion

The flash interval of  (the traverse time of the bullet) is relatively easy to obtain today. Strobe lights have opened up
new worlds from science to entertainment. The information from the picture of the apple and bullet was used in the Warren
Commission Report on the assassination of President John F. Kennedy in 1963 to confirm that only one bullet was fired.

A heart defibrillator is used to resuscitate an accident victim by discharging a capacitor through the trunk of her body. A simplified
version of the circuit is seen in Figure. (a) What is the time constant if an  capacitor is used and the path resistance through
her body is ? (b) If the initial voltage is 10.0 kV, how long does it take to decline to ?

Strategy

Since the resistance and capacitance are given, it is straightforward to multiply them to give the time constant asked for in part
(a). To find the time for the voltage to decline to , we repeatedly multiply the initial voltage by 0.368 until a voltage
less than or equal to  is obtained. Each multiplication corresponds to a time of  seconds.

Solution

The time constant  is given by the equation . Entering the given values for resistance and capacitance (and
remembering that units for a farad can be expressed as ) gives

Solution for (b)

In the first 8.00 ms, the voltage (10.0 kV) declines to 0.368 of its initial value. That is:

(Notice that we carry an extra digit for each intermediate calculation.) After another 8.00 ms, we multiply by 0.368 again,
and the voltage is

Similarly, after another 8.00 ms, the voltage is

Discussion

So after only 24.0 ms, the voltage is down to 498 V, or 4.98% of its original value.Such brief times are useful in heart
defibrillation, because the brief but intense current causes a brief but effective contraction of the heart. The actual circuit in a
heart defibrillator is slightly more complex than the one in Figure, to compensate for magnetic and AC effects that will be
covered in Magnetism.

One application of an RC circuit is the relaxation oscillator, as shown below. The relaxation oscillator consists of a voltage source,
a resistor, a capacitor, and a neon lamp. The neon lamp acts like an open circuit (infinite resistance) until the potential difference
across the neon lamp reaches a specific voltage. At that voltage, the lamp acts like a short circuit (zero resistance), and the
capacitor discharges through the neon lamp and produces light. In the relaxation oscillator shown, the voltage source charges the
capacitor until the voltage across the capacitor is 80 V. When this happens, the neon in the lamp breaks down and allows the

C F C

160μs

 Example 6.6.2 : Calculating Time: RC Circuit in a Heart Defibrillator
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capacitor to discharge through the lamp, producing a bright flash. After the capacitor fully discharges through the neon lamp, it
begins to charge again, and the process repeats. Assuming that the time it takes the capacitor to discharge is negligible, what is the
time interval between flashes?

Strategy

The time period can be found from considering the equation . where 

Solution

The neon lamp flashes when the voltage across the capacitor reaches 80 V. The RC time constant is equal to 
. We can solve the voltage equation for the time it takes the capacitor to

reach 80 V:

Significance

One application of the relaxation oscillator is for controlling indicator lights that flash at a frequency determined by the
values for R and C. In this example, the neon lamp will flash every 8.13 seconds, a frequency of 

. The relaxation oscillator has many other practical uses. It is often used in electronic circuits,
where the neon lamp is replaced by a transistor or a device known as a tunnel diode. The description of the transistor and
tunnel diode is beyond the scope of this chapter, but you can think of them as voltage controlled switches. They are
normally open switches, but when the right voltage is applied, the switch closes and conducts. The “switch” can be used to
turn on another circuit, turn on a light, or run a small motor. A relaxation oscillator can be used to make the turn signals of
your car blink or your cell phone to vibrate.

RC circuits have many applications. They can be used effectively as timers for applications such as intermittent windshield wipers,
pace makers, and strobe lights. Some models of intermittent windshield wipers use a variable resistor to adjust the interval between
sweeps of the wiper. Increasing the resistance increases the RC time constant, which increases the time between the operation of the
wipers.

Another application is the pacemaker. The heart rate is normally controlled by electrical signals, which cause the muscles of the heart
to contract and pump blood. When the heart rhythm is abnormal (the heartbeat is too high or too low), pace makers can be used to
correct this abnormality. Pacemakers have sensors that detect body motion and breathing to increase the heart rate during physical
activities, thus meeting the increased need for blood and oxygen, and an RC timing circuit can be used to control the time between
voltage signals to the heart.

Looking ahead to the study of ac circuits (Alternating-Current Circuits), ac voltages vary as sine functions with specific frequencies.
Periodic variations in voltage, or electric signals, are often recorded by scientists. These voltage signals could come from music
recorded by a microphone or atmospheric data collected by radar. Occasionally, these signals can contain unwanted frequencies known
as “noise.” RC filters can be used to filter out the unwanted frequencies.
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In the study of electronics, a popular device known as a 555 timer provides timed voltage pulses. The time between pulses is controlled
by an RC circuit. These are just a few of the countless applications of RC circuits.

A relaxation oscillator is used to control a pair of windshield wipers. The relaxation oscillator consists of a 10.00-mF capacitor and
a  variable resistor known as a rheostat. A knob connected to the variable resistor allows the resistance to be adjusted
from  to . The output of the capacitor is used to control a voltage-controlled switch. The switch is normally open,
but when the output voltage reaches 10.00 V, the switch closes, energizing an electric motor and discharging the capacitor. The
motor causes the windshield wipers to sweep once across the windshield and the capacitor begins to charge again. To what
resistance should the rheostat be adjusted for the period of the wiper blades be 10.00 seconds?

Strategy

The resistance considers the equation , where . The capacitance, output voltage, and voltage of
the battery are given. We need to solve this equation for the resistance.

Solution

The output voltage will be 10.00 V and the voltage of the battery is 12.00 V. The capacitance is given as 10.00 mF. Solving
for the resistance yields

Significance

Increasing the resistance increases the time delay between operations of the windshield wipers. When the resistance is zero,
the windshield wipers run continuously. At the maximum resistance, the period of the operation of the wipers is:

Given the circuit of Figure 6.6.3 , assume the switch is closed at time . Determine the charging time constant, the amount of
time after the switch is closed before the circuit reaches steady-state, and the capacitor voltage at ,  milliseconds and 

 second. Assume the capacitor is initially uncharged.

 Example 6.6.4 : Intermittent Windshield Wipers
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R= = = 558.11 Ω.
−t

C ln(1− )
(t)VC

V

−10.00 s

10× F ln(1− )10−3 10 V
12 V

(6.6.33)

t =−RCln(1− ) =−(10× F )(10× Ω)ln(1− ) = 179.18 s= 2.98min.
(t)Vout

V
10−3 103

10 V

12 V
(6.6.34)

 Example 6.6.5 

t = 0

t = 0 t = 50

t = 1
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Figure 6.6.3 : Circuit for Example 6.6.1 .

First, the time constant:

Steady-state will be reached in five time constants, or 500 milliseconds. Therefore we know that  volts and 
 volts. To find  we simply solve Equation .

This value can also be determined graphically from Figure 6.6.2 . The time of 50 milliseconds represents one-half time constant.
Find this value on the horizontal axis and then track straight up to the solid red curve that represents the charging capacitor voltage.
The point of intersection is at approximately 40% of the maximum value on the vertical axis. The maximum value here is the
source voltage of 100 volts. Therefore the capacitor will have reached approximately 40% of 100 volts, or just about 40 volts.

For the circuit of Figure 6.6.6 , assume the capacitor is initially uncharged. At time  the switch contacts position 1. The switch
is thrown to position 2 at time  milliseconds.

Figure 6.6.6 : Circuit for Example 6.6.2 .

Determine the charging time constant, the amount of time after the switch is closed before the circuit reaches steady-state, the
maximum charging and discharging currents, and the capacitor voltage at ,  milliseconds,  milliseconds, and 

 second.

We begin with the charge time constant:

Steady-state will be reached in 5 times 4.4 milliseconds, or 22 milliseconds. The capacitor is initially uncharged, so 
volts. As the capacitor will have reached steady-state in 22 milliseconds,  volts. The maximum charging current
will occur at  when all of the 12 volt source drops across the 20 k  resistor, or 600 amps, flowing left to right.

At 50 milliseconds the switch is thrown to position 2. The 12 volt source and 20 k  resistor are no longer engaged. At this point
the capacitor has 12 volts across it, positive to negative, top to bottom. As the capacitor voltage cannot change instantaneously, the
capacitor now acts as a voltage source and discharges through the 120 k  resistor. Note that the discharge current is flowing
counterclockwise, the opposite of the charging current. The discharge time constant is:

τ =RC

τ = 50kΩ2μF

τ = 100ms

(0) = 0VC
(1) = 100VC (50ms)VC ???

(t) =E (1− )VC ϵ−
t

τ

(50ms) = 100V (1− )VC ϵ−
50ms

100ms

(50ms) ≈ 39.35VVC

 Example 6.6.6 

t = 0

t = 50

t = 0 t = 50 t = 90

t = 1

=RCτcharge

= 20kΩ220nFτcharge

= 4.4msτcharge

(0) = 0VC
(50ms) = 12VC

t = 0 Ω μ

Ω

Ω
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The capacitor will fully discharge down to 0 volts in 5 time constants, or some 132 milliseconds after the switch is thrown to
position 2. Thus steady-state occurs at  milliseconds. The maximum discharge current occurs the instant the switch is
thrown to position 2 when all of the capacitor's 12 volts drops across the 120 k  resistor, yielding 100  amps, flowing top to
bottom.

Clearly, at  milliseconds the capacitor is in the discharge phase. The capacitor's voltage and current during the discharge
phase follow the solid blue curve of Figure 6.6.2 . The elapsed time for discharge is 90 milliseconds minus 50 milliseconds, or 40
milliseconds net. We can use a slight variation on Equation  to find the capacitor voltage at this time.

The shape of the capacitor's voltage will appear somewhat like a rounded pulse, rising with a curve and then falling back to zero
with a complementary curve (the red and then blue curves of Figure 6.6.2 ).

For this example we shall revisit the circuit of Example 8.3.1. The circuit is redrawn in Figure 6.6.7 for convenience. Assume the
capacitor is initially uncharged.

Figure 6.6.7 : Circuit for Example 6.6.3 .

Determine the charging time constant, the amount of time after the switch is closed before the circuit reaches steady-state, and the
capacitor voltage at , 100 milliseconds, and 200 milliseconds. At 200 milliseconds, the switch is opened. Determine how long
it takes for the capacitor to fully discharge and the voltage across the 6 k  resistor at  milliseconds (i.e., 75 milliseconds
after the switch is opened).

The first step is to determine the Thévenin equivalent driving the capacitor. If we remove the capacitor and determine the open
circuit voltage at those points, we see that it is just a voltage divider between the 24 volt source, the 6 k  resistor and the 1 k
resistor (the 3 k  resistor has no current through it and thus produces no voltage drop). This works out to 20.57 volts. The
Thévenin resistance will be 3 k  in series with 1 k   6 k , or roughly 3.857 k . The equivalent charging circuit is drawn in
Figure 6.6.8 .

Figure 6.6.8 : Thévenin equivalent for the circuit of Figure 6.6.7 driving the capacitor.

We can now determine the charging time constant:

=RCτdischarge

= 120kΩ220nFτdischarge

= 26.4msτdischarge

t = 182

Ω μ

t = 90

???

(t) =EVC ϵ−
t

τ

(40ms) = 12V −VC ϵ−
40ms

26.4ms

(40ms) ≈ 2.637VVC

 Example 6.6.7

t = 0

Ω t = 275

Ω Ω

Ω

Ω Ω || Ω Ω

=RCτcharge

= 3.857kΩ10μFτcharge

= 38.57msτcharge
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Steady-state will be reached in 5 time constants, or 192.8 ms. Thus, we know that  volts and  volts.
For the capacitor voltage at 100 milliseconds, we simply use the charge equation.

For the discharge phase, we need to determine the time constant. With the voltage source removed, the capacitor will discharge
through the now series combination of the 3 k  resistor and 6 k  resistor.

Steady-state will be reached 450 milliseconds later at  milliseconds. To find  at  milliseconds, we can find the
voltage across the capacitor and then perform a voltage divider between the 6 k  and 3 k  resistors. Remembering that 
milliseconds is 75 milliseconds into the discharge phase, we have:

Finally, this voltage splits between the 6 k  and 3 k  resistors. Using the voltage divider rule, we find:

The parallel-plate capacitor is charged and then the switch is closed. At the instant the switch is closed, the current measured
through the ammeter is . After a time of  elapses, the current through the ammeter is measured to be , and the switch
is opened. A substance with a dielectric constant of 1.5 is then inserted between the plates of the capacitor, and the switch is once
again closed and not reopened until the ammeter reads zero current.

a. Find the period of time that elapses between when the switch is closed the second time and when the ammeter reads a current of
.

b. At the end, all of the electrical potential energy is gone from the capacitor. Find the fraction of this energy that was converted
into thermal energy by the resistor.

Solution

a. We can calculate the time constant from the period of time that the current takes to drop to 0.6 of its original value:

(0) = 0VC (200ms) = 20.57VC

(t) =E (1− )VC ϵ−
t

τ

(100ms) = 20.57V (1− )VC ϵ−
100ms

38.57ms

(100ms) ≈ 19.03VVC

Ω Ω

=RCτdischarge

= 9kΩ10μFτdischarge

= 90msτdischarge

t = 650 V6k t = 275

Ω Ω t = 275

(t) =EVC ϵ−
t

τ

(75ms) = 20.57V (1− )VC ϵ−
75ms

90ms

(75ms) ≈ 8.94VVC

Ω Ω

=V6k VC
Rx

+Rx Ry

= 8.94VV6k
6kΩ

6kΩ+3kΩ

= 5.96VV6k

 Example  : Changing the time constant6.6.8

Io 2.4s 0.60Io

0.20I
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When the dielectric is inserted, the time constant changes. The time constant is proportional to the capacitance, so since
inserting the dielectric increases the capacitance by a factor of 1.5, that is the factor by which the time constant changes as
well, giving a new time constant of:

The current is driven by the potential difference across the capacitor, and this is proportional to the charge on the capacitor, so
when the current gets down to 60% of its initial value, that means that the charge on the capacitor has dropped by the same
factor. To find the time for the current to drop to , we need to know not only the new time constant, but also the new
starting current. We can get this from the new starting voltage, which comes from the new starting charge and capacitance:

With the new starting current equal to , we are looking for the time it takes to get down to , so:

b. We already determined that in the first stage of this process, the charge on the capacitor went down to 60% of its initial
amount. This allows us to calculate the energy lost by the capacitor, which is what is converted to thermal:

So 64% of the energy on the capacitor is converted to thermal energy in the first stage. In the second stage, all of the internal
energy in the capacitor is converted, but this amount of energy must be calculated in terms of the new capacitance:

So of the original energy stored in the capacitor, 88% of the energy is converted to thermal. Where is the remaining 12%, if all
of it is now gone from the capacitor? The field of the capacitor did work drawing the dielectric into it.

The RC circuit has thousands of uses and is a very important circuit to study. Not only can it be used to time circuits, it can also be used
to filter out unwanted frequencies in a circuit and used in power supplies, like the one for your computer, to help turn ac voltage to dc
voltage.

A simple RC circuit as shown in Figure  contains a charged capacitor of unknown capacitance, , in series with a resistor, 
. When charged, the potential difference across the terminals of the capacitor is .

At time , the switch, , is closed, allowing the capacitor to discharge through the resistor. The current is then measured to be 
 at  after opening the switch.

a. What is the capacitance of the capacitor?
b. What charge did the capacitor hold at ?

Figure : A simple circuit with a resistor and a capacitor.

Answer

a. In this case, the capacitor is discharging as a function of time. At time , the voltage across the capacitor is .
We can model this discharging circuit in a similar way as we modeled the charging circuit.

0.60 = ⇒ τ = = = 4.7sIo Ioe
− t

τ
−t

ln0.60

−2.4s

ln0.60

τ =RC ⇒ =R (κC) = κ = (1.5) (4.7s) = 7.0sτnew τold

0.20Io

= ⇒ = = = 0.40Vo(new)

Qo(new)

Cnew

Io(new)

Vo(new)

R

Qo(new)

RCnew

0.60Qo

R (1.5C)
Io

0.4Io 0.2Io

0.20 = 0.40 ⇒ t = τ ln2 = (7.0s) ln2 = 4.8sIo Ioe
t
τ

Δ = − = −0.36 = 0.64U1 Uo

(0.60 )Qo
2

2C
Uo

Q2
o

2C
Uo

Δ = = 0.24U2

(0.60 )Qo
2

2 (1.5C)
Uo

 Exercise 6.6.1

6.6.1 C

R= 2Ω 9V

t = 0s S

I = 0.05A t = 5s

t = 2s

6.6.1

t = 0 ΔV = 9V
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We start with Kirchhoff’s junction rule, which leads to a differential equation for the charge stored on the capacitor, , as
function of time:

This differential equation is straightforward to solve, since it says that the derivative of  is equal to a constant multiplied by
. Thus, , must be an exponential function:

where, , is the (unknown) charge on the capacitor at . You can easily verify that taking the derivative of this equation
will result in the differential equation being satisfied.

The current, , as a function of time is given by:

where  is the current at .

We also know that the current through the resistor at  is given by Ohm’s Law, since, at that time, the voltage, :

We then know that the current, at time , is equal to , allowing us to determine the capacitance:

b. To find the charge stored in the capacitor at , we can use the function  that we determined before:

where we can determine, , now that we know the capacitance.  is the charge on the capacitor at time , when the
voltage across the capacitor is :

At , the charge on the capacitor is thus:

A voltmeter with a resistance of  is attached to a circuit with a battery of unknown voltage and two resistors with a
resistance of  as shown in Figure . The voltmeter reads that the voltage drop over one of the resistors is 

. What is the voltage drop, , over each resistor when the voltmeter is removed from the circuit?

Q(t)

ΔV −IR

−IR
Q

C

− R
Q

C

dQ

dt

∴ =− Q
dQ

dt

1

RC

= 0

= 0

= 0

Q(t)

Q(t) Q(t)

Q(t) =Q0e
−

t

RC

Q0 t = 0

I(t)

I = =− Q = =
dQ

dt

1

RC

Q0

RC
e−

t

RC I0e
−

t

RC

=I0
Q0

RC
t = 0

t = 0 = 9V
Q0

C

= = = 4.5AI0
Q0

RC

(9V)

(2Ω)

t = 5s I(5) = 0.05A

I(5)

ln( )
I(5)

I0

∴ C

= I0e
−

t

RC

=−
t

RC

= = = 0.56F
t

R ln( )I0

I(5)

(5s)

(2Ω) ln( )
(4.5A)

(0.05A)

t = 2s Q(t)

Q(t = 2s) =Q0e
−

t

RC

Q0 Q0 t = 0

9V

=CΔV = (0.56F)(9V) = 5.0CQ0

t = 2s

Q(t = 2s) = (5.0C) = 0.84Ce
−

(2s)

(2Ω)(0.56F)

 Exercise 6.6.2
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R= 2.5kΩ 6.6.2
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Figure : A circuit with a battery of unknown voltage.

Answer

In order to know the voltage across one of the resistors, we need to determine the voltage that is across the battery. Once we
have determined the voltage across the battery, the voltage across one of the resistors will just be half of that across the battery,
since the two resistors have the same resistance.

We can model the circuit with the voltmeter in place, since we know the voltage across the parallel combination of the
voltmeter and resistor (that voltage which is readout by the voltmeter). We can combine the voltmeter and one of the resistors
into a an equivalent resistor, :

Now that we have the effective resistance as well as the voltage drop across that effective resistor, we can solve for current
through the circuit:

Now that we have the current through the circuit, we can determine the voltage drop across the second resistor. By adding that
voltage drop to the known voltage across the effective resistor, we can determine the battery voltage:

Thus, with no voltmeter present, the voltage across each resistor is .

Given the circuit shown, find the voltage across the 6  resistor for both the initial and steady-state conditions assuming the
capacitor is initially uncharged.

Circuit for Example.

6.6.2

Reff

Reff

Reff

Reff

=
1

+R−1
V

R−1

=
1

(20kΩ +(2.5kΩ)−1 )−1

= 2.22kΩ

I

I

I

=
ΔVvm

Reff

=
5.647V

2.22kΩ

= 2.541mA

ΔVbattery

ΔVbattery

ΔVbattery

= I( +R)Reff

= (2.541mA)(2.222kΩ+2.5kΩ)

= 12V

6V

 Example 6.6.9 :

kΩ
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For the initial state the capacitor is treated as a short. The initial state equivalent circuit is drawn below. Immediately apparent is the
parallel connection between the 6  and 3  resistors. This combination is equivalent to 2 . Therefore, we can perform a
voltage divider to find the potential across the 6  (i.e., the 2  combo).

Circuit, initial state.

For the steady-state condition the capacitor will be fully charged, its current will be zero, and we treat it as an open. The steady-
state equivalent circuit is drawn below.

Circuit, steady-state.

The 3  resistor is now out of the picture, leaving us with the 6  in series with the 1  resistor. Once again, a voltage divider
may be used to determine the voltage across the 6 .
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6.7: Practice

Conceptual Questions

Electromotive Force

1. What effect will the internal resistance of a rechargeable battery have on the energy being used to recharge the battery?

2. A battery with an internal resistance of r and an emf of 10.00 V is connected to a load resistor R=r. As the battery ages,
the internal resistance triples. How much is the current through the load resistor reduced?

3. Show that the power dissipated by the load resistor is maximum when the resistance of the load resistor is equal to the
internal resistance of the battery.

Resistors in Series and Parallel

4. A voltage occurs across an open switch. What is the power dissipated by the open switch?

5. The severity of a shock depends on the magnitude of the current through your body. Would you prefer to be in series or in
parallel with a resistance, such as the heating element of a toaster, if you were shocked by it? Explain.

6. Suppose you are doing a physics lab that asks you to put a resistor into a circuit, but all the resistors supplied have a larger
resistance than the requested value. How would you connect the available resistances to attempt to get the smaller value
asked for?

7. Some light bulbs have three power settings (not including zero), obtained from multiple filaments that are individually
switched and wired in parallel. What is the minimum number of filaments needed for three power settings?

Kirchhoff's Rules

8. Can all of the currents going into the junction shown below be positive? Explain.

9. Consider the circuit shown below. Does the analysis of the circuit require Kirchhoff’s method, or can it be redrawn to
simplify the circuit? If it is a circuit of series and parallel connections, what is the equivalent resistance?

10. Do batteries in a circuit always supply power to a circuit, or can they absorb power in a circuit? Give an example.

11. What are the advantages and disadvantages of connecting batteries in series? In parallel?

12. Semi-tractor trucks use four large 12-V batteries. The starter system requires 24 V, while normal operation of the truck’s
other electrical components utilizes 12 V. How could the four batteries be connected to produce 24 V? To produce 12 V?
Why is 24 V better than 12 V for starting the truck’s engine (a very heavy load)?
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Electrical Measuring Instruments

13. What would happen if you placed a voltmeter in series with a component to be tested?

14. What is the basic operation of an ohmmeter as it measures a resistor?

15. Why should you not connect an ammeter directly across a voltage source as shown below?

RC Circuits

16. A battery, switch, capacitor, and lamp are connected in series. Describe what happens to the lamp when the switch is
closed.

17. When making an ECG measurement, it is important to measure voltage variations over small time intervals. The time is
limited by the RC constant of the circuit—it is not possible to measure time variations shorter than RC. How would you
manipulate R and C in the circuit to allow the necessary measurements?

10.6 Household Wiring and Electrical Safety

18. Why isn’t a short circuit necessarily a shock hazard?

19. We are often advised to not flick electric switches with wet hands, dry your hand first. We are also advised to never throw
water on an electric fire. Why?

Problems

Electromotive Force

20. A car battery with a 12-V emf and an internal resistance of 0.050Ω is being charged with a current of 60 A. Note that in
this process, the battery is being charged.

(a) What is the potential difference across its terminals?

(b) At what rate is thermal energy being dissipated in the battery?

(c) At what rate is electric energy being converted into chemical energy?

21. The label on a battery-powered radio recommends the use of rechargeable nickel-cadmium cells (nicads), although they
have a 1.25-V emf, whereas alkaline cells have a 1.58-V emf. The radio has a 3.20Ω resistance.

(a) Draw a circuit diagram of the radio and its batteries. Now, calculate the power delivered to the radio

(b) when using nicad cells, each having an internal resistance of 0.0400Ω, and

(c) when using alkaline cells, each having an internal resistance of 0.200Ω.

(d) Does this difference seem significant, considering that the radio’s effective resistance is lowered when its volume is
turned up?

22. An automobile starter motor has an equivalent resistance of 0.0500Ω and is supplied by a 12.0-V battery with a 0.0100-Ω
internal resistance.

(a) What is the current to the motor?

(b) What voltage is applied to it?
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(c) What power is supplied to the motor?

(d) Repeat these calculations for when the battery connections are corroded and add 0.0900Ω to the circuit.
(Significant problems are caused by even small amounts of unwanted resistance in low-voltage, high-current
applications.)

23. (a) What is the internal resistance of a voltage source if its terminal potential drops by 2.00 V when the current supplied
increases by 5.00 A?

(b) Can the emf of the voltage source be found with the information supplied?

24. A person with body resistance between his hands of 10.0kΩ accidentally grasps the terminals of a 20.0-kV power supply.
(Do NOT do this!)

(a) Draw a circuit diagram to represent the situation.

(b) If the internal resistance of the power supply is 2000Ω, what is the current through his body?

(c) What is the power dissipated in his body?

(d) If the power supply is to be made safe by increasing its internal resistance, what should the internal resistance be
for the maximum current in this situation to be 1.00 mA or less?

(e) Will this modification compromise the effectiveness of the power supply for driving low-resistance devices?
Explain your reasoning.

25. A 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A.

(a) What is the battery’s internal resistance?

(b) What power is dissipated inside the battery?

(c) At what rate (in °C/min) will its temperature increase if its mass is 20.0 kg and it has a specific heat of
0.300kcal/kg⋅°C, assuming no heat escapes?

Resistors in Series and Parallel

26. (a) What is the resistance of a  a  and a  resistor connected in series?

(b) In parallel?

27. What are the largest and smallest resistances you can obtain by connecting a 36.0-Ω, a 50.0-Ω, and a 700-Ω resistor
together?

28. An 1800-W toaster, a 1400-W speaker, and a 75-W lamp are plugged into the same outlet in a 15-A fuse and 120-V
circuit. (The three devices are in parallel when plugged into the same socket.)

(a) What current is drawn by each device?

(b) Will this combination blow the 15-A fuse?

29. Your car’s 30.0-W headlight and 2.40-kW starter are ordinarily connected in parallel in a 12.0-V system. What power
would one headlight and the starter consume if connected in series to a 12.0-V battery? (Neglect any other resistance in the
circuit and any change in resistance in the two devices.)

30. (a) Given a 48.0-V battery and 24.0-Ω and 96.0-Ω9 resistors, find the current and power for each when connected in
series.

(b) Repeat when the resistances are in parallel.

31. Referring to the example combining series and parallel circuits and Figure 10.16, calculate  in the following two
different ways:

(a) from the known values of  and ;

(b) using Ohm’s law for . In both parts, explicitly show how you follow the steps in the Figure 10.17.

32. Referring to Figure 10.16,

(a) Calculate  and note how it compares with  found in the first two example problems in this module.

1.00 × −Ω,102 2.50 −kΩ, 4.00 −kΩ

I3

I I2

R3

P3 P3
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(b) Find the total power supplied by the source and compare it with the sum of the powers dissipated by the resistors.

33. Refer to Figure 10.17 and the discussion of lights dimming when a heavy appliance comes on.

(a) Given the voltage source is 120 V, the wire resistance is 0.800Ω, and the bulb is nominally 75.0 W, what power will
the bulb dissipate if a total of 15.0 A passes through the wires when the motor comes on? Assume negligible change in
bulb resistance.

(b) What power is consumed by the motor?

34. Show that if two resistors  and  are combined and one is much greater than the other ( ),

(a) their series resistance is very nearly equal to the greater resistance  and

(b) their parallel resistance is very nearly equal to the smaller resistance .

35. Consider the circuit shown below. The terminal voltage of the battery is V=18.00V.

(a) Find the equivalent resistance of the circuit.

(b) Find the current through each resistor.

(c) Find the potential drop across each resistor.

(d) Find the power dissipated by each resistor. (e) Find the power supplied by the battery.

Kirchhoff's Rules

36. Consider the circuit shown below.

(a) Find the voltage across each resistor.

(b)What is the power supplied to the circuit and the power dissipated or consumed by the circuit?

37. Consider the circuits shown below.

(a) What is the current through each resistor in part (a)?

(b) What is the current through each resistor in part (b)?

(c) What is the power dissipated or consumed by each circuit?

(d) What is the power supplied to each circuit?

R1 R2 ≫R1 R2

R1

R2
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38. Consider the circuit shown below. Find , and .

39. Consider the circuit shown below. Find , and .

40. Consider the circuit shown below. Find , and .

,V1 I2 I3

,V1 V2 R4

,I1 I2 I3
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41. Consider the circuit shown below.

(a) Find  and .

(b) Find the power supplied by the voltage sources.

(c) Find the power dissipated by the resistors

42. Consider the circuit shown below. Write the three loop equations for the loops shown.

43. Consider the circuit shown below. Write equations for the three currents in terms of R and V.

44. Consider the circuit shown in the preceding problem. Write equations for the power supplied by the voltage sources and
the power dissipated by the resistors in terms of R and V.

45. A child’s electronic toy is supplied by three 1.58-V alkaline cells having internal resistances of 0.0200Ω in series with a
1.53-V carbon-zinc dry cell having a 0.100-Ω internal resistance. The load resistance is 10.0Ω.

(a) Draw a circuit diagram of the toy and its batteries.

(b) What current flows?

(c) How much power is supplied to the load?

(d) What is the internal resistance of the dry cell if it goes bad, resulting in only 0.500 W being supplied to the load?

46. Apply the junction rule to Junction b shown below. Is any new information gained by applying the junction rule at e?

, , , ,I1 I2 I3 I4 I5
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47. Apply the loop rule to Loop afedcba in the preceding problem.

Electrical Measuring Instruments

48. Suppose you measure the terminal voltage of a 1.585-V alkaline cell having an internal resistance of 0.100Ω by placing a
1.00-kΩ voltmeter across its terminals (see below).

(a) What current flows?

(b) Find the terminal voltage.

(c) To see how close the measured terminal voltage is to the emf, calculate their ratio.

RC Circuits

49. The timing device in an automobile’s intermittent wiper system is based on an RC time constant and utilizes a 0.500-μF
capacitor and a variable resistor. Over what range must R be made to vary to achieve time constants from 2.00 to 15.0 s?

50. A heart pacemaker fires 72 times a minute, each time a 25.0-nF capacitor is charged (by a battery in series with a resistor)
to 0.632 of its full voltage. What is the value of the resistance?

51. The duration of a photographic flash is related to an RC time constant, which is 0.100μs for a certain camera.

(a) If the resistance of the flash lamp is 0.0400Ω during discharge, what is the size of the capacitor supplying its
energy?

(b) What is the time constant for charging the capacitor, if the charging resistance is 800kΩ?

52. A 2.00- and a 7.50-μF capacitor can be connected in series or parallel, as can a 25.0- and a 100-kΩ resistor. Calculate the
four RC time constants possible from connecting the resulting capacitance and resistance in series.

53. A 500-Ω resistor, an uncharged 1.50-μF capacitor, and a 6.16-V emf are connected in series.

(a) What is the initial current?
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(b) What is the RC time constant?

(c) What is the current after one time constant? (d) What is the voltage on the capacitor after one time constant?

54. A heart defibrillator being used on a patient has an RC time constant of 10.0 ms due to the resistance of the patient and
the capacitance of the defibrillator.

(a) If the defibrillator has a capacitance of 8.00μF, what is the resistance of the path through the patient? (You may
neglect the capacitance of the patient and the resistance of the defibrillator.)

(b) If the initial voltage is 12.0 kV, how long does it take to decline to ?

55. An ECG monitor must have an RC time constant less than  to be able to measure variations in voltage over
small time intervals.

(a) If the resistance of the circuit (due mostly to that of the patient’s chest) is 1.00kΩ, what is the maximum
capacitance of the circuit?

(b) Would it be difficult in practice to limit the capacitance to less than the value found in (a)?

56. Using the exact exponential treatment, determine how much time is required to charge an initially uncharged 100-pF
capacitor through a 75.0-MΩ resistor to 90.0% of its final voltage.

57. If you wish to take a picture of a bullet traveling at 500 m/s, then a very brief flash of light produced by an RC discharge
through a flash tube can limit blurring. Assuming 1.00 mm of motion during one RC constant is acceptable, and given that
the flash is driven by a 600-μF capacitor, what is the resistance in the flash tube?

Household Wiring and Electrical Safety

58. (a) How much power is dissipated in a short circuit of 240-V ac through a resistance of 0.250Ω? (b) What current flows?

59. What voltage is involved in a 1.44-kW short circuit through a 0.100-Ω resistance?

60. Find the current through a person and identify the likely effect on her if she touches a 120-V ac source:

(a) if she is standing on a rubber mat and offers a total resistance of 300kΩ;

(b) if she is standing barefoot on wet grass and has a resistance of only 4000kΩ.

61. While taking a bath, a person touches the metal case of a radio. The path through the person to the drainpipe and ground
has a resistance of 4000Ω. What is the smallest voltage on the case of the radio that could cause ventricular fibrillation?

62. A man foolishly tries to fish a burning piece of bread from a toaster with a metal butter knife and comes into contact with
120-V ac. He does not even feel it since, luckily, he is wearing rubber-soled shoes. What is the minimum resistance of the
path the current follows through the person?

63. (a) During surgery, a current as small as 20.0μA applied directly to the heart may cause ventricular fibrillation. If the
resistance of the exposed heart is 300Ω, what is the smallest voltage that poses this danger?

(b) Does your answer imply that special electrical safety precautions are needed?

64. (a) What is the resistance of a 220-V ac short circuit that generates a peak power of 96.8 kW?

(b) What would the average power be if the voltage were 120 V ac?

65. A heart defibrillator passes 10.0 A through a patient’s torso for 5.00 ms in an attempt to restore normal beating.

(a) How much charge passed?

(b) What voltage was applied if 500 J of energy was dissipated?

(c) What was the path’s resistance? (d) Find the temperature increase caused in the 8.00 kg of affected tissue.

66. A short circuit in a 120-V appliance cord has a 0.500-Ω resistance. Calculate the temperature rise of the 2.00 g of
surrounding materials, assuming their specific heat capacity is 0.200cal/g⋅°C and that it takes 0.0500 s for a circuit breaker to
interrupt the current. Is this likely to be damaging?

6.00 × V102

1.00 × μs102
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Additional Problems
67. A circuit contains a D cell battery, a switch, a 20-Ω resistor, and four 20-mF capacitors connected in series.

(a) What is the equivalent capacitance of the circuit?

(b) What is the RC time constant?

(c) How long before the current decreases to 50% of the initial value once the switch is closed?

68. A circuit contains a D-cell battery, a switch, a 20-Ω resistor, and three 20-mF capacitors. The capacitors are connected in
parallel, and the parallel connection of capacitors are connected in series with the switch, the resistor and the battery.

(a) What is the equivalent capacitance of the circuit?

(b) What is the RC time constant?

(c) How long before the current decreases to 50% of the initial value once the switch is closed?

69. Consider the circuit below. The battery has an emf of ε=30.00V and an internal resistance of r=1.00Ω.

(a) Find the equivalent resistance of the circuit and the current out of the battery.

(b) Find the current through each resistor.

(c) Find the potential drop across each resistor.

(d) Find the power dissipated by each resistor.

(e) Find the total power supplied by the batteries.

70. A homemade capacitor is constructed of 2 sheets of aluminum foil with an area of 2.00 square meters, separated by
paper, 0.05 mm thick, of the same area and a dielectric constant of 3.7. The homemade capacitor is connected in series with a
100.00-Ω resistor, a switch, and a 6.00-V voltage source.

(a) What is the RC time constant of the circuit?

(b) What is the initial current through the circuit, when the switch is closed? (c) How long does it take the current to
reach one third of its initial value?

71. A student makes a homemade resistor from a graphite pencil 5.00 cm long, where the graphite is 0.05 mm in diameter.
The resistivity of the graphite is . The homemade resistor is place in series with a switch, a 10.00-mF
capacitor and a 0.50-V power source.

(a) What is the RC time constant of the circuit?

(b) What is the potential drop across the pencil 1.00 s after the switch is closed?

72. The rather simple circuit shown below is known as a voltage divider. The symbol consisting of three horizontal lines is
represents “ground” and can be defined as the point where the potential is zero. The voltage divider is widely used in circuits
and a single voltage source can be used to provide reduced voltage to a load resistor as shown in the second part of the
figure. (a) What is the output voltage  of circuit

(a) in terms of  and ?

ρ = 1.38 × Ω/m10−5

Vout

, ,R1 R2 Vin
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(b) What is the output voltage  of circuit (b) in terms of  and ?

73. Three 300-Ω resistors are connect in series with an AAA battery with a rating of 3 AmpHours. (a) How long can the
battery supply the resistors with power? (b) If the resistors are connected in parallel, how long can the battery last?

74. Consider a circuit that consists of a real battery with an emf εε and an internal resistance of r connected to a variable
resistor R.

(a) In order for the terminal voltage of the battery to be equal to the emf of the battery, what should the resistance of
the variable resistor be adjusted to?

(b) In order to get the maximum current from the battery, what should the resistance of the variable resistor be adjusted
to?

(c) In order for the maximum power output of the battery to be reached, what should the resistance of the variable
resistor be set to?

75. Consider the circuit shown below. What is the energy stored in each capacitor after the switch has been closed for a very
long time?

76. Consider a circuit consisting of a battery with an emf εε and an internal resistance of r connected in series with a
resistorR and a capacitor C. Show that the total energy supplied by the battery while charging the battery is equal to .

77. Consider the circuit shown below. The terminal voltages of the batteries are shown.

(a) Find the equivalent resistance of the circuit and the current out of the battery.

(b) Find the current through each resistor.

(c) Find the potential drop across each resistor.

(d) Find the power dissipated by each resistor.

(e) Find the total power supplied by the batteries.

Vout , , ,R1 R2 RL Vin

Cε2
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78. Consider the circuit shown below.

(a) What is the terminal voltage of the battery?

(b) What is the potential drop across resistor ?

79. Consider the circuit shown below.

(a)Determine the equivalent resistance and the current from the battery with switch open.

(b) Determine the equivalent resistance and the current from the battery with switch  closed.

80. Two resistors, one having a resistance of 145Ω, are connected in parallel to produce a total resistance of 150Ω.

(a) What is the value of the second resistance?

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

81. Two resistors, one having a resistance of 900kΩ, are connected in series to produce a total resistance of 0.500MΩ.

(a) What is the value of the second resistance?

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

82. Apply the junction rule at point a shown below.

R2

S1

S1
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83. Apply the loop rule to Loop akledcba in the preceding problem.

84. Find the currents flowing in the circuit in the preceding problem. Explicitly show how you follow the steps in the
Problem-Solving Strategy: Series and Parallel Resistors.

85. Consider the circuit shown below.

(a) Find the current through each resistor.

(b) Check the calculations by analyzing the power in the circuit.

86. A flashing lamp in a Christmas earring is based on an RC discharge of a capacitor through its resistance. The effective
duration of the flash is 0.250 s, during which it produces an average 0.500 W from an average 3.00 V.

(a) What energy does it dissipate?

(b) How much charge moves through the lamp?

(c) Find the capacitance.

(d) What is the resistance of the lamp? (Since average values are given for some quantities, the shape of the pulse
profile is not needed.)

87. A 160-μF capacitor charged to 450 V is discharged through a 31.2-kΩ resistor.

(a) Find the time constant.

(b) Calculate the temperature increase of the resistor, given that its mass is 2.50 g and its specific heat is 1.67kJ/kg⋅°C,
noting that most of the thermal energy is retained in the short time of the discharge.

(c) Calculate the new resistance, assuming it is pure carbon.

(d) Does this change in resistance seem significant?
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Challenge Problems
88. Some camera flashes use flash tubes that require a high voltage. They obtain a high voltage by charging capacitors in
parallel and then internally changing the connections of the capacitors to place them in series. Consider a circuit that uses
four AAA batteries connected in series to charge six 10-mF capacitors through an equivalent resistance of 100Ω. The
connections are then switched internally to place the capacitors in series. The capacitors discharge through a lamp with a
resistance of 100Ω.

(a) What is the RC time constant and the initial current out of the batteries while they are connected in parallel?

(b) How long does it take for the capacitors to charge to 90% of the terminal voltages of the batteries?

(c) What is the RC time constant and the initial current of the capacitors connected in series assuming it discharges at
90%90% of full charge?

(d) How long does it take the current to decrease to 10% of the initial value?

89. Consider the circuit shown below. Each battery has an emf of 1.50 V and an internal resistance of 1.00Ω.

(a) What is the current through the external resistor, which has a resistance of 10.00 ohms?

(b) What is the terminal voltage of each battery?

90. Analog meters use a galvanometer, which essentially consists of a coil of wire with a small resistance and a pointer with
a scale attached. When current runs through the coil, the pointer turns; the amount the pointer turns is proportional to the
amount of current running through the coil. Galvanometers can be used to make an ammeter if a resistor is placed in parallel
with the galvanometer. Consider a galvanometer that has a resistance of 25.00Ω and gives a full scale reading when a 50-μA
current runs through it. The galvanometer is to be used to make an ammeter that has a full scale reading of 10.00 A, as shown
below. Recall that an ammeter is connected in series with the circuit of interest, so all 10 A must run through the meter.

(a) What is the current through the parallel resistor in the meter?

(b) What is the voltage across the parallel resistor?

(c) What is the resistance of the parallel resistor?
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91. Analog meters use a galvanometer, which essentially consists of a coil of wire with a small resistance and a pointer with
a scale attached. When current runs through the coil, the point turns; the amount the pointer turns is proportional to the
amount of current running through the coil. Galvanometers can be used to make a voltmeter if a resistor is placed in series
with the galvanometer. Consider a galvanometer that has a resistance of 25.00Ω and gives a full scale reading when a 50-μA
current runs through it. The galvanometer is to be used to make an voltmeter that has a full scale reading of 10.00 V, as
shown below. Recall that a voltmeter is connected in parallel with the component of interest, so the meter must have a high
resistance or it will change the current running through the component.

(a) What is the potential drop across the series resistor in the meter?

(b) What is the resistance of the parallel resistor?

92. Consider the circuit shown below. Find  and ., , ,I1 V1 I2 V3
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93. Consider the circuit below.

(a) What is the RC time constant of the circuit?

(b) What is the initial current in the circuit once the switch is closed?

(c) How much time passes between the instant the switch is closed and the time the current has reached half of the
initial current?

94. Consider the circuit below.

(a) What is the initial current through resistor  when the switch is closed?

(b) What is the current through resistor  when the capacitor is fully charged, long after the switch is closed?

(c) What happens if the switch is opened after it has been closed for some time?

(d) If the switch has been closed for a time period long enough for the capacitor to become fully charged, and then the
switch is opened, how long before the current through resistor  reaches half of its initial value?

95. Consider the infinitely long chain of resistors shown below. What is the resistance between terminals a and b?

R2

R2

R1
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96. Consider the circuit below. The capacitor has a capacitance of 10 mF. The switch is closed and after a long time the
capacitor is fully charged.

(a) What is the current through each resistor a long time after the switch is closed?

(b) What is the voltage across each resistor a long time after the switch is closed?

(c) What is the voltage across the capacitor a long time after the switch is closed?

(d) What is the charge on the capacitor a long time after the switch is closed?

(e) The switch is then opened. The capacitor discharges through the resistors. How long from the time before the
current drops to one fifth of the initial value?

97. A 120-V immersion heater consists of a coil of wire that is placed in a cup to boil the water. The heater can boil one cup
of 20.00°C water in 180.00 seconds. You buy one to use in your dorm room, but you are worried that you will overload the
circuit and trip the 15.00-A, 120-V circuit breaker, which supplies your dorm room. In your dorm room, you have four
100.00-W incandescent lamps and a 1500.00-W space heater.

(a) What is the power rating of the immersion heater?

(b) Will it trip the breaker when everything is turned on?

(c) If it you replace the incandescent bulbs with 18.00-W LED, will the breaker trip when everything is turned on?

98. Find the resistance that must be placed in series with a 25.0-Ω galvanometer having a 50.0-μA sensitivity (the same as
the one discussed in the text) to allow it to be used as a voltmeter with a 3000-V full-scale reading. Include a circuit diagram
with your solution.

99. Find the resistance that must be placed in parallel with a 60.0-Ω galvanometer having a 1.00-mA sensitivity (the same as
the one discussed in the text) to allow it to be used as an ammeter with a 25.0-A full-scale reading. Include a circuit diagram
with your solution.
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Practice Answers

Check Your Understanding
1. If a wire is connected across the terminals, the load resistance is close to zero, or at least considerably less than the internal
resistance of the battery. Since the internal resistance is small, the current through the circuit will be large, 

.The large current causes a high power to be dissipated by the internal resistance . The

power is dissipated as heat.

2. The equivalent resistance of nine bulbs connected in series is 9R. The current is . If one bulb burns out, the
equivalent resistance is 8R, and the voltage does not change, but the current increases . As more bulbs burn out,
the current becomes even higher. Eventually, the current becomes too high, burning out the shunt.

3. The equivalent of the series circuit would be , which is higher than the
equivalent resistance of the parallel circuit . The equivalent resistor of any number of resistors is always higher
than the equivalent resistance of the same resistors connected in parallel. The current through for the series circuit would be 

, which is lower than the sum of the currents through each resistor in the parallel circuit, .

This is not surprising since the equivalent resistance of the series circuit is higher. The current through a series connection of
any number of resistors will always be lower than the current into a parallel connection of the same resistors, since the
equivalent resistance of the series circuit will be higher than the parallel circuit. The power dissipated by the resistors in
series would be , which is lower than the power dissipated in the parallel circuit .

4. A river, flowing horizontally at a constant rate, splits in two and flows over two waterfalls. The water molecules are
analogous to the electrons in the parallel circuits. The number of water molecules that flow in the river and falls must be
equal to the number of molecules that flow over each waterfall, just like sum of the current through each resistor must be
equal to the current flowing into the parallel circuit. The water molecules in the river have energy due to their motion and
height. The potential energy of the water molecules in the river is constant due to their equal heights. This is analogous to the
constant change in voltage across a parallel circuit. Voltage is the potential energy across each resistor.

The analogy quickly breaks down when considering the energy. In the waterfall, the potential energy is converted into kinetic
energy of the water molecules. In the case of electrons flowing through a resistor, the potential drop is converted into heat
and light, not into the kinetic energy of the electrons.

5.

1. All the overhead lighting circuits are in parallel and connected to the main supply line, so when one bulb burns out,
all the overhead lighting does not go dark. Each overhead light will have at least one switch in series with the light, so
you can turn it on and off.

2. A refrigerator has a compressor and a light that goes on when the door opens. There is usually only one cord for the
refrigerator to plug into the wall. The circuit containing the compressor and the circuit containing the lighting circuit
are in parallel, but there is a switch in series with the light. A thermostat controls a switch that is in series with the
compressor to control the temperature of the refrigerator.

6. The circuit can be analyzed using Kirchhoff’s loop rule. The first voltage source supplies power: .
The second voltage source consumes power: 

7. The current calculated would be equal to  instead of . The sum of the power dissipated and the
power consumed would still equal the power supplied.

8. Since digital meters require less current than analog meters, they alter the circuit less than analog meters. Their resistance
as a voltmeter can be far greater than an analog meter, and their resistance as an ammeter can be far less than an analog
meter. Consult Figure 10.36 and Figure 10.35 and their discussion in the text.

Conceptual Questions

1. Some of the energy being used to recharge the battery will be dissipated as heat by the internal resistance.

3.  

I = = =
ε

R+r

ε

0 +r

ε

r
(P = r)I 2

I = V /9R
(I = V /8R)

= 1.00Ω +2.00Ω +2.00Ω = 5.00ΩReq

= 0.50ΩReq

I = = 0.60A
3.00V

5.00Ω
I = 6.00A

P = 1.80W P = 18.00W

= I = 7.20mWPin V1

= I + + = 7.2mW .Pout V2 I 2R1 I 2R2

I = −0.20A I = 0.20A

P = R = ( R = R(r+R , = [(r+R −2R(r+R ] = 0I 2 ε

r+R
)2 ε2 )−2 dP

dR
ε2 )−2 )−3 [ ] = 0, r = R

(r+R) −2R

(r+R)3
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5. It would probably be better to be in series because the current will be less than if it were in parallel.

7. two filaments, a low resistance and a high resistance, connected in parallel

9. It can be redrawn.

.

11. In series the voltages add, but so do the internal resistances, because the internal resistances are in series. In parallel, the
terminal voltage is the same, but the equivalent internal resistance is smaller than the smallest individual internal resistance
and a higher current can be provided.

13. The voltmeter would put a large resistance in series with the circuit, significantly changing the circuit. It would probably
give a reading, but it would be meaningless.

15. The ammeter has a small resistance; therefore, a large current will be produced and could damage the meter and/or
overheat the battery.

17. The time constant can be shortened by using a smaller resistor and/or a smaller capacitor. Care should be taken when
reducing the resistance because the initial current will increase as the resistance decreases.

19. Not only might water drip into the switch and cause a shock, but also the resistance of your body is lower when you are
wet.

Problems
21. a.

b. 0.476W;

c. 0.691 W;

d. As  is lowered, the power difference decreases; therefore, at higher volumes, there is no significant difference.

23. a. ;

b. No, there is only one independent equation, so only r can be found.

25. a. ;

b. 40.0 W;

c. 

27. largest, , smallest, 

29. 29.6 W

31. a. 0.74 A;

b. 0.742 A

33. a. 60.8 W;

b. 3.18 kW

35. a. ;

b. ;

c. ;

= [ + +Req

1

R6

1

R1

1

+( +R2
1
R4

1
+R+5R3

)−1
]−1

RL

0.400Ω

0.400Ω

0.0956°C/min

786Ω 20.32Ω

= 9.00ΩRs

= = = 2.00AI1 I2 I3

= 8.00V , = 2.00V , = 8.00VV1 V2 V3
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d. ;

e. 

37. a. ;

b. ;

c. ;

d. 

39. 

41. a. ;

b. ;

c. 

43. 

45. a.

b. 0.617 A;

c. 3.81 W;

d. 

47. 

49.  to 

51. a. ;

b. 2.00 s

53. a. 12.3 mA;

b. ;

c. 4.53 mA;

d. 3.89 V

= 16.00W , = 4.00W , = 16.00WP1 P2 P3

P = 36.00W

= 0.6mA, = 0.4mA, = 0.2mI1 I2 I3

= 0.04mA, = 1.52mA, = −1.48mAI1 I2 I3

= 0.92mW , = 4.50mWPout Pout

= 0.92mW , = 4.50mWPin Pin

= 42V , = 6V , = 18ΩV1 V2 R4

= 1.5A, = 2A, = 0.5A, = 2.5A, = 2AI1 I2 I3 I4 I5

= + = 34WPin I2V1 I5V5

= + + + = 34WPout I 2
1 R1 I 2

2 R2 I 2
3 R3 I 2

4 R4

= , = , =I1
2

3

V

R
I2

1

3

V

R
I3

1

3

V

R

18.0Ω

− + + + + − + + = 0I1r1 ε1 I1R4 ε4 I2r4 I4r3 ε3 I2R3 I1R1

4.00 30.0MΩ

2.50μF

7.50 × s10−4
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55. a. ;

b. No, in practice it would not be difficult to limit the capacitance to less than 100 nF, since typical capacitors range
from fractions of a picofarad (pF) to milifarad (mF).

57. 

59. 12.0 V

61. 400 V

63. a. 6.00 mV; .

b. It would not be necessary to take extra precautions regarding the power coming from the wall. However, it is
possible to generate voltages of approximately this value from static charge built up on gloves, for instance, so some
precautions are necessary.

65. a. ;

b. 10.0 kV;

c. ;

d. 

Additional Problems
67. a. ;

b. ;

c. 0.069 s

69. a. ;

b. ;

c. ;

d. ;

e. 

71. a. ;

b. 

73. a. ;

b. 

75. , 

77. a. ;

b. ;

c. ;

d. ;

e. 

79. a. ;

b. 

1.00 × F10−7

3.33 × Ω10−3

5.00 × C10−2

1.00kΩ

1.79 × °C10−2

= 5.00mFCeq

τ = 0.1s

= 20.00ΩReq

= 1.50A, = 1.00A, = 0.50A, = 0.75A, = 0.75A, = 1.50AIr I1 I2 I3 I4 I5

= 1.50V , = 9.00V , = 9.00V , = 7.50V , = 7.50V , = 12.00VVr V1 V2 V3 V4 V5

= 2.25W , = 9.00W , = 4.50W , = 5.625W , = 5.625W , = 18.00WPr P1 P2 P3 P4 P5

P = 45.00W

τ = 1.38 × Ωm 10 × F = 3.52 s
⎛

⎝

⎜⎜ 10−5
⎛

⎝

⎜⎜
5.00 × m10−2

3.14( )0.05×10−3

2

2

⎞

⎠

⎟⎟

⎞

⎠

⎟⎟ 10−3

V = 0.017A( )351.59 Ω = 0.122 Ve− 1.00 s

3.52 s

t = = 1800h
3A ⋅h

1.5V
900Ω

t = = 200h
3A ⋅h

1.5V
100Ω

= = 0.72JU1 C1V 2
1 = = 0.338JU2 C2V 2

2

= 24.00ΩReq

= 1.00A, = 0.67A, = 0.33A, = 1.00AI1 I2 I3 I4

= 14.00V , = 6.00V , = 6.00V , = 4.00VV1 V2 V3 V4

= 14.00W , = 4.04W , = 1.96W , = 4.00WP1 P2 P3 P4

P = 24.00W

= 12.00Ω, I = 1.00AReq

= 12.00Ω, I = 1.00AReq
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81. a. ;

b. You cannot have negative resistance.

c. The assumption that  is unreasonable. Series resistance is always greater than any of the individual
resistances.

83. 

85. a. ;

b. 

87. a. 4.99 s;

b. ;

c. ;

d. No, this change does not seem significant. It probably would not be noticed.

Challenge Problems

89. a. 0.273 A; b. 

91. a. ;

b. 

93. a. ;

b. 1.26 A;

c. 

95. 

97. a. ,

b. ; Yes, the breaker will trip.

c. ; No, the breaker will not trip.

99. 
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6.S: Summary

Key Terms
ammeter instrument that measures current

electromotive force (emf)
energy produced per unit charge, drawn from a source that

produces an electrical current

equivalent resistance
resistance of a combination of resistors; it can be thought of as the

resistance of a single resistor that can replace a combination of
resistors in a series and/or parallel circuit

internal resistance
amount of resistance to the flow of current within the voltage

source

junction rule
sum of all currents entering a junction must equal the sum of all

currents leaving the junction

Kirchhoff’s rules
set of two rules governing current and changes in potential in an

electric circuit

loop rule
algebraic sum of changes in potential around any closed circuit

path (loop) must be zero

potential difference
difference in electric potential between two points in an electric

circuit, measured in volts

potential drop
loss of electric potential energy as a current travels across a

resistor, wire, or other component

RC circuit circuit that contains both a resistor and a capacitor

shock hazard hazard in which an electric current passes through a person

terminal voltage
potential difference measured across the terminals of a source

when there is no load attached

thermal hazard
hazard in which an excessive electric current causes undesired

thermal effects

three-wire system
wiring system used at present for safety reasons, with live, neutral,

and ground wires

voltmeter instrument that measures voltage

Key Equations
Terminal voltage of a single voltage source

Equivalent resistance of a series circuit

Equivalent resistance of a parallel circuit

Junction rule

Loop rule

Terminal voltage of N voltage sources in series

Terminal voltage of N voltage sources in parallel

Charge on a charging capacitor

Time constant

= ε − IVterminal req

= + + + ⋯ + + =Req R1 R2 R3 RN−1 RN ∑N
i=1 Ri

= ( + + ⋯ + = (Req
1

R1

1
R2

1
RN

)−1 ∑N
i=1

1
Ri

)−1

∑ = ∑Iin Iout

∑V = 0

= − I = − IVterminal ∑N
i=1 εi ∑N

i=1 ri ∑N
i=1 εi req

= ε − I ( = ε − IVterminal ∑N
i=1

1
ri

)−1 req

q(t) = Cε(1 − ) = Q(1 − )e
−

t

RC e−
t

τ

τ = RC
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Current during charging of a capacitor

Charge on a discharging capacitor

Current during discharging of a capacitor

Summary

Electromotive Force
All voltage sources have two fundamental parts: a source of electrical energy that has a characteristic electromotive force (emf),
and an internal resistance r. The emf is the work done per charge to keep the potential difference of a source constant. The emf
is equal to the potential difference across the terminals when no current is flowing. The internal resistance r of a voltage source
affects the output voltage when a current flows.
The voltage output of a device is called its terminal voltage  and is given by , where I is the electric
current and is positive when flowing away from the positive terminal of the voltage source and r is the internal resistance.

Resistors in Series and Parallel
The equivalent resistance of an electrical circuit with resistors wired in a series is the sum of the individual resistances:

.

Each resistor in a series circuit has the same amount of current flowing through it.
The potential drop, or power dissipation, across each individual resistor in a series is different, and their combined total is the
power source input.
The equivalent resistance of an electrical circuit with resistors wired in parallel is less than the lowest resistance of any of the
components and can be determined using the formula

.

Each resistor in a parallel circuit has the same full voltage of the source applied to it.
The current flowing through each resistor in a parallel circuit is different, depending on the resistance.
If a more complex connection of resistors is a combination of series and parallel, it can be reduced to a single equivalent
resistance by identifying its various parts as series or parallel, reducing each to its equivalent, and continuing until a single
resistance is eventually reached.

Kirchhoff's Rules
Kirchhoff’s rules can be used to analyze any circuit, simple or complex. The simpler series and parallel connection rules are
special cases of Kirchhoff’s rules.
Kirchhoff’s first rule, also known as the junction rule, applies to the charge to a junction. Current is the flow of charge; thus,
whatever charge flows into the junction must flow out.
Kirchhoff’s second rule, also known as the loop rule, states that the voltage drop around a loop is zero.
When calculating potential and current using Kirchhoff’s rules, a set of conventions must be followed for determining the
correct signs of various terms.
When multiple voltage sources are in series, their internal resistances add together and their emfs add together to get the total
values.
When multiple voltage sources are in parallel, their internal resistances combine to an equivalent resistance that is less than the
individual resistance and provides a higher current than a single cell.
Solar cells can be wired in series or parallel to provide increased voltage or current, respectively.

Electrical Measuring Instruments
Voltmeters measure voltage, and ammeters measure current. Analog meters are based on the combination of a resistor and a
galvanometer, a device that gives an analog reading of current or voltage. Digital meters are based on analog-to-digital
converters and provide a discrete or digital measurement of the current or voltage.
A voltmeter is placed in parallel with the voltage source to receive full voltage and must have a large resistance to limit its
effect on the circuit.

I = =ε

R
e

−
t

RC Ioe
−

t

RC

q(t) = Qe−
t

τ

I(t) = −
Q

RC
e−

t

τ

Vterminal = ε −IrVterminal

= + + +⋯ =Rs R1 R2 R3 ∑
N
i=1 Ri

= ( + + +⋯ = (Req
1

R1

1
R2

1
R3

)−1 ∑
N

i=1
1

Ri
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An ammeter is placed in series to get the full current flowing through a branch and must have a small resistance to limit its
effect on the circuit.
Standard voltmeters and ammeters alter the circuit they are connected to and are thus limited in accuracy.
Ohmmeters are used to measure resistance. The component in which the resistance is to be measured should be isolated
(removed) from the circuit.

RC Circuits
An RC circuit is one that has both a resistor and a capacitor.
The time constant  for an RC circuit is .
When an initially uncharged (  at ) capacitor in series with a resistor is charged by a dc voltage source, the capacitor
asymptotically approaches the maximum charge.
As the charge on the capacitor increases, the current exponentially decreases from the initial current: .
If a capacitor with an initial charge Q is discharged through a resistor starting at , then its charge decreases exponentially.
The current flows in the opposite direction, compared to when it charges, and the magnitude of the charge decreases with time.

Household Wiring and Electrical Safety
The two types of electric hazards are thermal (excessive power) and shock (current through a person). Electrical safety systems
and devices are employed to prevent thermal and shock hazards.
Shock severity is determined by current, path, duration, and ac frequency.
Circuit breakers and fuses interrupt excessive currents to prevent thermal hazards.
The three-wire system guards against thermal and shock hazards, utilizing live/hot, neutral, and ground wires, and grounding
the neutral wire and case of the appliance.
A ground fault circuit interrupter (GFCI) prevents shock by detecting the loss of current to unintentional paths.
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7.1: Introduction to Magnetism

By the end of this section, you will be able to:

Explain attraction and repulsion by magnets
Describe the historical and contemporary applications of magnetism

Magnetism has been known since the time of the ancient Greeks, but it has always been a bit mysterious. You can see electricity in
the flash of a lightning bolt, but when a compass needle points to magnetic north, you can’t see any force causing it to rotate.
People learned about magnetic properties gradually, over many years, before several physicists of the nineteenth century connected
magnetism with electricity. In this section, we review the basic ideas of magnetism and describe how they fit into the picture of a
magnetic field.

Brief History of Magnetism
Magnets are commonly found in everyday objects, such as toys, hangers, elevators, doorbells, and computer devices.
Experimentation on these magnets shows that all magnets have two poles: One is labeled north (N) and the other is labeled south
(S). Magnetic poles repel if they are alike (both N or both S), they attract if they are opposite (one N and the other S), and both
poles of a magnet attract unmagnetized pieces of iron. An important point to note here is that you cannot isolate an individual
magnetic pole. Every piece of a magnet, no matter how small, which contains a north pole must also contain a south pole.

Visit this website for an interactive demonstration of magnetic north and south poles.

An example of a magnet is a compass needle. It is simply a thin bar magnet suspended at its center, so it is free to rotate in a
horizontal plane. Earth itself also acts like a very large bar magnet, with its south-seeking pole near the geographic North Pole
(Figure ). The north pole of a compass is attracted toward Earth’s geographic North Pole because the magnetic pole that is
near the geographic North Pole is actually a south magnetic pole. Confusion arises because the geographic term “North Pole” has
come to be used (incorrectly) for the magnetic pole that is near the North Pole. Thus, “north magnetic pole” is actually a
misnomer—it should be called the south magnetic pole. [Note that the orientation of Earth’s magnetic field is not permanent but
changes (“flips”) after long time intervals. Eventually, Earth’s north magnetic pole may be located near its geographic North Pole.]

Figure : The north pole of a compass needle points toward the south pole of a magnet, which is how today’s magnetic field is
oriented from inside Earth. It also points toward Earth’s geographic North Pole because the geographic North Pole is near the
magnetic south pole.
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Back in 1819, the Danish physicist Hans Oersted was performing a lecture demonstration for some students and noticed that a
compass needle moved whenever current flowed in a nearby wire. Further investigation of this phenomenon convinced Oersted that
an electric current could somehow cause a magnetic force. He reported this finding to an 1820 meeting of the French Academy of
Science.

Soon after this report, Oersted’s investigations were repeated and expanded upon by other scientists. Among those whose work was
especially important were Jean-Baptiste Biot and Felix Savart, who investigated the forces exerted on magnets by currents; André
Marie Ampère, who studied the forces exerted by one current on another; François Arago, who found that iron could be
magnetized by a current; and Humphry Davy, who discovered that a magnet exerts a force on a wire carrying an electric current.
Within 10 years of Oersted’s discovery, Michael Faraday found that the relative motion of a magnet and a metallic wire induced
current in the wire. This finding showed not only that a current has a magnetic effect, but that a magnet can generate electric
current. You will see later that the names of Biot, Savart, Ampère, and Faraday are linked to some of the fundamental laws of
electromagnetism.

The evidence from these various experiments led Ampère to propose that electric current is the source of all magnetic phenomena.
To explain permanent magnets, he suggested that matter contains microscopic current loops that are somehow aligned when a
material is magnetized. Today, we know that permanent magnets are actually created by the alignment of spinning electrons, a
situation quite similar to that proposed by Ampère. This model of permanent magnets was developed by Ampère almost a century
before the atomic nature of matter was understood. (For a full quantum mechanical treatment of magnetic spins, see Quantum
Mechanics and Atomic Structure.)

Contemporary Applications of Magnetism
Today, magnetism plays many important roles in our lives. Physicists’ understanding of magnetism has enabled the development of
technologies that affect both individuals and society. The electronic tablet in your purse or backpack, for example, wouldn’t have
been possible without the applications of magnetism and electricity on a small scale (Figure ). Weak changes in a magnetic
field in a thin film of iron and chromium were discovered to bring about much larger changes in resistance, called giant
magnetoresistance. Information can then be recorded magnetically based on the direction in which the iron layer is magnetized.
As a result of the discovery of giant magnetoresistance and its applications to digital storage, the 2007 Nobel Prize in Physics was
awarded to Albert Fert from France and Peter Grunberg from Germany.

Figure : Engineering technology like computer storage would not be possible without a deep understanding of magnetism.
(credit: Klaus Eifert)

All electric motors—with uses as diverse as powering refrigerators, starting cars, and moving elevators—contain magnets.
Generators, whether producing hydroelectric power or running bicycle lights, use magnetic fields. Recycling facilities employ
magnets to separate iron from other refuse. Research into using magnetic containment of fusion as a future energy source has been
continuing for several years. Magnetic resonance imaging (MRI) has become an important diagnostic tool in the field of medicine,
and the use of magnetism to explore brain activity is a subject of contemporary research and development. The list of applications
also includes computer hard drives, tape recording, detection of inhaled asbestos, and levitation of high-speed trains. Magnetism is
involved in the structure of atomic energy levels, as well as the motion of cosmic rays and charged particles trapped in the Van
Allen belts around Earth. Once again, we see that all these disparate phenomena are linked by a small number of underlying
physical principles.
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This Chapter
In the preceding chapter, we saw that a moving charged particle produces a magnetic field. This connection between electricity and
magnetism is exploited in electromagnetic devices, such as a computer hard drive. In fact, it is the underlying principle behind most
of the technology in modern society, including telephones, television, computers, and the internet.

Figure : An external hard drive attached to a computer works by magnetically encoding information that can be stored or
retrieved quickly. A key idea in the development of digital devices is the ability to produce and use magnetic fields in this way.
(credit: modification of work by “Miss Karen”/Flickr)

In this chapter, we examine how magnetic fields are created by arbitrary distributions of electric current, using the Biot-Savart law.
Then we look at how current-carrying wires create magnetic fields and deduce the forces that arise between two current-carrying
wires due to these magnetic fields. We also study the torques produced by the magnetic fields of current loops. We then generalize
these results to an important law of electromagnetism, called Ampère’s law.

We examine some devices that produce magnetic fields from currents in geometries based on loops, known as solenoids and
toroids. Finally, we look at how materials behave in magnetic fields and categorize materials based on their responses to magnetic
fields.

 

For the past few chapters, we have been studying electrostatic forces and fields, which are caused by electric charges at rest. These
electric fields can move other free charges, such as producing a current in a circuit; however, the electrostatic forces and fields
themselves come from other static charges. In this chapter, we see that when an electric charge moves, it generates other forces and
fields. These additional forces and fields are what we commonly call magnetism.

Figure : An industrial electromagnet is capable of lifting thousands of pounds of metallic waste. (credit: modification of work
by “BedfordAl”/Flickr)

Before we examine the origins of magnetism, we first describe what it is and how magnetic fields behave. Once we are more
familiar with magnetic effects, we can explain how they arise from the behavior of atoms and molecules, and how magnetism is
related to electricity. The connection between electricity and magnetism is fascinating from a theoretical point of view, but it is also
immensely practical, as shown by an industrial electromagnet that can lift thousands of pounds of metal.
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7.2: Magnets, Electromagnets and Magnetic Matter

By the end of this section, you will be able to:

Describe the difference between the north and south poles of a magnet.
Describe how magnetic poles interact with each other.
Define ferromagnet.
Describe the role of magnetic domains in magnetization.
Explain the significance of the Curie temperature.
Describe the relationship between electricity and magnetism.

Magnets
 

Figure : Magnets come in various shapes, sizes, and strengths. All have both a north pole and a south pole. There is never an
isolated pole (a monopole).

 

All magnets attract iron, such as that in a refrigerator door. However, magnets may attract or repel other magnets. Experimentation
shows that all magnets have two poles. If freely suspended, one pole will point toward the north. The two poles are thus named the
north magnetic pole and the south magnetic pole (or more properly, north-seeking and south-seeking poles, for the attractions in
those directions).

UNIVERSAL CHARACTERISTICS OF MAGNETS AND MAGNET POLES

It is a universal characteristic of all magnets that like poles repel and unlike poles attract. (Note the similarity with electrostatics:
unlike charges attract and like charges repel.)

Further experimentation shows that it is impossible to separate north and south poles in the manner that + and − charges can be
separated.

Figure : One end of a bar magnet is suspended from a thread that points toward north. The magnet’s two poles are labeled N
and S for north-seeking and south-seeking poles, respectively.

MISCONCEPTION ALERT: EARTH'S GEOGRAPHIC NORTH POLE HIDES AN S
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The Earth acts like a very large bar magnet with its south-seeking pole near the geographic North Pole. That is why the north pole
of your compass is attracted toward the geographic north pole of the Earth—because the magnetic pole that is near the geographic

North Pole is actually a south magnetic pole! Confusion arises because the geographic term “North Pole” has come to be used
(incorrectly) for the magnetic pole that is near the North Pole. Thus, “North magnetic pole” is actually a misnomer—it should be

called the South magnetic pole.

Figure : Unlike poles attract, whereas like poles repel.

Figure : North and south poles always occur in pairs. Attempts to separate them result in more pairs of poles. If we continue
to split the magnet, we will eventually get down to an iron atom with a north pole and a south pole—these, too, cannot be
separated.

The fact that magnetic poles always occur in pairs of north and south is true from the very large scale—for example, sunspots
always occur in pairs that are north and south magnetic poles—all the way down to the very small scale. Magnetic atoms have both
a north pole and a south pole, as do many types of subatomic particles, such as electrons, protons, and neutrons.

We know that like magnetic poles repel and unlike poles attract. See if you can show this for two refrigerator magnets. Will the
magnets stick if you turn them over? Why do they stick to the door anyway? What can you say about the magnetic properties
of the door next to the magnet? Do refrigerator magnets stick to metal or plastic spoons? Do they stick to all types of metal?

Ferromagnets
Only certain materials, such as iron, cobalt, nickel, and gadolinium, exhibit strong magnetic effects. Such materials are called
ferromagnetic, after the Latin word for iron, ferrum. A group of materials made from the alloys of the rare earth elements are also
used as strong and permanent magnets; a popular one is neodymium. Other materials exhibit weak magnetic effects, which are
detectable only with sensitive instruments. Not only do ferromagnetic materials respond strongly to magnets (the way iron is
attracted to magnets), they can also be magnetized themselves—that is, they can be induced to be magnetic or made into permanent
magnets.
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Figure : An unmagnetized piece of iron is placed between two magnets, heated, and then cooled, or simply tapped when cold.
The iron becomes a permanent magnet with the poles aligned as shown: its south pole is adjacent to the north pole of the original
magnet, and its north pole is adjacent to the south pole of the original magnet. Note that there are attractive forces between the
magnets.

When a magnet is brought near a previously unmagnetized ferromagnetic material, it causes local magnetization of the material
with unlike poles closest, as in Figure . (This results in the attraction of the previously unmagnetized material to the magnet.)
What happens on a microscopic scale is illustrated in Figure . The regions within the material called domains act like small
bar magnets. Within domains, the poles of individual atoms are aligned. Each atom acts like a tiny bar magnet. Domains are small
and randomly oriented in an unmagnetized ferromagnetic object. In response to an external magnetic field, the domains may grow
to millimeter size, aligning themselves as shown in Figure 2b. This induced magnetization can be made permanent if the material is
heated and then cooled, or simply tapped in the presence of other magnets.

Figure : (a) An unmagnetized piece of iron (or other ferromagnetic material) has randomly oriented domains. (b) When
magnetized by an external field, the domains show greater alignment, and some grow at the expense of others. Individual atoms are
aligned within domains; each atom acts like a tiny bar magnet.

Conversely, a permanent magnet can be demagnetized by hard blows or by heating it in the absence of another magnet. Increased
thermal motion at higher temperature can disrupt and randomize the orientation and the size of the domains. There is a well-defined
temperature for ferromagnetic materials, which is called the Curie temperature, above which they cannot be magnetized. The Curie
temperature for iron is 1043 K , which is well above room temperature. There are several elements and alloys that have
Curie temperatures much lower than room temperature and are ferromagnetic only below those temperatures.

Electromagnets
Early in the 19th century, it was discovered that electrical currents cause magnetic effects. The first significant observation was by
the Danish scientist Hans Christian Oersted (1777–1851), who found that a compass needle was deflected by a current-carrying
wire. This was the first significant evidence that the movement of charges had any connection with magnets. Electromagnetism is
the use of electric current to make magnets. These temporarily induced magnets are called electromagnets. Electromagnets are
employed for everything from a wrecking yard crane that lifts scrapped cars to controlling the beam of a 90-km-circumference
particle accelerator to the magnets in medical imaging machines (Figure ).
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Figure : Instrument for magnetic resonance imaging (MRI). The device uses a superconducting cylindrical coil for the main
magnetic field. The patient goes into this “tunnel” on the gurney. (credit: Bill McChesney, Flickr)

Figure  shows that the response of iron filings to a current-carrying coil and to a permanent bar magnet. The patterns are
similar. In fact, electromagnets and ferromagnets have the same basic characteristics—for example, they have north and south poles
that cannot be separated and for which like poles repel and unlike poles attract.

Figure : Iron filings near (a) a current-carrying coil and (b) a magnet act like tiny compass needles, showing the shape of their
fields. Their response to a current-carrying coil and a permanent magnet is seen to be very similar, especially near the ends of the
coil and the magnet.

Combining a ferromagnet with an electromagnet can produce particularly strong magnetic effects (Figure ). Whenever strong
magnetic effects are needed, such as lifting scrap metal, or in particle accelerators, electromagnets are enhanced by ferromagnetic
materials. Limits to how strong the magnets can be made are imposed by coil resistance (it will overheat and melt at sufficiently
high current), and so superconducting magnets may be employed. These are still limited, because superconducting properties are
destroyed by too great a magnetic field.
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Figure : An electromagnet with a ferromagnetic core can produce very strong magnetic effects. Alignment of domains in the
core produces a magnet, the poles of which are aligned with the electromagnet.

Figure  shows a few uses of combinations of electromagnets and ferromagnets. Ferromagnetic materials can act as memory
devices, because the orientation of the magnetic fields of small domains can be reversed or erased. Magnetic information storage
on videotapes and computer hard drives are among the most common applications. This property is vital in our digital world.

Figure : An electromagnet induces regions of permanent magnetism on a floppy disk coated with a ferromagnetic material.
The information stored here is digital (a region is either magnetic or not); in other applications, it can be analog (with a varying
strength), such as on audiotapes.
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Current: The Source of All Magnetism
An electromagnet creates magnetism with an electric current. In later sections we explore this more quantitatively, finding the
strength and direction of magnetic fields created by various currents. But what about ferromagnets? Figure  shows models of
how electric currents create magnetism at the submicroscopic level. (Note that we cannot directly observe the paths of individual
electrons about atoms, and so a model or visual image, consistent with all direct observations, is made. We can directly observe the
electron’s orbital angular momentum, its spin momentum, and subsequent magnetic moments, all of which are explained with
electric-current-creating subatomic magnetism.) Currents, including those associated with other submicroscopic particles like
protons, allow us to explain ferromagnetism and all other magnetic effects. Ferromagnetism, for example, results from an internal
cooperative alignment of electron spins, possible in some materials but not in others.

Crucial to the statement that electric current is the source of all magnetism is the fact that it is impossible to separate north and
south magnetic poles. (This is far different from the case of positive and negative charges, which are easily separated.) A current
loop always produces a magnetic dipole—that is, a magnetic field that acts like a north pole and south pole pair. Since isolated
north and south magnetic poles, called magnetic monopoles, are not observed, currents are used to explain all magnetic effects. If
magnetic monopoles did exist, then we would have to modify this underlying connection that all magnetism is due to electrical
current. There is no known reason that magnetic monopoles should not exist—they are simply never observed—and so searches at
the subnuclear level continue. If they do not exist, we would like to find out why not. If they do exist, we would like to see
evidence of them.

Electric current is the source of all magnetism.

Figure : (a) In the planetary model of the atom, an electron orbits a nucleus, forming a closed-current loop and producing a
magnetic field with a north pole and a south pole. (b) Electrons have spin and can be crudely pictured as rotating charge, forming a
current that produces a magnetic field with a north pole and a south pole. Neither the planetary model nor the image of a spinning
electron is completely consistent with modern physics. However, they do provide a useful way of understanding phenomena.

Explore the interactions between a compass and bar magnet. Discover how you can use a battery and wire to make a magnet!
Can you make it a stronger magnet? Can you make the magnetic field reverse?

Magnetic Materials
At last we can discuss elements of magnetism that we have been aware of since we were young kids – the properties and behavior
of bar magnets. As with any phenomenon that requires an understanding of what is going on at a microscopic level, magnetism
inside of materials like bar magnets is very complicated. We’ll look at a greatly-simplified version of it here, but keep in mind that
a fuller understanding can only be achieved through quantum theory.

We now know that there are no “magnetic particles” comprising a bar magnet – its magnetic field can only be created by moving
charges. But unlike an electromagnet, bar magnets are not plugged into some emf source, so where does the moving charge come
from? The atoms that comprise the material of course include lots of charges, and these charges are moving in manners that
resemble magnetic dipoles – electrons are orbiting nuclei in more-or-less circular loops, and electrons also have a quantum-
mechanical property called “spin” that gives them their own magnetic moments as well.
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We will not concern ourselves too much with the specific source of the magnetic moments of these particles, but we will instead
just focus on the fact that each particle has its own magnetic moment. In the case of a bar magnet, these dipoles tend to be
permanently aligned. This property is called ferromagnetism. Only a few materials have this property: iron (thus “ferro”), nickel,
cobalt, many of their alloys, and some of the rare earth metals. [Technically, these alignments occur in chunks, called “domains,”
within the magnet, and the degree to which the magnet is magnetized is determined by how much certain domains “swallow-up”
others, creating more broadly-coordinated alignments of dipoles.]

Figure 4.4.7 – Dipoles in a Bar Magnet

It should be clear how two bar magnets attract each other. One is a magnetic field source, and the other is a magnetic dipole that
experiences the non-uniform field of the other. The field diverges as it emerges from one magnet, and the dipole of the other
magnet, if the poles are aligned, reacts by feeling a force in the direction where the field gets stronger, following the mechanism
depicted in Figure 4.2.6.

But this doesn’t explain why a magnet sticks to a refrigerator when the refrigerator metal is not itself magnetized. The answer is
that some metals, while their particle dipole moments are not permanently aligned, have the property that their particles are free to
rotate their magnetic moments. When an external field is applied, their particles then align, making them magnetized. When the
field is removed, the random alignments return. This property is known as paramagnetism.

A few general comments to close this subject:

Ferromagnetism relies primarily upon the spin source of magnetic moment, and very little on the orbital source, while
paramagnetism relies upon both.
Ferromagnetic materials remain magnetized after a strong applied magnetic field aligns the domains, which remain aligned
thanks to anomalies in the crystal structure which “snag” the domains and hold them in an aligned orientation.
Ferromagnets can be demagnetized (“degaussed”) by relieving these snags. This is most easily done by raising the temperature
to a critical temperature known as the Curie temperature, at which magnetic domain "snags” are no longer possible and the
substance has zero ferromagnetism. Other methods for degaussing include applying rapidly-changing magnetic fields (which
“shake” the domains into random orientations) and pounding on the magnet so that vibrations cause the domains to un-snag.

 

Summary
Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.
All magnetism is created by electric current.
Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects.
The atoms in ferromagnetic materials act like small magnets (due to currents within the atoms) and can be aligned, usually in
millimeter-sized regions called domains.
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Domains can grow and align on a larger scale, producing permanent magnets. Such a material is magnetized, or induced to be
magnetic.
Above a material’s Curie temperature, thermal agitation destroys the alignment of atoms, and ferromagnetism disappears.
Electromagnets employ electric currents to make magnetic fields, often aided by induced fields in ferromagnetic materials.

Glossary

ferromagnetic
materials, such as iron, cobalt, nickel, and gadolinium, that exhibit strong magnetic effects

magnetized
to be turned into a magnet; to be induced to be magnetic

domains
regions within a material that behave like small bar magnets

Curie temperature
the temperature above which a ferromagnetic material cannot be magnetized

electromagnetism
the use of electrical currents to induce magnetism

electromagnet
an object that is temporarily magnetic when an electrical current is passed through it

magnetic monopoles
an isolated magnetic pole; a south pole without a north pole, or vice versa (no magnetic monopole has ever been observed)

 

Summary
Magnetism is a subject that includes the properties of magnets, the effect of the magnetic force on moving charges and currents,
and the creation of magnetic fields by currents.
There are two types of magnetic poles, called the north magnetic pole and south magnetic pole.
North magnetic poles are those that are attracted toward the Earth’s geographic north pole.
Like poles repel and unlike poles attract.
Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.

Glossary

north magnetic pole
the end or the side of a magnet that is attracted toward Earth’s geographic north pole

south magnetic pole
the end or the side of a magnet that is attracted toward Earth’s geographic south pole
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7.3: Magnetic Fields and Lines

By the end of this section, you will be able to:

Define the magnetic field based on a moving charge experiencing a force
Apply the right-hand rule to determine the direction of a magnetic force based on the motion of a charge in a magnetic field
Sketch magnetic field lines to understand which way the magnetic field points and how strong it is in a region of space

We have outlined the properties of magnets, described how they behave, and listed some of the applications of magnetic properties.
Even though there are no such things as isolated magnetic charges, we can still define the attraction and repulsion of magnets as
based on a field. In this section, we define the magnetic field, determine its direction based on the right-hand rule, and discuss how
to draw magnetic field lines.

Defining the Magnetic Field
A magnetic field is defined by the force that a charged particle experiences moving in this field, after we account for the
gravitational and any additional electric forces possible on the charge. The magnitude of this force is proportional to the amount of
charge q, the speed of the charged particle v, and the magnitude of the applied magnetic field. The direction of this force is
perpendicular to both the direction of the moving charged particle and the direction of the applied magnetic field. Based on these
observations, we define the magnetic field strength B based on the magnetic force  on a charge q moving at velocity as the cross
product of the velocity and magnetic field, that is,

In fact, this is how we define the magnetic field  - in terms of the force on a charged particle moving in a magnetic field. The
magnitude of the force is determined from the definition of the cross product as it relates to the magnitudes of each of the vectors.
In other words, the magnitude of the force satisfies

where θ is the angle between the velocity and the magnetic field.

The SI unit for magnetic field strength  is called the tesla (T) after the eccentric, but brilliant inventor Nikola Tesla (1856–1943),
where

A smaller unit, called the gauss (G) is sometimes used, where

The strongest permanent magnets have fields near 2 T; superconducting electromagnets may attain 10 T or more. Earth’s magnetic
field on its surface is only about  or .

The direction of the magnetic force  is perpendicular to the plane formed by  and  as determined by the right-hand rule-1
(or RHR-1), which is illustrated in Figure .

1. Orient your right hand so that your fingers curl in the plane defined by the velocity and magnetic field vectors.
2. Using your right hand, sweep from the velocity toward the magnetic field with your fingers through the smallest angle

possible.
3. The magnetic force is directed where your thumb is pointing.
4. If the charge was negative, reverse the direction found by these steps.

 Learning Objectives

F ⃗ 

= q × .F ⃗  v ⃗  B⃗  (7.3.1)

B⃗ 

F = qv B sin θ (7.3.2)

B

1 T = .
1 N

A ⋅ m
(7.3.3)

1 G = T10−4 (7.3.4)

5 × T10−5 0.5 G

 Problem-Solving Strategy: Direction of the Magnetic Field by the Right-Hand Rule

F ⃗  v ⃗  B⃗ 
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Figure : Magnetic fields exert forces on moving charges. The direction of the magnetic force on a moving charge is
perpendicular to the plane formed by b  and  and follows the right-hand rule-1 (RHR-1) as shown. The magnitude of the
force is proportional to  and the sine of the angle between  and .

Visit this website for additional practice with the direction of magnetic fields.

There is no magnetic force on static charges. However, there is a magnetic force on charges moving at an angle to a magnetic field.
When charges are stationary, their electric fields do not affect magnets. However, when charges move, they produce magnetic fields
that exert forces on other magnets. When there is relative motion, a connection between electric and magnetic forces emerges -
each affects the other.

An alpha-particle  moves through a uniform magnetic field whose magnitude is 1.5 T. The field is directly
parallel to the positive z-axis of the rectangular coordinate system of Figure . What is the magnetic force on the alpha-
particle when it is moving (a) in the positive x-direction with a speed of ? (b) in the negative y-direction with a
speed of ? (c) in the positive z-direction with a speed of ? (d) with a velocity 

?

7.3.1

v ⃗  B⃗ 

q, v, B, v ⃗  B⃗ 

 Note

 Example : An Alpha-Particle Moving in a Magnetic Field7.3.1

(q = 3.2 × C)10−19

7.3.2

5.0 × m/s104

5.0 × m/s104 5.0 × m/s104

= (2.0 −3.0 +1.0 )× m/sv ⃗  î ĵ k̂ 104
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Figure : The magnetic forces on an alpha-particle moving in a uniform magnetic field. The field is the same in each
drawing, but the velocity is different.

Strategy

We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation 
or  to calculate the force. The direction of the force is determined by RHR-1.

Solution

1. First, to determine the direction, start with your fingers pointing in the positive x-direction. Sweep your fingers upward in
the direction of magnetic field. Your thumb should point in the negative y-direction. This should match the mathematical
answer. To calculate the force, we use the given charge, velocity, and magnetic field and the definition of the magnetic
force in cross-product form to calculate:

2. First, to determine the directionality, start with your fingers pointing in the negative y-direction. Sweep your fingers upward
in the direction of magnetic field as in the previous problem. Your thumb should be open in the negative x-direction. This
should match the mathematical answer. To calculate the force, we use the given charge, velocity, and magnetic field and the
definition of the magnetic force in cross-product form to calculate:

An alternative approach is to use Equation  to find the magnitude of the force. This applies for both parts (a) and (b).
Since the velocity is perpendicular to the magnetic field, the angle between them is 90 degrees. Therefore, the magnitude of
the force is:

7.3.2

= q ×F ⃗  v ⃗  B⃗ 

F = qv Bsin θ

= q × = (3.2 × C)(5.0 × m/s ) ×(1.5 T ) = −2.4 × NF ⃗  v ⃗  B⃗  10−19 104 î k̂ 10−14 ĵ (7.3.5)

= q × = (3.2 × C)(−5.0 × m/s ) ×(1.5 T ) = −2.4 × NF ⃗  v ⃗  B⃗  10−19 104 î k̂ 10−14 î (7.3.6)

7.3.2

F = qv B sin θ = (3.2 × C)(5.0 × m/s)(1.5 T )sin( )) = 2.4 × N .10−19 104 90o 10−14 (7.3.7)
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3. Since the velocity and magnetic field are parallel to each other, there is no orientation of your hand that will result in a force
direction. Therefore, the force on this moving charge is zero. This is confirmed by the cross product. When you cross two
vectors pointing in the same direction, the result is equal to zero.

4. First, to determine the direction, your fingers could point in any orientation; however, you must sweep your fingers upward
in the direction of the magnetic field. As you rotate your hand, notice that the thumb can point in any x- or y-direction
possible, but not in the z-direction. This should match the mathematical answer. To calculate the force, we use the given
charge, velocity, and magnetic field and the definition of the magnetic force in cross-product form to calculate:

This solution can be rewritten in terms of a magnitude and angle in the xy-plane:

The magnitude of the force can also be calculated using Equation . The velocity in this question, however, has three
components. The z-component of the velocity can be neglected, because it is parallel to the magnetic field and therefore
generates no force. The magnitude of the velocity is calculated from the x- and y-components. The angle between the
velocity in the xy-plane and the magnetic field in the z-plane is 90 degrees. Therefore, the force is calculated to be:

This is the same magnitude of force calculated by unit vectors.

Significance

The cross product in this formula results in a third vector that must be perpendicular to the other two. Other physical quantities,
such as angular momentum, also have three vectors that are related by the cross product. Note that typical force values in magnetic
force problems are much larger than the gravitational force. Therefore, for an isolated charge, the magnetic force is the dominant
force governing the charge’s motion.

Repeat the previous problem with the magnetic field in the x-direction rather than in the z-direction. Check your answers with
RHR-1.

Answer a

0 N

Answer b

Answer c

Answer d

= q × = (3.2 × C)((2.0 −3.0 +1.0 ) × m/s) ×(1.5 T )F ⃗  v ⃗  B⃗  10−19 î ĵ k̂ 104 k̂ (7.3.8)

(−14.4 −9.6 ) × N .î ĵ 10−15 (7.3.9)

| | = = × N = 1.7 × NF ⃗  +F 2
x F 2

y

− −−−−−−
√ (−14.4 +(−9.6)2 )2

− −−−−−−−−−−−−−−
√ 10−15 10−14 (7.3.10)

θ = ta ( ) = ta ( ) = .n−1 Fy

Fx

n−1 −9.6 × N10−15

−14.4 × N10−15
34o (7.3.11)

7.3.2

| | = × = 3.6 ×v ⃗  (2 +(−3)2 )2
− −−−−−−−−−

√ 104 m

s
104 m

s
(7.3.12)

F = qv Bsin θ = (3.2 × C)(3.6 × m/s)(1.5 T )sin( ) = 1.7 × N10−19 104 90o 10−14 (7.3.13)

 Exercise 7.3.1

2.4 × N10−14k̂

2.4 × N10−14 ĵ

7.2 +2.2 ) × Nĵ k̂ 10−15
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Representing Magnetic Fields
The representation of magnetic fields by magnetic field lines is very useful in visualizing the strength and direction of the
magnetic field. As shown in Figure , each of these lines forms a closed loop, even if not shown by the constraints of the space
available for the figure. The field lines emerge from the north pole (N), loop around to the south pole (S), and continue through the
bar magnet back to the north pole.

Magnetic field lines have several hard-and-fast rules:

1. The direction of the magnetic field is tangent to the field line at any point in space. A small compass will point in the direction
of the field line.

2. The strength of the field is proportional to the closeness of the lines. It is exactly proportional to the number of lines per unit
area perpendicular to the lines (called the areal density).

3. Magnetic field lines can never cross, meaning that the field is unique at any point in space.
4. Magnetic field lines are continuous, forming closed loops without a beginning or end. They are directed from the north pole to

the south pole.

The last property is related to the fact that the north and south poles cannot be separated. It is a distinct difference from electric
field lines, which generally begin on positive charges and end on negative charges or at infinity. If isolated magnetic charges
(referred to as magnetic monopoles) existed, then magnetic field lines would begin and end on them.

Figure : Magnetic field lines are defined to have the direction in which a small compass points when placed at a location in
the field. The strength of the field is proportional to the closeness (or density) of the lines. If the interior of the magnet could be
probed, the field lines would be found to form continuous, closed loops. To fit in a reasonable space, some of these drawings may
not show the closing of the loops; however, if enough space were provided, the loops would be closed.

Contributors and Attributions
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7.4: Motion of a Charged Particle in a Magnetic Field

By the end of this section, you will be able to:

Explain how a charged particle in an external magnetic field undergoes circular motion
Describe how to determine the radius of the circular motion of a charged particle in a magnetic field

A charged particle experiences a force when moving through a magnetic field. What happens if this field is uniform over the
motion of the charged particle? What path does the particle follow? In this section, we discuss the circular motion of the charged
particle as well as other motion that results from a charged particle entering a magnetic field.

The simplest case occurs when a charged particle moves perpendicular to a uniform B-field (Figure ). If the field is in a
vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic force is perpendicular to the
direction of travel, a charged particle follows a curved path in a magnetic field. The particle continues to follow this curved path
until it forms a complete circle. Another way to look at this is that the magnetic force is always perpendicular to velocity, so that it
does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is
affected but not the speed.

Figure : A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to
the paper (represented by the small ’s - like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity
changes in direction but not magnitude. The result is uniform circular motion. (Note that because the charge is negative, the force is
opposite in direction to the prediction of the right-hand rule.)

In this situation, the magnetic force supplies the centripetal force . Noting that the velocity is perpendicular to the

magnetic field, the magnitude of the magnetic force is reduced to . Because the magnetic force F supplies the centripetal
force , we have

Solving for r yields

Here, r is the radius of curvature of the path of a charged particle with mass m and charge q, moving at a speed v that is
perpendicular to a magnetic field of strength B. The time for the charged particle to go around the circular path is defined as the
period, which is the same as the distance traveled (the circumference) divided by the speed. Based on this and Equation, we can
derive the period of motion as

 Learning Objectives

7.4.1

7.4.1
X

=FC

mv2

r
F = qvB

FC

qvB = .
mv2

r
(7.4.1)

r = .
mv

qB
(7.4.2)
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If the velocity is not perpendicular to the magnetic field, then we can compare each component of the velocity separately with the
magnetic field. The component of the velocity perpendicular to the magnetic field produces a magnetic force perpendicular to both
this velocity and the field:

where  is the angle between v and B. The component parallel to the magnetic field creates constant motion along the same
direction as the magnetic field, also shown in Equation. The parallel motion determines the pitch p of the helix, which is the
distance between adjacent turns. This distance equals the parallel component of the velocity times the period:

The result is a helical motion, as shown in the following figure.

Figure : A charged particle moving with a velocity not in the same direction as the magnetic field. The velocity component
perpendicular to the magnetic field creates circular motion, whereas the component of the velocity parallel to the field moves the
particle along a straight line. The pitch is the horizontal distance between two consecutive circles. The resulting motion is helical.

While the charged particle travels in a helical path, it may enter a region where the magnetic field is not uniform. In particular,
suppose a particle travels from a region of strong magnetic field to a region of weaker field, then back to a region of stronger field.
The particle may reflect back before entering the stronger magnetic field region. This is similar to a wave on a string traveling from
a very light, thin string to a hard wall and reflecting backward. If the reflection happens at both ends, the particle is trapped in a so-
called magnetic bottle.

Trapped particles in magnetic fields are found in the Van Allen radiation belts around Earth, which are part of Earth’s magnetic
field. These belts were discovered by James Van Allen while trying to measure the flux of cosmic rays on Earth (high-energy
particles that come from outside the solar system) to see whether this was similar to the flux measured on Earth. Van Allen found
that due to the contribution of particles trapped in Earth’s magnetic field, the flux was much higher on Earth than in outer space.
Aurorae, like the famous aurora borealis (northern lights) in the Northern Hemisphere (Figure ), are beautiful displays of light
emitted as ions recombine with electrons entering the atmosphere as they spiral along magnetic field lines. (The ions are primarily
oxygen and nitrogen atoms that are initially ionized by collisions with energetic particles in Earth’s atmosphere.) Aurorae have also
been observed on other planets, such as Jupiter and Saturn.

T = = = .
2πr

v

2π

v

mv

qB

2πm

qB
(7.4.3)

vperp

vpara

= v sinθ

= v cos θ.

(7.4.4)

(7.4.5)

θ

p = T .vpara (7.4.6)
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7.4.3
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Figure : (a) The Van Allen radiation belts around Earth trap ions produced by cosmic rays striking Earth’s atmosphere. (b)
The magnificent spectacle of the aurora borealis, or northern lights, glows in the northern sky above Bear Lake near Eielson Air
Force Base, Alaska. Shaped by Earth’s magnetic field, this light is produced by glowing molecules and ions of oxygen and
nitrogen. (credit b: modification of work by USAF Senior Airman Joshua Strang)

A research group is investigating short-lived radioactive isotopes. They need to design a way to transport alpha-particles
(helium nuclei) from where they are made to a place where they will collide with another material to form an isotope. The
beam of alpha-particles  bends through a 90-degree region with a uniform
magnetic field of 0.050 T (Figure ). (a) In what direction should the magnetic field be applied? (b) How much time does it
take the alpha-particles to traverse the uniform magnetic field region?

Figure : Top view of the beam deflector setup.

Strategy

1. The direction of the magnetic field is shown by the RHR-1. Your fingers point in the direction of v, and your thumb needs
to point in the direction of the force, to the left. Therefore, since the alpha-particles are positively charged, the magnetic
field must point down.

2. The period of the alpha-particle going around the circle is

Because the particle is only going around a quarter of a circle, we can take 0.25 times the period to find the time it takes to go
around this path.

Solution

7.4.3

 Example : Beam Deflector7.4.1

(m = 6.64 × kg, q = 3.2 × C)10−27 10−19

7.4.4

7.4.4

T = .
2πm

qB
(7.4.7)
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1. Let’s start by focusing on the alpha-particle entering the field near the bottom of the picture. First, point your thumb up the
page. In order for your palm to open to the left where the centripetal force (and hence the magnetic force) points, your
fingers need to change orientation until they point into the page. This is the direction of the applied magnetic field.

2. The period of the charged particle going around a circle is calculated by using the given mass, charge, and magnetic field in
the problem. This works out to be

However, for the given problem, the alpha-particle goes around a quarter of the circle, so the time it takes would be

Significance

This time may be quick enough to get to the material we would like to bombard, depending on how short-lived the radioactive
isotope is and continues to emit alpha-particles. If we could increase the magnetic field applied in the region, this would
shorten the time even more. The path the particles need to take could be shortened, but this may not be economical given the
experimental setup.

A uniform magnetic field of magnitude 1.5 T is directed horizontally from west to east. (a) What is the magnetic force on a
proton at the instant when it is moving vertically downward in the field with a speed of ? (b) Compare this force
with the weight w of a proton.

Solution
a.  toward the south;

b. 

A proton enters a uniform magnetic field of  with a speed of . At what angle must the magnetic field
be from the velocity so that the pitch of the resulting helical motion is equal to the radius of the helix?

Strategy

The pitch of the motion relates to the parallel velocity times the period of the circular motion, whereas the radius relates to the
perpendicular velocity component. After setting the radius and the pitch equal to each other, solve for the angle between the
magnetic field and velocity or .

Solution

The pitch is given by Equation , the period is given by Equation , and the radius of circular motion is given by
Equation . Note that the velocity in the radius equation is related to only the perpendicular velocity, which is where the
circular motion occurs. Therefore, we substitute the sine component of the overall velocity into the radius equation to equate
the pitch and radius

T = = = 2.6 × s.
2πm

qB

2π(6.64 × kg)10−27

(3.2 × C)(0.050 T )10−19
10−6 (7.4.8)

t = 0.25 ×2.61 × s = 6.5 × s.10−6 10−7 (7.4.9)

 Exercise 7.4.1

4 × m/s107

9.6 × N10−12

= 1.7 ×
w

Fm

10−15

 Example : Helical Motion in a Magnetic Field7.4.2

1.0 × T10−4 5 × m/s105

θ

7.4.6 7.4.3
7.4.2

p = r (7.4.10)

T =v∥
mv

qB
(7.4.11)

v cos θ =
2πm

qB

mv sin θ

qB
(7.4.12)

2π = tan θ (7.4.13)

θ = .81.0o (7.4.14)
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Significance

If this angle were , only parallel velocity would occur and the helix would not form, because there would be no circular
motion in the perpendicular plane. If this angle were  only circular motion would occur and there would be no movement of
the circles perpendicular to the motion. That is what creates the helical motion.

This page titled 7.4: Motion of a Charged Particle in a Magnetic Field is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

11.4: Motion of a Charged Particle in a Magnetic Field by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
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7.5: Applications of Magnetic Forces and Fields

By the end of this section, you will be able to:

Explain how a mass spectrometer works to separate charges
Explain how a cyclotron works

Being able to manipulate and sort charged particles allows deeper experimentation to understand what matter is made of. We first
look at a mass spectrometer to see how we can separate ions by their charge-to-mass ratio. Then we discuss cyclotrons as a method
to accelerate charges to very high energies.

Mass Spectrometer
The mass spectrometer is a device that separates ions according to their charge-to-mass ratios. One particular version, the
Bainbridge mass spectrometer, is illustrated in Figure . Ions produced at a source are first sent through a velocity selector,
where the magnetic force is equally balanced with the electric force. These ions all emerge with the same speed  since
any ion with a different velocity is deflected preferentially by either the electric or magnetic force, and ultimately blocked from the
next stage. They then enter a uniform magnetic field  where they travel in a circular path whose radius R is given by Equation
11.4.2, . The radius is measured by a particle detector located as shown in the figure.

Figure : A schematic of the Bainbridge mass spectrometer, showing charged particles leaving a source, followed by a velocity
selector where the electric and magnetic forces are balanced, followed by a region of uniform magnetic field where the particle is
ultimately detected.

The relationship between the charge-to-mass ratio q/m and the radius R is determined by combining Equation 11.4.2 and Equation
11.7.2:

Since most ions are singly charged , measured values of R can be used with this equation to determine the
mass of ions. With modern instruments, masses can be determined to one part in .

An interesting use of a spectrometer is as part of a system for detecting very small leaks in a research apparatus. In low-temperature
physics laboratories, a device known as a dilution refrigerator uses a mixture of He-3, He-4, and other cryogens to reach
temperatures well below 1 K. The performance of the refrigerator is severely hampered if even a minute leak between its various
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components occurs. Consequently, before it is cooled down to the desired temperature, the refrigerator is subjected to a leak test. A
small quantity of gaseous helium is injected into one of its compartments, while an adjacent, but supposedly isolated, compartment
is connected to a high-vacuum pump to which a mass spectrometer is attached. A heated filament ionizes any helium atoms
evacuated by the pump. The detection of these ions by the spectrometer then indicates a leak between the two compartments of the
dilution refrigerator.

In conjunction with gas chromatography, mass spectrometers are used widely to identify unknown substances. While the gas
chromatography portion breaks down the substance, the mass spectrometer separates the resulting ionized molecules. This
technique is used with fire debris to ascertain the cause, in law enforcement to identify illegal drugs, in security to identify
explosives, and in many medicinal applications.

Cyclotron

The cyclotron was developed by E.O. Lawrence to accelerate charged particles (usually protons, deuterons, or alpha-particles) to
large kinetic energies. These particles are then used for nuclear-collision experiments to produce radioactive isotopes. A cyclotron
is illustrated in Figure . The particles move between two flat, semi-cylindrical metallic containers D1 and D2, called dees. The
dees are enclosed in a larger metal container, and the apparatus is placed between the poles of an electromagnet that provides a
uniform magnetic field. Air is removed from the large container so that the particles neither lose energy nor are deflected because
of collisions with air molecules. The dees are connected to a high-frequency voltage source that provides an alternating electric
field in the small region between them. Because the dees are made of metal, their interiors are shielded from the electric field.

Figure : The inside of a cyclotron. A uniform magnetic field is applied as circulating protons travel through the dees, gaining
energy as they traverse through the gap between the dees.

Suppose a positively charged particle is injected into the gap between the dees when D2 is at a positive potential relative to D1. The
particle is then accelerated across the gap and enters D1 after gaining kinetic energy qV, where V is the average potential
difference the particle experiences between the dees. When the particle is inside D1, only the uniform magnetic field  of the
electromagnet acts on it, so the particle moves in a circle of radius

with a period of

The period of the alternating voltage course is set at T, so while the particle is inside D1, moving along its semicircular orbit in a
time T/2, the polarity of the dees is reversed. When the particle reenters the gap, D1 is positive with respect to D2, and the particle
is again accelerated across the gap, thereby gaining a kinetic energy qV. The particle then enters D2, circulates in a slightly larger
circle, and emerges from D2 after spending a time T/2 in this dee. This process repeats until the orbit of the particle reaches the
boundary of the dees. At that point, the particle (actually, a beam of particles) is extracted from the cyclotron and used for some
experimental purpose.
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The operation of the cyclotron depends on the fact that, in a uniform magnetic field, a particle’s orbital period is independent of its
radius and its kinetic energy. Consequently, the period of the alternating voltage source need only be set at the one value given by
Equation . With that setting, the electric field accelerates particles every time they are between the dees.

If the maximum orbital radius in the cyclotron is R, then from Equation , the maximum speed of a circulating particle of mass
m and charge q is

Thus, its kinetic energy when ejected from the cyclotron is

The maximum kinetic energy attainable with this type of cyclotron is approximately 30 MeV. Above this energy, relativistic effects
become important, which causes the orbital period to increase with the radius. Up to energies of several hundred MeV, the
relativistic effects can be compensated for by making the magnetic field gradually increase with the radius of the orbit. However,
for higher energies, much more elaborate methods must be used to accelerate particles.

Particles are accelerated to very high energies with either linear accelerators or synchrotrons. The linear accelerator accelerates
particles continuously with the electric field of an electromagnetic wave that travels down a long evacuated tube. The Stanford
Linear Accelerator (SLAC) is about 3.3 km long and accelerates electrons and positrons (positively charged electrons) to energies
of 50 GeV. The synchrotron is constructed so that its bending magnetic field increases with particle speed in such a way that the
particles stay in an orbit of fixed radius. The world’s highest-energy synchrotron is located at CERN, which is on the Swiss-French
border near Geneva. CERN has been of recent interest with the verified discovery of the Higgs Boson (see Particle Physics and
Cosmology). This synchrotron can accelerate beams of approximately  protons to energies of about  GeV.

A cyclotron used to accelerate alpha-particles  has a radius of 0.50 m and a
magnetic field of 1.8 T. (a) What is the period of revolution of the alpha-particles? (b) What is their maximum kinetic energy?

Strategy

1. The period of revolution is approximately the distance traveled in a circle divided by the speed. Identifying that the
magnetic force applied is the centripetal force, we can derive the period formula.

2. The kinetic energy can be found from the maximum speed of the beam, corresponding to the maximum radius within the
cyclotron.

Solution

1. By identifying the mass, charge, and magnetic field in the problem, we can calculate the period:

2. By identifying the charge, magnetic field, radius of path, and the mass, we can calculate the maximum kinetic energy:

A cyclotron is to be designed to accelerate protons to kinetic energies of 20 MeV using a magnetic field of 2.0 T. What is the
required radius of the cyclotron?

Solution

0.32 m
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 Example : Accelerating Alpha-Particles in a Cyclotron7.5.1

(m = 6.64 × kg, q = 3.2 × C)10−27 10−19

T = = = 7.3 × s.
2πm

qB

2π(6.64 × kg)10−27

(3.2 × C)(1.8T )10−19
10−8 (7.5.6)

m = = = 6.2 × J = 39 MeV .
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Mass Spectrometry
The curved paths followed by charged particles in magnetic fields can be put to use. A charged particle moving perpendicular to a
magnetic field travels in a circular path having a radius .

It was noted that this relationship could be used to measure the mass of charged particles such as ions. A mass spectrometer is a
device that measures such masses. Most mass spectrometers use magnetic fields for this purpose, although some of them have
extremely sophisticated designs. Since there are five variables in the relationship, there are many possibilities. However, if , , and

 can be fixed, then the radius of the path  is simply proportional to the mass  of the charged particle. Let us examine one such
mass spectrometer that has a relatively simple design (Figure ). The process begins with an ion source, a device like an
electron gun. The ion source gives ions their charge, accelerates them to some velocity , and directs a beam of them into the next
stage of the spectrometer. This next region is a velocity selector that only allows particles with a particular value of  to get
through.

Figure : This mass spectrometer uses a velocity selector to fix  so that the radius of the path is proportional to mass.

The velocity selector has both an electric field and a magnetic field, perpendicular to one another, producing forces in opposite
directions on the ions. Only those ions for which the forces balance travel in a straight line into the next region. If the forces
balance, then the electric force  equals the magnetic force , so that . Noting that  cancels, we see that

is the velocity particles must have to make it through the velocity selector, and further, that  can be selected by varying  and .
In the final region, there is only a uniform magnetic field, and so the charged particles move in circular arcs with radii proportional
to particle mass. The paths also depend on charge , but since  is in multiples of electron charges, it is easy to determine and to
discriminate between ions in different charge states.

Mass spectrometry today is used extensively in chemistry and biology laboratories to identify chemical and biological substances
according to their mass-to-charge ratios. In medicine, mass spectrometers are used to measure the concentration of isotopes used as
tracers. Usually, biological molecules such as proteins are very large, so they are broken down into smaller fragments before
analyzing. Recently, large virus particles have been analyzed as a whole on mass spectrometers. Sometimes a gas chromatograph or
high-performance liquid chromatograph provides an initial separation of the large molecules, which are then input into the mass
spectrometer.

Cathode Ray Tubes—CRTs—and the Like
What do non-flat-screen TVs, old computer monitors, x-ray machines, and the 2-mile-long Stanford Linear Accelerator have in
common? All of them accelerate electrons, making them different versions of the electron gun. Many of these devices use magnetic
fields to steer the accelerated electrons. Figure  shows the construction of the type of cathode ray tube (CRT) found in some
TVs, oscilloscopes, and old computer monitors. Two pairs of coils are used to steer the electrons, one vertically and the other
horizontally, to their desired destination.
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Figure : The cathode ray tube (CRT) is so named because rays of electrons originate at the cathode in the electron gun.
Magnetic coils are used to steer the beam in many CRTs. In this case, the beam is moved down. Another pair of horizontal coils
would steer the beam horizontally.

Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) is one of the most useful and rapidly growing medical imaging tools. It non-invasively
produces two-dimensional and three-dimensional images of the body that provide important medical information with none of the
hazards of x-rays. MRI is based on an effect called nuclear magnetic resonance (NMR) in which an externally applied magnetic
field interacts with the nuclei of certain atoms, particularly those of hydrogen (protons). These nuclei possess their own small
magnetic fields, similar to those of electrons and the current loops discussed earlier in this chapter.

When placed in an external magnetic field, such nuclei experience a torque that pushes or aligns the nuclei into one of two new
energy states—depending on the orientation of its spin (analogous to the N pole and S pole in a bar magnet). Transitions from the
lower to higher energy state can be achieved by using an external radio frequency signal to “flip” the orientation of the small
magnets. (This is actually a quantum mechanical process. The direction of the nuclear magnetic field is quantized as is energy in
the radio waves. We will return to these topics in later chapters.) The specific frequency of the radio waves that are absorbed and
reemitted depends sensitively on the type of nucleus, the chemical environment, and the external magnetic field strength.
Therefore, this is a resonance phenomenon in which nuclei in a magnetic field act like resonators (analogous to those discussed in
the treatment of sound in "Oscillatory Motion and Waves") that absorb and reemit only certain frequencies. Hence, the
phenomenon is named nuclear magnetic resonance (NMR).

NMR has been used for more than 50 years as an analytical tool. It was formulated in 1946 by F. Bloch and E. Purcell, with the
1952 Nobel Prize in Physics going to them for their work. Over the past two decades, NMR has been developed to produce detailed
images in a process now called magnetic resonance imaging (MRI), a name coined to avoid the use of the word “nuclear” and the
concomitant implication that nuclear radiation is involved. (It is not.) The 2003 Nobel Prize in Medicine went to P. Lauterbur and P.
Mansfield for their work with MRI applications.

The largest part of the MRI unit is a superconducting magnet that creates a magnetic field, typically between 1 and 2 T in strength,
over a relatively large volume. MRI images can be both highly detailed and informative about structures and organ functions. It is
helpful that normal and non-normal tissues respond differently for slight changes in the magnetic field. In most medical images, the
protons that are hydrogen nuclei are imaged. (About 2/3 of the atoms in the body are hydrogen.) Their location and density give a
variety of medically useful information, such as organ function, the condition of tissue (as in the brain), and the shape of structures,
such as vertebral disks and knee-joint surfaces. MRI can also be used to follow the movement of certain ions across membranes,
yielding information on active transport, osmosis, dialysis, and other phenomena. With excellent spatial resolution, MRI can
provide information about tumors, strokes, shoulder injuries, infections, etc.

An image requires position information as well as the density of a nuclear type (usually protons). By varying the magnetic field
slightly over the volume to be imaged, the resonant frequency of the protons is made to vary with position. Broadcast radio
frequencies are swept over an appropriate range and nuclei absorb and reemit them only if the nuclei are in a magnetic field with
the correct strength. The imaging receiver gathers information through the body almost point by point, building up a tissue map.
The reception of reemitted radio waves as a function of frequency thus gives position information. These “slices” or cross sections
through the body are only several mm thick. The intensity of the reemitted radio waves is proportional to the concentration of the
nuclear type being flipped, as well as information on the chemical environment in that area of the body. Various techniques are
available for enhancing contrast in images and for obtaining more information. Scans called T1, T2, or proton density scans rely on
different relaxation mechanisms of nuclei. Relaxation refers to the time it takes for the protons to return to equilibrium after the
external field is turned off. This time depends upon tissue type and status (such as inflammation).
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While MRI images are superior to x rays for certain types of tissue and have none of the hazards of x rays, they do not completely
supplant x-ray images. MRI is less effective than x rays for detecting breaks in bone, for example, and in imaging breast tissue, so
the two diagnostic tools complement each other. MRI images are also expensive compared to simple x-ray images and tend to be
used most often where they supply information not readily obtained from x rays. Another disadvantage of MRI is that the patient is
totally enclosed with detectors close to the body for about 30 minutes or more, leading to claustrophobia. It is also difficult for the
obese patient to be in the magnet tunnel. New “open-MRI” machines are now available in which the magnet does not completely
surround the patient.

Over the last decade, the development of much faster scans, called “functional MRI” (fMRI), has allowed us to map the
functioning of various regions in the brain responsible for thought and motor control. This technique measures the change in blood
flow for activities (thought, experiences, action) in the brain. The nerve cells increase their consumption of oxygen when active.
Blood hemoglobin releases oxygen to active nerve cells and has somewhat different magnetic properties when oxygenated than
when deoxygenated. With MRI, we can measure this and detect a blood oxygen-dependent signal. Most of the brain scans today
use fMRI.

Currents in nerve cells and the heart create magnetic fields like any other currents. These can be measured but with some
difficulty since their strengths are about  to  less than the Earth’s magnetic field. Recording of the heart’s magnetic
field as it beats is called a magnetocardiogram (MCG), while measurements of the brain's magnetic field is called a
magnetoencephalogram (MEG). Both give information that differs from that obtained by measuring the electric fields of
these organs (ECGs and EEGs), but they are not yet of sufficient importance to make these difficult measurements common.

In both of these techniques, the sensors do not touch the body. MCG can be used in fetal studies, and is probably more
sensitive than echocardiography. MCG also looks at the heart’s electrical activity whose voltage output is too small to be
recorded by surface electrodes as in EKG. It has the potential of being a rapid scan for early diagnosis of cardiac ischemia
(obstruction of blood flow to the heart) or problems with the fetus.

MEG can be used to identify abnormal electrical discharges in the brain that produce weak magnetic signals. Therefore, it
looks at brain activity, not just brain structure. It has been used for studies of Alzheimer’s disease and epilepsy. Advances in
instrumentation to measure very small magnetic fields have allowed these two techniques to be used more in recent years.
What is used is a sensor called a SQUID, for superconducting quantum interference device. This operates at liquid helium
temperatures and can measure magnetic fields thousands of times smaller than the Earth’s.

Finally, there is a burgeoning market for magnetic cures in which magnets are applied in a variety of ways to the body, from
magnetic bracelets to magnetic mattresses. The best that can be said for such practices is that they are apparently harmless,
unless the magnets get close to the patient’s computer or magnetic storage disks. Claims are made for a broad spectrum of
benefits from cleansing the blood to giving the patient more energy, but clinical studies have not verified these claims, nor is
there an identifiable mechanism by which such benefits might occur.
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7.6: Magnetic Force on a Current-Carrying Conductor

By the end of this section, you will be able to:

Determine the direction in which a current-carrying wire experiences a force in an external magnetic field
Calculate the force on a current-carrying wire in an external magnetic field

Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire is carrying a
current—the wire should also experience a force. However, before we discuss the force exerted on a current by a magnetic field,
we first examine the magnetic field generated by an electric current. We are studying two separate effects here that interact closely:
A current-carrying wire generates a magnetic field and the magnetic field exerts a force on the current-carrying wire.

Magnetic Fields Produced by Electrical Currents
When discussing historical discoveries in magnetism, we mentioned Oersted’s finding that a wire carrying an electrical current
caused a nearby compass to deflect. A connection was established that electrical currents produce magnetic fields. (This connection
between electricity and magnetism is discussed in more detail in Sources of Magnetic Fields.)

The compass needle near the wire experiences a force that aligns the needle tangent to a circle around the wire. Therefore, a
current-carrying wire produces circular loops of magnetic field. To determine the direction of the magnetic field generated from a
wire, we use a second right-hand rule. In RHR-2, your thumb points in the direction of the current while your fingers wrap around
the wire, pointing in the direction of the magnetic field produced (Figure ). If the magnetic field were coming at you or out of
the page, we represent this with a dot. If the magnetic field were going into the page, we represent this with an 

These symbols come from considering a vector arrow: An arrow pointed toward you, from your perspective, would look like a dot
or the tip of an arrow. An arrow pointed away from you, from your perspective, would look like a cross or an  A composite
sketch of the magnetic circles is shown in Figure , where the field strength is shown to decrease as you get farther from the
wire by loops that are farther separated.

Figure : (a) When the wire is in the plane of the paper, the field is perpendicular to the paper. Note the symbols used for the
field pointing inward (like the tail of an arrow) and the field pointing outward (like the tip of an arrow). (b) A long and straight wire
creates a field with magnetic field lines forming circular loops.

Calculating the Magnetic Force
Electric current is an ordered movement of charge. A current-carrying wire in a magnetic field must therefore experience a force
due to the field. To investigate this force, let’s consider the infinitesimal section of wire as shown in Figure . The length and
cross-sectional area of the section are dl and A, respectively, so its volume is . The wire is formed from material that
contains n charge carriers per unit volume, so the number of charge carriers in the section is . If the charge carriers move
with drift velocity  the current I in the wire is (from Current and Resistance)
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The magnetic force on any single charge carrier is , so the total magnetic force  on the  charge carriers in the
section of wire is

We can define dl to be a vector of length dl pointing along , which allows us to rewrite this equation as

or

This is the magnetic force on the section of wire. Note that it is actually the net force exerted by the field on the charge carriers
themselves. The direction of this force is given by RHR-1, where you point your fingers in the direction of the current and curl
them toward the field. Your thumb then points in the direction of the force.

Figure : An infinitesimal section of current-carrying wire in a magnetic field.

To determine the magnetic force  on a wire of arbitrary length and shape, we must integrate Equation  over the entire wire.
If the wire section happens to be straight and B is uniform, the equation differentials become absolute quantities, giving us

This is the force on a straight, current-carrying wire in a uniform magnetic field.

A wire of length 50 cm and mass 10 g is suspended in a horizontal plane by a pair of flexible leads (Figure ). The wire is
then subjected to a constant magnetic field of magnitude 0.50 T, which is directed as shown. What are the magnitude and
direction of the current in the wire needed to remove the tension in the supporting leads?

e ×v ⃗ d B⃗  dF ⃗  nA ⋅ dl

d = (nA ⋅ dl)e × .F ⃗  v ⃗ d B⃗  (7.6.2)

v ⃗ d

d = neA d × ,F ⃗  vd l ⃗  B⃗  (7.6.3)

d = Id × .F ⃗  l ⃗  B⃗  (7.6.4)

7.6.2

F ⃗  7.6.4

= I × .F ⃗  l ⃗  B⃗  (7.6.5)

 Example : Balancing the Gravitational and Magnetic Forces on a Current-Carrying Wire7.6.1
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Figure : (a) A wire suspended in a magnetic field. (b) The free-body diagram for the wire.

Strategy

From the free-body diagram in the figure, the tensions in the supporting leads go to zero when the gravitational and magnetic
forces balance each other. Using the RHR-1, we find that the magnetic force points up. We can then determine the current I by
equating the two forces.

Solution

Equate the two forces of weight and magnetic force on the wire:

Thus,

Significance

This large magnetic field creates a significant force on a length of wire to counteract the weight of the wire.

A long, rigid wire lying along the y-axis carries a 5.0-A current flowing in the positive y-direction. (a) If a constant magnetic
field of magnitude 0.30 T is directed along the positive x-axis, what is the magnetic force per unit length on the wire? (b) If a
constant magnetic field of 0.30 T is directed 30 degrees from the +x-axis towards the +y-axis, what is the magnetic force per
unit length on the wire?

Strategy

The magnetic force on a current-carrying wire in a magnetic field is given by . For part a, since the current and
magnetic field are perpendicular in this problem, we can simplify the formula to give us the magnitude and find the direction
through the RHR-1. The angle θ is 90 degrees, which means  Also, the length can be divided over to the left-hand
side to find the force per unit length. For part b, the current times length is written in unit vector notation, as well as the
magnetic field. After the cross product is taken, the directionality is evident by the resulting unit vector.

Solution

1. We start with the general formula for the magnetic force on a wire. We are looking for the force per unit length, so we
divide by the length to bring it to the left-hand side. We also set . The solution therefore is

7.6.3

mg = IlB. (7.6.6)

I = = (0.50 m)(0.50 T ) = 0.39 A.
mg

lB

(0.010 kg

9.8 m/ )s2
(7.6.7)

 Example : Calculating Magnetic Force on a Current-Carrying Wire7.6.2

= I ×F ⃗  l ⃗  B⃗ 

sin θ = 1.

sin θ

F = IlB sin θ (7.6.8)

= (5.0 A)(0.30 T )
F

l
(7.6.9)
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Directionality: Point your fingers in the positive y-direction and curl your fingers in the positive x-direction. Your thumb
will point in the  direction. Therefore, with directionality, the solution is

2. The current times length and the magnetic field are written in unit vector notation. Then, we take the cross product to find
the force:

Significance

This large magnetic field creates a significant force on a small length of wire. As the angle of the magnetic field becomes more
closely aligned to the current in the wire, there is less of a force on it, as seen from comparing parts a and b.

A straight, flexible length of copper wire is immersed in a magnetic field that is directed into the page. (a) If the wire’s current
runs in the +x-direction, which way will the wire bend? (b) Which way will the wire bend if the current runs in the –x-
direction?

Solution
a. bends upward; b. bends downward

A circular current loop of radius R carrying a current I is placed in the xy-plane. A constant uniform magnetic field cuts
through the loop parallel to the y-axis (Figure ). Find the magnetic force on the upper half of the loop, the lower half of
the loop, and the total force on the loop.

Figure : A loop of wire carrying a current in a magnetic field.

Strategy

The magnetic force on the upper loop should be written in terms of the differential force acting on each segment of the loop. If
we integrate over each differential piece, we solve for the overall force on that section of the loop. The force on the lower loop
is found in a similar manner, and the total force is the addition of these two forces.

Solution

A differential force on an arbitrary piece of wire located on the upper ring is:

where  is the angle between the magnetic field direction (+y) and the segment of wire. A differential segment is located at the
same radius, so using an arc-length formula, we have:

= 1.5 N/m.
F

l
(7.6.10)

−k⃗ 

= −1.5 N/m.
F ⃗ 

l
k⃗  (7.6.11)

= I × = (5.0A)l ×(0.30T cos( )F ⃗  l ⃗  B⃗  ĵ 30o î (7.6.12)

/l = −1.30 N/m.F ⃗  k̂ (7.6.13)

 Exercise 7.6.1

 Example : Force on a Circular Wire7.6.3

7.6.4

7.6.4

dF = IBsin θdl, (7.6.14)

θ
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In order to find the force on a segment, we integrate over the upper half of the circle, from 0 to . This results in:

The lower half of the loop is integrated from  to zero, giving us:

The net force is the sum of these forces, which is zero.

Significance

The total force on any closed loop in a uniform magnetic field is zero. Even though each piece of the loop has a force acting on
it, the net force on the system is zero. (Note that there is a net torque on the loop, which we consider in the next section.)

This page titled 7.6: Magnetic Force on a Current-Carrying Conductor is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

11.5: Magnetic Force on a Current-Carrying Conductor by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.

dl = Rdθ (7.6.15)

dF = IBRsin θdθ. (7.6.16)

π

F = IBR sin θdθ = IBR(−cosπ+cos0) = 2IBR.∫
π

0

(7.6.17)

π

F = IBR sin θdθ = IBR(−cos0 +cosπ) = −2IBR.∫
0

π

(7.6.18)
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7.7: Force and Torque on a Current Loop

By the end of this section, you will be able to:

Evaluate the net force on a current loop in an external magnetic field
Evaluate the net torque on a current loop in an external magnetic field
Define the magnetic dipole moment of a current loop

Motors are the most common application of magnetic force on current-carrying wires. Motors contain loops of wire in a magnetic
field. When current is passed through the loops, the magnetic field exerts torque on the loops, which rotates a shaft. Electrical
energy is converted into mechanical work in the process. Once the loop’s surface area is aligned with the magnetic field, the
direction of current is reversed, so there is a continual torque on the loop (Figure ). This reversal of the current is done with
commutators and brushes. The commutator is set to reverse the current flow at set points to keep continual motion in the motor. A
basic commutator has three contact areas to avoid and dead spots where the loop would have zero instantaneous torque at that
point. The brushes press against the commutator, creating electrical contact between parts of the commutator during the spinning
motion.

Figure : A simplified version of a dc electric motor. (a) The rectangular wire loop is placed in a magnetic field. The forces on
the wires closest to the magnetic poles (N and S) are opposite in direction as determined by the right-hand rule-1. Therefore, the
loop has a net torque and rotates to the position shown in (b). (b) The brushes now touch the commutator segments so that no
current flows through the loop. No torque acts on the loop, but the loop continues to spin from the initial velocity given to it in part
(a). By the time the loop flips over, current flows through the wires again but now in the opposite direction, and the process repeats
as in part (a). This causes continual rotation of the loop.

In a uniform magnetic field, a current-carrying loop of wire, such as a loop in a motor, experiences both forces and torques on the
loop. Figure  shows a rectangular loop of wire that carries a current I and has sides of lengths a and b. The loop is in a
uniform magnetic field: . The magnetic force on a straight current-carrying wire of length l is given by . To find the
net force on the loop, we have to apply this equation to each of the four sides. The force on side 1 is

where the direction has been determined with the RHR-1. The current in side 3 flows in the opposite direction to that of side 1, so

The currents in sides 2 and 4 are perpendicular to  and the forces on these sides are

We can now find the net force on the loop:

 Learning Objectives

7.7.1
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7.7.1

= BB⃗  ĵ I ×l ⃗  B⃗ 

= IaB sin( −θ) = IaB cos θF ⃗ 
1 90o î î (7.7.1)

= −IaB sin( +θ) = −IaB cos θF ⃗ 
3 90o î î (7.7.2)

B⃗ 

= IbBF ⃗ 
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Although this result  has been obtained for a rectangular loop, it is far more general and holds for current-carrying
loops of arbitrary shapes; that is, there is no net force on a current loop in a uniform magnetic field.

Figure : (a) A rectangular current loop in a uniform magnetic field is subjected to a net torque but not a net force. (b) A side
view of the coil.

To find the net torque on the current loop shown in Figure , we first consider  and . Since they have the same line of
action and are equal and opposite, the sum of their torques about any axis is zero (see Fixed-Axis Rotation). Thus, if there is any
torque on the loop, it must be furnished by  and . Let’s calculate the torques around the axis that passes through point O of
Figure  (a side view of the coil) and is perpendicular to the plane of the page. The point O is a distance x from side 2 and a
distance  from side 4 of the loop. The moment arms of  and  are  and , respectively, so the net
torque on the loop is

This simplifies to

where  is the area of the loop.

Notice that this torque is independent of x; it is therefore independent of where point O is located in the plane of the current loop.
Consequently, the loop experiences the same torque from the magnetic field about any axis in the plane of the loop and parallel to
the x-axis.

A closed-current loop is commonly referred to as a magnetic dipole and the term IA is known as its magnetic dipole moment .
Actually, the magnetic dipole moment is a vector that is defined as

where  is a unit vector directed perpendicular to the plane of the loop (see Figure ). The direction of  is obtained with the
RHR-2—if you curl the fingers of your right hand in the direction of current flow in the loop, then your thumb points along . If
the loop contains N turns of wire, then its magnetic dipole moment is given by

In terms of the magnetic dipole moment, the torque on a current loop due to a uniform magnetic field can be written simply as

This equation holds for a current loop in a two-dimensional plane of arbitrary shape.

Using a calculation analogous to that found in Capacitance for an electric dipole, the potential energy of a magnetic dipole is

∑ = + + + = 0.F ⃗ 
net F ⃗ 

1 F ⃗ 
2 F ⃗ 

3 F ⃗ 
4 (7.7.5)

(∑F = 0)

7.7.2

7.7.2a F1 F3

F2 F4

7.7.2b

(a −x) F2 F4 x sin θ (a −x) sin θ

∑ = + + + = x sin θ − (a −x) sin (θ)τ ⃗  τ ⃗ 1 τ ⃗ 2 τ ⃗ 3 τ ⃗ 4 F2 î F4 î (7.7.6)

−IbBx sin θ −IbB(a −x)sin θ .î î (7.7.7)

= −IAB sin θτ ⃗  î (7.7.8)

A = ab

μ

= IAμ⃗  n̂ (7.7.9)

n̂ 7.7.2 n̂

n̂

= NIA .μ⃗  n̂ (7.7.10)

= × .τ ⃗  μ⃗  B⃗  (7.7.11)

U = − ⋅ .μ⃗  B⃗  (7.7.12)
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A circular current loop of radius 2.0 cm carries a current of 2.0 mA. (a) What is the magnitude of its magnetic dipole moment?
(b) If the dipole is oriented at 30 degrees to a uniform magnetic field of magnitude 0.50 T, what is the magnitude of the torque
it experiences and what is its potential energy?

Strategy

The dipole moment is defined by the current times the area of the loop. The area of the loop can be calculated from the area of
the circle. The torque on the loop and potential energy are calculated from identifying the magnetic moment, magnetic field,
and angle oriented in the field.

Solution

1. The magnetic moment μ is calculated by the current times the area of the loop or .

2. The torque and potential energy are calculated by identifying the magnetic moment, magnetic field, and the angle between
these two vectors. The calculations of these quantities are:

Significance

The concept of magnetic moment at the atomic level is discussed in the next chapter. The concept of aligning the magnetic
moment with the magnetic field is the functionality of devices like magnetic motors, whereby switching the external magnetic
field results in a constant spinning of the loop as it tries to align with the field to minimize its potential energy.

In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field? (b) A maximum
energy of the dipole?

Solution

a. aligned or anti-aligned; b. perpendicular

Contributors and Attributions
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This page titled 7.7: Force and Torque on a Current Loop is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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 Example : Forces and Torques on Current-Carrying Loops7.7.1

πr2

μ = IA = (2.0 × A)(π(0.02 m ) = 2.5 × A ⋅10−3 )2 10−6 m2 (7.7.13)

τ = × = μB sin θ = (2.5 × A ⋅ )(0.50T )sin( ) = 6.3 × N ⋅ mμ⃗  B⃗  10−6 m2 30o 10−7 (7.7.14)

U = − ⋅ = −μBcosθ = −(2.5 × A ⋅ )(0.50T )cos( ) = −1.1 × J.μ⃗  B⃗  10−6 m2 30o 10−6 (7.7.15)

 Exercise 7.7.1
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7.8: The Hall Effect

By the end of this section, you will be able to:

Explain a scenario where the magnetic and electric fields are crossed and their forces balance each other as a charged
particle moves through a velocity selector
Compare how charge carriers move in a conductive material and explain how this relates to the Hall effect

In 1879, E.H. Hall devised an experiment that can be used to identify the sign of the predominant charge carriers in a conducting
material. From a historical perspective, this experiment was the first to demonstrate that the charge carriers in most metals are
negative.

Visit this website to find more information about the Hall effect.

We investigate the Hall effect by studying the motion of the free electrons along a metallic strip of width l in a constant magnetic
field (Figure ). The electrons are moving from left to right, so the magnetic force they experience pushes them to the bottom
edge of the strip. This leaves an excess of positive charge at the top edge of the strip, resulting in an electric field E directed from
top to bottom. The charge concentration at both edges builds up until the electric force on the electrons in one direction is balanced
by the magnetic force on them in the opposite direction. Equilibrium is reached when:

where e is the magnitude of the electron charge,  is the drift speed of the electrons, and E is the magnitude of the electric field
created by the separated charge. Solving this for the drift speed results in

Figure : In the Hall effect, a potential difference between the top and bottom edges of the metal strip is produced when
moving charge carriers are deflected by the magnetic field. (a) Hall effect for negative charge carriers; (b) Hall effect for positive
charge carriers.

A scenario where the electric and magnetic fields are perpendicular to one another is called a crossed-field situation. If these fields
produce equal and opposite forces on a charged particle with the velocity that equates the forces, these particles are able to pass
through an apparatus, called a velocity selector, undeflected. This velocity is represented in Equation . Any other velocity of a
charged particle sent into the same fields would be deflected by the magnetic force or electric force.

Going back to the Hall effect, if the current in the strip is I, then from Current and Resistance, we know that

where n is the number of charge carriers per volume and A is the cross-sectional area of the strip. Combining the equations for 
and I results in
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The field E is related to the potential difference V between the edges of the strip by

The quantity  is called the Hall potential and can be measured with a voltmeter. Finally, combining the equations for I and E
gives us

where the upper edge of the strip in Figure  is positive with respect to the lower edge.

We can also combine Equation  and Equation  to get an expression for the Hall voltage in terms of the magnetic field:

What if the charge carriers are positive, as in Figure ? For the same current I, the magnitude of V is still given by Equation 
. However, the upper edge is now negative with respect to the lower edge. Therefore, by simply measuring the sign of V, we

can determine the sign of the majority charge carriers in a metal.

Hall potential measurements show that electrons are the dominant charge carriers in most metals. However, Hall potentials indicate
that for a few metals, such as tungsten, beryllium, and many semiconductors, the majority of charge carriers are positive. It turns
out that conduction by positive charge is caused by the migration of missing electron sites (called holes) on ions. Conduction by
holes is studied later in Condensed Matter Physics.

The Hall effect can be used to measure magnetic fields. If a material with a known density of charge carriers n is placed in a
magnetic field and V is measured, then the field can be determined from Equation . In research laboratories where the fields of
electromagnets used for precise measurements have to be extremely steady, a “Hall probe” is commonly used as part of an
electronic circuit that regulates the field.

An electron beam enters a crossed-field velocity selector with magnetic and electric fields of 2.0 mT and ,
respectively. (a) What must the velocity of the electron beam be to traverse the crossed fields undeflected? If the electric field
is turned off, (b) what is the acceleration of the electron beam and (c) what is the radius of the circular motion that results?

Strategy

The electron beam is not deflected by either of the magnetic or electric fields if these forces are balanced. Based on these
balanced forces, we calculate the velocity of the beam. Without the electric field, only the magnetic force is used in Newton’s
second law to find the acceleration. Lastly, the radius of the path is based on the resulting circular motion from the magnetic
force.

Solution

1. The velocity of the unperturbed beam of electrons with crossed fields is calculated by Equation :

2. The acceleration is calculated from the net force from the magnetic field, equal to mass times acceleration. The magnitude
of the acceleration is:

3. The radius of the path comes from a balance of the circular and magnetic forces, or Equation :

E = .
V

l
(7.8.5)

V
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Significance

If electrons in the beam had velocities above or below the answer in part (a), those electrons would have a stronger net force
exerted by either the magnetic or electric field. Therefore, only those electrons at this specific velocity would make it through.

Figure  shows a silver ribbon whose cross section is 1.0 cm by 0.20 cm. The ribbon carries a current of 100 A from left to
right, and it lies in a uniform magnetic field of magnitude 1.5 T. Using a density value of  electrons per cubic
meter for silver, find the Hall potential between the edges of the ribbon.

Figure : Finding the Hall potential in a silver ribbon in a magnetic field is shown.

Strategy

Since the majority of charge carriers are electrons, the polarity of the Hall voltage is that indicated in the figure. The value of
the Hall voltage is calculated using Equation .

Solution

When calculating the Hall voltage, we need to know the current through the material, the magnetic field, the length, the
number of charge carriers, and the area. Since all of these are given, the Hall voltage is calculated as:

Significance

As in this example, the Hall potential is generally very small, and careful experimentation with sensitive equipment is required
for its measurement.

A Hall probe consists of a copper strip,  electrons per cubic meter, which is 2.0 cm wide and 0.10 cm thick.
What is the magnetic field when I = 50 A and the Hall potential is

a.  and
b. ?

Answer a

1.1 T

Answer b

1.6 T

This page titled 7.8: The Hall Effect is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

 The Hall Potential in a Silver Ribbon
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 Exercise 7.8.1
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7.9: The Biot-Savart Law

By the end of this section, you will be able to:

Explain how to derive a magnetic field from an arbitrary current in a line segment
Calculate magnetic field from the Biot-Savart law in specific geometries, such as a current in a line and a current in a
circular arc
Explain how the Biot-Savart law is used to determine the magnetic field due to a thin, straight wire.
Determine the dependence of the magnetic field from a thin, straight wire based on the distance from it and the current
flowing in the wire.
Sketch the magnetic field created from a thin, straight wire by using the second right-hand rule.
Explain how parallel wires carrying currents can attract or repel each other
Define the ampere and describe how it is related to current-carrying wires
Calculate the force of attraction or repulsion between two current-carrying wires

We have seen that mass produces a gravitational field and also interacts with that field. Charge produces an electric field and also
interacts with that field. Since moving charge (that is, current) interacts with a magnetic field, we might expect that it also creates
that field—and it does.

Figure : A current element  produces a magnetic field at point  given by the Biot-Savart law (Equation ).

The equation used to calculate the magnetic field produced by a current is known as the Biot-Savart law. It is an empirical law
named in honor of two scientists who investigated the interaction between a straight, current-carrying wire and a permanent
magnet. This law enables us to calculate the magnitude and direction of the magnetic field produced by a current in a wire. The
Biot-Savart law states that at any point  (Figure ), the magnetic field  due to an element  of a current-carrying wire is
given by

The constant  is known as the permeability of free space and is exactly

in the SI system. The infinitesimal wire segment  is in the same direction as the current  (assumed positive),  is the distance
from  to  and  is a unit vector that points from  to , as shown in Figure . The direction of  is determined by
applying the right-hand rule to the vector product . The magnitude of  is

where  is the angle between  and . Notice that if , then . The field produced by a current element  has no
component parallel to .

 Learning Objectives

7.9.1 Idl ⃗  P 7.9.4

P 7.9.1 dB⃗  dl ⃗ 

d = .B⃗  μ0

4π

Id ×l ⃗  r̂

r2
(7.9.1)

μ0

= 4π× T ⋅m/Aμ0 10−7 (7.9.2)
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The magnetic field due to a finite length of current-carrying wire is found by integrating Equation  along the wire, giving us
the usual form of the Biot-Savart law.

The magnetic field  due to an element  of a current-carrying wire is given by

Since this is a vector integral, contributions from different current elements may not point in the same direction. Consequently, the
integral is often difficult to evaluate, even for fairly simple geometries. The following strategy may be helpful.

To solve Biot-Savart law problems, the following steps are helpful:

1. Identify that the Biot-Savart law is the chosen method to solve the given problem. If there is symmetry in the problem
comparing  and , Ampère’s law may be the preferred method to solve the question.

2. Draw the current element length  and the unit vector  noting that  points in the direction of the current and  points
from the current element toward the point where the field is desired.

3. Calculate the cross product .The resultant vector gives the direction of the magnetic field according to the Biot-
Savart law.

4. Use Equation  and substitute all given quantities into the expression to solve for the magnetic field. Note all variables
that remain constant over the entire length of the wire may be factored out of the integration.

5. Use the right-hand rule to verify the direction of the magnetic field produced from the current or to write down the direction
of the magnetic field if only the magnitude was solved for in the previous part.

A short wire of length 1.0 cm carries a current of 2.0 A in the vertical direction (Figure ). The rest of the wire is shielded
so it does not add to the magnetic field produced by the wire. Calculate the magnetic field at point P, which is 1 meter from the
wire in the x-direction.

Figure : A small line segment carries a current  in the vertical direction. What is the magnetic field at a distance x from
the segment?

Strategy

We can determine the magnetic field at point  using the Biot-Savart law. Since the current segment is much smaller than the
distance x, we can drop the integral from the expression. The integration is converted back into a summation, but only for
small , which we now write as . Another way to think about it is that each of the radius values is nearly the same, no
matter where the current element is on the line segment, if  is small compared to x. The angle  is calculated using a tangent
function. Using the numbers given, we can calculate the magnetic field at .

Solution

The angle between  and  is calculated from trigonometry, knowing the distances l and x from the problem:

7.9.2

 Biot-Savart law

B⃗  dl ⃗ 

= .B⃗  μ0

4π
∫
wire

I d ×l ⃗  r̂

r2
(7.9.4)

 Problem-Solving Strategy: Solving Biot-Savart Problems

B⃗  dl ⃗ 

dl ⃗  r̂ dl ⃗  r̂

d ×l ⃗  r̂

7.9.4

 Example : Calculating Magnetic Fields of Short Current Segments7.9.1

7.9.2

7.9.2 I
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The magnetic field at point  is calculated by the Biot-Savart law (Equation ):

From the right-hand rule and the Biot-Savart law, the field is directed into the page.

Significance

This approximation is only good if the length of the line segment is very small compared to the distance from the current
element to the point. If not, the integral form of the Biot-Savart law must be used over the entire line segment to calculate the
magnetic field.

Using Example , at what distance would P have to be to measure a magnetic field half of the given answer?

Solution

1.41 meters

A wire carries a current I in a circular arc with radius R swept through an arbitrary angle  (Figure ). Calculate the
magnetic field at the center of this arc at point P.

Figure : A wire segment carrying a current I. The path  and radial direction  are indicated.

Strategy

We can determine the magnetic field at point P using the Biot-Savart law. The radial and path length directions are always at a
right angle, so the cross product turns into multiplication. We also know that the distance along the path dl is related to the
radius times the angle  (in radians). Then we can pull all constants out of the integration and solve for the magnetic field.

Solution

The Biot-Savart law starts with the following equation:

As we integrate along the arc, all the contributions to the magnetic field are in the same direction (out of the page), so we can
work with the magnitude of the field. The cross product turns into multiplication because the path  and the radial direction
are perpendicular. We can also substitute the arc length formula, :

θ = ( ) = .tan−1 1 m

0.01 m
89.4o

P 7.9.3

B =
μ0

4π

IΔl sin θ

r2

= (1 × T ⋅m/A)( )10−7 2 A(0.01 m) sin ( )89.4o

(1 m)2

= 2.0 × T .10−9

 Exercise 7.9.1

7.9.1

 Example : Calculating Magnetic Field of a Circular Arc of Wire7.9.2

θ 7.9.3
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∫
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The current and radius can be pulled out of the integral because they are the same regardless of where we are on the path. This
leaves only the integral over the angle,

The angle varies on the wire from 0 to ; hence, the result is

Significance

The direction of the magnetic field at point  is determined by the right-hand rule, as shown in the previous chapter. If there
are other wires in the diagram along with the arc, and you are asked to find the net magnetic field, find each contribution from
a wire or arc and add the results by superposition of vectors. Make sure to pay attention to the direction of each contribution.
Also note that in a symmetric situation, like a straight or circular wire, contributions from opposite sides of point  cancel
each other.

The wire loop forms a full circle of radius R and current I. What is the magnitude of the magnetic field at the center?

Solution

Magnetic Field of a Long Straight Wire
We begin by computing the field of a long-straight wire that carries a current . Aside from the vectors, the procedure follows
almost exactly the same path as the case of the electric field of a long line of charge.

Figure : – Calculating Magnetic Field of Long, Straight Wire

One of the key differences between computing magnetic fields and electric fields is that while we were able to use symmetry to
help us solve for components of the electric field, in the case of the magnetic field, this is much harder to do, and is much safer to
just get all the vectors right and trust vector math thereafter. We could have used this "trust the vector math" approach for the
electric field as well, of course, but the necessity of using it in cases where cross-products are involved becomes quickly apparent.

B = dθ.
Iμ0

4πr
∫
wire

θ

B = .
Iθμ0

4πr

P

P

 Exercise 7.9.2
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Okay, we start by expressing all the relevant quantities in terms of our chosen coordinate system:

Next, write down Biot-Savart's law for the current element, and simplify:

All that remains is to add up the contributions to the field from all the current elements, which means integrating this from 
 to :

The resemblance the magnitude of this field bears to that of the electric field (Equation 1.5.2) is interesting, though not all that
surprising, given that both fields weaken with distance from the source according to an inverse-square law. The direction of the
magnetic field vector is tangent to a circle centered at the line of the current, and circles around the current line.

 

Figure : – Magnetic Field Circulates Around the Long, Straight Wire

As with the electric field, the magnetic field obeys superposition, which means we can combine the result of this physical situation
with others to get a net magnetic field. It is also worth noting that both the moving point charge and the long, straight wire yield
magnetic fields whose line close back on themselves (form closed loops) – in nether case does a field emanate out of or into the
source. There are no magnetic monopole fields.
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Magnetic Field of a Long Straight Wire
How much current is needed to produce a significant magnetic field, perhaps as strong as Earth’s field? Surveyors will tell you that
overhead electric power lines create magnetic fields that interfere with their compass readings. Indeed, when Oersted discovered in
1820 that a current in a wire affected a compass needle, he was not dealing with extremely large currents. How does the shape of
wires carrying current affect the shape of the magnetic field created? We noted in Chapter 28 that a current loop created a magnetic
field similar to that of a bar magnet, but what about a straight wire? We can use the Biot-Savart law to answer all of these
questions, including determining the magnetic field of a long straight wire.

Figure  shows a section of an infinitely long, straight wire that carries a current I. What is the magnetic field at a point P,
located a distance R from the wire?

Figure : A section of a thin, straight current-carrying wire. The independent variable  has the limits  and .

Let’s begin by considering the magnetic field due to the current element  located at the position x. Using the right-hand rule 1
from the previous chapter,  points out of the page for any element along the wire. At point , therefore, the magnetic fields
due to all current elements have the same direction. This means that we can calculate the net field there by evaluating the scalar
sum of the contributions of the elements. With

we have from the Biot-Savart law

The wire is symmetrical about point , so we can set the limits of the integration from zero to infinity and double the answer,
rather than integrate from negative infinity to positive infinity. Based on the picture and trigonometry, we can write expressions for 
 and  in terms of x and R, namely:

Substituting these expressions into Equation , the magnetic field integration becomes

Evaluating the integral yields

Substituting the limits gives us the solution

7.9.1

7.9.6 θ θ1 θ2

I dx⃗ 
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The magnetic field lines of the infinite wire are circular and centered at the wire (Figure ), and they are identical in every
plane perpendicular to the wire. Since the field decreases with distance from the wire, the spacing of the field lines must increase
correspondingly with distance. The direction of this magnetic field may be found with a second form of the right-hand rule
(Figure ). If you hold the wire with your right hand so that your thumb points along the current, then your fingers wrap around
the wire in the same sense as .

Figure :      . Some magnetic field lines of an infinite wire. The direction of  can be found with a form of the right-hand rule.

The direction of the field lines can be observed experimentally by placing several small compass needles on a circle near the wire,
as illustrated in Figure . When there is no current in the wire, the needles align with Earth’s magnetic field. However, when a
large current is sent through the wire, the compass needles all point tangent to the circle. Iron filings sprinkled on a horizontal
surface also delineate the field lines, as shown in Figure .

Figure : The shape of the magnetic field lines of a long wire can be seen using (a) small compass needles and (b) iron filings.

Three wires sit at the corners of a square, all carrying currents of 2 amps into the page as shown in Figure . Calculate the
magnitude of the magnetic field at the other corner of the square, point P, if the length of each side of the square is 1 cm.

Figure        : Three wires have current flowing into the page. The magnetic field is determined at the fourth corner of the
square.

B = .
Iμ0

2πR
(7.9.14)
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 Example : Calculating Magnetic Field Due to Three Wires7.9.3
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Strategy

The magnetic field due to each wire at the desired point is calculated. The diagonal distance is calculated using the
Pythagorean theorem. Next, the direction of each magnetic field’s contribution is determined by drawing a circle centered at
the point of the wire and out toward the desired point. The direction of the magnetic field contribution from that wire is
tangential to the curve. Lastly, working with these vectors, the resultant is calculated.

Solution

Wires 1 and 3 both have the same magnitude of magnetic field contribution at point P:

Wire 2 has a longer distance and a magnetic field contribution at point P of:

The vectors for each of these magnetic field contributions are shown.

The magnetic field in the x-direction has contributions from wire 3 and the x-component of wire 2:

The y-component is similarly the contributions from wire 1 and the y-component of wire 2:

Therefore, the net magnetic field is the resultant of these two components:

Significance

The geometry in this problem results in the magnetic field contributions in the x- and y-directions having the same magnitude.
This is not necessarily the case if the currents were different values or if the wires were located in different positions.
Regardless of the numerical results, working on the components of the vectors will yield the resulting magnetic field at the
point in need.

Using Example        , keeping the currents the same in wires 1 and 3, what should the current be in wire 2 to counteract the
magnetic fields from wires 1 and 3 so that there is no net magnetic field at point ?

Solution
4 amps flowing out of the page

= = = = 4 × T .B1 B3
Iμ0

2πR

(4π× T ⋅m/A)(2 A)10−7

2π(0.01 m)
10−5 (7.9.15)

= = = 3 × T .B2
Iμ0

2πR

(4π× T ⋅m/A)(2 A)10−7

2π(0.01414 m)
10−5 (7.9.16)

= −4 × T −2.83 × T cos( ) = −6 × T .Bnet x 10−5 10−5 45o 10−5 (7.9.17)

= −4 × T −2.83 × T sin( ) = −6 × T .Bnet y 10−5 10−5 45o 10−5 (7.9.18)

Bnet = +B2
net x Bnet y

− −−−−−−−−−−
√

= (−6 × T +(−6 × T10−5 )2 10−5 )2
− −−−−−−−−−−−−−−−−−−−−−−−−

√

= 8.48 × T .10−5

(7.9.19)

(7.9.20)

(7.9.21)

 Exercise 7.9.3
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Magnetic Force between Two Parallel Currents
You might expect that two current-carrying wires generate significant forces between them, since ordinary currents produce
magnetic fields and these fields exert significant forces on ordinary currents. But you might not expect that the force between wires
is used to define the ampere. It might also surprise you to learn that this force has something to do with why large circuit breakers
burn up when they attempt to interrupt large currents.

The force between two long, straight, and parallel conductors separated by a distance r can be found by applying what we have
developed in the preceding sections. Figure  shows the wires, their currents, the field created by one wire, and the consequent
force the other wire experiences from the created field. Let us consider the field produced by wire 1 and the force it exerts on wire
2 (call the force ). The field due to  at a distance r is

Figure : (a) The magnetic field produced by a long straight conductor is perpendicular to a parallel conductor, as indicated by
right-hand rule (RHR)-2. (b) A view from above of the two wires shown in (a), with one magnetic field line shown for wire 1.
RHR-1 shows that the force between the parallel conductors is attractive when the currents are in the same direction. A similar
analysis shows that the force is repulsive between currents in opposite directions.

This field is uniform from the wire 1 and perpendicular to it, so the force  it exerts on a length l of wire 2 is given by 
 with :

The forces on the wires are equal in magnitude, so we just write F for the magnitude of  (Note that .) Since the wires
are very long, it is convenient to think in terms of F/l, the force per unit length. Substituting the expression for  into Equation 

 and rearranging terms gives

The ratio F/l is the force per unit length between two parallel currents  and  separated by a distance r. The force is attractive if
the currents are in the same direction and repulsive if they are in opposite directions.

This force is responsible for the pinch effect in electric arcs and other plasmas. The force exists whether the currents are in wires or
not. It is only apparent if the overall charge density is zero; otherwise, the Coulomb repulsion overwhelms the magnetic attraction.
In an electric arc, where charges are moving parallel to one another, an attractive force squeezes currents into a smaller tube. In
large circuit breakers, such as those used in neighborhood power distribution systems, the pinch effect can concentrate an arc
between plates of a switch trying to break a large current, burn holes, and even ignite the equipment. Another example of the pinch
effect is found in the solar plasma, where jets of ionized material, such as solar flares, are shaped by magnetic forces.

The definition of the ampere is based on the force between current-carrying wires. Note that for long, parallel wires separated by 1
meter with each carrying 1 ampere, the force per meter is

7.9.1

F2 I1

=B1
μ0I1

2πr
(7.9.22)

7.9.9

F2

F = IlB sin θ sin θ = 1

= l .F2 I2 B1 (7.9.23)

F2 = −F ⃗ 
1 F ⃗ 

2

B1

7.9.23

 Note

= .
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μ0I1I2

2πr
(7.9.24)

I1 I2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76602?pdf


7.9.10 https://phys.libretexts.org/@go/page/76602

Since  is exactly  by definition, and because , the force per meter is exactly 
. This is the basis of the definition of the ampere.

Infinite-length wires are impractical, so in practice, a current balance is constructed with coils of wire separated by a few
centimeters. Force is measured to determine current. This also provides us with a method for measuring the coulomb. We measure
the charge that flows for a current of one ampere in one second. That is, . For both the ampere and the coulomb, the
method of measuring force between conductors is the most accurate in practice.

Two wires, both carrying current out of the page, have a current of magnitude 5.0 mA. The first wire is located at (0.0 cm, 3.0
cm) while the other wire is located at (4.0 cm, 0.0 cm) as shown in Figure . What is the magnetic force per unit length of
the first wire on the second and the second wire on the first?

Figure : Two current-carrying wires at given locations with currents out of the page.

Strategy

Each wire produces a magnetic field felt by the other wire. The distance along the hypotenuse of the triangle between the wires
is the radial distance used in the calculation to determine the force per unit length. Since both wires have currents flowing in
the same direction, the direction of the force is toward each other.

Solution

The distance between the wires results from finding the hypotenuse of a triangle:

The force per unit length can then be calculated using the known currents in the wires:

The force from the first wire pulls the second wire. The angle between the radius and the x-axis is

The unit vector for this is calculated by

Therefore, the force per unit length from wire one on wire 2 is

The force per unit length from wire 2 on wire 1 is the negative of the previous answer:

Significance

= = 2 × N/m.
F

l

(4π× T ⋅m/A)(1 A10−7 )2

(2π)(1 m)
10−7 (7.9.25)

μ0 4π× T ⋅m/A10−7 1 T = 1 N/(A ⋅m)

2 × N/m10−7

1 C = 1 A ⋅ s

 Example : Calculating Forces on Wires7.9.4

7.9.2

7.9.10

r = = 5.0 cm.(3.0 cm +(4.0 cm)2 )2
− −−−−−−−−−−−−−−−−

√ (7.9.26)

= = 1 × N/m.
F

l

(4π× T ⋅m/A)(5 × A10−7 10−3 )2

(2π)(5 × m)10−2
10−10 (7.9.27)

θ = ta ( ) = .n−1 3 cm

4 cm
36.9o (7.9.28)

cos( ) −sin( ) = 0.8 −0.6 .36.9o î 36.9o ĵ î ĵ (7.9.29)

= (1 × N/m) ×(0.8 −0.6 ) = (8 × −6 × )N/m.
F ⃗ 

l
10−10 î ĵ 10−11 î 10−11 ĵ (7.9.30)

= (−8 × +6 × )N/m.
F ⃗ 

l
10−11 î 10−11 ĵ (7.9.31)
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These wires produced magnetic fields of equal magnitude but opposite directions at each other’s locations. Whether the fields
are identical or not, the forces that the wires exert on each other are always equal in magnitude and opposite in direction
(Newton’s third law).

Two wires, both carrying current out of the page, have a current of magnitude 2.0 mA and 3.0 mA, respectively. The first wire
is located at (0.0 cm, 5.0 cm) while the other wire is located at (12.0 cm, 0.0 cm). What is the magnitude of the magnetic force
per unit length of the first wire on the second and the second wire on the first?

Answer

Both have a force per unit length of 

Contributors and Attributions
Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

 

This page titled 7.9: The Biot-Savart Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

12.2: The Biot-Savart Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-2.
12.3: Magnetic Field due to a Thin Straight Wire by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
12.4: Magnetic Force between Two Parallel Currents by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
4.4: Sources of Magnetic Fields by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.

 Exercise 7.9.4

9.23 × N/m10−12

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76602?pdf
http://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.09%3A_The_Biot-Savart_Law
https://creativecommons.org/licenses/by/4.0
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-2
https://phys.libretexts.org/@go/page/4421
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-2
https://phys.libretexts.org/@go/page/4422
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-2
https://phys.libretexts.org/@go/page/4423
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-2
https://phys.libretexts.org/@go/page/21535
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/native


7.10.1 https://phys.libretexts.org/@go/page/76605

7.10: Magnetic Field of a Current Loop

By the end of this section, you will be able to:

Explain how the Biot-Savart law is used to determine the magnetic field due to a current in a loop of wire at a point along a
line perpendicular to the plane of the loop.
Determine the magnetic field of an arc of current.

The circular loop of Figure  has a radius R, carries a current I, and lies in the xz-plane. What is the magnetic field due to the
current at an arbitrary point P along the axis of the loop?

Figure : Determining the magnetic field at point P along the axis of a current-carrying loop of wire.

We can use the Biot-Savart law to find the magnetic field due to a current. We first consider arbitrary segments on opposite sides of
the loop to qualitatively show by the vector results that the net magnetic field direction is along the central axis from the loop. From
there, we can use the Biot-Savart law to derive the expression for magnetic field.

Let P be a distance y from the center of the loop. From the right-hand rule, the magnetic field  at P, produced by the current
element  is directed at an angle  above the y-axis as shown. Since  is parallel along the x-axis and  is in the yz-plane, the
two vectors are perpendicular, so we have

where we have used .

Now consider the magnetic field  due to the current element , which is directly opposite  on the loop. The magnitude

of  is also given by Equation , but it is directed at an angle  below the y-axis. The components of  and 
perpendicular to the y-axis therefore cancel, and in calculating the net magnetic field, only the components along the y-axis need to
be considered. The components perpendicular to the axis of the loop sum to zero in pairs. Hence at point P:

 Learning Objectives
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For all elements  on the wire, y, R, and  are constant and are related by

Now from Equation , the magnetic field at P is

where we have used . As discussed in the previous chapter, the closed current loop is a magnetic dipole of moment 

. For this example,  and , so the magnetic field at P can also be written as

By setting  in Equation , we obtain the magnetic field at the center of the loop:

This equation becomes  for a flat coil of n loops per length. It can also be expressed as

If we consider  in Equation , the expression reduces to an expression known as the magnetic field from a dipole:

The calculation of the magnetic field due to the circular current loop at points off-axis requires rather complex mathematics, so
we’ll just look at the results. The magnetic field lines are shaped as shown in Figure . Notice that one field line follows the
axis of the loop. This is the field line we just found. Also, very close to the wire, the field lines are almost circular, like the lines of
a long straight wire.

Figure : Sketch of the magnetic field lines of a circular current loop.
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Two loops of wire carry the same current of 10 mA, but flow in opposite directions as seen in Figure . One loop is
measured to have a radius of  while the other loop has a radius of . The distance from the first loop to
the point where the magnetic field is measured is 0.25 m, and the distance from that point to the second loop is 0.75 m. What is
the magnitude of the net magnetic field at point P?

Figure : Two loops of different radii have the same current but flowing in opposite directions. The magnetic field at
point P is measured to be zero.

Strategy

The magnetic field at point P has been determined in Equation . Since the currents are flowing in opposite directions, the
net magnetic field is the difference between the two fields generated by the coils. Using the given quantities in the problem, the
net magnetic field is then calculated.

Solution

Solving for the net magnetic field using Equation  and the given quantities in the problem yields

 to the right.

Significance

Helmholtz coils typically have loops with equal radii with current flowing in the same direction to have a strong uniform field
at the midpoint between the loops. A similar application of the magnetic field distribution created by Helmholtz coils is found
in a magnetic bottle that can temporarily trap charged particles. See Magnetic Forces and Fields for a discussion on this.

Using Example , at what distance would you have to move the first coil to have zero measurable magnetic field at point
P?

Solution

0.608 meters

 Magnetic Field between Two Loops
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B = 5.77 × T10−9
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Field of a Loop

Another useful field to know is that which points along the axis of a circular loop of current. The method is essentially the same as
above, but the coordinate system used is different, which leads to a little bit more complicated vector manipulation.

Figure 4.4.3 – Calculating Magnetic Field on the Axis of a Circular Loop of Current

Again start by expressing quantities in terms of the coordinates we have set up. We can again write everything in terms of the 
unit vectors, but this time we can do it a bit differently. First we have the magnitude of the segment of wire:

Next we note that tail-to-head vector addition gives:

Biot-Savart's law gives:

Before we can integrate, we have to resolve the vector products. Looking at the diagram, we can see that the current element ,

the position vector of the current element , and the unit vector  are all mutually orthogonal, making  parallel to , and 

 parallel to . This allows us to use the right-hand rule to complete these products:

Putting this result into the integral and noting that magnitudes of the vectors  and  are constant in the integral, and satisfy 
, we get:

While the magnitude of  doesn't change over the integral, its direction does change, so we have to write the unit vector  in
terms of the coordinates to do the integral of the second term. Let's do each integral separately. The first is straightforward, since
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the integral of just  is simply the circumference of the circle:

The second integral just ends up vanishing, giving the result for a magnetic field along the axis of a loop of radius  a distance 
from the plane of the loop:

If we are only interested in the field at the center of the loop, we plug in  to get the simple result:

The direction of  shows us yet another shortcut for using the right-hand-rule for the field along the axis (and only along the axis!)
of a loop: Curl the fingers of the right hand such that they trace the circulation of the current around the loop, and the thumb points
the direction of the field.

We have already talked about a loop as a magnetic dipole which interacts with fields that are present, and here (as in the case of the
electric dipole), we see that the dipole also emits a field, and this field – like the electric dipole field – gets weaker as the inverse
cube of the distance (which in this case is measured by ). Also, like the electric dipole, the field along its axis points in the
direction of the dipole moment:

Figure 4.4.4 – Magnetic Dipole Field of a Loop
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7.11: Ampère’s Law

By the end of this section, you will be able to:

Explain how Ampère’s law relates the magnetic field produced by a current to the value of the current
Calculate the magnetic field from a long straight wire, either thin or thick, by Ampère’s law

A fundamental property of a static magnetic field is that, unlike an electrostatic field, it is not conservative. A conservative field is
one that does the same amount of work on a particle moving between two different points regardless of the path chosen. Magnetic
fields do not have such a property. Instead, there is a relationship between the magnetic field and its source, electric current. It is
expressed in terms of the line integral of  and is known as Ampère’s law. This law can also be derived directly from the Biot-
Savart law. We now consider that derivation for the special case of an infinite, straight wire.

Figure  shows an arbitrary plane perpendicular to an infinite, straight wire whose current I is directed out of the page. The
magnetic field lines are circles directed counterclockwise and centered on the wire. To begin, let’s consider  over the
closed paths M and N. Notice that one path (M) encloses the wire, whereas the other (N) does not. Since the field lines are circular,

 is the product of B and the projection of dl onto the circle passing through . If the radius of this particular circle is r, the
projection is , and

Figure : The current I of a long, straight wire is directed out of the page. The integral  equals  and 0, respectively, for
paths M and N.

With  given by Equation 12.4.1,

For path M, which circulates around the wire,  and

Path N, on the other hand, circulates through both positive (counterclockwise) and negative (clockwise)  (see Figure ), and
since it is closed, . Thus for path N,
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The extension of this result to the general case is Ampère’s law.

Over an arbitrary closed path,

where I is the total current passing through any open surface S whose perimeter is the path of integration. Only currents inside
the path of integration need be considered.

To determine whether a specific current I is positive or negative, curl the fingers of your right hand in the direction of the path of
integration, as shown in Figure . If I passes through S in the same direction as your extended thumb, I is positive; if I passes
through S in the direction opposite to your extended thumb, it is negative.

To calculate the magnetic field created from current in wire(s), use the following steps:

1. Identify the symmetry of the current in the wire(s). If there is no symmetry, use the Biot-Savart law to determine the
magnetic field.

2. Determine the direction of the magnetic field created by the wire(s) by right-hand rule 2.
3. Chose a path loop where the magnetic field is either constant or zero.
4. Calculate the current inside the loop.
5. Calculate the line integral  around the closed loop.
6. Equate  with  with  and solve for .

Use Ampère’s law to calculate the magnetic field due to a steady current I in an infinitely long, thin, straight wire as shown in
Figure .

Figure : The possible components of the magnetic field B due to a current I, which is directed out of the page. The radial
component is zero because the angle between the magnetic field and the path is at a right angle.

Strategy

Consider an arbitrary plane perpendicular to the wire, with the current directed out of the page. The possible magnetic field
components in this plane,  and  are shown at arbitrary points on a circle of radius r centered on the wire. Since the field is

⋅ d = 0.∮
N

B⃗  l ⃗  (7.11.4)
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cylindrically symmetric, neither  nor  varies with the position on this circle. Also from symmetry, the radial lines, if they
exist, must be directed either all inward or all outward from the wire. This means, however, that there must be a net magnetic
flux across an arbitrary cylinder concentric with the wire. The radial component of the magnetic field must be zero because 

. Therefore, we can apply Ampère’s law to the circular path as shown.

Solution

Over this path  is constant and parallel to , so

Thus Ampère’s law reduces to

Finally, since  is the only component of , we can drop the subscript and write

This agrees with the Biot-Savart calculation above.

Significance

Ampère’s law works well if you have a path to integrate over which  has results that are easy to simplify. For the infinite
wire, this works easily with a path that is circular around the wire so that the magnetic field factors out of the integration. If the
path dependence looks complicated, you can always go back to the Biot-Savart law and use that to find the magnetic field.

The radius of the long, straight wire of Figure  is a, and the wire carries a current  that is distributed uniformly over its
cross-section. Find the magnetic field both inside and outside the wire.

Figure : (a) A model of a current-carrying wire of radius a and current . (b) A cross-section of the same wire showing
the radius a and the Ampère’s loop of radius r.

Strategy

This problem has the same geometry as Example , but the enclosed current changes as we move the integration path
from outside the wire to inside the wire, where it doesn’t capture the entire current enclosed (see Figure ).

Solution

For any circular path of radius r that is centered on the wire,

From Ampère’s law, this equals the total current passing through any surface bounded by the path of integration.

Br Bθ
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Consider first a circular path that is inside the wire  such as that shown in part (a) of Figure . We need the current
I passing through the area enclosed by the path. It’s equal to the current density J times the area enclosed. Since the current is
uniform, the current density inside the path equals the current density in the whole wire, which is . Therefore the current
I passing through the area enclosed by the path is

We can consider this ratio because the current density J is constant over the area of the wire. Therefore, the current density of a
part of the wire is equal to the current density in the whole area. Using Ampère’s law, we obtain

and the magnetic field inside the wire is

Outside the wire, the situation is identical to that of the infinite thin wire of the previous example; that is,

The variation of B with r is shown in Figure .

Figure : Variation of the magnetic field produced by a current  in a long, straight wire of radius a.

Significance

The results show that as the radial distance increases inside the thick wire, the magnetic field increases from zero to a familiar
value of the magnetic field of a thin wire. Outside the wire, the field drops off regardless of whether it was a thick or thin wire.

This result is similar to how Gauss’s law for electrical charges behaves inside a uniform charge distribution, except that
Gauss’s law for electrical charges has a uniform volume distribution of charge, whereas Ampère’s law here has a uniform area
of current distribution. Also, the drop-off outside the thick wire is similar to how an electric field drops off outside of a linear
charge distribution, since the two cases have the same geometry and neither case depends on the configuration of charges or
currents once the loop is outside the distribution.

Use Ampère’s law to evaluate  for the current configurations and paths in Figure .
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Figure : Current configurations and paths for Example .

Strategy

Ampère’s law states that  where I is the total current passing through the enclosed loop. The quickest way to
evaluate the integral is to calculate  by finding the net current through the loop. Positive currents flow with your right-hand
thumb if your fingers wrap around in the direction of the loop. This will tell us the sign of the answer.

Solution

(a) The current going downward through the loop equals the current going out of the loop, so the net current is zero. Thus, 

(b) The only current to consider in this problem is 2A because it is the only current inside the loop. The right-hand rule shows
us the current going downward through the loop is in the positive direction. Therefore, the answer is 

(c) The right-hand rule shows us the current going downward through the loop is in the positive direction. There are 
 of current going downward and –3 A going upward. Therefore, the total current is 9 A and 

.

Significance

If the currents all wrapped around so that the same current went into the loop and out of the loop, the net current would be zero
and no magnetic field would be present. This is why wires are very close to each other in an electrical cord. The currents
flowing toward a device and away from a device in a wire equal zero total current flow through an Ampère loop around these
wires. Therefore, no stray magnetic fields can be present from cords carrying current.

Consider using Ampère’s law to calculate the magnetic fields of a finite straight wire and of a circular loop of wire. Why is it
not useful for these calculations?

Answer

In these cases the integrals around the Ampèrian loop are very difficult because there is no symmetry, so this method would
not be useful.
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7.11.5 7.11.3

∮ ⋅ d = IB⃗  l ⃗  μ0

Iμ0

∮ ⋅ d = 0.B⃗  l ⃗ 

∮ ⋅ d = (2 A) = 2.51 × T ⋅m.B⃗  l ⃗  μ0 10−6

7A+5A = 12A

∮ ⋅ d = (9 A) = 5.65 × T ⋅mB⃗  l ⃗  μ0 10−6
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7.12: Solenoids and Toroids

By the end of this section, you will be able to:

Establish a relationship for how the magnetic field of a solenoid varies with distance and current by using both the Biot-
Savart law and Ampère’s law
Establish a relationship for how the magnetic field of a toroid varies with distance and current by using Ampère’s law

Two of the most common and useful electromagnetic devices are called solenoids and toroids. In one form or another, they are part
of numerous instruments, both large and small. In this section, we examine the magnetic field typical of these devices.

Solenoids
A long wire wound in the form of a helical coil is known as a solenoid. Solenoids are commonly used in experimental research
requiring magnetic fields. A solenoid is generally easy to wind, and near its center, its magnetic field is quite uniform and directly
proportional to the current in the wire.

Figure  shows a solenoid consisting of N turns of wire tightly wound over a length L. A current I is flowing along the wire
of the solenoid. The number of turns per unit length is N/L; therefore, the number of turns in an infinitesimal length dy are (N/L)dy
turns. This produces a current

We first calculate the magnetic field at the point P of Figure . This point is on the central axis of the solenoid. We are
basically cutting the solenoid into thin slices that are dy thick and treating each as a current loop. Thus, dI is the current through
each slice. The magnetic field  due to the current dI in dy can be found with the help of Equation 12.5.3 and Equation :

where we used Equation  to replace dI. The resultant field at P is found by integrating  along the entire length of the
solenoid. It’s easiest to evaluate this integral by changing the independent variable from y to . From inspection of Figure ,
we have:

 Learning Objectives
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Figure : (a) A solenoid is a long wire wound in the shape of a helix. (b) The magnetic field at the point P on the axis of the
solenoid is the net field due to all of the current loops.

Taking the differential of both sides of this equation, we obtain

When this is substituted into the equation for , we have

which is the magnetic field along the central axis of a finite solenoid.

Of special interest is the infinitely long solenoid, for which . From a practical point of view, the infinite solenoid is one
whose length is much larger than its radius . In this case,  and . Then from Equation , the
magnetic field along the central axis of an infinite solenoid is

or

where n is the number of turns per unit length. You can find the direction of  with a right-hand rule: Curl your fingers in the
direction of the current, and your thumb points along the magnetic field in the interior of the solenoid.

7.12.1

cos θ dθ = [− + ] dy
y2

( +y2 R2)3/2

1

+y2 R2
− −−−−−

√
(7.12.4)

= .
dyR2

( +y2 R2)3/2
(7.12.5)
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We now use these properties, along with Ampère’s law, to calculate the magnitude of the magnetic field at any location inside the
infinite solenoid. Consider the closed path of Figure . Along segment 1,  is uniform and parallel to the path. Along
segments 2 and 4,  is perpendicular to part of the path and vanishes over the rest of it. Therefore, segments 2 and 4 do not
contribute to the line integral in Ampère’s law. Along segment 3,  because the magnetic field is zero outside the solenoid. If
you consider an Ampère’s law loop outside of the solenoid, the current flows in opposite directions on different segments of wire.
Therefore, there is no enclosed current and no magnetic field according to Ampère’s law. Thus, there is no contribution to the line
integral from segment 3. As a result, we find

Figure : The path of integration used in Ampère’s law to evaluate the magnetic field of an infinite solenoid.

The solenoid has n turns per unit length, so the current that passes through the surface enclosed by the path is nlI. Therefore, from
Ampère’s law,

and

within the solenoid. This agrees with what we found earlier for B on the central axis of the solenoid. Here, however, the location of
segment 1 is arbitrary, so we have found that this equation gives the magnetic field everywhere inside the infinite solenoid.

Outside the solenoid, one can draw an Ampère’s law loop around the entire solenoid. This would enclose current flowing in both
directions. Therefore, the net current inside the loop is zero. According to Ampère’s law, if the net current is zero, the magnetic
field must be zero. Therefore, for locations outside of the solenoid’s radius, the magnetic field is zero.

When a patient undergoes a magnetic resonance imaging (MRI) scan, the person lies down on a table that is moved into the center
of a large solenoid that can generate very large magnetic fields. The solenoid is capable of these high fields from high currents
flowing through superconducting wires. The large magnetic field is used to change the spin of protons in the patient’s body. The
time it takes for the spins to align or relax (return to original orientation) is a signature of different tissues that can be analyzed to
see if the structures of the tissues is normal (Figure ).

7.12.2 B⃗ 

B⃗ 

= 0B⃗ 

∮ ⋅ d = ⋅ d = Bl.B⃗  l ⃗  ∫
1
B⃗  l ⃗  (7.12.9)

7.12.2

Bl = nlIμ0 (7.12.10)

 Note

B = nIμ0 (7.12.11)
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Figure : . In an MRI machine, a large magnetic field is generated by the cylindrical solenoid surrounding the patient. (credit:
Liz West)

A solenoid has 300 turns wound around a cylinder of diameter 1.20 cm and length 14.0 cm. If the current through the coils is
0.410 A, what is the magnitude of the magnetic field inside and near the middle of the solenoid?

Strategy

We are given the number of turns and the length of the solenoid so we can find the number of turns per unit length. Therefore,
the magnetic field inside and near the middle of the solenoid is given by Equation . Outside the solenoid, the magnetic
field is zero.

Solution

The number of turns per unit length is

The magnetic field produced inside the solenoid is

Significance

This solution is valid only if the length of the solenoid is reasonably large compared with its diameter. This example is a case
where this is valid.

What is the ratio of the magnetic field produced from using a finite formula over the infinite approximation for an angle  of
(a) ? (b) ? The solenoid has 1000 turns in 50 cm with a current of 1.0 A flowing through the coils

Solution

a. 1.00382; b. 1.00015

Toroids
A toroid is a donut-shaped coil closely wound with one continuous wire, as illustrated in part (a) of Figure . If the toroid has
N windings and the current in the wire is I, what is the magnetic field both inside and outside the toroid?

7.12.3

 Example : Magnetic Field Inside a SOlenoid7.12.1

7.12.11

n = = 2.14 × turns/m.
300 turns

0.140 m
103 (7.12.12)

B = nI = (4π× T ⋅m/A)(2.14 × turns/m)(0.410 A)μ0 10−7 103 (7.12.13)

B = 1.10 × T .10−3 (7.12.14)

 Exercise 7.12.1
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Figure : (a) A toroid is a coil wound into a donut-shaped object. (b) A loosely wound toroid does not have cylindrical
symmetry. (c) In a tightly wound toroid, cylindrical symmetry is a very good approximation. (d) Several paths of integration for
Ampère’s law.

We begin by assuming cylindrical symmetry around the axis OO’. Actually, this assumption is not precisely correct, for as part (b)
of Figure  shows, the view of the toroidal coil varies from point to point (for example,  and ) on a circular path
centered around OO’. However, if the toroid is tightly wound, all points on the circle become essentially equivalent [part (c) of
Figure ], and cylindrical symmetry is an accurate approximation.

With this symmetry, the magnetic field must be tangent to and constant in magnitude along any circular path centered on OO’. This
allows us to write for each of the paths  and  shown in part (d) of Figure ,

Ampère’s law relates this integral to the net current passing through any surface bounded by the path of integration. For a path that
is external to the toroid, either no current passes through the enclosing surface (path ), or the current passing through the surface
in one direction is exactly balanced by the current passing through it in the opposite direction (path ). In either case, there is no
net current passing through the surface, so

and

The turns of a toroid form a helix, rather than circular loops. As a result, there is a small field external to the coil; however, the
derivation above holds if the coils were circular.

For a circular path within the toroid (path ), the current in the wire cuts the surface N times, resulting in a net current NI through
the surface. We now find with Ampère’s law,

and

7.12.4

7.12.4 ,P1 P2 P3

7.12.4

,D1 D2 D3 7.12.4

∮ ⋅ d = B(2πr).B⃗  l ⃗  (7.12.15)

D1

D3

∮ B(2πr) = 0 (7.12.16)

B = 0 (outside the toroid). (7.12.17)

D2

B(2πr) = NIμ0 (7.12.18)
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The magnetic field is directed in the counterclockwise direction for the windings shown. When the current in the coils is reversed,
the direction of the magnetic field also reverses.

The magnetic field inside a toroid is not uniform, as it varies inversely with the distance r from the axis OO’. However, if the
central radius R (the radius midway between the inner and outer radii of the toroid) is much larger than the cross-sectional diameter
of the coils r, the variation is fairly small, and the magnitude of the magnetic field may be calculated by Equation  where 

.

Field of a Solenoid
It is possible to stack lots of individual dipoles on top of each other to create a long tube called a solenoid. Such a device consists of
a number of turns in the coil , and a length , resulting in what will be the critical measure, the turn density:

Figure 4.4.5 – A Solenoid

How do we compute the field for such an object? Well, first of all, we need to specify what field we want. Like the loop, we will
only look on the axis. But we will also simplify it further by assuming we are looking at a point on the axis inside the solenoid far
from the ends (so essentially it has an infinite length, though the turn density is of course finite).

We treat this as a collection of an infinite number of loops. If we pick an origin (which we can place anywhere along the infinite
axis), then we have the field at that point by a loop at a position  on the axis is given by Equation 4.4.10. Then we need to add up
the field contributions at the origin due to all of the loops. The problem is, there is not a loop at every point along the -axis. With a
turn density of , the number of turns in a tiny slice  would be  The total current in that slice would then be this number
multiplied by the current through the wound wire (which we will call ):

Plugging this into Equation 4.4.10 for the current, gives the tiny contribution to the field by the slice, and adding them all up gives
the field. We are not given the radius of the solenoid, but we will call it , and we'll see that it isn't relevant!

There are a few particularly interesting aspects of the fields of solenoids, which are not immediately evident from this solution, but
which we will state without proof (for now – we have another tool to use later that makes this easier):

The field within the solenoid doesn’t change much (it is pretty much uniform). This basically comes from the fact – as we found
here – that the field on the axis doesn't depend upon the radius of the solenoid.
The field just outside the solenoid (on its side, not the end) is very weak (basically it is zero).
The field looks just like that of a bar magnet, but it can be turned on and off by switching the current on or off.

Figure 4.4.6 – Solenoid Magnetic Field

 Note

B = (within the toroid).
NIμ0

2πr
(7.12.19)
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Digression: Electromagnets
Solenoids have lots of practical uses, a common one being something known as an “electromagnet.” For example, junk yards
use these to move large chunks of scrap metal. Obviously the ability to cut the current to turn off the magnetic field is key here.
If the crane used a permanent magnet, it wouldn’t be able to let go of the crushed car. Another application is for fire doors.
Imagine large doors held open in hallways of a building with electromagnets, and if a fire breaks out, the power is cut and the
doors close, hopefully slowing the spread of the fire. Gates where you are “buzzed-in” are held shut by a latch that is released
with the activation of an electromagnet that draws the latch back with a magnetic field.
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7.13: Magnetism in Matter

By the end of this section, you will be able to:

Classify magnetic materials as paramagnetic, diamagnetic, or ferromagnetic, based on their response to a magnetic field
Sketch how magnetic dipoles align with the magnetic field in each type of substance
Define hysteresis and magnetic susceptibility, which determines the type of magnetic material

Why are certain materials magnetic and others not? And why do certain substances become magnetized by a field, whereas others
are unaffected? To answer such questions, we need an understanding of magnetism on a microscopic level.

Within an atom, every electron travels in an orbit and spins on an internal axis. Both types of motion produce current loops and
therefore magnetic dipoles. For a particular atom, the net magnetic dipole moment is the vector sum of the magnetic dipole
moments. Values of  for several types of atoms are given in Table . Notice that some atoms have a zero net dipole moment
and that the magnitudes of the nonvanishing moments are typically .

Table : Magnetic Moments of Some Atoms

Atom Magnetic Moment 

H 9.27

He 0

Li 9.27

O 13.9

Na 9.27

S 13.9

A handful of matter has approximately  atoms and ions, each with its magnetic dipole moment. If no external magnetic field is
present, the magnetic dipoles are randomly oriented—as many are pointed up as down, as many are pointed east as west, and so on.
Consequently, the net magnetic dipole moment of the sample is zero. However, if the sample is placed in a magnetic field, these
dipoles tend to align with the field, and this alignment determines how the sample responds to the field. On the basis of this
response, a material is said to be either paramagnetic, ferromagnetic, or diamagnetic.

In a paramagnetic material, only a small fraction (roughly one-third) of the magnetic dipoles are aligned with the applied field.
Since each dipole produces its own magnetic field, this alignment contributes an extra magnetic field, which enhances the applied
field. When a ferromagnetic material is placed in a magnetic field, its magnetic dipoles also become aligned; furthermore, they
become locked together so that a permanent magnetization results, even when the field is turned off or reversed. This permanent
magnetization happens in ferromagnetic materials but not paramagnetic materials. Diamagnetic materials are composed of atoms
that have no net magnetic dipole moment. However, when a diamagnetic material is placed in a magnetic field, a magnetic dipole
moment is directed opposite to the applied field and therefore produces a magnetic field that opposes the applied field. We now
consider each type of material in greater detail.

Paramagnetic Materials
For simplicity, we assume our sample is a long, cylindrical piece that completely fills the interior of a long, tightly wound solenoid.
When there is no current in the solenoid, the magnetic dipoles in the sample are randomly oriented and produce no net magnetic
field. With a solenoid current, the magnetic field due to the solenoid exerts a torque on the dipoles that tends to align them with the
field. In competition with the aligning torque are thermal collisions that tend to randomize the orientations of the dipoles. The
relative importance of these two competing processes can be estimated by comparing the energies involved. The energy difference
between a magnetic dipole aligned with and against a magnetic field is . If  (the value of
atomic hydrogen) and B = 1.0 T, then

 Learning Objectives
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At a room temperature of  the thermal energy per atom is

which is about 220 times greater than . Clearly, energy exchanges in thermal collisions can seriously interfere with the
alignment of the magnetic dipoles. As a result, only a small fraction of the dipoles is aligned at any instant.

The four sketches of Figure  furnish a simple model of this alignment process. In part (a), before the field of the solenoid
(not shown) containing the paramagnetic sample is applied, the magnetic dipoles are randomly oriented and there is no net
magnetic dipole moment associated with the material. With the introduction of the field, a partial alignment of the dipoles takes
place, as depicted in part (b). The component of the net magnetic dipole moment that is perpendicular to the field vanishes. We may
then represent the sample by part (c), which shows a collection of magnetic dipoles completely aligned with the field. By treating
these dipoles as current loops, we can picture the dipole alignment as equivalent to a current around the surface of the material, as
in part (d). This fictitious surface current produces its own magnetic field, which enhances the field of the solenoid.

Figure : The alignment process in a paramagnetic material filling a solenoid (not shown). (a) Without an applied field, the
magnetic dipoles are randomly oriented. (b) With a field, partial alignment occurs. (c) An equivalent representation of part (b). (d)
The internal currents cancel, leaving an effective surface current that produces a magnetic field similar to that of a finite solenoid.

We can express the total magnetic field  in the material as

where  is the field due to the current  in the solenoid and  is the field due to the surface current  around the sample.
Now  is usually proportional to  a fact we express by

where  is a dimensionless quantity called the magnetic susceptibility. Values of  for some paramagnetic materials are given in
Table . Since the alignment of magnetic dipoles is so weak,  is very small for paramagnetic materials. By combining
Equation  and Equation , we obtain:

For a sample within an infinite solenoid, this becomes

This expression tells us that the insertion of a paramagnetic material into a solenoid increases the field by a factor of .
However, since  is so small, the field isn’t enhanced very much.

C27o

≈ kT = (1.38 × J/K)(300 K) = 4.1 × J,UT 10−23 10−21 (7.13.2)
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The quantity

is called the magnetic permeability of a material. In terms of , Equation  can be written as

for the filled solenoid.

Table : Magnetic Susceptibilities*Note: Unless otherwise specified, values given are for room temperature.

Paramagnetic Materials Diamagnetic Materials

Aluminum Bismuth

Calcium Carbon (diamond)

Chromium Copper

Magnesium Lead

Oxygen gas (1 atm) Mercury

Oxygen liquid (90 K) Hydrogen gas (1 atm)

Tungsten Nitrogen gas (1 atm)

Air (1 atm) Water

Diamagnetic Materials

A magnetic field always induces a magnetic dipole in an atom. This induced dipole points opposite to the applied field, so its
magnetic field is also directed opposite to the applied field. In paramagnetic and ferromagnetic materials, the induced magnetic
dipole is masked by much stronger permanent magnetic dipoles of the atoms. However, in diamagnetic materials, whose atoms
have no permanent magnetic dipole moments, the effect of the induced dipole is observable.

We can now describe the magnetic effects of diamagnetic materials with the same model developed for paramagnetic materials. In
this case, however, the fictitious surface current flows opposite to the solenoid current, and the magnetic susceptibility  is
negative. Values of  for some diamagnetic materials are also given in Table .

Water is a common diamagnetic material. Animals are mostly composed of water. Experiments have been performed on frogs
and mice in diverging magnetic fields. The water molecules are repelled from the applied magnetic field against gravity until
the animal reaches an equilibrium. The result is that the animal is levitated by the magnetic field.

Ferromagnetic Materials

Common magnets are made of a ferromagnetic material such as iron or one of its alloys. Experiments reveal that a ferromagnetic
material consists of tiny regions known as magnetic domains. Their volumes typically range from  to , and they
contain about  to  atoms. Within a domain, the magnetic dipoles are rigidly aligned in the same direction by coupling
among the atoms. This coupling, which is due to quantum mechanical effects, is so strong that even thermal agitation at room
temperature cannot break it. The result is that each domain has a net dipole moment. Some materials have weaker coupling and are
ferromagnetic only at lower temperatures.

If the domains in a ferromagnetic sample are randomly oriented, as shown in Figure , the sample has no net magnetic
dipole moment and is said to be unmagnetized. Suppose that we fill the volume of a solenoid with an unmagnetized ferromagnetic
sample. When the magnetic field  of the solenoid is turned on, the dipole moments of the domains rotate so that they align
somewhat with the field, as depicted in Figure . In addition, the aligned domains tend to increase in size at the expense of
unaligned ones. The net effect of these two processes is the creation of a net magnetic dipole moment for the ferromagnet that is
directed along the applied magnetic field. This net magnetic dipole moment is much larger than that of a paramagnetic sample, and

μ = (1 +χ) .μ0 (7.13.7)

μ 7.13.6

B = μnI (7.13.8)
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the domains, with their large numbers of atoms, do not become misaligned by thermal agitation. Consequently, the field due to the
alignment of the domains is quite large.

Figure : (a) Domains are randomly oriented in an unmagnetized ferromagnetic sample such as iron. The arrows represent the
orientations of the magnetic dipoles within the domains. (b) In an applied magnetic field, the domains align somewhat with the
field. (c) The domains of a single crystal of nickel. The white lines show the boundaries of the domains. These lines are produced
by iron oxide powder sprinkled on the crystal.

Besides iron, only four elements contain the magnetic domains needed to exhibit ferromagnetic behavior: cobalt, nickel,
gadolinium, and dysprosium. Many alloys of these elements are also ferromagnetic. Ferromagnetic materials can be described
using Equation  through Equation , the paramagnetic equations. However, the value of  for ferromagnetic material is
usually on the order of  to , and it also depends on the history of the magnetic field to which the material has been subject. A
typical plot of B (the total field in the material) versus  (the applied field) for an initially unmagnetized piece of iron is shown in
Figure . Some sample numbers are (1) for , , and ; for
(2) for , , and .

Figure : (a) The magnetic field B in annealed iron as a function of the applied field .

When  is varied over a range of positive and negative values, B is found to behave as shown in Figure . Note that the
same  (corresponding to the same current in the solenoid) can produce different values of B in the material. The magnetic field
B produced in a ferromagnetic material by an applied field  depends on the magnetic history of the material. This effect is called
hysteresis, and the curve of Figure  is called a hysteresis loop. Notice that B does not disappear when  (i.e., when the
current in the solenoid is turned off). The iron stays magnetized, which means that it has become a permanent magnet.
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Figure : A typical hysteresis loop for a ferromagnet. When the material is first magnetized, it follows a curve from 0 to a.
When  is reversed, it takes the path shown from a to b. If  is reversed again, the material follows the curve from b to a.

Like the paramagnetic sample of Figure , the partial alignment of the domains in a ferromagnet is equivalent to a current
flowing around the surface. A bar magnet can therefore be pictured as a tightly wound solenoid with a large current circulating
through its coils (the surface current). You can see in Figure  that this model fits quite well. The fields of the bar magnet and
the finite solenoid are strikingly similar. The figure also shows how the poles of the bar magnet are identified. To form closed
loops, the field lines outside the magnet leave the north (N) pole and enter the south (S) pole, whereas inside the magnet, they leave
S and enter N.

Figure : Comparison of the magnetic fields of a finite solenoid and a bar magnet.

Ferromagnetic materials are found in computer hard disk drives and permanent data storage devices (Figure ). A material
used in your hard disk drives is called a spin valve, which has alternating layers of ferromagnetic (aligning with the external
magnetic field) and antiferromagnetic (each atom is aligned opposite to the next) metals. It was observed that a significant change
in resistance was discovered based on whether an applied magnetic field was on the spin valve or not. This large change in
resistance creates a quick and consistent way for recording or reading information by an applied current.
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Figure : The inside of a hard disk drive. The silver disk contains the information, whereas the thin stylus on top of the disk
reads and writes information to the disk.

A long coil is tightly wound around an iron cylinder whose magnetization curve is shown in Figure . (a) If  turns
per centimeter, what is the applied field  when ? (b) What is the net magnetic field for this same current? (c)
What is the magnetic susceptibility in this case?

Strategy

(a) The magnetic field of a solenoid is calculated using . (b) The graph is read to determine the net magnetic field
for this same current. (c) The magnetic susceptibility is calculated using Equation  .

Solution

1. The applied field  of the coil is

2. From inspection of the magnetization curve of Figure , we see that, for this value of . Notice that the
internal field of the aligned atoms is much larger than the externally applied field.

3. The magnetic susceptibility is calculated to be

Significance

Ferromagnetic materials have susceptibilities in the range of  which compares well to our results here. Paramagnetic
materials have fractional susceptibilities, so their applied field of the coil is much greater than the magnetic field generated by
the material.

Repeat the calculations from the previous example for 

Answer

a. ; b. 0.60 T; c. 

7.13.6

 Example : Iron Core in a Coil7.13.1
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7.S: Magnetic Forces and Fields (Summary)

Key Terms

cosmic rays
comprised of particles that originate mainly from outside the solar

system and reach Earth

cyclotron device used to accelerate charged particles to large kinetic energies

dees
large metal containers used in cyclotrons that serve contain a

stream of charged particles as their speed is increased

gauss G, unit of the magnetic field strength; 

Hall effect
creation of voltage across a current-carrying conductor by a

magnetic field

helical motion
superposition of circular motion with a straight-line motion that is

followed by a charged particle moving in a region of magnetic
field at an angle to the field

magnetic dipole closed-current loop

magnetic dipole moment term IA of the magnetic dipole, also called 

magnetic field lines
continuous curves that show the direction of a magnetic field;

these lines point in the same direction as a compass points, toward
the magnetic south pole of a bar magnet

magnetic force
force applied to a charged particle moving through a magnetic

field

mass spectrometer device that separates ions according to their charge-to-mass ratios

motor (dc)

loop of wire in a magnetic field; when current is passed through
the loops, the magnetic field exerts torque on the loops, which

rotates a shaft; electrical energy is converted into mechanical work
in the process

north magnetic pole

currently where a compass points to north, near the geographic
North Pole; this is the effective south pole of a bar magnet but has

flipped between the effective north and south poles of a bar
magnet multiple times over the age of Earth

right-hand rule-1
using your right hand to determine the direction of either the

magnetic force, velocity of a charged particle, or magnetic field

south magnetic pole
currently where a compass points to the south, near the geographic
South Pole; this is the effective north pole of a bar magnet but has

flipped just like the north magnetic pole

tesla SI unit for magnetic field: 

velocity selector

apparatus where the crossed electric and magnetic fields produce
equal and opposite forces on a charged particle moving with a

specific velocity; this particle moves through the velocity selector
not affected by either field while particles moving with different

velocities are deflected by the apparatus

Key Equations
Force on a charge in a magnetic field

1G = T10−4

μ

1T = 1N/A−m

= q ×F ⃗  v ⃗  B⃗ 
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Magnitude of magnetic force

Radius of a particle’s path in a magnetic field

Period of a particle’s motion in a magnetic field

Force on a current-carrying wire in a uniform magnetic field

Magnetic dipole moment

Torque on a current loop

Energy of a magnetic dipole

Drift velocity in crossed electric and magnetic fields

Hall potential

Hall potential in terms of drift velocity

Charge-to-mass ratio in a mass spectrometer

Maximum speed of a particle in a cyclotron

Summary

11.2 Magnetism and Its Historical Discoveries
Magnets have two types of magnetic poles, called the north magnetic pole and the south magnetic pole. North magnetic poles
are those that are attracted toward Earth’s geographic North Pole.
Like poles repel and unlike poles attract.
Discoveries of how magnets respond to currents by Oersted and others created a framework that led to the invention of modern
electronic devices, electric motors, and magnetic imaging technology.

11.3 Magnetic Fields and Lines

Charges moving across a magnetic field experience a force determined by . The force is perpendicular to the plane
formed by  and .
The direction of the force on a moving charge is given by the right hand rule 1 (RHR-1): Sweep your fingers in a velocity,
magnetic field plane. Start by pointing them in the direction of velocity and sweep towards the magnetic field. Your thumb
points in the direction of the magnetic force for positive charges.
Magnetic fields can be pictorially represented by magnetic field lines, which have the following properties:

1. The field is tangent to the magnetic field line.

2. Field strength is proportional to the line density.

3. Field lines cannot cross.

4. Field lines form continuous, closed loops.

Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.

11.4 Motion of a Charged Particle in a Magnetic Field

A magnetic force can supply centripetal force and cause a charged particle to move in a circular path of radius .

The period of circular motion for a charged particle moving in a magnetic field perpendicular to the plane of motion is 

.

F = qvBsinθ

r =
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qB

T =
2πm

qB
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Helical motion results if the velocity of the charged particle has a component parallel to the magnetic field as well as a
component perpendicular to the magnetic field.

11.5 Magnetic Force on a Current-Carrying Conductor
An electrical current produces a magnetic field around the wire.
The directionality of the magnetic field produced is determined by the right hand rule-2, where your thumb points in the
direction of the current and your fingers wrap around the wire in the direction of the magnetic field.
The magnetic force on current-carrying conductors is given by  where I is the current and l is the length of a wire
in a uniform magnetic field B.

11.6 Force and Torque on a Current Loop
The net force on a current-carrying loop of any plane shape in a uniform magnetic field is zero.
The net torque τ on a current-carrying loop of any shape in a uniform magnetic field is calculated using  where  is
the magnetic dipole moment and  is the magnetic field strength.
The magnetic dipole moment  is the product of the number of turns of wire N, the current in the loop I, and the area of the
loop A or .

11.7 The Hall Effect
Perpendicular electric and magnetic fields exert equal and opposite forces for a specific velocity of entering particles, thereby

acting as a velocity selector. The velocity that passes through undeflected is calculated by .

The Hall effect can be used to measure the sign of the majority of charge carriers for metals. It can also be used to measure a
magnetic field.

11.8 Applications of Magnetic Forces and Fields
A mass spectrometer is a device that separates ions according to their charge-to-mass ratios by first sending them through a
velocity selector, then a uniform magnetic field.
Cyclotrons are used to accelerate charged particles to large kinetic energies through applied electric and magnetic fields.
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1.S: Sources of Magnetic Fields (Summary)

Key Terms

Ampère’s law
physical law that states that the line integral of the magnetic field

around an electric current is proportional to the current

Biot-Savart law
an equation giving the magnetic field at a point produced by a

current-carrying wire

diamagnetic materials
their magnetic dipoles align oppositely to an applied magnetic
field; when the field is removed, the material is unmagnetized

ferromagnetic materials
contain groups of dipoles, called domains, that align with the

applied magnetic field; when this field is removed, the material is
still magnetized

hysteresis

property of ferromagnets that is seen when a material’s magnetic
field is examined versus the applied magnetic field; a loop is
created resulting from sweeping the applied field forward and

reverse

magnetic domains
groups of magnetic dipoles that are all aligned in the same
direction and are coupled together quantum mechanically

magnetic susceptibility

ratio of the magnetic field in the material over the applied field at
that time; positive susceptibilities are either paramagnetic or

ferromagnetic (aligned with the field) and negative susceptibilities
are diamagnetic (aligned oppositely with the field)

paramagnetic materials
their magnetic dipoles align partially in the same direction as the
applied magnetic field; when this field is removed, the material is

unmagnetized

permeability of free space
, measure of the ability of a material, in this case free space, to

support a magnetic field

solenoid
thin wire wound into a coil that produces a magnetic field when an

electric current is passed through it

toroid
donut-shaped coil closely wound around that is one continuous

wire

Key Equations
Permeability of free space

Contribution to magnetic field from a current element

Biot–Savart law

Magnetic field due to a long straight wire

Force between two parallel currents

Magnetic field of a current loop  (at center of loop)

Ampère’s law

μ0

= 4π× T ⋅ m/Aμ0 10−7

dB =
μ0

4π

Idlsinθ

r2

=B⃗  μ0

4π
∫
wire

Id ×l ⃗  r̂

r2

B =
Iμ0

2πR

=
F

l

μ0I1I2

2πr

B =
Iμ0

2R

∮ ⋅ d = IB⃗  l ⃗  μ0
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Magnetic field strength inside a solenoid

Magnetic field strength inside a toroid

Magnetic permeability

Magnetic field of a solenoid filled with paramagnetic material

Summary

12.2 The Biot-Savart Law
The magnetic field created by a current-carrying wire is found by the Biot-Savart law.
The current element  produces a magnetic field a distance r away.

12.3 Magnetic Field Due to a Thin Straight Wire

The strength of the magnetic field created by current in a long straight wire is given by  (long straight wire) where I

is the current, R is the shortest distance to the wire, and the constant  is the permeability of free space.
The direction of the magnetic field created by a long straight wire is given by right-hand rule 2 (RHR-2): Point the thumb of the
right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops created by it.

12.4 Magnetic Force between Two Parallel Currents
The force between two parallel currents  and , separated by a distance r, has a magnitude per unit length given by 

.

The force is attractive if the currents are in the same direction, repulsive if they are in opposite directions.

12.5 Magnetic Field of a Current Loop

The magnetic field strength at the center of a circular loop is given by  (at center of loop),, where R is the radius of

the loop. RHR-2 gives the direction of the field about the loop.

12.6 Ampère’s Law
The magnetic field created by current following any path is the sum (or integral) of the fields due to segments along the path
(magnitude and direction as for a straight wire), resulting in a general relationship between current and field known as
Ampère’s law.
Ampère’s law can be used to determine the magnetic field from a thin wire or thick wire by a geometrically convenient path of
integration. The results are consistent with the Biot-Savart law.

12.7 Solenoids and Toroids
The magnetic field strength inside a solenoid is

 (inside a solenoid)

where n is the number of loops per unit length of the solenoid. The field inside is very uniform in magnitude and
direction.

The magnetic field strength inside a toroid is

 (within the toroid)

where N is the number of windings. The field inside a toroid is not uniform and varies with the distance as 1/r.

12.8 Magnetism in Matter
Materials are classified as paramagnetic, diamagnetic, or ferromagnetic, depending on how they behave in an applied magnetic
field.
Paramagnetic materials have partial alignment of their magnetic dipoles with an applied magnetic field. This is a positive
magnetic susceptibility. Only a surface current remains, creating a solenoid-like magnetic field.

B = nIμ0

B =
NIμo

2πr
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B = μnI
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Diamagnetic materials exhibit induced dipoles opposite to an applied magnetic field. This is a negative magnetic susceptibility.
Ferromagnetic materials have groups of dipoles, called domains, which align with the applied magnetic field. However, when
the field is removed, the ferromagnetic material remains magnetized, unlike paramagnetic materials. This magnetization of the
material versus the applied field effect is called hysteresis.
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8.1: Faraday and Lenz’s Laws

By the end of this section, you will be able to:

Determine the magnetic flux through a surface, knowing the strength of the magnetic field, the surface area, and the angle
between the normal to the surface and the magnetic field
Use Faraday’s law to determine the magnitude of induced emf in a closed loop due to changing magnetic flux through the
loop
Use Lenz’s law to determine the direction of induced emf whenever a magnetic flux changes
Use Faraday’s law with Lenz’s law to determine the induced emf in a coil and in a solenoid

We have been considering electric fields created by fixed charge distributions and magnetic fields produced by constant currents,
but electromagnetic phenomena are not restricted to these stationary situations. Most of the interesting applications of
electromagnetism are, in fact, time-dependent. To investigate some of these applications, we now remove the time-independent
assumption that we have been making and allow the fields to vary with time. In this and the next several chapters, you will see a
wonderful symmetry in the behavior exhibited by time-varying electric and magnetic fields. Mathematically, this symmetry is
expressed by an additional term in Ampère’s law and by another key equation of electromagnetism called Faraday’s law. We also
discuss how moving a wire through a magnetic field produces an emf or voltage. Lastly, we describe applications of these
principles.  

Faraday’s Law 
The first productive experiments concerning the effects of time-varying magnetic fields were performed by Michael Faraday in
1831. One of his early experiments is represented in Figure . An emf is induced when the magnetic field in the coil is changed
by pushing a bar magnet into or out of the coil. Emfs of opposite signs are produced by motion in opposite directions, and the
directions of emfs are also reversed by reversing poles. The same results are produced if the coil is moved rather than the magnet—
it is the relative motion that is important. The faster the motion, the greater the emf, and there is no emf when the magnet is
stationary relative to the coil.

Figure : Movement of a magnet relative to a coil produces emfs as shown (a–d). The same emfs are produced if the coil is
moved relative to the magnet. This short-lived emf is only present during the motion. The greater the speed, the greater the
magnitude of the emf, and the emf is zero when there is no motion, as shown in (e).

Faraday also discovered that a similar effect can be produced using two circuits—a changing current in one circuit induces a
current in a second, nearby circuit. For example, when the switch is closed in circuit 1 of Figure , the ammeter needle of
circuit 2 momentarily deflects, indicating that a short-lived current surge has been induced in that circuit. The ammeter needle
quickly returns to its original position, where it remains. However, if the switch of circuit 1 is now suddenly opened, another short-
lived current surge in the direction opposite from before is observed in circuit 2.

 Learning Objectives

8.1.1
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Figure : (a) Closing the switch of circuit 1 produces a short-lived current surge in circuit 2. (b) If the switch remains closed,
no current is observed in circuit 2. (c) Opening the switch again produces a short-lived current in circuit 2 but in the opposite
direction from before.

Faraday realized that in both experiments, a current flowed in the circuit containing the ammeter only when the magnetic field in
the region occupied by that circuit was changing. As the magnet of the figure was moved, the strength of its magnetic field at the
loop changed; and when the current in circuit 1 was turned on or off, the strength of its magnetic field at circuit 2 changed. Faraday
was eventually able to interpret these and all other experiments involving magnetic fields that vary with time in terms of the
following law.

The emf  induced is the negative change in the magnetic flux  per unit time. Any change in the magnetic field or change in
orientation of the area of the coil with respect to the magnetic field induces a voltage (emf).

The magnetic flux is a measurement of the amount of magnetic field lines through a given surface area, as seen in Figure .
This definition is similar to the electric flux studied earlier. This means that if we have

then the induced emf or the voltage generated by a conductor or coil moving in a magnetic field is

The negative sign describes the direction in which the induced emf drives current around a circuit. However, that direction is most
easily determined with a rule known as Lenz’s law, which we will discuss shortly.

Figure : The magnetic flux is the amount of magnetic field lines cutting through a surface area A defined by the unit area
vector . If the angle between the unit area  and magnetic field vector  are parallel or antiparallel, as shown in the diagram, the
magnetic flux is the highest possible value given the values of area and magnetic field.

 depicts a circuit and an arbitrary surface S that it bounds. Notice that S is an open surface. It can be shown that any open
surface bounded by the circuit in question can be used to evaluate . For example,  is the same for the various surfaces 

 of part (b) of the figure.

8.1.2

 Faraday's Law

ϵ Φm

8.1.3

= ⋅ dA,Φm ∫
S

B⃗  n̂ (8.1.1)

ϵ = − ⋅ dA = − .
d

dt
∫
S

B⃗  n̂
dΦm

dt
(8.1.2)

8.1.3

n̂ n̂ B⃗ 

8.1.1a

Φm Φm

, , . . .S1 S2
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Figure : (a) A circuit bounding an arbitrary open surface S. The planar area bounded by the circuit is not part of S. (b) Three
arbitrary open surfaces bounded by the same circuit. The value of  is the same for all these surfaces.

The SI unit for magnetic flux is the weber (Wb),

Occasionally, the magnetic field unit is expressed as webers per square meter ( ) instead of teslas, based on this definition.
In many practical applications, the circuit of interest consists of a number N of tightly wound turns (Figure ). Each turn
experiences the same magnetic flux. Therefore, the net magnetic flux through the circuits is N times the flux through one turn, and
Faraday’s law is written as

Lenz's Law 
The direction in which the induced emf drives current around a wire loop can be found through the negative sign. However, it is
usually easier to determine this direction with Lenz’s law, named in honor of its discoverer, Heinrich Lenz (1804–1865). (Faraday
also discovered this law, independently of Lenz.) We state Lenz’s law as follows:

The direction of the induced emf drives current around a wire loop to always oppose the change in magnetic flux that causes
the emf.

Lenz’s law can also be considered in terms of conservation of energy. If pushing a magnet into a coil causes current, the energy in
that current must have come from somewhere. If the induced current causes a magnetic field opposing the increase in field of the
magnet we pushed in, then the situation is clear. We pushed a magnet against a field and did work on the system, and that showed
up as current. If it were not the case that the induced field opposes the change in the flux, the magnet would be pulled in produce a
current without anything having done work. Electric potential energy would have been created, violating the conservation of
energy.

To determine an induced emf , you first calculate the magnetic flux  and then obtain . The magnitude of  is given by

Finally, you can apply Lenz’s law to determine the sense of . This will be developed through examples that illustrate the following
problem-solving strategy.

To use Lenz’s law to determine the directions of induced magnetic fields, currents, and emfs:

Make a sketch of the situation for use in visualizing and recording directions.

8.1.4
Φm

1 Wb = 1 T ⋅ .m2 (8.1.3)

Wb/m2

8.1.5

ϵ = − (N ) = −N .
d

dt
Φm

dΦm

dt
(8.1.4)

 Lenz's Law

ϵ Φm d /dtΦm ϵ

ϵ = .
∣
∣
∣
dΦm

dt

∣
∣
∣ (8.1.5)

ϵ

 Problem-Solving Strategy: Lenz’s Law

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76614?pdf


8.1.4 https://phys.libretexts.org/@go/page/76614

Determine the direction of the applied magnetic field .
Determine whether its magnetic flux is increasing or decreasing.
Now determine the direction of the induced magnetic field . The induced magnetic field tries to reinforce a magnetic flux
that is decreasing or opposes a magnetic flux that is increasing. Therefore, the induced magnetic field adds or subtracts to
the applied magnetic field, depending on the change in magnetic flux.
Use right-hand rule 2 (RHR-2; see Magnetic Forces and Fields) to determine the direction of the induced current I that is
responsible for the induced magnetic field .
The direction (or polarity) of the induced emf can now drive a conventional current in this direction.

Let’s apply Lenz’s law to the system of Figure . We designate the “front” of the closed conducting loop as the region
containing the approaching bar magnet, and the “back” of the loop as the other region. As the north pole of the magnet moves
toward the loop, the flux through the loop due to the field of the magnet increases because the strength of field lines directed from
the front to the back of the loop is increasing. A current is therefore induced in the loop. By Lenz’s law, the direction of the induced
current must be such that its own magnetic field is directed in a way to oppose the changing flux caused by the field of the
approaching magnet. Hence, the induced current circulates so that its magnetic field lines through the loop are directed from the
back to the front of the loop. By RHR-2, place your thumb pointing against the magnetic field lines, which is toward the bar
magnet. Your fingers wrap in a counterclockwise direction as viewed from the bar magnet. Alternatively, we can determine the
direction of the induced current by treating the current loop as an electromagnet that opposes the approach of the north pole of the
bar magnet. This occurs when the induced current flows as shown, for then the face of the loop nearer the approaching magnet is
also a north pole.

Figure : The change in magnetic flux caused by the approaching magnet induces a current in the loop. (a) An approaching
north pole induces a counterclockwise current with respect to the bar magnet. (b) An approaching south pole induces a clockwise
current with respect to the bar magnet.

Part (b) of the figure shows the south pole of a magnet moving toward a conducting loop. In this case, the flux through the loop due
to the field of the magnet increases because the number of field lines directed from the back to the front of the loop is increasing.
To oppose this change, a current is induced in the loop whose field lines through the loop are directed from the front to the back.
Equivalently, we can say that the current flows in a direction so that the face of the loop nearer the approaching magnet is a south
pole, which then repels the approaching south pole of the magnet. By RHR-2, your thumb points away from the bar magnet. Your
fingers wrap in a clockwise fashion, which is the direction of the induced current.

Another example illustrating the use of Lenz’s law is shown in Figure . When the switch is opened, the decrease in current
through the solenoid causes a decrease in magnetic flux through its coils, which induces an emf in the solenoid. This emf must
oppose the change (the termination of the current) causing it. Consequently, the induced emf has the polarity shown and drives in
the direction of the original current. This may generate an arc across the terminals of the switch as it is opened.

B⃗ 

B⃗ 

B⃗ 

8.1.6a

8.1.6

8.1.7
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Figure : (a) A solenoid connected to a source of emf. (b) Opening switch S terminates the current, which in turn induces an
emf in the solenoid. (c) A potential difference between the ends of the sharply pointed rods is produced by inducing an emf in a
coil. This potential difference is large enough to produce an arc between the sharp points.

Examples and Exercises

Calculate the magnitude of the induced emf when the magnet in the Figure is thrust into the coil, given the following
information: the single loop coil has a radius of 6.00 cm and the average value of  (this is given, since the bar magnet’s
field is complex) increases from 0.0500 T to 0.250 T in 0.100 s.

Strategy

To find the magnitute of emf, we use Faraday’s law of induction as stated by , but without the minus sign
that indicates direction:

Solution

We are given that  and  but we must determine the change in flux  before we can find emf.
Since the area of the loop is fixed, we see that

Now , since it was given that  changes from 0.0500 to 0.250 T. The area of the loop is 
. Thus,

Entering the determined values into the expression for emf gives

Discussion:

8.1.7

Example : Calculating Emf: How Great is the Induced Emf?8.1.1

B cosθ

emf = −N ΔΦ
Δt

emf = N .
ΔΦ

Δt
(8.1.6)

N = 1 Δt = 0.100s ΔΦ

ΔΦ (BA cosθ) = AΔ (B cosθ) . (8.1.7)

Δ (B cosθ) = 0.200T B cosθ

A = π = (3.14...) = 1.13 ×r2 (0.060m)2 10−2m2

ΔΦ = (1.13 × ) (0.200T ) .10−2m2 (8.1.8)

Emf = N = = 22.6mV .
ΔΦ

Δt

(1.13 × ) (0.200T )10−2m2

0.100s
(8.1.9)
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While this is an easily measured voltage, it is certainly not large enough for most practical applications. More loops in
the coil, a stronger magnet, and faster movement make induction the practical source of voltages that it is.

The square coil of Figure  has sides  long and is tightly wound with  turns of wire. The resistance of
the coil is  The coil is placed in a spatially uniform magnetic field that is directed perpendicular to the face of the
coil and whose magnitude is decreasing at a rate . (a) What is the magnitude of the emf induced in the
coil? (b) What is the magnitude of the current circulating through the coil?

Figure : A square coil with N turns of wire with uniform magnetic field  directed in the downward direction,
perpendicular to the coil.

Strategy

The area vector, or  direction, is perpendicular to area covering the loop. We will choose this to be pointing downward so
that  is parallel to  and that the flux turns into multiplication of magnetic field times area. The area of the loop is not
changing in time, so it can be factored out of the time derivative, leaving the magnetic field as the only quantity varying in
time. Lastly, we can apply Ohm’s law once we know the induced emf to find the current in the loop.

Solution

1. The flux through one turn is

so we can calculate the magnitude of the emf from Faraday’s law. The sign of the emf will be discussed in the next
section, on Lenz’s law:

The magnitude of the current induced in the coil is

 

Significance

If the area of the loop were changing in time, we would not be able to pull it out of the time derivative. Since the loop is
a closed path, the result of this current would be a small amount of heating of the wires until the magnetic field stops
changing. This may increase the area of the loop slightly as the wires are heated.

 Example : A Square Coil in a Changing Magnetic Field8.1.2

8.1.1 l = 0.25 m N = 200

R = 5.0 Ω

dB/dt = −0.040 T/s

8.1.5 B⃗ 

n̂

B⃗  n̂

= BA = B ,Φm t2 (8.1.10)

|ϵ| = −N = N
∣
∣
∣

dΦm

dt

∣
∣
∣ l2

dB

dt
(8.1.11)

= (200)(0.25 m (0.040 T/s) = 0.50 V .)2 (8.1.12)

I = = = 0.10 A.
ϵ

R

0.50 V

5.0 Ω
(8.1.13)
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Below are 4 cases: the left panels show the initial and the right panels show the final configurations. The arrows indicate the
direction and magnitude of the external magnetic field.  

Fill in the table below for each case

Solution

 Example :8.1.3
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Consider a magnetic field is created by a large solenoid magnet. The solenoid is 1.5 meters long, has 5000 turns, a resistance of
, and a one-meter radius. A coil located inside the solenoid has a single loop (as depicted below), a resistance of , and a

0.4 m radius. The solenoid initially has a current which produces a 0.2 T magnetic field. The solenoid’s current is then reduced
linearly to zero in 0.1 seconds as shown in the left plot below.

a) Calculate  which is marked on the plot below.

b) Make a graph of the current in the coil on the right plot below. Make sure to indicate numerical values and explain your
choice of sign for the current.

Solution

a) The magnetic field for a solenoid is . The maximum current with be when the magnetic field is at 0.2 T, since

the current is reduced with time:

 Example :8.1.4

4Ω 0.6Ω

Imax

B =
INμo

L

= = = 47.7 AImax

BL

Nμo

0.2T ×1.5m

4 × ×500010−7 N

A2
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b) The magnetic field is upward using the current RHR, which is reduced to zero. Thus, the induced magnetic field will also
be upward to oppose the change of flux decreasing in the upward direction. Using the same RHR again, this results in an
induced current which is counterclockwise as viewed from top. In other words, the direction of the current in the coil is the
same as the direction of the current in the solenoid. 

Now that we have established the direction of current, we just need to worry about the magnitude of the induced emf and
current. The magnitude of induced emf for the wire which only contains one loop is:

Solving for induced current:

A square loop of wire with a total resistance  has a side-length of . It resides near a long, straight wire such that the long
wire is in the same plane as the loop, with one of its sides parallel to the wire a distance d from it, as shown in the diagram.

a. Compute the magnetic flux through the loop due to a current  flowing in the direction shown in the diagram.
b. If the current in the long wire is changing, then the magnetic field flux through the loop will also be changing. Suppose that

the current in the long wire is increasing at a constant rate of . Find the current induced in the loop, including its
direction.

Solution

a. We know the magnetic field for a long-straight wire gets weaker at greater distances, which means we have to perform
the flux integral. The diagram below shows the magnetic field and introduces some axes for performing the math required.

|E| = = A = π = ( π) = 1.68A
dΦ

dt

ΔB

Δt
r2 dB

dt
0.42 m2 0.2T

0.1s

= = = 1.68AIcoil
|E|

R

1.0V

0.6Ω

 Example :8.1.5

R L

I

= αdI

dt
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The magnetic field strength in the -  plane in terms of the distance  from the long wire is given by:

We take as a differential area element a thin vertical slice down the length of the circuit. This slice has an area of 
, and the field is constant throughout the slice. Also, the area vector is parallel to the magnetic field, so

choosing the loop direction as counterclockwise, the angle between the field and the area vector is . The flux integral is
therefore:

b. The emf induced in the loop (which has only one turn in it) is found using Faraday's law:

The magnitude of the current is this emf divided by the resistance:

The direction of the current will be such that it provides a field that will seek to counter the change. The current that is
causing the field is increasing, so the flux out of the page in increasing. The induced current will therefore produce a
magnetic field inside the loop that points into the page, which means it must flow clockwise.

A magnetic field  is directed outward perpendicular to the plane of a circular coil of radius  (Figure ). The
field is cylindrically symmetrical with respect to the center of the coil, and its magnitude decays exponentially according to 

, where B is in teslas and t is in seconds. (a) Calculate the emf induced in the coil at the times , 
, and . (b) Determine the current in the coil at these three times if its resistance is .

x y x
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→
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x=d+L

Iμo

2πx
0o

ILμo

2π

d+L

d
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2π

d+L

d

dI

dt
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2π
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d
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Lαμo

2πR
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 Example : A Circular Coil in a Changing Magnetic Field8.1.2A

B⃗  r = 0.50 m 8.1.3

B = (1.5T )e(5.0 )ts−1
= 0t1

= 5.0 × st2 10−2 = 1.0 st3 10 Ω
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Figure : A circular coil in a decreasing magnetic field.

Strategy

Since the magnetic field is perpendicular to the plane of the coil and constant over each spot in the coil, the dot product of
the magnetic field  and normal to the area unit vector  turns into a multiplication. The magnetic field can be pulled out
of the integration, leaving the flux as the product of the magnetic field times area. We need to take the time derivative of the
exponential function to calculate the emf using Faraday’s law. Then we use Ohm’s law to calculate the current.

Solution

1. Since  is perpendicular to the plane of the coil, the magnetic flux is given by

From Faraday’s law, the magnitude of the induced emf is

Since  is directed out of the page and is decreasing, the induced current must flow counterclockwise when viewed
from above so that the magnetic field it produces through the coil also points out of the page. For all three times, the
sense of e is counterclockwise; its magnitudes are

2. From Ohm’s law, the respective currents are

and

Significance

An emf voltage is created by a changing magnetic flux over time. If we know how the magnetic field varies with time
over a constant area, we can take its time derivative to calculate the induced emf.

8.1.8

B⃗  n̂

B⃗ 

= Bπ = (1.5 T )π(0.50 mΦm r2 e−5.0t )2 (8.1.14)

= 1.2 Wb.e−(5.0 )ts−1

(8.1.15)

ϵ = = (1.2 Wb) = 6.0 V .
∣

∣
∣
dΦm

dt

∣

∣
∣

∣

∣
∣
d

dt
e−(5.0 )ts−1 ∣

∣
∣ e−(5.0 )ts−1

(8.1.16)

B⃗ 

ϵ( ) = 6.0V ; ϵ( ) = 4.7 V ; ϵ( ) = 0040 V .t1 t2 t3 (8.1.17)

I( ) = = = 0.60 A;t1

ϵ( )t1

R

6.0 V

10 Ω
(8.1.18)

I( ) = = 0.47 A;t2
4.7 V

10 Ω
(8.1.19)

I( ) = = 4.0 × A.t3
0.040 V

10 Ω
10−3 (8.1.20)
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The current through the windings of a solenoid with  turns per meter is changing at a rate . (See
Sources of Magnetic Fields for a discussion of solenoids.) The solenoid is 50-cm long and has a cross-sectional diameter of 3.0
cm. A small coil consisting of  closely wound turns wrapped in a circle of diameter 1.0 cm is placed in the middle of
the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assuming that the infinite-
solenoid approximation is valid at the location of the small coil, determine the magnitude of the emf induced in the coil.

Strategy

The magnetic field in the middle of the solenoid is a uniform value of . This field is producing a maximum magnetic
flux through the coil as it is directed along the length of the solenoid. Therefore, the magnetic flux through the coil is the
product of the solenoid’s magnetic field times the area of the coil. Faraday’s law involves a time derivative of the magnetic
flux. The only quantity varying in time is the current, the rest can be pulled out of the time derivative. Lastly, we include
the number of turns in the coil to determine the induced emf in the coil.

Solution

Since the field of the solenoid is given by , the flux through each turn of the small coil is

where d is the diameter of the coil. Now from Faraday’s law, the magnitude of the emf induced in the coil is

Significance

When the current is turned on in a vertical solenoid, as shown in Figure , the ring has an induced emf from the
solenoid’s changing magnetic flux that opposes the change. The result is that the ring is fired vertically into the air.

Figure : The jumping ring. When a current is turned on in the vertical solenoid, a current is induced in the metal
ring. The stray field produced by the solenoid causes the ring to jump off the solenoid.

 Example : Changing Magnetic Field Inside a Solenoid8.1.2B

n = 2000 dI/dt = 3.0 A/s

N = 20

nIμ0

B = nIμ0

= nI ( ) ,Φm μ0
πd2

4
(8.1.21)

ϵ = N = N n
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∣
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∣
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∣
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πd2

4

dI

dt

∣

∣
∣ (8.1.22)

= 20(4π× T ⋅m/s)(2000 ) (3.0 A/s)10−7 m−1 π(0.010 m)2

4
(8.1.23)

= 1.2 × V .10−5 (8.1.24)
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A closely wound coil has a radius of 4.0 cm, 50 turns, and a total resistance of . At what rate must a magnetic field
perpendicular to the face of the coil change in order to produce Joule heating in the coil at a rate of 2.0 mW?

Solution
1.1 T/s

Find the direction of the induced current in the wire loop shown below as the magnet enters, passes through, and leaves the
loop.

Solution
To the observer shown, the current flows clockwise as the magnet approaches, decreases to zero when the magnet is centered
in the plane of the coil, and then flows counterclockwise as the magnet leaves the coil.

Applications of Electromagnetic Induction
There are many applications of Faraday’s Law of induction, as we will explore in this chapter and others. At this juncture, let us
mention several that have to do with data storage and magnetic fields. A very important application has to do with audio and video
recording tapes. A plastic tape, coated with iron oxide, moves past a recording head. This recording head is basically a round iron
ring about which is wrapped a coil of wire—an electromagnet (Figure 2). A signal in the form of a varying input current from a
microphone or camera goes to the recording head. These signals (which are a function of the signal amplitude and frequency)
produce varying magnetic fields at the recording head. As the tape moves past the recording head, the magnetic field orientations of
the iron oxide molecules on the tape are changed thus recording the signal. In the playback mode, the magnetized tape is run past
another head, similar in structure to the recording head. The different magnetic field orientations of the iron oxide molecules on the
tape induces an emf in the coil of wire in the playback head. This signal then is sent to a loudspeaker or video player.

Figure : Recording and playback heads used with audio and video magnetic tapes. (credit: Steve Jurvetson)

Similar principles apply to computer hard drives, except at a much faster rate. Here recordings are on a coated, spinning disk. Read
heads historically were made to work on the principle of induction. However, the input information is carried in digital rather than
analog form – a series of 0’s or 1’s are written upon the spinning hard drive. Today, most hard drive readout devices do not work on
the principle of induction, but use a technique known as giant magnetoresistance. (The discovery that weak changes in a magnetic
field in a thin film of iron and chromium could bring about much larger changes in electrical resistance was one of the first large
successes of nanotechnology.) Another application of induction is found on the magnetic stripe on the back of your personal credit

 Exercise 8.1.1

40 Ω

 Exercise 8.1.2

8.1.2
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card as used at the grocery store or the ATM machine. This works on the same principle as the audio or video tape mentioned in the
last paragraph in which a head reads personal information from your card.

Another application of electromagnetic induction is when electrical signals need to be transmitted across a barrier. Consider the
cochlear implant shown below. Sound is picked up by a microphone on the outside of the skull and is used to set up a varying
magnetic field. A current is induced in a receiver secured in the bone beneath the skin and transmitted to electrodes in the inner ear.
Electromagnetic induction can be used in other instances where electric signals need to be conveyed across various media.

Figure : Electromagnetic induction used in transmitting electric currents across mediums. The device on the baby’s head
induces an electrical current in a receiver secured in the bone beneath the skin. (credit: Bjorn Knetsch)

Another contemporary area of research in which electromagnetic induction is being successfully implemented (and with substantial
potential) is transcranial magnetic simulation. A host of disorders, including depression and hallucinations can be traced to
irregular localized electrical activity in the brain. In transcranial magnetic stimulation, a rapidly varying and very localized
magnetic field is placed close to certain sites identified in the brain. Weak electric currents are induced in the identified sites and
can result in recovery of electrical functioning in the brain tissue.

Sleep apnea (“the cessation of breath”) affects both adults and infants (especially premature babies and it may be a cause of sudden
infant deaths [SID]). In such individuals, breath can stop repeatedly during their sleep. A cessation of more than 20 seconds can be
very dangerous. Stroke, heart failure, and tiredness are just some of the possible consequences for a person having sleep apnea. The
concern in infants is the stopping of breath for these longer times. One type of monitor to alert parents when a child is not breathing
uses electromagnetic induction. A wire wrapped around the infant’s chest has an alternating current running through it. The
expansion and contraction of the infant’s chest as the infant breathes changes the area through the coil. A pickup coil located
nearby has an alternating current induced in it due to the changing magnetic field of the initial wire. If the child stops breathing,
there will be a change in the induced current, and so a parent can be alerted.

Other applications include:

Seismograph: One way to exploit Faraday’s Law is to attach a magnet to anything that moves and place it near a loop of wire;
any movement or oscillation in the object can be detected as an induced current in the wire loop. In this way we can translate
physical movements and oscillations into electrical impulses. In all devices of this kind, the movement or oscillation is
measured between the position of a coil relative to a magnet, whose movement causes the current in the coil to vary, generating
an electrical signal. For example, as the vibrations produced by an earthquake pass through a seismograph, a magnet's
vibrations produce a current that can be amplified to drive a plotting pen. This is how the seismograph operates.
Guitar Pickup: Les Paul, a pioneer musician of pop-jazz guitar, applied Faraday’s Law to the making of musical instruments
and invented the first electric guitar. The “pickup” of an electric guitar consists of a permanent magnet with a coil of wire
wrapped around it several times. The permanent magnet is placed very close to the metal guitar strings. The magnetic field of
the permanent magnet causes a part of the metal string of the guitar to become magnetized. When one plucks the string, it
vibrates, creating a changing magnetic flux through the coil of wire surrounding the permanent magnet. The coil “picks up” the
vibrations that generate an induced current and sends the signal to an amplifier, to the pleasure of rock fans everywhere.
Electric Generator: An electric generator is used to efficiently convert mechanical energy to electrical energy. The mechanical
energy can be provided by any number of means, such as falling water (like in a hydroelectric generator), expanding steam (as
in coal, oil, and nuclear power plants), or wind (as in wind turbine generators). In all cases, the principle is the same, the
mechanical energy is used to move a conducting wire coil inside a magnetic field (usually by rotating the wire). In this case, the
area of the coil is the constant, the magnitude of the field is constant, so the angle term in the equation for Faraday's law is
responsible for the changing flux. This is caused by the change in the relative orientation between the magnetic field and the
normal to the area of the coil. Consider the simple scenario where we rotate the coil with constant angular speed . The rotation
angle is given by , and the flux will be proportional to . Using calculus, the time rate of change of the flux will
then be proportional to . This means the induced current will oscillate sinusoidally. In other words, the current in the
coil alternates in direction, flowing in one direction for half the cycle and flowing the other direction for the other half. This

8.1.3

ω

θ = ωt cosωt

ω sinωt
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kind of generator is referred to as an alternating current generator, or simply an AC generator. The standard plugs you use to
power all of your electrical appliances are all powered by an electric generator of this form.
Electric Motor: Electric motors work in basically the reverse principle that operates electric generators: an alternating electric
current causes an electromagnetic cylinder to periodically switch poles, which interacts with the field of an inlaid magnet to
turn it. Some motors use electromagnets for both components, but the principle is the same. The stationary magnetic piece is
called the stator and the magnetic piece that rotates is called that rotor
Hybrid Cars: Regenerative breaking discussed above.

MAKING CONNECTIONS: CONSERVATION OF ENERGY:

Lenz’s law is a manifestation of the conservation of energy. The induced emf produces a current that opposes the change in flux,
because a change in flux means a change in energy. Energy can enter or leave, but not instantaneously. Lenz’s law is a
consequence. As the change begins, the law says induction opposes and, thus, slows the change. In fact, if the induced emf were in
the same direction as the change in flux, there would be a positive feedback that would give us free energy from no apparent source
—conservation of energy would be violated.
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8.2: Motional Emf

By the end of this section, you will be able to:

Determine the magnitude of an induced emf in a wire moving at a constant speed through a magnetic field
Discuss examples that use motional emf, such as a rail gun and a tethered satellite

Magnetic flux depends on three factors: the strength of the magnetic field, the area through which the field lines pass, and the
orientation of the field with the surface area. If any of these quantities varies, a corresponding variation in magnetic flux occurs. So
far, we’ve only considered flux changes due to a changing field. Now we look at another possibility: a changing area through which
the field lines pass including a change in the orientation of the area.

Two examples of this type of flux change are represented in Figure . In part (a), the flux through the rectangular loop
increases as it moves into the magnetic field, and in part (b), the flux through the rotating coil varies with the angle .

Figure : (a) Magnetic flux changes as a loop moves into a magnetic field; (b) magnetic flux changes as a loop rotates in a
magnetic field.

It’s interesting to note that what we perceive as the cause of a particular flux change actually depends on the frame of reference we
choose. For example, if you are at rest relative to the moving coils of Figure , you would see the flux vary because of a
changing magnetic field—in part (a), the field moves from left to right in your reference frame, and in part (b), the field is rotating.
It is often possible to describe a flux change through a coil that is moving in one particular reference frame in terms of a changing
magnetic field in a second frame, where the coil is stationary. However, reference-frame questions related to magnetic flux are
beyond the level of this textbook. We’ll avoid such complexities by always working in a frame at rest relative to the laboratory and
explain flux variations as due to either a changing field or a changing area.

Now let’s look at a conducting rod pulled in a circuit, changing magnetic flux. The area enclosed by the circuit ‘MNOP’ of Figure 

 is lx and is perpendicular to the magnetic field, so we can simplify the integration of  into a multiplication
of magnetic field and area. The magnetic flux through the open surface is therefore

Since B and l are constant and the velocity of the rod is , we can now restate Faraday’s law, Equation 13.2.2, for the
magnitude of the emf in terms of the moving conducting rod as

The current induced in the circuit is the emf divided by the resistance or

Furthermore, the direction of the induced emf satisfies Lenz’s law, as you can verify by inspection of the figure.

 Learning Objectives

8.2.1

θ

8.2.1

8.2.1b

8.2.2 = ⋅ dAΦm ∫S B
→

n̂

= Blx.Φm (8.2.1)

v= dx/dt

ϵ = = Bl = Blv.
dΦm

dt

dx

dt
(8.2.2)

I = .
Blv

R
(8.2.3)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76616?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.02%3A_Motional_Emf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/13%3A_Electromagnetic_Induction/13.02%3A_Faradays_Law#Eq.+13.2


8.2.2 https://phys.libretexts.org/@go/page/76616

This calculation of motionally induced emf is not restricted to a rod moving on conducting rails. With  as the starting
point, it can be shown that  holds for any change in flux caused by the motion of a conductor. We saw in Faraday’s
Law that the emf induced by a time-varying magnetic field obeys this same relationship, which is Faraday’s law. Thus Faraday’s
law holds for all flux changes, whether they are produced by a changing magnetic field, by motion, or by a combination of the
two.

Figure : A conducting rod is pushed to the right at constant velocity. The resulting change in the magnetic flux induces a
current in the circuit.

From an energy perspective,  produces power , and the resistor dissipates power . Since the rod is moving at constant
velocity, the applied force  must balance the magnetic force  on the rod when it is carrying the induced current I. Thus
the power produced is

The power dissipated is

In satisfying the principle of energy conservation, the produced and dissipated powers are equal.

This principle can be seen in the operation of a rail gun. A rail gun is an electromagnetic projectile launcher that uses an apparatus
similar to Figure  and is shown in schematic form in Figure . The conducting rod is replaced with a projectile or weapon
to be fired. So far, we’ve only heard about how motion causes an emf. In a rail gun, the optimal shutting off/ramping down of a
magnetic field decreases the flux in between the rails, causing a current to flow in the rod (armature) that holds the projectile. This
current through the armature experiences a magnetic force and is propelled forward. Rail guns, however, are not used widely in the
military due to the high cost of production and high currents: Nearly one million amps is required to produce enough energy for a
rail gun to be an effective weapon.

Figure : Current through two rails drives a conductive projectile forward by the magnetic force created.

We can calculate a motionally induced emf with Faraday’s law even when an actual closed circuit is not present. We simply
imagine an enclosed area whose boundary includes the moving conductor, calculate , and then find the emf from Faraday’s law.
For example, we can let the moving rod of Figure  be one side of the imaginary rectangular area represented by the dashed
lines. The area of the rectangle is lx, so the magnetic flux through it is . Differentiating this equation, we obtain

= q ×F ⃗  v ⃗  B⃗ 

ϵ = −d /dtΦm

8.2.2

F ⃗ 
a vFa RI 2

Fa = IlBFm

v= IlBv= ⋅ lBv= .Fa
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R

l2B2v2

R
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(8.2.5)

8.2.2 8.2.3

8.2.3

Φm

8.2.4

= BlxΦm

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76616?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/23%3A_Electromagnetic_Induction/23.01%3A_Faradays_Law


8.2.3 https://phys.libretexts.org/@go/page/76616

which is identical to the potential difference between the ends of the rod that we determined earlier.

Figure : With the imaginary rectangle shown, we can use Faraday’s law to calculate the induced emf in the moving rod.

Motional emfs in Earth’s weak magnetic field are not ordinarily very large, or we would notice voltage along metal rods, such as a
screwdriver, during ordinary motions. For example, a simple calculation of the motional emf of a 1.0-m rod moving at 3.0 m/s
perpendicular to the Earth’s field gives

This small value is consistent with experience. There is a spectacular exception, however. In 1992 and 1996, attempts were made
with the space shuttle to create large motional emfs. The tethered satellite was to be let out on a 20-km length of wire, as shown in
Figure , to create a 5-kV emf by moving at orbital speed through Earth’s field. This emf could be used to convert some of the
shuttle’s kinetic and potential energy into electrical energy if a complete circuit could be made. To complete the circuit, the
stationary ionosphere was to supply a return path through which current could flow. (The ionosphere is the rarefied and partially
ionized atmosphere at orbital altitudes. It conducts because of the ionization. The ionosphere serves the same function as the
stationary rails and connecting resistor in Figure , without which there would not be a complete circuit.) Drag on the current in
the cable due to the magnetic force  does the work that reduces the shuttle’s kinetic and potential energy, and allows
it to be converted into electrical energy. Both tests were unsuccessful. In the first, the cable hung up and could only be extended a
couple of hundred meters; in the second, the cable broke when almost fully extended. Example  indicates feasibility in
principle.

Figure : Motional emf as electrical power conversion for the space shuttle was the motivation for the tethered satellite
experiment. A 5-kV emf was predicted to be induced in the 20-km tether while moving at orbital speed in Earth’s magnetic field.
The circuit is completed by a return path through the stationary ionosphere.

Calculate the motional emf induced along a 20.0-km conductor moving at an orbital speed of 7.80 km/s perpendicular to
Earth’s  magnetic field.

Strategy

This is a great example of using the equation motional .

= Bl = Blv,
dΦm

dt

dx

dt
(8.2.6)

8.2.4

emf = Blv= (5.0 × T )(1.0 m)(3.0 m/s) = 150 μV .10−5 (8.2.7)

8.2.5

8.2.3

F = IlBsin θ

8.2.1

8.2.5

 Example : Calculating the Large Motional Emf of an Object in Orbit8.2.1

5.00 × T10−5

ϵ = Blv
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Solution

Entering the given values into  gives

Significance

The value obtained is greater than the 5-kV measured voltage for the shuttle experiment, since the actual orbital motion
of the tether is not perpendicular to Earth’s field. The 7.80-kV value is the maximum emf obtained when  and
so .

Part (a) of Figure  shows a metal rod OS that is rotating in a horizontal plane around point O. The rod slides along a wire
that forms a circular arc PST of radius r. The system is in a constant magnetic field  that is directed out of the page. (a) If
you rotate the rod at a constant angular velocity , what is the current I in the closed loop OPSO? Assume that the resistor R
furnishes all of the resistance in the closed loop. (b) Calculate the work per unit time that you do while rotating the rod and
show that it is equal to the power dissipated in the resistor.

Figure : (a) The end of a rotating metal rod slides along a circular wire in a horizontal plane. (b) The induced current in
the rod. (c) The magnetic force on an infinitesimal current segment.

Strategy

The magnetic flux is the magnetic field times the area of the quarter circle or . When finding the emf through
Faraday’s law, all variables are constant in time but , with . To calculate the work per unit time, we know this is
related to the torque times the angular velocity. The torque is calculated by knowing the force on a rod and integrating it
over the length of the rod.

Solution

1. From geometry, the area of the loop OPSO is . Hence, the magnetic flux through the loop is

Differentiating with respect to time and using , we have

When divided by the resistance R of the loop, this yields for the magnitude of the induced current

ϵ = Blv

ϵ = Blv (8.2.8)

= (5.00 × T )(2.00 × m)(7.80 × m/s)10−5 104 103 (8.2.9)

= 7.80 × V .103 (8.2.10)

θ = 90o

sin θ = 1

 Example : A Metal Rod Rotating in a Magnetic Field8.2.2
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2
(8.2.12)

I = = .
ϵ

R

B ωr2

2R
(8.2.13)
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As  increases, so does the flux through the loop due to . To counteract this increase, the magnetic field due to the
induced current must be directed into the page in the region enclosed by the loop. Therefore, as part (b) of Figure 

 illustrates, the current circulates clockwise.
2. You rotate the rod by exerting a torque on it. Since the rod rotates at constant angular velocity, this torque is equal

and opposite to the torque exerted on the current in the rod by the original magnetic field. The magnetic force on the
infinitesimal segment of length dx shown in part (c) of Figure  is , so the magnetic torque on this
segment is

The net magnetic torque on the rod is then

The torque  that you exert on the rod is equal and opposite to , and the work that you do when the rod rotates
through an angle  is . Hence, the work per unit time that you do on the rod is

where we have substituted for I. The power dissipated in the resister is , which can be written as

Therefore, we see that

Hence, the power dissipated in the resistor is equal to the work per unit time done in rotating the rod.

Significance

An alternative way of looking at the induced emf from Faraday’s law is to integrate in space instead of time. The
solution, however, would be the same. The motional emf is

The velocity can be written as the angular velocity times the radius and the differential length written as dr. Therefore,

which is the same solution as before.

A rectangular coil of area A and N turns is placed in a uniform magnetic field , as shown in Figure . The coil is
rotated about the z-axis through its center at a constant angular velocity . Obtain an expression for the induced emf in the coil.

θ B⃗ 

8.2.6

8.2.6 d = IBdxFm

d = x ⋅ d = IBxdx.τm Fm (8.2.14)

= d = IB x dx = IB .τm ∫
r

0

τm ∫
r

0

1

2
r2 (8.2.15)

τ τm
dθ dW = rdθ

= τ = IB = ( )B ω = ,
dW

dt

dθ

dt

1

2
r2 dθ

dt

1

2

B ωr2

2R
r2 B2r4ω2

4R
(8.2.16)

P = IR2

P = R = .( )
B ωr2

2R

2
B2r4ω2

4R
(8.2.17)

P = .
dW

dt
(8.2.18)

|ϵ| = ∫ Bvdl. (8.2.19)

ϵ| = B∫ vdr = Bω rdr = Bω ,∫
l

0

1

2
l2 (8.2.20)

 Example : A Rectangular Coil Rotating in a Magnetic Field8.2.3

= BB⃗  ĵ 8.2.7
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Figure : A rectangular coil rotating in a uniform magnetic field.

Strategy

According to the diagram, the angle between the perpendicular to the surface ((\hat{n}\)) and the magnetic field  is .
The dot product of  simplifies to only the  component of the magnetic field, namely where the magnetic field
projects onto the unit area vector . The magnitude of the magnetic field and the area of the loop are fixed over time, which
makes the integration simplify quickly. The induced emf is written out using Faraday’s law.

Solution

When the coil is in a position such that its normal vector  makes an angle  with the magnetic field  the magnetic
flux through a single turn of the coil is

From Faraday’s law, the emf induced in the coil is

The constant angular velocity is . The angle  represents the time evolution of the angular velocity or .
This is changes the function to time space rather than . The induced emf therefore varies sinusoidally with time
according to

where .

Significance

If the magnetic field strength or area of the loop were also changing over time, these variables wouldn’t be able to be
pulled out of the time derivative to simply the solution as shown. This example is the basis for an electric generator, as
we will give a full discussion in Applications of Newton’s Law.

Shown below is a rod of length l that is rotated counterclockwise around the axis through O by the torque due to .
Assuming that the rod is in a uniform magnetic field , what is the emf induced between the ends of the rod when its angular
velocity is ? Which end of the rod is at a higher potential?

8.2.7

( )B⃗  θ

B ⋅ n̂ cos θ

n̂

n̂ θ B⃗ 

= ⋅ dA = BAcos θ.Φm ∫
S

B⃗  n̂ (8.2.21)

ϵ = −N = NBAsin θ .
dΦm

dt

dθ

dt
(8.2.22)

ω = dθ/dt θ ωt

θ

ϵ = sinωt,ϵ0 (8.2.23)

= NBAωϵ0

 Exercise 8.2.1

mg ⃗ 

B⃗ 

ω
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Answer

, with O at a higher potential than S

A rod of length 10 cm moves at a speed of 10 m/s perpendicularly through a 1.5-T magnetic field. What is the potential
difference between the ends of the rod?

Answer

1.5 V

Contributors and Attributions
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8.3: Induced Electric Fields

By the end of this section, you will be able to:

Connect the relationship between an induced emf from Faraday’s law to an electric field, thereby showing that a changing
magnetic flux creates an electric field
Solve for the electric field based on a changing magnetic flux in time

The fact that emfs are induced in circuits implies that work is being done on the conduction electrons in the wires. What can
possibly be the source of this work? We know that it’s neither a battery nor a magnetic field, for a battery does not have to be
present in a circuit where current is induced, and magnetic fields never do work on moving charges. The answer is that the source
of the work is an electric field  that is induced in the wires. The work done by  in moving a unit charge completely around a
circuit is the induced emf ; that is,

where  represents the line integral around the circuit. Faraday’s law can be written in terms of the induced electric field as

There is an important distinction between the electric field induced by a changing magnetic field and the electrostatic field
produced by a fixed charge distribution. Specifically, the induced electric field is nonconservative because it does net work in
moving a charge over a closed path, whereas the electrostatic field is conservative and does no net work over a closed path. Hence,
electric potential can be associated with the electrostatic field, but not with the induced field. The following equations represent the
distinction between the two types of electric field:

Our results can be summarized by combining these equations:

What is the induced electric field in the circular coil of Example 13.3.1A (and Figure 13.3.3) at the three times indicated?

Strategy

Using cylindrical symmetry, the electric field integral simplifies into the electric field times the circumference of a circle.
Since we already know the induced emf, we can connect these two expressions by Faraday’s law to solve for the induced
electric field.

Solution

The induced electric field in the coil is constant in magnitude over the cylindrical surface, similar to how Ampere’s law
problems with cylinders are solved. Since  is tangent to the coil,

 Learning Objectives

E ⃗  E ⃗ 

e

ϵ = ∮ ⋅ d ,E ⃗  l ⃗  (8.3.1)

∮

∮ ⋅ d = − .E ⃗  l ⃗  dΦm

dt
(8.3.2)

∮ ⋅ d ≠ 0E ⃗  l ⃗ 

  
Induced Electric Field

(8.3.3)

.∮ ⋅ d = 0E ⃗  l ⃗ 

  
Electrostatic Electric Fields

(8.3.4)

ϵ = ∮ ⋅ d = − .E ⃗  l ⃗  dΦm

dt
(8.3.5)

 Example : Induced Electric Field in a Circular Coil8.3.1

E ⃗ 

∮ ⋅ d = ∮ Edl = 2πrE.E ⃗  l ⃗ 
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When combined with Equation , this gives

The direction of  is counterclockwise, and  circulates in the same direction around the coil. The values of E are

Significance

When the magnetic flux through a circuit changes, a nonconservative electric field is induced, which drives current
through the circuit. But what happens if  in free space where there isn’t a conducting path? The answer is
that this case can be treated as if a conducting path were present; that is, nonconservative electric fields are induced
wherever  whether or not there is a conducting path present.

These nonconservative electric fields always satisfy Equation . For example, if the circular coil were removed, an
electric field in free space at  would still be directed counterclockwise, and its magnitude would still be 1.9
V/m at . 1.5 V/m at , etc. The existence of induced electric fields is certainly not restricted to
wires in circuits.

Figure  shows a long solenoid with radius R and n turns per unit length; its current decreases with time according to 
. What is the magnitude of the induced electric field at a point a distance r from the central axis of the solenoid (a)

when  and (b) when  [Figure ]. (c) What is the direction of the induced field at both locations? Assume that
the infinite-solenoid approximation is valid throughout the regions of interest.

Figure : (a) The current in a long solenoid is decreasing exponentially. (b) A cross-sectional view of the solenoid from its
left end. The cross-section shown is near the middle of the solenoid. An electric field is induced both inside and outside the
solenoid.

Strategy

Using the formula for the magnetic field inside an infinite solenoid and Faraday’s law, we calculate the induced emf. Since
we have cylindrical symmetry, the electric field integral reduces to the electric field times the circumference of the
integration path. Then we solve for the electric field.

Solution

1. The magnetic field is confined to the interior of the solenoid where

8.3.5

E = .
ϵ

2πr

ϵ E ⃗ 

E( )t1

E( )t2

E( )t3

= = 1.9 V /m;
6.0 V

2π (0.50 m)

= = 1.5 V /m;
4.7 V

2π (0.50 m)

= = 0.013 V /m;
0.040 V

2π (0.50 m)

dB/dt ≠ 0

dB/dt ≠ 0

8.3.5

r = 0.50 m

t = 0 t = 5.0 × s10−2

 Example : Electric Field Induced by the Changing Magnetic Field of a Solenoid8.3.2

8.3.1a

I = I0e
−αt

r > R r < R 8.3.1b

8.3.1
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Thus, the magnetic flux through a circular path whose radius r is greater than R, the solenoid radius, is

The induced field  is tangent to this path, and because of the cylindrical symmetry of the system, its magnitude is
constant on the path. Hence, we have

2. For a path of radius r inside the solenoid, , so

and the induced field is

3. The magnetic field points into the page as shown in part (b) and is decreasing. If either of the circular paths were
occupied by conducting rings, the currents induced in them would circulate as shown, in conformity with Lenz’s
law. The induced electric field must be so directed as well.

Significance

In part (b), note that  increases with r inside and decreases as 1/r outside the solenoid, as shown in Figure .

Figure : The electric field vs. distance r. When , the electric field rises linearly, whereas when , the
electric field falls of proportional to 1/r.

Suppose that the coil of Example 13.3.1A is a square rather than circular. Can Equation  be used to calculate (a) the
induced emf and (b) the induced electric field?

Answer

a. yes; b. Yes; however there is a lack of symmetry between the electric field and coil, making  a more complicated
relationship that can’t be simplified as shown in the example.

B = nI = n .μ0 μ0 I0e
−αt (8.3.6)

= BA = n π .Φm μ0 I0 R2e−αt (8.3.7)

E ⃗ 

∮ ⋅ d = ,
∣

∣
∣ E ⃗  l ⃗ ∣

∣
∣

∣

∣
∣
dΦm

dt

∣

∣
∣ (8.3.8)

E(2πr) = ( n π ) = α n π ,
∣

∣
∣
d

dt
μ0 I0 R2e−αt ∣

∣
∣ μ0 I0 R2e−αt (8.3.9)

E = (r > R).
α nμ0 I0R

2

2r
e−αt (8.3.10)

= BπΦm r2

E(2π) = ( n π ) = α n π ,
∣

∣
∣
d

dt
μ0 I0 r2e−αt ∣

∣
∣ μ0 I0 r2e−αt (8.3.11)

E = (r < R).
α n rμ0 I0

2
e−αt (8.3.12)

| |E ⃗  8.3.2

8.3.2 r < R r > R

 Exercise 8.3.1

8.3.5

∮ ⋅ dE ⃗  l ⃗ 
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What is the magnitude of the induced electric field in Example  at  if , ,  turns per
meter, , and ?

Answer

The magnetic field shown below is confined to the cylindrical region shown and is changing with time. Identify those paths for
which .

Answer

A long solenoid of cross-sectional area  is wound with 25 turns of wire per centimeter. It is placed in the middle of a
closely wrapped coil of 10 turns and radius 25 cm, as shown below. (a) What is the emf induced in the coil when the current
through the solenoid is decreasing at a rate ? (b) What is the electric field induced in the coil?

Answer

a. ; b. 
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8.3.2 t = 0 r = 6.0 cm R = 2.0 cm n = 2000

= 2.0 AI0 α = 200 s−1

3.4 × V /m10−3

 Exercise 8.3.3

ϵ = ∮ ⋅ d ≠ 0E ⃗  l ⃗ 

, ,P1 P2 P4

 Exercise 8.3.1

5.0 cm2

dI/dt = −0.20 A/s
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8.4: Eddy Currents and Magnetic Damping

By the end of this section, you will be able to:

Explain the magnitude and direction of an induced eddy current, and the effect this will have on the object it is induced in.
Describe several applications of magnetic damping.

Eddy Currents and Magnetic Damping
Eddy currents can produce significant drag, called magnetic damping, on the motion involved. Consider the apparatus shown in
Figure , which swings a pendulum bob between the poles of a strong magnet. (This is another favorite physics demonstration.)
If the bob is metal, significant drag acts on the bob as it enters and leaves the field, quickly damping the motion. If, however, the
bob is a slotted metal plate, as shown in part (b) of the figure, the magnet produces a much smaller effect. There is no discernible
effect on a bob made of an insulator. Why does drag occur in both directions, and are there any uses for magnetic drag?

Figure : A common physics demonstration device for exploring eddy currents and magnetic damping. (a) The motion of a
metal pendulum bob swinging between the poles of a magnet is quickly damped by the action of eddy currents. (b) There is little
effect on the motion of a slotted metal bob, implying that eddy currents are made less effective. (c) There is also no magnetic
damping on a nonconducting bob, since the eddy currents are extremely small.

Figure  shows what happens to the metal plate as it enters and leaves the magnetic field. In both cases, it experiences a force
opposing its motion. As it enters from the left, flux increases, setting up an eddy current (Faraday’s law) in the counterclockwise
direction (Lenz’s law), as shown. Only the right-hand side of the current loop is in the field, so an unopposed force acts on it to the
left (RHR-1). When the metal plate is completely inside the field, there is no eddy current if the field is uniform, since the flux
remains constant in this region. But when the plate leaves the field on the right, flux decreases, causing an eddy current in the
clockwise direction that, again, experiences a force to the left, further slowing the motion. A similar analysis of what happens when
the plate swings from the right toward the left shows that its motion is also damped when entering and leaving the field.

Learning Objectives
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Figure : A more detailed look at the conducting plate passing between the poles of a magnet. As it enters and leaves the field,
the change in flux produces an eddy current. Magnetic force on the current loop opposes the motion. There is no current and no
magnetic drag when the plate is completely inside the uniform field.

When a slotted metal plate enters the field (Figure ), an emf is induced by the change in flux, but it is less effective because
the slots limit the size of the current loops. Moreover, adjacent loops have currents in opposite directions, and their effects cancel.
When an insulating material is used, the eddy current is extremely small, so magnetic damping on insulators is negligible. If eddy
currents are to be avoided in conductors, then they must be slotted or constructed of thin layers of conducting material separated by
insulating sheets.

Figure : Eddy currents induced in a slotted metal plate entering a magnetic field form small loops, and the forces on them tend
to cancel, thereby making magnetic drag almost zero.

 

Applications of Magnetic Damping

One use of magnetic damping is found in sensitive laboratory balances. To have maximum sensitivity and accuracy, the balance
must be as friction-free as possible. But if it is friction-free, then it will oscillate for a very long time. Magnetic damping is a simple
and ideal solution. With magnetic damping, drag is proportional to speed and becomes zero at zero velocity. Thus, the oscillations
are quickly damped, after which the damping force disappears, allowing the balance to be very sensitive (Figure ). In most
balances, magnetic damping is accomplished with a conducting disc that rotates in a fixed field.
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Figure : Magnetic damping of this sensitive balance slows its oscillations. Since Faraday’s law of induction gives the greatest
effect for the most rapid change, damping is greatest for large oscillations and goes to zero as the motion stops.

Since eddy currents and magnetic damping occur only in conductors, recycling centers can use magnets to separate metals from
other materials. Trash is dumped in batches down a ramp, beneath which lies a powerful magnet. Conductors in the trash are
slowed by magnetic damping while nonmetals in the trash move on, separating from the metals (Figure ). This works for all
metals, not just ferromagnetic ones. A magnet can separate out the ferromagnetic materials alone by acting on stationary trash.

Figure : Metals can be separated from other trash by magnetic drag. Eddy currents and magnetic drag are created in the metals
sent down this ramp by the powerful magnet beneath it. Nonmetals move on.

Other major applications of eddy currents appear in metal detectors and braking systems in trains and roller coasters. Portable
metal detectors (Figure ) consist of a primary coil carrying an alternating current and a secondary coil in which a current is
induced. An eddy current is induced in a piece of metal close to the detector, causing a change in the induced current within the
secondary coil. This can trigger some sort of signal, such as a shrill noise.
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Figure : A soldier in Iraq uses a metal detector to search for explosives and weapons. (credit: U.S. Army)

Braking using eddy currents is safer because factors such as rain do not affect the braking and the braking is smoother. However,
eddy currents cannot bring the motion to a complete stop, since the braking force produced decreases as speed is reduced. Thus,
speed can be reduced from say 20 m/s to 5 m/s, but another form of braking is needed to completely stop the vehicle. Generally,
powerful rare-earth magnets such as neodymium magnets are used in roller coasters. Figure  shows rows of magnets in such
an application. The vehicle has metal fins (normally containing copper) that pass through the magnetic field, slowing the vehicle
down in much the same way as with the pendulum bob shown in Figure .

Figure : The rows of rare-earth magnets (protruding horizontally) are used for magnetic braking in roller coasters. (credit:
Stefan Scheer)

Induction cooktops have electromagnets under their surface. The magnetic field is varied rapidly, producing eddy currents in the
base of the pot, causing the pot and its contents to increase in temperature. Induction cooktops have high efficiencies and good
response times but the base of the pot needs to be conductors, such as iron or steel, for induction to work.

Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

 

Summary
Current loops induced in moving conductors are called eddy currents.
They can create significant drag, called magnetic damping.
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Glossary

eddy current
a current loop in a conductor caused by motional emf

magnetic damping
the drag produced by eddy currents

This page titled 8.4: Eddy Currents and Magnetic Damping is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
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8.5: Electric Generators and Back Emf

By the end of this section, you will be able to:

Explain how an electric generator works
Determine the induced emf in a loop at any time interval, rotating at a constant rate in a magnetic field
Show that rotating coils have an induced emf; in motors this is called back emf because it opposes the emf input to the
motor

A variety of important phenomena and devices can be understood with Faraday’s law. In this section, we examine two of these.

Electric Generators
Electric generators induce an emf by rotating a coil in a magnetic field, as briefly discussed in Motional Emf. We now explore
generators in more detail. Consider the following example.

The generator coil shown in Figure  is rotated through one-fourth of a revolution (from  to ) in 15.0 ms.
The 200-turn circular coil has a 5.00-cm radius and is in a uniform 0.80-T magnetic field. What is the emf induced?

Figure : When this generator coil is rotated through one-fourth of a revolution, the magnetic flux  changes from its
maximum to zero, inducing an emf.

Strategy

Faraday’s law of induction is used to find the emf induced:

According to the diagram, the projection of the surface normal vector  to the magnetic field is initially  and this is
inserted by the definition of the dot product. The magnitude of the magnetic field and area of the loop are fixed over time,
which makes the integration simplify quickly. The induced emf is written out using Faraday’s law:

 Learning Objectives

 Calculating the Emf Induced in a Generator Coil

8.5.1 θ= 0o θ= 90o

8.5.1 Φm

ϵ=−N .
dΦm

dt
(8.5.1)

n̂ cos θ
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Solution

Entering this value gives

Significance

This is a practical average value, similar to the 120 V used in household power.

The emf calculated in Example  is the average over one-fourth of a revolution. What is the emf at any given instant? It varies
with the angle between the magnetic field and a perpendicular to the coil. We can get an expression for emf as a function of time by
considering the motional emf on a rotating rectangular coil of width w and height l in a uniform magnetic field, as illustrated in
Figure .

Figure : A generator with a single rectangular coil rotated at constant angular velocity in a uniform magnetic field produces an
emf that varies sinusoidally in time. Note the generator is similar to a motor, except the shaft is rotated to produce a current rather
than the other way around.

Charges in the wires of the loop experience the magnetic force, because they are moving in a magnetic field. Charges in the vertical
wires experience forces parallel to the wire, causing currents. But those in the top and bottom segments feel a force perpendicular
to the wire, which does not cause a current. We can thus find the induced emf by considering only the side wires. Motional emf is
given to be , where the velocity v is perpendicular to the magnetic field B. Here the velocity is at an angle  with B, so that
its component perpendicular to B is v sin  (see Figure ). Thus, in this case, the emf induced on each side is 
and they are in the same direction. The total emf around the loop is then

This expression is valid, but it does not give emf as a function of time. To find the time dependence of emf, we assume the coil
rotates at a constant angular velocity . The angle  is related to angular velocity by , so that

Now, linear velocity v is related to angular velocity  by . Here, , so that , and

Noting that the area of the loop is , and allowing for N loops, we find that

This is the emf induced in a generator coil of N turns and area A rotating at a constant angular velocity  in a uniform magnetic
field B. This can also be expressed as

ϵ=NBAsin θ .
dθ

dt
(8.5.2)

A= π = (3.14)(0.0500m = 7.85× .r2 )2 10−3 m2 (8.5.3)

ϵ= (200)(0.80 T )(7.85× )sin( ) = 131 V .10−3 m2 90o
π/2

15.0× s10−3
(8.5.4)

8.5.1

8.5.2

8.5.2

ϵ=Blv θ

θ 8.5.2 ϵ=Blvsin θ

ϵ= 2Blvsin θ. (8.5.5)

ω θ θ= ωt

ϵ= 2Blvsin(ωt). (8.5.6)

ω v= rω r= ω/2 v= (ω/2)ω

ϵ= 2Bl ωsinωt = (lω)Bw sinωt.
ω

2
(8.5.7)

A= lω

ϵ=NBAw sin (ωt). (8.5.8)

?

ϵ= sinωt,ϵ0 (8.5.9)
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where

is the peak emf, since the maximum value of . Note that the frequency of the oscillation is  and the period is 
. Figure  shows a graph of emf as a function of time, and it now seems reasonable that ac voltage is

sinusoidal.

Figure : The emf of a generator is sent to a light bulb with the system of rings and brushes shown. The graph gives the emf of
the generator as a function of time, where  is the peak emf. The period is , where f is the frequency.

The fact that the peak emf is  makes good sense. The greater the number of coils, the larger their area, and the
stronger the field, the greater the output voltage. It is interesting that the faster the generator is spun (greater ), the greater the emf.
This is noticeable on bicycle generators—at least the cheaper varieties.

Figure  shows a scheme by which a generator can be made to produce pulsed dc. More elaborate arrangements of multiple
coils and split rings can produce smoother dc, although electronic rather than mechanical means are usually used to make ripple-
free dc.

Figure : Split rings, called commutators, produce a pulsed dc emf output in this configuration.

In real life, electric generators look a lot different from the figures in this section, but the principles are the same. The source of
mechanical energy that turns the coil can be falling water (hydropower), steam produced by the burning of fossil fuels, or the
kinetic energy of wind. Figure  shows a cutaway view of a steam turbine; steam moves over the blades connected to the shaft,
which rotates the coil within the generator. The generation of electrical energy from mechanical energy is the basic principle of all
power that is sent through our electrical grids to our homes.

=NABωϵ0 (8.5.10)

sin(ωt) = 1 f = ω/2π

T = 1/f = 2π/ω 8.5.3

8.5.3
ϵ0 T = 1/f = 2π/ω

=NBAωϵ0

8.5.4

8.5.4

8.5.5
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Figure : Steam turbine/generator. The steam produced by burning coal impacts the turbine blades, turning the shaft, which is
connected to the generator.

Generators illustrated in this section look very much like the motors illustrated previously. This is not coincidental. In fact, a motor
becomes a generator when its shaft rotates. Certain early automobiles used their starter motor as a generator. In the next section, we
further explore the action of a motor as a generator.

Back Emf
Generators convert mechanical energy into electrical energy, whereas motors convert electrical energy into mechanical energy.
Thus, it is not surprising that motors and generators have the same general construction. A motor works by sending a current
through a loop of wire located in a magnetic field. As a result, the magnetic field exerts torque on the loop. This rotates a shaft,
thereby extracting mechanical work out of the electrical current sent in initially. (Refer to Force and Torque on a Current Loop for a
discussion on motors that will help you understand more about them before proceeding.)

When the coil of a motor is turned, magnetic flux changes through the coil, and an emf (consistent with Faraday’s law) is induced.
The motor thus acts as a generator whenever its coil rotates. This happens whether the shaft is turned by an external input, like a
belt drive, or by the action of the motor itself. That is, when a motor is doing work and its shaft is turning, an emf is generated.
Lenz’s law tells us the emf opposes any change, so that the input emf that powers the motor is opposed by the motor’s self-
generated emf, called the back emf of the motor (Figure ).

Figure : The coil of a dc motor is represented as a resistor in this schematic. The back emf is represented as a variable emf that
opposes the emf driving the motor. Back emf is zero when the motor is not turning and increases proportionally to the motor’s
angular velocity.

The generator output of a motor is the difference between the supply voltage and the back emf. The back emf is zero when the
motor is first turned on, meaning that the coil receives the full driving voltage and the motor draws maximum current when it is on
but not turning. As the motor turns faster, the back emf grows, always opposing the driving emf, and reduces both the voltage
across the coil and the amount of current it draws. This effect is noticeable in many common situations. When a vacuum cleaner,
refrigerator, or washing machine is first turned on, lights in the same circuit dim briefly due to the IR drop produced in feeder lines
by the large current drawn by the motor.

When a motor first comes on, it draws more current than when it runs at its normal operating speed. When a mechanical load is
placed on the motor, like an electric wheelchair going up a hill, the motor slows, the back emf drops, more current flows, and more
work can be done. If the motor runs at too low a speed, the larger current can overheat it (via resistive power in the coil, 

, perhaps even burning it out. On the other hand, if there is no mechanical load on the motor, it increases its angular
velocity  until the back emf is nearly equal to the driving emf. Then the motor uses only enough energy to overcome friction.

8.5.5

8.5.6

8.5.6

P = R)I 2
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Eddy currents in iron cores of motors can cause troublesome energy losses. These are usually minimized by constructing the cores
out of thin, electrically insulated sheets of iron. The magnetic properties of the core are hardly affected by the lamination of the
insulating sheet, while the resistive heating is reduced considerably. Consider, for example, the motor coils represented in Figure 

. The coils have an equivalent resistance of  and are driven by an emf of 48.0 V. Shortly after being turned on, they
draw a current

and thus dissipate  of energy as heat transfer. Under normal operating conditions for this motor, suppose the
back emf is 40.0 V. Then at operating speed, the total voltage across the coils is 8.0 V (48.0 V minus the 40.0 V back emf), and the
current drawn is

Under normal load, then, the power dissipated is . This does not cause a problem for this
motor, whereas the former 5.76 kW would burn out the coils if sustained.

The total resistance  of a series-wound dc motor is  (Figure ). When connected to a 120-V source ,
the motor draws 10 A while running at constant angular velocity. (a) What is the back emf induced in the rotating coil, ? (b)
What is the mechanical power output of the motor? (c) How much power is dissipated in the resistance of the coils? (d) What
is the power output of the 120-V source? (e) Suppose the load on the motor increases, causing it to slow down to the point
where it draws 20 A. Answer parts (a) through (d) for this situation.

Figure : Circuit representation of a series-wound direct current motor.

Strategy

The back emf is calculated based on the difference between the supplied voltage and the loss from the current through the
resistance. The power from each device is calculated from one of the power formulas based on the given information.

Solution
1. The back emf is

2. Since the potential across the armature is 100 V when the current through it is 10 A, the power output of the motor is

3. A 10-A current flows through coils whose combined resistance is , so the power dissipated in the coils is

4. Since 10 A is drawn from the 120-V source, its power output is

5. Repeating the same calculations with , we find

The motor is turning more slowly in this case, so its power output and the power of the source are larger.

8.5.6 0.400 Ω

I = V /R= (48.0 V )/(0.400 Ω) = 120A (8.5.11)

P = R= 5.76 kWI 2

I = V /R= (8.0 V )/(0.400 Ω) = 20A. (8.5.12)

P = IV = (20A)(8.0 V ) = 160W

 A Series-Wound Motor in Operation

( + )Rf Ra 2.0 Ω 8.5.7 ( )ϵS
ϵi

8.5.7

= −I( +R ) = 120 V −(10A)(2.0 Ω) = 100 V .ϵi ϵS Rf Ea (8.5.13)

= I = (100 V )(10A) = 1.0× W .Pm ϵi 103 (8.5.14)

2.0 Ω

= R= (10A (2.0 Ω) = 2.0× W .PR I 2 )2 102 (8.5.15)

= I = (120 V )(10A) = 1.2× W .PS ϵS 103 (8.5.16)

I = 20A

= 80 V , = 1.6× W , = 8.0× W , and = 2.4× W .ϵi Pm 103 PR 102 Ps 103 (8.5.17)
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Significance Notice that we have an energy balance in part (d):

This page titled 8.5: Electric Generators and Back Emf is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

13.7: Electric Generators and Back Emf by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.

1.2× W = 1.0× W +2.0× W .103 103 102 (8.5.18)
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8.6: Inductance

By the end of this section, you will be able to:

Calculate the inductance of an inductor.
Calculate the energy stored in an inductor.
Calculate the emf generated in an inductor.

Inductors
Induction is the process in which an emf is induced by changing magnetic flux. Many examples have been discussed so far, some
more effective than others. Transformers, for example, are designed to be particularly effective at inducing a desired voltage and
current with very little loss of energy to other forms. Is there a useful physical quantity related to how “effective” a given device is?
The answer is yes, and that physical quantity is called inductance.

Mutual inductance is the effect of Faraday’s law of induction for one device upon another, such as the primary coil in transmitting
energy to the secondary in a transformer. See Figure, where simple coils induce emfs in one another.

Figure : These coils can induce emfs in one another like an inefficient transformer. Their mutual inductance M indicates the
effectiveness of the coupling between them. Here a change in current in coil 1 is seen to induce an emf in coil 2. (Note that "
induced" represents the induced emf in coil 2.)

In the many cases where the geometry of the devices is fixed, flux is changed by varying current. We therefore concentrate on the
rate of change of current, , as the cause of induction. A change in the current  in one device, coil 1 in the figure, induces an

 in the other. We express this in equation form as

where  is defined to be the mutual inductance between the two devices. The minus sign is an expression of Lenz’s law. The
larger the mutual inductance , the more effective the coupling. For example, the coils in Figure have a small  compared with
the transformer coils in [link]. Units for  are (V\cdot s)/A = \Omega \cdot s\), which is named a henry (H), after Joseph Henry.
That is, .

Nature is symmetric here. If we change the current  in coil 2, we induce an  in coil 1, which is given by

where  is the same as for the reverse process. Transformers run backward with the same effectiveness, or mutual inductance .

A large mutual inductance  may or may not be desirable. We want a transformer to have a large mutual inductance. But an
appliance, such as an electric clothes dryer, can induce a dangerous emf on its case if the mutual inductance between its coils and
the case is large. One way to reduce mutual inductance  is to counterwind coils to cancel the magnetic field produced. (See
Figure.)

Learning Objectives

8.6.1
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ΔI/δt I1

I2

em = −M ,f2
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Figure : The heating coils of an electric clothes dryer can be counter-wound so that their magnetic fields cancel one another,
greatly reducing the mutual inductance with the case of the dryer.

Self-inductance, the effect of Faraday’s law of induction of a device on itself, also exists. When, for example, current through a coil
is increased, the magnetic field and flux also increase, inducing a counter emf, as required by Lenz’s law. Conversely, if the current
is decreased, an emf is induced that opposes the decrease. Most devices have a fixed geometry, and so the change in flux is due
entirely to the change in current  through the device. The induced emf is related to the physical geometry of the device and the
rate of change of current. It is given by

where  is the self-inductance of the device. A device that exhibits significant self-inductance is called an inductor, and given the
symbol in Figure.

Figure :

The minus sign is an expression of Lenz’s law, indicating that emf opposes the change in current. Units of self-inductance are
henries (H) just as for mutual inductance. The larger the self-inductance  of a device, the greater its opposition to any change in
current through it. For example, a large coil with many turns and an iron core has a large  and will not allow current to change
quickly. To avoid this effect, a smal  must be achieved, such as by counterwinding coils as in Figure.

A 1 H inductor is a large inductor. To illustrate this, consider a device with  that has a 10 A current flowing through it.
What happens if we try to shut off the current rapidly, perhaps in only 1.0 ms? An emf, given by , will oppose
the change. Thus an emf will be induced given by . The positive
sign means this large voltage is in the same direction as the current, opposing its decrease. Such large emfs can cause arcs,
damaging switching equipment, and so it may be necessary to change current more slowly.

There are uses for such a large induced voltage. Camera flashes use a battery, two inductors that function as a transformer, and a
switching system or oscillator to induce large voltages. (Remember that we need a changing magnetic field, brought about by a
changing current, to induce a voltage in another coil.) The oscillator system will do this many times as the battery voltage is
boosted to over one thousand volts. (You may hear the high pitched whine from the transformer as the capacitor is being charged.)
A capacitor stores the high voltage for later use in powering the flash. (See Figure.)

8.6.2

ΔI

emf = −L ,
ΔI

Δt
(8.6.3)

L

8.6.3

L

L

L

L = 1.0 H

emf = −L(ΔI/Δt)

emf = −L(ΔI/Δt) = (1.0 H)[(10 A)/(1.0 ms)] = 10, 000 V
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Figure : Through rapid switching of an inductor, 1.5 V batteries can be used to induce emfs of several thousand volts. This
voltage can be used to store charge in a capacitor for later use, such as in a camera flash attachment.

It is possible to calculate  for an inductor given its geometry (size and shape) and knowing the magnetic field that it produces.
This is difficult in most cases, because of the complexity of the field created. So in this text the inductance  is usually a given
quantity. One exception is the solenoid, because it has a very uniform field inside, a nearly zero field outside, and a simple shape. It
is instructive to derive an equation for its inductance. We start by noting that the induced emf is given by Faraday’s law of
induction as  and, by the definition of self-inductance, as . Equating these yields

Solving for  gives

This equation for the self-inductance  of a device is always valid. It means that self-inductance  depends on how effective the
current is in creating flux; the more effective, the greater  is.

Let us use this last equation to find an expression for the inductance of a solenoid. Since the area  of a solenoid is fixed, the
change in flux is . To find , we note that the magnetic field of a solenoid is given by 

. (Here , where  is the number of coils and is the solenoid’s length.) Only the current changes, so
that . Substituting  into  gives

This simplifies to

This is the self-inductance of a solenoid of cross-sectional area  and length . Note that the inductance depends only on the
physical characteristics of the solenoid, consistent with its definition.

Calculate the self-inductance of a 10.0 cm long, 4.00 cm diameter solenoid that has 200 coils.

Strategy

This is a straightforward application of , since all quantities in the equation except  are known.

Solution

Use the following expression for the self-inductance of a solenoid:

8.6.4

L

L

emf = −N(ΔΦ/Δt) emf = −L(ΔI/Δt)

emf = −N = −L .
ΔΦ

Δt

ΔI

Δt
(8.6.4)

L

L = N .
ΔΦ

ΔI
(8.6.5)

L L

Δϕ/ΔI

A

ΔΦ = Δ(BA) = AΔB ΔB
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ΔI
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ΔI
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ΔΦ L = N ΔΦ

ΔI

L = N = N .
ΔΦ

ΔI
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ΔI

l

ΔI
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L = (solenoid).
Aμ0N

2

l
(8.6.7)

A l

Example : Calculating the Self-inductance of a Moderate Size Solenoid8.6.1
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The cross-sectional area in this example is ,  is given to be 200,
and the length  is 0.100 m. We know the permeability of free space is . Substituting these
into the expression for  gives

Discussion

This solenoid is moderate in size. Its inductance of nearly a millihenry is also considered moderate.

One common application of inductance is used in traffic lights that can tell when vehicles are waiting at the intersection. An
electrical circuit with an inductor is placed in the road under the place a waiting car will stop over. The body of the car increases the
inductance and the circuit changes sending a signal to the traffic lights to change colors. Similarly, metal detectors used for airport
security employ the same technique. A coil or inductor in the metal detector frame acts as both a transmitter and a receiver. The
pulsed signal in the transmitter coil induces a signal in the receiver. The self-inductance of the circuit is affected by any metal
object in the path. Such detectors can be adjusted for sensitivity and also can indicate the approximate location of metal found on a
person. (But they will not be able to detect any plastic explosive such as that found on the “underwear bomber.”) See Figure.

Figure : The familiar security gate at an airport can not only detect metals but also indicate their approximate height above the
floor. (credit: Alexbuirds, Wikimedia Commons)

Energy Stored in an Inductor
We know from Lenz’s law that inductances oppose changes in current. There is an alternative way to look at this opposition that is
based on energy. Energy is stored in a magnetic field. It takes time to build up energy, and it also takes time to deplete energy;
hence, there is an opposition to rapid change. In an inductor, the magnetic field is directly proportional to current and to the
inductance of the device. It can be shown that the energy stored in an inductor  is given by

This expression is similar to that for the energy stored in a capacitor.

L = .
Aμ0N

2

l
(8.6.8)

A = π = (3.14...)(0.0200 m = 1.26 ×r2 )2 10−3 m2 N

l = 4π× T ⋅m/Aμ0 10−7

L

L =
(4π× T ⋅m/A)(200 (1.26 × )10−7 )2 10−3 m2

0.100 m
(8.6.9)

= 0.632 mH. (8.6.10)
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How much energy is stored in the 0.632 mH inductor of the preceding example when a 30.0 A current flows through it?

Strategy

The energy is given by the equation , and all quantities except  are known.

Solution

Substituting the value for  found in the previous example and the given current into  gives

Discussion

This amount of energy is certainly enough to cause a spark if the current is suddenly switched off. It cannot be built up
instantaneously unless the power input is infinite.

Summary
Inductance is the property of a device that tells how effectively it induces an emf in another device.
Mutual inductance is the effect of two devices in inducing emfs in each other.
A change in current  in one induces an  in the second:

where  is defined to be the mutual inductance between the two devices, and the minus sign is due to Lenz’s law.
Symmetrically, a change in current  through the second device induces an  in the first:

where  is the same mutual inductance as in the reverse process.
Current changes in a device induce an emf in the device itself.
Self-inductance is the effect of the device inducing emf in itself.
The device is called an inductor, and the emf induced in it by a change in current through it is

where  is the self-inductance of the inductor, and  is the rate of change of current through it. The minus sign indicates
that emf opposes the change in current, as required by Lenz’s law.
The unit of self- and mutual inductance is the henry (H), where 
The self-inductance  of an inductor is proportional to how much flux changes with current. For an N-turn inductor,

The self-inductance of a solenoid is

where  is its number of turns in the solenoid,  is its cross-sectional area,  is its length, and  is the
permeability of free space.
The energy stored in an inductor  is

Example : Calculating the Energy Stored in the Field of a Solenoid8.6.1

= LEind
1
2

I 2 Eind

L = LEind
1
2

I 2

= LEind

1

2
I 2 (8.6.12)

0.5(0.632 × H)(30.0 A = 0.284 J.10−3 )2 (8.6.13)

Δ /ΔtI1 emf2

em = −M ,f2
ΔI1

Δt
(8.6.14)

M

Δ /ΔtI2 emf2

em = −M ,f1
ΔI2

Δt
(8.6.15)

M

emf = −L ,
ΔI

Δt
(8.6.16)

L ΔI/Δt

1 H = 1 Ω ⋅ s.

L

L = N .
ΔΦ
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L = (solenoid),
Aμ0N

2
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Glossary

inductance
a property of a device describing how efficient it is at inducing emf in another device

mutual inductance
how effective a pair of devices are at inducing emfs in each other

henry
the unit of inductance; 

self-inductance
how effective a device is at inducing emf in itself

inductor
a device that exhibits significant self-inductance

energy stored in an inductor
self-explanatory; calculated by 
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8.7: Applications of Electromagnetic Induction

By the end of this section, you will be able to:

Explain how a transformer works.
Calculate voltage, current, and/or number of turns given the other quantities.
Explain how computer hard drives and graphic tablets operate using magnetic induction
Explain how hybrid/electric vehicles and transcranial magnetic stimulation use magnetic induction to their advantage

Transformers
Transformers do what their name implies—they transform voltages from one value to another (The term voltage is used rather
than emf, because transformers have internal resistance). For example, many cell phones, laptops, video games, and power tools
and small appliances have a transformer built into their plug-in unit (like that in Figure ) that changes 120 V or 240 V AC into
whatever voltage the device uses.

Figure : The plug-in transformer has become increasingly familiar with the proliferation of electronic devices that operate on
voltages other than common 120 V AC. Most are in the 3 to 12 V range. (credit: Shop Xtreme)

Transformers are also used at several points in the power distribution systems, such as illustrated in Figure . Power is sent
long distances at high voltages, because less current is required for a given amount of power, and this means less line loss, as was
discussed previously. But high voltages pose greater hazards, so that transformers are employed to produce lower voltage at the
user’s location.

Figure : Transformers change voltages at several points in a power distribution system. Electric power is usually generated at
greater than 10 kV, and transmitted long distances at voltages over 200 kV—sometimes as great as 700 kV—to limit energy losses.
Local power distribution to neighborhoods or industries goes through a substation and is sent short distances at voltages ranging
from 5 to 13 kV. This is reduced to 120, 240, or 480 V for safety at the individual user site.

The type of transformer considered in this text (Figure ) is based on Faraday’s law of induction and is very similar in
construction to the apparatus Faraday used to demonstrate magnetic fields could cause currents. The two coils are called the
primary and secondary coils. In normal use, the input voltage is placed on the primary, and the secondary produces the transformed
output voltage. Not only does the iron core trap the magnetic field created by the primary coil, its magnetization increases the field
strength. Since the input voltage is AC, a time-varying magnetic flux is sent to the secondary, inducing its AC output voltage.
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Figure : A typical construction of a simple transformer has two coils wound on a ferromagnetic core that is laminated to
minimize eddy currents. The magnetic field created by the primary is mostly confined to and increased by the core, which transmits
it to the secondary coil. Any change in current in the primary induces a current in the secondary.

For the simple transformer shown in Figure , the output voltage  depends almost entirely on the input voltage  and the
ratio of the number of loops in the primary and secondary coils. Faraday’s law of induction for the secondary coil gives its induced
output voltage  to be

where  is the number of loops in the secondary coil and  is the rate of change of magnetic flux. Note that the output
voltage equals the induced emf ( ), provided coil resistance is small (a reasonable assumption for transformers). The
cross-sectional area of the coils is the same on either side, as is the magnetic field strength, and so  is the same on either
side. The input primary voltage  is also related to changing flux by

The reason for this is a little more subtle. Lenz’s law tells us that the primary coil opposes the change in flux caused by the input
voltage , hence the minus sign (This is an example of self-inductance, a topic to be explored in some detail in later sections).
Assuming negligible coil resistance, Kirchhoff’s loop rule tells us that the induced emf exactly equals the input voltage. Taking the
ratio of these last two equations yields a useful relationship:

This is known as the transformer equation, and it simply states that the ratio of the secondary to primary voltages in a transformer
equals the ratio of the number of loops in their coils.

The output voltage of a transformer can be less than, greater than, or equal to the input voltage, depending on the ratio of the
number of loops in their coils. Some transformers even provide a variable output by allowing connection to be made at different
points on the secondary coil. A step-up transformer is one that increases voltage, whereas a step-down transformer decreases
voltage. Assuming, as we have, that resistance is negligible, the electrical power output of a transformer equals its input. This is
nearly true in practice—transformer efficiency often exceeds 99%. Equating the power input and output,

Rearranging terms gives

Combining this with Equation  , we find that

8.7.3
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is the relationship between the output and input currents of a transformer. So if voltage increases, current decreases. Conversely, if
voltage decreases, current increases.

A portable x-ray unit has a step-up transformer, the 120 V input of which is transformed to the 100 kV output needed by the x-
ray tube. The primary has 50 loops and draws a current of 10.00 A when in use. (a) What is the number of loops in the
secondary? (b) Find the current output of the secondary.

Solution

a) We solve Equation  for , the number of loops in the secondary, and enter the known values. This gives

Discussion: A large number of loops in the secondary (compared with the primary) is required to produce such a large
voltage. This would be true for neon sign transformers and those supplying high voltage inside TVs and CRTs.

b) We can similarly find the output current of the secondary by solving Equation  and  and entering known values.
This gives

Discussion: As expected, the current output is significantly less than the input. In certain spectacular demonstrations, very
large voltages are used to produce long arcs, but they are relatively safe because the transformer output does not supply a
large current. Note that the power input here is

This equals the power output

as we assumed in the derivation of the equations used.

The fact that transformers are based on Faraday’s law of induction makes it clear why we cannot use transformers to change DC
voltages. If there is no change in primary voltage, there is no voltage induced in the secondary. One possibility is to connect DC to
the primary coil through a switch. As the switch is opened and closed, the secondary produces a voltage like that in Figure .
This is not really a practical alternative, and AC is in common use wherever it is necessary to increase or decrease voltages.

Example : Calculating Characteristics of a Step-Up Transformer8.7.1
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Figure : Transformers do not work for pure DC voltage input, but if it is switched on and off as on the top graph, the output
will look something like that on the bottom graph. This is not the sinusoidal AC most AC appliances need.

A battery charger meant for a series connection of ten nickel-cadmium batteries (total emf of 12.5 V DC) needs to have a 15.0
V output to charge the batteries. It uses a step-down transformer with a 200-loop primary and a 120 V input. (a) How many
loops should there be in the secondary coil? (b) If the charging current is 16.0 A, what is the input current?

Solution

a) You would expect the secondary to have a small number of loops. Solving Equation  for  and entering known
values gives

b) The current input can be obtained by solving Equation  for  and entering known values. This gives

Discussion:

The number of loops in the secondary is small, as expected for a step-down transformer. We also see that a small input
current produces a larger output current in a step-down transformer. When transformers are used to operate large magnets,
they sometimes have a small number of very heavy loops in the secondary. This allows the secondary to have low internal
resistance and produce large currents. Note again that this solution is based on the assumption of 100% efficiency—or
power out equals power in ( )-- reasonable for good transformers. In this case the primary and secondary power is
240 W. (Verify this for yourself as a consistency check.) Note that the Ni-Cd batteries need to be charged from a DC power
source (as would a 12 V battery). So the AC output of the secondary coil needs to be converted into DC. This is done using
something called a rectifier, which uses devices called diodes that allow only a one-way flow of current.

Transformers have many applications in electrical safety systems.

Other Applications
Modern society has numerous applications of Faraday’s law of induction, as we will explore in this chapter and others. At this
juncture, let us mention several that involve recording information using magnetic fields.

8.7.4

Example : Calculating Characteristics of a Step-Down Transformer8.7.2
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Some computer hard drives apply the principle of magnetic induction. Recorded data are made on a coated, spinning disk.
Historically, reading these data was made to work on the principle of induction. However, most input information today is carried
in digital rather than analog form—a series of 0s or 1s are written upon the spinning hard drive. Therefore, most hard drive readout
devices do not work on the principle of induction, but use a technique known as giant magnetoresistance. Giant
magnetoresistance is the effect of a large change of electrical resistance induced by an applied magnetic field to thin films of
alternating ferromagnetic and nonmagnetic layers. This is one of the first large successes of nanotechnology.

Graphics tablets, or tablet computers where a specially designed pen is used to draw digital images, also applies induction
principles. The tablets discussed here are labeled as passive tablets, since there are other designs that use either a battery-operated
pen or optical signals to write with. The passive tablets are different than the touch tablets and phones many of us use regularly, but
may still be found when signing your signature at a cash register. Underneath the screen, shown in Figure , are tiny wires
running across the length and width of the screen. The pen has a tiny magnetic field coming from the tip. As the tip brushes across
the screen, a changing magnetic field is felt in the wires which translates into an induced emf that is converted into the line you just
drew.

Figure : A tablet with a specially designed pen to write with is another application of magnetic induction.

Another application of induction is the magnetic stripe on the back of your personal credit card as used at the grocery store or the
ATM machine. This works on the same principle as the audio or video tape, in which a playback head reads personal information
from your card.

Check out this video to see how flashlights can use magnetic induction.

A magnet moves by your mechanical work through a wire. The induced current charges a capacitor that stores the charge that will
light the lightbulb even while you are not doing this mechanical work.

Electric and hybrid vehicles also take advantage of electromagnetic induction. One limiting factor that inhibits widespread
acceptance of 100% electric vehicles is that the lifetime of the battery is not as long as the time you get to drive on a full tank of
gas. To increase the amount of charge in the battery during driving, the motor can act as a generator whenever the car is braking,
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taking advantage of the back emf produced. This extra emf can be newly acquired stored energy in the car’s battery, prolonging the
life of the battery.

Another contemporary area of research in which electromagnetic induction is being successfully implemented is transcranial
magnetic stimulation (TMS). A host of disorders, including depression and hallucinations, can be traced to irregular localized
electrical activity in the brain. In transcranial magnetic stimulation, a rapidly varying and very localized magnetic field is placed
close to certain sites identified in the brain. The usage of TMS as a diagnostic technique is well established.

Check out this Youtube video to see how rock-and-roll instruments like electric guitars use electromagnetic induction to get
those strong beats.

Summary
Transformers use induction to transform voltages from one value to another.
For a transformer, the voltages across the primary and secondary coils are related by

where  and  are the voltages across primary and secondary coils having  and  turns.

The currents  and  in the primary and secondary coils are related by 

A step-up transformer increases voltage and decreases current, whereas a step-down transformer decreases voltage and
increases current.

Glossary

transformer
a device that transforms voltages from one value to another using induction

transformer equation
the equation showing that the ratio of the secondary to primary voltages in a transformer equals the ratio of the number of loops

in their coils; 

step-up transformer
a transformer that increases voltage

step-down transformer
a transformer that decreases voltage

 Video
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8.8: Alternating Current versus Direct Current

Explain the differences and similarities between AC and DC current.
Describe rms voltage, current, and average power.
Explain why AC current is used for power transmission.
Explain how various modern safety features in electric circuits work, with an emphasis on how induction is employed.

Alternating Current
Most of the examples in electric circuits, and particularly those utilizing batteries, have constant voltage sources. Once the current
is established, it is thus also a constant. Direct current (DC) is the flow of electric charge in only one direction. It is the steady
state of a constant-voltage circuit. Many well-known applications, however, use a time-varying voltage source. Alternating
current (AC) is the flow of electric charge that periodically reverses direction. If the source varies periodically, particularly
sinusoidally, the circuit is known as an alternating current circuit. Examples include the commercial and residential power that
serves so many of our needs. Figure  shows graphs of voltage and current versus time for typical DC and AC power. The AC
voltages and frequencies commonly used in homes and businesses vary around the world. The AC voltages range from 100 V to
240 V; the frequencies range from 50 Hz to 60 Hz.

Figure : (a) DC voltage and current are constant in time, once the current is established. (b) A graph of voltage and current
versus time for 60-Hz AC power. The voltage and current are sinusoidal and are in phase for a simple resistance circuit. The
frequencies and peak voltages of AC sources differ greatly.

Figure : The potential difference  between the terminals of an AC voltage source fluctuates as shown.

Figure  shows a schematic of a simple circuit with an AC voltage source. The voltage between the terminals fluctuates as
shown. For this example, the voltage and current are said to be in phase, as seen in Figure (b).

Current in the resistor alternates back and forth just like the driving voltage, since . If the resistor is a fluorescent light
bulb, for example, it brightens and dims 120 times per second as the current repeatedly goes through zero. A 120-Hz flicker is too
rapid for your eyes to detect, but if you wave your hand back and forth between your face and a fluorescent light, you will see a
stroboscopic effect evidencing AC. The fact that the light output fluctuates means that the power is fluctuating. The power supplied
is .
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Wave your hand back and forth between your face and a fluorescent light bulb. Do you observe the same thing with the
headlights on your car? Explain what you observe. Warning: Do not look directly at very bright light.

Figure : AC power as a function of time.

We are most often concerned with average power rather than its fluctuations—that 60-W light bulb in your desk lamp has an
average power consumption of 60 W, for example. As illustrated in Figure . One common way to express an average is "root-
mean-square," or "rms." For example, rms voltage of an AC voltage source is found by first squaring the voltage ("square"), taking
an average of this value over one period of oscillation ("mean"), and taking the square root ("root").

It is standard practice to quote , , and  rather than the peak values. For example, most household electricity is 120 V
AC, which means that  is 120 V. The common 10-A circuit breaker will interrupt a sustained  greater than 10 A. Your
1.0-kW microwave oven consumes , and so on. You can think of these rms and average values as the equivalent
DC values for a simple resistive circuit.

To summarize, when dealing with AC, Ohm’s law and the equations for power are completely analogous to those for DC, but rms
and average values are used for AC. Thus, for AC, Ohm’s law is written

The various expressions for AC power  are

and

Why Use AC for Power Distribution?
Most large power-distribution systems are AC. Moreover, the power is transmitted at much higher voltages than the 120-V AC
(240 V in most parts of the world) we use in homes and on the job. Economies of scale make it cheaper to build a few very large
electric power-generation plants than to build numerous small ones. This necessitates sending power long distances, and it is
obviously important that energy losses en route be minimized. High voltages can be transmitted with much smaller power losses
than low voltages, as we shall show below. (See Figure .) For safety reasons, the voltage at the user is reduced to familiar
values. The crucial factor is that AC voltages can be increased and decreased efficiently with transformers (which uses
electromagnetic induction to produce time-varying voltages), while it is more difficult to change DC voltages without power losses.
So AC is used in most large power distribution systems.

Figure : Power is distributed over large distances at high voltage to reduce power loss in the transmission lines. The voltages
generated at the power plant are stepped up by passive devices called transformers to 330,000 volts (or more in some places
worldwide). At the point of use, the transformers reduce the voltage transmitted for safe residential and commercial use. (Credit:
GeorgHH, Wikimedia Commons)

MAKING CONNECTIONS: TAKE-HOME EXPERIMENT—AC/DC LIGHTS
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(a) What current is needed to transmit 100 MW of power at 200 kV? (b) What is the power dissipated by the transmission lines
if they have a resistance of ? (c) What percentage of the power is lost in the transmission lines?

Strategy

We are given , , and the resistance of the lines is . Using these givens, we can
find the current flowing (from ) and then the power dissipated in the lines ( ), and we take the ratio to the
total power transmitted.

Solution

a) To find the current, we rearrange the relationship  and substitute known values. This gives

b) Knowing the current and given the resistance of the lines, the power dissipated in them is found from .
Substituting the known values gives

c) The percent loss is the ratio of this lost power to the total or input power, multiplied by 100:

Discussion

One-fourth of a percent is an acceptable loss. Note that if 100 MW of power had been transmitted at 25 kV, then a
current of 4000 A would have been needed. This would result in a power loss in the lines of 16.0 MW, or 16.0% rather
than 0.250%. The lower the voltage, the more current is needed, and the greater the power loss in the fixed-resistance
transmission lines. Of course, lower-resistance lines can be built, but this requires larger and more expensive wires. If
superconducting lines could be economically produced, there would be no loss in the transmission lines at all. But, as
we shall see in a later chapter, there is a limit to current in superconductors, too. In short, high voltages are more
economical for transmitting power, and AC voltage is much easier to raise and lower, so that AC is used in most large-
scale power distribution systems.

Electrical Safety
Electricity has two hazards. A thermal hazard occurs when there is electrical overheating. A shock hazard occurs when electric
current passes through a person. Both hazards have already been discussed. Here we will concentrate on systems and devices that
prevent electrical hazards.

Figure 1 shows the schematic for a simple AC circuit with no safety features. This is not how power is distributed in practice.
Modern household and industrial wiring requires the three-wire system, shown schematically in Figure 2, which has several safety
features. First is the familiar circuit breaker (or fuse) to prevent thermal overload. Second, there is a protective case around the
appliance, such as a toaster or refrigerator. The case’s safety feature is that it prevents a person from touching exposed wires and
coming into electrical contact with the circuit, helping prevent shocks.

Figure : Schematic of a simple AC circuit with a voltage source and a single appliance represented by the resistance  There
are no safety features in this circuit.

Example : Power Losses Are Less for High-Voltage Transmission8.8.1
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Figure : The three-wire system connects the neutral wire to the earth at the voltage source and user location, forcing it to be at
zero volts and supplying an alternative return path for the current through the earth. Also grounded to zero volts is the case of the
appliance. A circuit breaker or fuse protects against thermal overload and is in series on the active (live/hot) wire. Note that wire
insulation colors vary with region and it is essential to check locally to determine which color codes are in use (and even if they
were followed in the particular installation).

There are three connections to earth or ground (hereafter referred to as “earth/ground”) shown in Figure 2. Recall that an
earth/ground connection is a low-resistance path directly to the earth. The two earth/ground connections on the neutral wire force it
to be at zero volts relative to the earth, giving the wire its name. This wire is therefore safe to touch even if its insulation, usually
white, is missing. The neutral wire is the return path for the current to follow to complete the circuit. Furthermore, the two
earth/ground connections supply an alternative path through the earth, a good conductor, to complete the circuit. The earth/ground
connection closest to the power source could be at the generating plant, while the other is at the user’s location. The third
earth/ground is to the case of the appliance, through the green earth/ground wire, forcing the case, too, to be at zero volts. The live
or hot wire (hereafter referred to as “live/hot”) supplies voltage and current to operate the appliance. Figure 3 shows a more
pictorial version of how the three-wire system is connected through a three-prong plug to an appliance.

Figure : The standard three-prong plug can only be inserted in one way, to assure proper function of the three-wire system.

A note on insulation color-coding: Insulating plastic is color-coded to identify live/hot, neutral and ground wires but these codes
vary around the world. Live/hot wires may be brown, red, black, blue or grey. Neutral wire may be blue, black or white. Since the
same color may be used for live/hot or neutral in different parts of the world, it is essential to determine the color code in your
region. The only exception is the earth/ground wire which is often green but may be yellow or just bare wire. Striped coatings are
sometimes used for the benefit of those who are colorblind.

The three-wire system replaced the older two-wire system, which lacks an earth/ground wire. Under ordinary circumstances,
insulation on the live/hot and neutral wires prevents the case from being directly in the circuit, so that the earth/ground wire may
seem like double protection. Grounding the case solves more than one problem, however. The simplest problem is worn insulation
on the live/hot wire that allows it to contact the case, as shown in Figure 4 Lacking an earth/ground connection (some people cut
the third prong off the plug because they only have outdated two hole receptacles), a severe shock is possible. This is particularly
dangerous in the kitchen, where a good connection to earth/ground is available through water on the floor or a water faucet. With
the earth/ground connection intact, the circuit breaker will trip, forcing repair of the appliance. Why are some appliances still sold
with two-prong plugs? These have nonconducting cases, such as power tools with impact resistant plastic cases, and are called
doubly insulated. Modern two-prong plugs can be inserted into the asymmetric standard outlet in only one way, to ensure proper
connection of live/hot and neutral wires.
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Figure : Worn insulation allows the live/hot wire to come into direct contact with the metal case of this appliance. (a) The
earth/ground connection being broken, the person is severely shocked. The appliance may operate normally in this situation. (b)
With a proper earth/ground, the circuit breaker trips, forcing repair of the appliance.

Electromagnetic induction causes a more subtle problem that is solved by grounding the case. The AC current in appliances can
induce an emf on the case. If grounded, the case voltage is kept near zero, but if the case is not grounded, a shock can occur as
pictured in Figure 5 Current driven by the induced case emf is called a leakage current, although current does not necessarily pass
from the resistor to the case.

Figure : AC currents can induce an emf on the case of an appliance. The voltage can be large enough to cause a shock. If the
case is grounded, the induced emf is kept near zero.

A ground fault interrupter (GFI) is a safety device found in updated kitchen and bathroom wiring that works based on
electromagnetic induction. GFIs compare the currents in the live/hot and neutral wires. When live/hot and neutral currents are not
equal, it is almost always because current in the neutral is less than in the live/hot wire. Then some of the current, again called a
leakage current, is returning to the voltage source by a path other than through the neutral wire. It is assumed that this path presents
a hazard, such as shown in Figure 6. GFIs are usually set to interrupt the circuit if the leakage current is greater than 5 mA, the
accepted maximum harmless shock. Even if the leakage current goes safely to earth/ground through an intact earth/ground wire, the
GFI will trip, forcing repair of the leakage.
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Figure : A ground fault interrupter (GFI) compares the currents in the live/hot and neutral wires and will trip if their difference
exceeds a safe value. The leakage current here follows a hazardous path that could have been prevented by an intact earth/ground
wire.

Figure 7 shows how a GFI works. If the currents in the live/hot and neutral wires are equal, then they induce equal and opposite
emfs in the coil. If not, then the circuit breaker will trip.

Figure :A GFI compares currents by using both to induce an emf in the same coil. If the currents are equal, they will induce
equal but opposite emfs.

Another induction-based safety device is the isolation transformer, shown in Figure 8. Most isolation transformers have equal input
and output voltages. Their function is to put a large resistance between the original voltage source and the device being operated.
This prevents a complete circuit between them, even in the circumstance shown. There is a complete circuit through the appliance.
But there is not a complete circuit for current to flow through the person in the figure, who is touching only one of the
transformer’s output wires, and neither output wire is grounded. The appliance is isolated from the original voltage source by the
high resistance of the material between the transformer coils, hence the name isolation transformer. For current to flow through the
person, it must pass through the high-resistance material between the coils, through the wire, the person, and back through the earth
—a path with such a large resistance that the current is negligible.

Figure : An isolation transformer puts a large resistance between the original voltage source and the device, preventing a
complete circuit between them.

The basics of electrical safety presented here help prevent many electrical hazards. Electrical safety can be pursued to greater
depths. There are, for example, problems related to different earth/ground connections for appliances in close proximity. Many
other examples are found in hospitals. Microshock-sensitive patients, for instance, require special protection. For these people,
currents as low as 0.1 mA may cause ventricular fibrillation. The interested reader can use the material presented here as a basis for
further study.

Summary
Ohm’s law for AC is .
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Expressions for the average power of an AC circuit are , , and , analogous to the
expressions for DC circuits.
Electrical safety systems and devices are employed to prevent thermal and shock hazards.
Circuit breakers and fuses interrupt excessive currents to prevent thermal hazards.
The three-wire system guards against thermal and shock hazards, utilizing live/hot, neutral, and earth/ground wires, and
grounding the neutral wire and case of the appliance.
A ground fault interrupter (GFI) prevents shock by detecting the loss of current to unintentional paths.
An isolation transformer insulates the device being powered from the original source, also to prevent shock.
Many of these devices use induction to perform their basic function.

Glossary
direct current

(DC) the flow of electric charge in only one direction

alternating current
(AC) the flow of electric charge that periodically reverses direction

AC voltage
voltage that fluctuates sinusoidally with time.

AC current
current that fluctuates sinusoidally with time.

rms
a type of average taken for a time-varying quantity by squaring it, taking the mean of the square, and then taking the square-root
of the mean.

thermal hazard
the term for electrical hazards due to overheating

shock hazard
the term for electrical hazards due to current passing through a human

three-wire system
the wiring system used at present for safety reasons, with live, neutral, and ground wire
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8.A: Electromagnetic Induction (Answers)

Check Your Understanding

13.1. 1.1 T/s

13.2. To the observer shown, the current flows clockwise as the magnet approaches, decreases to zero when the magnet is
centered in the plane of the coil, and then flows counterclockwise as the magnet leaves the coil.

13.4. , with O at a higher potential than S

13.5. 1.5 V

13.6. a. yes;

b. Yes; however there is a lack of symmetry between the electric field and coil, making  a more complicated

relationship that can’t be simplified as shown in the example.

13.7. 

13.8. 

13.9. a. 

b. 

Conceptual Questions
1. The emf depends on the rate of change of the magnetic field.

3. Both have the same induced electric fields; however, the copper ring has a much higher induced emf because it conducts
electricity better than the wooden ring.

5. a. no; b. yes

7. As long as the magnetic flux is changing from positive to negative or negative to positive, there could be an induced emf.

9. Position the loop so that the field lines run perpendicular to the area vector or parallel to the surface.

11. a. CW as viewed from the circuit; b. CCW as viewed from the circuit

13. As the loop enters, the induced emf creates a CCW current while as the loop leaves the induced emf creates a CW
current. While the loop is fully inside the magnetic field, there is no flux change and therefore no induced current.

15. a. CCW viewed from the magnet;

b. CW viewed from the magnet;

c. CW viewed from the magnet;

d. CCW viewed from the magnet;

e. CW viewed from the magnet;

f. no current

ε = B ω/2l2

∮ ⋅ dE ⃗  l ⃗ 

3.4 × V /m10−3

,P )2,P1 P4

3.1 × V ;10−6

2.0 × V /m10−7
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17. Positive charges on the wings would be to the west, or to the left of the pilot while negative charges would be pulled east
or to the right of the pilot. Thus, the left hand tips of the wings would be positive and the right hand tips would be negative.

19. The work is greater than the kinetic energy because it takes energy to counteract the induced emf.

21. The conducting sheet is shielded from the changing magnetic fields by creating an induced emf. This induced emf creates
an induced magnetic field that opposes any changes in magnetic fields from the field underneath. Therefore, there is no net
magnetic field in the region above this sheet. If the field were due to a static magnetic field, no induced emf will be created
since you need a changing magnetic flux to induce an emf. Therefore, this static magnetic field will not be shielded.

23. a. zero induced current, zero force; b. clockwise induced current, force is to the left; c. zero induced current, zero force; d.
counterclockwise induced current, force is to the left; e. zero induced current, zero force.

Problems

25. a. 3.8 V;

b. 2.2 V;

c. 0 V

27. 

29. Each answer is 20 times the previously given answers.

31. 

,

.

33. a. ;

b. CCW from the same view as the magnetic field

35. a. 150 A downward through the resistor;

b. 232 A upward through the resistor;

B = 1.5t, 0 ≤ t < 2.0ms,B = 3.0mT , 2.0ms ≤ t ≤ 5.0ms,

B = −3.0t+18mT , 5.0ms < t ≤ 6.0ms,

ε = − = − = −A ,
dΦm

dt

d(BA)

dt

dB

dt

ε = −π(0.100m (1.5T/s))2

= −47mV (0 ≤ t < 2.0ms),

ε = π(0.100m (0) = 0(2.0ms ≤ t ≤ 5.0ms),)2

ε = −π(0.100m (−3.0T/s) = 94mV (5.0ms < t < 6.0ms).)2

= , d = Cysin(ωt)dxdy,n̂ k̂ Φm

=Φm

Ca sin(ωt)b2

2

ε = −
Ca ωcos(ωt)b2

2

7.8 × V10−3
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c. 0.093 A downward through the resistor

37. 0.0015 V

39. 

41. 

43. a. ;

b. 1.25 V/m;

c. 0.3125 V;

d. 16 m/s

45. 0.018 A, CW as seen in the diagram

47. 9.375 V/m

49. Inside,  so,  (inside). Outside, , so, 

 (outside)

51. a. ;

b. ;

c. 0 J;

d. 

53. 

55. Three turns with an area of 

57. a. ;

b. ;

c. 

59. a. B is proportional to Q;

b. If the coin turns easily, the magnetic field is perpendicular. If the coin is at an equilibrium position, it is parallel.

61. a. 1.33 A;

b. 0.50 A;

c. 60 W;

d. 22.5 W;

e. 2.5W

Additional Problems

63.  A/s

65. , the direction as follows for increasing magnetic field:

67. 0.375 V

ε = − ldωcos(Ωt)ld+ sin(Ωt)lvB0 B0

ε = Blvcosθ

2 × T10−19

B = nI, ∮ ⋅ d = (π ) n ,μ0 E ⃗  l ⃗  r2 μ0

dI

dt
E = ⋅

nrμ0

2

dI

dt
E(2πr) = π nR2μ0

dI

dt

E =
nμ0 R2

2r ⋅ dI
dt

= , =Einside

r

2

dB

dt
Eoutside

r2

2R

dB

dt

W = 4.19 × J10−23

= 4 × N , = 2.7 × NFmag 10−13 Felec 10−22

7.1μA

1m2

ω = 120πrad/s, ε = 850sin120πtV

P = 720si 120πtW ;n2

P = 360si 120πtWn2

4.8 ×106

2.83 × A10−4
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69. a. 0.94 V;

b. 0.70 N;

c. 3.52 J/s;

d. 3.52 W

71. 

73. a. , so ;

b. ;

c. 

Challenge Problems

75. N is a maximum number of turns allowed.

77. 5.3 V

79. , so 

81. a. ;

b. ;

c. 0 V

83. a. ;

 

b. ;

c. ;

d. current would reverse direction but bar would still slide at the same speed

85. a. ,

;

b. ;

c. 

d. ;

e. no, because there is no cylindrical symmetry

87. a. ;

b. This angular velocity is unreasonably high, higher than can be obtained for any mechanical system.

c. The assumption that a voltage as great as 12.0 kV could be obtained is unreasonable.

89. 

91. 

( )
dB

dt

A

2πr

+ = = 60ΩRf Ra

120V

2.0A
= 50ΩRf

I = , ⇒ = 90V
−εs εi

+Rf Ra

εi

= 60Vεi

Φ = ln(1 + )
aμ0I0

2π

b

x
I = ε =

abvμ0I0

2πRx(x+b)

abvμ0I0

2πx(x+b)

1.01 × V10−6

1.37 × V10−7

v=
mgRsinθ

co θB2l2 s2

mgvsinθ

mcΔT

B = nI, = BA = nIAμ0 Φm μ0

ε = 9.9 × V10−4

9.9 × V10−4

∮ ⋅ d = ε, ⇒ E = 1.6 × V /mE ⃗  l ⃗  10−3

9.9 × V10−4

1.92 × rad/s = 1.83 × rpm106 107

2 π nωμ0 a2I0

R

mRvo

B2D2
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Conceptual Questions

13.2 Faraday’s Law

1. A stationary coil is in a magnetic field that is changing with time. Does the emf induced in the coil depend on the actual
values of the magnetic field?

2. In Faraday’s experiments, what would be the advantage of using coils with many turns?

3. A copper ring and a wooden ring of the same dimensions are placed in magnetic fields so that there is the same change in
magnetic flux through them. Compare the induced electric fields and currents in the rings.

4. Discuss the factors determining the induced emf in a closed loop of wire.

5. (a) Does the induced emf in a circuit depend on the resistance of the circuit?

(b) Does the induced current depend on the resistance of the circuit?

6. How would changing the radius of loop D shown below affect its emf, assuming C and D are much closer together
compared to their radii?

7. Can there be an induced emf in a circuit at an instant when the magnetic flux through the circuit is zero?

8. Does the induced emf always act to decrease the magnetic flux through a circuit?

9. How would you position a flat loop of wire in a changing magnetic field so that there is no induced emf in the loop?

10. The normal to the plane of a single-turn conducting loop is directed at an angle θ to a spatially uniform magnetic field 
. It has a fixed area and orientation relative to the magnetic field. Show that the emf induced in the loop is given by 

,where A is the area of the loop.

13.3 Lenz's Law

11. The circular conducting loops shown in the accompanying figure are parallel, perpendicular to the plane of the page, and
coaxial.

(a) When the switch S is closed, what is the direction of the current induced in D?

(b) When the switch is opened, what is the direction of the current induced in loop D?

12. The north pole of a magnet is moved toward a copper loop, as shown below. If you are looking at the loop from above the
magnet, will you say the induced current is circulating clockwise or counterclockwise?

vecB

ε = (dB/dt)(Acosθ)
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13. The accompanying figure shows a conducting ring at various positions as it moves through a magnetic field. What is the
sense of the induced emf for each of those positions?

14. Show that ε and  have the same units.

15. State the direction of the induced current for each case shown below, observing from the side of the magnet.

13.4 Motional Emf

16. A bar magnet falls under the influence of gravity along the axis of a long copper tube. If air resistance is negligible, will
there be a force to oppose the descent of the magnet? If so, will the magnet reach a terminal velocity?

17. Around the geographic North Pole (or magnetic South Pole), Earth’s magnetic field is almost vertical. If an airplane is
flying northward in this region, which side of the wing is positively charged and which is negatively charged?

d /dtΦm
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18. A wire loop moves translationally (no rotation) in a uniform magnetic field. Is there an emf induced in the loop?

13.5 Induced Electric Fields

19. Is the work required to accelerate a rod from rest to a speed v in a magnetic field greater than the final kinetic energy of
the rod? Why?

20. The copper sheet shown below is partially in a magnetic field. When it is pulled to the right, a resisting force pulls it to
the left. Explain. What happen if the sheet is pushed to the left?

13.6 Eddy Currents

21. A conducting sheet lies in a plane perpendicular to a magnetic field  that is below the sheet. If  oscillates at a high
frequency and the conductor is made of a material of low resistivity, the region above the sheet is effectively shielded from 

. Explain why. Will the conductor shield this region from static magnetic fields?

22. Electromagnetic braking can be achieved by applying a strong magnetic field to a spinning metal disk attached to a shaft.

(a) How can a magnetic field slow the spinning of a disk?

(b) Would the brakes work if the disk was made of plastic instead of metal?

23. A coil is moved through a magnetic field as shown below. The field is uniform inside the rectangle and zero outside.
What is the direction of the induced current and what is the direction of the magnetic force on the coil at each position
shown?

Problems

13.2 Faraday’s Law

24. A 50-turn coil has a diameter of 15 cm. The coil is placed in a spatially uniform magnetic field of magnitude 0.50 T so
that the face of the coil and the magnetic field are perpendicular. Find the magnitude of the emf induced in the coil if the
magnetic field is reduced to zero uniformly in

(a) 0.10 s,

(b) 1.0 s, and

(c) 60 s.

25. Repeat your calculations of the preceding problem’s time of 0.1 s with the plane of the coil making an angle of

(a) 30°,

(b) 60°, and

(c) 90° with the magnetic field.

B⃗  B⃗ 

B⃗ 
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26. A square loop whose sides are 6.0-cm long is made with copper wire of radius 1.0 mm. If a magnetic field perpendicular
to the loop is changing at a rate of 5.0 mT/s, what is the current in the loop?

27. The magnetic field through a circular loop of radius 10.0 cm varies with time as shown below. The field is perpendicular
to the loop. Plot the magnitude of the induced emf in the loop as a function of time.

28. The accompanying figure shows a single-turn rectangular coil that has a resistance of 2.0Ω.2.0Ω. The magnetic field at
all points inside the coil varies according to  where  and α=200Hz. What is the current induced in
the coil at

(a) t=0.001s,

(b) 0.002 s,

(c) 2.0 s?

29. How would the answers to the preceding problem change if the coil consisted of 20 closely spaced turns?

30. A long solenoid with n=10 turns per centimeter has a cross-sectional area of  and carries a current of 0.25 A. A
coil with five turns encircles the solenoid. When the current through the solenoid is turned off, it decreases to zero in 0.050 s.
What is the average emf induced in the coil?

31. A rectangular wire loop with length a and width b lies in the xy-plane, as shown below. Within the loop there is a time-
dependent magnetic field given by , with  in tesla. Determine the emf induced in
the loop as a function of time.

32. The magnetic field perpendicular to a single wire loop of diameter 10.0 cm decreases from 0.50 T to zero. The wire is
made of copper and has a diameter of 2.0 mm and length 1.0 cm. How much charge moves through the wire while the field is
changing?

13.3 Lenz's Law

33. A single-turn circular loop of wire of radius 50 mm lies in a plane perpendicular to a spatially uniform magnetic field.
During a 0.10-s time interval, the magnitude of the field increases uniformly from 200 to 300 mT.

(a) Determine the emf induced in the loop.

(b) If the magnetic field is directed out of the page, what is the direction of the current induced in the loop?

B = ,B0e
−αt = 0.25TB0

5.0cm2

(t) = C((xcosωt) +(ysinωt) )B⃗  î k̂ (t)B⃗ 
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34. When a magnetic field is first turned on, the flux through a 20-turn loop varies with time according to 
, where  is in milliwebers, t is in seconds, and the loop is in the plane of the page with the unit normal

pointing outward.

(a) What is the emf induced in the loop as a function of time? What is the direction of the induced current at

(b) t = 0,

(c) 0.10,

(d) 1.0, and

(e) 2.0 s?

35. The magnetic flux through the loop shown in the accompanying figure varies with time according to 
,where  is in milliwebers. What are the direction and magnitude of the current through the

5.00-Ω resistor at (a) t=0t=0; (b) , and (c) t=3.00s?

36. Use Lenz’s law to determine the direction of induced current in each case.

13.4 Motional Emf

37. An automobile with a radio antenna 1.0 m long travels at 100.0 km/h in a location where the Earth’s horizontal magnetic
field is . What is the maximum possible emf induced in the antenna due to this motion?

38. The rectangular loop of N turns shown below moves to the right with a constant velocity  while leaving the poles of a
large electromagnet. (a) Assuming that the magnetic field is uniform between the pole faces and negligible elsewhere,
determine the induced emf in the loop. (b) What is the source of work that produces this emf?

= 5.0 −2.0tΦm t2 Φm

= 2.00 sin(120πt)Φm e−3t Φm

t = 2.17 × s10−2

5.5 × T10−5

v ⃗ 
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39. Suppose the magnetic field of the preceding problem oscillates with time according to . What then is the
emf induced in the loop when its trailing side is a distance  from the right edge of the magnetic field region?

40. A coil of 1000 turns encloses an area of . It is rotated in 0.010 s from a position where its plane is perpendicular to
Earth’s magnetic field to one where its plane is parallel to the field. If the strength of the field is , what is the
average emf induced in the coil?

41. In the circuit shown in the accompanying figure, the rod slides along the conducting rails at a constant velocity . The
velocity is in the same plane as the rails and directed at an angle θθ to them. A uniform magnetic field  is directed out of
the page. What is the emf induced in the rod?

42. The rod shown in the accompanying figure is moving through a uniform magnetic field of strength  with a
constant velocity of magnitude . What is the potential difference between the ends of the rod? Which end of the
rod is at a higher potential?

43. A 25-cm rod moves at 5.0 m/s in a plane perpendicular to a magnetic field of strength 0.25 T. The rod, velocity vector,
and magnetic field vector are mutually perpendicular, as indicated in the accompanying figure. Calculate

(a) the magnetic force on an electron in the rod,

(b) the electric field in the rod, and

(c) the potential difference between the ends of the rod.

(d) What is the speed of the rod if the potential difference is 1.0 V?

44. In the accompanying figure, the rails, connecting end piece, and rod all have a resistance per unit length of 2.0Ω/cm. The
rod moves to the left at v=3.0m/s. If B=0.75T everywhere in the region, what is the current in the circuit

B = sinωtB0

d

25cm2

6.0 × T10−5

v ⃗ 

B⃗ 

B = 0.50T

v= 8.0m/s.
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(a) when a=8.0cm?

(b) when a=5.0cm? Specify also the sense of the current flow.

45. The rod shown below moves to the right on essentially zero-resistance rails at a speed of v=3.0m/s. If B=0.75T
everywhere in the region, what is the current through the 5.0-Ω resistor? Does the current circulate clockwise or
counterclockwise?

46. Shown below is a conducting rod that slides along metal rails. The apparatus is in a uniform magnetic field of strength
0.25 T, which is directly into the page. The rod is pulled to the right at a constant speed of 5.0 m/s by a force . The only
significant resistance in the circuit comes from the 2.0-Ω resistor shown.

(a) What is the emf induced in the circuit?

(b) What is the induced current? Does it circulate clockwise or counter clockwise?

(c) What is the magnitude of ?

(d) What are the power output of  and the power dissipated in the resistor?

13.5 Induced Electric Fields

47. Calculate the induced electric field in a 50-turn coil with a diameter of 15 cm that is placed in a spatially uniform
magnetic field of magnitude 0.50 T so that the face of the coil and the magnetic field are perpendicular. This magnetic field is
reduced to zero in 0.10 seconds. Assume that the magnetic field is cylindrically symmetric with respect to the central axis of
the coil.

48. The magnetic field through a circular loop of radius 10.0 cm varies with time as shown in the accompanying figure. The
field is perpendicular to the loop. Assuming cylindrical symmetry with respect to the central axis of the loop, plot the
induced electric field in the loop as a function of time.

49. The current I through a long solenoid with n turns per meter and radius R is changing with time as given by dI/dt.
Calculate the induced electric field as a function of distance r from the central axis of the solenoid.

50. Calculate the electric field induced both inside and outside the solenoid of the preceding problem if .

51. Over a region of radius R, there is a spatially uniform magnetic field . (See below.) At t=0, B=1.0T, after which it
decreases at a constant rate to zero in 30 s.

(a) What is the electric field in the regions where  and  during that 30-s interval?

(b) Assume that R=10.0cm. How much work is done by the electric field on a proton that is carried once clock wise
around a circular path of radius 5.0 cm?

(c) How much work is done by the electric field on a proton that is carried once counterclockwise around a circular
path of any radius ?

F ⃗ 

F ⃗ 

F ⃗ 

I = sinωt.I0

B⃗ 

r ≤ R r ≥ R

r ≥ R
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(d) At the instant when B=0.50T, a proton enters the magnetic field at A, moving a velocity  as
shown. What are the electric and magnetic forces on the proton at that instant?

52. The magnetic field at all points within the cylindrical region whose cross-section is indicated in the accompanying figure
starts at 1.0 T and decreases uniformly to zero in 20 s. What is the electric field (both magnitude and direction) as a function
of r, the distance from the geometric center of the region?

53. The current in a long solenoid of radius 3 cm is varied with time at a rate of 2 A/s. A circular loop of wire of radius 5 cm
and resistance 2Ω surrounds the solenoid. Find the electrical current induced in the loop.

54. The current in a long solenoid of radius 3 cm and 20 turns/cm is varied with time at a rate of 2 A/s. Find the electric field
at a distance of 4 cm from the center of the solenoid.

13.7 Electric Generators and Back Emf

55. Design a current loop that, when rotated in a uniform magnetic field of strength 0.10 T, will produce an emf 
, where  and .

56. A flat, square coil of 20 turns that has sides of length 15.0 cm is rotating in a magnetic field of strength 0.050 T. If the
maximum emf produced in the coil is 30.0 mV, what is the angular velocity of the coil?

57. A 50-turn rectangular coil with dimensions 0.15m×0.40m rotates in a uniform magnetic field of magnitude 0.75 T at
3600 rev/min.

(a) Determine the emf induced in the coil as a function of time.

(b) If the coil is connected to a 1000-Ω resistor, what is the power as a function of time required to keep the coil
turning at 3600 rpm?

(v= 5.0 × m/s)v ⃗  106

ε = sinωt,ε0 = 110Vε0 ω = 120πrad/s
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(c) Answer part (b) if the coil is connected to a 2000-Ω resistor.

58. The square armature coil of an alternating current generator has 200 turns and is 20.0 cm on side. When it rotates at 3600
rpm, its peak output voltage is 120 V.

(a) What is the frequency of the output voltage?

(b) What is the strength of the magnetic field in which the coil is turning?

59. A flip coil is a relatively simple device used to measure a magnetic field. It consists of a circular coil of N turns wound
with fine conducting wire. The coil is attached to a ballistic galvanometer, a device that measures the total charge that passes
through it. The coil is placed in a magnetic field  such that its face is perpendicular to the field. It is then flipped through
180°,180°, and the total chargeQ that flows through the galvanometer is measured.

(a) If the total resistance of the coil and galvanometer is R, what is the relationship between B and Q? Because the coil
is very small, you can assume that  is uniform over it.

(b) How can you determine whether or not the magnetic field is perpendicular to the face of the coil?

60. The flip coil of the preceding problem has a radius of 3.0 cm and is wound with 40 turns of copper wire. The total
resistance of the coil and ballistic galvanometer is 0.20Ω. When the coil is flipped through 180° in a magnetic field , a
change of 0.090 C flows through the ballistic galvanometer.

(a) Assuming that  and the face of the coil are initially perpendicular, what is the magnetic field?

(b) If the coil is flipped through 90°, what is the reading of the galvanometer?

61. A 120-V, series-wound motor has a field resistance of 80 Ω and an armature resistance of 10 Ω. When it is operating at
full speed, a back emf of 75 V is generated.

(a) What is the initial current drawn by the motor? When the motor is operating at full speed, where are

(b) the current drawn by the motor,

(c) the power output of the source,

(d) the power output of the motor, and

(e) the power dissipated in the two resistances?

62. A small series-wound dc motor is operated from a 12-V car battery. Under a normal load, the motor draws 4.0 A, and
when the armature is clamped so that it cannot turn, the motor draws 24 A. What is the back emf when the motor is operating
normally?

Additional Problems

63. Shown in the following figure is a long, straight wire and a single-turn rectangular loop, both of which lie in the plane of
the page. The wire is parallel to the long sides of the loop and is 0.50 m away from the closer side. At an instant when the
emf induced in the loop is 2.0 V, what is the time rate of change of the current in the wire?

64. A metal bar of mass 500 g slides outward at a constant speed of 1.5 cm/s over two parallel rails separated by a distance of
30 cm which are part of a U-shaped conductor. There is a uniform magnetic field of magnitude 2 T pointing out of the page
over the entire area. The railings and metal bar have an equivalent resistance of 150Ω.

(a) Determine the induced current, both magnitude and direction.

(b) Find the direction of the induced current if the magnetic field is pointing into the page.

(c) Find the direction of the induced current if the magnetic field is pointed into the page and the bar moves inwards.

B⃗ 

B⃗ 

B⃗ 

B⃗ 
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65. A current is induced in a circular loop of radius 1.5 cm between two poles of a horseshoe electromagnet when the current
in the electromagnet is varied. The magnetic field in the area of the loop is perpendicular to the area and has a uniform
magnitude. If the rate of change of magnetic field is 10 T/s, find the magnitude and direction of the induced current if
resistance of the loop is 25Ω.

66. A metal bar of length 25 cm is placed perpendicular to a uniform magnetic field of strength 3 T.

(a) Determine the induced emf between the ends of the rod when it is not moving.

(b) Determine the emf when the rod is moving perpendicular to its length and magnetic field with a speed of 50 cm/s.

67. A coil with 50 turns and area 10  is oriented with its plane perpendicular to a 0.75-T magnetic field. If the coil is
flipped over (rotated through 180°) in 0.20 s, what is the average emf induced in it?

68. A 2-turn planer loop of flexible wire is placed inside a long solenoid of n turns per meter that carries a constant current 
. The areaA of the loop is changed by pulling on its sides while ensuring that the plane of the loop always remains

perpendicular to the axis of the solenoid. If n=500turns per meter,  and , what is the emf induced in
the loop when dA/dt=100?

69. The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system
is in a uniform magnetic field of strength 0.75 T, which is directed into the page. The resistances of the rod and the rails are
negligible, but the section PQ has a resistance of 0.25Ω.

(a) What is the emf (including its sense) induced in the rod when it is moving to the right with a speed of 5.0 m/s?

(b) What force is required to keep the rod moving at this speed?

(c) What is the rate at which work is done by this force?

(d) What is the power dissipated in the resistor?

70. A circular loop of wire of radius 10 cm is mounted on a vertical shaft and rotated at a frequency of 5 cycles per second in
a region of uniform magnetic field of 2 Gauss perpendicular to the axis of rotation.

(a) Find an expression for the time-dependent flux through the ring.

(b) Determine the time-dependent current through the ring if it has a resistance of 10 Ω.

71. The magnetic field between the poles of a horseshoe electromagnet is uniform and has a cylindrical symmetry about an
axis from the middle of the South Pole to the middle of the North Pole. The magnitude of the magnetic field changes as a rate
of dB/dt due to the changing current through the electromagnet. Determine the electric field at a distance r from the center.

72. A long solenoid of radius a with n turns per unit length is carrying a time-dependent current , where 
and ω are constants. The solenoid is surrounded by a wire of resistance R that has two circular loops of radius b with b>a
(see the following figure). Find the magnitude and direction of current induced in the outer loops at time t=0.

cm2

I0

= 20A,I0 A = 20cm2

I(t) = sin(ωt)I0 I0
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73. A 120-V, series-wound dc motor draws 0.50 A from its power source when operating at full speed, and it draws 2.0 A
when it starts. The resistance of the armature coils is 10Ω.

(a) What is the resistance of the field coils?

(b) What is the back emf of the motor when it is running at full speed?

(c) The motor operates at a different speed and draws 1.0 A from the source. What is the back emf in this case?

74. The armature and field coils of a series-wound motor have a total resistance of 3.0Ω. When connected to a 120-V source
and running at normal speed, the motor draws 4.0 A.

(a) How large is the back emf?

(b) What current will the motor draw just after it is turned on? Can you suggest a way to avoid this large initial
current?

Challenge Problems
75. A copper wire of length L is fashioned into a circular coil with N turns. When the magnetic field through the coil changes
with time, for what value of N is the induced emf a maximum?

76. A 0.50-kg copper sheet drops through a uniform horizontal magnetic field of 1.5 T, and it reaches a terminal velocity of
2.0 m/s.

(a) What is the net magnetic force on the sheet after it reaches terminal velocity?

(b) Describe the mechanism responsible for this force.

(c) How much power is dissipated as Joule heating while the sheet moves at terminal velocity?

77. A circular copper disk of radius 7.5 cm rotates at 2400 rpm around the axis through its center and perpendicular to its
face. The disk is in a uniform magnetic field  of strength 1.2 T that is directed along the axis. What is the potential
difference between the rim and the axis of the disk?

78. A short rod of length a moves with its velocity  parallel to an infinite wire carrying a current I (see below). If the end of
the rod nearer the wire is a distance b from the wire, what is the emf induced in the rod?

B⃗ 

v ⃗ 
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79. A rectangular circuit containing a resistance R is pulled at a constant velocity  away from a long, straight wire carrying
a current  (see below). Derive an equation that gives the current induced in the circuit as a function of the distance x
between the near side of the circuit and the wire.

80. Two infinite solenoids cross the plane of the circuit as shown below. The radii of the solenoids are 0.10 and 0.20 m,
respectively, and the current in each solenoid is changing such that dB/dt=50.0T/s. What are the currents in the resistors of
the circuit?

81. An eight-turn coil is tightly wrapped around the outside of the long solenoid as shown below. The radius of the solenoid
is 2.0 cm and it has 10 turns per centimeter. The current through the solenoid increases according to ,
where  and . What is the emf induced in the coil when (a) , (b) , and (c) 

?

v ⃗ 

I0

I = (1 − )I0 e−αt

= 4.0AI0 α = 2.0 ×10−2s−1 t = 0 t = 1.0 × s102

t → ∞
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82. Shown below is a long rectangular loop of width w, length l, mass m, and resistance R. The loop starts from rest at the
edge of a uniform magnetic field  and is pushed into the field by a constant force . Calculate the speed of the loop as a
function of time.

83. A square bar of mass m and resistance R is sliding without friction down very long, parallel conducting rails of
negligible resistance (see below). The two rails are a distance l apart and are connected to each other at the bottom of the
incline by a zero-resistance wire. The rails are inclined at an angle θ, and there is a uniform vertical magnetic field 
throughout the region.

(a) Show that the bar acquires a terminal velocity given by .

(b) Calculate the work per unit time done by the force of gravity.

(c) Compare this with the power dissipated in the Joule heating of the bar.

(d) What would happen if  were reversed?

84. The accompanying figure shows a metal disk of inner radius  and other radius  rotating at an angular velocity 
while in a uniform magnetic field directed parallel to the rotational axis. The brush leads of a voltmeter are connected to the
dark’s inner and outer surfaces as shown. What is the reading of the voltmeter?

B⃗  F ⃗ 

B⃗ 

v=
mgRsinθ

co θB2l2 s2

B⃗ 

r1 r2 ω⃗ 
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85. A long solenoid with 10 turns per centimeter is placed inside a copper ring such that both objects have the same central
axis. The radius of the ring is 10.0 cm, and the radius of the solenoid is 5.0 cm.

(a) What is the emf induced in the ring when the current I through the solenoid is 5.0 A and changing at a rate of 100
A/s?

(b) What is the emf induced in the ring when I=2.0A and dI/dt=100A/s?

(c) What is the electric field inside the ring for these two cases?

(d) Suppose the ring is moved so that its central axis and the central axis of the solenoid are still parallel but no longer
coincide. (You should assume that the solenoid is still inside the ring.) Now what is the emf induced in the ring?

(e) Can you calculate the electric field in the ring as you did in part (c)?

86. The current in the long, straight wire shown in the accompanying figure is given by  where  and 
. What is the current induced in the rectangular loop at (a) t=0 and (b) ? The resistance of

the loop is 2.0Ω.

87. A 500-turn coil with a  area is spun in Earth’s  magnetic field, producing a 12.0-kV maximum
emf.

(a) At what angular velocity must the coil be spun?

(b) What is unreasonable about this result?

(c) Which assumption or premise is responsible?

88. A circular loop of wire of radius 10 cm is mounted on a vertical shaft and rotated at a frequency of 5 cycles per second in
a region of uniform magnetic field of  perpendicular to the axis of rotation.

(a) Find an expression for the time-dependent flux through the ring

(b) Determine the time-dependent current through the ring if it has a resistance of 10Ω.

I = sinωt,I0 = 15AI0

ω = 120πrad/s t = 2.1 × s10−3

0.250 −m2 5.00 × T10−5

2 × T10−4
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89. A long solenoid of radius aa with nn turns per unit length is carrying a time-dependent current  where 
and ωω are constants. The solenoid is surrounded by a wire of resistance R that has two circular loops of radius b with b>a.
Find the magnitude and direction of current induced in the outer loops at time t=0.

90. A rectangular copper loop of mass 100 g and resistance 0.2Ω is in a region of uniform magnetic field that is
perpendicular to the area enclosed by the ring and horizontal to Earth’s surface (see below). The loop is let go from rest when
it is at the edge of the nonzero magnetic field region.

(a) Find an expression for the speed when the loop just exits the region of uniform magnetic field.

(b) If it was let go at t=0t=0, what is the time when it exits the region of magnetic field for the following values: 
? Assume that the magnetic field of the induced current is negligible

compared to 3 T.

91. A metal bar of mass m slides without friction over two rails a distance D apart in the region that has a uniform magnetic
field of magnitude  and direction perpendicular to the rails (see below). The two rails are connected at one end to a
resistor whose resistance is much larger than the resistance of the rails and the bar. The bar is given an initial speed of . It
is found to slow down. How far does the bar go before coming to rest? Assume that the magnetic field of the induced current
is negligible compared to .

92. A time-dependent uniform magnetic field of magnitude B(t) is confined in a cylindrical region of radius R. A conducting
rod of length 2D is placed in the region, as shown below. Show that the emf between the ends of the rod is given by 

. (Hint: To find the emf between the ends, we need to integrate the electric field from one end to the other.

To find the electric field, use Faraday’s law as “Ampère’s law for E.”)
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8.E: Electromagnetic Induction, AC Circuits, and Electrical Technologies (Exercise)

Conceptual Questions

23.1 Induced Emf and Magnetic Flux

1. How do the multiple-loop coils and iron ring in the version of Faraday’s apparatus shown in Figure enhance the
observation of induced emf?

2. When a magnet is thrust into a coil as in Figure(a), what is the direction of the force exerted by the coil on the magnet?
Draw a diagram showing the direction of the current induced in the coil and the magnetic field it produces, to justify your
response. How does the magnitude of the force depend on the resistance of the galvanometer?

3. Explain how magnetic flux can be zero when the magnetic field is not zero.

4. Is an emf induced in the coil in Figure when it is stretched? If so, state why and give the direction of the induced current.

 
A circular coil of wire is stretched in a magnetic field.

23.2 Faraday’s Law of Induction: Lenz’s Law

5. A person who works with large magnets sometimes places her head inside a strong field. She reports feeling dizzy as she
quickly turns her head. How might this be associated with induction?

6. A particle accelerator sends high-velocity charged particles down an evacuated pipe. Explain how a coil of wire wrapped
around the pipe could detect the passage of individual particles. Sketch a graph of the voltage output of the coil as a single
particle passes through it.

23.3 Motional Emf

7. Why must part of the circuit be moving relative to other parts, to have usable motional emf? Consider, for example, that
the rails in Figure are stationary relative to the magnetic field, while the rod moves.
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8. A powerful induction cannon can be made by placing a metal cylinder inside a solenoid coil. The cylinder is forcefully
expelled when solenoid current is turned on rapidly. Use Faraday’s and Lenz’s laws to explain how this works. Why might
the cylinder get live/hot when the cannon is fired?

9. An induction stove heats a pot with a coil carrying an alternating current located beneath the pot (and without a hot
surface). Can the stove surface be a conductor? Why won’t a coil carrying a direct current work?

10. Explain how you could thaw out a frozen water pipe by wrapping a coil carrying an alternating current around it. Does it
matter whether or not the pipe is a conductor? Explain.

23.4 Eddy Currents and Magnetic Damping

11. Explain why magnetic damping might not be effective on an object made of several thin conducting layers separated by
insulation.

12. Explain how electromagnetic induction can be used to detect metals? This technique is particularly important in detecting
buried landmines for disposal, geophysical prospecting and at airports.

23.5 Electric Generators

13. Using RHR-1, show that the emfs in the sides of the generator loop in Figure are in the same sense and thus add.

14. The source of a generator’s electrical energy output is the work done to turn its coils. How is the work needed to turn the
generator related to Lenz’s law?

23.6 Back Emf

15. Suppose you find that the belt drive connecting a powerful motor to an air conditioning unit is broken and the motor is
running freely. Should you be worried that the motor is consuming a great deal of energy for no useful purpose? Explain why
or why not.

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/93002?pdf
https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/23%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/23.07%3A_Eddy_Currents_and_Magnetic_Damping
https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/23%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/23.08%3A_Electric_Generators
https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/23%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/23.09%3A_Back_Emf


8.E.3 https://phys.libretexts.org/@go/page/93002

23.7 Transformers

16. Explain what causes physical vibrations in transformers at twice the frequency of the AC power involved.

23.8 Electrical Safety: Systems and Devices

17. Does plastic insulation on live/hot wires prevent shock hazards, thermal hazards, or both?

18. Why are ordinary circuit breakers and fuses ineffective in preventing shocks?

19. A GFI may trip just because the live/hot and neutral wires connected to it are significantly different in length. Explain
why.

23.9 Inductance

20. How would you place two identical flat coils in contact so that they had the greatest mutual inductance? The least?

21. How would you shape a given length of wire to give it the greatest self-inductance? The least?

22. Verify, as was concluded without proof in Example, that units of .

23.11 Reactance, Inductive and Capacitive

23. Presbycusis is a hearing loss due to age that progressively affects higher frequencies. A hearing aid amplifier is designed
to amplify all frequencies equally. To adjust its output for presbycusis, would you put a capacitor in series or parallel with the
hearing aid’s speaker? Explain.

24. Would you use a large inductance or a large capacitance in series with a system to filter out low frequencies, such as the
100 Hz hum in a sound system? Explain.

25. High-frequency noise in AC power can damage computers. Does the plug-in unit designed to prevent this damage use a
large inductance or a large capacitance (in series with the computer) to filter out such high frequencies? Explain.

26. Does inductance depend on current, frequency, or both? What about inductive reactance?

27. Explain why the capacitor in Figure(a) acts as a low-frequency filter between the two circuits, whereas that in Figure(b)
acts as a high-frequency filter.

 
Capacitors and inductors. Capacitor with high frequency and low frequency.

28. If the capacitors in Figure are replaced by inductors, which acts as a low-frequency filter and which as a high-frequency
filter?

23.12 RLC Series AC Circuits

29. Does the resonant frequency of an AC circuit depend on the peak voltage of the AC source? Explain why or why not.

30. Suppose you have a motor with a power factor significantly less than 1. Explain why it would be better to improve the
power factor as a method of improving the motor’s output, rather than to increase the voltage input.

T ⋅ /A = Ω ⋅ s = Hm2
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Problems & Exercises

23.1 Induced Emf and Magnetic Flux

31. What is the value of the magnetic flux at coil 2 in Figure due to coil 1?

(a) The planes of the two coils are perpendicular. (b) The wire is perpendicular to the plane of the coil.

Solution 
Zero

32. What is the value of the magnetic flux through the coil in Figure(b) due to the wire?

23.2 Faraday’s Law of Induction: Lenz’s Law

33. Referring to Figure(a), what is the direction of the current induced in coil 2:

(a) If the current in coil 1 increases?

(b) If the current in coil 1 decreases?

(c) If the current in coil 1 is constant? Explicitly show how you follow the steps in the Problem-Solving Strategy for
Lenz's Law.

(a) The coils lie in the same plane. (b) The wire is in the plane of the coil

Solution 
(a) CCW 
(b) CW 
(c) No current induced

34. Referring to Figure(b), what is the direction of the current induced in the coil:

(a) If the current in the wire increases?

(b) If the current in the wire decreases?

(c) If the current in the wire suddenly changes direction? Explicitly show how you follow the steps in the Problem-
Solving Strategy for Lenz’s Law.
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35. Referring to Figure, what are the directions of the currents in coils 1, 2, and 3 (assume that the coils are lying in the plane
of the circuit):

(a) When the switch is first closed?

(b) When the switch has been closed for a long time?

(c) Just after the switch is opened?

Solution 
(a) 1 CCW, 2 CCW, 3 CW 
(b) 1, 2, and 3 no current induced 
(c) 1 CW, 2 CW, 3 CCW

36. Repeat the previous problem with the battery reversed.

37. Verify that the units of  are volts. That is, show that .

38. Suppose a 50-turn coil lies in the plane of the page in a uniform magnetic field that is directed into the page. The coil
originally has an area of . It is stretched to have no area in 0.100 s. What is the direction and magnitude of the
induced emf if the uniform magnetic field has a strength of 1.50 T?

39. (a) An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner’s 2.00 T
field with his fingers pointing in the direction of the field. Find the average emf induced in his wedding ring, given its
diameter is 2.20 cm and assuming it takes 0.250 s to move it into the field. (b) Discuss whether this current would
significantly change the temperature of the ring.

Solution  
(a) 3.04 mV 
(b) As a lower limit on the ring, estimate R = 1.00 mΩ. The heat transferred will be 2.31 mJ. This is not a significant
amount of heat.

40. Integrated Concepts

Referring to the situation in the previous problem:

(a) What current is induced in the ring if its resistance is 0.0100 ?

(b) What average power is dissipated?

(c) What magnetic field is induced at the center of the ring? (d) What is the direction of the induced magnetic
field relative to the MRI’s field?

41. An emf is induced by rotating a 1000-turn, 20.0 cm diameter coil in the Earth’s  magnetic field. What
average emf is induced, given the plane of the coil is originally perpendicular to the Earth’s field and is rotated to be parallel
to the field in 10.0 ms?

Solution  
0.157 V

ΔΦ/Δt 1T ⋅ /s = 1Vm2

0.250m2

Ω

5.00 × T10−5
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42. A 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally having its plane perpendicular
to a uniform magnetic field. (This is 60 rev/s.) Find the magnetic field strength needed to induce an average emf of 10,000 V.

43. Integrated Concepts

Approximately how does the emf induced in the loop in Figure(b) depend on the distance of the center of the loop
from the wire?

Solution  

proportional to 

44. Integrated Concepts

(a) A lightning bolt produces a rapidly varying magnetic field. If the bolt strikes the earth vertically and acts like a
current in a long straight wire, it will induce a voltage in a loop aligned like that in Figure(b). What voltage is induced
in a 1.00 m diameter loop 50.0 m from a lightning strike, if the current falls to zero in ?

(b) Discuss circumstances under which such a voltage would produce noticeable consequences.

23.3 Motional Emf

45. Use Faraday’s law, Lenz’s law, and RHR-1 to show that the magnetic force on the current in the moving rod in Figure is
in the opposite direction of its velocity.

46. If a current flows in the Satellite Tether shown in Figure, use Faraday’s law, Lenz’s law, and RHR-1 to show that there is
a magnetic force on the tether in the direction opposite to its velocity.

47. (a) A jet airplane with a 75.0 m wingspan is flying at 280 m/s. What emf is induced between wing tips if the vertical
component of the Earth’s field is ?

(b) Is an emf of this magnitude likely to have any consequences? Explain.

1

r

2.00 ×106 25.0μs

3.00 × T10−5
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Solution  
(a) 0.630 V 
(b) No, this is a very small emf.

48. (a) A nonferrous screwdriver is being used in a 2.00 T magnetic field. What maximum emf can be induced along its 12.0
cm length when it moves at 6.00 m/s?

(b) Is it likely that this emf will have any consequences or even be noticed?

49. At what speed must the sliding rod in Figure move to produce an emf of 1.00 V in a 1.50 T field, given the rod’s length is
30.0 cm?

Solution  
2.22 m/s

50. The 12.0 cm long rod in Figure moves at 4.00 m/s. What is the strength of the magnetic field if a 95.0 V emf is induced?

51. Prove that when  and  are not mutually perpendicular, motional emf is given by . If  is
perpendicular to , then  is the angle between  and . If  is perpendicular to , then  is the angle between  and .

52. In the August 1992 space shuttle flight, only 250 m of the conducting tether considered in Example could be let out. A
40.0 V motional emf was generated in the Earth’s  field, while moving at . What was the angle
between the shuttle’s velocity and the Earth’s field, assuming the conductor was perpendicular to the field?

53. Integrated Concepts

Derive an expression for the current in a system like that in Figure, under the following conditions. The resistance
between the rails is  , the rails and the moving rod are identical in cross section  and have the same resistivity .
The distance between the rails is , and the rod moves at constant speed  perpendicular to the uniform field . At time
zero, the moving rod is next to the resistance  .

54. Integrated Concepts

The Tethered Satellite in Figure has a mass of 525 kg and is at the end of a 20.0 km long, 2.50 mm diameter cable with
the tensile strength of steel.

(a) How much does the cable stretch if a 100 N force is exerted to pull the satellite in? (Assume the satellite and
shuttle are at the same altitude above the Earth.)

(b) What is the effective force constant of the cable?

(c) How much energy is stored in it when stretched by the 100 N force?

B, ℓ, v emf = Bℓvsinθ v

B θ ℓ B ℓ B θ v B

5.00 × T10−5 7.80 × m/s103

R A ρ

l v B

R
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55. Integrated Concepts

The Tethered Satellite discussed in this module is producing 5.00 kV, and a current of 10.0 A flows.

(a) What magnetic drag force does this produce if the system is moving at 7.80 km/s?

(b) How much kinetic energy is removed from the system in 1.00 h, neglecting any change in altitude or velocity
during that time?

(c) What is the change in velocity if the mass of the system is 100,000 kg?

(d) Discuss the long term consequences (say, a week-long mission) on the space shuttle’s orbit, noting what
effect a decrease in velocity has and assessing the magnitude of the effect.

Solution  
(a) 10.0 N 
(b)  
(c) 0.36 m/s 
(d) For a week-long mission (168 hours), the change in velocity will be 60 m/s, or approximately 1%. In general, a
decrease in velocity would cause the orbit to start spiraling inward because the velocity would no longer be sufficient
to keep the circular orbit. The long-term consequences are that the shuttle would require a little more fuel to maintain
the desired speed, otherwise the orbit would spiral slightly inward.

23.4 Eddy Currents and Magnetic Damping

56. Make a drawing similar to Figure, but with the pendulum moving in the opposite direction. Then use Faraday’s law,
Lenz’s law, and RHR-1 to show that magnetic force opposes motion.

 
A coil is moved into and out of a region of uniform magnetic field.

57. A coil is moved through a magnetic field as shown in Figure. The field is uniform inside the rectangle and zero outside.
What is the direction of the induced current and what is the direction of the magnetic force on the coil at each position
shown?

23.5 Electric Generators

58. Calculate the peak voltage of a generator that rotates its 200-turn, 0.100 m diameter coil at 3600 rpm in a 0.800 T field.

Solution 
474 V

59. At what angular velocity in rpm will the peak voltage of a generator be 480 V, if its 500-turn, 8.00 cm diameter coil
rotates in a 0.250 T field?

60. What is the peak emf generated by rotating a 1000-turn, 20.0 cm diameter coil in the Earth’s  magnetic
field, given the plane of the coil is originally perpendicular to the Earth’s field and is rotated to be parallel to the field in 10.0
ms?

Solution 
0.247 V

61. What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms,
originally having its plane perpendicular to a uniform magnetic field. (This is 60 rev/s.)

62. (a) A bicycle generator rotates at 1875 rad/s, producing an 18.0 V peak emf. It has a 1.00 by 3.00 cm rectangular coil in a
0.640 T field. How many turns are in the coil?

(b) Is this number of turns of wire practical for a 1.00 by 3.00 cm coil?

2.81 × J108

5.00 × T10−5
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Solution 
(a) 50 
(b) yes

63. Integrated Concepts

This problem refers to the bicycle generator considered in the previous problem. It is driven by a 1.60 cm diameter
wheel that rolls on the outside rim of the bicycle tire.

(a) What is the velocity of the bicycle if the generator’s angular velocity is 1875 rad/s?

(b) What is the maximum emf of the generator when the bicycle moves at 10.0 m/s, noting that it was 18.0 V
under the original conditions?

(c) If the sophisticated generator can vary its own magnetic field, what field strength will it need at 5.00 m/s to
produce a 9.00 V maximum emf?

64. (a) A car generator turns at 400 rpm when the engine is idling. Its 300-turn, 5.00 by 8.00 cm rectangular coil rotates in an
adjustable magnetic field so that it can produce sufficient voltage even at low rpms. What is the field strength needed to
produce a 24.0 V peak emf?

(b) Discuss how this required field strength compares to those available in permanent and electromagnets.

Solution 
(a) 0.477 T 
(b) This field strength is small enough that it can be obtained using either a permanent magnet or an electromagnet.

65. Show that if a coil rotates at an angular velocity , the period of its AC output is .

66. A 75-turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.25 T field, starting with the plane of
the coil parallel to the field.

(a) What is the peak emf?

(b) At what time is the peak emf first reached?

(c) At what time is the emf first at its most negative?

(d) What is the period of the AC voltage output?

Solution 
(a) 5.89 V 
(b) At t=0 
(c) 0.393 s 
(d) 0.785 s

67. (a) If the emf of a coil rotating in a magnetic field is zero at , and increases to its first peak at , what is
the angular velocity of the coil?

(b) At what time will its next maximum occur?

(c) What is the period of the output?

(d) When is the output first one-fourth of its maximum?

(e) When is it next one-fourth of its maximum?

68. Unreasonable Results

A 500-turn coil with a  area is spun in the Earth’s  field, producing a 12.0 kV maximum emf.

(a) At what angular velocity must the coil be spun?

(b) What is unreasonable about this result?

(c) Which assumption or premise is responsible?

ω 2π/ω

t = 0 t = 0.100ms

0.250m2 5.00 × T10−5
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Solution 
(a)  
(b) This angular velocity is unreasonably high, higher than can be obtained for any mechanical system. 
(c) The assumption that a voltage as great as 12.0 kV could be obtained is unreasonable.

23.6 Back Emf

69. Suppose a motor connected to a 120 V source draws 10.0 A when it first starts.

(a) What is its resistance?

(b) What current does it draw at its normal operating speed when it develops a 100 V back emf?

Solution 
(a) 12.00 Ω 
(b) 1.67 A

70. A motor operating on 240 V electricity has a 180 V back emf at operating speed and draws a 12.0 A current. (a) What is
its resistance? (b) What current does it draw when it is first started?

71. What is the back emf of a 120 V motor that draws 8.00 A at its normal speed and 20.0 A when first starting?

Solution 
72.0 V

72. The motor in a toy car operates on 6.00 V, developing a 4.50 V back emf at normal speed. If it draws 3.00 A at normal
speed, what current does it draw when starting?

73. Integrated Concepts

The motor in a toy car is powered by four batteries in series, which produce a total emf of 6.00 V. The motor draws
3.00 A and develops a 4.50 V back emf at normal speed. Each battery has a  internal resistance. What is the
resistance of the motor?

Solution 
0.100 Ω

23.7 Transformers

74. A plug-in transformer, like that in Figure, supplies 9.00 V to a video game system.

(a) How many turns are in its secondary coil, if its input voltage is 120 V and the primary coil has 400 turns?

(b) What is its input current when its output is 1.30 A?

Solution 
(a) 30.0 
(b) 

75. An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that
she can use some small appliances on her trip.

(a) What is the ratio of turns in the primary and secondary coils of her transformer?

(b) What is the ratio of input to output current?

(c) How could a New Zealander traveling in the United States use this same transformer to power her 240 V appliances
from 120 V?

76. A cassette recorder uses a plug-in transformer to convert 120 V to 12.0 V, with a maximum current output of 200 mA.

(a) What is the current input?

(b) What is the power input?

(c) Is this amount of power reasonable for a small appliance?

1.92 × rad/s106

0.100Ω

9.75 × A10−2
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Solution 
(a) 20.0 mA 
(b) 2.40 W 
(c) Yes, this amount of power is quite reasonable for a small appliance.

77. (a) What is the voltage output of a transformer used for rechargeable flashlight batteries, if its primary has 500 turns, its
secondary 4 turns, and the input voltage is 120 V?

(b) What input current is required to produce a 4.00 A output? (c) What is the power input?

78. (a) The plug-in transformer for a laptop computer puts out 7.50 V and can supply a maximum current of 2.00 A. What is
the maximum input current if the input voltage is 240 V? Assume 100% efficiency.

(b) If the actual efficiency is less than 100%, would the input current need to be greater or smaller? Explain.

Solution 
(a) 0.063 A 
(b) Greater input current needed.

79. A multipurpose transformer has a secondary coil with several points at which a voltage can be extracted, giving outputs
of 5.60, 12.0, and 480 V.

(a) The input voltage is 240 V to a primary coil of 280 turns. What are the numbers of turns in the parts of the
secondary used to produce the output voltages?

(b) If the maximum input current is 5.00 A, what are the maximum output currents (each used alone)?

80. A large power plant generates electricity at 12.0 kV. Its old transformer once converted the voltage to 335 kV. The
secondary of this transformer is being replaced so that its output can be 750 kV for more efficient cross-country transmission
on upgraded transmission lines.

(a) What is the ratio of turns in the new secondary compared with the old secondary?

(b) What is the ratio of new current output to old output (at 335 kV) for the same power?

(c) If the upgraded transmission lines have the same resistance, what is the ratio of new line power loss to old?

Solution 
(a) 2.2 
(b) 0.45 
(c) 0.20, or 20.0%

81. If the power output in the previous problem is 1000 MW and line resistance is , what were the old and new line
losses?

82. Unreasonable Results

The 335 kV AC electricity from a power transmission line is fed into the primary coil of a transformer. The ratio of the
number of turns in the secondary to the number in the primary is .

(a) What voltage is induced in the secondary?

(b) What is unreasonable about this result?

(c) Which assumption or premise is responsible?

Solution 
(a) 335 MV 
(b) way too high, well beyond the breakdown voltage of air over reasonable distances 
(c) input voltage is too high

83. Construct Your Own Problem

Consider a double transformer to be used to create very large voltages. The device consists of two stages. The first is a
transformer that produces a much larger output voltage than its input. The output of the first transformer is used as
input to a second transformer that further increases the voltage. Construct a problem in which you calculate the output

2.00Ω

/ = 1000Ns Np
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voltage of the final stage based on the input voltage of the first stage and the number of turns or loops in both parts of
both transformers (four coils in all). Also calculate the maximum output current of the final stage based on the input
current. Discuss the possibility of power losses in the devices and the effect on the output current and power.

23.8 Electrical Safety: Systems and Devices

84. Integrated Concepts

A short circuit to the grounded metal case of an appliance occurs as shown in Figure. The person touching the case is
wet and only has a  resistance to earth/ground.

(a) What is the voltage on the case if 5.00 mA flows through the person?

(b) What is the current in the short circuit if the resistance of the earth/ground wire is ?

(c) Will this trigger the 20.0 A circuit breaker supplying the appliance?

 
A person can be shocked even when the case of an appliance is grounded. The large short circuit current produces a voltage

on the case of the appliance, since the resistance of the earth/ground wire is not zero.

Solution 
(a) 15.0 V 
(b) 75.0 A 
(c) yes

23.9 Inductance

85. Two coils are placed close together in a physics lab to demonstrate Faraday’s law of induction. A current of 5.00 A in one
is switched off in 1.00 ms, inducing a 9.00 V emf in the other. What is their mutual inductance?

Solution 
1.80 mH

86. If two coils placed next to one another have a mutual inductance of 5.00 mH, what voltage is induced in one when the
2.00 A current in the other is switched off in 30.0 ms?

87. The 4.00 A current through a 7.50 mH inductor is switched off in 8.33 ms. What is the emf induced opposing this?

Solution 
3.60 V

88. A device is turned on and 3.00 A flows through it 0.100 ms later. What is the self-inductance of the device if an induced
150 V emf opposes this?

89. Starting with , show that the units of inductance are .

3.00kΩ

0.200Ω

em = −Mf2

ΔI1

Δt
(V ⋅ s)/A = Ω ⋅ s
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90. Camera flashes charge a capacitor to high voltage by switching the current through an inductor on and off rapidly. In
what time must the 0.100 A current through a 2.00 mH inductor be switched on or off to induce a 500 V emf?

91. A large research solenoid has a self-inductance of 25.0 H.

(a) What induced emf opposes shutting it off when 100 A of current through it is switched off in 80.0 ms?

(b) How much energy is stored in the inductor at full current?

(c) At what rate in watts must energy be dissipated to switch the current off in 80.0 ms?

(d) In view of the answer to the last part, is it surprising that shutting it down this quickly is difficult?

Solution 
(a) 31.3 kV 
(b) 125 kJ 
(c) 1.56 MW 
(d) No, it is not surprising since this power is very high.

92. (a) Calculate the self-inductance of a 50.0 cm long, 10.0 cm diameter solenoid having 1000 loops.

(b) How much energy is stored in this inductor when 20.0 A of current flows through it?

(c) How fast can it be turned off if the induced emf cannot exceed 3.00 V?

93. A precision laboratory resistor is made of a coil of wire 1.50 cm in diameter and 4.00 cm long, and it has 500 turns.

(a) What is its self-inductance?

(b) What average emf is induced if the 12.0 A current through it is turned on in 5.00 ms (one-fourth of a cycle for 50
Hz AC)?

(c) What is its inductance if it is shortened to half its length and counter-wound (two layers of 250 turns in opposite
directions)?

Solution 
(a) 1.39 mH 
(b) 3.33 V 
(c) Zero

94. The heating coils in a hair dryer are 0.800 cm in diameter, have a combined length of 1.00 m, and a total of 400 turns.

(a) What is their total self-inductance assuming they act like a single solenoid?

(b) How much energy is stored in them when 6.00 A flows?

(c) What average emf opposes shutting them off if this is done in 5.00 ms (one-fourth of a cycle for 50 Hz AC)?

95. When the 20.0 A current through an inductor is turned off in 1.50 ms, an 800 V emf is induced, opposing the change.
What is the value of the self-inductance?

Solution 
60.0 mH

96. How fast can the 150 A current through a 0.250 H inductor be shut off if the induced emf cannot exceed 75.0 V?

97. Integrated Concepts

A very large, superconducting solenoid such as one used in MRI scans, stores 1.00 MJ of energy in its magnetic field
when 100 A flows.

(a) Find its self-inductance.

(b) If the coils “go normal,” they gain resistance and start to dissipate thermal energy. What temperature increase
is produced if all the stored energy goes into heating the 1000 kg magnet, given its average specific heat is 

?

Solution 
(a) 200 H 

200J/kg ⋅ ºC
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(b) 5.00ºC

98. Unreasonable Results

A 25.0 H inductor has 100 A of current turned off in 1.00 ms.

(a) What voltage is induced to oppose this?

(b) What is unreasonable about this result?

(c) Which assumption or premise is responsible?

23.10 RL Circuits

99. If you want a characteristic  time constant of 1.00 s, and you have a 500 Ω resistor, what value of self-inductance is
needed?

Solution 
500 H

100. Your  circuit has a characteristic time constant of 20.0 ns, and a resistance of .

(a) What is the inductance of the circuit?

(b) What resistance would give you a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope?

101. A large superconducting magnet, used for magnetic resonance imaging, has a 50.0 H inductance. If you want current
through it to be adjustable with a 1.00 s characteristic time constant, what is the minimum resistance of system?

Solution 
50.0 Ω

102. Verify that after a time of 10.0 ms, the current for the situation considered in Example will be 0.183 A as stated.

103. Suppose you have a supply of inductors ranging from 1.00 nH to 10.0 H, and resistors ranging from  to 
. What is the range of characteristic  time constants you can produce by connecting a single resistor to a single

inductor?

Solution 
 to 0.100 s

104. (a) What is the characteristic time constant of a 25.0 mH inductor that has a resistance of ?

(b) If it is connected to a 12.0 V battery, what is the current after 12.5 ms?

105. What percentage of the final current  flows through an inductor  in series with a resistor , three time constants
after the circuit is completed?

Solution 
95.0%

106. The 5.00 A current through a 1.50 H inductor is dissipated by a  resistor in a circuit like that in Figure with the
switch in position 2.

(a) What is the initial energy in the inductor?

(b) How long will it take the current to decline to 5.00% of its initial value?

(c) Calculate the average power dissipated, and compare it with the initial power dissipated by the resistor.

107. (a) Use the exact exponential treatment to find how much time is required to bring the current through an 80.0 mH
inductor in series with a  resistor to 99.0% of its final value, starting from zero.

(b) Compare your answer to the approximate treatment using integral numbers of τ.

(c) Discuss how significant the difference is.

Solution 
(a) 24.6 ms 

RL

RL 5.00MΩ

0.100Ω

1.00MΩ RL

1.00 × s10–18

4.00Ω

I0 L R

2.00Ω

15.0Ω
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(b) 26.7 ms 
(c) 9% difference, which is greater than the inherent uncertainty in the given parameters.

108. (a) Using the exact exponential treatment, find the time required for the current through a 2.00 H inductor in series with
a 0.500 Ω resistor to be reduced to 0.100% of its original value.

(b) Compare your answer to the approximate treatment using integral numbers of .

(c) Discuss how significant the difference is.

23.11 Reactance, Inductive and Capacitive

109. At what frequency will a 30.0 mH inductor have a reactance of 100 Ω?

Solution 
531 Hz

110. What value of inductance should be used if a  reactance is needed at a frequency of 500 Hz?

111. What capacitance should be used to produce a  reactance at 60.0 Hz?

Solution 
1.33 nF

112. At what frequency will an 80.0 mF capacitor have a reactance of ?

113. (a) Find the current through a 0.500 H inductor connected to a 60.0 Hz, 480 V AC source.

(b) What would the current be at 100 kHz?

Solution 
(a) 2.55 A 
(b) 1.53 mA

114. (a) What current flows when a 60.0 Hz, 480 V AC source is connected to a 0.250 μF capacitor?

(b) What would the current be at 25.0 kHz?

115. A 20.0 kHz, 16.0 V source connected to an inductor produces a 2.00 A current. What is the inductance?

Solution 
63.7 µH

116. A 20.0 Hz, 16.0 V source produces a 2.00 mA current when connected to a capacitor. What is the capacitance?

117. (a) An inductor designed to filter high-frequency noise from power supplied to a personal computer is placed in series
with the computer. What minimum inductance should it have to produce a  reactance for 15.0 kHz noise?

(b) What is its reactance at 60.0 Hz?

Solution  
(a) 21.2 mH 
(b) 8.00 Ω

118. The capacitor in Figure(a) is designed to filter low-frequency signals, impeding their transmission between circuits.

(a) What capacitance is needed to produce a  reactance at a frequency of 120 Hz?

(b) What would its reactance be at 1.00 MHz?

(c) Discuss the implications of your answers to (a) and (b).

119. The capacitor in Figure(b) will filter high-frequency signals by shorting them to earth/ground.

(a) What capacitance is needed to produce a reactance of  for a 5.00 kHz signal?

(b) What would its reactance be at 3.00 Hz? (c) Discuss the implications of your answers to (a) and (b).

Solution  
(a) 3.18 mF 

τ

20.0kΩ

2.00MΩ

0.250Ω

2.00kΩ

100kΩ

10.0mΩ
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(b) 16.7 Ω

120. Unreasonable Results

In a recording of voltages due to brain activity (an EEG), a 10.0 mV signal with a 0.500 Hz frequency is applied to a
capacitor, producing a current of 100 mA. Resistance is negligible.

(a) What is the capacitance?

(b) What is unreasonable about this result?

(c) Which assumption or premise is responsible?

121. Construct Your Own Problem

Consider the use of an inductor in series with a computer operating on 60 Hz electricity. Construct a problem in which
you calculate the relative reduction in voltage of incoming high frequency noise compared to 60 Hz voltage. Among
the things to consider are the acceptable series reactance of the inductor for 60 Hz power and the likely frequencies of
noise coming through the power lines.

23.12 RLC Series AC Circuits

122. An  circuit consists of a  resistor and a 3.00 mH inductor.

(a) Find its impedance  at 60.0 Hz and 10.0 kHz.

(b) Compare these values of  with those found in Example in which there was also a capacitor.

Solution  
(a)  at 60.0 Hz,  at 10.0 kHz 
(b) At 60 Hz, with a capacitor, , over 13 times as high as without the capacitor. The capacitor makes a large
difference at low frequencies. At 10 kHz, with a capacitor , about the same as without the capacitor. The
capacitor has a smaller effect at high frequencies.

123. An  circuit consists of a  resistor and a  capacitor.

(a) Find its impedance at 60.0 Hz and 10.0 kHz.

(b) Compare these values of  with those found in Example, in which there was also an inductor.

124. An circuit consists of a  inductor and a  capacitor.

(a) Find its impedance at 60.0 Hz and 10.0 kHz.

(b) Compare these values of  with those found in Example in which there was also a resistor.

Solution  
(a)  at 60.0 Hz,  at 10.0 kHz 
(b) These values are close to those obtained in Example because at low frequency the capacitor dominates and at high
frequency the inductor dominates. So in both cases the resistor makes little contribution to the total impedance.

125. What is the resonant frequency of a 0.500 mH inductor connected to a  capacitor?

126. To receive AM radio, you want an  circuit that can be made to resonate at any frequency between 500 and 1650
kHz. This is accomplished with a fixed  inductor connected to a variable capacitor. What range of capacitance is
needed?

Solution  
9.30 nF to 101 nF

127. Suppose you have a supply of inductors ranging from 1.00 nH to 10.0 H, and capacitors ranging from 1.00 pF to 0.100
F. What is the range of resonant frequencies that can be achieved from combinations of a single inductor and a single
capacitor?

128. What capacitance do you need to produce a resonant frequency of 1.00 GHz, when using an 8.00 nH inductor?

Solution 
3.17 pF

RL 40.0Ω

Z

Z

40.02Ω 193Ω

Z = 531Ω

Z = 190Ω

RC 40.0Ω 5.00μF

Z

C 3.00mH 5.00μF

Z

529Ω 185Ω

40.0μF

RLC

1.00μH
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129. What inductance do you need to produce a resonant frequency of 60.0 Hz, when using a  capacitor?

130. The lowest frequency in the FM radio band is 88.0 MHz.

(a) What inductance is needed to produce this resonant frequency if it is connected to a 2.50 pF capacitor?

(b) The capacitor is variable, to allow the resonant frequency to be adjusted to as high as 108 MHz. What must the
capacitance be at this frequency?

Solution  
(a)  
(b) 

131. An  series circuit has a  resistor, a  inductor, and an  capacitor.

(a) Find the circuit’s impedance at 120 Hz.

(b) Find the circuit’s impedance at 5.00 kHz.

(c) If the voltage source has , what is  at each frequency?

(d) What is the resonant frequency of the circuit?

(e) What is  at resonance?

132. An  series circuit has a  resistor, a  inductor, and a 25.0 nF capacitor.

(a) Find the circuit’s impedance at 500 Hz.

(b) Find the circuit’s impedance at 7.50 kHz.

(c) If the voltage source has , what is  at each frequency?

(d) What is the resonant frequency of the circuit?

(e) What is  at resonance?

Solution  
(a) 12.8 kΩ 
(b) 1.31 kΩ
(c) 31.9 mA at 500 Hz, 312 mA at 7.50 kHz 
(d) 82.2 kHz 
(e) 0.408 A

133. An  series circuit has a  resistor, a  inductor, and an  capacitor.

(a) Find the power factor at f=120 Hz.

(b) What is the phase angle at 120 Hz?

(c) What is the average power at 120 Hz?

(d) Find the average power at the circuit’s resonant frequency.

134. An  series circuit has a  resistor, a  inductor, and a 25.0 nF capacitor

(a) Find the power factor at f=7.50 Hz.

(b) What is the phase angle at this frequency?

(c) What is the average power at this frequency?

(d) Find the average power at the circuit’s resonant frequency.

Solution  
(a) 0.159 
(b) 80.9º 
(c) 26.4 W 
(d) 166 W

2.00μF

1.31μH

1.66pF

RLC 2.50Ω 100μH 80.0μF

= 5.60VVrms Irms

Irms

RLC 1.00kΩ 150μH

= 408VVrms Irms

Irms

RLC 2.50Ω 100μH 80.0μF

RLC 1.00kΩ 150μH
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135. An  series circuit has a  resistor and a 25.0 mH inductor. At 8000 Hz, the phase angle is .

(a) What is the impedance?

(b) Find the circuit’s capacitance.

(c) If  is applied, what is the average power supplied?

136. Referring to Example, find the average power at 10.0 kHz.

Solution  
16.0 W
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8.S: Electromagnetic Induction (Summary)

Key Terms

back emf
emf generated by a running motor, because it consists of a coil
turning in a magnetic field; it opposes the voltage powering the

motor

eddy current current loop in a conductor caused by motional emf

electric generator
device for converting mechanical work into electric energy; it

induces an emf by rotating a coil in a magnetic field

Faraday’s law
induced emf is created in a closed loop due to a change in

magnetic flux through the loop

induced electric field created based on the changing magnetic flux with time

induced emf
short-lived voltage generated by a conductor or coil moving in a

magnetic field

Lenz’s law
direction of an induced emf opposes the change in magnetic flux

that produced it; this is the negative sign in Faraday’s law

magnetic damping drag produced by eddy currents

magnetic flux
measurement of the amount of magnetic field lines through a given

area

motionally induced emf
voltage produced by the movement of a conducting wire in a

magnetic field

peak emf maximum emf produced by a generator

Key Equations

Magnetic flux

Faraday’s law

Motionally induced emf

Motional emf around a circuit

Emf produced by an electric generator

Summary

13.2 Faraday’s Law
The magnetic flux through an enclosed area is defined as the amount of field lines cutting through a surface area A defined by
the unit area vector.
The units for magnetic flux are webers, where .
The induced emf in a closed loop due to a change in magnetic flux through the loop is known as Faraday’s law. If there is no
change in magnetic flux, no induced emf is created.

13.3 Lenz's Law
We can use Lenz’s law to determine the directions of induced magnetic fields, currents, and emfs.
The direction of an induced emf always opposes the change in magnetic flux that causes the emf, a result known as Lenz’s law.

= ⋅ dAΦm ∫
S

B⃗  n̂

ε = −N
dΦm

dt

ε = Blv

ε = ∮ ⋅ d = −E ⃗  l ⃗  dΦm

dt

ε = NBAωsin(ωt)

1Wb = 1T ⋅m2
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13.4 Motional Emf
The relationship between an induced emf εε in a wire moving at a constant speed v through a magnetic field B is given by 

.
An induced emf from Faraday’s law is created from a motional emf that opposes the change in flux.

13.5 Induced Electric Fields
A changing magnetic flux induces an electric field.
Both the changing magnetic flux and the induced electric field are related to the induced emf from Faraday’s law.

13.6 Eddy Currents
Current loops induced in moving conductors are called eddy currents. They can create significant drag, called magnetic
damping.
Manipulation of eddy currents has resulted in applications such as metal detectors, braking in trains or roller coasters, and
induction cooktops.

13.7 Electric Generators and Back Emf
An electric generator rotates a coil in a magnetic field, inducing an emf given as a function of time by 
where A is the area of an N-turn coil rotated at a constant angular velocity  in a uniform magnetic field .
The peak emf of a generator is .
Any rotating coil produces an induced emf. In motors, this is called back emf because it opposes the emf input to the motor.

13.8 Applications of Electromagnetic Induction
Hard drives utilize magnetic induction to read/write information.
Other applications of magnetic induction can be found in graphics tablets, electric and hybrid vehicles, and in transcranial
magnetic stimulation.
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9: Electromagnetic Waves
In this chapter, we explain Maxwell’s theory and show how it leads to his prediction of electromagnetic waves. We use his theory
to examine what electromagnetic waves are, how they are produced, and how they transport energy and momentum. We conclude
by summarizing some of the many practical applications of electromagnetic waves.
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9.1: Maxwell’s Equations and Electromagnetic Waves

By the end of this section, you will be able to:

Explain Maxwell’s correction of Ampère’s law by including the displacement current
State and apply Maxwell’s equations in integral form
Describe how the symmetry between changing electric and changing magnetic fields explains Maxwell’s prediction of
electromagnetic waves
Describe how Hertz confirmed Maxwell’s prediction of electromagnetic waves

Our view of objects in the sky at night, the warm radiance of sunshine, the sting of sunburn, our cell phone conversations, and the X-rays
revealing a broken bone—all are brought to us by electromagnetic waves. It would be hard to overstate the practical importance of
electromagnetic waves, through their role in vision, through countless technological applications, and through their ability to transport
the energy from the Sun through space to sustain life and almost all of its activities on Earth.

Figure : The pressure from sunlight predicted by Maxwell’s equations helped produce the tail of Comet McNaught. (credit:
modification of work by Sebastian Deiries—ESO)

Theory predicted the general phenomenon of electromagnetic waves before anyone realized that light is a form of an electromagnetic
wave. In the mid-nineteenth century, James Clerk Maxwell formulated a single theory combining all the electric and magnetic effects
known at that time. Maxwell’s equations, summarizing this theory, predicted the existence of electromagnetic waves that travel at the
speed of light. His theory also predicted how these waves behave, and how they carry both energy and momentum. The tails of comets,
such as Comet McNaught in Figure 16.1, provide a spectacular example. Energy carried by light from the Sun warms the comet to
release dust and gas. The momentum carried by the light exerts a weak force that shapes the dust into a tail of the kind seen here. The
flux of particles emitted by the Sun, called the solar wind, typically produces an additional, second tail, as described in detail in this
chapter.

In this chapter, we explain Maxwell’s theory and show how it leads to his prediction of electromagnetic waves. We use his theory to
examine what electromagnetic waves are, how they are produced, and how they transport energy and momentum. We conclude by
summarizing some of the many practical applications of electromagnetic waves.

James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century (Figure ). Although he
died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision, and to
the nature of Saturn’s rings. He is probably best known for having combined existing knowledge of the laws of electricity and of
magnetism with insights of his own into a complete overarching electromagnetic theory, represented by Maxwell’s equations.

 Learning Objectives

9.1.16

9.1.2
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Figure : James Clerk Maxwell, a nineteenth-century physicist, developed a theory that explained the relationship between electricity
and magnetism, and correctly predicted that visible light consists of electromagnetic waves.

Maxwell’s Correction to the Laws of Electricity and Magnetism
The four basic laws of electricity and magnetism had been discovered experimentally through the work of physicists such as Oersted,
Coulomb, Gauss, and Faraday. Maxwell discovered logical inconsistencies in these earlier results and identified the incompleteness of
Ampère’s law as their cause.

Recall that according to Ampère’s law, the integral of the magnetic field around a closed loop C is proportional to the current I passing
through any surface whose boundary is loop C itself:

There are infinitely many surfaces that can be attached to any loop, and Ampère’s law stated in Equation  is independent of the
choice of surface.

Consider the set-up in Figure . A source of emf is abruptly connected across a parallel-plate capacitor so that a time-dependent
current I develops in the wire. Suppose we apply Ampère’s law to loop C shown at a time before the capacitor is fully charged, so that 

. Surface  gives a nonzero value for the enclosed current I, whereas surface  gives zero for the enclosed current because no
current passes through it:

Clearly, Ampère’s law in its usual form does not work here. This may not be surprising, because Ampère’s law as applied in earlier
chapters required a steady current, whereas the current in this experiment is changing with time and is not steady at all.

9.1.2

∮ ⋅ d = I.B⃗  s ⃗  μ0 (9.1.1)

9.1.1

9.1.3

I ≠ 0 S1 S2

⋅ d = I∮
C

B⃗  s ⃗  μ0

  
if surface  is usedS1

(9.1.2)

= 0 
if surface  is usedS2

(9.1.3)
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Figure : The currents through surface  and surface  are unequal, despite having the same boundary loop C.

How can Ampère’s law be modified so that it works in all situations? Maxwell suggested including an additional contribution, called the
displacement current , to the real current I,

where the displacement current is defined to be

Here  is the permittivity of free space and  is the electric flux, defined as

The displacement current is analogous to a real current in Ampère’s law, entering into Ampère’s law in the same way. It is produced,
however, by a changing electric field. It accounts for a changing electric field producing a magnetic field, just as a real current does, but
the displacement current can produce a magnetic field even where no real current is present. When this extra term is included, the
modified Ampère’s law equation becomes

and is independent of the surface S through which the current I is measured.

We can now examine this modified version of Ampère’s law to confirm that it holds independent of whether the surface  or the surface
 in Figure  is chosen. The electric field  corresponding to the flux  in Equation  is between the capacitor plates.

Therefore, the  field and the displacement current through the surface  are both zero, and Equation  takes the form

We must now show that for surface , through which no actual current flows, the displacement current leads to the same value  for
the right side of the Ampère’s law equation. For surface  the equation becomes

Gauss’s law for electric charge requires a closed surface and cannot ordinarily be applied to a surface like  alone or  alone. But the
two surfaces  and  form a closed surface in Figure  and can be used in Gauss’s law. Because the electric field is zero on , the
flux contribution through  is zero. This gives us

9.1.3 S1 S2

Id

⋅ d = (I + )∮
S

B⃗  s ⃗  μ0 Id (9.1.4)

= .Id ϵ0
dΦE

dt
(9.1.5)

ϵ0 ΦE

= ⋅ d .ΦE ∬
Surface S

E ⃗  A ⃗  (9.1.6)

⋅ d = I +∮
C

B⃗  s ⃗  μ0 ϵ0μ0
dΦE

dt
(9.1.7)
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Therefore, we can replace the integral over  in Equation  with the closed Gaussian surface  and apply Gauss’s law to
obtain

Thus, the modified Ampère’s law equation is the same using surface , where the right-hand side results from the displacement current,
as it is for the surface , where the contribution comes from the actual flow of electric charge.

A parallel-plate capacitor with capacitance C whose plates have area A and separation distance d is connected to a resistor R and a
battery of voltage V. The current starts to flow at .

a. Find the displacement current between the capacitor plates at time t.

b. From the properties of the capacitor, find the corresponding real current , and compare the answer to the expected

current in the wires of the corresponding RC circuit.

Strategy

We can use the equations from the analysis of an RC circuit (Alternating-Current Circuits) plus Maxwell’s version of Ampère’s law.

Solution

a. The voltage between the plates at time t is given by

Let the z-axis point from the positive plate to the negative plate. Then the z-component of the electric field between the plates as
a function of time t is

Therefore, the z-component of the displacement current  between the plates is

where we have used  for the capacitance.

b. From the expression for  the charge on the capacitor is

The current into the capacitor after the circuit is closed, is therefore

This current is the same as  found in (a).

Maxwell’s Equations
With the correction for the displacement current, Maxwell’s equations take the form

⋅ d∮
Surface +S1 S2

E ⃗  A ⃗  = ⋅ d + ⋅ d∬
Surface S1

E ⃗  A ⃗  ∬
Surface S2

E ⃗  A ⃗ 

= 0 + ⋅ d∬
Surface S2

E ⃗  A ⃗ 

= ⋅ d .∬
Surface S2

E ⃗  A ⃗ 

(9.1.10)

(9.1.11)

(9.1.12)
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Once the fields have been calculated using these four equations, the Lorentz force equation

gives the force that the fields exert on a particle with charge q moving with velocity . The Lorentz force equation combines the force of
the electric field and of the magnetic field on the moving charge. The magnetic and electric forces have been examined in earlier
modules. These four Maxwell’s equations are, respectively:

1. Gauss’s law

The electric flux through any closed surface is equal to the electric charge  enclosed by the surface. Gauss’s law (Equation 
) describes the relation between an electric charge and the electric field it produces. This is often pictured in terms of electric

field lines originating from positive charges and terminating on negative charges, and indicating the direction of the electric field at
each point in space.

2. Gauss’s law for magnetism

The magnetic field flux through any closed surface is zero (Equation ). This is equivalent to the statement that magnetic field
lines are continuous, having no beginning or end. Any magnetic field line entering the region enclosed by the surface must also leave
it. No magnetic monopoles, where magnetic field lines would terminate, are known to exist (see section on Magnetic Fields and
Lines).

3. Faraday’s law

A changing magnetic field induces an electromotive force (emf) and, hence, an electric field. The direction of the emf opposes the
change. Equation  is Faraday’s law of induction and includes Lenz’s law. The electric field from a changing magnetic field has
field lines that form closed loops, without any beginning or end.

4. Ampère-Maxwell law

Magnetic fields are generated by moving charges or by changing electric fields. This fourth of Maxwell’s equations, Equation 
, encompasses Ampère’s law and adds another source of magnetic fields, namely changing electric fields.

Maxwell’s equations and the Lorentz force law together encompass all the laws of electricity and magnetism. The symmetry that
Maxwell introduced into his mathematical framework may not be immediately apparent. Faraday’s law describes how changing
magnetic fields produce electric fields. The displacement current introduced by Maxwell results instead from a changing electric field
and accounts for a changing electric field producing a magnetic field. The equations for the effects of both changing electric fields and
changing magnetic fields differ in form only where the absence of magnetic monopoles leads to missing terms. This symmetry between
the effects of changing magnetic and electric fields is essential in explaining the nature of electromagnetic waves.

Later application of Einstein’s theory of relativity to Maxwell’s complete and symmetric theory showed that electric and magnetic forces
are not separate but are different manifestations of the same thing—the electromagnetic force. The electromagnetic force and weak
nuclear force are similarly unified as the electroweak force. This unification of forces has been one motivation for attempts to unify all of
the four basic forces in nature—the gravitational, electrical, strong, and weak nuclear forces (see Particle Physics and Cosmology).

The Mechanism of Electromagnetic Wave Propagation
To see how the symmetry introduced by Maxwell accounts for the existence of combined electric and magnetic waves that propagate
through space, imagine a time-varying magnetic field  produced by the high-frequency alternating current seen in Figure . We
represent  in the diagram by one of its field lines. From Faraday’s law, the changing magnetic field through a surface induces a

∮ ⋅ dE ⃗  A ⃗ 

∮ ⋅ dB⃗  A ⃗ 

∮ ⋅ dE ⃗  s ⃗ 

∮ ⋅ dB⃗  s ⃗ 

= (Gauss's law)
Qin

ϵ0

= 0 (Gauss's law for magnetism)

= − (Faraday's law)
dΦm

dt

= I + I + (Ampere-Maxwell law).μ0 ϵ0 ϵ0μ0
dΦE

dt

(9.1.14)
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(9.1.16)
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time-varying electric field  at the boundary of that surface. The displacement current source for the electric field, like the Faraday’s
law source for the magnetic field, produces only closed loops of field lines, because of the mathematical symmetry involved in the
equations for the induced electric and induced magnetic fields. A field line representation of  is shown. In turn, the changing
electric field  creates a magnetic field  according to the modified Ampère’s law. This changing field induces  which
induces  and so on. We then have a self-continuing process that leads to the creation of time-varying electric and magnetic fields in
regions farther and farther away from O. This process may be visualized as the propagation of an electromagnetic wave through space.

Figure : How changing  and  fields propagate through space.

In the next section, we show in more precise mathematical terms how Maxwell’s equations lead to the prediction of electromagnetic
waves that can travel through space without a material medium, implying a speed of electromagnetic waves equal to the speed of light.

Prior to Maxwell’s work, experiments had already indicated that light was a wave phenomenon, although the nature of the waves was yet
unknown. In 1801, Thomas Young (1773–1829) showed that when a light beam was separated by two narrow slits and then recombined,
a pattern made up of bright and dark fringes was formed on a screen. Young explained this behavior by assuming that light was
composed of waves that added constructively at some points and destructively at others. Subsequently, Jean Foucault (1819–1868), with
measurements of the speed of light in various media, and Augustin Fresnel (1788–1827), with detailed experiments involving
interference and diffraction of light, provided further conclusive evidence that light was a wave. So, light was known to be a wave, and
Maxwell had predicted the existence of electromagnetic waves that traveled at the speed of light. The conclusion seemed inescapable:
Light must be a form of electromagnetic radiation. But Maxwell’s theory showed that other wavelengths and frequencies than those of
light were possible for electromagnetic waves. He showed that electromagnetic radiation with the same fundamental properties as visible
light should exist at any frequency. It remained for others to test, and confirm, this prediction.

When the emf across a capacitor is turned on and the capacitor is allowed to charge, when does the magnetic field induced by the
displacement current have the greatest magnitude?

Solution

It is greatest immediately after the current is switched on. The displacement current and the magnetic field from it are proportional to the
rate of change of electric field between the plates, which is greatest when the plates first begin to charge.

Hertz’s Observations
The German physicist Heinrich Hertz (1857–1894) was the first to generate and detect certain types of electromagnetic waves in the
laboratory. Starting in 1887, he performed a series of experiments that not only confirmed the existence of electromagnetic waves but
also verified that they travel at the speed of light.

Hertz used an alternating-current RLC (resistor-inductor-capacitor) circuit that resonates at a known frequency  and

connected it to a loop of wire, as shown in Figure . High voltages induced across the gap in the loop produced sparks that were
visible evidence of the current in the circuit and helped generate electromagnetic waves.

Across the laboratory, Hertz placed another loop attached to another RLC circuit, which could be tuned (as the dial on a radio) to the
same resonant frequency as the first and could thus be made to receive electromagnetic waves. This loop also had a gap across which
sparks were generated, giving solid evidence that electromagnetic waves had been received.
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Figure : The apparatus used by Hertz in 1887 to generate and detect electromagnetic waves.

Hertz also studied the reflection, refraction, and interference patterns of the electromagnetic waves he generated, confirming their wave
character. He was able to determine the wavelengths from the interference patterns, and knowing their frequencies, he could calculate the
propagation speed using the equation , where v is the speed of a wave, f is its frequency, and  is its wavelength. Hertz was thus
able to prove that electromagnetic waves travel at the speed of light. The SI unit for frequency, the hertz , is
named in his honor.

Could a purely electric field propagate as a wave through a vacuum without a magnetic field? Justify your answer.

Solution

No. The changing electric field according to the modified version of Ampère’s law would necessarily induce a changing magnetic field.

Another Look at Maxwell's Equations

Ampére's Law is Broken
As far as the EM theory had come, a 19th-century Scottish physicist named James Clerk Maxwell felt something had to be missing. To
get an idea of what was nagging him, consider Ampére’s law. Recall we said that it only worked for closed loops and infinitely-long
wires, because the current had to pierce a surface bounded by the Ampérian circuit. Maxwell felt that there had to be some way to
modify Ampére’s law to take care of this shortcoming, and came up with the following thought experiment.

Suppose we have a long-straight wire with a current in it. We can employ Ampére's law for this situation, because if we construct an
Ampérian circuit around this wire, every surface – whatever its shape – that is bounded by that closed path must be pierced by that wire.
Now suppose the wire includes a single capacitor. Now it is possible to construct a surface bounded by the Ampérian circuit such that the
current does not pierce it. Maxwell felt that maybe maybe Ampére's law could be modified such that surfaces not pierced by the current
can also be related to the line integral of the magnetic field around the same circuit.

Figure 5.5.1 – Maxwell's Extension of Ampére's law

The current piercing surface #1 can be expressed in a manner that transports (or "displaces") the calculation over to the capacitor's
electric field. The current passing through surface #1 is the rate at which the charge is building up on the capacitor plate, and this is
related to the rate at which the field between the two capacitor plates is growing. Specifically:

9.1.5

v= fλ λ

(1 Hz = 1 cycle/second)
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The time rate of change of the electric field flux which accounts for the enclosed current for a surface that is displaced was called the
displacement current by Maxwell. It accounts for the fact that while charge does not pass through a particular surface over time, an
equivalent about of "current" in the form of increasing (or decreasing) electric field flux takes its place. So in general, in cases where
there is both a current piercing a surface and a change in the electric flux through that surface, the line integral of the magnetic field
around a closed path that borders that surface is:

This is Ampére's law modified with Maxwell's displacement current in integral form. We found earlier that Ampére's law could be
written in local (differential) form using Stoke's theorem, and since the integral of the electric field flux is over a surface bounded by the
same closed path, we can include the second term in this equation:

Notice that in fact we will get a nonzero magnetic field line integral even if there is no moving charge, if there is a time-varying electric
field present. What Maxwell had discovered was, not only did Faraday's law tell us that a time-varying magnetic field causes an electric
field to circulate around it, but it worked in the other direction as well: a time-varying electric field gives rise to a magnetic field as well.

Summary of Field Equations
We can now put all of the field equations together, in both integral and local form, to construct a complete theory of electromagnetism. It
is summarized in four equations, now known as Maxwell's equations:

Figure 5.5.2 – Maxwell's Equations

Charge Conservation
Electric charge conservation is a fundamental element of the theory of electromagnetism, which we first addressed at the end of Section
3.1, culminating in Equation 3.1.8. Electric charges as sources of both fields are included in Maxwell's equations, so it is absolutely
essential that Maxwell's equations be consistent with charge conservation. Thanks to MAxwell's contribution, charge conservation can be
derived from the field equations. To see this, consider the identity we have mentioned previously – that the divergence of the curl of any
vector field vanishes. Applying this identity to the Ampére/Maxwell equation gives:

Now applying the local form of Gauss's law for electric fields to the last term gives the continuity equation (Equation 3.1.8), which
expresses charge conservation:

∮ ⋅ = ( + ) = + ∫ ⋅ dB
→

dl
→

μo Imoving charge Idisplacement μoIencl μoϵo
d

dt
E
→

A
→

(9.1.20)

∮ ⋅ = ∫ ( × ) ⋅ d = ∫ ⋅ d + ∫ ⋅ d ⇒ × = +B
→

dl
→

∇
→

B
→

A
→

μo J
→

A
→

μoϵo
d

dt
E
→

A
→

∇
→

B
→

μo J
→

μoϵo
d

dt
E
→

(9.1.21)

0 = ⋅( × ) = ⋅ + ⋅ = ⋅ + ( ⋅ )∇
→

∇
→

B
→

μo ∇
→

J
→

μoϵo ∇
→ dE

→

dt
∇
→

J
→ d

dt
ϵo ∇

→
E
→

(9.1.22)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76626?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9C__Electricity_and_Magnetism/3%3A_Direct_Current_Circuits/3.1%3A_Moving_Charge
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9C__Electricity_and_Magnetism/3%3A_Direct_Current_Circuits/3.1%3A_Moving_Charge#charge_conservation
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9C__Electricity_and_Magnetism/3%3A_Direct_Current_Circuits/3.1%3A_Moving_Charge#charge_conservation


9.1.9 https://phys.libretexts.org/@go/page/76626

So essentially charge conservation is "baked into" the field equations. The field equations give a complete accounting of how fields are
generated from conserved electric charge (and its motion), and how the two types of field (electric and magnetic) are generated from
each other. What they do not provide is how electric charge is affected by the fields, so we need to add–in the Lorentz force (Equation
4.1.6) to complete the theory:

It turns out that rather than provide the Lorentz force, the interactions of charges with fields can be obtained by knowing the energy
densities of the fields, in a manner similar to deriving force from the gradient of potential energy. That is, the theory is also complete if
instead of the Lorentz force, one knows:
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9.2: Electromagnetic Waves

By the end of this section, you will be able to:

Describe how Maxwell’s equations predict the relative directions of the electric fields and magnetic fields, and the direction
of propagation of plane electromagnetic waves
Explain how Maxwell’s equations predict that the speed of propagation of electromagnetic waves in free space is exactly
the speed of light
Calculate the relative magnitude of the electric and magnetic fields in an electromagnetic plane wave
Describe how electromagnetic waves are produced and detected

Mechanical waves travel through a medium such as a string, water, or air. Perhaps the most significant prediction of Maxwell’s
equations is the existence of combined electric and magnetic (or electromagnetic) fields that propagate through space as
electromagnetic waves. Because Maxwell’s equations hold in free space, the predicted electromagnetic waves, unlike mechanical
waves, do not require a medium for their propagation.

The Wave Equation
When Maxwell realized that his new addition to the theory meant that not only can changing magnetic fields induce electric fields
(Faraday), but changing electric fields can also induce magnetic fields, it occurred to him that it might be possible for propagation
to occur: A changing magnetic field creates a changing electric field, which creates a changing magnetic field, and so on.

It was not hard for a mathematician such as Maxwell to express this propagation mathematically. To see how it comes about, let's
simplify our physical situation by considering a region free of charges. This results in a simplified set of Maxwell's equations:

Let's start by taking a derivative of the equation of the Maxwell equation with respect to time:

Now plug the equation of Faraday into the derivative of the magnetic field:

Now we have an equation exclusively in terms of the electric field (electric field induces magnetic field which induces electric field
again). The double curl looks quite daunting to simplify, but it turns out that there is a useful identity from vector calculus to save
the day:

Plugging the electric Gauss equation into this and then plugging this equation in for the double curl gives:

Perhaps you recognize this differential equation from Physics 9B? It is the wave equation – not surprising, really, given that a
changing electric field seems to propagate another electric field (using the changing magnetic field as an intermediate step).
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Naturally Maxwell recognized the wave equation as well, and asked the most obvious question, "How fast is this wave?" Given
that the velocity of a wave can be taken directly from the wave equation, this is not hard to calculate. The coefficient of the second
time derivative term is the inverse of the square of the wave speed, so the speed of this wave is:

Well of course Maxwell recognized this number immediately (as should you!) – it is the speed of light, . Maxwell has shown that
light is an electromagnetic phenomenon that exists because electric and magnetic fields can propagate by inducing each other.

If one begins the derivation above by taking a derivative of the Faraday equation with respect to time and follows the same steps,
one finds that the very same wave equation applies to the magnetic field – both fields propagate together as a single light
("electromagnetic") wave.

Figure 5.6.1 – Electromagnetic Wave

EM Wave Properties
Let’s see what we can find out about these waves by looking at a specific example. Suppose we have a harmonic plane wave of
electric field polarized in the -  plane. Recall from 9B that this is expressed mathematically by:

This represents a wave that propagates along the  direction, the "displacement" direction (polarization direction of the electric
field vectors) along the  direction, has an amplitude of , a wavelength of , and period of . We have chosen the starting time
such that the phase constant is zero.

Let's plug this field into Faraday's equation by taking its curl:

Performing the derivative, we get:
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Now that we know the curl of the electric field, we can plug the result into Faraday's law:

We can now integrate to find the wave function for the magnetic field of this wave (for simplicity, we will assume that the electric
and magnetic fields are in phase with each other, which will mean the arbitrary constant from the integral is just zero):

We see that the magnetic field wave function has the same frequency and wavelength as the electric field wave function, and since

the ratio  is just the inverse of the speed of the wave , which means that the amplitudes of the electric and magnetic parts of the

wave are related by:

We can also see a how the various directions are related. The velocity is in the  direction, the electric field in the  direction, and
the magnetic field in the  direction – all three of these vectors are mutually orthogonal. In fact, the direction of the wave's velocity

vector is the same direction as the vector .

Example 

We know that electric and magnetic fields store energy in the space in which they exist. As a light wave passes through a region
of space, the fluctuating fields cause the energy density in that space to fluctuate. Is more of the wave's energy a result of the
electric field or the magnetic field? More specifically, compute the ratio of the maximum energy densities of the two fields within
a single EM wave traveling through a vacuum.

Solution

The energy densities for electric and magnetic fields in a vacuum are given by:

The maximum energy densities come about when the fields equal their amplitudes, so taking the ratio of these energies gives:

Now plugging in Equation 5.6.6 and Equation 5.6.12, we get the simple result:

Both fields contribute equally to the energy density in the space through which the wave passes.

 

Electromagnetic Waves in One Direction

An electromagnetic wave consists of an electric field, defined as usual in terms of the force per charge on a stationary charge, and a
magnetic field, defined in terms of the force per charge on a moving charge. The electromagnetic field is assumed to be a function
of only the x-coordinate and time. The y-component of the electric field is then written as , the z-component of the
magnetic field as , etc. Because we are assuming free space, there are no free charges or currents, so we can set 
and  in Maxwell’s equations.
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The transverse nature of electromagnetic waves

We examine first what Gauss’s law for electric fields implies about the relative directions of the electric field and the propagation
direction in an electromagnetic wave. Assume the Gaussian surface to be the surface of a rectangular box whose cross-section is a
square of side l and whose third side has length , as shown in Figure . Because the electric field is a function only of x and
t, the y-component of the electric field is the same on both the top (labeled Side 2) and bottom (labeled Side 1) of the box, so that
these two contributions to the flux cancel. The corresponding argument also holds for the net flux from the z-component of the
electric field through Sides 3 and 4. Any net flux through the surface therefore comes entirely from the x-component of the electric
field. Because the electric field has no y- or z-dependence,  is constant over the face of the box with area A and has a
possibly different value  that is constant over the opposite face of the box.

Applying Gauss’s law gives

where  is the area of the front and back faces of the rectangular surface. But the charge enclosed is , so this
component’s net flux is also zero, and Equation  implies  for any . Therefore, if there is an x-
component of the electric field, it cannot vary with x. A uniform field of that kind would merely be superposed artificially on the
traveling wave, for example, by having a pair of parallel-charged plates. Such a component  would not be part of an
electromagnetic wave propagating along the x-axis; so  for this wave. Therefore, the only nonzero components of the
electric field are  and  perpendicular to the direction of propagation of the wave.

Figure : The surface of a rectangular box of dimensions  is our Gaussian surface. The electric field shown is from
an electromagnetic wave propagating along the x-axis.

A similar argument holds by substituting E for B and using Gauss’s law for magnetism instead of Gauss’s law for electric fields.
This shows that the B field is also perpendicular to the direction of propagation of the wave. The electromagnetic wave is therefore
a transverse wave, with its oscillating electric and magnetic fields perpendicular to its direction of propagation.

The speed of propagation of electromagnetic waves

We can next apply Maxwell’s equations to the description given in connection with Figure 16.2.3 in the previous section to obtain
an equation for the E field from the changing B field, and for the B field from a changing E field. We then combine the two
equations to show how the changing E and B fields propagate through space at a speed precisely equal to the speed of light.

First, we apply Faraday’s law over Side 3 of the Gaussian surface, using the path shown in Figure . Because , we
have
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Assuming  is small and approximating  by

we obtain

Figure : We apply Faraday’s law to the front of the rectangle by evaluating  along the rectangular edge of Side 3 in
the direction indicated, taking the B field crossing the face to be approximately its value in the middle of the area traversed.

Because  is small, the magnetic flux through the face can be approximated by its value in the center of the area traversed,

namely . The flux of the B field through Face 3 is then the B field times the area,

From Faraday’s law,

Therefore, from Equations  and ,

Canceling  and taking the limit as , we are left with

We could have applied Faraday’s law instead to the top surface (numbered 2) in Figure , to obtain the resulting equation
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This is the equation describing the spatially dependent E field produced by the time-dependent B field.

Next we apply the Ampère-Maxwell law (with ) over the same two faces (Surface 3 and then Surface 2) of the rectangular
box of Figure . Applying Equation 16.2.16,

to Surface 3, and then to Surface 2, yields the two equations

and

These equations describe the spatially dependent B field produced by the time-dependent E field.

We next combine the equations showing the changing B field producing an E field with the equation showing the changing E field
producing a B field. Taking the derivative of Equation  with respect to x and using Equation  gives

or

This is the form taken by the general wave equation for our plane wave. Because the equations describe a wave traveling at some
as-yet-unspecified speed c, we can assume the field components are each functions of x – ct for the wave traveling in the +x-
direction, that is,

It is left as a mathematical exercise to show, using the chain rule for differentiation, that Equations  and  imply

The speed of the electromagnetic wave in free space is therefore given in terms of the permeability and the permittivity of free
space by

We could just as easily have assumed an electromagnetic wave with field components  and . The same type of
analysis with Equation  and  would also show that the speed of an electromagnetic wave is .

The physics of traveling electromagnetic fields was worked out by Maxwell in 1873. He showed in a more general way than our
derivation that electromagnetic waves always travel in free space with a speed given by Equation . If we evaluate the speed 

, we find that
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which is the speed of light. Imagine the excitement that Maxwell must have felt when he discovered this equation! He had found a
fundamental connection between two seemingly unrelated phenomena: electromagnetic fields and light.

The wave equation was obtained by (1) finding the E field produced by the changing B field, (2) finding the B field produced
by the changing E field, and combining the two results. Which of Maxwell’s equations was the basis of step (1) and which of
step (2)?

Answer (step 1)

Faraday’s law

Answer (step 2)

the Ampère-Maxwell law

How the E and B Fields Are Related
So far, we have seen that the rates of change of different components of the E and B fields are related, that the electromagnetic
wave is transverse, and that the wave propagates at speed c. We next show what Maxwell’s equations imply about the ratio of the E
and B field magnitudes and the relative directions of the E and B fields.

We now consider solutions to Equation  in the form of plane waves for the electric field:

We have arbitrarily taken the wave to be traveling in the +x-direction and chosen its phase so that the maximum field strength
occurs at the origin at time . We are justified in considering only sines and cosines in this way, and generalizing the results,
because Fourier’s theorem implies we can express any wave, including even square step functions, as a superposition of sines and
cosines.

At any one specific point in space, the E field oscillates sinusoidally at angular frequency  between  and  and similarly,
the B field oscillates between  and . The amplitude of the wave is the maximum value of . The period of
oscillation T is the time required for a complete oscillation. The frequency f is the number of complete oscillations per unit of time,
and is related to the angular frequency  by . The wavelength  is the distance covered by one complete cycle of the
wave, and the wavenumber k is the number of wavelengths that fit into a distance of  in the units being used. These quantities
are related in the same way as for a mechanical wave:

Given that the solution of  has the form shown in Equation , we need to determine the  field that accompanies it. From
Equation , the magnetic field component  must obey

Because the solution for the B-field pattern of the wave propagates in the +x-direction at the same speed c as the E-field pattern, it
must be a function of . Thus, we conclude from Equation  that  is

These results may be written as

 Exercise 9.2.1

9.2.20

(x, t) = cos (kx−ωt).Ey E0 (9.2.31)

t = 0

ω +E0 −E0
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Therefore, the peaks of the E and B fields coincide, as do the troughs of the wave, and at each point, the E and B fields are in the
same ratio equal to the speed of light c. The plane wave has the form shown in Figure .

Figure : The plane wave solution of Maxwell’s equations has the B field directly proportional to the E field at each point, with
the relative directions shown.

What is the maximum strength of the B field in an electromagnetic wave that has a maximum E-field strength of 1000 V/m?

Strategy

To find the B-field strength, we rearrange Equation  to solve for , yielding

Solution We are given E, and c is the speed of light. Entering these into the expression for B yields

Significance

The B-field strength is less than a tenth of Earth’s admittedly weak magnetic field. This means that a relatively strong electric
field of 1000 V/m is accompanied by a relatively weak magnetic field.

Changing electric fields create relatively weak magnetic fields. The combined electric and magnetic fields can be detected in
electromagnetic waves, however, by taking advantage of the phenomenon of resonance, as Hertz did. A system with the same
natural frequency as the electromagnetic wave can be made to oscillate. All radio and TV receivers use this principle to pick up and
then amplify weak electromagnetic waves, while rejecting all others not at their resonant frequency.

What conclusions did our analysis of Maxwell’s equations lead to about these properties of a plane electromagnetic wave:

a. the relative directions of wave propagation, of the E field, and of B field,
b. the speed of travel of the wave and how the speed depends on frequency, and
c. the relative magnitudes of the E and B fields.

Answer a

The directions of wave propagation, of the E field, and of B field are all mutually perpendicular.

Answer b

The speed of the electromagnetic wave is the speed of light  independent of frequency.

= = c.
Ey

Bz

E0

B0
(9.2.38)

9.2.3

9.2.3

 Example : Calculating B-Field Strength in an Electromagnetic Wave9.2.1
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B = = 3.33 × T .
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Answer c

The ratio of electric and magnetic field amplitudes is .

Production and Detection of Electromagnetic Waves

A steady electric current produces a magnetic field that is constant in time and which does not propagate as a wave. Accelerating
charges, however, produce electromagnetic waves. An electric charge oscillating up and down, or an alternating current or flow of
charge in a conductor, emit radiation at the frequencies of their oscillations. The electromagnetic field of a dipole antenna is
shown in Figure . The positive and negative charges on the two conductors are made to reverse at the desired frequency by the
output of a transmitter as the power source. The continually changing current accelerates charge in the antenna, and this results in
an oscillating electric field a distance away from the antenna. The changing electric fields produce changing magnetic fields that in
turn produce changing electric fields, which thereby propagate as electromagnetic waves. The frequency of this radiation is the
same as the frequency of the ac source that is accelerating the electrons in the antenna. The two conducting elements of the dipole
antenna are commonly straight wires. The total length of the two wires is typically about one-half of the desired wavelength (hence,
the alternative name half-wave antenna), because this allows standing waves to be set up and enhances the effectiveness of the
radiation.

Figure : The oscillatory motion of the charges in a dipole antenna produces electromagnetic radiation.

The electric field lines in one plane are shown. The magnetic field is perpendicular to this plane. This radiation field has cylindrical
symmetry around the axis of the dipole. Field lines near the dipole are not shown. The pattern is not at all uniform in all directions.
The strongest signal is in directions perpendicular to the axis of the antenna, which would be horizontal if the antenna is mounted
vertically. There is zero intensity along the axis of the antenna. The fields detected far from the antenna are from the changing
electric and magnetic fields inducing each other and traveling as electromagnetic waves. Far from the antenna, the wave fronts, or
surfaces of equal phase for the electromagnetic wave, are almost spherical. Even farther from the antenna, the radiation propagates
like electromagnetic plane waves.

The electromagnetic waves carry energy away from their source, similar to a sound wave carrying energy away from a standing
wave on a guitar string. An antenna for receiving electromagnetic signals works in reverse. Incoming electromagnetic waves
induce oscillating currents in the antenna, each at its own frequency. The radio receiver includes a tuner circuit, whose resonant
frequency can be adjusted. The tuner responds strongly to tshe desired frequency but not others, allowing the user to tune to the
desired broadcast. Electrical components amplify the signal formed by the moving electrons. The signal is then converted into an
audio and/or video format.

Use this simulation to broadcast radio waves. Wiggle the transmitter electron manually or have it oscillate automatically.
Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.

 

E/B = c

9.2.4

9.2.4
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9.3: Polarization

By the end of this section, you will be able to:

Explain the change in intensity as polarized light passes through a polarizing filter
Calculate the effect of polarization by reflection and Brewster’s angle
Describe the effect of polarization by scattering
Explain the use of polarizing materials in devices such as LCDs

Polarizing sunglasses are familiar to most of us. They have a special ability to cut the glare of light reflected from water or glass
(Figure ). They have this ability because of a wave characteristic of light called polarization. What is polarization? How is it
produced? What are some of its uses? The answers to these questions are related to the wave character of light.

Figure : These two photographs of a river show the effect of a polarizing filter in reducing glare in light reflected from the
surface of water. Part (b) of this figure was taken with a polarizing filter and part (a) was not. As a result, the reflection of clouds
and sky observed in part (a) is not observed in part (b). Polarizing sunglasses are particularly useful on snow and water. (credit a
and credit b: modifications of work by “Amithshs”/Wikimedia Commons)

Malus’s Law

Light is one type of electromagnetic (EM) wave. EM waves are transverse waves consisting of varying electric and magnetic fields
that oscillate perpendicular to the direction of propagation (Figure ). However, in general, there are no specific directions for
the oscillations of the electric and magnetic fields; they vibrate in any randomly oriented plane perpendicular to the direction of
propagation. Polarization is the attribute that a wave’s oscillations do have a definite direction relative to the direction of
propagation of the wave. (This is not the same type of polarization as that discussed for the separation of charges.) Waves having
such a direction are said to be polarized. For an EM wave, we define the direction of polarization to be the direction parallel to the
electric field. Thus, we can think of the electric field arrows as showing the direction of polarization, as in Figure .

Figure : An EM wave, such as light, is a transverse wave. The electric  and magnetic  fields are perpendicular to the
direction of propagation. The direction of polarization of the wave is the direction of the electric field.

 Learning Objectives

9.3.1

9.3.1

9.3.2

9.3.2

9.3.2 E
→

B
→

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76642?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/16%3A_Electromagnetic_Waves


9.3.2 https://phys.libretexts.org/@go/page/76642

To examine this further, consider the transverse waves in the ropes shown in Figure . The oscillations in one rope are in a
vertical plane and are said to be vertically polarized. Those in the other rope are in a horizontal plane and are horizontally
polarized. If a vertical slit is placed on the first rope, the waves pass through. However, a vertical slit blocks the horizontally
polarized waves. For EM waves, the direction of the electric field is analogous to the disturbances on the ropes.

Figure : The transverse oscillations in one rope (a) are in a vertical plane, and those in the other rope (b) are in a horizontal
plane. The first is said to be vertically polarized, and the other is said to be horizontally polarized. Vertical slits pass vertically
polarized waves and block horizontally polarized waves.

The Sun and many other light sources produce waves that have the electric fields in random directions (Figure ). Such light
is said to be unpolarized, because it is composed of many waves with all possible directions of polarization. Polaroid materials—
which were invented by the founder of the Polaroid Corporation, Edwin Land—act as a polarizing slit for light, allowing only
polarization in one direction to pass through. Polarizing filters are composed of long molecules aligned in one direction. If we think
of the molecules as many slits, analogous to those for the oscillating ropes, we can understand why only light with a specific
polarization can get through. The axis of a polarizing filter is the direction along which the filter passes the electric field of an EM
wave.

Figure : The slender arrow represents a ray of unpolarized light. The bold arrows represent the direction of polarization of the
individual waves composing the ray. (a) If the light is unpolarized, the arrows point in all directions. (b) A polarizing filter has a
polarization axis that acts as a slit passing through electric fields parallel to its direction. The direction of polarization of an EM
wave is defined to be the direction of its electric field.

Figure  shows the effect of two polarizing filters on originally unpolarized light. The first filter polarizes the light along its
axis. When the axes of the first and second filters are aligned (parallel), then all of the polarized light passed by the first filter is
also passed by the second filter. If the second polarizing filter is rotated, only the component of the light parallel to the second
filter’s axis is passed. When the axes are perpendicular, no light is passed by the second filter.
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Figure : The effect of rotating two polarizing filters, where the first polarizes the light. (a) All of the polarized light is passed
by the second polarizing filter, because its axis is parallel to the first. (b) As the second filter is rotated, only part of the light is
passed. (c) When the second filter is perpendicular to the first, no light is passed. (d) In this photograph, a polarizing filter is placed
above two others. Its axis is perpendicular to the filter on the right (dark area) and parallel to the filter on the left (lighter area).
(credit d: modification of work by P.P. Urone)

Only the component of the EM wave parallel to the axis of a filter is passed. Let us call the angle between the direction of
polarization and the axis of a filter θ. If the electric field has an amplitude E, then the transmitted part of the wave has an amplitude

 (Figure ). Since the intensity of a wave is proportional to its amplitude squared, the intensity I of the transmitted wave
is related to the incident wave by

where  is the intensity of the polarized wave before passing through the filter. This equation is known as Malus’s law.

Figure : A polarizing filter transmits only the component of the wave parallel to its axis, reducing the intensity of any light not
polarized parallel to its axis.

This Open Source Physics animation helps you visualize the electric field vectors as light encounters a polarizing filter. You
can rotate the filter—note that the angle displayed is in radians. You can also rotate the animation for 3D visualization.

Example : Calculating Intensity Reduction by a Polarizing Filter

9.3.5

E cosθ 9.3.6

I = θI0 cos
2

I0
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What angle is needed between the direction of polarized light and the axis of a polarizing filter to reduce its intensity by
90.0%?

Strategy

When the intensity is reduced by 90.0%, it is 10.0% or 0.100 times its original value. That is, I=0.100I . Using this
information, the equation I=I cos θ can be used to solve for the needed angle.

Solution
Solving Malus's law (Equation ) for  and substituting with the relationship between I and I  gives

Solving for  yields

Significance

A fairly large angle between the direction of polarization and the filter axis is needed to reduce the intensity to 10.0% of its
original value. This seems reasonable based on experimenting with polarizing films. It is interesting that at an angle of 45°, the
intensity is reduced to 50% of its original value. Note that 71.6° is 18.4° from reducing the intensity to zero, and that at an
angle of 18.4°, the intensity is reduced to 90.0% of its original value, giving evidence of symmetry.

Although we did not specify the direction in Example , let’s say the polarizing filter was rotated clockwise by 71.6° to
reduce the light intensity by 90.0%. What would be the intensity reduction if the polarizing filter were rotated
counterclockwise by 71.6°?

Answer

also 90.0%

Polarization by Reflection

By now, you can probably guess that polarizing sunglasses cut the glare in reflected light, because that light is polarized. You can
check this for yourself by holding polarizing sunglasses in front of you and rotating them while looking at light reflected from
water or glass. As you rotate the sunglasses, you will notice the light gets bright and dim, but not completely black. This implies
the reflected light is partially polarized and cannot be completely blocked by a polarizing filter.

Figure  illustrates what happens when unpolarized light is reflected from a surface. Vertically polarized light is preferentially
refracted at the surface, so the reflected light is left more horizontally polarized. The reasons for this phenomenon are beyond the
scope of this text, but a convenient mnemonic for remembering this is to imagine the polarization direction to be like an arrow.
Vertical polarization is like an arrow perpendicular to the surface and is more likely to stick and not be reflected. Horizontal
polarization is like an arrow bouncing on its side and is more likely to be reflected. Sunglasses with vertical axes thus block more
reflected light than unpolarized light from other sources.

0

0
2

??? cosθ 0

cosθ = = = 0.3162.
I

I0

0.100I0

I0

θ

θ = 0.3162 = 71.6°.cos
−1
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Figure : Polarization by reflection. Unpolarized light has equal amounts of vertical and horizontal polarization. After
interaction with a surface, the vertical components are preferentially absorbed or refracted, leaving the reflected light more
horizontally polarized. This is akin to arrows striking on their sides and bouncing off, whereas arrows striking on their tips go into
the surface.

Since the part of the light that is not reflected is refracted, the amount of polarization depends on the indices of refraction of the
media involved. It can be shown that reflected light is completely polarized at an angle of reflection θ  given by

where n  is the medium in which the incident and reflected light travel and n  is the index of refraction of the medium that forms
the interface that reflects the light. This equation is known as Brewster’s law and θ  is known as Brewster’s angle, named after the
nineteenth-century Scottish physicist who discovered them.

This Open Source Physics animation shows incident, reflected, and refracted light as rays and EM waves. Try rotating the
animation for 3D visualization and also change the angle of incidence. Near Brewster’s angle, the reflected light becomes
highly polarized.

Example : Calculating Polarization by Reflection
(a) At what angle will light traveling in air be completely polarized horizontally when reflected from water? (b) From glass?

Strategy

All we need to solve these problems are the indices of refraction. Air has n =1.00, water has n =1.333, and crown glass has
n′ =1.520. The equation  can be directly applied to find θ  in each case.

Solution
a. Putting the known quantities into the equation

gives

Solving for the angle θ  yields

9.3.7
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tan =θb
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1 2
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b. Similarly, for crown glass and air,

Thus,

Significance

Light reflected at these angles could be completely blocked by a good polarizing filter held with its axis vertical. Brewster’s
angle for water and air are similar to those for glass and air, so that sunglasses are equally effective for light reflected from
either water or glass under similar circumstances. Light that is not reflected is refracted into these media. Therefore, at an
incident angle equal to Brewster’s angle, the refracted light is slightly polarized vertically. It is not completely polarized
vertically, because only a small fraction of the incident light is reflected, so a significant amount of horizontally polarized light
is refracted.

What happens at Brewster’s angle if the original incident light is already 100% vertically polarized?

Answer

There will be only refraction but no reflection.

Atomic Explanation of Polarizing Filters
Polarizing filters have a polarization axis that acts as a slit. This slit passes EM waves (often visible light) that have an electric field
parallel to the axis. This is accomplished with long molecules aligned perpendicular to the axis, as shown in Figure .

Figure : Long molecules are aligned perpendicular to the axis of a polarizing filter. In an EM wave, the component of the
electric field perpendicular to these molecules passes through the filter, whereas the component parallel to the molecules is
absorbed.

Figure  illustrates how the component of the electric field parallel to the long molecules is absorbed. An EM wave is
composed of oscillating electric and magnetic fields. The electric field is strong compared with the magnetic field and is more
effective in exerting force on charges in the molecules. The most affected charged particles are the electrons, since electron masses
are small. If an electron is forced to oscillate, it can absorb energy from the EM wave. This reduces the field in the wave and,
hence, reduces its intensity. In long molecules, electrons can more easily oscillate parallel to the molecule than in the perpendicular
direction. The electrons are bound to the molecule and are more restricted in their movement perpendicular to the molecule. Thus,
the electrons can absorb EM waves that have a component of their electric field parallel to the molecule. The electrons are much
less responsive to electric fields perpendicular to the molecule and allow these fields to pass. Thus, the axis of the polarizing filter
is perpendicular to the length of the molecule.

tan θ = = = 1.52.'b
n'2

n1

1.520

1.00

θ = ta 1.52 = 56.7°.'b n
−1
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Figure : Diagram of an electron in a long molecule oscillating parallel to the molecule. The oscillation of the electron absorbs
energy and reduces the intensity of the component of the EM wave that is parallel to the molecule.

Polarization by Scattering

If you hold your polarizing sunglasses in front of you and rotate them while looking at blue sky, you will see the sky get bright and
dim. This is a clear indication that light scattered by air is partially polarized. Figure  helps illustrate how this happens. Since
light is a transverse EM wave, it vibrates the electrons of air molecules perpendicular to the direction that it is traveling. The
electrons then radiate like small antennae. Since they are oscillating perpendicular to the direction of the light ray, they produce EM
radiation that is polarized perpendicular to the direction of the ray. When viewing the light along a line perpendicular to the original
ray, as in the figure, there can be no polarization in the scattered light parallel to the original ray, because that would require the
original ray to be a longitudinal wave. Along other directions, a component of the other polarization can be projected along the line
of sight, and the scattered light is only partially polarized. Furthermore, multiple scattering can bring light to your eyes from other
directions and can contain different polarizations.

Figure : Polarization by scattering. Unpolarized light scattering from air molecules shakes their electrons perpendicular to
the direction of the original ray. The scattered light therefore has a polarization perpendicular to the original direction and none
parallel to the original direction.

Photographs of the sky can be darkened by polarizing filters, a trick used by many photographers to make clouds brighter by
contrast. Scattering from other particles, such as smoke or dust, can also polarize light. Detecting polarization in scattered EM
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waves can be a useful analytical tool in determining the scattering source.

A range of optical effects are used in sunglasses. Besides being polarizing, sunglasses may have colored pigments embedded in
them, whereas others use either a nonreflective or reflective coating. A recent development is photochromic lenses, which darken
in the sunlight and become clear indoors. Photochromic lenses are embedded with organic microcrystalline molecules that change
their properties when exposed to UV in sunlight, but become clear in artificial lighting with no UV.

Liquid Crystals and Other Polarization Effects in Materials

Although you are undoubtedly aware of liquid crystal displays (LCDs) found in watches, calculators, computer screens, cellphones,
flat screen televisions, and many other places, you may not be aware that they are based on polarization. Liquid crystals are so
named because their molecules can be aligned even though they are in a liquid. Liquid crystals have the property that they can
rotate the polarization of light passing through them by 90°. Furthermore, this property can be turned off by the application of a
voltage, as illustrated in Figure . It is possible to manipulate this characteristic quickly and in small, well-defined regions to
create the contrast patterns we see in so many LCD devices.

In flat screen LCD televisions, a large light is generated at the back of the TV. The light travels to the front screen through millions
of tiny units called pixels (picture elements). One of these is shown in Figure . Each unit has three cells, with red, blue, or
green filters, each controlled independently. When the voltage across a liquid crystal is switched off, the liquid crystal passes the
light through the particular filter. We can vary the picture contrast by varying the strength of the voltage applied to the liquid
crystal.

Figure : (a) Polarized light is rotated 90° by a liquid crystal and then passed by a polarizing filter that has its axis
perpendicular to the direction of the original polarization. (b) When a voltage is applied to the liquid crystal, the polarized light is
not rotated and is blocked by the filter, making the region dark in comparison with its surroundings. (c) LCDs can be made color
specific, small, and fast enough to use in laptop computers and TVs.

Many crystals and solutions rotate the plane of polarization of light passing through them. Such substances are said to be optically
active. Examples include sugar water, insulin, and collagen (Figure ). In addition to depending on the type of substance, the
amount and direction of rotation depend on several other factors. Among these is the concentration of the substance, the distance
the light travels through it, and the wavelength of light. Optical activity is due to the asymmetrical shape of molecules in the
substance, such as being helical. Measurements of the rotation of polarized light passing through substances can thus be used to
measure concentrations, a standard technique for sugars. It can also give information on the shapes of molecules, such as proteins,
and factors that affect their shapes, such as temperature and pH.
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Figure . Optical activity is the ability of some substances to rotate the plane of polarization of light passing through them.
The rotation is detected with a polarizing filter or analyzer.

Glass and plastic become optically active when stressed: the greater the stress, the greater the effect. Optical stress analysis on
complicated shapes can be performed by making plastic models of them and observing them through crossed filters, as seen in
Figure . It is apparent that the effect depends on wavelength as well as stress. The wavelength dependence is sometimes also
used for artistic purposes.

Figure : Optical stress analysis of a plastic lens placed between crossed polarizers. (credit: “Infopro”/Wikimedia Commons)

Another interesting phenomenon associated with polarized light is the ability of some crystals to split an unpolarized beam of light
into two polarized beams. This occurs because the crystal has one value for the index of refraction of polarized light but a different
value for the index of refraction of light polarized in the perpendicular direction, so that each component has its own angle of
refraction. Such crystals are said to be birefringent, and, when aligned properly, two perpendicularly polarized beams will emerge
from the crystal (Figure ). Birefringent crystals can be used to produce polarized beams from unpolarized light. Some
birefringent materials preferentially absorb one of the polarizations. These materials are called dichroic and can produce
polarization by this preferential absorption. This is fundamentally how polarizing filters and other polarizers work.
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Figure : Birefringent materials, such as the common mineral calcite, split unpolarized beams of light into two with two
different values of index of refraction.

This page titled 9.3: Polarization is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content
that was edited to the style and standards of the LibreTexts platform.

1.8: Polarization by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-3.
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9.4: Energy Carried by Electromagnetic Waves

By the end of this section, you will be able to:

Express the time-averaged energy density of electromagnetic waves in terms of their electric and magnetic field amplitudes
Calculate the Poynting vector and the energy intensity of electromagnetic waves
Explain how the energy of an electromagnetic wave depends on its amplitude, whereas the energy of a photon is
proportional to its frequency

Anyone who has used a microwave oven knows there is energy in electromagnetic waves. Sometimes this energy is obvious, such
as in the warmth of the summer Sun. Other times, it is subtle, such as the unfelt energy of gamma rays, which can destroy living
cells.

Electromagnetic waves bring energy into a system by virtue of their electric and magnetic fields. These fields can exert forces and
move charges in the system and, thus, do work on them. However, there is energy in an electromagnetic wave itself, whether it is
absorbed or not. Once created, the fields carry energy away from a source. If some energy is later absorbed, the field strengths are
diminished and anything left travels on.

Clearly, the larger the strength of the electric and magnetic fields, the more work they can do and the greater the energy the
electromagnetic wave carries. In electromagnetic waves, the amplitude is the maximum field strength of the electric and magnetic
fields (Figure ). The wave energy is determined by the wave amplitude.

Figure : Energy carried by a wave depends on its amplitude. With electromagnetic waves, doubling the E fields and B fields
quadruples the energy density u and the energy flux uc.

For a plane wave traveling in the direction of the positive x-axis with the phase of the wave chosen so that the wave maximum is at
the origin at , the electric and magnetic fields obey the equations

The energy in any part of the electromagnetic wave is the sum of the energies of the electric and magnetic fields. This energy per
unit volume, or energy density u, is the sum of the energy density from the electric field and the energy density from the magnetic
field. Expressions for both field energy densities were discussed earlier (  in Capacitance and  in Inductance). Combining
these the contributions, we obtain

The expression  then shows that the magnetic energy density  and electric energy density  are equal,

despite the fact that changing electric fields generally produce only small magnetic fields. The equality of the electric and magnetic
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energy densities leads to

The energy density moves with the electric and magnetic fields in a similar manner to the waves themselves.

We can find the rate of transport of energy by considering a small time interval . As shown in Figure , the energy contained
in a cylinder of length  and cross-sectional area A passes through the cross-sectional plane in the interval .

Figure : The energy  contained in the electric and magnetic fields of the electromagnetic wave in the volume 
passes through the area  in time .

The energy passing through area  in time  is

The energy per unit area per unit time passing through a plane perpendicular to the wave, called the energy flux and denoted by ,
can be calculated by dividing the energy by the area  and the time interval .

More generally, the flux of energy through any surface also depends on the orientation of the surface. To take the direction into
account, we introduce a vector , called the Poynting vector, with the following definition:

The cross-product of  and  points in the direction perpendicular to both vectors. To confirm that the direction of  is that of
wave propagation, and not its negative, return to Figure 16.3.2. Note that Lenz’s and Faraday’s laws imply that when the magnetic
field shown is increasing in time, the electric field is greater at  than at . The electric field is decreasing with increasing 
at the given time and location. The proportionality between electric and magnetic fields requires the electric field to increase in
time along with the magnetic field. This is possible only if the wave is propagating to the right in the diagram, in which case, the
relative orientations show that  is specifically in the direction of propagation of the electromagnetic wave.

The energy flux at any place also varies in time, as can be seen by substituting  from Equation 16.3.19 into Equation .

Because the frequency of visible light is very high, of the order of , the energy flux for visible light through any area is an
extremely rapidly varying quantity. Most measuring devices, including our eyes, detect only an average over many cycles. The time
average of the energy flux is the intensity  of the electromagnetic wave and is the power per unit area. It can be expressed by
averaging the cosine function in Equation  over one complete cycle, which is the same as time-averaging over many cycles
(here,  is one period):

We can either evaluate the integral, or else note that because the sine and cosine differ merely in phase, the average over a complete
cycle for  is the same as for , to obtain
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where the angle brackets  stand for the time-averaging operation. The intensity of light moving at speed  in vacuum is then
found to be

in terms of the maximum electric field strength , which is also the electric field amplitude. Algebraic manipulation produces the
relationship

where  is the magnetic field amplitude, which is the same as the maximum magnetic field strength. One more expression for 
 in terms of both electric and magnetic field strengths is useful. Substituting the fact that , the previous expression

becomes

We can use whichever of the three preceding equations is most convenient, because the three equations are really just different
versions of the same result: The energy in a wave is related to amplitude squared. Furthermore, because these equations are based
on the assumption that the electromagnetic waves are sinusoidal, the peak intensity is twice the average intensity; that is, .

The beam from a small laboratory laser typically has an intensity of about . Assuming that the beam is
composed of plane waves, calculate the amplitudes of the electric and magnetic fields in the beam.

Strategy

Use the equation expressing intensity in terms of electric field to calculate the electric field from the intensity.

Solution

From Equation , the intensity of the laser beam is

The amplitude of the electric field is therefore

The amplitude of the magnetic field can be obtained from:

A light bulb emits 5.00 W of power as visible light. What are the average electric and magnetic fields from the light at a
distance of 3.0 m?

Strategy

Assume the bulb’s power output P is distributed uniformly over a sphere of radius 3.0 m to calculate the intensity, and from it,
the electric field.
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Solution

The power radiated as visible light is then

.

Significance

The intensity I falls off as the distance squared if the radiation is dispersed uniformly in all directions.

A 60-kW radio transmitter on Earth sends its signal to a satellite 100 km away (Figure ). At what distance in the same
direction would the signal have the same maximum field strength if the transmitter’s output power were increased to 90 kW?

Figure : In three dimensions, a signal spreads over a solid angle as it travels outward from its source.
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The area over which the power in a particular direction is dispersed increases as distance squared, as illustrated in Figure .

Change the power output P by a factor of (90 kW/60 kW) and change the area by the same factor to keep  the
same. Then use the proportion of area A in the diagram to distance squared to find the distance that produces the calculated
change in area.

Solution

Using the proportionality of the areas to the squares of the distances, and solving, we obtain from the diagram

Significance

The range of a radio signal is the maximum distance between the transmitter and receiver that allows for normal operation. In
the absence of complications such as reflections from obstacles, the intensity follows an inverse square law, and doubling the
range would require multiplying the power by four.

This page titled 9.4: Energy Carried by Electromagnetic Waves is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

16.4: Energy Carried by Electromagnetic Waves by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
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9.5: Momentum and Radiation Pressure

By the end of this section, you will be able to:

Describe the relationship of the radiation pressure and the energy density of an electromagnetic wave
Explain how the radiation pressure of light, while small, can produce observable astronomical effects

Material objects consist of charged particles. An electromagnetic wave incident on the object exerts forces on the charged particles,
in accordance with the Lorentz force. These forces do work on the particles of the object, increasing its energy, as discussed in the
previous section. The energy that sunlight carries is a familiar part of every warm sunny day. A much less familiar feature of
electromagnetic radiation is the extremely weak pressure that electromagnetic radiation produces by exerting a force in the
direction of the wave. This force occurs because electromagnetic waves contain and transport momentum.

To understand the direction of the force for a very specific case, consider a plane electromagnetic wave incident on a metal in
which electron motion, as part of a current, is damped by the resistance of the metal, so that the average electron motion is in phase
with the force causing it. This is comparable to an object moving against friction and stopping as soon as the force pushing it stops
(Figure ). When the electric field is in the direction of the positive y-axis, electrons move in the negative y-direction, with the
magnetic field in the direction of the positive z-axis. By applying the right-hand rule, and accounting for the negative charge of the
electron, we can see that the force on the electron from the magnetic field is in the direction of the positive x-axis, which is the
direction of wave propagation. When the  field reverses, the  field does too, and the force is again in the same direction.
Maxwell’s equations together with the Lorentz force equation imply the existence of radiation pressure much more generally than
this specific example, however.

Figure : Electric and magnetic fields of an electromagnetic wave can combine to produce a force in the direction of
propagation, as illustrated for the special case of electrons whose motion is highly damped by the resistance of a metal.

Maxwell predicted that an electromagnetic wave carries momentum. An object absorbing an electromagnetic wave would
experience a force in the direction of propagation of the wave. The force corresponds to radiation pressure exerted on the object by
the wave. The force would be twice as great if the radiation were reflected rather than absorbed.

Maxwell’s prediction was confirmed in 1903 by Nichols and Hull by precisely measuring radiation pressures with a torsion
balance. The schematic arrangement is shown in Figure . The mirrors suspended from a fiber were housed inside a glass
container. Nichols and Hull were able to obtain a small measurable deflection of the mirrors from shining light on one of them.
From the measured deflection, they could calculate the unbalanced force on the mirror, and obtained agreement with the predicted
value of the force.

 Learning Objectives

9.5.1

E ⃗  B⃗ 

9.5.1

9.5.2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76629?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.05%3A_Momentum_and_Radiation_Pressure
https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/22%3A_Magnetism/22.04%3A_Magnetic_Field_Strength-_Force_on_a_Moving_Charge_in_a_Magnetic_Field


9.5.2 https://phys.libretexts.org/@go/page/76629

Figure : Simplified diagram of the central part of the apparatus Nichols and Hull used to precisely measure radiation pressure
and confirm Maxwell’s prediction.

The radiation pressure  applied by an electromagnetic wave on a perfectly absorbing surface turns out to be equal to the
energy density of the wave:

If the material is perfectly reflecting, such as a metal surface, and if the incidence is along the normal to the surface, then the
pressure exerted is twice as much because the momentum direction reverses upon reflection:

We can confirm that the units are right:

Equations  and  give the instantaneous pressure, but because the energy density oscillates rapidly, we are usually
interested in the time-averaged radiation pressure, which can be written in terms of intensity:

Radiation pressure plays a role in explaining many observed astronomical phenomena, including the appearance of comets. Comets
are basically chunks of icy material in which frozen gases and particles of rock and dust are embedded. When a comet approaches
the Sun, it warms up and its surface begins to evaporate. The coma of the comet is the hazy area around it from the gases and dust.
Some of the gases and dust form tails when they leave the comet. Notice in Figure  that a comet has two tails. The ion tail (or
gas tail) is composed mainly of ionized gases. These ions interact electromagnetically with the solar wind, which is a continuous
stream of charged particles emitted by the Sun. The force of the solar wind on the ionized gases is strong enough that the ion tail
almost always points directly away from the Sun. The second tail is composed of dust particles. Because the dust tail is electrically
neutral, it does not interact with the solar wind. However, this tail is affected by the radiation pressure produced by the light from
the Sun. Although quite small, this pressure is strong enough to cause the dust tail to be displaced from the path of the comet.

9.5.2

prad

.= u prad
  

Perfect absorber

(9.5.1)

.= 2uprad
  

Perfect reflector

(9.5.2)

[u] = = = = units of pressure.
J

m3

N ⋅m

m3

N

m2
(9.5.3)

9.5.1 9.5.2

p = ⟨ ⟩ = {prad
I/c
2I/c

Perfect absorber
Perfect reflector

(9.5.4)

9.5.3

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76629?pdf


9.5.3 https://phys.libretexts.org/@go/page/76629

Figure : Evaporation of material being warmed by the Sun forms two tails, as shown in this photo of Comet Ison. (credit:
modification of work by E. Slawik—ESO)

On February 9, 1986, Comet Halley was at its closest point to the Sun, about  from the center of the Sun. The
average power output of the Sun is .

a. Calculate the radiation pressure on the comet at this point in its orbit. Assume that the comet reflects all the incident light.
b. Suppose that a 10-kg chunk of material of cross-sectional area  breaks loose from the comet. Calculate the

force on this chunk due to the solar radiation. Compare this force with the gravitational force of the Sun.

Strategy

Calculate the intensity of solar radiation at the given distance from the Sun and use that to calculate the radiation pressure.
From the pressure and area, calculate the force.

Solution

a. The intensity of the solar radiation is the average solar power per unit area. Hence, at  from the center of the
Sun, we have

Assuming the comet reflects all the incident radiation, we obtain from Equation 

b. The force on the chunk due to the radiation is

9.5.3

 Example : Halley’s Comet9.5.1

9.0 × m1010

3.8 × W1026

4.0 ×10−2m2

9.0 × m1010

I = Savg

=
3.8 × W1026

4π(9.0 × m1010 )2

= 3.7 × W/ .103 m2

9.5.4

p =
2I

c

=
2(3.7 × W/ )103 m2

3.00 × m/s108

= 2.5 × N/ .10−5 m2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76629?pdf


9.5.4 https://phys.libretexts.org/@go/page/76629

whereas the gravitational force of the Sun is

Significance

The gravitational force of the Sun on the chunk is therefore much greater than the force of the radiation.

After Maxwell showed that light carried momentum as well as energy, a novel idea eventually emerged, initially only as science
fiction. Perhaps a spacecraft with a large reflecting light sail could use radiation pressure for propulsion. Such a vehicle would not
have to carry fuel. It would experience a constant but small force from solar radiation, instead of the short bursts from rocket
propulsion. It would accelerate slowly, but by being accelerated continuously, it would eventually reach great speeds. A spacecraft
with small total mass and a sail with a large area would be necessary to obtain a usable acceleration.

When the space program began in the 1960s, the idea started to receive serious attention from NASA. The most recent
development in light propelled spacecraft has come from a citizen-funded group, the Planetary Society. It is currently testing the
use of light sails to propel a small vehicle built from CubeSats, tiny satellites that NASA places in orbit for various research
projects during space launches intended mainly for other purposes.

The LightSail spacecraft shown below (Figure ) consists of three CubeSats bundled together. It has a total mass of only about
5 kg and is about the size as a loaf of bread. Its sails are made of very thin Mylar and open after launch to have a surface area of 

.

Figure : Two small CubeSat satellites deployed from the International Space Station in May, 2016. The solar sails open out
when the CubeSats are far enough away from the Station.

The first LightSail spacecraft was launched in 2015 to test the sail deployment system. It was placed in low-earth orbit in 2015
by hitching a ride on an Atlas 5 rocket launched for an unrelated mission. The test was successful, but the low-earth orbit
allowed too much drag on the spacecraft to accelerate it by sunlight. Eventually, it burned in the atmosphere, as expected. The
next Planetary Society’s LightSail solar sailing spacecraft is scheduled for 2018.
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The Lightsail is based on the on NASA's NanoSail-D project. (Public domain; NASA).

LightSail Acceleration

The intensity of energy from sunlight at a distance of 1 AU from the Sun is . The LightSail spacecraft has sails
with total area of  and a total mass of 5.0 kg. Calculate the maximum acceleration LightSail spacecraft could achieve
from radiation pressure when it is about 1 AU from the Sun.

Strategy

The maximum acceleration can be expected when the sail is opened directly facing the Sun. Use the light intensity to calculate
the radiation pressure and from it, the force on the sails. Then use Newton’s second law to calculate the acceleration.

Solution

The radiation pressure is

The resulting acceleration is

Significance

If this small acceleration continued for a year, the craft would attain a speed of 1829 m/s, or 6600 km/h.

How would the speed and acceleration of a radiation-propelled spacecraft be affected as it moved farther from the Sun on an
interplanetary space flight?

Solution

Its acceleration would decrease because the radiation force is proportional to the intensity of light from the Sun, which decreases
with distance. Its speed, however, would not change except for the effects of gravity from the Sun and planets.

Contributors and Attributions

Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many
contributing authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution
License (by 4.0).

This page titled 9.5: Momentum and Radiation Pressure is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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9.6: The Electromagnetic Spectrum

By the end of this section, you will be able to:

Explain how electromagnetic waves are divided into different ranges, depending on wavelength and corresponding
frequency
Describe how electromagnetic waves in different categories are produced
Describe some of the many practical everyday applications of electromagnetic waves

Electromagnetic waves have a vast range of practical everyday applications that includes such diverse uses as communication by
cell phone and radio broadcasting, WiFi, cooking, vision, medical imaging, and treating cancer. In this module, we discuss how
electromagnetic waves are classified into categories such as radio, infrared, ultraviolet, and so on. We also summarize some of the
main applications for each range.

The different categories of electromagnetic waves differ in their wavelength range, or equivalently, in their corresponding
frequency ranges. Their properties change smoothly from one frequency range to the next, with different applications in each
range. A brief overview of the production and utilization of electromagnetic waves is found in Table .

Table : Electromagnetic Waves

Type of wave Production Applications Issues

Radio Accelerating charges
Communications, Remote

controls, MRI
Requires control for band use

Microwaves
Accelerating charges and

thermal agitation
Communications, Ovens,

Radar, Cell phone use
 

Infrared
Thermal agitation and
electronic transitions

Thermal imaging, Heating
Absorbed by atmosphere,

Greenhouse effect

Visible light
Thermal agitation and
electronic transitions

Photosynthesis, Human vision  

Ultraviolet
Thermal agitation and
electronic transitions

Sterilization, Vitamin D
production

Ozone depletion, Cancer
causing

X-rays
Inner electronic transitions and

fast collisions
Security, Medical diagnosis,

Cancer therapy
Cancer causing

Gamma rays Nuclear decay
Nuclear medicine, Security,
Medical diagnosis, Cancer

therapy

Cancer causing, Radiation
damage

The relationship  between frequency f and wavelength  applies to all waves and ensures that greater frequency means
smaller wavelength. Figure  shows how the various types of electromagnetic waves are categorized according to their
wavelengths and frequencies - that is, it shows the electromagnetic spectrum.

 Learning Objectives

9.6.1

9.6.1

c = fλ λ
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Figure : The electromagnetic spectrum, showing the major categories of electromagnetic waves.

Radio Waves
The term radio waves refers to electromagnetic radiation with wavelengths greater than about 0.1 m. Radio waves are commonly
used for audio communications (i.e., for radios), but the term is used for electromagnetic waves in this range regardless of their
application. Radio waves typically result from an alternating current in the wires of a broadcast antenna. They cover a very broad
wavelength range and are divided into many subranges, including microwaves, electromagnetic waves used for AM and FM radio,
cellular telephones, and TV signals.

There is no lowest frequency of radio waves, but ELF waves, or “extremely low frequency” are among the lowest frequencies
commonly encountered, from 3 Hz to 3 kHz. The accelerating charge in the ac currents of electrical power lines produce
electromagnetic waves in this range. ELF waves are able to penetrate sea water, which strongly absorbs electromagnetic waves of
higher frequency, and therefore are useful for submarine communications.

In order to use an electromagnetic wave to transmit information, the amplitude, frequency, or phase of the wave is modulated, or
varied in a controlled way that encodes the intended information into the wave. In AM radio transmission, the amplitude of the
wave is modulated to mimic the vibrations of the sound being conveyed. Fourier’s theorem implies that the modulated AM wave
amounts to a superposition of waves covering some narrow frequency range. Each AM station is assigned a specific carrier
frequency that, by international agreement, is allowed to vary by . In FM radio transmission, the frequency of the wave is
modulated to carry this information, as illustrated in Figure , and the frequency of each station is allowed to use 100 kHz on
each side of its carrier frequency. The electromagnetic wave produces a current in a receiving antenna, and the radio or television
processes the signal to produce the sound and any image. The higher the frequency of the radio wave used to carry the data, the
greater the detailed variation of the wave that can be carried by modulating it over each time unit, and the more data that can be
transmitted per unit of time. The assigned frequencies for AM broadcasting are 540 to 1600 kHz, and for FM are 88 MHz to108
MHz.

Figure : Electromagnetic waves are used to carry communications signals by varying the wave’s amplitude (AM), its
frequency (FM), or its phase.

9.6.1
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Cell phone conversations, and television voice and video images are commonly transmitted as digital data, by converting the
signal into a sequence of binary ones and zeros. This allows clearer data transmission when the signal is weak, and allows using
computer algorithms to compress the digital data to transmit more data in each frequency range. Computer data as well is
transmitted as a sequence of binary ones and zeros, each one or zero constituting one bit of data.

Microwaves
Microwaves are the highest-frequency electromagnetic waves that can be produced by currents in macroscopic circuits and
devices. Microwave frequencies range from about  to nearly . Their high frequencies correspond to short
wavelengths compared with other radio waves—hence the name “microwave.” Microwaves also occur naturally as the cosmic
background radiation left over from the origin of the universe. Along with other ranges of electromagnetic waves, they are part of
the radiation that any object above absolute zero emits and absorbs because of thermal agitation, that is, from the thermal motion
of its atoms and molecules.

Most satellite-transmitted information is carried on microwaves. Radar is a common application of microwaves. By detecting and
timing microwave echoes, radar systems can determine the distance to objects as diverse as clouds, aircraft, or even the surface of
Venus.

Microwaves of 2.45 GHz are commonly used in microwave ovens. The electrons in a water molecule tend to remain closer to the
oxygen nucleus than the hydrogen nuclei (Figure ). This creates two separated centers of equal and opposite charges, giving
the molecule a dipole moment. The oscillating electric field of the microwaves inside the oven exerts a torque that tends to align
each molecule first in one direction and then in the other, with the motion of each molecule coupled to others around it. This pumps
energy into the continual thermal motion of the water to heat the food. The plate under the food contains no water, and remains
relatively unheated.

Figure : The oscillating electric field in a microwave oven exerts a torque on water molecules because of their dipole moment,
and the torque reverses direction  times per second. Interactions between the molecules distributes the energy being
pumped into them. The  and  denote the charge distribution on the molecules.

The microwaves in a microwave oven reflect off the walls of the oven, so that the superposition of waves produces standing waves,
similar to the standing waves of a vibrating guitar or violin string (Normal Modes of a Standing Sound Wave). A rotating fan acts
as a stirrer by reflecting the microwaves in different directions, and food turntables, help spread out the hot spots.

How far apart are the hotspots in a 2.45-GHz microwave oven?

Strategy

Consider the waves along one direction in the oven, being reflected at the opposite wall from where they are generated.

Solution

The antinodes, where maximum intensity occurs, are half the wavelength apart, with separation

Hz109 Hz1012

9.6.3

9.6.3
4.90 × 109

δ+ δ−

 Example : Why Microwave Ovens Heat Unevenly9.6.1
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Significance

The distance between the hot spots in a microwave oven are determined by the wavelength of the microwaves.

A cell phone has a radio receiver and a weak radio transmitter, both of which can quickly tune to hundreds of specifically assigned
microwave frequencies. The low intensity of the transmitted signal gives it an intentionally limited range. A ground-based system
links the phone to only to the broadcast tower assigned to the specific small area, or cell, and smoothly transitions its connection to
the next cell when the signal reception there is the stronger one. This enables a cell phone to be used while changing location.

Microwaves also provide the WiFi that enables owners of cell phones, laptop computers, and similar devices to connect wirelessly
to the Internet at home and at coffee shops and airports. A wireless WiFi router is a device that exchanges data over the Internet
through the cable or another connection, and uses microwaves to exchange the data wirelessly with devices such as cell phones and
computers. The term WiFi itself refers to the standards followed in modulating and analyzing the microwaves so that wireless
routers and devices from different manufacturers work compatibly with one another. The computer data in each direction consist of
sequences of binary zeros and ones, each corresponding to a binary bit. The microwaves are in the range of 2.4 GHz to 5.0 GHz
range.

Other wireless technologies also use microwaves to provide everyday communications between devices. Bluetooth developed
alongside WiFi as a standard for radio communication in the 2.4-GHz range between nearby devices, for example, to link to
headphones and audio earpieces to devices such as radios, or a driver’s cell phone to a hands-free device to allow answering phone
calls without fumbling directly with the cell phone.

Microwaves find use also in radio tagging, using RFID (radio frequency identification) technology. Examples are RFID tags
attached to store merchandize, transponder for toll booths use attached to the windshield of a car, or even a chip embedded into a
pet’s skin. The device responds to a microwave signal by emitting a signal of its own with encoded information, allowing stores to
quickly ring up items at their cash registers, drivers to charge tolls to their account without stopping, and lost pets to be reunited
with their owners. NFC (near field communication) works similarly, except it is much shorter range. Its mechanism of interaction is
the induced magnetic field at microwave frequencies between two coils. Cell phones that have NFC capability and the right
software can supply information for purchases using the cell phone instead of a physical credit card. The very short range of the
data transfer is a desired security feature in this case.

Infrared Radiation

The boundary between the microwave and infrared regions of the electromagnetic spectrum is not well defined (Figure ).
Infrared radiation is generally produced by thermal motion, and the vibration and rotation of atoms and molecules. Electronic
transitions in atoms and molecules can also produce infrared radiation. About half of the solar energy arriving at Earth is in the
infrared region, with most of the rest in the visible part of the spectrum. About 23% of the solar energy is absorbed in the
atmosphere, about 48% is absorbed at Earth’s surface, and about 29% is reflected back into space.

The range of infrared frequencies extends up to the lower limit of visible light, just below red. In fact, infrared means “below red.”
Water molecules rotate and vibrate particularly well at infrared frequencies. Reconnaissance satellites can detect buildings,
vehicles, and even individual humans by their infrared emissions, whose power radiation is proportional to the fourth power of the
absolute temperature. More mundanely, we use infrared lamps, including those called quartz heaters, to preferentially warm us
because we absorb infrared better than our surroundings.

The familiar handheld “remotes” for changing channels and settings on television sets often transmit their signal by modulating an
infrared beam. If you try to use a TV remote without the infrared emitter being in direct line of sight with the infrared detector, you
may find the television not responding. Some remotes use Bluetooth instead and reduce this annoyance.

d = λ
1

2

=
1

2

c

f

=
3.00 × m/s108

2(2.45 × Hz)109

= 6.02 cm.
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Visible Light
Visible light is the narrow segment of the electromagnetic spectrum between about 400 nm and about 750 nm to which the normal
human eye responds. Visible light is produced by vibrations and rotations of atoms and molecules, as well as by electronic
transitions within atoms and molecules. The receivers or detectors of light largely utilize electronic transitions.

Red light has the lowest frequencies and longest wavelengths, whereas violet has the highest frequencies and shortest wavelengths
(Figure ). Blackbody radiation from the Sun peaks in the visible part of the spectrum but is more intense in the red than in the
violet, making the sun yellowish in appearance.

Figure . A small part of the electromagnetic spectrum that includes its visible components. The divisions between infrared,
visible, and ultraviolet are not perfectly distinct, nor are those between the seven rainbow colors.

Living things - plants and animals - have evolved to utilize and respond to parts of the electromagnetic spectrum in which they are
embedded. We enjoy the beauty of nature through visible light. Plants are more selective. Photosynthesis uses parts of the visible
spectrum to make sugars.

Ultraviolet Radiation

Ultraviolet means “above violet.” The electromagnetic frequencies of ultraviolet radiation (UV) extend upward from violet, the
highest-frequency visible light. The highest-frequency ultraviolet overlaps with the lowest-frequency X-rays. The wavelengths of
ultraviolet extend from 400 nm down to about 10 nm at its highest frequencies. Ultraviolet is produced by atomic and molecular
motions and electronic transitions.

UV radiation from the Sun is broadly subdivided into three wavelength ranges: UV-A (320–400 nm) is the lowest frequency, then
UV-B (290–320 nm) and UV-C (220–290 nm). Most UV-B and all UV-C are absorbed by ozone (  molecules in the upper
atmosphere. Consequently, 99% of the solar UV radiation reaching Earth’s surface is UV-A.

Sunburn is caused by large exposures to UV-B and UV-C, and repeated exposure can increase the likelihood of skin cancer. The
tanning response is a defense mechanism in which the body produces pigments in inert skin layers to reduce exposure of the living
cells below.

As examined in a later chapter, the shorter the wavelength of light, the greater the energy change of an atom or molecule that
absorbs the light in an electronic transition. This makes short-wavelength ultraviolet light damaging to living cells. It also explains
why ultraviolet radiation is better able than visible light to cause some materials to glow, or fluoresce.

Besides the adverse effects of ultraviolet radiation, there are also benefits of exposure in nature and uses in technology. Vitamin D
production in the skin results from exposure to UV-B radiation, generally from sunlight. Several studies suggest vitamin D
deficiency is associated with the development of a range of cancers (prostate, breast, colon), as well as osteoporosis. Low-intensity
ultraviolet has applications such as providing the energy to cause certain dyes to fluoresce and emit visible light, for example, in
printed money to display hidden watermarks as counterfeit protection.

X-Rays

X-rays have wavelengths from about  to . They have shorter wavelengths, and higher frequencies, than ultraviolet,
so that the energy they transfer at an atomic level is greater. As a result, X-rays have adverse effects on living cells similar to those
of ultraviolet radiation, but they are more penetrating. Cancer and genetic defects can be induced by X-rays. Because of their effect
on rapidly dividing cells, X-rays can also be used to treat and even cure cancer.

The widest use of X-rays is for imaging objects that are opaque to visible light, such as the human body or aircraft parts. In
humans, the risk of cell damage is weighed carefully against the benefit of the diagnostic information obtained.

9.6.4
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Gamma Rays
Soon after nuclear radioactivity was first detected in 1896, it was found that at least three distinct types of radiation were being
emitted, and these were designated as alpha, beta, and gamma rays. The most penetrating nuclear radiation, the gamma ray  -ray)
was later found to be an extremely high-frequency electromagnetic wave.

The lower end of the -ray frequency range overlaps the upper end of the X-ray range. Gamma rays have characteristics identical
to X-rays of the same frequency—they differ only in source. The name “gamma rays” is generally used for electromagnetic
radiation emitted by a nucleus, while X-rays are generally produced by bombarding a target with energetic electrons in an X-ray
tube. At higher frequencies, -rays are more penetrating and more damaging to living tissue. They have many of the same uses as
X-rays, including cancer therapy. Gamma radiation from radioactive materials is used in nuclear medicine.

Use this simulation to explore how light interacts with molecules in our atmosphere.

Explore how light interacts with molecules in our atmosphere.
Identify that absorption of light depends on the molecule and the type of light.
Relate the energy of the light to the resulting motion.
Identify that energy increases from microwave to ultraviolet.
Predict the motion of a molecule based on the type of light it absorbs.

How do the electromagnetic waves for the different kinds of electromagnetic radiation differ?

Answer

They fall into different ranges of wavelength, and therefore also different corresponding ranges of frequency.

This page titled 9.6: The Electromagnetic Spectrum is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

16.6: The Electromagnetic Spectrum by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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9.A: Electromagnetic Waves (Answer)

Check Your Understanding

16.1. It is greatest immediately after the current is switched on. The displacement current and the magnetic field from it are
proportional to the rate of change of electric field between the plates, which is greatest when the plates first begin to charge.

16.2. No. The changing electric field according to the modified version of Ampère’s law would necessarily induce a
changing magnetic field.

16.3. (1) Faraday’s law, (2) the Ampère-Maxwell law

16.4. a. The directions of wave propagation, of the E field, and of B field are all mutually perpendicular.

b. The speed of the electromagnetic wave is the speed of light  independent of frequency.

c. The ratio of electric and magnetic field amplitudes is .

16.5. Its acceleration would decrease because the radiation force is proportional to the intensity of light from the Sun, which
decreases with distance. Its speed, however, would not change except for the effects of gravity from the Sun and planets.

16.6. They fall into different ranges of wavelength, and therefore also different corresponding ranges of frequency.

Conceptual Questions
1. The current into the capacitor to change the electric field between the plates is equal to the displacement current between
the plates.

3. The first demonstration requires simply observing the current produced in a wire that experiences a changing magnetic
field. The second demonstration requires moving electric charge from one location to another, and therefore involves electric
currents that generate a changing electric field. The magnetic fields from these currents are not easily separated from the
magnetic field that the displacement current produces.

5. in (a), because the electric field is parallel to the wire, accelerating the electrons

7. A steady current in a dc circuit will not produce electromagnetic waves. If the magnitude of the current varies while
remaining in the same direction, the wires will emit electromagnetic waves, for example, if the current is turned on or off.

9. The amount of energy (about ) is can quickly produce a considerable change in temperature, but the light
pressure (about ) is much too small to notice.

11. It has the magnitude of the energy flux and points in the direction of wave propagation. It gives the direction of energy
flow and the amount of energy per area transported per second.

13. The force on a surface acting over time  is the momentum that the force would impart to the object. The momentum
change of the light is doubled if the light is reflected back compared with when it is absorbed, so the force acting on the
object is twice as great.

15. a. According to the right hand rule, the direction of energy propagation would reverse.

b. This would leave the vector , and therefore the propagation direction, the same.

17. a. Radio waves are generally produced by alternating current in a wire or an oscillating electric field between two plates;

b. Infrared radiation is commonly produced by heated bodies whose atoms and the charges in them vibrate at about the
right frequency.

19. a. blue;

b. Light of longer wavelengths than blue passes through the air with less scattering, whereas more of the blue light is
scattered in different directions in the sky to give it is blue color.

21. A typical antenna has a stronger response when the wires forming it are orientated parallel to the electric field of the
radio wave.

23. No, it is very narrow and just a small portion of the overall electromagnetic spectrum.

c = 1/ ε0μ0
− −−−

√

E/B = c

100W/m2

3.00 × N/10−7 m2

Δt
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25. Visible light is typically produced by changes of energies of electrons in randomly oriented atoms and molecules. Radio
waves are typically emitted by an ac current flowing along a wire, that has fixed orientation and produces electric fields
pointed in particular directions.

27. Radar can observe objects the size of an airplane and uses radio waves of about 0.5 cm in wavelength. Visible light can
be used to view single biological cells and has wavelengths of about .

29. ELF radio waves

31. The frequency of 2.45 GHz of a microwave oven is close to the specific frequencies in the 2.4 GHz band used for WiFi.

Problems

33. 

because 

35. a. ;

b. ;

c. ; which is the sum of  and ,

consistent with how the displacement current maintaining the continuity of current.

37. 

39. 

41. 499 s

43. 25 m

45. a. 5.00 V/m;

b. ;

c. 31.4 cm;

d. toward the +x-axis;

e. 

47. 

49. The magnetic field is downward, and it has magnitude .

51. a. ;

b. 394 m

53. 11.5 m

55. 

57. a. ;

b. 

59. 

61. a. ;

b. 

63. a. ;

b. ;

c. 1.12 W

m10−7
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C
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d
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sinωtV0

R
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sinωtV0

R
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d
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sinωtV0

R
V0 Ires Ireal

1.77 × A10−3

= (7.97 × A)sin(150t)Id 10−10

9.55 × Hz108

B = (1.67 × T )cos[kx−(6 × )t+0.40]10−8 109s−1 k̂

= π ω sin(kx−ωt)Id ε0 R2E0

2.00 × T10−8

6.45 × V /m10−3

5.97 × W/10−3 m2

= 1027V /m, = 3.42 × TE0 B0 10−6

3.96 × W1026

20.8W/m2

4.42 × W/10‒6 m2
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65. 

67. 

69. a. 

b. it is reduced to half the pressure, 

71. a. ;

b. 

73. a. ;

b. X-rays

75. a. The wavelength range is 187 m to 556 m.

b. The wavelength range is 2.78 m to 3.41 m.

77. 

79. time for 1 bit =  s, difference in travel time is  s

81. a. ;

b. ;

c. 

83. , the non-oscillating geomagnetic field of 25–65  is much larger

85. a. ;

b. ;

c. 

87. a. ;

b. radio wave;

c. 

Additional Problems

89. 

91. , which is much greater than Earth’s circumference

93. a. 564 W;

b. ;

c. ;

d. 

95. a. ;

b. ;

c. 

1.99 × N/10−11 m2

F = ma = (p)(π ), p = =r2 ma

πr2

ε0

2E2
0

= =E0
2ma

πε0 r2

− −−−−

√
2( kg)(0.30m/ )10−8 s2

(8.854 × /N ⋅ )(π)(2 × m10−12C 2 m2 10−6 )2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 7.34 × V /mE0 106

4.50 × N ;10−6

2.25 × N10−6

W =
1

2

π2r4

mc2
I 2t2

E = π Itr2

1.5 × Hz1018

= ( (100mW ) = 16mWP ′ 12m

30m
)2

1.27 ×10−8 5.34 ×10−8

1.5 × m10−9

5.9 × m10−7

3.0 × m10−15

5.17 × T10−12 μT

1.33 × V /m10−2

4.34 × T10−11

3.00 × m108

5.00 × m106

4.33 × T10−5

= (10N/C)(8.845 × /N ⋅ )π(0.03m (5000) = 1.25 × mAId 10−12C 2 m2 )2 10−5

3.75 × km107

1.80 × W/104 m2

3.68 × V /m103

1.23 × T10−5

5.00 × W/103 m2

3.88 × N10−6

5.18 × N10−12
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97. a. ;

b. 

99. Power into the wire=

101. 0.431

103. a. ;

b. ;

c. 33 ns

105. 

Challenge Problems

107. a. ;

b. The radiation pressure is greater than the Sun’s gravity if the particle size is smaller, because the gravitational force
varies as the radius cubed while the radiation pressure varies as the radius squared.

c. The radiation force outward implies that particles smaller than this are less likely to be near the Sun than outside the
range of the Sun’s radiation pressure.
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9.E: Electromagnetic Waves (Exercises)

Conceptual Questions

16.2 Maxwell’s Equations and Electromagnetic Waves

1. Explain how the displacement current maintains the continuity of current in a circuit containing a capacitor.

2. Describe the field lines of the induced magnetic field along the edge of the imaginary horizontal cylinder shown below if
the cylinder is in a spatially uniform electric field that is horizontal, pointing to the right, and increasing in magnitude.

3. Why is it much easier to demonstrate in a student lab that a changing magnetic field induces an electric field than it is to
demonstrate that a changing electric field produces a magnetic field?

16.3 Plane Electromagnetic Waves

4. If the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the
x-axis, in what possible direction is the wave traveling?

5. In which situation shown below will the electromagnetic wave be more successful in inducing a current in the wire?
Explain.
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6. In which situation shown below will the electromagnetic wave be more successful in inducing a current in the loop?
Explain.

7. Under what conditions might wires in a circuit where the current flows in only one direction emit electromagnetic waves?

8. Shown below is the interference pattern of two radio antennas broadcasting the same signal. Explain how this is analogous
to the interference pattern for sound produced by two speakers. Could this be used to make a directional antenna system that
broadcasts preferentially in certain directions? Explain.

16.4 Energy Carried by Electromagnetic Waves

9. When you stand outdoors in the sunlight, why can you feel the energy that the sunlight carries, but not the momentum it
carries?

10. How does the intensity of an electromagnetic wave depend on its electric field? How does it depend on its magnetic
field?

11. What is the physical significance of the Poynting vector?
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12. A 2.0-mW helium-neon laser transmits a continuous beam of red light of cross-sectional area . If the beam does
not diverge appreciably, how would its rms electric field vary with distance from the laser? Explain.

16.5 Momentum and Radiation Pressure

13. Why is the radiation pressure of an electromagnetic wave on a perfectly reflecting surface twice as large as the pressure
on a perfectly absorbing surface?

14. Why did the early Hubble Telescope photos of Comet Ison approaching Earth show it to have merely a fuzzy coma
around it, and not the pronounced double tail that developed later (see below)?

(credit: ESA, Hubble)

15. (a) If the electric field and magnetic field in a sinusoidal plane wave were interchanged, in which direction relative to
before would the energy propagate?

(b) What if the electric and the magnetic fields were both changed to their negatives?

16.6 The Electromagnetic Spectrum

16. Compare the speed, wavelength, and frequency of radio waves and X-rays traveling in a vacuum.

17. Accelerating electric charge emits electromagnetic radiation. How does this apply in each case: (a) radio waves, (b)
infrared radiation.

18. Compare and contrast the meaning of the prefix “micro” in the names of SI units in the term microwaves.

19. Part of the light passing through the air is scattered in all directions by the molecules comprising the atmosphere. The
wavelengths of visible light are larger than molecular sizes, and the scattering is strongest for wavelengths of light closest to
sizes of molecules.

(a) Which of the main colors of light is scattered the most?

(b) Explain why this would give the sky its familiar background color at midday.

20. When a bowl of soup is removed from a microwave oven, the soup is found to be steaming hot, whereas the bowl is only
warm to the touch. Discuss the temperature changes that have occurred in terms of energy transfer.

21. Certain orientations of a broadcast television antenna give better reception than others for a particular station. Explain.

22. What property of light corresponds to loudness in sound?

23. Is the visible region a major portion of the electromagnetic spectrum?

24. Can the human body detect electromagnetic radiation that is outside the visible region of the spectrum?

25. Radio waves normally have their E and B fields in specific directions, whereas visible light usually has its E and B fields
in random and rapidly changing directions that are perpendicular to each other and to the propagation direction. Can you

0.25cm2
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explain why?

26. Give an example of resonance in the reception of electromagnetic waves.

27. Illustrate that the size of details of an object that can be detected with electromagnetic waves is related to their
wavelength, by comparing details observable with two different types (for example, radar and visible light).

28. In which part of the electromagnetic spectrum are each of these waves:

(a) ,

(b) ,

(c) ,

(d) 

29. In what range of electromagnetic radiation are the electromagnetic waves emitted by power lines in a country that uses
50-Hz ac current?

30. If a microwave oven could be modified to merely tune the waves generated to be in the infrared range instead of using
microwaves, how would this affect the uneven heating of the oven?

31. A leaky microwave oven in a home can sometimes cause interference with the homeowner’s WiFi system. Why?

32. When a television news anchor in a studio speaks to a reporter in a distant country, there is sometimes a noticeable lag
between when the anchor speaks in the studio and when the remote reporter hears it and replies. Explain what causes this
delay.

Problems

16.2 Maxwell’s Equations and Electromagnetic Waves

33. Show that the magnetic field at a distance r from the axis of two circular parallel plates, produced by placing charge Q(t)
on the plates is

34. Express the displacement current in a capacitor in terms of the capacitance and the rate of change of the voltage across
the capacitor.

35. A potential difference  is maintained across a parallel-plate capacitor with capacitance C consisting of
two circular parallel plates. A thin wire with resistance R connects the centers of the two plates, allowing charge to leak
between plates while they are charging.

(a) Obtain expressions for the leakage current  in the thin wire. Use these results to obtain an expression for the
current  in the wires connected to the capacitor.

(b) Find the displacement current in the space between the plates from the changing electric field between the plates.

(c) Compare  with the sum of the displacement current  and resistor current  between the plates,
and explain why the relationship you observe would be expected.

36. Suppose the parallel-plate capacitor shown below is accumulating charge at a rate of 0.010 C/s. What is the induced
magnetic field at a distance of 10 cm from the capacitator?

f = 10.0kHz

f = λ = 750nm

f = 1.25 × Hz108

0.30nm

=Bind

μ0

2πr

dQ(t)

dt

V (t) = sinωtV0

(t)Ires
(t)Ireal

(t)Ireal (t)Id (t)Ires
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37. The potential difference V(t) between parallel plates shown above is instantaneously increasing at a rate of .
What is the displacement current between the plates if the separation of the plates is 1.00 cm and they have an area of 

?

38. A parallel-plate capacitor has a plate area of  and a separation of 0.0100 m. What must be must be the
angular frequency  for a voltage  with  to produce a maximum displacement induced current
of 1.00 A between the plates?

39. The voltage across a parallel-plate capacitor with area  and separation  varies sinusoidally as 
, where t is in seconds. Find the displacement current between the plates.

40. The voltage across a parallel-plate capacitor with area A and separation d varies with time t as , where  is a
constant. Find the displacement current between the plates.

16.3 Plane Electromagnetic Waves

41. If the Sun suddenly turned off, we would not know it until its light stopped coming. How long would that be, given that
the Sun is  away?

42. What is the maximum electric field strength in an electromagnetic wave that has a maximum magnetic field strength of 
 (about 10 times Earth’s magnetic field)?

43. An electromagnetic wave has a frequency of 12 MHz. What is its wavelength in vacuum?

44. If electric and magnetic field strengths vary sinusoidally in time at frequency 1.00 GHz, being zero at , then 
 and .

(a) When are the field strengths next equal to zero?

(b) When do they reach their most negative value? (c) How much time is needed for them to complete one
cycle?

45. The electric field of an electromagnetic wave traveling in vacuum is described by the following wave function:

where k is the wavenumber in rad/m, x is in m, t is in s.

Find the following quantities:

(a) amplitude

(b) frequency

(c) wavelength

(d) the direction of the travel of the wave

(e) the associated magnetic field wave

46. A plane electromagnetic wave of frequency 20 GHz moves in the positive y-axis direction such that its electric field is
pointed along the z-axis. The amplitude of the electric field is 10 V/m. The start of time is chosen so that at , the
electric field has a value 10 V/m at the origin.

(a) Write the wave function that will describe the electric field wave.

(b) Find the wave function that will describe the associated magnetic field wave.

47. The following represents an electromagnetic wave traveling in the direction of the positive y-axis:

The wave is passing through a wide tube of circular cross-section of radius R whose axis is along the y-axis. Find the
expression for the displacement current through the tube.

V /s107

0.200m2

A = 0.250m2

ω V (t) = sinωtV0 = 100VV0

A = 800cm2 d = 2mm

V = (15mV )cos(150t)

V = at2 a

1.496 × m1011

5.00 × T10−4

t = 0

E = sin2πftE0 B = sin2πftB0

= (5.00V /m)cos[kx−(6.00 × )t+0.40]E ⃗  109s−1 ĵ

t = 0

= 0; = cos(kx−ωt); = 0Ex Ey E0 Ez

= 0; = 0; = cos(kx−ωt)Bx By Bz B0
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16.4 Energy Carried by Electromagnetic Waves

48. While outdoors on a sunny day, a student holds a large convex lens of radius 4.0 cm above a sheet of paper to produce a
bright spot on the paper that is 1.0 cm in radius, rather than a sharp focus. By what factor is the electric field in the bright
spot of light related to the electric field of sunlight leaving the side of the lens facing the paper?

49. A plane electromagnetic wave travels northward. At one instant, its electric field has a magnitude of 6.0 V/m and points
eastward. What are the magnitude and direction of the magnetic field at this instant?

50. The electric field of an electromagnetic wave is given by

.

Write the equations for the associated magnetic field and Poynting vector.

51. A radio station broadcasts at a frequency of 760 kHz. At a receiver some distance from the antenna, the maximum
magnetic field of the electromagnetic wave detected is .

(a) What is the maximum electric field?

(b) What is the wavelength of the electromagnetic wave?

52. The filament in a clear incandescent light bulb radiates visible light at a power of 5.00 W. Model the glass part of the bulb
as a sphere of radius  and calculate the amount of electromagnetic energy from visible light inside the bulb.

53. At what distance does a 100-W lightbulb produce the same intensity of light as a 75-W lightbulb produces 10 m away?
(Assume both have the same efficiency for converting electrical energy in the circuit into emitted electromagnetic energy.)

54. An incandescent light bulb emits only 2.6 W of its power as visible light. What is the rms electric field of the emitted
light at a distance of 3.0 m from the bulb?

55. A 150-W lightbulb emits 5% of its energy as electromagnetic radiation. What is the magnitude of the average Poynting
vector 10 m from the bulb?

56. A small helium-neon laser has a power output of 2.5 mW. What is the electromagnetic energy in a 1.0-m length of the
beam?

57. At the top of Earth’s atmosphere, the time-averaged Poynting vector associated with sunlight has a magnitude of about 
.

(a) What are the maximum values of the electric and magnetic fields for a wave of this intensity?

(b) What is the total power radiated by the sun? Assume that the Earth is  from the Sun and that sunlight
is composed of electromagnetic plane waves.

58. The magnetic field of a plane electromagnetic wave moving along the z axis is given by

, where  and 

(a) Write an expression for the electric field associated with the wave.

(b) What are the frequency and the wavelength of the wave?

(c) What is its average Poynting vector?

59. What is the intensity of an electromagnetic wave with a peak electric field strength of 125 V/m?

60. Assume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.500 mW.

(a) If such a laser beam is projected onto a circular spot 1.00 mm in diameter, what is its intensity?

(b) Find the peak magnetic field strength.

(c) Find the peak electric field strength.

61. An AM radio transmitter broadcasts 50.0 kW of power uniformly in all directions. (a) Assuming all of the radio waves
that strike the ground are completely absorbed, and that there is no absorption by the atmosphere or other objects, what is the

E = (6.0 × V /m)sin[2π( − )]10−3 x

18m

t

6.0 × s10−8
ĵ

2.15 × T10−11

= 3.00cmr0

1.4kW/m2

1.5 × m1011

= (coskz+ωt)B⃗  B0 ĵ = 5.00 × TB0 10−10 k = 3.14 × .10−2m−1
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intensity 30.0 km away? (Hint: Half the power will be spread over the area of a hemisphere.) (b) What is the maximum
electric field strength at this distance?

62. Suppose the maximum safe intensity of microwaves for human exposure is taken to be .

(a) If a radar unit leaks 10.0 W of microwaves (other than those sent by its antenna) uniformly in all directions, how far
away must you be to be exposed to an intensity considered to be safe? Assume that the power spreads uniformly over
the area of a sphere with no complications from absorption or reflection.

(b) What is the maximum electric field strength at the safe intensity? (Note that early radar units leaked more than
modern ones do. This caused identifiable health problems, such as cataracts, for people who worked near them.)

63. A 2.50-m-diameter university communications satellite dish receives TV signals that have a maximum electric field
strength (for one channel) of 7.50μV/m (see below). (a) What is the intensity of this wave? (b) What is the power received
by the antenna? (c) If the orbiting satellite broadcasts uniformly over an area of  (a large fraction of North
America), how much power does it radiate?

64. Lasers can be constructed that produce an extremely high intensity electromagnetic wave for a brief time—called pulsed
lasers. They are used to initiate nuclear fusion, for example. Such a laser may produce an electromagnetic wave with a
maximum electric field strength of  for a time of 1.00 ns.

(a) What is the maximum magnetic field strength in the wave?

(b) What is the intensity of the beam?

(c) What energy does it deliver on an  area?

16.5 Momentum and Radiation Pressure

65. A 150-W lightbulb emits 5% of its energy as electromagnetic radiation. What is the radiation pressure on an absorbing
sphere of radius 10 m that surrounds the bulb?

66. What pressure does light emitted uniformly in all directions from a 100-W incandescent light bulb exert on a mirror at a
distance of 3.0 m, if 2.6 W of the power is emitted as visible light?

67. A microscopic spherical dust particle of radius 2μm and mass 10μg is moving in outer space at a constant speed of 30
cm/sec. A wave of light strikes it from the opposite direction of its motion and gets absorbed. Assuming the particle
decelerates uniformly to zero speed in one second, what is the average electric field amplitude in the light?

68. A Styrofoam spherical ball of radius 2 mm and mass 20μg is to be suspended by the radiation pressure in a vacuum tube
in a lab. How much intensity will be required if the light is completely absorbed the ball?

1.00W/m2

1.50 ×1013m2

1.00 × V /m1011

1.00 −mm2
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69. Suppose that  for sunlight at a point on the surface of Earth is .

(a) If sunlight falls perpendicularly on a kite with a reflecting surface of area 0.75m20.75m2, what is the average force
on the kite due to radiation pressure?

(b) How is your answer affected if the kite material is black and absorbs all sunlight?

70. Sunlight reaches the ground with an intensity of about . A sunbather has a body surface area of 0.8m20.8m2
facing the sun while reclining on a beach chair on a clear day.

(a) how much energy from direct sunlight reaches the sunbather’s skin per second?

(b) What pressure does the sunlight exert if it is absorbed?

71. Suppose a spherical particle of mass m and radius R in space absorbs light of intensity I for time t.

(a) How much work does the radiation pressure do to accelerate the particle from rest in the given time it absorbs the
light?

(b) How much energy carried by the electromagnetic waves is absorbed by the particle over this time based on the
radiant energy incident on the particle?

16.6 The Electromagnetic Spectrum

72. How many helium atoms, each with a radius of about 31 pm, must be placed end to end to have a length equal to one
wavelength of 470 nm blue light?

73. If you wish to detect details of the size of atoms (about 0.2 nm) with electromagnetic radiation, it must have a wavelength
of about this size.

(a) What is its frequency?

(b) What type of electromagnetic radiation might this be?

74. Find the frequency range of visible light, given that it encompasses wavelengths from 380 to 760 nm.

75. (a) Calculate the wavelength range for AM radio given its frequency range is 540 to 1600 kHz.

(b) Do the same for the FM frequency range of 88.0 to 108 MHz.

76. Radio station WWVB, operated by the National Institute of Standards and Technology (NIST) from Fort Collins,
Colorado, at a low frequency of 60 kHz, broadcasts a time synchronization signal whose range covers the entire continental
US. The timing of the synchronization signal is controlled by a set of atomic clocks to an accuracy of , and
repeats every 1 minute. The signal is used for devices, such as radio-controlled watches, that automatically synchronize with
it at preset local times. WWVB’s long wavelength signal tends to propagate close to the ground.

(a) Calculate the wavelength of the radio waves from WWVB.

(b) Estimate the error that the travel time of the signal causes in synchronizing a radio controlled watch in Norfolk,
Virginia, which is 1570 mi (2527 km) from Fort Collins, Colorado.

77. An outdoor WiFi unit for a picnic area has a 100-mW output and a range of about 30 m. What output power would
reduce its range to 12 m for use with the same devices as before? Assume there are no obstacles in the way and that
microwaves into the ground are simply absorbed.

78. The prefix “mega” (M) and “kilo” (k), when referring to amounts of computer data, refer to factors of 1024 or
210210rather than 1000 for the prefix kilo, and  rather than 1,000,000 for the prefix Mega (M). If a wireless
(WiFi) router transfers 150 Mbps of data, how many bits per second is that in decimal arithmetic?

79. A computer user finds that his wireless router transmits data at a rate of 75 Mbps (megabits per second). Compare the
average time to transmit one bit of data with the time difference between the wifi signal reaching an observer’s cell phone
directly and by bouncing back to the observer from a wall 8.00 m past the observer.

80. (a) The ideal size (most efficient) for a broadcast antenna with one end on the ground is one-fourth the wavelength (λ/4)
of the electromagnetic radiation being sent out. If a new radio station has such an antenna that is 50.0 m high, what frequency
does it broadcast most efficiently? Is this in the AM or FM band?

S ⃗ 
avg 900W/m2

1.0kW/m2

1 × s10−12

=10242 220
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(b) Discuss the analogy of the fundamental resonant mode of an air column closed at one end to the resonance of
currents on an antenna that is one-fourth their wavelength.

81. What are the wavelengths of (a) X-rays of frequency ?

(b) Yellow light of frequency ?

(c) Gamma rays of frequency ?

82. For red light of λ=660nm, what are  and ?

83. A radio transmitter broadcasts plane electromagnetic waves whose maximum electric field at a particular location is 
. What is the maximum magnitude of the oscillating magnetic field at that location? How does it compare

with Earth’s magnetic field?

84. (a) Two microwave frequencies authorized for use in microwave ovens are: 915 and 2450 MHz. Calculate the
wavelength of each.

(b) Which frequency would produce smaller hot spots in foods due to interference effects?

85. During normal beating, the heart creates a maximum 4.00-mV potential across 0.300 m of a person’s chest, creating a
1.00-Hz electromagnetic wave.

(a) What is the maximum electric field strength created?

(b) What is the corresponding maximum magnetic field strength in the electromagnetic wave?

(c) What is the wavelength of the electromagnetic wave?

86. Distances in space are often quoted in units of light-years, the distance light travels in 1 year.

(a) How many meters is a light-year?

(b) How many meters is it to Andromeda, the nearest large galaxy, given that it is  ly away?

(c) The most distant galaxy yet discovered is  ly away. How far is this in meters?

87. A certain 60.0-Hz ac power line radiates an electromagnetic wave having a maximum electric field strength of 13.0
kV/m.

(a) What is the wavelength of this very-low-frequency electromagnetic wave?

(b) What type of electromagnetic radiation is this wave

(c) What is its maximum magnetic field strength?

88. (a) What is the frequency of the 193-nm ultraviolet radiation used in laser eye surgery? (b) Assuming the accuracy with
which this electromagnetic radiation can ablate (reshape) the cornea is directly proportional to wavelength, how much more
accurate can this UV radiation be than the shortest visible wavelength of light?

Additional Problems
89. In a region of space, the electric field is pointed along the x-axis, but its magnitude changes as described by

where t is in nanoseconds and x is in cm. Find the displacement current through a circle of radius 3 cm in the  plane at 
.

90. A microwave oven uses electromagnetic waves of frequency  to heat foods. The waves reflect from
the inside walls of the oven to produce an interference pattern of standing waves whose antinodes are hot spots that can leave
observable pit marks in some foods. The pit marks are measured to be 6.0 cm apart. Use the method employed by Heinrich
Hertz to calculate the speed of electromagnetic waves this implies.

Use the Appendix D for the next two exercises

2.0 × Hz1017

5.1 × Hz1014

1.0 × Hz1023

f ,ω k

1.55 × V /m10−3

2.54 ×106

13.4 ×109

= (10N/C)sin(20x−500t)Ex

= = 0Ey Ez

x = 0

t = 0

f = 2.45 × Hz109
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91. Galileo proposed measuring the speed of light by uncovering a lantern and having an assistant a known distance away
uncover his lantern when he saw the light from Galileo’s lantern, and timing the delay. How far away must the assistant be
for the delay to equal the human reaction time of about 0.25 s?

92. Show that the wave equation in one dimension

is satisfied by any doubly differentiable function of either the form  or .

93. On its highest power setting, a microwave oven increases the temperature of 0.400 kg of spaghetti by 45.0°C in 120 s.

(a) What was the rate of energy absorption by the spaghetti, given that its specific heat is ?
Assume the spaghetti is perfectly absorbing.

(b) Find the average intensity of the microwaves, given that they are absorbed over a circular area 20.0 cm in diameter.

(c) What is the peak electric field strength of the microwave?

(d) What is its peak magnetic field strength?

94. A certain microwave oven projects 1.00 kW of microwaves onto a 30-cm-by-40-cm area.

(a) What is its intensity in ?

(b) Calculate the maximum electric field strength  in these waves.

(c) What is the maximum magnetic field strength  ?

95. Electromagnetic radiation from a 5.00-mW laser is concentrated on a  area.

(a) What is the intensity in ?

(b) Suppose a 2.00-nC electric charge is in the beam. What is the maximum electric force it experiences?

(c) If the electric charge moves at 400 m/s, what maximum magnetic force can it feel?

96. A 200-turn flat coil of wire 30.0 cm in diameter acts as an antenna for FM radio at a frequency of 100 MHz. The
magnetic field of the incoming electromagnetic wave is perpendicular to the coil and has a maximum strength of 

.

(a) What power is incident on the coil?

(b) What average emf is induced in the coil over one-fourth of a cycle?

(c) If the radio receiver has an inductance of 2.50μH, what capacitance must it have to resonate at 100 MHz?

97. Suppose a source of electromagnetic waves radiates uniformly in all directions in empty space where there are no
absorption or interference effects.

(a) Show that the intensity is inversely proportional to , the distance from the source squared.

(b) Show that the magnitudes of the electric and magnetic fields are inversely proportional to r.

98. A radio station broadcasts its radio waves with a power of 50,000 W. What would be the intensity of this signal if it is
received on a planet orbiting Proxima Centuri, the closest star to our Sun, at 4.243 ly away?

99. The Poynting vector describes a flow of energy whenever electric and magnetic fields are present. Consider a long
cylindrical wire of radius r with a current I in the wire, with resistance R and voltage V. From the expressions for the electric
field along the wire and the magnetic field around the wire, obtain the magnitude and direction of the Poynting vector at the
surface. Show that it accounts for an energy flow into the wire from the fields around it that accounts for the Ohmic heating
of the wire.

100. The Sun’s energy strikes Earth at an intensity of . Assume as a model approximation that all of the light is
absorbed. (Actually, about 30% of the light intensity is reflected out into space.)

(a) Calculate the total force that the Sun’s radiation exerts on Earth.

(b) Compare this to the force of gravity between the Sun and Earth.

=
f∂2

∂x2

1

v2

f∂2

∂t2

f(x−vt) f(x+vt)

3.76 × J/kg ⋅ °C103

W/m2

E0

B0

1.00 −mm2

W/m2

1.00 × T10−12

r2

1.37kW/m2
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Note: Earth’s mass is .

101. If a Lightsail spacecraft were sent on a Mars mission, by what fraction would its propulsion force be reduced when it
reached Mars?

102. Lunar astronauts placed a reflector on the Moon’s surface, off which a laser beam is periodically reflected. The distance
to the Moon is calculated from the round-trip time.

(a) To what accuracy in meters can the distance to the Moon be determined, if this time can be measured to 0.100 ns?

(b) What percent accuracy is this, given the average distance to the Moon is 384,400 km?

103. Radar is used to determine distances to various objects by measuring the round-trip time for an echo from the object.

(a) How far away is the planet Venus if the echo time is 1000 s?

(b) What is the echo time for a car 75.0 m from a highway police radar unit?

(c) How accurately (in nanoseconds) must you be able to measure the echo time to an airplane 12.0 km away to
determine its distance within 10.0 m?

104. Calculate the ratio of the highest to lowest frequencies of electromagnetic waves the eye can see, given the wavelength
range of visible light is from 380 to 760 nm. (Note that the ratio of highest to lowest frequencies the ear can hear is 1000.)

105. How does the wavelength of radio waves for an AM radio station broadcasting at 1030 KHz compare with the
wavelength of the lowest audible sound waves (of 20 Hz). The speed of sound in air at 20°C is about 343 m/s.

Challenge Problems
106. A parallel-plate capacitor with plate separation d is connected to a source of emf that places a time-dependent voltage
V(t) across its circular plates of radius  and area  (see below).

(a) Write an expression for the time rate of change of energy inside the capacitor in terms of V(t) and dV(t)/dt.

(b) Assuming that V(t) is increasing with time, identify the directions of the electric field lines inside the capacitor and
of the magnetic field lines at the edge of the region between the plates, and then the direction of the Poynting vector 
at this location.

(c) Obtain expressions for the time dependence of E(t), for B(t) from the displacement current, and for the magnitude
of the Poynting vector at the edge of the region between the plates.

(d) From , obtain an expression in terms of V(t) and dV(t)/dt for the rate at which electromagnetic field energy
enters the region between the plates.

(e) Compare the results of parts (a) and (d) and explain the relationship between them.

107. A particle of cosmic dust has a density .

(a) Assuming the dust particles are spherical and light absorbing, and are at the same distance as Earth from the Sun,
determine the particle size for which radiation pressure from sunlight is equal to the Sun’s force of gravity on the dust
particle.

(b) Explain how the forces compare if the particle radius is smaller.

(c) Explain what this implies about the sizes of dust particle likely to be present in the inner solar system compared
with outside the Oort cloud.

5.972 × kg1024

r0 A = πr2
0

S ⃗ 

S ⃗ 

ρ = 2.0g/cm3
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9.S: Electromagnetic Waves (Summary)

Key Terms

displacement current
extra term in Maxwell’s equations that is analogous to a real
current but accounts for a changing electric field producing a

magnetic field, even when the real current is present

gamma ray (  ray)

extremely high frequency electromagnetic radiation emitted by the
nucleus of an atom, either from natural nuclear decay or induced
nuclear processes in nuclear reactors and weapons; the lower end
of the  -ray frequency range overlaps the upper end of the X-ray

range, but  rays can have the highest frequency of any
electromagnetic radiation

infrared radiation
region of the electromagnetic spectrum with a frequency range that
extends from just below the red region of the visible light spectrum

up to the microwave region, or from  to 

Maxwell’s equations
set of four equations that comprise a complete, overarching theory

of electromagnetism

microwaves
electromagnetic waves with wavelengths in the range from 1 mm
to 1 m; they can be produced by currents in macroscopic circuits

and devices

Poynting vector
vector equal to the cross product of the electric-and magnetic

fields, that describes the flow of electromagnetic energy through a
surface

radar
common application of microwaves; radar can determine the
distance to objects as diverse as clouds and aircraft, as well as

determine the speed of a car or the intensity of a rainstorm

radiation pressure
force divided by area applied by an electromagnetic wave on a

surface

radio waves
electromagnetic waves with wavelengths in the range from 1 mm
to 100 km; they are produced by currents in wires and circuits and

by astronomical phenomena

thermal agitation
thermal motion of atoms and molecules in any object at a

temperature above absolute zero, which causes them to emit and
absorb radiation

ultraviolet radiation
electromagnetic radiation in the range extending upward in

frequency from violet light and overlapping with the lowest X-ray
frequencies, with wavelengths from 400 nm down to about 10 nm

visible light
narrow segment of the electromagnetic spectrum to which the

normal human eye responds, from about 400 to 750 nm

X-ray
invisible, penetrating form of very high frequency electromagnetic

radiation, overlapping both the ultraviolet range and the -ray
range

Key Equations

Displacement current

γ
γ

γ

0.74μm 300μm

γ

=Id ε0
dΦE

dt

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76633?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.S%3A_Electromagnetic_Waves_(Summary)


9.S.2 https://phys.libretexts.org/@go/page/76633

Gauss’s law

Gauss’s law for magnetism

Faraday’s law

Ampère-Maxwell law

Wave equation for plane EM wave

Speed of EM waves

Ratio of E field to B field in electromagnetic wave

Energy flux (Poynting) vector

Average intensity of an electromagnetic wave

Radiation pressure

Summary

16.2: Maxwell’s Equations and Electromagnetic Waves

James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young,
he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision, and to the
nature of Saturn’s rings. He is best known for having combined existing knowledge of the laws of electricity and of magnetism
with insights of his own into a complete overarching electromagnetic theory, represented by Maxwell’s equations.

Maxwell’s prediction of electromagnetic waves resulted from his formulation of a complete and symmetric theory of electricity
and magnetism, known as Maxwell’s equations.
The four Maxwell’s equations together with the Lorentz force law encompass the major laws of electricity and magnetism. The
first of these is Gauss’s law for electricity; the second is Gauss’s law for magnetism; the third is Faraday’s law of induction
(including Lenz’s law); and the fourth is Ampère’s law in a symmetric formulation that adds another source of magnetism,
namely changing electric fields.
The symmetry introduced between electric and magnetic fields through Maxwell’s displacement current explains the
mechanism of electromagnetic wave propagation, in which changing magnetic fields produce changing electric fields and vice
versa.
Although light was already known to be a wave, the nature of the wave was not understood before Maxwell. Maxwell’s
equations also predicted electromagnetic waves with wavelengths and frequencies outside the range of light. These theoretical
predictions were first confirmed experimentally by Heinrich Hertz.

16.3: Plane Electromagnetic Waves

Mechanical waves travel through a medium such as a string, water, or air. Perhaps the most significant prediction of Maxwell’s
equations is the existence of combined electric and magnetic (or electromagnetic) fields that propagate through space as
electromagnetic waves. Because Maxwell’s equations hold in free space, the predicted electromagnetic waves, unlike mechanical
waves, do not require a medium for their propagation.

Maxwell’s equations predict that the directions of the electric and magnetic fields of the wave, and the wave’s direction of
propagation, are all mutually perpendicular. The electromagnetic wave is a transverse wave.
The strengths of the electric and magnetic parts of the wave are related by , which implies that the magnetic field B is
very weak relative to the electric field E.

∮ ⋅ d =E ⃗  A ⃗  Qin

ε0

∮ ⋅ d = 0B⃗  A ⃗ 

∮ ⋅ d = −E ⃗  s ⃗ 
dΦm

dt

∮ ⋅ d = I +B⃗  s ⃗  μ0 ε0μ0

dΦE

dt

=
∂2
Ey

∂x2
ε0μ0

∂2
Ey

∂t2

c =
1

ε0μ0
− −−−√
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E

B

= ×S ⃗  1

μ0

E ⃗  B⃗ 

I = = = =Savg

cε0E
2
0

2
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0
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Accelerating charges create electromagnetic waves (for example, an oscillating current in a wire produces electromagnetic
waves with the same frequency as the oscillation).

16.4: Energy Carried by Electromagnetic Waves
The energy carried by any wave is proportional to its amplitude squared. For electromagnetic waves, this means intensity can be
expressed as

where I is the average intensity in  and  is the maximum electric field strength of a continuous sinusoidal wave.
This can also be expressed in terms of the maximum magnetic field strength  as

and in terms of both electric and magnetic fields as

.

The three expressions for  are all equivalent.

16.5: Momentum and Radiation Pressure
Electromagnetic waves carry momentum and exert radiation pressure.
The radiation pressure of an electromagnetic wave is directly proportional to its energy density.
The pressure is equal to twice the electromagnetic energy intensity if the wave is reflected and equal to the incident energy
intensity if the wave is absorbed.

16.6: The Electromagnetic Spectrum
The relationship among the speed of propagation, wavelength, and frequency for any wave is given by , so that for
electromagnetic waves, , where f is the frequency,  is the wavelength, and c is the speed of light.
The electromagnetic spectrum is separated into many categories and subcategories, based on the frequency and wavelength,
source, and uses of the electromagnetic waves.
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CHAPTER OVERVIEW

10: Geometrical Optics
In this chapter, we study the basic properties of light. In the next few chapters, we investigate the behavior of light when it interacts
with optical devices such as mirrors, lenses, and apertures.

10.1: The Propagation of Light
10.2: The Law of Reflection
10.3: Huygens’s Principle
10.4: Refraction
10.5: Images Formed by Mirrors
10.6: Images Formed by Refraction
10.7: Optical Instruments
10.8: The Eye

10.8.1: Ear Basic Concepts
10.8.2: A_Vision
10.8.3: Vision
10.8.4: Vision_Correction
10.8.5: Processing_Visual_Information
10.8.6: Color_and_Color_Vision
10.8.7: Photoreceptors/Vision_and_Light
10.8.8: Biology of vision

10.A: The Nature of Light (Answers)

1.A: Geometric Optics and Image Formation (Answers)

10.E: The Nature of Light (Exercises)

1.E: Geometric Optics and Image Formation (Exercises)

10.S: The Nature of Light (Summary)

1.S: Geometric Optics and Image Formation (Summary)

This page titled 10: Geometrical Optics is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.
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10.1: The Propagation of Light

By the end of this section, you will be able to:

Determine the index of refraction, given the speed of light in a medium
List the ways in which light travels from a source to another location

Our investigation of light revolves around two questions of fundamental importance:

1. What is the nature of light, and
2. how does light behave under various circumstances?

Answers to these questions can be found in Maxwell’s equations, which predict the existence of electromagnetic waves and their
behavior. Examples of light include radio and infrared waves, visible light, ultraviolet radiation, and X-rays. Interestingly, not all
light phenomena can be explained by Maxwell’s theory. Experiments performed early in the twentieth century showed that light
has corpuscular, or particle-like, properties. The idea that light can display both wave and particle characteristics is called wave-
particle duality, which is examined in Photons and Matter Waves.

Figure : Due to total internal reflection, an underwater swimmer’s image is reflected back into the water where the camera is
located. The circular ripple in the image center is actually on the water surface. Due to the viewing angle, total internal reflection is
not occurring at the top edge of this image, and we can see a view of activities on the pool deck. (credit: modification of work by
“jayhem”/Flickr)

In this chapter, we study the basic properties of light. In the next few chapters, we investigate the behavior of light when it interacts
with optical devices such as mirrors, lenses, and apertures.

This chapter introduces the major ideas of geometric optics, which describe the formation of images due to reflection and
refraction. It is called “geometric” optics because the images can be characterized using geometric constructions, such as ray
diagrams. We have seen that visible light is an electromagnetic wave; however, its wave nature becomes evident only when light
interacts with objects with dimensions comparable to the wavelength (about 500 nm for visible light). Therefore, the laws of
geometric optics only apply to light interacting with objects much larger than the wavelength of the light.

 Learning Objectives

10.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76636?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/16%3A_Electromagnetic_Waves/16.02%3A_Maxwells_Equations_and_Electromagnetic_Waves
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/01%3A_The_Nature_of_Light/1.05%3A_Total_Internal_Reflection


10.1.2 https://phys.libretexts.org/@go/page/76636

Figure : Cloud Gate is a public sculpture by Anish Kapoor located in Millennium Park in Chicago. Its stainless steel plates
reflect and distort images around it, including the Chicago skyline. Dedicated in 2006, it has become a popular tourist attraction,
illustrating how art can use the principles of physical optics to startle and entertain. (credit: modification of work by Dhilung Kirat)

The Speed of Light: Early Measurements
The first measurement of the speed of light was made by the Danish astronomer Ole Roemer (1644–1710) in 1675. He studied the
orbit of Io, one of the four large moons of Jupiter, and found that it had a period of revolution of 42.5 h around Jupiter. He also
discovered that this value fluctuated by a few seconds, depending on the position of Earth in its orbit around the Sun. Roemer
realized that this fluctuation was due to the finite speed of light and could be used to determine c.

Roemer found the period of revolution of Io by measuring the time interval between successive eclipses by Jupiter. Figure 
shows the planetary configurations when such a measurement is made from Earth in the part of its orbit where it is receding from
Jupiter. When Earth is at point A, Earth, Jupiter, and Io are aligned. The next time this alignment occurs, Earth is at point B, and the
light carrying that information to Earth must travel to that point. Since B is farther from Jupiter than A, light takes more time to
reach Earth when Earth is at B. Now imagine it is about 6 months later, and the planets are arranged as in Figure . The
measurement of Io’s period begins with Earth at point A' and Io eclipsed by Jupiter. The next eclipse then occurs when Earth is at
point B', to which the light carrying the information of this eclipse must travel. Since B' is closer to Jupiter than A', light takes less
time to reach Earth when it is at B'. This time interval between the successive eclipses of Io seen at A' and B' is therefore less than
the time interval between the eclipses seen at A and B. By measuring the difference in these time intervals and with appropriate
knowledge of the distance between Jupiter and Earth, Roemer calculated that the speed of light was , which is only
33% below the value accepted today.

Figure : Roemer’s astronomical method for determining the speed of light. Measurements of Io’s period done with the
configurations of parts (a) and (b) differ, because the light path length and associated travel time increase from A to B (a) but
decrease from A'A′ to B'B′ (b).

The first successful terrestrial measurement of the speed of light was made by Armand Fizeau (1819–1896) in 1849. He placed a
toothed wheel that could be rotated very rapidly on one hilltop and a mirror on a second hilltop 8 km away (Figure ). An
intense light source was placed behind the wheel, so that when the wheel rotated, it chopped the light beam into a succession of
pulses. The speed of the wheel was then adjusted until no light returned to the observer located behind the wheel. This could only
happen if the wheel rotated through an angle corresponding to a displacement of (n+½) teeth, while the pulses traveled down to the
mirror and back. Knowing the rotational speed of the wheel, the number of teeth on the wheel, and the distance to the mirror,
Fizeau determined the speed of light to be , which is only 5% too high.
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Figure : Fizeau’s method for measuring the speed of light. The teeth of the wheel block the reflected light upon return when
the wheel is rotated at a rate that matches the light travel time to and from the mirror.

The French physicist Jean Bernard Léon Foucault (1819–1868) modified Fizeau’s apparatus by replacing the toothed wheel with a
rotating mirror. In 1862, he measured the speed of light to be 2.98×10 m/s, which is within 0.6% of the presently accepted value.
Albert Michelson (1852–1931) also used Foucault’s method on several occasions to measure the speed of light. His first
experiments were performed in 1878; by 1926, he had refined the technique so well that he found c to be (2.99796±4)×10 m/s.

Today, the speed of light is known to great precision. In fact, the speed of light in a vacuum c is so important that it is accepted as
one of the basic physical quantities and has the value

where the approximate value of 3.00×10 m/s is used whenever three-digit accuracy is sufficient.

Speed of Light in Matter
The speed of light through matter is less than it is in a vacuum, because light interacts with atoms in a material. The speed of light
depends strongly on the type of material, since its interaction varies with different atoms, crystal lattices, and other substructures.
We can define a constant of a material that describes the speed of light in it, called the index of refraction n:

where  is the observed speed of light in the material.

Since the speed of light is always less than c in matter and equals c only in a vacuum, the index of refraction is always greater than
or equal to one; that is, n≥1. Table  gives the indices of refraction for some representative substances. The values are listed
for a particular wavelength of light, because they vary slightly with wavelength. (This can have important effects, such as colors
separated by a prism, as we will see in Dispersion.) Note that for gases, n is close to 1.0. This seems reasonable, since atoms in
gases are widely separated, and light travels at c in the vacuum between atoms. It is common to take  for gases unless great
precision is needed. Although the speed of light v in a medium varies considerably from its value c in a vacuum, it is still a large
speed.

Figure : Index of Refraction in Various MediaFor light with a wavelength of 589 nm in a vacuum

Medium n

Gases at 0°C, 1 atm

Air 1.000293

Carbon dioxide 1.00045

Hydrogen 1.000139

Oxygen 1.000271
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Medium n

Liquids at 20°C

Benzene 1.501

Carbon disulfide 1.628

Carbon tetrachloride 1.461

Ethanol 1.361

Glycerine 1.473

Water, fresh 1.333

Solids at 20°C

Diamond 2.419

Fluorite 1.434

Glass, crown 1.52

Glass, flint 1.66

Ice (at 0°C)0°C) 1.309

Polystyrene 1.49

Plexiglas 1.51

Quartz, crystalline 1.544

Quartz, fused 1.458

Sodium chloride 1.544

Zircon 1.923

Example : Speed of Light in Jewelry

Calculate the speed of light in zircon, a material used in jewelry to imitate diamond.

Strategy

We can calculate the speed of light in a material  from the index of refraction  of the material, using Equation \red{index}

Solution
Rearranging Equation  for  gives us

The index of refraction for zircon is given as 1.923 in Table , and  is given in Equation . Entering these values in
the equation gives

Significance

This speed is slightly larger than half the speed of light in a vacuum and is still high compared with speeds we normally
experience. The only substance listed in Table  that has a greater index of refraction than zircon is diamond. We shall see
later that the large index of refraction for zircon makes it sparkle more than glass, but less than diamond.
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Table  shows that ethanol and fresh water have very similar indices of refraction. By what percentage do the speeds of
light in these liquids differ?

Answer

2.1% (to two significant figures)

The Ray Model of Light

You have already studied some of the wave characteristics of light in the previous chapter on Electromagnetic Waves. In this
chapter, we start mainly with the ray characteristics. There are three ways in which light can travel from a source to another
location (Figure ). It can come directly from the source through empty space, such as from the Sun to Earth. Or light can
travel through various media, such as air and glass, to the observer. Light can also arrive after being reflected, such as by a mirror.
In all of these cases, we can model the path of light as a straight line called a ray.

Figure : Three methods for light to travel from a source to another location. (a) Light reaches the upper atmosphere of Earth,
traveling through empty space directly from the source. (b) Light can reach a person by traveling through media like air and glass.
(c) Light can also reflect from an object like a mirror. In the situations shown here, light interacts with objects large enough that it
travels in straight lines, like a ray.

Experiments show that when light interacts with an object several times larger than its wavelength, it travels in straight lines and
acts like a ray. Its wave characteristics are not pronounced in such situations. Since the wavelength of visible light is less than a
micron (a thousandth of a millimeter), it acts like a ray in the many common situations in which it encounters objects larger than a
micron. For example, when visible light encounters anything large enough that we can observe it with unaided eyes, such as a coin,
it acts like a ray, with generally negligible wave characteristics.

In all of these cases, we can model the path of light as straight lines. Light may change direction when it encounters objects (such
as a mirror) or in passing from one material to another (such as in passing from air to glass), but it then continues in a straight line
or as a ray. The word “ray” comes from mathematics and here means a straight line that originates at some point. It is acceptable to
visualize light rays as laser rays. The ray model of light describes the path of light as straight lines.

Since light moves in straight lines, changing directions when it interacts with materials, its path is described by geometry and
simple trigonometry. This part of optics, where the ray aspect of light dominates, is therefore called geometric optics. Two laws
govern how light changes direction when it interacts with matter. These are the law of reflection, for situations in which light
bounces off matter, and the law of refraction, for situations in which light passes through matter. We will examine more about
each of these laws in upcoming sections of this chapter.

This page titled 10.1: The Propagation of Light is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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10.2: The Law of Reflection

By the end of this section, you will be able to:

Explain the reflection of light from polished and rough surfaces
Describe the principle and applications of corner reflectors

Whenever we look into a mirror, or squint at sunlight glinting from a lake, we are seeing a reflection. When you look at a piece of
white paper, you are seeing light scattered from it. Large telescopes use reflection to form an image of stars and other astronomical
objects.

The law of reflection states that the angle of reflection equals the angle of incidence:

The law of reflection is illustrated in Figure , which also shows how the angle of incidence and angle of reflection are
measured relative to the perpendicular to the surface at the point where the light ray strikes.

Figure : The law of reflection states that the angle of reflection equals the angle of incidence—θ =θ . The angles are
measured relative to the perpendicular to the surface at the point where the ray strikes the surface.

We expect to see reflections from smooth surfaces, but Figure  illustrates how a rough surface reflects light. Since the light
strikes different parts of the surface at different angles, it is reflected in many different directions, or diffused. Diffused light is what
allows us to see a sheet of paper from any angle, as shown in Figure .

Figure : Light is diffused when it reflects from a rough surface. Here, many parallel rays are incident, but they are reflected
at many different angles, because the surface is rough.

People, clothing, leaves, and walls all have rough surfaces and can be seen from all sides. A mirror, on the other hand, has a smooth
surface (compared with the wavelength of light) and reflects light at specific angles, as illustrated in Figure . When the
Moon reflects from a lake, as shown in Figure , a combination of these effects takes place.
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Figure : (a) When a sheet of paper is illuminated with many parallel incident rays, it can be seen at many different angles,
because its surface is rough and diffuses the light. (b) A mirror illuminated by many parallel rays reflects them in only one
direction, because its surface is very smooth. Only the observer at a particular angle sees the reflected light. (c) Moonlight is spread
out when it is reflected by the lake, because the surface is shiny but uneven. (credit c: modification of work by Diego Torres
Silvestre)

When you see yourself in a mirror, it appears that the image is actually behind the mirror (Figure ). We see the light coming
from a direction determined by the law of reflection. The angles are such that the image is exactly the same distance behind the
mirror as you stand in front of the mirror. If the mirror is on the wall of a room, the images in it are all behind the mirror, which can
make the room seem bigger. Although these mirror images make objects appear to be where they cannot be (like behind a solid
wall), the images are not figments of your imagination. Mirror images can be photographed and videotaped by instruments and
look just as they do with our eyes (which are optical instruments themselves). The precise manner in which images are formed by
mirrors and lenses is discussed in an upcoming chapter on Geometric Optics and Image Formation.

Figure : (a) Your image in a mirror is behind the mirror. The two rays shown are those that strike the mirror at just the correct
angles to be reflected into the eyes of the person. The image appears to be behind the mirror at the same distance away as (b) if you
were looking at your twin directly, with no mirror.

Corner Reflectors (Retroreflectors)
A light ray that strikes an object consisting of two mutually perpendicular reflecting surfaces is reflected back exactly parallel to
the direction from which it came (Figure ). This is true whenever the reflecting surfaces are perpendicular, and it is
independent of the angle of incidence. Such an object is called a corner reflector, since the light bounces from its inside corner.
Corner reflectors are a subclass of retroreflectors, which all reflect rays back in the directions from which they came. Although the
geometry of the proof is much more complex, corner reflectors can also be built with three mutually perpendicular reflecting
surfaces and are useful in three-dimensional applications.
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Figure : A light ray that strikes two mutually perpendicular reflecting surfaces is reflected back exactly parallel to the
direction from which it came.

Many inexpensive reflector buttons on bicycles, cars, and warning signs have corner reflectors designed to return light in the
direction from which it originated. Rather than simply reflecting light over a wide angle, retroreflection ensures high visibility if
the observer and the light source are located together, such as a car’s driver and headlights. The Apollo astronauts placed a true
corner reflector on the Moon (Figure ). Laser signals from Earth can be bounced from that corner reflector to measure the
gradually increasing distance to the Moon of a few centimeters per year.

Figure : (a) Astronauts placed a corner reflector on the Moon to measure its gradually increasing orbital distance. (b) The
bright spots on these bicycle safety reflectors are reflections of the flash of the camera that took this picture on a dark night. (credit
a: modification of work by NASA; credit b: modification of work by “Julo”/Wikimedia Commons)

Working on the same principle as these optical reflectors, corner reflectors are routinely used as radar reflectors (Figure ) for
radio-frequency applications. Under most circumstances, small boats made of fiberglass or wood do not strongly reflect radio
waves emitted by radar systems. To make these boats visible to radar (to avoid collisions, for example), radar reflectors are
attached to boats, usually in high places.

Figure : A radar reflector hoisted on a sailboat is a type of corner reflector. (credit: Tim Sheerman-Chase)
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As a counterexample, if you are interested in building a stealth airplane, radar reflections should be minimized to evade detection.
One of the design considerations would then be to avoid building 90°90° corners into the airframe.
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10.3: Huygens’s Principle

By the end of this section, you will be able to:

Describe Huygens’s principle
Use Huygens’s principle to explain the law of reflection
Use Huygens’s principle to explain the law of refraction
Use Huygens’s principle to explain diffraction

So far in this chapter, we have been discussing optical phenomena using the ray model of light. However, some phenomena require
analysis and explanations based on the wave characteristics of light. This is particularly true when the wavelength is not negligible
compared to the dimensions of an optical device, such as a slit in the case of diffraction. Huygens’s principle is an indispensable
tool for this analysis.

Figure  shows how a transverse wave looks as viewed from above and from the side. A light wave can be imagined to
propagate like this, although we do not actually see it wiggling through space. From above, we view the wave fronts (or wave
crests) as if we were looking down on ocean waves. The side view would be a graph of the electric or magnetic field. The view
from above is perhaps more useful in developing concepts about wave optics.

Figure : A transverse wave, such as an electromagnetic light wave, as viewed from above and from the side. The direction of
propagation is perpendicular to the wave fronts (or wave crests) and is represented by a ray.

The Dutch scientist Christiaan Huygens (1629–1695) developed a useful technique for determining in detail how and where waves
propagate. Starting from some known position, Huygens’s principle states that every point on a wave front is a source of wavelets
that spread out in the forward direction at the same speed as the wave itself. The new wave front is tangent to all of the wavelets.

Figure  shows how Huygens’s principle is applied. A wave front is the long edge that moves, for example, with the crest or
the trough. Each point on the wave front emits a semicircular wave that moves at the propagation speed . We can draw these
wavelets at a time  later, so that they have moved a distance . The new wave front is a plane tangent to the wavelets and is
where we would expect the wave to be a time  later. Huygens’s principle works for all types of waves, including water waves,
sound waves, and light waves. It is useful not only in describing how light waves propagate but also in explaining the laws of
reflection and refraction. In addition, we will see that Huygens’s principle tells us how and where light rays interfere.

Figure : Huygens’s principle applied to a straight wave front. Each point on the wave front emits a semicircular wavelet that
moves a distance s=vt. The new wave front is a line tangent to the wavelets.
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Reflection
Figure  shows how a mirror reflects an incoming wave at an angle equal to the incident angle, verifying the law of reflection.
As the wave front strikes the mirror, wavelets are first emitted from the left part of the mirror and then from the right. The wavelets
closer to the left have had time to travel farther, producing a wave front traveling in the direction shown.

Figure : Huygens’s principle applied to a plane wave front striking a mirror. The wavelets shown were emitted as each point
on the wave front struck the mirror. The tangent to these wavelets shows that the new wave front has been reflected at an angle
equal to the incident angle. The direction of propagation is perpendicular to the wave front, as shown by the downward-pointing
arrows.

Refraction

The law of refraction can be explained by applying Huygens’s principle to a wave front passing from one medium to another
(Figure ). Each wavelet in the figure was emitted when the wave front crossed the interface between the media. Since the
speed of light is smaller in the second medium, the waves do not travel as far in a given time, and the new wave front changes
direction as shown. This explains why a ray changes direction to become closer to the perpendicular when light slows down.
Snell’s law can be derived from the geometry in Figure  (Example ).

Figure : Huygens’s principle applied to a plane wave front traveling from one medium to another, where its speed is less.
The ray bends toward the perpendicular, since the wavelets have a lower speed in the second medium.

Example : Deriving the Law of Refraction
By examining the geometry of the wave fronts, derive the law of refraction.

Strategy

Consider Figure , which expands upon Figure . It shows the incident wave front just reaching the surface at point
A, while point B is still well within medium 1. In the time  it takes for a wavelet from  to reach  on the surface at speed 

, a wavelet from  travels into medium 2 a distance of , where . Note that in this example, 
 is slower than  because .
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Figure : Geometry of the law of refraction from medium 1 to medium 2.

Solution
The segment on the surface AB' is shared by both the triangle ABB' inside medium 1 and the triangle AA′B′ inside medium 2.
Note that from the geometry, the angle ∠BAB' is equal to the angle of incidence, . Similarly,  is .

The length of AB' is given in two ways as

Inverting the equation and substituting AA'=cΔt/n  from above and similarly , we obtain

Cancellation of  allows us to simplify this equation into the familiar form

Significance

Although the law of refraction was established experimentally by Snell, its derivation here requires Huygens’s principle and
the understanding that the speed of light is different in different media.

In Example , we had . If  were decreased such that  and the speed of light in medium 2 is faster than
in medium 1, what would happen to the length of AA'? What would happen to the wave front A'B' and the direction of the
refracted ray?

Answer

AA′ becomes longer, A'B' tilts further away from the surface, and the refracted ray tilts away from the normal.

This applet by Walter Fendt shows an animation of reflection and refraction using Huygens’s wavelets while you control the
parameters. Be sure to click on “Next step” to display the wavelets. You can see the reflected and refracted wave fronts
forming.
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Diffraction

What happens when a wave passes through an opening, such as light shining through an open door into a dark room? For light, we
observe a sharp shadow of the doorway on the floor of the room, and no visible light bends around corners into other parts of the
room. When sound passes through a door, we hear it everywhere in the room and thus observe that sound spreads out when passing
through such an opening (Figure ). What is the difference between the behavior of sound waves and light waves in this case?
The answer is that light has very short wavelengths and acts like a ray. Sound has wavelengths on the order of the size of the door
and bends around corners (for frequency of 1000 Hz,

about three times smaller than the width of the doorway).

Figure : (a) Light passing through a doorway makes a sharp outline on the floor. Since light’s wavelength is very small
compared with the size of the door, it acts like a ray. (b) Sound waves bend into all parts of the room, a wave effect, because their
wavelength is similar to the size of the door.

If we pass light through smaller openings such as slits, we can use Huygens’s principle to see that light bends as sound does (Figure
). The bending of a wave around the edges of an opening or an obstacle is called diffraction. Diffraction is a wave

characteristic and occurs for all types of waves. If diffraction is observed for some phenomenon, it is evidence that the phenomenon
is a wave. Thus, the horizontal diffraction of the laser beam after it passes through the slits in Figure  is evidence that light is
a wave.

Figure : Huygens’s principle applied to a plane wave front striking an opening. The edges of the wave front bend after
passing through the opening, a process called diffraction. The amount of bending is more extreme for a small opening, consistent
with the fact that wave characteristics are most noticeable for interactions with objects about the same size as the wavelength.
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10.4: Refraction

By the end of this section, you will be able to:

Describe how rays change direction upon entering a medium
Apply the law of refraction in problem solving
Explain the phenomenon of total internal reflection
Describe the workings and uses of optical fibers
Analyze the reason for the sparkle of diamonds
Explain the cause of dispersion in a prism
Describe the effects of dispersion in producing rainbows
Summarize the advantages and disadvantages of dispersion

You may often notice some odd things when looking into a fish tank. For example, you may see the same fish appearing to be in
two different places (Figure ). This happens because light coming from the fish to you changes direction when it leaves the
tank, and in this case, it can travel two different paths to get to your eyes. The changing of a light ray’s direction (loosely called
bending) when it passes through substances of different refractive indices is called refraction and is related to changes in the speed
of light, . Refraction is responsible for a tremendous range of optical phenomena, from the action of lenses to data
transmission through optical fibers.

Figure : (a) Looking at the fish tank as shown, we can see the same fish in two different locations, because light changes
directions when it passes from water to air. In this case, the light can reach the observer by two different paths, so the fish seems to
be in two different places. This bending of light is called refraction and is responsible for many optical phenomena. (b) This image
shows refraction of light from a fish near the top of a fish tank.

Figure  shows how a ray of light changes direction when it passes from one medium to another. As before, the angles are
measured relative to a perpendicular to the surface at the point where the light ray crosses it. (Some of the incident light is reflected
from the surface, but for now we concentrate on the light that is transmitted.) The change in direction of the light ray depends on
the relative values of the indices of refraction of the two media involved. In the situations shown, medium 2 has a greater index of
refraction than medium 1. Note that as shown in Figure , the direction of the ray moves closer to the perpendicular when it
progresses from a medium with a lower index of refraction to one with a higher index of refraction. Conversely, as shown in Figure

, the direction of the ray moves away from the perpendicular when it progresses from a medium with a higher index of
refraction to one with a lower index of refraction. The path is exactly reversible.
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Figure : The change in direction of a light ray depends on how the index of refraction changes when it crosses from one
medium to another. In the situations shown here, the index of refraction is greater in medium 2 than in medium 1. (a) A ray of light
moves closer to the perpendicular when entering a medium with a higher index of refraction. (b) A ray of light moves away from
the perpendicular when entering a medium with a lower index of refraction.

The amount that a light ray changes its direction depends both on the incident angle and the amount that the speed changes. For a
ray at a given incident angle, a large change in speed causes a large change in direction and thus a large change in angle. The exact
mathematical relationship is the law of refraction, or Snell’s law, after the Dutch mathematician Willebrord Snell (1591–1626),
who discovered it in 1621. The law of refraction is stated in equation form as

Here (n_1\) and  are the indices of refraction for media 1 and 2, and  and  are the angles between the rays and the
perpendicular in media 1 and 2. The incoming ray is called the incident ray, the outgoing ray is called the refracted ray, and the
associated angles are the incident angle and the refracted angle, respectively.

Snell’s experiments showed that the law of refraction is obeyed and that a characteristic index of refraction  could be assigned to a
given medium and its value measured. Snell was not aware that the speed of light varied in different media, a key fact used when
we derive the law of refraction theoretically using Huygens’s Principle.

Find the index of refraction for medium 2 in Figure , assuming medium 1 is air and given that the incident angle is
30.0° and the angle of refraction is 22.0°.

Strategy

The index of refraction for air is taken to be 1 in most cases (and up to four significant figures, it is 1.000). Thus, 
here. From the given information,  and . With this information, the only unknown in Snell’s law is ,
so we can use Snell’s law (Equation ) to find it.

Solution
From Snell’s law (Equation ), we have

Entering known values,

10.4.2
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 Example : Determining the Index of Refraction10.4.1
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Significance

This is the index of refraction for water, and Snell could have determined it by measuring the angles and performing this
calculation. He would then have found 1.33 to be the appropriate index of refraction for water in all other situations, such as
when a ray passes from water to glass. Today, we can verify that the index of refraction is related to the speed of light in a
medium by measuring that speed directly.

Explore bending of light between two media with different indices of refraction. Use the “Intro” simulation and see how
changing from air to water to glass changes the bending angle. Use the protractor tool to measure the angles and see if you can
recreate the configuration in Example . Also by measurement, confirm that the angle of reflection equals the angle of
incidence.

Suppose that in a situation like that in Example , light goes from air to diamond and that the incident angle is 30.0°.
Calculate the angle of refraction θ  in the diamond.

Strategy

Again, the index of refraction for air is taken to be n =1.00, and we are given θ =30.0°. We can look up the index of refraction
for diamond, finding n =2.419. The only unknown in Snell’s law is , which we wish to determine.

Solution
Solving Snell’s law (Equation ) for  yields

Entering known values,

The angle is thus

Significance

For the same 30.0° angle of incidence, the angle of refraction in diamond is significantly smaller than in water (11.9° rather
than 22.0°—see Example ). This means there is a larger change in direction in diamond. The cause of a large change in
direction is a large change in the index of refraction (or speed). In general, the larger the change in speed, the greater the effect
on the direction of the ray.

The solid with the next highest index of refraction after diamond is zircon. If the diamond in Example  were replaced
with a piece of zircon, what would be the new angle of refraction?

Answer

15.1°

Total Internal Reflection

A good-quality mirror may reflect more than 90% of the light that falls on it, absorbing the rest. But it would be useful to have a
mirror that reflects all of the light that falls on it. Interestingly, we can produce total reflection using an aspect of refraction.

Consider what happens when a ray of light strikes the surface between two materials, as shown in Figure . Part of the light
crosses the boundary and is refracted; the rest is reflected. If, as shown in the figure, the index of refraction for the second medium
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is less than for the first, the ray bends away from the perpendicular. (Since , the angle of refraction is greater than the angle
of incidence—that is, .) Now imagine what happens as the incident angle increases. This causes  to increase also. The
largest the angle of refraction  can be is , as shown in Figure .

Figure : (a) A ray of light crosses a boundary where the index of refraction decreases. That is, . The ray bends away
from the perpendicular. (b) The critical angle θ  is the angle of incidence for which the angle of refraction is 90°. (c) Total internal
reflection occurs when the incident angle is greater than the critical angle.

The critical angle  for a combination of materials is defined to be the incident angle  that produces an angle of refraction of 
. That is,  is the incident angle for which . If the incident angle  is greater than the critical angle, as shown in

Figure , then all of the light is reflected back into medium 1, a condition called total internal reflection. (As Figure 
shows, the reflected rays obey the law of reflection so that the angle of reflection is equal to the angle of incidence in all three
cases.)

Snell’s law states the relationship between angles and indices of refraction. It is given by

When the incident angle equals the critical angle ( ), the angle of refraction is  ( ). Noting that ,
Snell’s law in this case becomes

The critical angle  for a given combination of materials is thus

for .

Total internal reflection occurs for any incident angle greater than the critical angle , and it can only occur when the second
medium has an index of refraction less than the first. Note that this equation is written for a light ray that travels in medium 1 and
reflects from medium 2, as shown in Figure .

Example : Determining a Critical Angle

What is the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air? The index of refraction
for polystyrene is 1.49.

Strategy

The index of refraction of air can be taken to be 1.00, as before. Thus, the condition that the second medium (air) has an index
of refraction less than the first (plastic) is satisfied, and we can use the equation

to find the critical angle , where  and .
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Substituting the identified values gives

Significance

This result means that any ray of light inside the plastic that strikes the surface at an angle greater than 42.2° is totally
reflected. This makes the inside surface of the clear plastic a perfect mirror for such rays, without any need for the silvering
used on common mirrors. Different combinations of materials have different critical angles, but any combination with 
can produce total internal reflection. The same calculation as made here shows that the critical angle for a ray going from water
to air is 48.6°, whereas that from diamond to air is 24.4°, and that from flint glass to crown glass is 66.3°.

At the surface between air and water, light rays can go from air to water and from water to air. For which ray is there no
possibility of total internal reflection?

Answer

air to water, because the condition that the second medium must have a smaller index of refraction is not satisfied

In the photo that opens this chapter, the image of a swimmer underwater is captured by a camera that is also underwater. The
swimmer in the upper half of the photograph, apparently facing upward, is, in fact, a reflected image of the swimmer below. The
circular ripple near the photograph’s center is actually on the water surface. The undisturbed water surrounding it makes a good
reflecting surface when viewed from below, thanks to total internal reflection. However, at the very top edge of this photograph,
rays from below strike the surface with incident angles less than the critical angle, allowing the camera to capture a view of
activities on the pool deck above water.

Fiber optics is one application of total internal reflection that is in wide use. In communications, it is used to transmit
telephone, internet, and cable TV signals. Fiber optics employs the transmission of light down fibers of plastic or glass.
Because the fibers are thin, light entering one is likely to strike the inside surface at an angle greater than the critical angle and,
thus, be totally reflected (Figure ). The index of refraction outside the fiber must be smaller than inside. In fact, most
fibers have a varying refractive index to allow more light to be guided along the fiber through total internal refraction. Rays are
reflected around corners as shown, making the fibers into tiny light pipes.

θc = ( )sin−1 1.00

1.49

= (0.671)sin−1

= 42.2°.

>n1 n2
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Figure : Light entering a thin optic fiber may strike the inside surface at large or grazing angles and is completely
reflected if these angles exceed the critical angle. Such rays continue down the fiber, even following it around corners, since
the angles of reflection and incidence remain large.

Bundles of fibers can be used to transmit an image without a lens, as illustrated in Figure . The output of a device called
an endoscope is shown in Figure . Endoscopes are used to explore the interior of the body through its natural orifices or
minor incisions. Light is transmitted down one fiber bundle to illuminate internal parts, and the reflected light is transmitted
back out through another bundle to be observed.

Figure : (a) An image “A” is transmitted by a bundle of optical fibers. (b) An endoscope is used to probe the body, both
transmitting light to the interior and returning an image such as the one shown of a human epiglottis (a structure at the base of
the tongue). (credit b: modification of work by “Med_Chaos”/Wikimedia Commons)

Fiber optics has revolutionized surgical techniques and observations within the body, with a host of medical diagnostic and
therapeutic uses. Surgery can be performed, such as arthroscopic surgery on a knee or shoulder joint, employing cutting tools
attached to and observed with the endoscope. Samples can also be obtained, such as by lassoing an intestinal polyp for external
examination. The flexibility of the fiber optic bundle allows doctors to navigate it around small and difficult-to-reach regions
in the body, such as the intestines, the heart, blood vessels, and joints. Transmission of an intense laser beam to burn away
obstructing plaques in major arteries, as well as delivering light to activate chemotherapy drugs, are becoming commonplace.
Optical fibers have in fact enabled microsurgery and remote surgery where the incisions are small and the surgeon’s fingers do
not need to touch the diseased tissue.

Optical fibers in bundles are surrounded by a cladding material that has a lower index of refraction than the core (Figure 
). The cladding prevents light from being transmitted between fibers in a bundle. Without cladding, light could pass

between fibers in contact, since their indices of refraction are identical. Since no light gets into the cladding (there is total
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internal reflection back into the core), none can be transmitted between clad fibers that are in contact with one another. Instead,
the light is propagated along the length of the fiber, minimizing the loss of signal and ensuring that a quality image is formed at
the other end. The cladding and an additional protective layer make optical fibers durable as well as flexible.

Figure : Fibers in bundles are clad by a material that has a lower index of refraction than the core to ensure total internal
reflection, even when fibers are in contact with one another.

Special tiny lenses that can be attached to the ends of bundles of fibers have been designed and fabricated. Light emerging
from a fiber bundle can be focused through such a lens, imaging a tiny spot. In some cases, the spot can be scanned, allowing
quality imaging of a region inside the body. Special minute optical filters inserted at the end of the fiber bundle have the
capacity to image the interior of organs located tens of microns below the surface without cutting the surface—an area known
as nonintrusive diagnostics. This is particularly useful for determining the extent of cancers in the stomach and bowel.

In another type of application, optical fibers are commonly used to carry signals for telephone conversations and internet
communications. Extensive optical fiber cables have been placed on the ocean floor and underground to enable optical
communications. Optical fiber communication systems offer several advantages over electrical (copper)-based systems,
particularly for long distances. The fibers can be made so transparent that light can travel many kilometers before it becomes
dim enough to require amplification—much superior to copper conductors. This property of optical fibers is called low loss.
Lasers emit light with characteristics that allow far more conversations in one fiber than are possible with electric signals on a
single conductor. This property of optical fibers is called high bandwidth. Optical signals in one fiber do not produce
undesirable effects in other adjacent fibers. This property of optical fibers is called reduced crosstalk. We shall explore the
unique characteristics of laser radiation in a later chapter.

Corner Reflectors and Diamonds
Corner reflectors are perfectly efficient when the conditions for total internal reflection are satisfied. With common materials, it is
easy to obtain a critical angle that is less than 45°. One use of these perfect mirrors is in binoculars, as shown in Figure .
Another use is in periscopes found in submarines.
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Figure : These binoculars employ corner reflectors (prisms) with total internal reflection to get light to the observer’s eyes.

Total internal reflection, coupled with a large index of refraction, explains why diamonds sparkle more than other materials. The
critical angle for a diamond-to-air surface is only 24.4°, so when light enters a diamond, it has trouble getting back out (Figure 

). Although light freely enters the diamond, it can exit only if it makes an angle less than 24.4°. Facets on diamonds are
specifically intended to make this unlikely. Good diamonds are very clear, so that the light makes many internal reflections and is
concentrated before exiting—hence the bright sparkle. (Zircon is a natural gemstone that has an exceptionally large index of
refraction, but it is not as large as diamond, so it is not as highly prized. Cubic zirconia is manufactured and has an even higher
index of refraction (≈2.17), but it is still less than that of diamond.) The colors you see emerging from a clear diamond are not due
to the diamond’s color, which is usually nearly colorless, but result from dispersion. Colored diamonds get their color from
structural defects of the crystal lattice and the inclusion of minute quantities of graphite and other materials. The Argyle Mine in
Western Australia produces around 90% of the world’s pink, red, champagne, and cognac diamonds, whereas around 50% of the
world’s clear diamonds come from central and southern Africa.

Figure : Light cannot easily escape a diamond, because its critical angle with air is so small. Most reflections are total, and
the facets are placed so that light can exit only in particular ways—thus concentrating the light and making the diamond sparkle
brightly.

Dispersion
Everyone enjoys the spectacle of a rainbow glimmering against a dark stormy sky. How does sunlight falling on clear drops of rain
get broken into the rainbow of colors we see? The same process causes white light to be broken into colors by a clear glass prism or
a diamond (Figure ).
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Figure : The colors of the rainbow (a) and those produced by a prism (b) are identical. (credit a: modification of work by
“Alfredo55”/Wikimedia Commons; credit b: modification of work by NASA)

We see about six colors in a rainbow—red, orange, yellow, green, blue, and violet; sometimes indigo is listed, too. These colors are
associated with different wavelengths of light, as shown in Figure . When our eye receives pure-wavelength light, we tend to
see only one of the six colors, depending on wavelength. The thousands of other hues we can sense in other situations are our eye’s
response to various mixtures of wavelengths. White light, in particular, is a fairly uniform mixture of all visible wavelengths.
Sunlight, considered to be white, actually appears to be a bit yellow, because of its mixture of wavelengths, but it does contain all
visible wavelengths. The sequence of colors in rainbows is the same sequence as the colors shown in the figure. This implies that
white light is spread out in a rainbow according to wavelength. Dispersion is defined as the spreading of white light into its full
spectrum of wavelengths. More technically, dispersion occurs whenever the propagation of light depends on wavelength.

Figure : Even though rainbows are associated with six colors, the rainbow is a continuous distribution of colors according to
wavelengths.

Any type of wave can exhibit dispersion. For example, sound waves, all types of electromagnetic waves, and water waves can be
dispersed according to wavelength. Dispersion may require special circumstances and can result in spectacular displays such as in
the production of a rainbow. This is also true for sound, since all frequencies ordinarily travel at the same speed. If you listen to
sound through a long tube, such as a vacuum cleaner hose, you can easily hear it dispersed by interaction with the tube. Dispersion,
in fact, can reveal a great deal about what the wave has encountered that disperses its wavelengths. The dispersion of
electromagnetic radiation from outer space, for example, has revealed much about what exists between the stars—the so-called
interstellar medium.

Nick Moore’s video discusses dispersion of a pulse as he taps a long spring. Follow his explanation as Moore replays the high-
speed footage showing high frequency waves outrunning the lower frequency waves. https://www.youtube.com/watch?
v=KbmOcT5sX7I
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Refraction is responsible for dispersion in rainbows and many other situations. The angle of refraction depends on the index of
refraction, as we know from Snell’s law. We know that the index of refraction n depends on the medium. But for a given medium,
n also depends on wavelength (Table ).

Table : Index of Refraction ( ) in Selected Media at Various Wavelengths

Medium Red (660 nm)
Orange (610

nm)
Yellow (580 nm) Green (550 nm) Blue (470 nm) Violet (410 nm)

Water 1.331 1.332 1.333 1.335 1.338 1.342

Diamond 2.410 2.415 2.417 2.426 2.444 2.458

Glass, crown 1.512 1.514 1.518 1.519 1.524 1.530

Glass, flint 1.662 1.665 1.667 1.674 1.684 1.698

Polystyrene 1.488 1.490 1.492 1.493 1.499 1.506

Quartz, fused 1.455 1.456 1.458 1.459 1.462 1.468

Note that for a given medium, n increases as wavelength decreases and is greatest for violet light. Thus, violet light is bent more
than red light, as shown for a prism in Figure . White light is dispersed into the same sequence of wavelengths as seen in
Figures  and .

Figure : (a) A pure wavelength of light falls onto a prism and is refracted at both surfaces. (b) White light is dispersed by the
prism (shown exaggerated). Since the index of refraction varies with wavelength, the angles of refraction vary with wavelength. A
sequence of red to violet is produced, because the index of refraction increases steadily with decreasing wavelength.

Example : Dispersion of White Light by Flint Glass
A beam of white light goes from air into flint glass at an incidence angle of 43.2°. What is the angle between the red (660 nm)
and violet (410 nm) parts of the refracted light?
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Strategy

Values for the indices of refraction for flint glass at various wavelengths are listed in Table . Use these values for
calculate the angle of refraction for each color and then take the difference to find the dispersion angle.

Solution
Applying the law of refraction for the red part of the beam

we can solve for the angle of refraction as

Similarly, the angle of incidence for the violet part of the beam is

The difference between these two angles is

Significance

Although 0.6° may seem like a negligibly small angle, if this beam is allowed to propagate a long enough distance, the
dispersion of colors becomes quite noticeable.

In the preceding example, how much distance inside the block of flint glass would the red and the violet rays have to progress
before they are separated by 1.0 mm?

Answer

9.3 cm

Rainbows are produced by a combination of refraction and reflection. You may have noticed that you see a rainbow only when you
look away from the Sun. Light enters a drop of water and is reflected from the back of the drop (Figure ).
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Figure : A ray of light falling on this water drop enters and is reflected from the back of the drop. This light is refracted and
dispersed both as it enters and as it leaves the drop.

The light is refracted both as it enters and as it leaves the drop. Since the index of refraction of water varies with wavelength, the
light is dispersed, and a rainbow is observed (Figure ). (No dispersion occurs at the back surface, because the law of
reflection does not depend on wavelength.) The actual rainbow of colors seen by an observer depends on the myriad rays being
refracted and reflected toward the observer’s eyes from numerous drops of water. The effect is most spectacular when the
background is dark, as in stormy weather, but can also be observed in waterfalls and lawn sprinklers. The arc of a rainbow comes
from the need to be looking at a specific angle relative to the direction of the Sun, as illustrated in Figure . If two reflections
of light occur within the water drop, another “secondary” rainbow is produced. This rare event produces an arc that lies above the
primary rainbow arc, as in Figure , and produces colors in the reverse order of the primary rainbow, with red at the lowest
angle and violet at the largest angle.

Figure : (a) Different colors emerge in different directions, and so you must look at different locations to see the various
colors of a rainbow. (b) The arc of a rainbow results from the fact that a line between the observer and any point on the arc must
make the correct angle with the parallel rays of sunlight for the observer to receive the refracted rays. (c) Double rainbow. (credit c:
modification of work by “Nicholas”/Wikimedia Commons)

Dispersion may produce beautiful rainbows, but it can cause problems in optical systems. White light used to transmit messages in
a fiber is dispersed, spreading out in time and eventually overlapping with other messages. Since a laser produces a nearly pure
wavelength, its light experiences little dispersion, an advantage over white light for transmission of information. In contrast,
dispersion of electromagnetic waves coming to us from outer space can be used to determine the amount of matter they pass
through.

This page titled 10.4: Refraction is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content
that was edited to the style and standards of the LibreTexts platform.

1.4: Refraction by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-3.
1.5: Total Internal Reflection by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-3.
1.6: Dispersion by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-3.
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10.5: Images Formed by Mirrors

By the end of this section, you will be able to:

Describe how an image is formed by a plane mirror.
Distinguish between real and virtual images.
Find the location and characterize the orientation of an image created by a plane mirror.
Describe image formation by spherical mirrors.
Use ray diagrams and the mirror equation to calculate the properties of an image in a spherical mirror.

Images Formed by Plane Mirrors
You only have to look as far as the nearest bathroom to find an example of an image formed by a mirror. Images in a plane mirror
are the same size as the object, are located behind the mirror, and are oriented in the same direction as the object (i.e., “upright”).

To understand how this happens, consider Figure . Two rays emerge from point , strike the mirror, and reflect into the
observer’s eye. Note that we use the law of reflection to construct the reflected rays. If the reflected rays are extended backward
behind the mirror (see dashed lines), they seem to originate from point . This is where the image of point  is located. If we
repeat this process for point , we obtain its image at point . You should convince yourself by using basic geometry that the
image height (the distance from  to ) is the same as the object height (the distance from  to ). By forming images of all
points of the object, we obtain an upright image of the object behind the mirror.

Figure . Two light rays originating from point P on an object are reflected by a flat mirror into the eye of an observer. The
reflected rays are obtained by using the law of reflection. Extending these reflected rays backward, they seem to come from point Q
behind the mirror, which is where the virtual image is located. Repeating this process for point P′ gives the image point Q′. The
image height is thus the same as the object height, the image is upright, and the object distance d  is the same as the image distance
d . (credit: modification of work by Kevin Dufendach)

Notice that the reflected rays appear to the observer to come directly from the image behind the mirror. In reality, these rays come
from the points on the mirror where they are reflected. The image behind the mirror is called a virtual image because it cannot be
projected onto a screen—the rays only appear to originate from a common point behind the mirror. If you walk behind the mirror,
you cannot see the image, because the rays do not go there. However, in front of the mirror, the rays behave exactly as if they come
from behind the mirror, so that is where the virtual image is located.

Later in this chapter, we discuss real images; a real image can be projected onto a screen because the rays physically go through the
image. You can certainly see both real and virtual images. The difference is that a virtual image cannot be projected onto a screen,
whereas a real image can.

Locating an Image in a Plane Mirror

The law of reflection tells us that the angle of incidence is the same as the angle of reflection. Applying this to triangles  and 
 in Figure  and using basic geometry shows that they are congruent triangles. This means that the distance  from
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the object to the mirror is the same as the distance  from the mirror to the image. The object distance (denoted ) is the
distance from the mirror to the object (or, more generally, from the center of the optical element that creates its image). Similarly,
the image distance (denoted ) is the distance from the mirror to the image (or, more generally, from the center of the optical
element that creates it). If we measure distances from the mirror, then the object and image are in opposite directions, so for a plane
mirror, the object and image distances should have the opposite signs:

An extended object such as the container in Figure  can be treated as a collection of points, and we can apply the method
above to locate the image of each point on the extended object, thus forming the extended image.

Multiple Images
If an object is situated in front of two mirrors, you may see images in both mirrors. In addition, the image in the first mirror may act
as an object for the second mirror, so the second mirror may form an image of the image. If the mirrors are placed parallel to each
other and the object is placed at a point other than the midpoint between them, then this process of image-of-an-image continues
without end, as you may have noticed when standing in a hallway with mirrors on each side. This is shown in Figure , which
shows three images produced by the blue object. Notice that each reflection reverses front and back, just like pulling a right-hand
glove inside out produces a left-hand glove (this is why a reflection of your right hand is a left hand). Thus, the fronts and backs of
images 1 and 2 are both inverted with respect to the object, and the front and back of image 3 is inverted with respect to image 2,
which is the object for image 3.

Figure . Two parallel mirrors can produce, in theory, an infinite number of images of an object placed off center between the
mirrors. Three of these images are shown here. The front and back of each image is inverted with respect to its object. Note that the
colors are only to identify the images. For normal mirrors, the color of an image is essentially the same as that of its object.

You may have noticed that image 3 is smaller than the object, whereas images 1 and 2 are the same size as the object. The ratio of
the image height with respect to the object height is called magnification. More will be said about magnification in the next section.

Infinite reflections may terminate. For instance, two mirrors at right angles form three images, as shown in Figure . Images
1 and 2 result from rays that reflect from only a single mirror, but image 1,2 is formed by rays that reflect from both mirrors. This is
shown in the ray-tracing diagram in (\PageIndex{3b}\). To find image 1,2, you have to look behind the corner of the two mirrors.
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Figure . Two mirrors can produce multiple images. (a) Three images of a plastic head are visible in the two mirrors at a right
angle. (b) A single object reflecting from two mirrors at a right angle can produce three images, as shown by the green, purple, and
red images.

Images Formed by Spherical Mirrors
The image in a plane mirror has the same size as the object, is upright, and is the same distance behind the mirror as the object is in
front of the mirror. A curved mirror, on the other hand, can form images that may be larger or smaller than the object and may form
either in front of the mirror or behind it. In general, any curved surface will form an image, although some images make be so
distorted as to be unrecognizable (think of fun house mirrors). Because curved mirrors can create such a rich variety of images,
they are used in many optical devices that find many uses. We will concentrate on spherical mirrors for the most part, because they
are easier to manufacture than mirrors such as parabolic mirrors and so are more common.

Curved Mirrors
We can define two general types of spherical mirrors. If the reflecting surface is the outer side of the sphere, the mirror is called a
convex mirror. If the inside surface is the reflecting surface, it is called a concave mirror.

Symmetry is one of the major hallmarks of many optical devices, including mirrors and lenses. The symmetry axis of such optical
elements is often called the principal axis or optical axis. For a spherical mirror, the optical axis passes through the mirror’s center
of curvature and the mirror’s vertex, as shown in Figure .

Figure . A spherical mirror is formed by cutting out a piece of a sphere and silvering either the inside or outside surface. A
concave mirror has silvering on the interior surface (think “cave”), and a convex mirror has silvering on the exterior surface.

Consider rays that are parallel to the optical axis of a parabolic mirror, as shown in Figure . Following the law of reflection,
these rays are reflected so that they converge at a point, called the focal point. Figure  shows a spherical mirror that is large
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compared with its radius of curvature. For this mirror, the reflected rays do not cross at the same point, so the mirror does not have
a well-defined focal point. This is called spherical aberration and results in a blurred image of an extended object. Figure 
shows a spherical mirror that is small compared to its radius of curvature. This mirror is a good approximation of a parabolic
mirror, so rays that arrive parallel to the optical axis are reflected to a well-defined focal point. The distance along the optical axis
from the mirror to the focal point is called the focal length of the mirror.

Figure : (a) Parallel rays reflected from a parabolic mirror cross at a single point called the focal point F. (b) Parallel rays
reflected from a large spherical mirror do not cross at a common point. (c) If a spherical mirror is small compared with its radius of
curvature, it better approximates the central part of a parabolic mirror, so parallel rays essentially cross at a common point. The
distance along the optical axis from the mirror to the focal point is the focal length f of the mirror.

A convex spherical mirror also has a focal point, as shown in Figure . Incident rays parallel to the optical axis are reflected
from the mirror and seem to originate from point  at focal length  behind the mirror. Thus, the focal point is virtual because no
real rays actually pass through it; they only appear to originate from it.

Figure : (a) Rays reflected by a convex spherical mirror: Incident rays of light parallel to the optical axis are reflected from a
convex spherical mirror and seem to originate from a well-defined focal point at focal distance f on the opposite side of the mirror.
The focal point is virtual because no real rays pass through it. (b) Photograph of a virtual image formed by a convex mirror. (credit
b: modification of work by Jenny Downing)

How does the focal length of a mirror relate to the mirror’s radius of curvature? Figure  shows a single ray that is reflected
by a spherical concave mirror. The incident ray is parallel to the optical axis. The point at which the reflected ray crosses the optical
axis is the focal point. Note that all incident rays that are parallel to the optical axis are reflected through the focal point—we only
show one ray for simplicity. We want to find how the focal length  (denoted by ) relates to the radius of curvature of the
mirror, , whose length is

The law of reflection tells us that angles  and  are the same, and because the incident ray is parallel to the optical
axis, angles  and  are also the same. Thus, triangle  is an isosceles triangle with . If the angle  is
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small then

which is called the “small-angle approximation”), then  or . Inserting this into Equation  for the
radius , we get

In other words, in the small-angle approximation, the focal length  of a concave spherical mirror is half of its radius of curvature, 
:

In this chapter, we assume that the small-angle approximation (also called the paraxial approximation) is always valid. In this
approximation, all rays are paraxial rays, which means that they make a small angle with the optical axis and are at a distance much
less than the radius of curvature from the optical axis. In this case, their angles  of reflection are small angles, so

Figure : Reflection in a concave mirror. In the small-angle approximation, a ray that is parallel to the optical axis CP is
reflected through the focal point F of the mirror.

Using Ray Tracing to Locate Images

To find the location of an image formed by a spherical mirror, we first use ray tracing, which is the technique of drawing rays and
using the law of reflection to determine the reflected rays (later, for lenses, we use the law of refraction to determine refracted
rays). Combined with some basic geometry, we can use ray tracing to find the focal point, the image location, and other
information about how a mirror manipulates light. In fact, we already used ray tracing above to locate the focal point of spherical
mirrors, or the image distance of flat mirrors. To locate the image of an object, you must locate at least two points of the image.
Locating each point requires drawing at least two rays from a point on the object and constructing their reflected rays. The point at
which the reflected rays intersect, either in real space or in virtual space, is where the corresponding point of the image is located.
To make ray tracing easier, we concentrate on four “principal” rays whose reflections are easy to construct.

Figure  shows a concave mirror and a convex mirror, each with an arrow-shaped object in front of it. These are the objects
whose images we want to locate by ray tracing. To do so, we draw rays from point  that is on the object but not on the optical
axis. We choose to draw our ray from the tip of the object. Principal ray 1 goes from point  and travels parallel to the optical axis.
The reflection of this ray must pass through the focal point, as discussed above. Thus, for the concave mirror, the reflection of
principal ray 1 goes through focal point , as shown in Figure . For the convex mirror, the backward extension of the
reflection of principal ray 1 goes through the focal point (i.e., a virtual focus). Principal ray 2 travels first on the line going through
the focal point and then is reflected back along a line parallel to the optical axis. Principal ray 3 travels toward the center of
curvature of the mirror, so it strikes the mirror at normal incidence and is reflected back along the line from which it came. Finally,
principal ray 4 strikes the vertex of the mirror and is reflected symmetrically about the optical axis.
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Figure : The four principal rays shown for both (a) a concave mirror and (b) a convex mirror. The image forms where the
rays intersect (for real images) or where their backward extensions intersect (for virtual images).

The four principal rays intersect at point , which is where the image of point  is located. To locate point , drawing any two
of these principle rays would suffice. We are thus free to choose whichever of the principal rays we desire to locate the image.
Drawing more than two principal rays is sometimes useful to verify that the ray tracing is correct.

To completely locate the extended image, we need to locate a second point in the image, so that we know how the image is
oriented. To do this, we trace the principal rays from the base of the object. In this case, all four principal rays run along the optical
axis, reflect from the mirror, and then run back along the optical axis. The difficulty is that, because these rays are collinear, we
cannot determine a unique point where they intersect. All we know is that the base of the image is on the optical axis. However,
because the mirror is symmetrical from top to bottom, it does not change the vertical orientation of the object. Thus, because the
object is vertical, the image must be vertical. Therefore, the image of the base of the object is on the optical axis directly above the
image of the tip, as drawn in the figure.

For the concave mirror, the extended image in this case forms between the focal point and the center of curvature of the mirror. It is
inverted with respect to the object, is a real image, and is smaller than the object. Were we to move the object closer to or farther
from the mirror, the characteristics of the image would change. For example, we show, as a later exercise, that an object placed
between a concave mirror and its focal point leads to a virtual image that is upright and larger than the object. For the convex
mirror, the extended image forms between the focal point and the mirror. It is upright with respect to the object, is a virtual image,
and is smaller than the object.

Ray tracing is very useful for mirrors. The rules for ray tracing are summarized here for reference:

A ray traveling parallel to the optical axis of a spherical mirror is reflected along a line that goes through the focal point of
the mirror (ray 1 in Figure ).
A ray traveling along a line that goes through the focal point of a spherical mirror is reflected along a line parallel to the
optical axis of the mirror (ray 2 in Figure ).
A ray traveling along a line that goes through the center of curvature of a spherical mirror is reflected back along the same
line (ray 3 in Figure ).
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A ray that strikes the vertex of a spherical mirror is reflected symmetrically about the optical axis of the mirror (ray 4 in
Figure ).

We use ray tracing to illustrate how images are formed by mirrors and to obtain numerical information about optical properties
of the mirror. If we assume that a mirror is small compared with its radius of curvature, we can also use algebra and geometry
to derive a mirror equation, which we do in the next section. Combining ray tracing with the mirror equation is a good way to
analyze mirror systems.

Image Formation by Reflection—The Mirror Equation
For a plane mirror, we showed that the image formed has the same height and orientation as the object, and it is located at the same
distance behind the mirror as the object is in front of the mirror. Although the situation is a bit more complicated for curved
mirrors, using geometry leads to simple formulas relating the object and image distances to the focal lengths of concave and
convex mirrors.

Figure : Image formed by a concave mirror.

Consider the object  shown in Figure . The center of curvature of the mirror is labeled  and is a distance  from the
vertex of the mirror, as marked in the figure. The object and image distances are labeled  and , and the object and image
heights are labeled  and , respectively. Because the angles  and  are alternate interior angles, we know that they have the
same magnitude. However, they must differ in sign if we measure angles from the optical axis, so . An analogous scenario
holds for the angles  and . The law of reflection tells us that they have the same magnitude, but their signs must differ if we
measure angles from the optical axis. Thus, . Taking the tangent of the angles  and , and using the property that 

, gives us

or

Similarly, taking the tangent of  and  gives

or
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Combining Equation  and  gives

After a little algebra, this becomes

No approximation is required for this result, so it is exact. However, as discussed above, in the small-angle approximation, the focal
length of a spherical mirror is one-half the radius of curvature of the mirror, or . Inserting this into Equation  gives
the mirror equation:

The mirror equation relates the image and object distances to the focal distance and is valid only in the small-angle approximation
(Equation ). Although it was derived for a concave mirror, it also holds for convex mirrors (proving this is left as an
exercise). We can extend the mirror equation to the case of a plane mirror by noting that a plane mirror has an infinite radius of
curvature. This means the focal point is at infinity, so the mirror equation simplifies to

which is the same equation obtained earlier.

Notice that we have been very careful with the signs in deriving the mirror equation. For a plane mirror, the image distance has the
opposite sign of the object distance. Also, the real image formed by the concave mirror in Figure  is on the opposite side of
the optical axis with respect to the object. In this case, the image height should have the opposite sign of the object height. To keep
track of the signs of the various quantities in the mirror equation, we now introduce a sign convention.

Using a consistent sign convention is very important in geometric optics. It assigns positive or negative values for the
quantities that characterize an optical system. Understanding the sign convention allows you to describe an image without
constructing a ray diagram. This text uses the following sign convention:

1. The focal length  is positive for concave mirrors and negative for convex mirrors.
2. The image distance  is positive for real images and negative for virtual images.

Notice that rule 1 means that the radius of curvature of a spherical mirror can be positive or negative. What does it mean to
have a negative radius of curvature? This means simply that the radius of curvature for a convex mirror is defined to be
negative.

Image Magnification

Let’s use the sign convention to further interpret the derivation of the mirror equation. In deriving this equation, we found that the
object and image heights are related by

See Equation . Both the object and the image formed by the mirror in Figure  are real, so the object and image
distances are both positive. The highest point of the object is above the optical axis, so the object height is positive. The image,
however, is below the optical axis, so the image height is negative. Thus, this sign convention is consistent with our derivation of
the mirror equation.

Equation  in fact describes the linear magnification (often simply called “magnification”) of the image in terms of the
object and image distances. We thus define the dimensionless magnification  as follows:

10.5.5 10.5.7

= .
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If  is positive, the image is upright, and if  is negative, the image is inverted. If , the image is larger than the object,
and if , the image is smaller than the object. With this definition of magnification, we get the following relation between
the vertical and horizontal object and image distances:

This is a very useful relation because it lets you obtain the magnification of the image from the object and image distances, which
you can obtain from the mirror equation.

One of the solar technologies used today for generating electricity involves a device (called a parabolic trough or concentrating
collector) that concentrates sunlight onto a blackened pipe that contains a fluid. This heated fluid is pumped to a heat
exchanger, where the thermal energy is transferred to another system that is used to generate steam and eventually generates
electricity through a conventional steam cycle. Figure  shows such a working system in southern California. The real
mirror is a parabolic cylinder with its focus located at the pipe; however, we can approximate the mirror as exactly one-quarter
of a circular cylinder.

Figure : Parabolic trough collectors are used to generate electricity in southern California. (credit: “kjkolb”/Wikimedia
Commons)

1. If we want the rays from the sun to focus at 40.0 cm from the mirror, what is the radius of the mirror?
2. What is the amount of sunlight concentrated onto the pipe, per meter of pipe length, assuming the insolation (incident solar

radiation) is 900 W/m ?
3. If the fluid-carrying pipe has a 2.00-cm diameter, what is the temperature increase of the fluid per meter of pipe over a

period of 1 minute? Assume that all solar radiation incident on the reflector is absorbed by the pipe, and that the fluid is
mineral oil.

Strategy

First identify the physical principles involved. Part (a) is related to the optics of spherical mirrors. Part (b) involves a little
math, primarily geometry. Part (c) requires an understanding of heat and density.

Solution
a. The sun is the object, so the object distance is essentially infinity: . The desired image distance is . We
use the mirror equation (Equation ) to find the focal length of the mirror:

.m =
hi

ho  
linear magnification

(10.5.11)
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di
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 Example : Solar Electric Generating System10.5.1
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Thus, the radius of the mirror is

b. The insolation is 900 W/m . You must find the cross-sectional area  of the concave mirror, since the power delivered is 
. The mirror in this case is a quarter-section of a cylinder, so the area for a length  of the mirror is 

. The area for a length of 1.00 m is then

The insolation on the 1.00-m length of pipe is then

c. The increase in temperature is given by . The mass  of the mineral oil in the one-meter section of pipe is

Therefore, the increase in temperature in one minute is

Significance

An array of such pipes in the California desert can provide a thermal output of 250 MW on a sunny day, with fluids reaching
temperatures as high as 400°C. We are considering only one meter of pipe here and ignoring heat losses along the pipe.

A keratometer is a device used to measure the curvature of the cornea of the eye, particularly for fitting contact lenses. Light is
reflected from the cornea, which acts like a convex mirror, and the keratometer measures the magnification of the image. The
smaller the magnification, the smaller the radius of curvature of the cornea. If the light source is 12 cm from the cornea and the
image magnification is 0.032, what is the radius of curvature of the cornea?

Strategy
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If you find the focal length of the convex mirror formed by the cornea, then you know its radius of curvature (it’s twice the
focal length). The object distance is d =12cm and the magnification is m=0.032. First find the image distance  and then solve
for the focal length .

Solution
Start with the equation for magnification (Equation ) and solving for  and inserting the given values yields

where we retained an extra significant figure because this is an intermediate step in the calculation. Solve the mirror equation
for the focal length  and insert the known values for the object and image distances. The result is

The radius of curvature is twice the focal length, so

Significance

The focal length is negative, so the focus is virtual, as expected for a concave mirror and a real object. The radius of curvature
found here is reasonable for a cornea. The distance from cornea to retina in an adult eye is about 2.0 cm. In practice, corneas
may not be spherical, which complicates the job of fitting contact lenses. Note that the image distance here is negative,
consistent with the fact that the image is behind the mirror. Thus, the image is virtual because no rays actually pass through it.
In the problems and exercises, you will show that, for a fixed object distance, a smaller radius of curvature corresponds to a
smaller the magnification.

Step 1. First make sure that image formation by a spherical mirror is involved.
Step 2. Determine whether ray tracing, the mirror equation, or both are required. A sketch is very useful even if ray tracing
is not specifically required by the problem. Write symbols and known values on the sketch.
Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).
Step 4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
Step 5. If ray tracing is required, use the ray-tracing rules listed near the beginning of this section.
Step 6. Most quantitative problems require using the mirror equation. Use the examples as guides for using the mirror
equation.
Step 7. Check to see whether the answer makes sense. Do the signs of object distance, image distance, and focal length
correspond with what is expected from ray tracing? Is the sign of the magnification correct? Are the object and image
distances reasonable?

Departure from the Small-Angle Approximation

The small-angle approximation (Equation ) is a cornerstone of the above discussion of image formation by a spherical
mirror. When this approximation is violated, then the image created by a spherical mirror becomes distorted. Such distortion is
called aberration. Here we briefly discuss two specific types of aberrations: spherical aberration and coma.

Spherical aberration
Consider a broad beam of parallel rays impinging on a spherical mirror, as shown in Figure . The farther from the optical
axis the rays strike, the worse the spherical mirror approximates a parabolic mirror. Thus, these rays are not focused at the same
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point as rays that are near the optical axis, as shown in the figure. Because of spherical aberration, the image of an extended object
in a spherical mirror will be blurred. Spherical aberrations are characteristic of the mirrors and lenses that we consider in the
following section of this chapter (more sophisticated mirrors and lenses are needed to eliminate spherical aberrations).

Figure : (a) With spherical aberration, the rays that are farther from the optical axis and the rays that are closer to the optical
axis are focused at different points. Notice that the aberration gets worse for rays farther from the optical axis. (b) For comatic
aberration, parallel rays that are not parallel to the optical axis are focused at different heights and at different focal lengths, so the
image contains a “tail” like a comet (which is “coma” in Latin). Note that the colored rays are only to facilitate viewing; the colors
do not indicate the color of the light.

Coma or Comatic Aberration
Coma is similar to spherical aberration, but arises when the incoming rays are not parallel to the optical axis, as shown in Figure 

. Recall that the small-angle approximation holds for spherical mirrors that are small compared to their radius. In this case,
spherical mirrors are good approximations of parabolic mirrors. Parabolic mirrors focus all rays that are parallel to the optical axis
at the focal point. However, parallel rays that are not parallel to the optical axis are focused at different heights and at different
focal lengths, as show in Figure . Because a spherical mirror is symmetric about the optical axis, the various colored rays in
this figure create circles of the corresponding color on the focal plane.

Although a spherical mirror is shown in Figure , comatic aberration occurs also for parabolic mirrors—it does not result
from a breakdown in the small-angle approximation (Equation ). Spherical aberration, however, occurs only for spherical
mirrors and is a result of a breakdown in the small-angle approximation. We will discuss both coma and spherical aberration later
in this chapter, in connection with telescopes.

This page titled 10.5: Images Formed by Mirrors is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

2.2: Images Formed by Plane Mirrors by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-3.
2.3: Spherical Mirrors by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-3.
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10.6: Images Formed by Refraction

By the end of this section, you will be able to:

Describe image formation by a single refracting surface
Determine the location of an image and calculate its properties by using a ray diagram
Determine the location of an image and calculate its properties by using the equation for a single refracting surface
Use ray diagrams to locate and describe the image formed by a lens
Employ the thin-lens equation to describe and locate the image formed by a lens

When rays of light propagate from one medium to another, these rays undergo refraction, which is when light waves are bent at the
interface between two media. The refracting surface can form an image in a similar fashion to a reflecting surface, except that the
law of refraction (Snell’s law) is at the heart of the process instead of the law of reflection.

Refraction at a Plane Interface—Apparent Depth
If you look at a straight rod partially submerged in water, it appears to bend at the surface. The reason behind this curious effect is
that the image of the rod inside the water forms a little closer to the surface than the actual position of the rod, so it does not line up
with the part of the rod that is above the water. The same phenomenon explains why a fish in water appears to be closer to the
surface than it actually is.

Figure : Bending of a rod at a water-air interface. Point  on the rod appears to be at point , which is where the image of
point P forms due to refraction at the air-water interface.

To study image formation as a result of refraction, consider the following questions:

1. What happens to the rays of light when they enter or pass through a different medium?
2. Do the refracted rays originating from a single point meet at some point or diverge away from each other?

To be concrete, we consider a simple system consisting of two media separated by a plane interface (Figure ). The object is
in one medium and the observer is in the other. For instance, when you look at a fish from above the water surface, the fish is in
medium 1 (the water) with refractive index 1.33, and your eye is in medium 2 (the air) with refractive index 1.00, and the surface of
the water is the interface. The depth that you “see” is the image height  and is called the apparent depth. The actual depth of the
fish is the object height .

 Learning Objectives
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Figure : Apparent depth due to refraction. The real object at point P creates an image at point Q. The image is not at the same
depth as the object, so the observer sees the image at an “apparent depth.”

The apparent depth h  depends on the angle at which you view the image. For a view from above (the so-called “normal” view), we
can approximate the refraction angle  to be small, and replace  in Snell’s law by . With this approximation, you can use
the triangles  and  to show that the apparent depth is given by

The derivation of this result is left as an exercise. Thus, a fish appears at 3/4 of the real depth when viewed from above.

Refraction at a Spherical Interface

Spherical shapes play an important role in optics primarily because high-quality spherical shapes are far easier to manufacture than
other curved surfaces. To study refraction at a single spherical surface, we assume that the medium with the spherical surface at one
end continues indefinitely (a “semi-infinite” medium).

Refraction at a Convex Surface
Consider a point source of light at point P in front of a convex surface made of glass (Figure ). Let  be the radius of
curvature, n  be the refractive index of the medium in which object point P is located, and n  be the refractive index of the medium
with the spherical surface. We want to know what happens as a result of refraction at this interface.

Figure : Refraction at a convex surface ( ).

Because of the symmetry involved, it is sufficient to examine rays in only one plane. The figure shows a ray of light that starts at
the object point , refracts at the interface, and goes through the image point . We derive a formula relating the object distance 

, the image distance , and the radius of curvature .

Applying Snell’s law to the ray emanating from point  gives

Within the small-angle approximation
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Snell’s law then takes the form

From the geometry of Figure , we see that

Inserting both expressions into Equation  gives

Using Figure , we calculate the tangent of the angles , , and :

Again using the small-angle approximation, we find that , so the above relationships become

Putting these angles into Equation  gives

We can write this more conveniently as

If the object is placed at a special point called the first focus, or the object focus , then the image is formed at infinity, as shown
in Figure .

Figure : (a) First focus (called the “object focus”) for refraction at a convex surface. (b) Second focus (called “image focus”)
for refraction at a convex surface.

We can find the location  of the first focus  by setting  in Equation .

≈ .n1θ1 n2θ2 (10.6.1)
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Similarly, we can define a second focus or image focus  where the image is formed for an object that is far away (Figure 
). The location of the second focus  is obtained from Equation  by setting :

Note that the object focus is at a different distance from the vertex than the image focus because .

Although we derived this equation for refraction at a convex surface, the same expression holds for a concave surface,
provided we use the following sign convention:

1.  if surface is convex toward object; otherwise, .
2.  if image is real and on opposite side from the object; otherwise, .

Thin Lenses
Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to a camera’s zoom lens to the eye
itself. In this section, we use the Snell’s law to explore the properties of lenses and how they form images.

The word “lens” derives from the Latin word for a lentil bean, the shape of which is similar to a convex lens. However, not all
lenses have the same shape. Figure  shows a variety of different lens shapes. The vocabulary used to describe lenses is the
same as that used for spherical mirrors: The axis of symmetry of a lens is called the optical axis, where this axis intersects the lens
surface is called the vertex of the lens, and so forth.

Figure : Various types of lenses: Note that a converging lens has a thicker “waist,” whereas a diverging lens has a thinner
waist.

A convex or converging lens is shaped so that all light rays that enter it parallel to its optical axis intersect (or focus) at a single
point on the optical axis on the opposite side of the lens, as shown in Figure . Likewise, a concave or diverging lens is
shaped so that all rays that enter it parallel to its optical axis diverge, as shown in part (b). To understand more precisely how a lens
manipulates light, look closely at the top ray that goes through the converging lens in part (a). Because the index of refraction of
the lens is greater than that of air, Snell’s law tells us that the ray is bent toward the perpendicular to the interface as it enters the
lens. Likewise, when the ray exits the lens, it is bent away from the perpendicular. The same reasoning applies to the diverging
lenses, as shown in Figure . The overall effect is that light rays are bent toward the optical axis for a converging lens and
away from the optical axis for diverging lenses. For a converging lens, the point at which the rays cross is the focal point F of the
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lens. For a diverging lens, the point from which the rays appear to originate is the (virtual) focal point. The distance from the center
of the lens to its focal point is the focal length f of the lens.

Figure : Rays of light entering (a) a converging lens and (b) a diverging lens, parallel to its axis, converge at its focal point F.
The distance from the center of the lens to the focal point is the lens’s focal length f. Note that the light rays are bent upon entering
and exiting the lens, with the overall effect being to bend the rays toward the optical axis.

A lens is considered to be thin if its thickness t is much less than the radii of curvature of both surfaces, as shown in Figure .
In this case, the rays may be considered to bend once at the center of the lens. For the case drawn in the figure, light ray 1 is
parallel to the optical axis, so the outgoing ray is bent once at the center of the lens and goes through the focal point. Another
important characteristic of thin lenses is that light rays that pass through the center of the lens are undeviated, as shown by light ray
2.

Figure : In the thin-lens approximation, the thickness t of the lens is much, much less than the radii R  and R  of curvature of
the surfaces of the lens. Light rays are considered to bend at the center of the lens, such as light ray 1. Light ray 2 passes through
the center of the lens and is undeviated in the thin-lens approximation.

As noted in the initial discussion of Snell’s law, the paths of light rays are exactly reversible. This means that the direction of the
arrows could be reversed for all of the rays in Figure . For example, if a point-light source is placed at the focal point of a
convex lens, as shown in Figure , parallel light rays emerge from the other side.
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Figure  in converging and diverging lenses. This technique is used in lighthouses and sometimes in traffic lights to produce a
directional beam of light from a source that emits light in all directions.

Ray Tracing and Thin Lenses
Ray tracing is the technique of determining or following (tracing) the paths taken by light rays. Ray tracing for thin lenses is very
similar to the technique we used with spherical mirrors. As for mirrors, ray tracing can accurately describe the operation of a lens.
The rules for ray tracing for thin lenses are similar to those of spherical mirrors:

1. A ray entering a converging lens parallel to the optical axis passes through the focal point on the other side of the lens (ray 1 in
part (a) of Figure ). A ray entering a diverging lens parallel to the optical axis exits along the line that passes through the
focal point on the same side of the lens (ray 1 in part (b) of the figure).

2. A ray passing through the center of either a converging or a diverging lens is not deviated (ray 2 in parts (a) and (b)).
3. For a converging lens, a ray that passes through the focal point exits the lens parallel to the optical axis (ray 3 in part (a)). For a

diverging lens, a ray that approaches along the line that passes through the focal point on the opposite side exits the lens parallel
to the axis (ray 3 in part (b)).

Figure : Thin lenses have the same focal lengths on either side. (a) Parallel light rays entering a converging lens from the
right cross at its focal point on the left. (b) Parallel light rays entering a diverging lens from the right seem to come from the focal
point on the right.

Thin lenses work quite well for monochromatic light (i.e., light of a single wavelength). However, for light that contains several
wavelengths (e.g., white light), the lenses work less well. The problem is that, as we learned in the previous chapter, the index of
refraction of a material depends on the wavelength of light. This phenomenon is responsible for many colorful effects, such as
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rainbows. Unfortunately, this phenomenon also leads to aberrations in images formed by lenses. In particular, because the focal
distance of the lens depends on the index of refraction, it also depends on the wavelength of the incident light. This means that light
of different wavelengths will focus at different points, resulting is so-called “chromatic aberrations.” In particular, the edges of an
image of a white object will become colored and blurred. Special lenses called doublets are capable of correcting chromatic
aberrations. A doublet is formed by gluing together a converging lens and a diverging lens. The combined doublet lens produces
significantly reduced chromatic aberrations.

Image Formation by Thin Lenses
We use ray tracing to investigate different types of images that can be created by a lens. In some circumstances, a lens forms a real
image, such as when a movie projector casts an image onto a screen. In other cases, the image is a virtual image, which cannot be
projected onto a screen. Where, for example, is the image formed by eyeglasses? We use ray tracing for thin lenses to illustrate how
they form images, and then we develop equations to analyze quantitatively the properties of thin lenses.

Consider an object some distance away from a converging lens, as shown in Figure . To find the location and size of the
image, we trace the paths of selected light rays originating from one point on the object, in this case, the tip of the arrow. The figure
shows three rays from many rays that emanate from the tip of the arrow. These three rays can be traced by using the ray-tracing
rules given above.

Ray 1 enters the lens parallel to the optical axis and passes through the focal point on the opposite side (rule 1).
Ray 2 passes through the center of the lens and is not deviated (rule 2).
Ray 3 passes through the focal point on its way to the lens and exits the lens parallel to the optical axis (rule 3).

The three rays cross at a single point on the opposite side of the lens. Thus, the image of the tip of the arrow is located at this point.
All rays that come from the tip of the arrow and enter the lens are refracted and cross at the point shown.

After locating the image of the tip of the arrow, we need another point of the image to orient the entire image of the arrow. We
chose to locate the image base of the arrow, which is on the optical axis. As explained in the section on spherical mirrors, the base
will be on the optical axis just above the image of the tip of the arrow (due to the top-bottom symmetry of the lens). Thus, the
image spans the optical axis to the (negative) height shown. Rays from another point on the arrow, such as the middle of the arrow,
cross at another common point, thus filling in the rest of the image.

Although three rays are traced in this figure, only two are necessary to locate a point of the image. It is best to trace rays for which
there are simple ray-tracing rules.

Figure : Ray tracing is used to locate the image formed by a lens. Rays originating from the same point on the object are
traced—the three chosen rays each follow one of the rules for ray tracing, so that their paths are easy to determine. The image is
located at the point where the rays cross. In this case, a real image—one that can be projected on a screen—is formed.

Several important distances appear in the figure. As for a mirror, we define dodo to be the object distance, or the distance of an
object from the center of a lens. The image distance d  is defined to be the distance of the image from the center of a lens. The
height of the object and the height of the image are indicated by h  and h , respectively. Images that appear upright relative to the
object have positive heights, and those that are inverted have negative heights. By using the rules of ray tracing and making a scale
drawing with paper and pencil, like that in Figure , we can accurately describe the location and size of an image. But the real
benefit of ray tracing is in visualizing how images are formed in a variety of situations.
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Oblique Parallel Rays and Focal Plane
We have seen that rays parallel to the optical axis are directed to the focal point of a converging lens. In the case of a diverging
lens, they come out in a direction such that they appear to be coming from the focal point on the opposite side of the lens (i.e., the
side from which parallel rays enter the lens). What happens to parallel rays that are not parallel to the optical axis (Figure )?
In the case of a converging lens, these rays do not converge at the focal point. Instead, they come together on another point in the
plane called the focal plane. The focal plane contains the focal point and is perpendicular to the optical axis. As shown in the
figure, parallel rays focus where the ray through the center of the lens crosses the focal plane.

Figure : Parallel oblique rays focus on a point in a focal plane.

Thin-Lens Equation

Ray tracing allows us to get a qualitative picture of image formation. To obtain numeric information, we derive a pair of equations
from a geometric analysis of ray tracing for thin lenses. These equations, called the thin-lens equation and the lens maker’s
equation, allow us to quantitatively analyze thin lenses.

Consider the thick bi-convex lens shown in Figure . The index of refraction of the surrounding medium is n  (if the lens is in
air, then ) and that of the lens is . The radii of curvatures of the two sides are  and . We wish to find a relation
between the object distance , the image distance , and the parameters of the lens.

Figure  for deriving the lens maker’s equation. Here,  is the thickness of lens, n  is the index of refraction of the exterior
medium, and  is the index of refraction of the lens. We take the limit of  to obtain the formula for a thin lens.

To derive the thin-lens equation, we consider the image formed by the first refracting surface (i.e., left surface) and then use this
image as the object for the second refracting surface. In the figure, the image from the first refracting surface is , which is
formed by extending backwards the rays from inside the lens (these rays result from refraction at the first surface). This is shown
by the dashed lines in the figure. Notice that this image is virtual because no rays actually pass through the point Q′. To find the
image distance  corresponding to the image Q′, we use Equation2.4.9. In this case, the object distance is , the image distance
is d′idi′, and the radius of curvature is . Inserting these into the relationship derived previous for refraction at curves surfaces
gives
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The image is virtual and on the same side as the object, so d ′<0 and d >0. The first surface is convex toward the object, so .

To find the object distance for the object  formed by refraction from the second interface, note that the role of the indices of
refraction n  and n  are interchanged in Equation2.4.9. In Figure , the rays originate in the medium with index , whereas
in Figure 2.4.3, the rays originate in the medium with index . Thus, we must interchange n  and n  in Equation2.4.9. In addition,
by consulting again Figure , we see that the object distance is  and the image distance is . The radius of curvature is R
Inserting these quantities into Equation2.4.9 gives

The image is real and on the opposite side from the object, so  and . The second surface is convex away from the
object, so . Equation  can be simplified by noting that

where we have taken the absolute value because  is a negative number, whereas both  and  are positive. We can dispense
with the absolute value if we negate , which gives

Inserting this into Equation  gives

Summing Equations  and  gives

In the thin-lens approximation, we assume that the lens is very thin compared to the first image distance, or  (or,
equivalently,  and ). In this case, the third and fourth terms on the left-hand side of Equation  cancel,
leaving us with

Dividing by  gives us finally

The left-hand side looks suspiciously like the mirror equation that we derived above for spherical mirrors. As done for spherical
mirrors, we can use ray tracing and geometry to show that, for a thin lens,

where  is the focal length of the thin lens (this derivation is left as an exercise). This is the thin-lens equation. The focal length of
a thin lens is the same to the left and to the right of the lens. Combining Equations  and  gives

which is called the lens maker’s equation. It shows that the focal length of a thin lens depends only of the radii of curvature and
the index of refraction of the lens and that of the surrounding medium. For a lens in air,  and , so the lens maker’s
equation reduces to
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To properly use the thin-lens equation, the following sign conventions must be obeyed:

 is positive if the image is on the side opposite the object (i.e., real image); otherwise,  is negative (i.e., virtual image).
 is positive for a converging lens and negative for a diverging lens.
 is positive for a surface convex toward the object, and negative for a s urface concave toward object.

Making Lenses

The simulation above presents you with a flat piece of translucid material. The sliders allow you to make lenses and become more
familiar with the factors that determine how lenses behave, acting on this case on a beam of parallel red light rays.

 

Magnification

By using a finite-size object on the optical axis and ray tracing, you can show that the magnification  of an image is

(where the three lines mean “is defined as”). This is exactly the same equation as we obtained for mirrors (see Equation 2.3.15). If 
, then the image has the same vertical orientation as the object (called an “upright” image). If m<0, then the image has the

opposite vertical orientation as the object (called an “inverted” image).

Using the Thin-Lens Equation
The thin-lens equation and the lens maker’s equation are broadly applicable to situations involving thin lenses. We explore many
features of image formation in the following examples.

Consider a thin converging lens. Where does the image form and what type of image is formed as the object approaches the lens
from infinity? This may be seen by using the thin-lens equation for a given focal length to plot the image distance as a function of
object distance. In other words, we plot

for a given value of . For , the result is shown in Figure .

Figure : (a) Image distance for a thin converging lens with f=1.0 cm as a function of object distance. (b) Same thing but for a
diverging lens with f=−1.0 cm.
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An object much farther than the focal length f from the lens should produce an image near the focal plane, because the second term
on the right-hand side of the equation above becomes negligible compared to the first term, so we have . This can be seen in
the plot of part (a) of the figure, which shows that the image distance approaches asymptotically the focal length of 1 cm for larger
object distances. As the object approaches the focal plane, the image distance diverges to positive infinity. This is expected because
an object at the focal plane produces parallel rays that form an image at infinity (i.e., very far from the lens). When the object is
farther than the focal length from the lens, the image distance is positive, so the image is real, on the opposite side of the lens from
the object, and inverted (because  via Equation ). When the object is closer than the focal length from the lens,
the image distance becomes negative, which means that the image is virtual, on the same side of the lens as the object, and upright.

For a thin diverging lens of focal length , a similar plot of image distance vs. object distance is shown in Figure 
. In this case, the image distance is negative for all positive object distances, which means that the image is virtual, on the

same side of the lens as the object, and upright. These characteristics may also be seen by ray-tracing diagrams (Figure ).

Figure : The red dots show the focal points of the lenses. (a) A real, inverted image formed from an object that is farther
than the focal length from a converging lens. (b) A virtual, upright image formed from an object that is closer than a focal length
from the lens. (c) A virtual, upright image formed from an object that is farther than a focal length from a diverging lens.

To see a concrete example of upright and inverted images, look at Figure , which shows images formed by converging
lenses when the object (the person’s face in this case) is place at different distances from the lens. In part (a) of the figure, the
person’s face is farther than one focal length from the lens, so the image is inverted. In part (b), the person’s face is closer than one
focal length from the lens, so the image is upright.

Figure : (a) When a converging lens is held farther than one focal length from the man’s face, an inverted image is formed.
Note that the image is in focus but the face is not, because the image is much closer to the camera taking this photograph than the
face. (b) An upright image of the man’s face is produced when a converging lens is held at less than one focal length from his face.
(credit a: modification of work by “DaMongMan”/Flickr; credit b: modification of work by Casey Fleser)

Work through the following examples to better understand how thin lenses work.

Step 1. Determine whether ray tracing, the thin-lens equation, or both would be useful. Even if ray tracing is not used, a
careful sketch is always very useful. Write symbols and values on the sketch.
Step 2. Identify what needs to be determined in the problem (identify the unknowns).
Step 3. Make a list of what is given or can be inferred from the problem (identify the knowns).
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Step 4. If ray tracing is required, use the ray-tracing rules listed near the beginning of this section.
Step 5. Most quantitative problems require the use of the thin-lens equation and/or the lens maker’s equation. Solve these
for the unknowns and insert the given quantities or use both together to find two unknowns.
Step 7. Check to see if the answer is reasonable. Are the signs correct? Is the sketch or ray tracing consistent with the
calculation?

Example : Using the Lens Maker’s Equation
Find the radius of curvature of a biconcave lens symmetrically ground from a glass with index of refractive 1.55 so that its
focal length in air is 20 cm (for a biconcave lens, both surfaces have the same radius of curvature).

Strategy

Use the thin-lens form of the lens maker’s equation:

where  and . Since we are making a symmetric biconcave lens, we have .

Solution
We can determine the radius  of curvature from

Solving for  and inserting , , and  gives

Example : Converging Lens and Different Object Distances
Find the location, orientation, and magnification of the image for an 3.0 cm high object at each of the following positions in
front of a convex lens of focal length 10.0 cm. (a) , (b) , and (c) .

Strategy

We start with the thin-lens equation (Equation )

Solve this for the image distance  and insert the given object distance and focal length.

Solution
a. For  and , this gives

The image is positive, so the image, is real, is on the opposite side of the lens from the object, and is 12.6 cm from the lens. To
find the magnification and orientation of the image, use
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The negative magnification means that the image is inverted. Since , the image is smaller than the object. The size of
the image is given by

b. For  and 

The image distance is negative, so the image is virtual, is on the same side of the lens as the object, and is 10 cm from the lens.
The magnification and orientation of the image are found from

The positive magnification means that the image is upright (i.e., it has the same orientation as the object). Since , the
image is larger than the object. The size of the image is

c. For  and 

The image distance is positive, so the image is real, is on the opposite side of the lens from the object, and is 20.0 cm from the
lens. The magnification is
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The negative magnification means that the image is inverted. Since , the image is the same size as the object.

When solving problems in geometric optics, we often need to combine ray tracing and the lens equations. The following example
demonstrates this approach.

Example : Choosing the Focal Length and Type of Lens
To project an image of a light bulb on a screen 1.50 m away, you need to choose what type of lens to use (converging or
diverging) and its focal length (Figure ). The distance between the lens and the light bulb is fixed at 0.75 m. Also, what
is the magnification and orientation of the image?

Figure : A light bulb placed 0.75 m from a lens having a 0.50-m focal length produces a real image on a screen, as
discussed in the example. Ray tracing predicts the image location and size.

Strategy

The image must be real, so you choose to use a converging lens. The focal length can be found by using the thin-lens equation
and solving for the focal length. The object distance is  and the image distance is .

Solution
Solve the thin lens for the focal length and insert the desired object and image distances:

The magnification is

Significance

The minus sign for the magnification means that the image is inverted. The focal length is positive, as expected for a
converging lens. Ray tracing can be used to check the calculation (Figure ). As expected, the image is inverted, is real,
and is larger than the object.

This page titled 10.6: Images Formed by Refraction is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.
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10.7: Optical Instruments

By the end of this section, you will be able to:

Understand the optics of a simple magnifier
Characterize the image created by a simple magnifier
Describe the optics of a camera
Characterize the image created by a camera
Explain the physics behind the operation of microscopes and telescopes
Describe the image created by these instruments and calculate their magnifications

The Simple Magnifier
The apparent size of an object perceived by the eye depends on the angle the object subtends from the eye. As shown in Figure 

, the object at  subtends a larger angle from the eye than when it is position at point . Thus, the object at  forms a larger
image on the retina (see ) than when it is positioned at  (see ). Thus, objects that subtend large angles from the eye
appear larger because they form larger images on the retina.

Figure : Size perceived by an eye is determined by the angle subtended by the object. An image formed on the retina by an
object at  is larger than an image formed on the retina by the same object positioned at B (compared image heights  to ).

We have seen that, when an object is placed within a focal length of a convex lens, its image is virtual, upright, and larger than the
object (see � part (b) of this Figure). Thus, when such an image produced by a convex lens serves as the object for the eye, as
shown in Figure , the image on the retina is enlarged, because the image produced by the lens subtends a larger angle in the
eye than does the object. A convex lens used for this purpose is called a magnifying glass or a simple magnifier.
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Figure : The simple magnifier is a convex lens used to produce an enlarged image of an object on the retina. (a) With no
convex lens, the object subtends an angle  from the eye. (b) With the convex lens in place, the image produced by the convex
lens subtends an angle  from the eye, with . Thus, the image on the retina is larger with the convex lens in
place.

To account for the magnification of a magnifying lens, we compare the angle subtended by the image (created by the lens) with the
angle subtended by the object (viewed with no lens), as shown in Figure . We assume that the object is situated at the near
point of the eye, because this is the object distance at which the unaided eye can form the largest image on the retina. We will
compare the magnified images created by a lens with this maximum image size for the unaided eye. The magnification of an image
when observed by the eye is the angular magnification , which is defined by the ratio of the angle  subtended by the image
to the angle  subtended by the object:

Consider the situation shown in Figure . The magnifying lens is held a distance  from the eye, and the image produced by
the magnifier forms a distance  from the eye. We want to calculate the angular magnification for any arbitrary  and . In the
small-angle approximation, the angular size  of the image is . The angular size  of the object at the near point is 

. The angular magnification is then

Using the definition of linear magnification

and the thin-lens equation

we arrive at the following expression for the angular magnification of a magnifying lens:
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From Figure , we see that the absolute value of the image distance is . Note that  because the image is
virtual, so we can dispense with the absolute value by explicitly inserting the minus sign:

Inserting Equation  into Equation  gives us the final equation for the angular magnification of a magnifying lens:

Note that all the quantities in this equation have to be expressed in centimeters. Often, we want the image to be at the near-point
distance (e.g., ) to get maximum magnification, and we hold the magnifying lens close to the eye ( ). In this case,
Equation  gives

which shows that the greatest magnification occurs for the lens with the shortest focal length. In addition, when the image is at the
near-point distance and the lens is held close to the eye ( ), then  and Equation  becomes

where  is the linear magnification (Equation ) previously derived for spherical mirrors and thin lenses. Another useful
situation is when the image is at infinity ( ). Equation  then takes the form

The resulting magnification is simply the ratio of the near-point distance to the focal length of the magnifying lens, so a lens with a
shorter focal length gives a stronger magnification. Although this magnification is smaller by 1 than the magnification obtained
with the image at the near point, it provides for the most comfortable viewing conditions, because the eye is relaxed when viewing
a distant object.

By comparing Equations  and , we see that the range of angular magnification of a given converging lens is

A jeweler wishes to inspect a 3.0-mm-diameter diamond with a magnifier. The diamond is held at the jeweler’s near point (25
cm), and the jeweler holds the magnifying lens close to his eye.

a. What should the focal length of the magnifying lens be to see a 15-mm-diameter image of the diamond?
b. What should the focal length of the magnifying lens be to obtain 10× magnification?

Strategy

We need to determine the requisite magnification of the magnifier. Because the jeweler holds the magnifying lens close to his
eye, we can use Equation  to find the focal length of the magnifying lens.

Solution
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a. The required linear magnification is the ratio of the desired image diameter to the diamond’s actual diameter (Equation 
). Because the jeweler holds the magnifying lens close to his eye and the image forms at his near point, the linear

magnification is the same as the angular magnification, so

The focal length f of the magnifying lens may be calculated by solving Equation  for , which gives

b. To get an image magnified by a factor of ten, we again solve Equation  for , but this time we use . The
result is

Significance

Note that a greater magnification is achieved by using a lens with a smaller focal length. We thus need to use a lens with radii
of curvature that are less than a few centimeters and hold it very close to our eye. This is not very convenient. A compound
microscope, explored in the following section, can overcome this drawback.

The Camera
Cameras are very common in our everyday life. Between 1825 and 1827, French inventor Nicéphore Niépce successfully
photographed an image created by a primitive camera. Since then, enormous progress has been achieved in the design of cameras
and camera-based detectors.

Initially, photographs were recorded by using the light-sensitive reaction of silver-based compounds such as silver chloride or silver
bromide. Silver-based photographic paper was in common use until the advent of digital photography in the 1980s, which is
intimately connected to charge-coupled device (CCD) detectors. In a nutshell, a CCD is a semiconductor chip that records images
as a matrix of tiny pixels, each pixel located in a “bin” in the surface. Each pixel is capable of detecting the intensity of light
impinging on it. Color is brought into play by putting red-, blue-, and green-colored filters over the pixels, resulting in colored
digital images (Figure ). At its best resolution, one CCD pixel corresponds to one pixel of the image. To reduce the
resolution and decrease the size of the file, we can “bin” several CCD pixels into one, resulting in a smaller but “pixelated” image.
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Figure : A charge-coupled device (CCD) converts light signals into electronic signals, enabling electronic processing and
storage of visual images. This is the basis for electronic imaging in all digital cameras, from cell phones to movie cameras. (credit
left: modification of work by Bruce Turner)

Clearly, electronics is a big part of a digital camera; however, the underlying physics is basic optics. As a matter of fact, the optics
of a camera are pretty much the same as those of a single lens with an object distance that is significantly larger than the lens’s
focal distance (Figure ).

Figure : Modern digital cameras have several lenses to produce a clear image with minimal aberration and use red, blue, and
green filters to produce a color image.

For instance, let us consider the camera in a smartphone. An average smartphone camera is equipped with a stationary wide-angle
lens with a focal length of about 4–5 mm. (This focal length is about equal to the thickness of the phone.) The image created by the
lens is focused on the CCD detector mounted at the opposite side of the phone. In a cell phone, the lens and the CCD cannot move
relative to each other. So how do we make sure that both the images of a distant and a close object are in focus?

Recall that a human eye can accommodate for distant and close images by changing its focal distance. A cell phone camera cannot
do that because the distance from the lens to the detector is fixed. Here is where the small focal distance becomes important. Let us
assume we have a camera with a 5-mm focal distance. What is the image distance for a selfie? The object distance for a selfie (the
length of the hand holding the phone) is about 50 cm. Using the thin-lens equation, we can write
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We then obtain the image distance:

Note that the object distance is 100 times larger than the focal distance. We can clearly see that the 1/(500 mm) term is significantly
smaller than 1/(5 mm), which means that the image distance is pretty much equal to the lens’s focal length. An actual calculation
gives us the image distance d =5.05mm. This value is extremely close to the lens’s focal distance.

Now let us consider the case of a distant object. Let us say that we would like to take a picture of a person standing about 5 m from
us. Using the thin-lens equation again, we obtain the image distance of 5.005 mm. The farther the object is from the lens, the closer
the image distance is to the focal distance. At the limiting case of an infinitely distant object, we obtain the image distance exactly
equal to the focal distance of the lens.

As you can see, the difference between the image distance for a selfie and the image distance for a distant object is just about 0.05
mm or 50 microns. Even a short object distance such as the length of your hand is two orders of magnitude larger than the lens’s
focal length, resulting in minute variations of the image distance. (The 50-micron difference is smaller than the thickness of an
average sheet of paper.) Such a small difference can be easily accommodated by the same detector, positioned at the focal distance
of the lens. Image analysis software can help improve image quality.

Conventional point-and-shoot cameras often use a movable lens to change the lens-to-image distance. Complex lenses of the more
expensive mirror reflex cameras allow for superb quality photographic images. The optics of these camera lenses is beyond the
scope of this textbook.

Microscopes
Although the eye is marvelous in its ability to see objects large and small, it obviously is limited in the smallest details it can detect.
The desire to see beyond what is possible with the naked eye led to the use of optical instruments. We have seen that a simple
convex lens can create a magnified image, but it is hard to get large magnification with such a lens. A magnification greater than
5× is difficult without distorting the image. To get higher magnification, we can combine the simple magnifying glass with one or
more additional lenses. In this section, we examine microscopes that enlarge the details that we cannot see with the naked eye.

Microscopes were first developed in the early 1600s by eyeglass makers in The Netherlands and Denmark. The simplest compound
microscope is constructed from two convex lenses (Figure ). The objective lens is a convex lens of short focal length (i.e.,
high power) with typical magnification from 5× to 100×. The eyepiece, also referred to as the ocular, is a convex lens of longer
focal length.

The purpose of a microscope is to create magnified images of small objects, and both lenses contribute to the final magnification.
Also, the final enlarged image is produced sufficiently far from the observer to be easily viewed, since the eye cannot focus on
objects or images that are too close (i.e., closer than the near point of the eye).
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Figure : A compound microscope is composed of two lenses: an objective and an eyepiece. The objective forms the first
image, which is larger than the object. This first image is inside the focal length of the eyepiece and serves as the object for the
eyepiece. The eyepiece forms final image that is further magnified.

To see how the microscope in Figure  forms an image, consider its two lenses in succession. The object is just beyond the
focal length  of the objective lens, producing a real, inverted image that is larger than the object. This first image serves as the
object for the second lens, or eyepiece. The eyepiece is positioned so that the first image is within its focal length , so that it
can further magnify the image. In a sense, it acts as a magnifying glass that magnifies the intermediate image produced by the
objective. The image produced by the eyepiece is a magnified virtual image. The final image remains inverted but is farther from
the observer than the object, making it easy to view.

The eye views the virtual image created by the eyepiece, which serves as the object for the lens in the eye. The virtual image
formed by the eyepiece is well outside the focal length of the eye, so the eye forms a real image on the retina.

The magnification of the microscope is the product of the linear magnification  by the objective and the angular magnification 
 by the eyepiece. These are given by

Here,  and  are the focal lengths of the objective and the eyepiece, respectively. We assume that the final image is formed
at the near point of the eye, providing the largest magnification. Note that the angular magnification of the eyepiece is the same as
obtained earlier for the simple magnifying glass. This should not be surprising, because the eyepiece is essentially a magnifying
glass, and the same physics applies here. The net magnification  of the compound microscope is the product of the linear
magnification of the objective and the angular magnification of the eyepiece:
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Calculate the magnification of an object placed 6.20 mm from a compound microscope that has a 6.00 mm-focal length
objective and a 50.0 mm-focal length eyepiece. The objective and eyepiece are separated by 23.0 cm.

Strategy

This situation is similar to that shown in Figure . To find the overall magnification, we must know the linear
magnification of the objective and the angular magnification of the eyepiece. We can use Equation , but we need to use
the thin-lens equation to find the image distance  of the objective.

Solution
Solving the thin-lens equation for  gives

Inserting this result into Equation  along with the known values

gives

Significance

Both the objective and the eyepiece contribute to the overall magnification, which is large and negative, consistent with Figure 
, where the image is seen to be large and inverted. In this case, the image is virtual and inverted, which cannot happen

for a single element.
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Figure : A compound microscope with the image created at infinity.

We now calculate the magnifying power of a microscope when the image is at infinity, as shown in Figure , because this
makes for the most relaxed viewing. The magnifying power of the microscope is the product of linear magnification  of the
objective and the angular magnification  of the eyepiece. We know that

and from the thin-lens equation we obtain

If the final image is at infinity, then the image created by the objective must be located at the focal point of the eyepiece. This may
be seen by considering the thin-lens equation with  or by recalling that rays that pass through the focal point exit the lens
parallel to each other, which is equivalent to focusing at infinity. For many microscopes, the distance between the image-side focal
point of the objective and the object-side focal point of the eyepiece is standardized at L = 16 cm. This distance is called the tube
length of the microscope. From Figure , we see that

Inserting this into Equation  gives

We now need to calculate the angular magnification of the eyepiece with the image at infinity. To do so, we take the ratio of the
angle  subtended by the image to the angle  subtended by the object at the near point of the eye (this is the closest that
the unaided eye can view the object, and thus this is the position where the object will form the largest image on the retina of the
unaided eye). Using Figure  and working in the small-angle approximation, we have

and
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where  is the height of the image formed by the objective, which is the object of the eyepiece. Thus, the angular magnification
of the eyepiece is

The net magnifying power of the compound microscope with the image at infinity is therefore

The focal distances must be in centimeters. The minus sign indicates that the final image is inverted. Note that the only variables in
the equation are the focal distances of the eyepiece and the objective, which makes this equation particularly useful.

Telescopes
Telescopes are meant for viewing distant objects and produce an image that is larger than the image produced in the unaided eye.
Telescopes gather far more light than the eye, allowing dim objects to be observed with greater magnification and better resolution.
Telescopes were invented around 1600, and Galileo was the first to use them to study the heavens, with monumental consequences.
He observed the moons of Jupiter, the craters and mountains on the moon, the details of sunspots, and the fact that the Milky Way
is composed of a vast number of individual stars.

Figure : (a) Galileo made telescopes with a convex objective and a concave eyepiece. These produce an upright image and
are used in spyglasses. (b) Most simple refracting telescopes have two convex lenses. The objective forms a real, inverted image at
(or just within) the focal plane of the eyepiece. This image serves as the object for the eyepiece. The eyepiece forms a virtual,
inverted image that is magnified.
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Figure  shows a refracting telescope made of two lenses. The first lens, called the objective, forms a real image within the
focal length of the second lens, which is called the eyepiece. The image of the objective lens serves as the object for the eyepiece,
which forms a magnified virtual image that is observed by the eye. This design is what Galileo used to observe the heavens.

Although the arrangement of the lenses in a refracting telescope looks similar to that in a microscope, there are important
differences. In a telescope, the real object is far away and the intermediate image is smaller than the object. In a microscope, the
real object is very close and the intermediate image is larger than the object. In both the telescope and the microscope, the eyepiece
magnifies the intermediate image; in the telescope, however, this is the only magnification.

The most common two-lens telescope is shown in Figure . The object is so far from the telescope that it is essentially at
infinity compared with the focal lengths of the lenses , so the incoming rays are essentially parallel and focus on the focal
plane. Thus, the first image is produced at

as shown in the figure, and is not large compared with what you might see by looking directly at the object. However, the eyepiece
of the telescope eyepiece (like the microscope eyepiece) allows you to get nearer than your near point to this first image and so
magnifies it (because you are near to it, it subtends a larger angle from your eye and so forms a larger image on your retina). As for
a simple magnifier, the angular magnification of a telescope is the ratio of the angle subtended by the image (  in ) to
the angle subtended by the real object (  in ):

To obtain an expression for the magnification that involves only the lens parameters, note that the focal plane of the objective lens
lies very close to the focal plan of the eyepiece. If we assume that these planes are superposed, we have the situation shown in
Figure .

Figure : The focal plane of the objective lens of a telescope is very near to the focal plane of the eyepiece. The angle 
subtended by the image viewed through the eyepiece is larger than the angle  subtended by the object when viewed with the
unaided eye.

We further assume that the angles  and  are small, so that the small-angel approximation holds ( ). If the
image formed at the focal plane has height  then

where the minus sign is introduced because the height is negative if we measure both angles in the counterclockwise direction.
Inserting these expressions into Equation  gives

10.7.3a

10.7.3b

≈ ∞d
obj
o

=dobji f obj

θimage 10.7.3b

θobject 10.7.3b

M = .
θimage

θobject
(10.7.16)

10.7.4

10.7.4 θimage

θobject

θobject θimage tanθ ≈ θ

h

≈ tan =θobject  θobject 
h

f obj 

≈ tan =θimage  θimage 
−h

f eye

10.7.16

M = = − .
−hi

f eye

f obj

hi

f obj

f eye
(10.7.17)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76667?pdf


10.7.12 https://phys.libretexts.org/@go/page/76667

Thus, to obtain the greatest angular magnification, it is best to have an objective with a long focal length and an eyepiece with a
short focal length. The greater the angular magnification , the larger an object will appear when viewed through a telescope,
making more details visible. Limits to observable details are imposed by many factors, including lens quality and atmospheric
disturbance. Typical eyepieces have focal lengths of 2.5 cm or 1.25 cm. If the objective of the telescope has a focal length of 1
meter, then these eyepieces result in magnifications of 40× and 80×, respectively. Thus, the angular magnifications make the image
appear 40 times or 80 times closer than the real object.

The minus sign in the magnification indicates the image is inverted, which is unimportant for observing the stars but is a real
problem for other applications, such as telescopes on ships or telescopic gun sights. If an upright image is needed, Galileo’s
arrangement in  can be used. But a more common arrangement is to use a third convex lens as an eyepiece, increasing the
distance between the first two and inverting the image once again, as seen in Figure .

Figure : This arrangement of three lenses in a telescope produces an upright final image. The first two lenses are far enough
apart that the second lens inverts the image of the first. The third lens acts as a magnifier and keeps the image upright and in a
location that is easy to view.

The largest refracting telescope in the world is the 40-inch diameter Yerkes telescope located at Lake Geneva, Wisconsin (Figure 
), and operated by the University of Chicago.

It is very difficult and expensive to build large refracting telescopes. You need large defect-free lenses, which in itself is a
technically demanding task. A refracting telescope basically looks like a tube with a support structure to rotate it in different
directions. A refracting telescope suffers from several problems. The aberration of lenses causes the image to be blurred. Also, as
the lenses become thicker for larger lenses, more light is absorbed, making faint stars more difficult to observe. Large lenses are
also very heavy and deform under their own weight. Some of these problems with refracting telescopes are addressed by avoiding
refraction for collecting light and instead using a curved mirror in its place, as devised by Isaac Newton. These telescopes are
called reflecting telescopes.

Figure : In 1897, the Yerkes Observatory in Wisconsin (USA) built a large refracting telescope with an objective lens that is
40 inches in diameter and has a tube length of 62 feet. (credit: Yerkes Observatory, University of Chicago)
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Reflecting Telescopes
Isaac Newton designed the first reflecting telescope around 1670 to solve the problem of chromatic aberration that happens in all
refracting telescopes. In chromatic aberration, light of different colors refracts by slightly different amounts in the lens. As a result,
a rainbow appears around the image and the image appears blurred. In the reflecting telescope, light rays from a distant source fall
upon the surface of a concave mirror fixed at the bottom end of the tube. The use of a mirror instead of a lens eliminates chromatic
aberration. The concave mirror focuses the rays on its focal plane. The design problem is how to observe the focused image.
Newton used a design in which the focused light from the concave mirror was reflected to one side of the tube into an eyepiece
(Figure ). This arrangement is common in many amateur telescopes and is called the Newtonian design.

Some telescopes reflect the light back toward the middle of the concave mirror using a convex mirror. In this arrangement, the
light-gathering concave mirror has a hole in the middle ( ). The light then is incident on an eyepiece lens. This arrangement
of the objective and eyepiece is called the Cassegrain design. Most big telescopes, including the Hubble space telescope, are of
this design. Other arrangements are also possible. In some telescopes, a light detector is placed right at the spot where light is
focused by the curved mirror.

Figure : Reflecting telescopes: (a) In the Newtonian design, the eyepiece is located at the side of the telescope; (b) in the
Cassegrain design, the eyepiece is located past a hole in the primary mirror.

Most astronomical research telescopes are now of the reflecting type. One of the earliest large telescopes of this kind is the Hale
200-inch (or 5-meter) telescope built on Mount Palomar in southern California, which has a 200 inch-diameter mirror. One of the
largest telescopes in the world is the 10-meter Keck telescope at the Keck Observatory on the summit of the dormant Mauna Kea
volcano in Hawaii. The Keck Observatory operates two 10-meter telescopes. Each is not a single mirror, but is instead made up of
36 hexagonal mirrors. Furthermore, the two telescopes on the Keck can work together, which increases their power to an effective
85-meter mirror. The Hubble telescope (Figure ) is another large reflecting telescope with a 2.4 meter-diameter primary
mirror. The Hubble was put into orbit around Earth in 1990.
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Figure : The Hubble space telescope as seen from the Space Shuttle Discovery. (credit: modification of work by NASA)

The angular magnification  of a reflecting telescope is also given by Equation . For a spherical mirror, the focal length is
half the radius of curvature, so making a large objective mirror not only helps the telescope collect more light, but also increases
the magnification of the image.

This page titled 10.7: Optical Instruments is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

2.8: The Simple Magnifier by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-3.
2.7: The Camera by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-3.
2.9: Microscopes and Telescopes by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-3.
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10.8: The Eye

By the end of this section, you will be able to:

Understand the basic physics of how images are formed by the human eye
Recognize several conditions of impaired vision as well as the optics principles for treating these conditions

Physics of the Eye
The eye is remarkable in how it forms images and in the richness of detail and color it can detect. However, our eyes often need
some correction to reach what is called “normal” vision. Actually, normal vision should be called “ideal” vision because nearly
one-half of the human population requires some sort of eyesight correction, so requiring glasses is by no means “abnormal.” Image
formation by our eyes and common vision correction can be analyzed with the optics discussed earlier in this chapter.

Figure  shows the basic anatomy of the eye. The cornea and lens form a system that, to a good approximation, acts as a
single thin lens. For clear vision, a real image must be projected onto the light-sensitive retina, which lies a fixed distance from the
lens. The flexible lens of the eye allows it to adjust the radius of curvature of the lens to produce an image on the retina for objects
at different distances. The center of the image falls on the fovea, which has the greatest density of light receptors and the greatest
acuity (sharpness) in the visual field. The variable opening (i.e., the pupil) of the eye, along with chemical adaptation, allows the
eye to detect light intensities from the lowest observable to 10 times greater (without damage). This is an incredible range of
detection. Processing of visual nerve impulses begins with interconnections in the retina and continues in the brain. The optic nerve
conveys the signals received by the eye to the brain.

Figure : The cornea and lens of the eye act together to form a real image on the light-sensing retina, which has its densest
concentration of receptors in the fovea and a blind spot over the optic nerve. The radius of curvature of the lens of an eye is
adjustable to form an image on the retina for different object distances. Layers of tissues with varying indices of refraction in the
lens are shown here. However, they have been omitted from other pictures for clarity.

The indices of refraction in the eye are crucial to its ability to form images. Table  lists the indices of refraction relevant to
the eye. The biggest change in the index of refraction, which is where the light rays are most bent, occurs at the air-cornea interface
rather than at the aqueous humor-lens interface. The ray diagram in Figure  shows image formation by the cornea and lens of
the eye. The cornea, which is itself a converging lens with a focal length of approximately 2.3 cm, provides most of the focusing
power of the eye. The lens, which is a converging lens with a focal length of about 6.4 cm, provides the finer focus needed to
produce a clear image on the retina. The cornea and lens can be treated as a single thin lens, even though the light rays pass through
several layers of material (such as cornea, aqueous humor, several layers in the lens, and vitreous humor), changing direction at
each interface. The image formed is much like the one produced by a single convex lens (i.e., a real, inverted image). Although
images formed in the eye are inverted, the brain inverts them once more to make them seem upright.

Table : Refractive Indices Relevant to the Eye*This is an average value. The actual index of refraction varies throughout the lens and is
greatest in center of the lens.

Material Index of Refraction
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Material Index of Refraction

Water 1.33

Air 1.0

Cornea 1.38

Aqueous humor 1.34

Lens 1.41

Vitreous humor 1.34

Figure : In the human eye, an image forms on the retina. Rays from the top and bottom of the object are traced to show how
a real, inverted image is produced on the retina. The distance to the object is not to scale.

As noted, the image must fall precisely on the retina to produce clear vision—that is, the image distance d  must equal the lens-to-
retina distance. Because the lens-to-retina distance does not change, the image distance d  must be the same for objects at all
distances. The ciliary muscles adjust the shape of the eye lens for focusing on nearby or far objects. By changing the shape of the
eye lens, the eye changes the focal length of the lens. This mechanism of the eye is called accommodation.

Figure 3 shows the accommodation of the eye for distant and near vision. Since light rays from a nearby object can diverge and still
enter the eye, the lens must be more converging (more powerful) for close vision than for distant vision. To be more converging,
the lens is made thicker by the action of the ciliary muscle surrounding it. The eye is most relaxed when viewing distant objects,
one reason that microscopes and telescopes are designed to produce distant images. Vision of very distant objects is called totally
relaxed, while close vision is termed accommodated, with the closest vision being fully accommodated.
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Figure : Relaxed and accommodated vision for distant and close objects. (a) Light rays from the same point on a distant
object must be nearly parallel while entering the eye and more easily converge to produce an image on the retina. (b) Light rays
from a nearby object can diverge more and still enter the eye. A more powerful lens is needed to converge them on the retina than
if they were parallel.

We will use the thin lens equations to examine image formation by the eye quantitatively. First, note the power of a lens is given as 
, so we rewrite the thin lens equations as

and

We understand that  must equal the lens-to-retina distance to obtain clear vision, and that normal vision is possible for objects at
distances  to infinity.

Look at the central transparent area of someone’s eye, the pupil, in normal room light. Estimate the diameter of the pupil. Now
turn off the lights and darken the room. After a few minutes turn on the lights and promptly estimate the diameter of the pupil.
What happens to the pupil as the eye adjusts to the room light? Explain your observations.

The eye can detect an impressive amount of detail, considering how small the image is on the retina. To get some idea of how small
the image can be, consider the following example.

What is the size of the image on the retina of a  cm diameter human hair, held at arm’s length (60.0 cm) away?
Take the lens-to-retina distance to be 2.00 cm.

Strategy:

We want to find the height of the image , given the height of the object is  cm. We also know that the
object is 60.0 cm away, so that . For clear vision, the image distance must equal the lens-to-retina distance, and so

. The equation  can be used to find  with the known information.

Solution
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The only unknown variable in the equation  is :

Rearranging to isolate  yields

Substituting the known values gives

Discussion:

This truly small image is not the smallest discernible -- that is, the limit to visual acuity is even smaller than this. Limitations
on visual acuity have to do with the wave properties of light and will be discussed in the next chapter. Some limitation is also
due to the inherent anatomy of the eye and processing that occurs in our brain.

Calculate the power of the eye when viewing objects at the greatest and smallest distances possible with normal vision,
assuming a lens-to-retina distance of 2.00 cm (a typical value).

Strategy:

For clear vision, the image must be on the retina, and so  here. For distant vision, , and for close vision, 
, as discussed earlier. The equation  as written just above, can be used directly to solve for  in

both cases, since we know  and . Power has units of diopters, where , and so we should express all distances in
meters.

Solution

For distant vision,

Since , this gives

Now, for close vision,

Discussion:

For an eye with this typical 2.00 cm lens-to-retina distance, the power of the eye ranges from 50.0 D (for distant totally relaxed
vision) to 54.0 D (for close fully accommodated vision), which is an 8% increase. This increase in power for close vision is
consistent with the preceding discussion and the ray tracing in Figure 3. An 8% ability to accommodate is considered normal
but is typical for people who are about 40 years old. Younger people have greater accommodation ability, whereas older people
gradually lose the ability to accommodate. When an optometrist identifies accommodation as a problem in elder people, it is
most likely due to stiffening of the lens. The lens of the eye changes with age in ways that tend to preserve the ability to see
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 Example :Power Range of the Eye10.8.2

= 2.00cmdi ≈∞do
= 25.0cmdo P = +1

do

1
di

P

di do 1D= 1/m

P = + = + .
1

do

1

di

1

∞

1

0.0200m
(10.8.7)

1/∞= 0

P = 0+50.0/m = 50.0D (distant vision) . (10.8.8)

P = + = +
1

do

1

di

1

0.250m

1

0.0200m
(10.8.9)

= + = 4.00D+50.0D
4.00

m

50.0

m
(10.8.10)

= 54.0D (close vision) l (10.8.11)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76665?pdf


10.8.5 https://phys.libretexts.org/@go/page/76665

distant objects clearly but do not allow the eye to accommodate for close vision, a condition called presbyopia (literally, elder
eye). To correct this vision defect, we place a converging, positive power lens in front of the eye, such as found in reading
glasses. Commonly available reading glasses are rated by their power in diopters, typically ranging from 1.0 to 3.5 D.

The nearest point an object can be placed so that the eye can form a clear image on the retina is called the near point of the eye.
Similarly, the far point is the farthest distance at which an object is clearly visible. A person with normal vision can see objects
clearly at distances ranging from 25 cm to essentially infinity. The near point increases with age, becoming several meters for some
older people. In this text, we consider the near point to be 25 cm.

We can use the thin-lens equations to quantitatively examine image formation by the eye. First, we define the optical power of a
lens as

with the focal length f given in meters. The units of optical power are called “diopters” (D). That is, 1D=1/m,or 1m . Optometrists
prescribe common eyeglasses and contact lenses in units of diopters. With this definition of optical power, we can rewrite the thin-
lens equations as

Working with optical power is convenient because, for two or more lenses close together, the effective optical power of the lens
system is approximately the sum of the optical power of the individual lenses:

The cornea and eye lens have focal lengths of 2.3 and 6.4 cm, respectively. Find the net focal length and optical power of the
eye.

Strategy

The optical powers of the closely spaced lenses add, so .

Solution
Writing the equation for power in terms of the focal lengths gives

Hence, the focal length of the eye (cornea and lens together) is

The optical power of the eye is

For clear vision, the image distance  must equal the lens-to-retina distance. Normal vision is possible for objects at distances 
 to infinity. The following example shows how to calculate the image distance for an object placed at the near point of

the eye.

The net focal length of a particular human eye is 1.7 cm. An object is placed at the near point of the eye. How far behind the
lens is a focused image formed?

Strategy

P =
1

f
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P = + .
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do
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di
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The near point is 25 cm from the eye, so the object distance is d =25 cm. We determine the image distance from the lens
equation:

Solution

Therefore, the image is formed 1.8 cm behind the lens.

Significance

From the magnification formula, we find . Since m<0, the image is inverted in orientation with respect
to the object. From the absolute value of m we see that the image is much smaller than the object; in fact, it is only 7% of the
size of the object.

Vision Correction

The need for some type of vision correction is very common. Typical vision defects are easy to understand with geometric optics,
and some are simple to correct. Figure  illustrates two common vision defects. Nearsightedness, or myopia, is the ability to
see near objects, whereas distant objects are blurry. The eye over converges the nearly parallel rays from a distant object, and the
rays cross in front of the retina. More divergent rays from a close object are converged on the retina for a clear image. The distance
to the farthest object that can be seen clearly is called the far point of the eye (normally the far point is at infinity). Farsightedness,
or hyperopia, is the ability to see far objects clearly, whereas near objects are blurry. A farsighted eye does not sufficiently converge
the rays from a near object to make the rays meet on the retina.
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Figure : (a) The nearsighted (myopic) eye converges rays from a distant object in front of the retina, so they have diverged
when they strike the retina, producing a blurry image. An eye lens that is too powerful can cause nearsightedness, or the eye may
be too long. (b) The farsighted (hyperopic) eye is unable to converge the rays from a close object on the retina, producing blurry
near-field vision. An eye lens with insufficient optical power or an eye that is too short can cause farsightedness.

Since the nearsighted eye over converges light rays, the correction for nearsightedness consists of placing a diverging eyeglass lens
in front of the eye, as shown in Figure . This reduces the optical power of an eye that is too powerful (recall that the focal
length of a diverging lens is negative, so its optical power is negative). Another way to understand this correction is that a diverging
lens will cause the incoming rays to diverge more to compensate for the excessive convergence caused by the lens system of the
eye. The image produced by the diverging eyeglass lens serves as the (optical) object for the eye, and because the eye cannot focus
on objects beyond its far point, the diverging lens must form an image of distant (physical) objects at a point that is closer than the
far point.
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Figure : Correction of nearsightedness requires a diverging lens that compensates for over convergence by the eye. The
diverging lens produces an image closer to the eye than the physical object. This image serves as the optical object for the eye, and
the nearsighted person can see it clearly because it is closer than their far point.

What optical power of eyeglass lens is needed to correct the vision of a nearsighted person whose far point is 30.0 cm? Assume
the corrective lens is fixed 1.50 cm away from the eye.

Strategy

You want this nearsighted person to be able to see distant objects clearly, which means that the eyeglass lens must produce an
image 30.0 cm from the eye for an object at infinity. An image 30.0 cm from the eye will be 30.0 cm−1.50 cm=28.5 cm from
the eyeglass lens. Therefore, we must have d =−28.5cm when d = . The image distance is negative because it is on the same
side of the eyeglass lens as the object.

Solution
Since d  and dodo are known, we can find the optical power of the eyeglass lens by using Equation :

Significance

The negative optical power indicates a diverging (or concave) lens, as expected. If you examine eyeglasses for nearsighted
people, you will find the lenses are thinnest in the center. Additionally, if you examine a prescription for eyeglasses for
nearsighted people, you will find that the prescribed optical power is negative and given in units of diopters.

Correcting farsightedness consists simply of using the opposite type of lens as for nearsightedness (i.e., a converging lens), as
shown in Figure .

Such a lens will produce an image of physical objects that are closer than the near point at a distance that is between the near point
and the far point, so that the person can see the image clearly. To determine the optical power needed for correction, you must
therefore know the person’s near point, as explained in Example .
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Figure : Correction of farsightedness uses a converging lens that compensates for the under convergence by the eye. The
converging lens produces an image farther from the eye than the object, so that the farsighted person can see it clearly.

What optical power of eyeglass lens is needed to allow a farsighted person, whose near point is 1.00 m, to see an object clearly
that is 25.0 cm from the eye? Assume the corrective lens is fixed 1.5 cm from the eye.

Strategy

When an object is 25.0 cm from the person’s eyes, the eyeglass lens must produce an image 1.00 m away (the near point), so
that the person can see it clearly. An image 1.00 m from the eye will be 100cm−1.5cm=98.5cm from the eyeglass lens because
the eyeglass lens is 1.5 cm from the eye. Therefore, d =−98.5cm, where the minus sign indicates that the image is on the same
side of the lens as the object. The object is 25.0cm−1.5cm=23.5cm from the eyeglass lens, so d =23.5cm.

Solution
Since d  and dodo are known, we can find the optical power of the eyeglass lens by using Equation :

Significance

The positive optical power indicates a converging (convex) lens, as expected. If you examine eyeglasses of farsighted people,
you will find the lenses to be thickest in the center. In addition, prescription eyeglasses for farsighted people have a prescribed
optical power that is positive.

Anatomy of the Eye
Our sense of vision occurs due to transduction of light stimuli received through the eyes. The eyes are located within either orbit in
the skull. See Figure  for an illustration of the eye. The eyelids, with lashes at their leading edges, help to protect the eye
from abrasions by blocking particles that may land on the surface of the eye. The inner surface of each lid is a thin membrane
known as the conjunctiva. The conjunctiva extends over the white areas of the eye called the sclera, connecting the eyelids to the
eyeball. The iris is the colored part of the eye. The iris is a smooth muscle that opens and closes the pupil, the hole at the center of
the eye that allows light to enter. The iris constricts the pupil in response to bright light and dilates the pupil in response to dim
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light. The cornea is the transparent front part of the eye that covers the iris, pupil, and anterior chamber. The cornea, with the
anterior chamber and lens, refracts light and contributes to vision. The cornea can be reshaped by surgical procedures such as
LASIK. The innermost layer of the eye is the retina that contains the nervous tissue and specialized cells called photoreceptors for
the initial processing of visual stimuli. Two types of photoreceptors within the retina are the rods and the cones. The cones are
sensitive to different wavelengths of light and provide color vision. These nerve cells of the retina leave the eye and enter the brain
via the optic nerve (cranial nerve II).

Figure : The Eye

Tears are produced by the lacrimal gland that is located beneath the lateral edges of the nose. Tears flow through the lacrimal duct
to the medial corner of the eye and flow over the conjunctiva to wash away foreign particles. Movement of the eye within the orbit
occurs by the contraction of six extraocular muscles that originate from the bones of the orbit and insert into the surface of the
eyeball. The extraocular muscles are innervated by the abducens nerve, the trochlear nerve, and the oculomotor nerve (cranial
nerves III, IV, and V).  See the illustration of the extraocular muscles in Figure .

Figure : Extraocular Muscles

More Anatomy

The human eye is made of an almost spherical (24 mm long and 22 mm across) gelatinous substance called the vitreous humor
with refractive index 1.337, surrounded by a white shell, the sclera (Figure ). At the front, the sclera has an opening with a
transparent lens called the cornea, with for green light an index of refraction of 1.376. Most of the bending of the rays takes place
at the air-cornea interface and this is why it is difficult to see under water (n  = 1.33). After passing the cornea, the rays reach
the aqueous humour (n ≈1.336) with the iris (i.e. pupil). It can expand or contract from a 2 mm (bright sun) to 8 mm (low light)
diameter to adapt to the light intensity. The iris gives colour to the eye. After the iris, the rays reach the flexible crystalline lens
which has the size of a bean (9 mm in diameter, and 4 mm thick in unaccommodated condition). Its index of refraction varies from
1.406 in the centre to 1.386 at the edge.

[2]

10.8.1

[3]
10.8.2

[4]

10.8.2

10.8.3

water

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76665?pdf


10.8.11 https://phys.libretexts.org/@go/page/76665

Figure : Cross section of a human eye (from Wikimedia Commons by Holly Fischer / CC BY).

 

Working of the eye

The entire eye can very accurately be treated as two lenses in contact, of which the crystalline lens can change its focal length.
Often the system is approximated by only a single lens. In unaccommodated condition, the first focal distance of the lens system is
f  = 16 mm as measured from the cornea. The second focal distance is equal to the length of the eye: f  = 24 mm. These focal
distances are different, because the refractive indices of the surrounding medium (air and vitreous humour) differ. The power of the
intact, unaccommodated eye lens system is, according to (2.5.35), (2.5.39):

In relaxed condition the lens focuses light coming from infinity on the retina. When the object is closer, the eye muscles contract
due to which the crystalline lens becomes more convex and the focal length of the system decreases, as seen on the right of Figure 

. At a certain point, the object will be too close to be focused on the retina. This is called the near point of the eye. Due to the
loss of elasticity of the muscle, the near point moves from 7 cm for teens to 100 cm for a 60-year-old. Figure  shows the
optical rays entering the eyes, for two configurations: an object at infinity and an object nearby. The so-called normal near point
is at 25 cm. The far point is the furthest object which is imaged on the retina by the unaccommodated eye. For the normal eye the
far point is at infinity.
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Figure : Left: Optical rays showing how an eye accommodates by changing its focal length. Right: Relaxed and contracted
muscle at the crystalline lens needed for this accommodation.(Left: adapted from Wikimedia Commons Erin Silversmith / BY-NC-
SA 2.5 Generic. Right: adapted from Sjaastad O.V., Sand O. and Hove K. (2010) Physiology of domestic animals, 2nd edn., Oslo:
Scandinavian Veterinary Press).

 

Retina

The retina is composed of approximately 125 million photoreceptor cells: the rods and the cones. The rods are highly sensitive
black and white (intensity) sensors, while the cones are colour sensitive for the wavelengths 390 nm - 780 nm. UV light is absorbed
by the lens (people whose lens is removed because of cataract can "see" UV light). The fovea centralis is the most sensitive centre
of the retina with a high density of cones. The eyes move continuously to focus the image on this area. The information is
transferred by the optical nerve, placed at the back of the eye, where it causes a blind spot.

Dioptric Power of a lens
For a combination of two thin lenses, it is not so easy to derive the resulting focal length from the individual focal length of the
lenses. It is easier to consider the dioptric power. For a single lens the dioptric power is defined by:

with R  and R the radii of the thin lens and n  the index of refraction of the glass. Because for two lenses in contact, the focal
length is given by:

the combined power of the two lenses is the sum of the individual powers:

A lens of focal length  has a dioptric power . If it is in contact with a negative lens of dioptric power 
, the resulting power is , equivalent to a parallel sheet of glass.

Common Disorders of the Eye
Eye disorders that nurses commonly see in practice include myopia, presbyopia, color blindness, dry eye, conjunctivitis, styes,
cataracts, macular degeneration, and glaucoma.

Myopia

Myopia or Nearsightedness is impaired vision that makes far-away objects look blurry. It happens when the eyeball grows too
long from front to back or when there are problems with the shape of the cornea or the lens. These problems make light focus in
front of the retina, instead of on it, causing blurriness. See Figure  for a simulated image of a person’s vision with myopia.
Nearsightedness usually becomes apparent between ages 6 and 14. It is corrected with glasses, contacts, or LASIK surgery.
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Figure : Simulated Vision with Myopia

A myopic eye has too short focal distances (has too high power) so that distant objects are focused in front of the retina by the
unaccommodated eye. The far point is thus not at infinity, but closer. This can be corrected by a negative lens. Suppose the far
point is at . If the concave lens makes a virtual image of a distant object at distance  in front of the cornea, the
unaccommodated eye can see it clearly. The lens Law (2.5.44), with  implies then . Hence the required
power of the lens is:

The lens is best put in the front focal plane of the unaccomodated eye, i.e. at approximately 16  in front of the cornea. (Since
the distance of the retina to the eye lens is roughly  and the refractive index of the vitrous humor is , this implies a
focal distance in air of the unaccomodated eye of  ). The reason is that in this case the magnification of the eye
and the negative lens together are the same as for the uncorrected eye. To see this, draw a ray from the top of the object through the
centre of the negative lens. This will then be made parallel to the optical axis by the eye lens; the distance of this ray to the optical
axis is the image size on the retina. This ray will end up at the same point of the retina as when the negative lens is taken out,
because it is not refracted by this lens.

Contact lenses are very close to the eye lens and hence the total power of the eye with a contact lens is simply the sum of the power
of the eye and the contact lens.

Hyperopia
Hyperopia or Farsightedness. In this case a distant object is imaged by the unaccommodated eye behind the retina, i.e. the back
focal distance of the unaccommodated eye is larger than the depth of the eye. Close objects can not be imaged on the retina, hence
the near point is relatively far from the cornea. In order to bend the rays more, a positive lens is placed in front of the eye. Suppose
that a hyperopic eye has near point at distance . For an object at  to have virtual image at , so
that it can be seen, the focal length must satisfy

hence the power must be  Diopter.
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Figure : Correction of farsighted (left) and nearsighted (right) eye (adapted from Wikimedia Commons by Gumenyuk I.S. /
CC BY-SA 4.0).

Presbyopia

Presbyopia is impaired near vision. It commonly occurs in middle-aged and older adults, making it difficult to clearly see objects
up close. As people age, the lens in the eye gets harder and less flexible and stops focusing light correctly on the retina.
Presbyopia results in an increase in the distance between the near point and the retina. This defect affects all images. Presbyopia is
usually corrected by glasses with progressive correction, the upper part of glass used for distance vision and the lower part for near
vision. . See Figure  for a simulated image of a person’s vision with presbyopia.

Figure : Simulated Vision with Presbyopia
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Astigmatism

Astigmatism. In this case the focal distances for two directions perpendicular to the optical axis are different. It is attributed to a
lack of symmetry of revolution of the cornea. This is compensated by using glasses which themselves are astigmatic.

Color Blindness

Color blindness makes it difficult to differentiate between certain colors. Color blindness can occur due to damage to the eye or to
the brain. There’s no cure for color blindness, but special glasses and contact lenses can help people differentiate between colors.
Most people who have color blindness are able to use visual strategies related to color selection and don’t have problems
participating in everyday activities.

Dry Eye

Dry eye is a very common eye condition that occurs when the eyes don’t make enough tears to stay wet or the tears don’t work
correctly. Symptoms of dry eye include a scratchy feeling, stinging, and burning. Treatment includes over-the-counter and
prescription eye drops, as well as lifestyle changes to decrease the dryness of the eyes.

Conjunctivitis

Conjunctivitis is a viral or bacterial infection that causes swelling and redness in the conjunctiva and sclera. See Figure 
for an image of conjunctivitis. The eye may feel itchy and painful with crusty yellow drainage present. Conjunctivitis is very
contagious, so the nurse should educate the patient and family caregivers to wash hands frequently. Additionally, the patient should
not share items like pillowcases, towels, or makeup. Bacterial conjunctivitis is treated with antibiotic eye drops.

Figure : Conjunctivitis

Stye

A stye is a bacterial infection of an oil gland in the eyelid, causing a red, tender bump at the edge of the eyelid. See Figure 
for an image of a stye. Treatment includes applying warm compresses to the eyelid and prescription eyedrops.
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Figure : Stye

Cataracts

A cataract is a cloudy area on the lens of the eye. Cataracts are very common in older adults. Over half of all Americans age 80 or
older either have cataracts or have had surgery to remove cataracts. See Figure  for an image of a cataract. Cataracts
develop slowly and symptoms include faded colors, blurred or double vision, halos around light, and trouble seeing at night. See
Figure for a simulated image of a person’s vision with cataracts. Decreased vision due to cataracts may result in trouble
reading and driving and increases the risk of falling. Patients often undergo surgery for cataracts. During cataract surgery, the
doctor removes the clouded lens and replaces it with a new, artificial lens.

Figure : Cataracts
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Figure : Simulated Vision with Cataracts

Macular Degeneration

Age-related macular degeneration is a common condition that causes blurred central vision. It is the leading cause of vision loss for
people 50 and older. See Figure  for a simulated image of a person’s vision with macular degeneration. There are two
types of macular degeneration: dry (nonexudative) and wet (exudative). During dry macular degeneration, cellular debris called
drusen accumulates and scars the retina. In the wet (exudative) form, which is more severe, blood vessels grow behind the retina
that leak exudate fluid, causing hemorrhaging and scarring. There is no treatment for dry macular degeneration, but laser therapy
can be used to help treat wet (exudative) macular degeneration.

Figure : Simulated Vision with Macular Degeneration

Glaucoma

Glaucoma is a group of eye diseases that causes vision loss by damaging the optic nerve due to increased intraocular pressure.
Treatment includes prescription eye drops to lower the pressure inside the eye and slow the progression of the disease. If not treated
appropriately, glaucoma can cause blindness. Symptoms of glaucoma include gradual loss of peripheral vision. See Figure 

for a simulated image of a person’s vision with glaucoma. Because the loss of vision occurs so slowly, many people
don’t realize they have symptoms until the disease is well-progressed or it is discovered during an eye exam.
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Figure : Simulated Vision with Glaucoma

Screening Tools for Eye Exams
Common screening tools used during an eye exam are the Snellen chart, a near vision chart, and Ishihara plates. Nurses working in
outpatient settings or school settings use these tools when screening patients for vision problems. If a vision problem is identified,
the patient is referred to an optometrist for further testing. When performing a vision assessment, be sure to provide adequate
lighting.

Snellen Chart

Distant vision is tested by using the Snellen chart. See Figure  for an image of the Snellen chart. Place the patient 20 feet
away from the Snellen chart. Ask them to cover one eye and read the letters from the lowest line they can see clearly. Record the
corresponding fraction in the furthermost right-hand column. Repeat with the other eye. If the patient is wearing glasses or contact
lens during this assessment, document the results as “corrected vision” when wearing these assistive devices.

A person with no visual impairment is documented as having 20/20 vision. A person with impaired vision has a different lower
denominator of this fraction. For example, a vision measurement of 20/30 indicates the patient can see letters clearly at 20 feet that
a person with normal vision can see clearly at 30 feet.  Alternative charts are also available for children or adults who can’t read
letters in English. See Figure for an alternative eye chart.
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Figure : Snellen Chart

Figure : Alternative Eye Chart

Near Vision

Near vision is assessed by having a patient read from a prepared card that is held 14 inches away from the eyes. If a card is not
available, the patient can be asked to read from a newspaper as an alternative quick screening tool. See Figure  for an
image of a prepared card used to assess near vision.
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Figure : Assessing Near Vision

Ishihara Plates

Ishihara plates are commonly used to assess color vision. Each of the colored dotted plates shows either a number or a path. See
Figure for an example of Ishihara plates. A person with color blindness is not able to distinguish the numbers or paths
from the other colored dots on the plate.

Figure : Ishihara Color Test Plates

New Correction Technique
In recent years, to correct eye defects such as myopia and astigmatism, technology has been developed to change the local
curvatures of the surface of the cornea using an excimer laser. The laser is computer-controlled and causes photo-ablation in parts
of the cornea.
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10.8.1: Ear Basic Concepts

Anatomy of the Ear

Hearing is the transduction of sound waves into a neural signal by the structures of the ear. See Figure  for an image of
the anatomy of the ear. The large, fleshy structure on the lateral aspect of the head is known as the auricle. The C-shaped curves of
the auricle direct sound waves toward the ear canal. At the end of the ear canal is the tympanic membrane, commonly referred to
as the eardrum, that vibrates after it is struck by sound waves. The auricle, ear canal, and tympanic membrane are referred to as the
external ear. The middle ear consists of a space with three small bones called the malleus, incus, and stapes, the Latin names that
roughly translate to “hammer,” “anvil,” and “stirrup.” The malleus is attached to the tympanic membrane and articulates with the
incus. The incus, in turn, articulates with the stapes. The stapes is attached to the inner ear, where the sound waves are transduced
into a neural signal. The middle ear is also connected to the pharynx through the Eustachian tube that helps equilibrate air pressure
across the tympanic membrane. The Eustachian tube is normally closed but will pop open when the muscles of the pharynx
contract during swallowing or yawning. The inner ear is often described as a bony labyrinth because it is composed of a series of
semicircular canals. The semicircular canals have two separate regions, the cochlea and the vestibule, that are responsible for
hearing and balance. The neural signals from these two regions are relayed to the brain stem through separate fiber bundles.
However, they travel together from the inner ear to the brain stem as the vestibulocochlear nerve (cranial nerve VIII).

Figure : The Ear

Hearing

Sound waves cause the tympanic membrane to vibrate. This vibration is amplified as it moves across the malleus, incus, and stapes
and into the cochlea. Within the inner ear, the cochlear duct contains sound-transducing neurons. As the frequency of a sound
changes, different hair cells within the cochlear duct are sensitive to a particular frequency. In this manner, the cochlea separates
auditory stimuli by frequency and sends impulses to the brain stem via the cochlear nerve. The cochlea encodes auditory stimuli for
frequencies between 20 and 20,000 Hz, the range of sound that human ears can detect.

Balance

Along with hearing, the inner ear is also responsible for the sense of balance. Semicircular canals in the vestibule have three ring-
like extensions. One extension is oriented in the horizontal plane, and the other two are oriented in the vertical plane. Hair cells
within the vestibule sense head position, head movement, and body motion. By comparing the relative movements of both the
horizontal and vertical planes, the vestibular system can detect the direction of most head movements within three-dimensional
space. However, medical conditions affecting the semicircular canals cause incorrect signals to be sent to the brain, resulting in a
spinning type of dizziness called vertigo.
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Common Ear Disorders

Hearing Loss

Hearing loss is classified as conductive hearing loss or sensorineural hearing loss. Conductive hearing loss occurs when
something in the external or middle ear is obstructing the transmission of sound. For example, cerumen impaction or a perforated
tympanic membrane can cause conductive hearing loss. Sensorineural hearing loss is caused by pathology of the inner ear, cranial
nerve VIII, or auditory areas of the cerebral cortex. Presbycusis is sensorineural hearing loss that occurs with aging due to gradual
nerve degeneration. Ototoxic medications can also cause sensorineural hearing loss by affecting the hair cells in the cochlea.

Acute Otitis Media

Acute otitis media is the medical diagnosis for an middle ear infection. Ear infections are a common illness in the pediatric
population. Children between the ages of 6 months and 2 years are more susceptible to ear infections because of the size and shape
of their Eustachian tubes. Acute otitis media typically occurs after an upper respiratory infection when the Eustachian tube
becomes inflamed and the middle ear fills with fluid, causing ear pain and irritability. This fluid can become infected, causing
purulent fluid and low-grade fever. Acute otitis media is diagnosed by a health care provider using an otoscope to examine the
tympanic membrane for bulging and purulent fluid. If not treated, acute otitis media can potentially cause perforation of the
tympanic membrane. Treating early acute otitis media with antibiotics is controversial in the United States due to the effort to
prevent antibiotic resistance. However, the treatment goals are to control pain and treat infection with antibiotics if a bacterial
infection is present.

Some children develop recurrent ear infections that can cause hearing loss affecting their language development. For children
experiencing recurring cases, a surgery called myringotomy surgery is performed by an otolaryngologist. During myringotomy
surgery, a tympanostomy tube is placed in the tympanic membrane to drain fluid from the middle ear and prevent infection from
developing. If a child has a tympanostomy tube in place, it is expected to see clear fluid in their ear canal as it drains out of the
tube. See Figure  for an image of a tympanostomy tube in the ear.

Anatomy of the Ear (v2.0)Anatomy of the Ear (v2.0)
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Figure : Tympanostomy Tube

Otitis Externa

Otitis externa is the medical diagnosis for external ear inflammation and/or infection. See Figure  for an image of
otitis externa. It is commonly known as “swimmer’s ear” because it commonly occurs in swimmers, especially in summer months.
Otitis externa can occur in all age groups and causes an erythematous and edematous ear canal with associated yellow, white, or
grey debris. Patients often report itching in the ear canal with pain that is worsened by pulling upwards and outwards on the auricle.
Otitis externa is treated with antibiotic drops placed in the ear canals.

Figure : Otitis Externa

Cerumen Impaction

Cerumen impaction refers to a buildup of earwax causing occlusion of the ear canal. This occlusion often causes symptoms such
as hearing loss, ear fullness, and itching. See Figure  for an image of cerumen impaction. Cerumen can be removed via
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irrigation of the ear canal, ear drops to dissolve the wax, or manual removal.  In outpatient settings, nurses often assist with ear
irrigation to remove cerumen impaction according to agency policy. See Figure  for an image of an ear irrigation
procedure.

Figure : Cerumen Impaction

Figure : Ear Irrigation to Remove Cerumen Impaction

Tinnitus

Tinnitus is a ringing, buzzing, roaring, hissing, or whistling sound in the ears. The noise may be intermittent or continuous.
Tinnitus can be caused by cerumen impaction, noise trauma, or ototoxic medications, such as diuretics or high doses of aspirin.
Military personnel have a high incidence of tinnitus due to noise trauma from loud explosions and gunfire. There are no
medications to treat tinnitus, but patients can be referred to an otolaryngologist for treatment such as cognitive therapy or noise
masking.

Vertigo

Vertigo is a type of dizziness that is often described by patients as, “the room feels as if it is spinning.” Benign positional vertigo
(BPV) is a common condition caused by crystals becoming lodged in the semicircular canals in the vestibule of the inner ear that
send false movement signals to the brain. BPV can be treated by trained professionals using a specific set of maneuvers that guide
the crystals back to the chamber where they are supposed to be in the inner ear.
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10.8.2: A_Vision

By the end of this section, you will be able to do the following:

Explain how electromagnetic waves differ from sound waves
Trace the path of light through the eye to the point of the optic nerve
Explain tonic activity as it is manifested in photoreceptors in the retina

Vision is the ability to detect light patterns from the outside environment and interpret them into images. Animals are bombarded
with sensory information, and the sheer volume of visual information can be problematic. Fortunately, the visual systems of species
have evolved to attend to the most-important stimuli. The importance of vision to humans is further substantiated by the fact that
about one-third of the human cerebral cortex is dedicated to analyzing and perceiving visual information.

Light

As with auditory stimuli, light travels in waves. The compression waves that compose sound must travel in a medium—a gas, a
liquid, or a solid. In contrast, light is composed of electromagnetic waves and needs no medium; light can travel in a vacuum
(Figure 36.17). The behavior of light can be discussed in terms of the behavior of waves and also in terms of the behavior of the
fundamental unit of light—a packet of electromagnetic radiation called a photon. A glance at the electromagnetic spectrum shows
that visible light for humans is just a small slice of the entire spectrum, which includes radiation that we cannot see as light because
it is below the frequency of visible red light and above the frequency of visible violet light.

Certain variables are important when discussing perception of light. Wavelength (which varies inversely with frequency) manifests
itself as hue. Light at the red end of the visible spectrum has longer wavelengths (and is lower frequency), while light at the violet
end has shorter wavelengths (and is higher frequency). The wavelength of light is expressed in nanometers (nm); one nanometer is
one billionth of a meter. Humans perceive light that ranges between approximately 380 nm and 740 nm. Some other animals,
though, can detect wavelengths outside of the human range. For example, bees see near-ultraviolet light in order to locate nectar
guides on flowers, and some non-avian reptiles sense infrared light (heat that prey gives off).

Figure 36.17 In the electromagnetic spectrum, visible light lies between 380 nm and 740 nm. (credit: modification of work by
NASA)

Wave amplitude is perceived as luminous intensity, or brightness. The standard unit of intensity of light is the candela, which is
approximately the luminous intensity of one common candle.

Light waves travel 299,792 km per second in a vacuum, (and somewhat slower in various media such as air and water), and those
waves arrive at the eye as long (red), medium (green), and short (blue) waves. What is termed “white light” is light that is
perceived as white by the human eye. This effect is produced by light that stimulates equally the color receptors in the human eye.
The apparent color of an object is the color (or colors) that the object reflects. Thus a red object reflects the red wavelengths in
mixed (white) light and absorbs all other wavelengths of light.

Anatomy of the Eye

The photoreceptive cells of the eye, where transduction of light to nervous impulses occurs, are located in the retina (shown in
Figure 36.18) on the inner surface of the back of the eye. But light does not impinge on the retina unaltered. It passes through other
layers that process it so that it can be interpreted by the retina (Figure 36.18b). The cornea, the front transparent layer of the eye,
and the crystalline lens, a transparent convex structure behind the cornea, both refract (bend) light to focus the image on the retina.

 Learning Objectives
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The iris, which is conspicuous as the colored part of the eye, is a circular muscular ring lying between the lens and cornea that
regulates the amount of light entering the eye. In conditions of high ambient light, the iris contracts, reducing the size of the pupil at
its center. In conditions of low light, the iris relaxes and the pupil enlarges.

Visual Connection

Figure 36.18 (a) The human eye is shown in cross section. The human eye contains structures, such as the cornea, iris, lens,
and fovea, that process light so it can be deciphered by the retina. Other structures like the aqueous humor and the vitreous
humor help maintain the shape of the eye. (b) A blowup shows the layers of the retina. The retina contains photoreceptive cells.
In the retina, light is converted into neural signals sent to the brain.

Which of the following statements about the human eye is false?

a. Rods detect color, while cones detect only shades of gray.
b. When light enters the retina, it passes the ganglion cells and bipolar cells before reaching photoreceptors at the rear of the eye.
c. The iris adjusts the amount of light coming into the eye.
d. The cornea is a protective layer on the front of the eye.

The cornea, the front transparent layer of the eye, along with the crystalline lens, refract (bend) light to focus the image on the
retina. After passing through the cornea, light passes through the aqueous humour, which connects the cornea to the lens. This clear
gelatinous mass also provides the corneal epithelium with nutrients and helps maintain the convex shape of the cornea. The iris,
which is visible as the colored part of the eye, is a circular muscular ring lying between the lens and the aqueous humour that
regulates the amount of light entering the eye. Light passes through the center of the iris, the pupil, which actively adjusts its size to
maintain a constant level of light entering the eye. In conditions of high ambient light, the iris contracts, reducing the size of the
pupil. In conditions of low light, the iris relaxes and the pupil enlarges.

The main function of the lens is to focus light on the retina and fovea centralis. The lens is dynamic, focusing and re-focusing light
as the eye rests on near and far objects in the visual field. The lens is operated by muscles that stretch it flat or allow it to thicken,
changing the focal length of light coming through it to focus it sharply on the retina. With age comes the loss of the flexibility of
the lens, and a form of farsightedness called presbyopia results. Presbyopia occurs because the image focuses behind the retina.
Presbyopia is a deficit similar to a different type of farsightedness called hyperopia caused by an eyeball that is too short. For both
defects, images in the distance are clear but images nearby are blurry. Myopia (nearsightedness) occurs when an eyeball is
elongated and the image focus falls in front of the retina. In this case, images in the distance are blurry but images nearby are clear.

There are two types of photoreceptors in the retina: rods and cones, named for their general appearance as illustrated in Figure
36.19. Rods are strongly photosensitive and are located in the outer edges of the retina. They detect dim light and are used
primarily for peripheral and nighttime vision. Cones are weakly photosensitive and are located near the center of the retina. They
respond to bright light, and their primary role is in daytime, color vision.

Visual Connection
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Figure 36.19 Rods and cones are photoreceptors in the retina. Rods respond in low light and can detect only shades of gray. Cones
respond in intense light and are responsible for color vision. (credit: modification of work by Piotr Sliwa)

The fovea is the region in the center back of the eye that is responsible for acute vision. The fovea has a high density of cones.
When you bring your gaze to an object to examine it intently in bright light, the eyes orient so that the object’s image falls on the
fovea. However, when looking at a star in the night sky or other object in dim light, the object can be better viewed by the
peripheral vision because it is the rods at the edges of the retina, rather than the cones at the center, that operate better in low light.
In humans, cones far outnumber rods in the fovea.

Link to Learning

Review the anatomical structure of the eye, clicking on each part to practice identification.

Transduction of Light

The rods and cones are the site of transduction of light to a neural signal. Both rods and cones contain photopigments. In
vertebrates, the main photopigment, rhodopsin, has two main parts (Figure 36.20): an opsin, which is a membrane protein (in the
form of a cluster of α-helices that span the membrane), and retinal—a molecule that absorbs light. When light hits a photoreceptor,
it causes a shape change in the retinal, altering its structure from a bent (cis) form of the molecule to its linear (trans) isomer. This
isomerization of retinal activates the rhodopsin, starting a cascade of events that ends with the closing of Na  channels in the
membrane of the photoreceptor. Thus, unlike most other sensory neurons (which become depolarized by exposure to a stimulus)
visual receptors become hyperpolarized and thus driven away from threshold (Figure 36.21).

Link to Learning

+
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Figure 36.20 (a) Rhodopsin, the photoreceptor in vertebrates, has two parts: the trans-membrane protein opsin, and retinal. When
light strikes retinal, it changes shape from (b) a cis to a trans form. The signal is passed to a G-protein called transducin, triggering
a series of downstream events.

Figure 36.21 When light strikes rhodopsin, the G-protein transducin is activated, which in turn activates phosphodiesterase.
Phosphodiesterase converts cGMP to GMP, thereby closing sodium channels. As a result, the membrane becomes hyperpolarized.
The hyperpolarized membrane does not release glutamate to the bipolar cell.
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Trichromatic Coding

There are three types of cones (with different photopsins), and they differ in the wavelength to which they are most responsive, as
shown in Figure 36.22. Some cones are maximally responsive to short light waves of 420 nm, so they are called S cones (“S” for
“short”); others respond maximally to waves of 530 nm (M cones, for “medium”); a third group responds maximally to light of
longer wavelengths, at 560 nm (L, or “long” cones). With only one type of cone, color vision would not be possible, and a two-
cone (dichromatic) system has limitations. Primates use a three-cone (trichromatic) system, resulting in full color vision.

The color we perceive is a result of the ratio of activity of our three types of cones. The colors of the visual spectrum, running from
long-wavelength light to short, are red (700 nm), orange (600 nm), yellow (565 nm), green (497 nm), blue (470 nm), indigo (450
nm), and violet (425 nm). Humans have very sensitive perception of color and can distinguish about 500 levels of brightness, 200
different hues, and 20 steps of saturation, or about 2 million distinct colors.

Figure 36.22 Human rod cells and the different types of cone cells each have an optimal wavelength. However, there is
considerable overlap in the wavelengths of light detected.

Retinal Processing

Visual signals leave the cones and rods, travel to the bipolar cells, and then to ganglion cells. A large degree of processing of visual
information occurs in the retina itself, before visual information is sent to the brain.

Photoreceptors in the retina continuously undergo tonic activity. That is, they are always slightly active even when not stimulated
by light. In neurons that exhibit tonic activity, the absence of stimuli maintains a firing rate at a baseline; while some stimuli
increase firing rate from the baseline, and other stimuli decrease firing rate. In the absence of light, the bipolar neurons that connect
rods and cones to ganglion cells are continuously and actively inhibited by the rods and cones. Exposure of the retina to light
hyperpolarizes the rods and cones and removes their inhibition of bipolar cells. The now active bipolar cells in turn stimulate the
ganglion cells, which send action potentials along their axons (which leave the eye as the optic nerve). Thus, the visual system
relies on change in retinal activity, rather than the absence or presence of activity, to encode visual signals for the brain. Sometimes
horizontal cells carry signals from one rod or cone to other photoreceptors and to several bipolar cells. When a rod or cone
stimulates a horizontal cell, the horizontal cell inhibits more distant photoreceptors and bipolar cells, creating lateral inhibition.
This inhibition sharpens edges and enhances contrast in the images by making regions receiving light appear lighter and dark
surroundings appear darker. Amacrine cells can distribute information from one bipolar cell to many ganglion cells.

You can demonstrate this using an easy demonstration to “trick” your retina and brain about the colors you are observing in your
visual field. Look fixedly at Figure 36.23 for about 45 seconds. Then quickly shift your gaze to a sheet of blank white paper or a
white wall. You should see an afterimage of the Norwegian flag in its correct colors. At this point, close your eyes for a moment,
then reopen them, looking again at the white paper or wall; the afterimage of the flag should continue to appear as red, white, and
blue. What causes this? According to an explanation called opponent process theory, as you gazed fixedly at the green, black, and
yellow flag, your retinal ganglion cells that respond positively to green, black, and yellow increased their firing dramatically. When
you shifted your gaze to the neutral white ground, these ganglion cells abruptly decreased their activity and the brain interpreted
this abrupt downshift as if the ganglion cells were responding now to their “opponent” colors: red, white, and blue, respectively, in
the visual field. Once the ganglion cells return to their baseline activity state, the false perception of color will disappear.

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/78370?pdf


10.8.2.6 https://phys.libretexts.org/@go/page/78370

Figure 36.23 View this flag to understand how retinal processing works. Stare at the center of the flag (indicated by the white dot)
for 45 seconds, and then quickly look at a white background, noticing how colors appear.

Higher Processing

The myelinated axons of ganglion cells make up the optic nerves. Within the nerves, different axons carry different qualities of the
visual signal. Some axons constitute the magnocellular (big cell) pathway, which carries information about form, movement, depth,
and differences in brightness. Other axons constitute the parvocellular (small cell) pathway, which carries information on color and
fine detail. Some visual information projects directly back into the brain, while other information crosses to the opposite side of the
brain. This crossing of optical pathways produces the distinctive optic chiasma (Greek, for “crossing”) found at the base of the
brain and allows us to coordinate information from both eyes.

Once in the brain, visual information is processed in several places, and its routes reflect the complexity and importance of visual
information to humans and other animals. One route takes the signals to the thalamus, which serves as the routing station for all
incoming sensory impulses except olfaction. In the thalamus, the magnocellular and parvocellular distinctions remain intact, and
there are different layers of the thalamus dedicated to each. When visual signals leave the thalamus, they travel to the primary
visual cortex at the rear of the brain. From the visual cortex, the visual signals travel in two directions. One stream that projects to
the parietal lobe, in the side of the brain, carries magnocellular (“where”) information. A second stream projects to the temporal
lobe and carries both magnocellular (“where”) and parvocellular (“what”) information.

Another important visual route is a pathway from the retina to the superior colliculus in the midbrain, where eye movements are
coordinated and integrated with auditory information. Finally, there is the pathway from the retina to the suprachiasmatic nucleus
(SCN) of the hypothalamus. The SCN is a cluster of cells that is considered to be the body’s internal clock, which controls our
circadian (day-long) cycle. The SCN sends information to the pineal gland, which is important in sleep/wake patterns and annual
cycles.

Figure : The suprachiasmatic nucleus (SNC): The presence of light and darkness influences circadian rhythms and related
physiology and behavior through the SCN.
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Link to Learning

View this interactive presentation to review what you have learned about how vision functions.

The human eye is wrapped in three layers of tissue:

the sclerotic coat. This tough layer creates the "white" of the eye except in the front where it forms the transparent cornea. The
corneaThe surface of the cornea is kept moist and dust-free by secretions from the tear glands.

admits light to the interior of the eye and
bends the light rays to that they can be brought to a focus.

the choroid coat. This middle layer is deeply pigmented with melanin. It reduces reflection of stray light within the eye. The
choroid coat forms the iris in the front of the eye. This, too, is pigmented and is responsible for eye "color". The size of its
opening, the pupil, is variable and under the control of the autonomic nervous system. In dim light (or when danger threatens),
the pupil opens wider letting more light into the eye. In bright light the pupil closes down. This not only reduces the amount of
light entering the eye but also improves its image-forming ability (as does "stopping down" the iris diaphragm of a camera).
the retina The retina is the inner layer of the eye. It contains the light receptors, the rods and cones (and thus serves as the
"film" of the eye). The retina also has many interneurons that process the signals arising in the rods and cones before passing
them back to the brain. (Note: the rods and cones are not at the surface of the retina but lie underneath the layer of
interneurons.)

Figure 15.9.3.1 Human eye

All the nerve impulses generated in the retina travel back to the brain by way of the axons in the optic nerve (above). At the
point on the retina where the approximately 1 million axons converge on the optic nerve, there are no rods or cones. This spot,
called the blind spot, is thus insensitive to light.

Figure 15.9.3.2 Blind spot

You can demonstrate the presence of the blind spot. Cover your right eye with your hand and stare at the red circle as you
move closer to the screen (the square will disappear). Or cover your left eye and stare at the red square as you move.

The Lens

The lens is located just behind the iris. It is held in position by zonules extending from an encircling ring of muscle. When this
ciliary muscle is relaxed, its diameter increases, the zonules are put under tension, and the lens is flattened and when contracted,
its diameter is reduced, the zonules relax, and the lens becomes more spherical. These changes enable the eye to adjust its focus
between far objects and near objects.

 The blind spot
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Figure 15.9.3.3 Eye corrections

Farsightedness. If the eyeball is too short or the lens too flat or inflexible, the light rays entering the eye — particularly those from
nearby objects — will not be brought to a focus by the time they strike the retina. Eyeglasses with convex lenses can correct the
problem. Farsightedness is called hypermetropia.

Nearsightedness. If the eyeball is too long or the lens too spherical, the image of distant objects is brought to a focus in front of the
retina and is out of focus again before the light strikes the retina. Nearby objects can be seen more easily. Eyeglasses with concave
lenses correct this problem by diverging the light rays before they enter the eye. Nearsightedness is called myopia.

Cataracts One or both lenses often become cloudy as one ages. When a cataract seriously interferes with seeing, the cloudy lens is
easily removed and a plastic one substituted. The entire process can be done in a few minutes as an outpatient under local
anesthesia.

The iris and lens divide the eye into two main chambers:

the front chamber is filled with a watery liquid, the aqueous humor
the rear chamber is filled with a jellylike material, the vitreous body

The Retina

Four kinds of light-sensitive receptors are found in the retina:

rods
three kinds of cones, each "tuned" to respond best to light from a portion of the spectrum of visible light

cones that absorb long-wavelength light (red)
cones that absorb middle-wavelength light (green)
cones that absorb short-wavelength light (blue)

This scanning electron micrograph (courtesy of Scott Mittman and David R. Copenhagen) shows rods and cones in the retina of the
tiger salamander. Each type of receptor has its own special pigment for absorbing light. Each consists of a transmembrane protein
called opsin coupled to the prosthetic group retinal. Retinal is a derivative of vitamin A (which explains why night blindness is
one sign of vitamin A deficiency) and is used by all four types of receptors.

Figure 15.9.3.4 The retina

The amino acid sequence of each of the four types of opsin are similar, but the differences account for their differences in
absorption spectrum. The retina also contains a complex array of interneurons:

bipolar cells and ganglion cells that together form a path from the rods and cones to the brain
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a complex array of other interneurons that form synapses with the bipolar and ganglion cells and modify their activity.

Ganglion cells are always active. Even in the dark they generate trains of action potentials and conduct them back to the brain
along the optic nerve. Vision is based on the modulation of these nerve impulses. There is not the direct relationship between
visual stimulus and an action potential that is found in the senses of hearing, taste, and smell. In fact, action potentials are not even
generated in the rods and cones.

Rod Vision

Rhodopsin is the light-absorbing pigment of the rods. This G-protein-coupled receptor (GPCR) is incorporated in the membranes
of disks that are neatly stacked (some 1000 or more of them) in the outer portion of the rod. This arrangement is reminiscent of the
organization of thylakoids, another light-absorbing device.

Fig.15.9.3.5 Rod cells of kangaroo bat

The electron micrograph (courtesy of Keith Porter) shows the rod cells of the kangaroo rat. The outer segments of the rods contain
the orderly stacks of membranes which incorporate rhodopsin. The inner portion contain many mitochondria. The two parts of the
rod are connected by a stalk (arrow) that has the same structure as a primary cilium. Although the disks are initially formed from
the plasma membrane, they become separated from it. Thus signals generated in the disks must be transmitted by a chemical
mediator (a "second messenger" called cyclic GMP (cGMP) to alter the potential of the plasma membrane of the rod. Rhodopsin
consists of an opsin of 348 amino acids coupled to retinal. Like all G-protein-coupled receptors, opsin has 7 segments of alpha
helix that pass back and forth through the lipid bilayer of the disk membrane.

Retinal

Figure 15.9.3.6 Retinal

Retinal consists of a system of alternating single and double bonds. In the dark, the hydrogen atoms attached to the #11 and #12
carbon atoms of retinal (red arrows) point in the same direction producing a kink in the molecule. This configuration is designated
cis. When light is absorbed by retinal, the molecule straightens out forming the all-trans isomer.

This physical change in retinal triggers the following chain of events culminating in a change in the
pattern of impulses sent back along the optic nerve.

1. Formation of all-trans retinal activates its opsin.
2. Activated rhodopsin, in turn, activates many molecules of a G protein called transducin.

3. Transducin activates an enzyme that breaks down cyclic GMP.

+
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4. The drop in cGMP closes Na  channels in the plasma membrane of the rod. Because these positive ions can no longer enter, the
interior of the cell becomes more negative (hyperpolarized) increasing its membrane potential from about −30 to some −70 mV.

5. This slows the release of the neurotransmitter glutamate at synapses between the rod and interneurons (e.g., bipolar cells).
6. This reduction in glutamate release activates some interneuron pathways, inhibits others.
7. The interplay of excited and inhibited interneurons modulates the spontaneous firing of the ganglion cells to which they are

connected and gives rise to the ability of the retina to discriminate shapes.

So the retina is not simply a sheet of photocells, but a tiny brain center that carries out complex information processing before
sending signals back along the optic nerve. In fact, the retina really is part of the brain and grows out from it during embryonic
development.

Rod vision is acute but coarse

Rods do not provide a sharp image for several reasons.

Adjacent rods are connected by gap junctions and so share their changes in membrane potential.
Several nearby rods often share a single circuit to one ganglion cell.
A single rod can send signals to several different ganglion cells.

So if only a single rod is stimulated, the brain has no way of determining exactly where on the retina it was. However, rods are
extremely sensitive to light. A single photon (the minimum unit of light) absorbed by a small cluster of adjacent rods is sufficient to
send a signal to the brain. So although rods provide us with a relatively grainy, colorless image, they permit us to detect light that is
over a billion times dimmer than what we see on a bright sunny day.

Cone Vision
Although cones operate only in relatively bright light, they provide us with our sharpest images and enable us to see colors. Most of
the 3 million cones in each retina are confined to a small region just opposite the lens called the fovea. So our sharpest and colorful
images are limited to a small area of view. Because we can quickly direct our eyes to anything in view that interests us, we tend not
to be aware of just how poor our peripheral vision is.

The three types of cones provide us the basis of color vision. Cones are "tuned" to different portions of the visible spectrum.

red absorbing cones; those that absorb best at the relatively long wavelengths peaking at 565 nm
green absorbing cones with a peak absorption at 535 nm
blue absorbing cones with a peak absorption at 440 nm.

Retinal is the prosthetic group for each pigment. Differences in the amino acid sequence of their opsins accounts for the differences
in absorption. The response of cones is not all-or-none. Light of a given wavelength (color), say 500 nm (green), stimulates all
three types of cones, but the green-absorbing cones will be stimulated most strongly. Like rods, the absorption of light does not
trigger action potentials but modulates the membrane potential of the cones.

Color Blindness

The term color blindness is something of a misnomer. Very few (~1 in 10 ) people cannot distinguish colors at all. Most "color-
blind" people actually have abnormal color vision such as confusing the red and green of traffic lights. As high as 8% of the males
in some populations have an inherited defect in their ability to discriminate reds and greens. These defects are found almost
exclusively in males because the genes that encode the red-absorbing and green-absorbing opsins are on the X chromosome.

+
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Figure 15.9.3.7 Red - Green genes

The X chromosome normally carries a cluster of from 2 to 9 opsin genes. The minimum basis for normal red-green vision is one
gene whose opsin absorbs efficiently in the red and one that absorbs well in the green (chromosome 1 in the figure). Multiple
copies of these genes are also fine (2 and 3). Males with either a "green gene" or "red gene" missing are severely color blind (4 and
5). However, if all the red genes carry mutations (this seldom seems to be the case for the green genes — nobody knows why), then
they may have red-green color blindness that ranges from mild to severe depending on the particular mutations involved (6). The
rule seems to be that the more the mutations shift the pigment towards green, the more serious the defect. However, a large number
of mutations don't always produce serious defects. Multiple mutations in a single gene may offset each other producing only mild
defects. And as long as one normal copy of each gene is present, the presence of additional mutated genes seldom produce a serious
problem (7).

Why do some males have as many as 9 copies of genes encoding the red and green opsins, when two are enough? The sequences of
the red and green genes are the same at 98% of their nucleotides. This high degree of similarity creates the risk of mismatches in
synapsis during meiosis with unequal crossing over.

Blue vision
Abnormal blue sensitivity occasionally occurs in humans but is much rarer than abnormalities in red-green vision. The gene for the
blue-cone opsin is located on chromosome 7. Thus this trait shows an autosomal pattern of inheritance being found in females as
often as in males.

This page titled 10.8.2: A_Vision is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax.

15.9C: Vision by John W. Kimball is licensed CC BY 3.0. Original source: https://www.biology-pages.info/.
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10.8.3: Vision
Vision is the special sense of sight that is based on the transduction of light stimuli received through the eyes. The eyes are located
within either orbit in the skull. The bony orbits surround the eyeballs, protecting them and anchoring the soft tissues of the eye
(Figure ). The eyelids, with lashes at their leading edges, help to protect the eye from abrasions by blocking particles that
may land on the surface of the eye. The inner surface of each lid is a thin membrane known as the palpebral conjunctiva. The
conjunctiva extends over the white areas of the eye (the sclera), connecting the eyelids to the eyeball. Tears are produced by the
lacrimal gland, located beneath the lateral edges of the nose. Tears produced by this gland flow through the lacrimal duct to the
medial corner of the eye, where the tears flow over the conjunctiva, washing away foreign particles.

 

Figure : The Eye in the Orbit The eye is located within the orbit and surrounded by soft tissues that protect and support
its function. The orbit is surrounded by cranial bones of the skull. (CC-BY-4.0, OpenStax, Human Anatomy)

Movement of the eye within the orbit is accomplished by the contraction of six extraocular muscles that originate from the bones
of the orbit and insert into the surface of the eyeball (Figure ). Four of the muscles are arranged at the cardinal points
around the eye and are named for those locations. They are the superior rectus, medial rectus, inferior rectus, and lateral rectus.
When each of these muscles contract, the eye to moves toward the contracting muscle. For example, when the superior rectus
contracts, the eye rotates to look up. The superior oblique originates at the posterior orbit, near the origin of the four rectus
muscles. However, the tendon of the oblique muscles threads through a pulley-like piece of cartilage known as the trochlea. The
tendon inserts obliquely into the superior surface of the eye. The angle of the tendon through the trochlea means that contraction of
the superior oblique rotates the eye medially. The inferior oblique muscle originates from the floor of the orbit and inserts into the
inferolateral surface of the eye. When it contracts, it laterally rotates the eye, in opposition to the superior oblique. Rotation of the
eye by the two oblique muscles is necessary because the eye is not perfectly aligned on the sagittal plane. When the eye looks up or
down, the eye must also rotate slightly to compensate for the superior rectus pulling at approximately a 20-degree angle, rather than
straight up. The same is true for the inferior rectus, which is compensated by contraction of the inferior oblique. A seventh muscle
in the orbit is the levator palpebrae superioris, which is responsible for elevating and retracting the upper eyelid, a movement that
usually occurs in concert with elevation of the eye by the superior rectus (see Figure ).

10.8.3.1

10.8.3.1

10.8.3.2

10.8.3.3

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/78380?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.03%3A_Vision
https://cnx.org/contents/wpkg_88R@2.57:s3XqfSLV@9/Sensory-Perception


10.8.3.2 https://phys.libretexts.org/@go/page/78380

 

Figure : Extraocular Muscles The extraocular muscles move the eye within the orbit. (CC-BY-4.0, OpenStax, Human
Anatomy)

 

Figure : Structure of the Eye The sphere of the eye can be divided into anterior and posterior chambers. The wall of the
eye is composed of three layers: the fibrous tunic, vascular tunic, and neural tunic. Within the neural tunic is the retina, with three
layers of cells and two synaptic layers in between. The center of the retina has a small indentation known as the fovea. (CC-BY-4.0,
OpenStax, Human Anatomy)

Light falling on the retina causes chemical changes to pigment molecules in the photoreceptors, ultimately leading to a change in
the activity of the RGCs. Photoreceptor cells have two parts, the inner segment and the outer segment (Figure ). The
inner segment contains the nucleus and other common organelles of a cell, whereas the outer segment is a specialized region in
which photoreception takes place. There are two types of photoreceptors—rods and cones—which differ in the shape of their outer
segment. The rod-shaped outer segments of the rod photoreceptor contain a stack of membrane-bound discs that contain the
photosensitive pigment rhodopsin. The cone-shaped outer segments of the cone photoreceptor contain their photosensitive
pigments in infoldings of the cell membrane. There are three cone photopigments, called opsins, which are each sensitive to a
particular wavelength of light. The wavelength of visible light determines its color. The pigments in human eyes are specialized in
perceiving three different primary colors: red, green, and blue.
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Figure : Photoreceptor (a) All photoreceptors have inner segments containing the nucleus and other important organelles
and outer segments with membrane arrays containing the photosensitive opsin molecules. Rod outer segments are long columnar
shapes with stacks of membrane-bound discs that contain the rhodopsin pigment. Cone outer segments are short, tapered shapes
with folds of membrane in place of the discs in the rods. (b) Tissue of the retina shows a dense layer of nuclei of the rods and
cones. LM × 800. (Micrograph provided by the Regents of University of Michigan Medical School © 2012) (CC-BY-4.0,
OpenStax, Human Anatomy)

This page titled 10.8.3: Vision is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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10.8.4: Vision_Correction

By the end of this section, you will be able to:

Identify and discuss common vision defects.
Explain nearsightedness and farsightedness corrections.
Explain laser vision correction.

The need for some type of vision correction is very common. Common vision defects are easy to understand, and some are simple
to correct. Figure  illustrates two common vision defects. Nearsightedness, or myopia, is the inability to see distant objects
clearly while close objects are clear. The eye overconverges the nearly parallel rays from a distant object, and the rays cross in front
of the retina. More divergent rays from a close object are converged on the retina for a clear image. The distance to the farthest
object that can be seen clearly is called the far point of the eye (normally infinity). Farsightedness, or hyperopia, is the inability to
see close objects clearly while distant objects may be clear. A farsighted eye does not converge sufficient rays from a close object
to make the rays meet on the retina. Less diverging rays from a distant object can be converged for a clear image. The distance to
the closest object that can be seen clearly is called the near point of the eye (normally 25 cm).

Figure : (a) The nearsighted (myopic) eye converges rays from a distant object in front of the retina; thus, they are
diverging when they strike the retina, producing a blurry image. This can be caused by the lens of the eye being too powerful or the
length of the eye being too great. (b) The farsighted (hyperopic) eye is unable to converge the rays from a close object by the time
they strike the retina, producing blurry close vision. This can be caused by insufficient power in the lens or by the eye being too
short.

Since the nearsighted eye over converges light rays, the correction for nearsightedness is to place a diverging spectacle lens in front
of the eye. This reduces the power of an eye that is too powerful. Another way of thinking about this is that a diverging spectacle
lens produces a case 3 image, which is closer to the eye than the object (Figure ). To determine the spectacle power needed
for correction, you must know the person’s far point -- that is, you must know the greatest distance at which the person can see
clearly. Then the image produced by a spectacle lens must be at this distance or closer for the nearsighted person to be able to see it
clearly. It is worth noting that wearing glasses does not change the eye in any way. The eyeglass lens is simply used to create an
image of the object at a distance where the nearsighted person can see it clearly. Whereas someone not wearing glasses can see
clearly objects that fall between their near point and their far point, someone wearing glasses can see images that fall between their
near point and their far point.

 Learning Objectives

10.8.4.1

10.8.4.1

10.8.4.2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/78382?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction


10.8.4.2 https://phys.libretexts.org/@go/page/78382

Figure : Correction of nearsightedness requires a diverging lens that compensates for the overconvergence by the eye. The
diverging lens produces an image closer to the eye than the object, so that the nearsighted person can see it clearly.

What power of spectacle lens is needed to correct the vision of a nearsighted person whose far point is 30.0 cm? Assume the
spectacle (corrective) lens is held 1.50 cm away from the eye by eyeglass frames.

Strategy:

You want this nearsighted person to be able to see very distant objects clearly. That means the spectacle lens must produce an
image 30.0 cm from the eye for an object very far away. An image 30.0 cm from the eye will be 28.5 cm to the left of the
spectacle lens (Figure ). Therefore, we must get  when . The image distance is negative,
because it is on the same side of the spectacle as the object.

Solution

Since  and  are known, the power of the spectacle lens can be found using  as written earlier:

Since , we obtain:

Discussion:

The negative power indicates a diverging (or concave) lens, as expected. The spectacle produces a case 3 image closer to the
eye, where the person can see it. If you examine eyeglasses for nearsighted people, you will find the lenses are thinnest in the
center. Additionally, if you examine a prescription for eyeglasses for nearsighted people, you will find that the prescribed
power is negative and given in units of diopters.

Since the farsighted eye under converges light rays, the correction for farsightedness is to place a converging spectacle lens in front
of the eye. This increases the power of an eye that is too weak. Another way of thinking about this is that a converging spectacle
lens produces a case 2 image, which is farther from the eye than the object (Figure ). To determine the spectacle power
needed for correction, you must know the person’s near point -- that is, you must know the smallest distance at which the person
can see clearly. Then the image produced by a spectacle lens must be at this distance or farther for the farsighted person to be able
to see it clearly.

10.8.4.2

 Example : Correcting Nearsightedness10.8.4.1

10.8.4.2 = −28.5cmdi ≈ ∞do

di do P = +1
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1
di

P = + = + .
1
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1

di

1

∞
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(10.8.4.1)

1/∞ = 0

P = 0 −3.51/m = −3.51D. (10.8.4.2)
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Figure : Correction of farsightedness uses a converging lens that compensates for the under convergence by the eye. The
converging lens produces an image farther from the eye than the object, so that the farsighted person can see it clearly.

What power of spectacle lens is needed to allow a farsighted person, whose near point is 1.00 m, to see an object clearly that is
25.0 cm away? Assume the spectacle (corrective) lens is held 1.50 cm away from the eye by eyeglass frames.

Strategy

When an object is held 25.0 cm from the person’s eyes, the spectacle lens must produce an image 1.00 m away (the near point).
An image 1.00 m from the eye will be 98.5 cm to the left of the spectacle lens because the spectacle lens is 1.50 cm from the
eye (Figure ). Therefore, . The image distance is negative, because it is on the same side of the
spectacle as the object. The object is 23.5 cm to the left of the spectacle, so that .

Solution

Since  and  are known, the power of the spectacle lens can be found using :

Discussion

The positive power indicates a converging (convex) lens, as expected. The convex spectacle produces a case 2 image farther
from the eye, where the person can see it. If you examine eyeglasses of farsighted people, you will find the lenses to be thickest
in the center. In addition, a prescription of eyeglasses for farsighted people has a prescribed power that is positive.

Another common vision defect is astigmatism an unevenness or asymmetry in the focus of the eye. For example, rays passing
through a vertical region of the eye may focus closer than rays passing through a horizontal region, resulting in the image appearing
elongated. This is mostly due to irregularities in the shape of the cornea but can also be due to lens irregularities or unevenness in
the retina. Because of these irregularities, different parts of the lens system produce images at different locations. The eye-brain
system can compensate for some of these irregularities, but they generally manifest themselves as less distinct vision or sharper
images along certain axes. Figure  shows a chart used to detect astigmatism. Astigmatism can be at least partially corrected
with a spectacle having the opposite irregularity of the eye. If an eyeglass prescription has a cylindrical correction, it is there to
correct astigmatism. The normal corrections for short- or farsightedness are spherical corrections, uniform along all axes.

10.8.4.3

 Example :Correcting Farsightedness10.8.4.2

10.8.4.3 = −98.5cmdi
= 23.5cmdo

di do P = +1
do

1
di

P = + = +
1
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1

di

1
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4.26D−1.02D = 3.24D. (10.8.4.4)
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Figure : This chart can detect astigmatism, unevenness in the focus of the eye. Check each of your eyes separately by
looking at the center cross (without spectacles if you wear them). If lines along some axes appear darker or clearer than others, you
have an astigmatism.

Contact lenses have advantages over glasses beyond their cosmetic aspects. One problem with glasses is that as the eye moves, it is
not at a fixed distance from the spectacle lens. Contacts rest on and move with the eye, eliminating this problem. Because contacts
cover a significant portion of the cornea, they provide superior peripheral vision compared with eyeglasses. Contacts also correct
some corneal astigmatism caused by surface irregularities. The tear layer between the smooth contact and the cornea fills in the
irregularities. Since the index of refraction of the tear layer and the cornea are very similar, you now have a regular optical surface
in place of an irregular one. If the curvature of a contact lens is not the same as the cornea (as may be necessary with some
individuals to obtain a comfortable fit), the tear layer between the contact and cornea acts as a lens. If the tear layer is thinner in the
center than at the edges, it has a negative power, for example. Skilled optometrists will adjust the power of the contact to
compensate.

Laser vision correction has progressed rapidly in the last few years. It is the latest and by far the most successful in a series of
procedures that correct vision by reshaping the cornea. As noted at the beginning of this section, the cornea accounts for about two-
thirds of the power of the eye. Thus, small adjustments of its curvature have the same effect as putting a lens in front of the eye. To
a reasonable approximation, the power of multiple lenses placed close together equals the sum of their powers. For example, a
concave spectacle lens (for nearsightedness) having  has the same effect on vision as reducing the power of the eye
itself by 3.00 D. So to correct the eye for nearsightedness, the cornea is flattened to reduce its power. Similarly, to correct for
farsightedness, the curvature of the cornea is enhanced to increase the power of the eye -- the same effect as the positive power
spectacle lens used for farsightedness. Laser vision correction uses high intensity electromagnetic radiation to ablate (to remove
material from the surface) and reshape the corneal surfaces.

Today, the most commonly used laser vision correction procedure is Laser in situ Keratomileusis (LASIK). The top layer of the
cornea is surgically peeled back and the underlying tissue ablated by multiple bursts of finely controlled ultraviolet radiation
produced by an excimer laser. Lasers are used because they not only produce well-focused intense light, but they also emit very
pure wavelength electromagnetic radiation that can be controlled more accurately than mixed wavelength light. The 193 nm
wavelength UV commonly used is extremely and strongly absorbed by corneal tissue, allowing precise evaporation of very thin
layers. A computer controlled program applies more bursts, usually at a rate of 10 per second, to the areas that require deeper
removal. Typically a spot less than 1 mm in diameter and about  in thickness is removed by each burst. Nearsightedness,
farsightedness, and astigmatism can be corrected with an accuracy that produces normal distant vision in more than 90% of the
patients, in many cases right away. The corneal flap is replaced; healing takes place rapidly and is nearly painless. More than 1
million Americans per year undergo LASIK (Figure ).
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Figure : Laser vision correction is being performed using the LASIK procedure. Reshaping of the cornea by laser ablation
is based on a careful assessment of the patient’s vision and is computer controlled. The upper corneal layer is temporarily peeled
back and minimally disturbed in LASIK, providing for more rapid and less painful healing of the less sensitive tissues below.
(credit: U.S. Navy photo by Mass Communication Specialist 1st Class Brien Aho)

Summary
Nearsightedness, or myopia, is the inability to see distant objects and is corrected with a diverging lens to reduce power.
Farsightedness, or hyperopia, is the inability to see close objects and is corrected with a converging lens to increase power.
In myopia and hyperopia, the corrective lenses produce images at a distance that the person can see clearly—the far point and
near point, respectively.

Glossary

nearsightedness
another term for myopia, a visual defect in which distant objects appear blurred because their images are focused in front of the
retina rather than being focused on the retina

myopia
a visual defect in which distant objects appear blurred because their images are focused in front of the retina rather than being
focused on the retina

far point
the object point imaged by the eye onto the retina in an unaccommodated eye

farsightedness
another term for hyperopia, the condition of an eye where incoming rays of light reach the retina before they converge into a
focused image

hyperopia
the condition of an eye where incoming rays of light reach the retina before they converge into a focused image

near point
the point nearest the eye at which an object is accurately focused on the retina at full accommodation

astigmatism
the result of an inability of the cornea to properly focus an image onto the retina

laser vision correction
a medical procedure used to correct astigmatism and eyesight deficiencies such as myopia and hyperopia
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10.8.5: Processing_Visual_Information

Figure 15.9.4.2 Ganglion cells

By inserting an electrode in a single ganglion cell, it was shown (by Stephen W. Kuffler) that

Even in the dark, ganglion cells have a slow, steady rate of firing.
Diffuse light directed on the retina has little effect on this rate.
But a tiny spot of light falling on a small circular area of the retina can greatly increase the firing rate of some ganglion cells
(left) while
a spot directed around the perimeter of such an "on" area suppresses that ganglion cell (center).
Light shining on both areas produces no effect (right).
Other ganglion cells have a central "off" area surrounded by an "on" area.

Figure 15.9.4.3 Lateral geniculate nucleus

Two associates of Kuffler, David H. Hubel and Torsten N. Wiesel inserted electrodes in these areas but instead of directing light
into the eye, they projected images on a screen in front of the animal (an anesthetized cat or monkey). Using this procedure, they
found that

cells of the lateral geniculate nucleus (LGN) respond about the same way that ganglion cells do; that is, to circular spots of
light.
But the cells in the visual cortex receiving input from the LGN no longer respond to circles of light but only to bars of light (or
dark) or to straight-line edges between dark and light areas.
One of these "simple cortical cells" will only respond when the stimulus is directed at a particular area of the screen and at a
specific angle. However, an ineffective position for one of these cortical cells is an effective position for another.

Figure 15.9.4.4 LGN
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The diagram shows this mechanism by which the circular response areas of ganglion and LGN cells can be converted into the
rectangular response areas found in the cells of the visual cortex. Other cells ("complex cortical cells") still want their edges
oriented in one direction, but the edges can now be moved across the screen. As the figure shows, this can be explained if a set of
simple cortical cells all responding to an edge of the same slope but each responsible for a different part of the visual field converge
on a single "complex cortical cell". Thus these complex cortical cells continue to respond to the stimulus even though its absolute
position on the retina changes.

While these studies provide only the tiniest glimpse into the workings of the brain, they provide some clues of what will be found:

At each step of processing, the inputs of a number of interneurons are funneled into a single output.
So, at each step, some of the information is selectively destroyed.
A simple cortical cell, for example, fires only if a number of LGN cells converging on it are simultaneously active. Otherwise,
the excitation dies out at the synapses.
In this way, each level of the brain acts as a filtering device and, in doing so, provides a mechanism by which certain features of
what might be a very complex stimulus can be discriminated..
So instead of responding to particular impulses in particular circuits, the mammalian brain seems to respond to the spatial and
temporal organization of many impulses passing along many converging circuits.

The importance of these studies was recognized by the award of a Nobel Prize in 1981 to Hubel and Wiesel (too late for Kuffler,
who died in 1980).

This page titled 10.8.5: Processing_Visual_Information is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by John
W. Kimball via source content that was edited to the style and standards of the LibreTexts platform.
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10.8.6: Color_and_Color_Vision

By the end of this section, you will be able to:

Explain the simple theory of color vision.
Outline the coloring properties of light sources.
Describe the retinex theory of color vision.

The gift of vision is made richer by the existence of color. Objects and lights abound with thousands of hues that stimulate our
eyes, brains, and emotions. Two basic questions are addressed in this brief treatment -- what does color mean in scientific terms,
and how do we, as humans, perceive it?

Simple Theory of Color Vision
We have already noted that color is associated with the wavelength of visible electromagnetic radiation. When our eyes receive
pure-wavelength light, we tend to see only a few colors. Six of these (most often listed) are red, orange, yellow, green, blue, and
violet. These are the rainbow of colors produced when white light is dispersed according to different wavelengths. There are
thousands of other hues that we can perceive. These include brown, teal, gold, pink, and white. One simple theory of color vision
implies that all these hues are our eye’s response to different combinations of wavelengths. This is true to an extent, but we find
that color perception is even subtler than our eye’s response for various wavelengths of light.

The two major types of light-sensing cells (photoreceptors) in the retina are rods and cones Rods are more sensitive than cones by
a factor of about 1000 and are solely responsible for peripheral vision as well as vision in very dark environments. They are also
important for motion detection. There are about 120 million rods in the human retina. Rods do not yield color information. You
may notice that you lose color vision when it is very dark, but you retain the ability to discern grey scales.

1. Go into a darkened room from a brightly lit room, or from outside in the Sun. How long did it take to start seeing shapes
more clearly? What about color? Return to the bright room. Did it take a few minutes before you could see things clearly?

2. Demonstrate the sensitivity of foveal vision. Look at the letter G in the word ROGERS. What about the clarity of the letters
on either side of G?

Cones are most concentrated in the fovea, the central region of the retina. There are no rods here. The fovea is at the center of the
macula, a 5 mm diameter region responsible for our central vision. The cones work best in bright light and are responsible for high
resolution vision. There are about 6 million cones in the human retina. There are three types of cones, and each type is sensitive to
different ranges of wavelengths, as illustrated in Figure . A simplified theory of color vision is that there are three
primary colors corresponding to the three types of cones. The thousands of other hues that we can distinguish among are created by
various combinations of stimulations of the three types of cones. Color television uses a three-color system in which the screen is
covered with equal numbers of red, green, and blue phosphor dots. The broad range of hues a viewer sees is produced by various
combinations of these three colors. For example, you will perceive yellow when red and green are illuminated with the correct ratio
of intensities. White may be sensed when all three are illuminated. Then, it would seem that all hues can be produced by adding
three primary colors in various proportions. But there is an indication that color vision is more sophisticated. There is no unique set
of three primary colors. Another set that works is yellow, green, and blue. A further indication of the need for a more complex
theory of color vision is that various different combinations can produce the same hue. Yellow can be sensed with yellow light, or
with a combination of red and green, and also with white light from which violet has been removed. The three-primary-colors
aspect of color vision is well established; more sophisticated theories expand on it rather than deny it.

 Learning Objectives

 TAKE-HOME EXPERIMENT: RODS AND CONES
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Figure : The image shows the relative sensitivity of the three types of cones, which are named according to wavelengths of
greatest sensitivity. Rods are about 1000 times more sensitive, and their curve peaks at about 500 nm. Evidence for the three types
of cones comes from direct measurements in animal and human eyes and testing of color blind people.

Consider why various objects display color -- that is, why are feathers blue and red in a crimson rosella? The true color of an object
is defined by its absorptive or reflective characteristics. Figure  shows white light falling on three different objects, one
pure blue, one pure red, and one black, as well as pure red light falling on a white object. Other hues are created by more complex
absorption characteristics. Pink, for example on a galah cockatoo, can be due to weak absorption of all colors except red. An object
can appear a different color under non-white illumination. For example, a pure blue object illuminated with pure red light will
appear black, because it absorbs all the red light falling on it. But, the true color of the object is blue, which is independent of
illumination.

Figure : Absorption characteristics determine the true color of an object. Here, three objects are illuminated by white light,
and one by pure red light. White is the equal mixture of all visible wavelengths; black is the absence of light.

Similarly, light sources have colors that are defined by the wavelengths they produce. A helium-neon laser emits pure red light. In
fact, the phrase “pure red light” is defined by having a sharp constrained spectrum, a characteristic of laser light. The Sun produces
a broad yellowish spectrum, fluorescent lights emit bluish-white light, and incandescent lights emit reddish-white hues as seen in
Figure 3. As you would expect, you sense these colors when viewing the light source directly or when illuminating a white object
with them. All of this fits neatly into the simplified theory that a combination of wavelengths produces various hues.

This activity is best done with plastic sheets of different colors as they allow more light to pass through to our eyes. However,
thin sheets of paper and fabric can also be used. Overlay different colors of the material and hold them up to a white light.
Using the theory described above, explain the colors you observe. You could also try mixing different crayon colors.

10.8.6.1
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 TAKE-HOME EXPERIMENT: EXPLORING COLOR ADDITION
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Figure : Emission spectra for various light sources are shown. Curve A is average sunlight at Earth’s surface, curve B is
light from a fluorescent lamp, and curve C is the output of an incandescent light. The spike for a helium-neon laser (curve D) is due
to its pure wavelength emission. The spikes in the fluorescent output are due to atomic spectra -- a topic that will be explored later.

Color Constancy and a Modified Theory of Color Vision

The eye-brain color-sensing system can, by comparing various objects in its view, perceive the true color of an object under
varying lighting conditions -- an ability that is called color constancy. We can sense that a white tablecloth, for example, is white
whether it is illuminated by sunlight, fluorescent light, or candlelight. The wavelengths entering the eye are quite different in each
case, as the graphs in Figure 3 imply, but our color vision can detect the true color by comparing the tablecloth with its
surroundings.

Theories that take color constancy into account are based on a large body of anatomical evidence as well as perceptual studies.
There are nerve connections among the light receptors on the retina, and there are far fewer nerve connections to the brain than
there are rods and cones. This means that there is signal processing in the eye before information is sent to the brain. For example,
the eye makes comparisons between adjacent light receptors and is very sensitive to edges as seen in Figure 4. Rather than
responding simply to the light entering the eye, which is uniform in the various rectangles in this figure, the eye responds to the
edges and senses false darkness variations.

Figure : The importance of edges is shown. Although the grey strips are uniformly shaded, as indicated by the graph
immediately below them, they do not appear uniform at all. Instead, they are perceived darker on the dark side and lighter on the
light side of the edge, as shown in the bottom graph. This is due to nerve impulse processing in the eye.

One theory that takes various factors into account was advanced by Edwin Land (1909 – 1991), the creative founder of the Polaroid
Corporation. Land proposed, based partly on his many elegant experiments, that the three types of cones are organized into systems
called retinexes. Each retinex forms an image that is compared with the others, and the eye-brain system thus can compare a
candle-illuminated white table cloth with its generally reddish surroundings and determine that it is actually white. This retinex
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theory of color vision is an example of modified theories of color vision that attempt to account for its subtleties. One striking
experiment performed by Land demonstrates that some type of image comparison may produce color vision. Two pictures are
taken of a scene on black-and-white film, one using a red filter, the other a blue filter. Resulting black-and-white slides are then
projected and superimposed on a screen, producing a black-and-white image, as expected. Then a red filter is placed in front of the
slide taken with a red filter, and the images are again superimposed on a screen. You would expect an image in various shades of
pink, but instead, the image appears to humans in full color with all the hues of the original scene. This implies that color vision
can be induced by comparison of the black-and-white and red images. Color vision is not completely understood or explained, and
the retinex theory is not totally accepted. It is apparent that color vision is much subtler than what a first look might imply.

Make a whole rainbow by mixing red, green, and blue light. Change the wavelength of a monochromatic beam or filter white
light. View the light as a solid beam, or see the individual photons.

 Color Vision 

 Single Bulb 
 RGB Bulbs

 PHET EXPLORATIONS: COLOR VISION
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Summary
The eye has four types of light receptors -- rods and three types of color-sensitive cones.
The rods are good for night vision, peripheral vision, and motion changes, while the cones are responsible for central vision and
color.
We perceive many hues, from light having mixtures of wavelengths.
A simplified theory of color vision states that there are three primary colors, which correspond to the three types of cones, and
that various combinations of the primary colors produce all the hues.
The true color of an object is related to its relative absorption of various wavelengths of light. The color of a light source is
related to the wavelengths it produces.
Color constancy is the ability of the eye-brain system to discern the true color of an object illuminated by various light sources.
The retinex theory of color vision explains color constancy by postulating the existence of three retinexes or image systems,
associated with the three types of cones that are compared to obtain sophisticated information.

Glossary

hues
identity of a color as it relates specifically to the spectrum

rods and cones
two types of photoreceptors in the human retina; rods are responsible for vision at low light levels, while cones are active at
higher light levels

simplified theory of color vision
a theory that states that there are three primary colors, which correspond to the three types of cones

color constancy
a part of the visual perception system that allows people to perceive color in a variety of conditions and to see some consistency
in the color

retinex
a theory proposed to explain color and brightness perception and constancies; is a combination of the words retina and cortex,
which are the two areas responsible for the processing of visual information

retinex theory of color vision
the ability to perceive color in an ambient-colored environment

This page titled 10.8.6: Color_and_Color_Vision is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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10.8.7: Photoreceptors/Vision_and_Light
Vision is such an everyday occurrence that we seldom stop to think and wonder how we are able to see the objects that surround us.
Yet the vision process is a fascinating example of how light can produce molecular changes. The retina contain the molecules that
undergo a chemical change upon absorbing light, but it is the brain that actually makes sense of the visual information to create an
image.

Introduction
Light is one of the most important resources for civilization, it provides energy as it pass along by the sun. Light influence our
everyday live. Living organisms sense light from the environment by photoreceptors. Light, as waves carry energy, contains energy
by different wavelength. In vision, light is the stimulus input. Light energy goes into eyes stimulate photoreceptor in eyes.
However, as an energy wave, energy is passed on through light at different wavelength.

Light, as waves carry energy, contains energy by different wavelength. From long wavelength to short wavelength, energy increase.
400 nm to 700 nm is visible spectrum.

Light energy can convert chemical to other forms. Vitamin A, also known as retinol, anti-dry eye vitamins, is a required nutrition
for human health. The predecessor of vitamin A is present in the variety of plant carotene. Vitamin A is critical for vision because it
is needed by the retina of eye. Retinol can be convert to retinal, and retinal is a chemical necessary for rhodopsin. As light enters
the eye, the 11-cis-retinal is isomerized to the all-"trans" form.
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Mechanism of Vision
The molecule cis-retinal can absorb light at a specific wavelength. When visible light hits the cis-retinal, the cis-retinal undergoes
an isomerization, or change in molecular arrangement, to all-trans-retinal. The new form of trans-retinal does not fit as well into the
protein, and so a series of geometry changes in the protein begins. The resulting complex is referred to a bathrhodopsin (there are
other intermediates in this process, but we'll ignore them for now).

The reaction above shows Lysine side-chain from the opsin react with 11-cis-retinal when stimulated. By removing the oxygen
atom form the retinal and two hydrogen atom form the free amino group of the lysine, the linkage show on the picture above is
formed, and it is called Schiff base.

Signal Transduction Pathway
As the protein changes its geometry, it initiates a cascade of biochemical reactions that results in changes in charge so that a large
potential difference builds up across the plasma membrane. This potential difference is passed along to an adjoining nerve cell as
an electrical impulse. The nerve cell carries this impulse to the brain, where the visual information is interpreted.

The light image is mapped on the surface of the retina by activating a series of light-sensitive cells known as rods and cones or
photoreceptors. The rods and cones convert the light into electrical impulses which are transmitted to the brain via nerve fibers. The
brain then determines, which nerve fibers carried the electrical impulse activate by light at certain photoreceptors, and then creates
an image.

The retina is lined with many millions of photoreceptor cells that consist of two types: 7 million cones provide color information
and sharpness of images, and 120 million rods are extremely sensitive detectors of white light to provide night vision. The tops of
the rods and cones contain a region filled with membrane-bound discs, which contain the molecule cis-retinal bound to a protein
called opsin. The resulting complex is called rhodopsin or "visual purple".

Figure 3: A fundus photograph of the back of the retina. The white area is the beginning of the optical nerve (optic disc). The
image in this photo is the right eye of eric anthamatten. (CC-BY-SA-4.0; TheGoose aPrisoner).

In human eyes, rod and cones react to light stimulation, and a series of chemical reactions happen in cells. These cells receive light,
and pass on signals to other receiver cells. This chain of process is class signal transduction pathway. Signal transduction pathway
is a mechanism that describe the ways cells react and response to stimulation.
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10.8.8: Biology of vision
Figure  appears at first glance to be just a pattern of colored leaves, but hidden within it is the three-dimensional shape
of an ant. Can you see the ant among the leaves? This figure is an example of a stereogram, which is a two-dimensional picture
that reveals a three-dimensional object when viewed correctly. If you can’t see the hidden image, it doesn’t mean that there is
anything wrong with your eyes. It’s all in how your brain interprets what your eyes are sensing. The eyes are special sensory
organs, and vision is one of our special senses.

Figure : Stereogram

Vision
Vision is the ability to detect light patterns from the outside environment and interpret them into images. Basically vision, or sight,
is the ability to sense light and see. The eye is the special sensory organ that collects and focuses light and forms images. However,
the eye is not sufficient for us to see. The brain also plays a necessary role in vision.

Humans are bombarded with sensory information, and the sheer volume of visual information can be problematic. Fortunately, our
visual system is able to attend to the most-important stimuli. The importance of vision to humans is further substantiated by the fact
that about one-third of the human cerebral cortex is dedicated to analyzing and perceiving visual information.

Anatomy of the Eye
The photoreceptive (light receiving) cells of the eye, where conversion of light to nervous impulses occurs, are located in the retina
(shown in Figure : (a)) on the inner surface of the back of the eye. Light passes through several layers of the eye that
process it so that it can be interpreted by the retina (Figure : (b)). The cornea (Figures  and ), the front
transparent layer of the eye, and the crystalline lens, a transparent convex structure behind the cornea, both refract (bend) light to
focus the image on the retina. The iris, which is conspicuous as the colored part of the eye, is a circular muscular ring lying
between the lens and cornea that regulates the amount of light entering the eye. In conditions of high light, the iris contracts,
reducing the size of the pupil at its center. In conditions of low light, the iris relaxes and the pupil enlarges.

The main function of the lens is to focus light on the retina and fovea. The lens is dynamic, focusing and re-focusing light as the
eye rests on near and far objects in the visual field. The lens is operated by muscles that stretch it flat or allow it to thicken,
changing the focal length of light coming through it to focus it sharply on the retina.

The eyelids, with lashes at their leading edges, help to protect the eye from abrasions by blocking particles that may land on the
surface of the eye. The inner surface of each lid is a thin membrane known as the palpebral conjunctiva. The conjunctiva extends
over the white areas of the eye (the sclera), connecting the eyelids to the eyeball. Tears are produced by the lacrimal gland, located
beneath the lateral edges of the nose. Tears produced by this gland flow through the lacrimal duct to the medial corner of the eye,
where the tears flow over the conjunctiva, washing away foreign particles.
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Figure : (a) The human eye is shown in cross section. (b) A blowup shows the layers of the retina.

.

This diagram shows the lateral view of the eye. The major parts are labeled.

Figure : The Eye in the Orbit The eye is located within the orbit and surrounded by soft tissues that
protect and support its function. The orbit is surrounded by cranial bones of the skull.

There are two types of photoreceptor cells in the retina: rods and cones, named for their general appearance as illustrated in Figure 
: . Rods are strongly photosensitive and are located in the outer edges of the retina; Rods detect dim light and are used

primarily for peripheral and nighttime vision. Cones are weakly photosensitive and are located near the center of the retina; Cones
respond to bright light, and their primary role is in daytime, color vision.

Figure : Rods and cones are photoreceptors in the retina. Rods respond in low light and can detect only shades of gray.
Cones respond in intense light and are responsible for color vision. (credit: modification of work by Piotr Sliwa)

The fovea is the region in the center back of the eye that is responsible for acute vision. The fovea has a high density of just cones.
When you bring your gaze to an object to examine it intently in bright light, the eyes orient so that the object’s image falls on the
fovea. This is the area of the retina that gives us high clarity of vision. However, when looking at a star in the night sky or other
object in dim light, the object can be better viewed by the peripheral vision because it is the rods in higher concentrations in the
other regions of the retina, rather than the cones at the center, that operate better in low light. In low-light conditions, the rods allow
us to see in shades of gray because cones require bright light to be stimulated and don't respond in low light conditions.

LINK TO LEARNING

Review the anatomical structure of the eye, clicking on each part to practice identification.
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How the Eye Works
Figure  shows the anatomy of the human eye in cross-section. The eye gathers and focuses light to form an image and then
changes the image to nerve impulses that travel to the brain. How the eye performs these functions is summarized in the following
steps.

1. Light passes first through the cornea, which is a clear outer layer that protects the eye and helps to focus the light by refracting,
or bending, it.

2. Light next enters the interior of the eye through an opening called the pupil. The size of this opening is controlled by the
colored part of the eye, called the iris, which adjusts the size based on the brightness of the light. The iris causes the pupil to
narrow in bright light and widen in dim light.

3. The light then passes through the lens, which refracts the light even more and focuses it on the retina at the back of the eye as
an inverted image.

4. The retina contains photoreceptor cells of two types, called rods and cones. Rods, which are found mainly in all areas of the
retina other than the very center, are particularly sensitive to low levels of light. Cones, which are found mainly in the center of
the retina, are sensitive to light of different colors and allow color vision. The rods and cones convert the light that strikes them
to nerve impulses.

5. The nerve impulses from the rods and cones travel to the optic nerve via the optic disc, which is a circular area at the back of
the eye where the optic nerve connects to the retina.

Figure : In this image, you can see the three layers of the eyeball, the sclera (cornea at the front), choroid, and retina. Lens,
pupil, Irish, optic disc, option nerve (not labeled), blood vessels, and eye muscles are also visible. Trace the path of light through
the eye as you read about in the five steps described in the text

Role of the Brain in Vision
The optic nerves from both eyes meet and cross just below the bottom of the hypothalamus in the brain. The information from both
eyes is sent to the visual cortex in the occipital lobe of the cerebrum, which is part of the cerebral cortex. The visual cortex is the
largest system in the human brain and is responsible for processing visual images. It interprets messages from both eyes and “tells”
us what we are seeing.

Processing Visual Input

Light

Light travels in electromagnetic waves. Figure  of the electromagnetic spectrum shows that visible light for humans is just
a small slice of the entire spectrum, which includes radiation that we cannot see as light because it is below the frequency of visible
red light or above the frequency of visible violet light. The wavelength of light is expressed in nanometers (nm); one nanometer is
one billionth of a meter.

Humans can see light that ranges between approximately 380 nanometers (nm) and 740 nm wavelengths (called visible light). We
perceive different wavelengths within this range as different colors. Some other animals, though, can detect wavelengths outside of
the human range. For example, bees see near-ultraviolet light in order to locate nectar guides on flowers, and some non-avian
reptiles sense infrared light (heat that prey gives off).
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Figure : In the electromagnetic spectrum, visible light lies between 380 nm and 740 nm. (credit: modification of work by
NASA)

Color Vision (Trichromatic Coding)

There are three types of cones, each with different photoreceptive proteins (photopsins). By being sensitive to different
wavelengths of light, provide us with color vision (Figure ). By comparing the activity of the three different cones, the
brain can extract color information from visual stimuli. For example, a bright blue light that has a wavelength of approximately 450
nm would activate the “red” cones minimally, the “green” cones marginally, and the “blue” cones predominantly. The relative
activation of the three different cones is calculated by the brain, which perceives the color as blue. However, cones cannot react to
low-intensity light, and rods do not sense the color of light. Therefore, our low-light vision is—in essence—in grayscale. In other
words, in a dark room, everything appears as a shade of gray. If you think that you can see colors in the dark, it is most likely
because your brain knows what color something is and is relying on that memory.

With only one type of cone, color vision would not be possible, and a two-cone (dichromatic) system has limitations. Primates,
including humans, use a three-cone (trichromatic) system, resulting in full color vision. The color we perceive is a result of the ratio
of activity of our three types of cones. Humans have very sensitive perception of color and can distinguish about 500 levels of
brightness, 200 different hues, and 20 steps of saturation, or about 2 million distinct colors.

This graph shows the normalized absorbance versus wavelength for different cell types in the eye.

Figure : Human rod cells and the different types of cone cells each have an optimal wavelength. However, there is
considerable overlap in the wavelengths of light detected.

Retinal Processing

Visual signals leave the cones and rods, travel to the bipolar cells, and then to ganglion cells. A large degree of processing of visual
information occurs in the retina itself, before visual information is sent to the brain.

Higher Processing

The myelinated axons of ganglion cells make up the optic nerves. Within the nerves, different axons carry different qualities of the
visual signal. Some axons constitute the magnocellular (big cell) pathway, which carries information about form, movement, depth,
and differences in brightness. Other axons constitute the parvocellular (small cell) pathway, which carries information on color and
fine detail. Some visual information projects directly back into the brain, while other information crosses to the opposite side of the
brain. This crossing of optical pathways produces the distinctive optic chiasma (Greek, for “crossing”) found at the base of the
brain and allows us to coordinate information from both eyes.

Once in the brain, visual information is processed in several places, and its routes reflect the complexity and importance of visual
information to humans and other animals.

Vision Problems
Vision problems are very common. Two of the most common are myopia and hyperopia, and they often start in childhood or
adolescence. Another common problem, called presbyopia, occurs in most people beginning in middle adulthood. All three
problems result in blurred vision due to the failure of the eyes to focus images correctly on the retina.

Myopia

Myopia, or nearsightedness, occurs when the light that comes into the eye does not directly focus on the retina but in front of it, as
shown in Figure . This causes the image of distant objects to be out of focus but does not affect the focus of close objects.
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Myopia may occur because the eyeball is elongated from front to back or because the cornea is too curved. Myopia can be
corrected through the use of corrective lenses, either eyeglasses or contact lenses. Myopia can also be corrected by refractive
surgery performed with a laser.

Figure : In myopia, the focal point of images is in front of the retina because the eyeball is elongated.

Hyperopia

Hyperopia, or farsightedness, occurs when the light that comes into the eye does not directly focus on the retina but behind it, as
shown in Figure . This causes the image of close objects to be out of focus but does not affect the focus of distant objects.
Hyperopia may occur because the eyeball is too short from front to back or because the lens is not curved enough. Hyperopia can
be corrected through the use of corrective lenses or laser surgery.

Figure : In hyperopia, the focal point of images is behind the retina because the eyeball is too short.

Presbyopia

Presbyopia is a vision problem associated with aging in which the eye gradually loses its ability to focus on close objects.
Presbyopia occurs because the image focuses behind the retina. The precise cause of presbyopia is not known for certain, but
evidence suggests that the lens may become less elastic with age, and the muscles that control the lens may lose power as people
grow older. The first signs of presbyopia – eyestrain, difficulty seeing in dim light, problems focusing on small objects, and fine
print – are usually first noticed between the ages of 40 and 50. Most older people with this problem use corrective lenses to focus
on close objects because surgical procedures to correct presbyopia have not been as successful as those for myopia and hyperopia.

The most common cause of blindness in the Western hemisphere is age-related macular degeneration (AMD). About 15
million people in the United States have this type of blindness, and 30 million people are affected worldwide. At present, there
is no cure for AMD. The disease occurs with the death of a layer of cells called retinal pigment epithelium, which normally
provides nutrients and other support to the macula of the eye. The macula is an oval-shaped pigmented area near the center of
the retina that is specialized for high visual acuity and has the retina’s greatest concentration of cones. When the epithelial cells
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die and the macula is no longer supported or nourished, the macula also starts to die. Patients experience a black spot in the
center of their vision, and as the disease progresses, the black spot grows outward. Patients eventually lose the ability to read
and even to recognize familiar faces before developing total blindness.

In 2016, a landmark surgery was performed as a trial on a patient with severe AMD. In the first-ever operation of its kind, Dr.
Pete Coffey of the University of London implanted a tiny patch of cells behind the retina in each of the patient’s eyes. The cells
were retinal pigmented epithelial cells that had been grown in a lab from stem cells, which are undifferentiated cells that have
the ability to develop into other cell types. By six months out from the operation, the new cells were still surviving, and the
doctor was hopeful that the patient’s vision loss would stop and even be reversed. At that point, several other operations had
already been planned to test the new procedure. If these cases are a success, Dr. Coffey predicts that the surgery will become as
routine as cataract surgery and prevent millions of patients from losing their vision.

Section Summary
Vision is the only photo responsive sense. Visible light travels in waves and is a very small slice of the electromagnetic radiation
spectrum. Light waves differ based on their frequency (wavelength = hue) and amplitude (intensity = brightness).

In the retina there are two types of light receptors (photoreceptors): cones and rods. Cones, which are the source of color vision,
exist in three forms—L, M, and S—and they are differentially sensitive to different wavelengths. Cones are located in the retina,
along with the dim-light, achromatic receptors (rods). Cones are found in the fovea, the central region of the retina, whereas rods
are found everywhere else throughout the retina.

Visual signals travel from the eye over the axons of retinal ganglion cells, which make up the optic nerves. Ganglion cells come in
several versions. Some ganglion cell axons carry information on form, movement, depth, and brightness, while other axons carry
information on color and fine detail.

Questions
1. Explain how the eye collects and focuses light to form an image and converts it to nerve impulses.
2. Identify two common vision problems, including both their causes and their effects on vision.
3. If a person is blind but their retina is functioning properly, where do you think the damage might be? Explain your answer.
4. When you see colors, what receptor cells are activated? Where are these receptors located? What lobe of the brain is primarily

used to process visual information?

5. Why do people over 55 often need reading glasses?

a. Their cornea no longer focuses correctly.
b. Their lens no longer focuses correctly.
c. Their eyeball has elongated with age, causing images to focus in front of their retina.
d. Their retina has thinned with age, making vision more difficult.

6. Why is it easier to see images at night using peripheral, rather than the central, vision?

a. Cones are denser in the periphery of the retina.
b. Bipolar cells are denser in the periphery of the retina.
c. Rods are denser in the periphery of the retina.
d. The optic nerve exits at the periphery of the retina.

Explore More
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10.A: The Nature of Light (Answers)

Check Your Understanding

1.1. 2.1% (to two significant figures)

1.2. 15.1°

1.3. air to water, because the condition that the second medium must have a smaller index of refraction is not satisfied

1.4. 9.3 cm

1.5.  becomes longer,  tilts further away from the surface, and the refracted ray tilts away from the normal.

1.6. also 

1.7. There will be only refraction but no reflection.

Conceptual Questions
1. model as a ray when devices are large compared to wavelength, as a wave when devices are comparable or small
compared to wavelength

3. This fact simply proves that the speed of light is greater than that of sound. If one knows the distance to the location of the
lightning and the speed of sound, one could, in principle, determine the speed of light from the data. In practice, because the
speed of light is so great, the data would have to be known to impractically high precision.

5. Powder consists of many small particles with randomly oriented surfaces. This leads to diffuse reflection, reducing shine.

7. “toward” when increasing n (air to water, water to glass); “away” when decreasing n (glass to air)

9. A ray from a leg emerges from water after refraction. The observer in air perceives an apparent location for the source, as
if a ray traveled in a straight line. See the dashed ray below.

The figure is illustration of the formation of the image of a leg under water, as seen by a viewer in the air above
the water. A ray is shown leaving the leg and refracting at the water air interface. The refracted ray bends away
from the normal. Extrapolating the refracted ray back into the water, the extrapolated ray is above the actual

ray so that the image of the leg is above the actual leg and the leg appears shorter.

11. The gemstone becomes invisible when its index of refraction is the same, or at least similar to, the water surrounding it.
Because diamond has a particularly high index of refraction, it can still sparkle as a result of total internal reflection, not
invisible.

13. One can measure the critical angle by looking for the onset of total internal reflection as the angle of incidence is varied.
Equation 1.5 can then be applied to compute the index of refraction.
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15. In addition to total internal reflection, rays that refract into and out of diamond crystals are subject to dispersion due to
varying values of n across the spectrum, resulting in a sparkling display of colors.

17. yes

19. No. Sound waves are not transverse waves.

21. Energy is absorbed into the filters.

23. Sunsets are viewed with light traveling straight from the Sun toward us. When blue light is scattered out of this path, the
remaining red light dominates the overall appearance of the setting Sun.

25. The axis of polarization for the sunglasses has been rotated .

Problems

27. 

29. ice at 

31. 1.03 ns

33. 337 m

35. proof

37. proof

39. reflection, ; refraction, 

41. 

43. 1.53

45. a. 2.9 m;

b. 1.4 m

47. a. ;

b. 

49. 

51. a. 1.43, fluorite;

b. 

53. a. ;

b. 

55.  for red,  for violet

57. a. ;

b. 1.3 m

59. 

61.  for red,  for violet

63. 0.500

65. 0.125 or 1/8

67. 

69. 

71. a. 0.500;

b. 0.250;

90°

2.99705 × m/s; 1.97 × m/s108 108

0°C

70° 45°

42°

24.42°

31.33°

79.11°

44.2°

48.2°

27.3°

46.5° 46.0°

0.04°

72.8°

53.5° 55.2°

84.3°

0.250I0
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c. 0.187

73. 

75. 

Additional Problems
77. 114 radian/s

79. 3.72 mm

81. 

83. a. 1.92. The gem is not a diamond (it is zircon).

b. 

85. a. 0.898;

b. We cannot have , since this would imply a speed greater than c.

c. The refracted angle is too big relative to the angle of incidence.

87. 

89. a. ;

b. yes

Challenge Problems
91. First part: . The remainder depends on the complexity of the solution the reader constructs.

93. proof; 1.33

95. a. 0.750;

b. 0.563;

c. 1.33

This page titled 10.A: The Nature of Light (Answers) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

1.A: The Nature of Light (Answers) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-3.
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1.A: Geometric Optics and Image Formation (Answers)

Check Your Understanding

Conceptual Questions

1. Virtual image cannot be projected on a screen. You cannot distinguish a real image from a virtual image simply by judging
from the image perceived with your eye.

3. Yes, you can photograph a virtual image. For example, if you photograph your reflection from a plane mirror, you get a
photograph of a virtual image. The camera focuses the light that enters its lens to form an image; whether the source of the
light is a real object or a reflection from mirror (i.e., a virtual image) does not matter.

5. No, you can see the real image the same way you can see the virtual image. The retina of your eye effectively serves as a
screen.

7. The mirror should be half your size and its top edge should be at the level of your eyes. The size does not depend on your
distance from the mirror.

9. when the object is at infinity; see the mirror equation

11. Yes, negative magnification simply means that the image is upside down; this does not prevent the image from being
larger than the object. For instance, for a concave mirror, if distance to the object is larger than one focal distance but smaller
than two focal distances the image will be inverted and magnified.

13. answers may vary

15. The focal length of the lens is fixed, so the image distance changes as a function of object distance.

17. Yes, the focal length will change. The lens maker’s equation shows that the focal length depends on the index of
refraction of the medium surrounding the lens. Because the index of refraction of water differs from that of air, the focal
length of the lens will change when submerged in water.

19. A relaxed, normal-vision eye will focus parallel rays of light onto the retina.

21. A person with an internal lens will need glasses to read because their muscles cannot distort the lens as they do with
biological lenses, so they cannot focus on near objects. To correct nearsightedness, the power of the intraocular lens must be
less than that of the removed lens.

23. Microscopes create images of macroscopic size, so geometric optics applies.

25. The eyepiece would be moved slightly farther from the objective so that the image formed by the objective falls just
beyond the focal length of the eyepiece.

Problems

27.
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Figure shows cross sections of two mirrors placed at an angle of 60 degrees to each other. Six small circles labeled object, 
 and  are shown. The object is on the bisector between the mirrors. Line 1 intersects mirror 1 perpendicularly

connecting the object to  on the other side of the mirror. Line 2 intersects the mirror 2 perpendicularly connecting the object to 
on the other side of the mirror. Lines parallel to these respectively connect  to  and  to . Lines parallel to these respectively
connect  to  and  to .

29. It is in the focal point of the big mirror and at the center of curvature of the small mirror.

31. 

33. 

35. Step 1: Image formation by a mirror is involved.

Step 2: Draw the problem set up when possible.

Step 3: Use thin-lens equations to solve this problem.

Step 4: Find f.

Step 5: Given: .

Step 6: No ray tracing is needed.

Step 7: Using . Then, .

Step 8: The image is virtual because the image distance is negative. The focal length is positive, so the mirror is
concave.

37. a. for a convex mirror ;

b.  (behind the cornea);

c. , so that 

39. 

41.   

, , ,I1 I2 I3 I4 I5

I1 I2

I2 I3 I1 I4

I4 I5 I3 I5

f = ⇒ R = +1.60m
R

2

= 27.3cmdo

m = 1.50, = 0.120mdo

m = , = −0.180m
di

do
di f = 0.360m

< 0 ⇒ m > 0.m = +0.111di

= −0.334cmdi

f = −0.376cm R = −0.752cm

m = = − = − = = 1 ⇒ =
hi

ho

di

do

−do

do

do

do
hi ho

m = −11.0 A' = 0.110m2 I = 6.82kW/m2
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Figure shows the cross section of a concave mirror. Two rays originating from a point strike the mirror and are reflected. The
distance of the point from the mirror is labeled  and .

43. 

 with 

45. 

47. 

49. proof

51. a. ;

b. , so that  and

 or 

53. a.  ;

b. , so the maximum height is ;

c. This seems quite reasonable, since at 3.00 m it is possible to get a full length picture of a person.

55. a. ;

b. 

57. a. Using , . Then we can determine the magnification, .

b.  and ;

c. The magnification m increases rapidly as you increase the object distance toward the focal length.

59. 

61. 

63. 83 cm to the right of the converging lens, 

= 0.273mdo = 3.00mdi

= − , (m = 1, 2, 3, . . . ),x2m x2m−1

= b− , (m = 0, 1, 2, . . . ),x2m+1 x2m = a.x0

= −55cm;m = +1.8di

= −41cm,m = 1.4di

+ = ⇒ = 3.43m
1

di

1

do

1

f
di

m = −33.33 (2.40 × m)(33.33) = 80.0cm,10−2

(3.60 × m)(33.33) = 1.20m ⇒ 0.800m×1.20m10−2 80.0cm×120cm

+ =
1

do

1

di

1

f
= 5.08cmdi

m = −1.695 ×10−2 = 2.12m ⇒ 100
0.036m

1.695 ×10−2

+ = ⇒ = 2.55m
1

do

1

di

1

f
do

= − ⇒ = 1.00m
hi

ho

di

do
ho

+ =
1

do

1

di

1

f
= −56.67cmdi m = 6.67

= −190cmdi m = +20.0

+ =
1

do

1

di

1

f

=dI
1

(1/f) −(1/ )do

= 6.667 × =
di

do
10−13 hi

ho

= −0.933mmhi

= −6.7cmdi

= 4.0cmhi

m = −2.3, = 6.9cmhi
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65. 

67. 

69. a. ;

b. ;

c. 

71. 

73. Originally, the close vision was 51.0 D. Therefore, 

75. originally, ; because the power for normal distant vision is 50.0 D, the power should be decreased by 20.0 D

77. 

79. a. ;

b.  

81. We need  when , so 

83. Let  = far point ⇒

85. 

87.   

89. 

91. 

93.  

95. 

97. a. ;

b. 

99. a.  behind the objective lens;

b. ;

c. 

;

d. ;

e. 

101. 

103. 

P = 52.0D

= − ⇒ = − ( ) = −(3.50mm)( ) = −0.233mm
hi

ho

di

do
hi ho

di

do

2.00cm

30.0cm

P = +62.5D

= − ⇒ = −0.250mm
hi

ho

di

do
hi

= −0.0800mmhi

P = + ⇒ = 28.6cm
1

do

1

di
do

P = + ⇒ = 1.00m
1

do

1

di
do

P = 70.0D

P = + ⇒ = 0.333m
1

do

1

di
do

P = 52.0D

P ' = 56.16D + = P ⇒ = 16.2cm
1

do

1

di
do

= −18.5cmdi = ∞do P = −5.41D

x P = + ⇒ −xP +(0.0175m)P = 1 ⇒ x = 26.8cm
1

−(x−0.0175m)

1

∞

M = 6×

M = ( )(1 + )
25cm

L

L−ℓ

f
L−ℓ = do = 13cmdo

M = 2.5×

M = −2.1×

M =
25cm

f
= 5Mmax

= 1 + ⇒ f =M
young
max

18cm

f

18cm

−1M young
max

= 9.8×M old
max

+
1

do

1

di
= ⇒ = 4.65cm ⇒ m = −30.011

f
di

= −240Mnet

+
1

dobjo

1

d
obj

i

= 1

f obj ⇒ = 18.3cmd
obj

i

= −60.0mobj

= 1.70cmd
eye
o

= −11.3cmdeyei

= 13.5M eye

= −810Mnet

M = −40.0

= ,M = −1.67f obj R

2
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105. 

107. Answers will vary.

109. 12 cm to the left of the mirror, 

111. 27 cm in front of the mirror, , orientation upright

113. The following figure shows three successive images beginning with the image  in mirror .  is the image in
mirror , whose image in mirror  is  whose image in mirror  is the real image .

Figure shows the side view of two concave mirrors,  and  placed one on top of the other, facing each other. The top, , one
has a small hole in the middle. A penny is placed on the bottom mirror. An image of the penny labeled  is shown below .
Another image of the penny, labeled  is shown above the top mirror. This is labeled real image.

115. 5.4 cm from the axis

117. Let the vertex of the concave mirror be the origin of the coordinate system. Image 1 is at −10/3 cm (−3.3 cm), image 2 is
at −40/11 cm (−3.6 cm). These serve as objects for subsequent images, which are at −310/83 cm (−3.7 cm), −9340/2501 cm
(−3.7 cm), −140,720/37,681 cm (−3.7 cm). All remaining images are at approximately −3.7 cm.

119.

Figure shows two prisms with their bases parallel to each other at an angle of 45 degrees to the horizontal. To the right of this is a
bi-convex lens. A ray along the optical axis enters this set up from the left, deviates between the two prisms and travels parallel to
the optical axis, slightly below it. It enters the lens and deviates to pass through its focal point on the other side.

121. Figure shows from left to right: an object with base O on the axis and tip P. A bi-concave lens with focal point F1 and
F2 on the left and right respectively and a concave mirror with center of curvature C. Two rays originate from P and diverge
through the bi-concave lens. Their back extensions converge between F1 and the lens to form image Q1. Two rays
originating from the tip of Q1 strike the mirror, are reflected and converge at Q2 between C and the mirror.

123. −5 D

125. 11

Additional Problems

127. a.

M = − , = +10.0cm
f obj

f eye
f eye

m = 3/5

m = 0.6, = 1.76cmhi

Q1 M1 Q1

M1 M2 Q12 M1 Q121

M1 M2 M2

Q1 M1

Q121
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Figure shows the cross section of a concave mirror with centre of curvature O and focal point F. Point P lies on the axis between
point F and the mirror. Ray 1 originates from point P, travels along the axis and hits the mirror. The reflected ray 1 prime travels
back along the axis. Ray 2 originates from P and hits the mirror at point X. The reflected ray is labeled 2 prime. Line OX, labeled
normal at X, bisects the angle formed by PX and ray 2 prime. The back extensions of 1 prime and 2 prime intersect at point Q.

b.

Figure shows the cross section of a concave mirror with points P, O, Q and F lying on the optical axis. Point P is furthest from the
mirror. Ray 1 originates from P, travels along the axis and hits the mirror. The reflected ray 1 prime travels back along the axis. Ray
2 originates from P and hits the mirror at point X. The reflected ray 2 prime intersects the axis at point Q, which lies between points
P and F. OX, labeled normal at X, bisects the angle PXQ.

c.

Figure shows a convex mirror with point P lying between point F and the mirror on the optical axis. Ray 1 originates from P, travels
along the axis and hits the mirror. The reflected ray 1 prime travels back along the axis. Ray 2 originates from P and hits the mirror
at point X. The angle formed by reflected ray 2 prime and PX is bisected by OX, the normal at X. The back extensions of 1 prime
and 2 prime intersect at point Q, just behind the mirror.

d. similar to the previous picture but with point P outside the focal length;

e. Repeat (a)–(d) for a point object off the axis. For a point object placed off axis in front of a concave mirror
corresponding to parts (a) and (b), the case for convex mirror left as exercises.
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Figure a shows the cross section of a concave mirror. Point P lies above the axis, closer to the mirror than focal point F. Ray 1
originates from P and hits the mirror. Reflected ray 1 prime travels back along the same line as ray 1 and intersects the optical axis
at point O. Ray 2 originates from point P and hits the mirror at point X. The reflected ray is labeled 2 prime. The back extensions of
1 prime and 2 prime intersect at point Q behind the mirror. The angle formed by rays 2 and 2 prime is bisected by OX, the normal
at X. Figure b shows the cross section of a concave mirror. Point P lies above the axis, further away from the mirror than point F.
Ray 1 originates from P and hits the mirror. Reflected ray 1 prime travels back along the same line as ray 1 and intersects the
optical axis at point O. Ray 2 originates from point P and hits the mirror at point X. The reflected ray is labeled 2 prime. Rays 1
prime and 2 prime intersect at point Q in front of the mirror. The angle formed by rays 2 and 2 prime is bisected by OX, the normal
at X.

129. , upright

131. proof

133.

= −10/3cm, = 2cmdi hi
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Figure shows a bi-convex lens, an object placed at point A on the optical axis and an inverted image formed at point  on the axis
behind the lens. The top of the object is a distance h from the origin. Three rays originate from the top of the object, strike the lens
and converge on the other side at the top of the inverted image. It passes the focal point in front of the lens and is parallel to the
optical axis behind the lens.

Triangles BAO and  are similar triangles. Thus, . Triangles NOF and  are similar

triangles. Thus, . Noting that  gives  or . Inverting

this gives . Equating the two expressions for the ratio  gives . Dividing

through by  gives  or .

135. 70 cm

137. The plane mirror has an infinite focal point, so that . The total apparent distance of the man in the mirror will
be his actual distance, plus the apparent image distance, or . If this distance must be less than 20 cm, he
should stand at .

139. Here we want . If near point, . Thus, 

. Using  gives , so the near point is 25.3 cm.

141. Assuming a lens at 2.00 cm from the boy’s eye, the image distance must be .

For an infinite-distance object, the required power is . Therefore, the  lens will correct the

nearsightedness.

143. 

145. Use, . The image distance for the objective is . Using 

, , and  gives . We want this image to be at the focal point of the
eyepiece so that the eyepiece forms an image at infinity for comfortable viewing. Thus, the distance d between the lenses
should be 

147. a. focal length of the corrective lens ;

b. −1.25 D

149. 

151. 
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di
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10.E: The Nature of Light (Exercises)

Conceptual Questions

1.1 The Propagation of Light

1. Under what conditions can light be modeled like a ray? Like a wave?

2. Why is the index of refraction always greater than or equal to 1?

3. Does the fact that the light flash from lightning reaches you before its sound prove that the speed of light is extremely
large or simply that it is greater than the speed of sound? Discuss how you could use this effect to get an estimate of the
speed of light.

4. Speculate as to what physical process might be responsible for light traveling more slowly in a medium than in a vacuum.

1.2 The Law of Reflection

5. Using the law of reflection, explain how powder takes the shine off of a person’s nose. What is the name of the optical
effect?

1.3 Refraction

6. Diffusion by reflection from a rough surface is described in this chapter. Light can also be diffused by refraction. Describe
how this occurs in a specific situation, such as light interacting with crushed ice.

7. Will light change direction toward or away from the perpendicular when it goes from air to water? Water to glass? Glass to
air?

8. Explain why an object in water always appears to be at a depth shallower than it actually is?

9. Explain why a person’s legs appear very short when wading in a pool. Justify your explanation with a ray diagram
showing the path of rays from the feet to the eye of an observer who is out of the water.

10. Explain why an oar that is partially submerged in water appears bent.

1.4 Total Internal Reflection

11. A ring with a colorless gemstone is dropped into water. The gemstone becomes invisible when submerged. Can it be a
diamond? Explain.

12. The most common type of mirage is an illusion that light from faraway objects is reflected by a pool of water that is not
really there. Mirages are generally observed in deserts, when there is a hot layer of air near the ground. Given that the
refractive index of air is lower for air at higher temperatures, explain how mirages can be formed.

13. How can you use total internal reflection to estimate the index of refraction of a medium?

1.5 Dispersion

14. Is it possible that total internal reflection plays a role in rainbows? Explain in terms of indices of refraction and angles,
perhaps referring to that shown below. Some of us have seen the formation of a double rainbow; is it physically possible to
observe a triple rainbow? A photograph of a double rainbow.
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15. A high-quality diamond may be quite clear and colorless, transmitting all visible wavelengths with little absorption.
Explain how it can sparkle with flashes of brilliant color when illuminated by white light.

1.6 Huygens’s Principle

16. How do wave effects depend on the size of the object with which the wave interacts? For example, why does sound bend
around the corner of a building while light does not?

17. Does Huygens’s principle apply to all types of waves?

18. If diffraction is observed for some phenomenon, it is evidence that the phenomenon is a wave. Does the reverse hold
true? That is, if diffraction is not observed, does that mean the phenomenon is not a wave?

1.7 Polarization

19. Can a sound wave in air be polarized? Explain.

20. No light passes through two perfect polarizing filters with perpendicular axes. However, if a third polarizing filter is
placed between the original two, some light can pass. Why is this? Under what circumstances does most of the light pass?

21. Explain what happens to the energy carried by light that it is dimmed by passing it through two crossed polarizing filters.

22. When particles scattering light are much smaller than its wavelength, the amount of scattering is proportional to . Does

this mean there is more scattering for small  than large ? How does this relate to the fact that the sky is blue?

23. Using the information given in the preceding question, explain why sunsets are red.

24. When light is reflected at Brewster’s angle from a smooth surface, it is  polarized parallel to the surface. Part of the
light will be refracted into the surface. Describe how you would do an experiment to determine the polarization of the
refracted light. What direction would you expect the polarization to have and would you expect it to be ?

25. If you lie on a beach looking at the water with your head tipped slightly sideways, your polarized sunglasses do not work
very well. Why not?

Problems

1.1 The Propagation of Light

26. What is the speed of light in water? In glycerine?

27. What is the speed of light in air? In crown glass?

28. Calculate the index of refraction for a medium in which the speed of light is , and identify the most
likely substance based on Table 1.1.

29. In what substance in Table 1.1 is the speed of light ?

30. There was a major collision of an asteroid with the Moon in medieval times. It was described by monks at Canterbury
Cathedral in England as a red glow on and around the Moon. How long after the asteroid hit the Moon, which is 

 away, would the light first arrive on Earth?

1

λ
λ λ

100

100

2.012 × m/s108

2.290 × m/s108

3.84 × km105
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31. Components of some computers communicate with each other through optical fibers having an index of refraction 
. What time in nanoseconds is required for a signal to travel 0.200 m through such a fiber?

32. Compare the time it takes for light to travel 1000 m on the surface of Earth and in outer space.

33. How far does light travel underwater during a time interval of ?

1.2 The Law of Reflection

34. Suppose a man stands in front of a mirror as shown below. His eyes are 1.65 m above the floor and the top of his head is
0.13 m higher. Find the height above the floor of the top and bottom of the smallest mirror in which he can see both the top
of his head and his feet. How is this distance related to the man’s height?

The figure is a drawing of a man standing in front of a mirror and looking at his image. The mirror is about
half as tall as the man, with the top of the mirror above his eyes but below the top of his head. The light rays

from his feet reach the bottom of the mirror and reflect to his eyes. The rays from the top of his head reach the
top of the mirror and reflect to his eyes.

35. Show that when light reflects from two mirrors that meet each other at a right angle, the outgoing ray is parallel to the
incoming ray, as illustrated below.

Two mirrors meet each other at a right angle. An incoming ray of light hits one mirror at an angle of theta one
to the normal, is reflected at the same angle of theta one on the other side of the normal, then hits the other

mirror at an angle of theta two to the normal and reflects at the same angle of theta two on the other side of the
normal, such that the outgoing ray is parallel to the incoming ray.

n = 1.55

1.50 × s10−6
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36. On the Moon’s surface, lunar astronauts placed a corner reflector, off which a laser beam is periodically reflected. The
distance to the Moon is calculated from the round-trip time. What percent correction is needed to account for the delay in
time due to the slowing of light in Earth’s atmosphere? Assume the distance to the Moon is precisely  and
Earth’s atmosphere (which varies in density with altitude) is equivalent to a layer 30.0 km thick with a constant index of
refraction .

37. A flat mirror is neither converging nor diverging. To prove this, consider two rays originating from the same point and
diverging at an angle  (see below). Show that after striking a plane mirror, the angle between their directions remains .

Light rays diverging from a point at an angle theta are incident on a mirror at two different places and their
reflected rays diverge. One ray hits at an angle theta one from the normal, and reflects at the same angle theta
one on the other side of the normal. The other ray hits at a larger angle theta two from the normal, and reflects
at the same angle theta two on the other side of the normal. When the reflected rays are extended backwards

from their points of reflection, they meet at a point behind the mirror, at the same angle theta with which they
left the source.

1.3 Refraction

Unless otherwise specified, for problems 1 through 10, the indices of refraction of glass and water should be taken to be 1.50 and
1.333, respectively.

38. A light beam in air has an angle of incidence of  at the surface of a glass plate. What are the angles of reflection and
refraction?

39. A light beam in air is incident on the surface of a pond, making an angle of 20° with respect to the surface. What are
the angles of reflection and refraction?

40. When a light ray crosses from water into glass, it emerges at an angle of  with respect to the normal of the interface.
What is its angle of incidence?

41. A pencil flashlight submerged in water sends a light beam toward the surface at an angle of incidence of . What is the
angle of refraction in air?

42. Light rays from the Sun make a  angle to the vertical when seen from below the surface of a body of water. At what
angle above the horizon is the Sun?

43. The path of a light beam in air goes from an angle of incidence of  to an angle of refraction of  when it enters a
rectangular block of plastic. What is the index of refraction of the plastic?

44. A scuba diver training in a pool looks at his instructor as shown below. What angle does the ray from the instructor’s face
make with the perpendicular to the water at the point where the ray enters? The angle between the ray in the water and the
perpendicular to the water is .

3.84 × m108

n = 1.000293

θ θ
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20°

30°

30°

30°
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A scuba diver and his trainer look at each other. They see each other at the locations given by straight line
extrapolations of the rays reaching their eyes. To the trainer, the scuba diver appears less deep than he actually

is, and to the diver, the trainer appears higher than he actually is. To the trainer, the scuba diver's feet appear to
be at a depth of two point zero meters. The incident ray from the trainer strikes the water surface at a

horizontal distance of two point zero meters from the trainer. The diver’s head is a vertical distance of d equal
to two point zero meters below the surface of the water.

45. (a) Using information in the preceding problem, find the height of the instructor’s head above the water, noting that you
will first have to calculate the angle of incidence.

(b) Find the apparent depth of the diver’s head below water as seen by the instructor.

1.4 Total Internal Reflection

46. Verify that the critical angle for light going from water to air is , as discussed at the end of Example 1.4, regarding
the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air.

47. (a) At the end of Example 1.4, it was stated that the critical angle for light going from diamond to air is . Verify
this.

(b) What is the critical angle for light going from zircon to air?

48. An optical fiber uses flint glass clad with crown glass. What is the critical angle?

49. At what minimum angle will you get total internal reflection of light traveling in water and reflected from ice?

50. Suppose you are using total internal reflection to make an efficient corner reflector. If there is air outside and the incident
angle is , what must be the minimum index of refraction of the material from which the reflector is made?

51. You can determine the index of refraction of a substance by determining its critical angle.

(a) What is the index of refraction of a substance that has a critical angle of  when submerged in water? What is
the substance, based on Table 1.1?

(b) What would the critical angle be for this substance in air?

52. A ray of light, emitted beneath the surface of an unknown liquid with air above it, undergoes total internal reflection as
shown below. What is the index of refraction for the liquid and its likely identification?

48.6°

24.4°

45.0°

68.4°
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A light ray travels from an object placed in a medium n 1 at 15.0 centimeters below the horizontal interface
with medium n 2. This ray gets totally internally reflected with theta c as critical angle. The horizontal distance

between the object and the point of incidence is 13.4 centimeters.

53. Light rays fall normally on the vertical surface of the glass prism (  shown below.

(a) What is the largest value for  such that the ray is totally reflected at the slanted face?

(b) Repeat the calculation of part (a) if the prism is immersed in water.

A right angle triangular prism has a horizontal base and a vertical side. The hypotenuse of the triangle makes
an angle of phi with the horizontal base. A horizontal light rays is incident normally on the vertical surface of

the prism.

1.5 Dispersion

54. (a) What is the ratio of the speed of red light to violet light in diamond, based on Table 1.2?

(b) What is this ratio in polystyrene?

(c) Which is more dispersive?

55. A beam of white light goes from air into water at an incident angle of . At what angles are the red (660 nm) and
violet (410 nm) parts of the light refracted?

56. By how much do the critical angles for red (660 nm) and violet (410 nm) light differ in a diamond surrounded by air?

57. (a) A narrow beam of light containing yellow (580 nm) and green (550 nm) wavelengths goes from polystyrene to air,
striking the surface at a  incident angle. What is the angle between the colors when they emerge?

(b) How far would they have to travel to be separated by 1.00 mm?

58. A parallel beam of light containing orange (610 nm) and violet (410 nm) wavelengths goes from fused quartz to water,
striking the surface between them at a  incident angle. What is the angle between the two colors in water?

n = 1.50

ϕ
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30.0°

60.0°
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59. A ray of 610-nm light goes from air into fused quartz at an incident angle of . At what incident angle must 470 nm
light enter flint glass to have the same angle of refraction?

60. A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 1.00-cm-thick
flat piece of crown glass and back to air again. The beam strikes at a  incident angle.

(a) At what angles do the two colors emerge?

(b) By what distance are the red and blue separated when they emerge?

61. A narrow beam of white light enters a prism made of crown glass at a  incident angle, as shown below. At what
angles,  and , do the red (660 nm) and violet (410 nm) components of the light emerge from the prism?

A blue incident light ray at an angle of incidence equal to 45 degrees to the normal falls on an equilateral
triangular prism whose corners are all at angles equal to 60 degrees. At the first surface, the ray refracts and

splits into red and violet rays. These rays hit the second surface and emerge from the prism. The red light with
660 nanometers bends less than the violet light with 410 nanometers.

1.7 Polarization

62. What angle is needed between the direction of polarized light and the axis of a polarizing filter to cut its intensity in half?

63. The angle between the axes of two polarizing filters is . By how much does the second filter reduce the intensity of
the light coming through the first?

64. Two polarizing sheets  and  are placed together with their transmission axes oriented at an angle  to each other.
What is  when only  of the maximum transmitted light intensity passes through them?

65. Suppose that in the preceding problem the light incident on  is unpolarized. At the determined value of , what
fraction of the incident light passes through the combination?

66. If you have completely polarized light of intensity , what will its intensity be after passing through a
polarizing filter with its axis at an  angle to the light’s polarization direction?

67. What angle would the axis of a polarizing filter need to make with the direction of polarized light of intensity 
 to reduce the intensity to ?

68. At the end of Example 1.7, it was stated that the intensity of polarized light is reduced to  of its original value by
passing through a polarizing filter with its axis at an angle of  to the direction of polarization. Verify this statement.

69. Show that if you have three polarizing filters, with the second at an angle of  to the first and the third at an angle of 
 to the first, the intensity of light passed by the first will be reduced to  of its value. (This is in contrast to having

only the first and third, which reduces the intensity to zero, so that placing the second between them increases the intensity of
the transmitted light.)

70. Three polarizing sheets are placed together such that the transmission axis of the second sheet is oriented at  to the
axis of the first, whereas the transmission axis of the third sheet is oriented at  (in the same sense) to the axis of the
first. What fraction of the intensity of an incident unpolarized beam is transmitted by the combination?

71. In order to rotate the polarization axis of a beam of linearly polarized light by , a student places sheets  and 
with their transmission axes at  and , respectively, to the beam’s axis of polarization.

(a) What fraction of the incident light passes through  and

(b) through the combination?

55.0°

30.0°

45.0°

θR θV

45.0°

P1 P2 θ

θ 25

P1 θ

150W /m2

89.0°

1.00kW /m2 10.0W /m2

90.0

18.4°

45.0°

90.0° 25.0

25.0°

40.0°

90.0° P1 P2

45.0° 90.0°

P1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76644?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/01%3A_The_Nature_of_Light/1.08%3A_Polarization


10.E.8 https://phys.libretexts.org/@go/page/76644

(c) Repeat your calculations for part (b) for transmission-axis angles of  and , respectively.

72. It is found that when light traveling in water falls on a plastic block, Brewster’s angle is . What is the refractive
index of the plastic?

73. At what angle will light reflected from diamond be completely polarized?

74. What is Brewster’s angle for light traveling in water that is reflected from crown glass?

75. A scuba diver sees light reflected from the water’s surface. At what angle will this light be completely polarized?

Additional Problems
76. From his measurements, Roemer estimated that it took 22 min for light to travel a distance equal to the diameter of
Earth’s orbit around the Sun.

(a) Use this estimate along with the known diameter of Earth’s orbit to obtain a rough value of the speed of light.

(b) Light actually takes 16.5 min to travel this distance. Use this time to calculate the speed of light.

77. Cornu performed Fizeau’s measurement of the speed of light using a wheel of diameter 4.00 cm that contained 180 teeth.
The distance from the wheel to the mirror was 22.9 km. Assuming he measured the speed of light accurately, what was the
angular velocity of the wheel?

78. Suppose you have an unknown clear substance immersed in water, and you wish to identify it by finding its index of
refraction. You arrange to have a beam of light enter it at an angle of , and you observe the angle of refraction to be 

. What is the index of refraction of the substance and its likely identity?

79. Shown below is a ray of light going from air through crown glass into water, such as going into a fish tank. Calculate the
amount the ray is displaced by the glass , given that the incident angle is . and the glass is 1.00 cm thick.

The figure illustrates refraction occurring when light travels from medium  to  through an intermediate
medium . The incident ray makes an angle  with a perpendicular drawn at the point of incidence at the

interface between  and . The light ray entering  bends towards the perpendicular line making an angle 
 with it on the  side. The ray arrives at the interface between  and  at an angle of  to a

perpendicular drawn at the point of incidence at this interface, and the transmitted ray bends away from the
perpendicular, making an angle of theta three to the perpendicular on the  side. A straight line extrapolation

of the original incident ray is shown as a dotted line. This line is parallel to the refracted ray in the third
medium, , and is shifted a distance delta x from the refracted ray. The extrapolated ray is at the same angle

theta three to the perpendicular in medium  as the refracted ray.

80. Considering the previous problem, show that  is the same as it would be if the second medium were not present.

81. At what angle is light inside crown glass completely polarized when reflected from water, as in a fish tank?
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82. Light reflected at  from a window is completely polarized. What is the window’s index of refraction and the likely
substance of which it is made?

83. (a) Light reflected at  from a gemstone in a ring is completely polarized. Can the gem be a diamond?

(b) At what angle would the light be completely polarized if the gem was in water?

84. If  is Brewster’s angle for light reflected from the top of an interface between two substances, and  is Brewster’s
angle for light reflected from below, prove that .

85. Unreasonable results Suppose light travels from water to another substance, with an angle of incidence of  and an
angle of refraction of .

(a) What is the index of refraction of the other substance?

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

86. Unreasonable results Light traveling from water to a gemstone strikes the surface at an angle of  and has an angle
of refraction of .

(a) What is the speed of light in the gemstone?

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

87. If a polarizing filter reduces the intensity of polarized light to  of its original value, by how much are the electric and
magnetic fields reduced?

88. Suppose you put on two pairs of polarizing sunglasses with their axes at an angle of . How much longer will it take
the light to deposit a given amount of energy in your eye compared with a single pair of sunglasses? Assume the lenses are
clear except for their polarizing characteristics.

89. (a) On a day when the intensity of sunlight is , a circular lens 0.200 m in diameter focuses light onto water
in a black beaker. Two polarizing sheets of plastic are placed in front of the lens with their axes at an angle of .
Assuming the sunlight is unpolarized and the polarizers are  efficient, what is the initial rate of heating of the water in 

, assuming it is  absorbed? The aluminum beaker has a mass of 30.0 grams and contains 250 grams of water.

(b) Do the polarizing filters get hot? Explain.

Challenge Problems

90. Light shows staged with lasers use moving mirrors to swing beams and create colorful effects. Show that a light ray
reflected from a mirror changes direction by  when the mirror is rotated by an angle .

91. Consider sunlight entering Earth’s atmosphere at sunrise and sunset—that is, at a . incident angle. Taking the
boundary between nearly empty space and the atmosphere to be sudden, calculate the angle of refraction for sunlight. This
lengthens the time the Sun appears to be above the horizon, both at sunrise and sunset. Now construct a problem in which
you determine the angle of refraction for different models of the atmosphere, such as various layers of varying density. Your
instructor may wish to guide you on the level of complexity to consider and on how the index of refraction varies with air
density.

92. A light ray entering an optical fiber surrounded by air is first refracted and then reflected as shown below. Show that if
the fiber is made from crown glass, any incident ray will be totally internally reflected.
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The figure shows light traveling from  and incident onto the left face of a rectangular block of material .
The ray is incident at an angle of incidence , measured relative to the normal to the surface where the ray

enters. The angle of refraction is , again, relative to the normal to the surface. The refracted ray falls onto the
upper face of the block and gets totally internally reflected with  as the angle of incidence.

93. A light ray falls on the left face of a prism (see below) at the angle of incidence  for which the emerging beam has an

angle of refraction  at the right face. Show that the index of refraction n of the glass prism is given by 

where  is the vertex angle of the prism and  is the angle through which the beam has been deviated. If  and the
base angles of the prism are each , what is n?

A light ray falls on the left face of a triangular prism whose upper vertex has an angle of phi and whose index of
refraction is n. The angle of incidence of the ray relative to the normal to the left face is theta. The ray refracts

in the prism. The refracted ray is horizontal, parallel to the base of the prism. The refracted ray reaches the
right face of the prism and refracts as it emerges out of the prism. The emerging ray makes an angle of theta

with the normal to the right face.

94. If the apex angle  in the previous problem is  and , what is the value of ?

95. The light incident on polarizing sheet  is linearly polarized at an angle of  with respect to the transmission axis of
. Sheet  is placed so that its axis is parallel to the polarization axis of the incident light, that is, also at  with

respect to .

(a) What fraction of the incident light passes through ?

(b) What fraction of the incident light is passed by the combination?

(c) By rotating , a maximum in transmitted intensity is obtained. What is the ratio of this maximum intensity to the
intensity of transmitted light when  is at  with respect to ?

96. Prove that if I is the intensity of light transmitted by two polarizing filters with axes at an angle  and  is the intensity
when the axes are at an angle , then , the original intensity. (Hint: Use the trigonometric identities 
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1.E: Geometric Optics and Image Formation (Exercises)

Conceptual Questions

2.1 Images Formed by Plane Mirrors

1. What are the differences between real and virtual images? How can you tell (by looking) whether an image formed by a
single lens or mirror is real or virtual?

2. Can you see a virtual image? Explain your response.

3. Can you photograph a virtual image?

4. Can you project a virtual image onto a screen?

5. Is it necessary to project a real image onto a screen to see it?

6. Devise an arrangement of mirrors allowing you to see the back of your head. What is the minimum number of mirrors
needed for this task?

7. If you wish to see your entire body in a flat mirror (from head to toe), how tall should the mirror be? Does its size depend
upon your distance away from the mirror? Provide a sketch.

2.2 Spherical Mirrors

8. At what distance is an image always located: at , or  ?

9. Under what circumstances will an image be located at the focal point of a spherical lens or mirror?

10. What is meant by a negative magnification? What is meant by a magnification whose absolute value is less than one?

11. Can an image be larger than the object even though its magnification is negative? Explain.

2.3 Images Formed by Refraction

12. Derive the formula for the apparent depth of a fish in a fish tank using Snell’s law.

13. Use a ruler and a protractor to find the image by refraction in the following cases. Assume an air-glass interface. Use a
refractive index of 1 for air and of 1.5 for glass. (Hint: Use Snell’s law at the interface.)

(a) A point object located on the axis of a concave interface located at a point within the focal length from the vertex.

(b) A point object located on the axis of a concave interface located at a point farther than the focal length from the
vertex.

(c) A point object located on the axis of a convex interface located at a point within the focal length from the vertex.

(d) A point object located on the axis of a convex interface located at a point farther than the focal length from the
vertex.

(e) Repeat (a)–(d) for a point object off the axis.

2.4 Thin Lenses

14. You can argue that a flat piece of glass, such as in a window, is like a lens with an infinite focal length. If so, where does
it form an image? That is, how are  and  related?

15. When you focus a camera, you adjust the distance of the lens from the film. If the camera lens acts like a thin lens, why
can it not be a fixed distance from the film for both near and distant objects?

16. A thin lens has two focal points, one on either side of the lens at equal distances from its center, and should behave the
same for light entering from either side. Look backward and forward through a pair of eyeglasses and comment on whether
they are thin lenses.

17. Will the focal length of a lens change when it is submerged in water? Explain.

,do di f

di do

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76670?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.E%3A_The_Nature_of_Light_(Exercises)/1.E%3A_Geometric_Optics_and_Image_Formation_(Exercises)
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/02%3A_Geometric_Optics_and_Image_Formation/2.02%3A_Images_Formed_by_Plane_Mirrors
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/02%3A_Geometric_Optics_and_Image_Formation/2.03%3A_Spherical_Mirrors
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/02%3A_Geometric_Optics_and_Image_Formation/2.04%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/02%3A_Geometric_Optics_and_Image_Formation/2.05%3A_Thin_Lenses


1.E.2 https://phys.libretexts.org/@go/page/76670

2.5 The Eye

18. If the lens of a person’s eye is removed because of cataracts (as has been done since ancient times), why would you
expect an eyeglass lens of about 16 D to be prescribed?

19. When laser light is shone into a relaxed normal-vision eye to repair a tear by spot-welding the retina to the back of the
eye, the rays entering the eye must be parallel. Why?

20. Why is your vision so blurry when you open your eyes while swimming under water? How does a face mask enable clear
vision?

21. It has become common to replace the cataract-clouded lens of the eye with an internal lens. This intraocular lens can be
chosen so that the person has perfect distant vision. Will the person be able to read without glasses? If the person was
nearsighted, is the power of the intraocular lens greater or less than the removed lens?

22. If the cornea is to be reshaped (this can be done surgically or with contact lenses) to correct myopia, should its curvature
be made greater or smaller? Explain.

2.8 Microscopes and Telescopes

23. Geometric optics describes the interaction of light with macroscopic objects. Why, then, is it correct to use geometric
optics to analyze a microscope’s image?

24. The image produced by the microscope in Figure 2.38 cannot be projected. Could extra lenses or mirrors project it?
Explain.

25. If you want your microscope or telescope to project a real image onto a screen, how would you change the placement of
the eyepiece relative to the objective?

Problems

2.1 Images Formed by Plane Mirrors

26. Consider a pair of flat mirrors that are positioned so that they form an angle of 120°. An object is placed on the bisector
between the mirrors. Construct a ray diagram as in Figure 2.4 to show how many images are formed.

27. Consider a pair of flat mirrors that are positioned so that they form an angle of 60°. An object is placed on the bisector
between the mirrors. Construct a ray diagram as in Figure 2.4 to show how many images are formed.

28. By using more than one flat mirror, construct a ray diagram showing how to create an inverted image.

2.2 Spherical Mirrors

29. The following figure shows a light bulb between two spherical mirrors. One mirror produces a beam of light with parallel
rays; the other keeps light from escaping without being put into the beam. Where is the filament of the light in relation to the
focal point or radius of curvature of each mirror?

A light bulb is shown in the centre, with a small concave mirror to its left and a bigger one to its right. The light
rays originating from the bulb that hit the smaller mirror are reflected back to the bulb. Light rays from the

bulb that hit the bigger mirror are reflected. These reflected rays are parallel and travel towards the left.
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30. Why are diverging mirrors often used for rearview mirrors in vehicles? What is the main disadvantage of using such a
mirror compared with a flat one?

31. Some telephoto cameras use a mirror rather than a lens. What radius of curvature mirror is needed to replace a 800 mm-
focal length telephoto lens?

32. Calculate the focal length of a mirror formed by the shiny back of a spoon that has a 3.00 cm radius of curvature.

33. Electric room heaters use a concave mirror to reflect infrared (IR) radiation from hot coils. Note that IR radiation follows
the same law of reflection as visible light. Given that the mirror has a radius of curvature of 50.0 cm and produces an image
of the coils 3.00 m away from the mirror, where are the coils?

34. Find the magnification of the heater element in the previous problem. Note that its large magnitude helps spread out the
reflected energy.

35. What is the focal length of a makeup mirror that produces a magnification of 1.50 when a person’s face is 12.0 cm away?
Explicitly show how you follow the steps in the Example 2.2.

36. A shopper standing 3.00 m from a convex security mirror sees his image with a magnification of 0.250.

(a) Where is his image?

(b) What is the focal length of the mirror?

(c) What is its radius of curvature?

37. An object 1.50 cm high is held 3.00 cm from a person’s cornea, and its reflected image is measured to be 0.167 cm high.

(a) What is the magnification?

(b) Where is the image?

(c) Find the radius of curvature of the convex mirror formed by the cornea. (Note that this technique is used by
optometrists to measure the curvature of the cornea for contact lens fitting. The instrument used is called a
keratometer, or curve measurer.)

38. Ray tracing for a flat mirror shows that the image is located a distance behind the mirror equal to the distance of the
object from the mirror. This is stated as , since this is a negative image distance (it is a virtual image). What is the
focal length of a flat mirror?

39. Show that, for a flat mirror, , given that the image is the same distance behind the mirror as the distance of the
object from the mirror.

40. Use the law of reflection to prove that the focal length of a mirror is half its radius of curvature. That is, prove that 
. Note this is true for a spherical mirror only if its diameter is small compared with its radius of curvature.

41. Referring to the electric room heater considered in problem 5, calculate the intensity of IR radiation in  projected
by the concave mirror on a person 3.00 m away. Assume that the heating element radiates 1500 W and has an area of 

, and that half of the radiated power is reflected and focused by the mirror.

42. Two mirrors are inclined at an angle of 60° and an object is placed at a point that is equidistant from the two mirrors. Use
a protractor to draw rays accurately and locate all images. You may have to draw several figures so that that rays for different
images do not clutter your drawing.

43. Two parallel mirrors are facing each other and are separated by a distance of 3 cm. A point object is placed between the
mirrors 1 cm from one of the mirrors. Find the coordinates of all the images.

2.3 Images Formed by Refraction

44. An object is located in air 30 cm from the vertex of a concave surface made of glass with a radius of curvature 10 cm.
Where does the image by refraction form and what is its magnification? Use  and .

45. An object is located in air 30 cm from the vertex of a convex surface made of glass with a radius of curvature 80 cm.
Where does the image by refraction form and what is its magnification?

46. An object is located in water 15 cm from the vertex of a concave surface made of glass with a radius of curvature 10 cm.
Where does the image by refraction form and what is its magnification? Use  and .

= −di do

=hi ho
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47. An object is located in water 30 cm from the vertex of a convex surface made of Plexiglas with a radius of curvature of
80 cm. Where does the image form by refraction and what is its magnification?  and .

48. An object is located in air 5 cm from the vertex of a concave surface made of glass with a radius of curvature 20 cm.
Where does the image form by refraction and what is its magnification? Use  and .

49. Derive the spherical interface equation for refraction at a concave surface. (Hint: Follow the derivation in the text for the
convex surface.)

2.4 Thin Lenses

50. How far from the lens must the film in a camera be, if the lens has a 35.0-mm focal length and is being used to
photograph a flower 75.0 cm away? Explicitly show how you follow the steps in the Figure 2.27.

51. A certain slide projector has a 100 mm-focal length lens.

(a) How far away is the screen if a slide is placed 103 mm from the lens and produces a sharp image?

(b) If the slide is 24.0 by 36.0 mm, what are the dimensions of the image? Explicitly show how you follow the steps in
the Figure 2.27.

52. A doctor examines a mole with a 15.0-cm focal length magnifying glass held 13.5 cm from the mole.

(a) Where is the image?

(b) What is its magnification?

(c) How big is the image of a 5.00 mm diameter mole?

53. A camera with a 50.0-mm focal length lens is being used to photograph a person standing 3.00 m away.

(a) How far from the lens must the film be?

(b) If the film is 36.0 mm high, what fraction of a 1.75-m-tall person will fit on it?

(c) Discuss how reasonable this seems, based on your experience in taking or posing for photographs.

54. A camera lens used for taking close-up photographs has a focal length of 22.0 mm. The farthest it can be placed from the
film is 33.0 mm.

(a) What is the closest object that can be photographed?

(b) What is the magnification of this closest object?

55. Suppose your 50.0 mm-focal length camera lens is 51.0 mm away from the film in the camera.

(a) How far away is an object that is in focus?

(b) What is the height of the object if its image is 2.00 cm high?

56. What is the focal length of a magnifying glass that produces a magnification of 3.00 when held 5.00 cm from an object,
such as a rare coin?

57. The magnification of a book held 7.50 cm from a 10.0 cm-focal length lens is 4.00.

(a) Find the magnification for the book when it is held 8.50 cm from the magnifier.

(b) Repeat for the book held 9.50 cm from the magnifier.

(c) Comment on how magnification changes as the object distance increases as in these two calculations.

58. Suppose a 200 mm-focal length telephoto lens is being used to photograph mountains 10.0 km away.

(a) Where is the image?

(b) What is the height of the image of a 1000 m high cliff on one of the mountains?

59. A camera with a 100 mm-focal length lens is used to photograph the sun. What is the height of the image of the sun on
the film, given the sun is  in diameter and is  away?

60. Use the thin-lens equation to show that the magnification for a thin lens is determined by its focal length and the object
distance and is given by .

= 4/3nwater = 1.65nPlexiglas

= 1nair = 1.5nglass
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61. An object of height 3.0 cm is placed 5.0 cm in front of a converging lens of focal length 20 cm and observed from the
other side. Where and how large is the image?

62. An object of height 3.0 cm is placed at 5.0 cm in front of a diverging lens of focal length 20 cm and observed from the
other side. Where and how large is the image?

63. An object of height 3.0 cm is placed at 25 cm in front of a diverging lens of focal length 20 cm. Behind the diverging
lens, there is a converging lens of focal length 20 cm. The distance between the lenses is 5.0 cm. Find the location and size of
the final image.

64. Two convex lenses of focal lengths 20 cm and 10 cm are placed 30 cm apart, with the lens with the longer focal length on
the right. An object of height 2.0 cm is placed midway between them and observed through each lens from the left and from
the right. Describe what you will see, such as where the image(s) will appear, whether they will be upright or inverted and
their magnifications.

2.5 The Eye

Unless otherwise stated, the lens-to-retina distance is 2.00 cm.

65. What is the power of the eye when viewing an object 50.0 cm away?

66. Calculate the power of the eye when viewing an object 3.00 m away.

67. The print in many books averages 3.50 mm in height. How high is the image of the print on the retina when the book is
held 30.0 cm from the eye?

68. Suppose a certain person’s visual acuity is such that he can see objects clearly that form an image  high on his
retina. What is the maximum distance at which he can read the 75.0-cm-high letters on the side of an airplane?

69. People who do very detailed work close up, such as jewelers, often can see objects clearly at much closer distance than
the normal 25 cm.

(a) What is the power of the eyes of a woman who can see an object clearly at a distance of only 8.00 cm?

(b) What is the image size of a 1.00-mm object, such as lettering inside a ring, held at this distance?

(c) What would the size of the image be if the object were held at the normal 25.0 cm distance?

70. What is the far point of a person whose eyes have a relaxed power of 50.5 D?

71. What is the near point of a person whose eyes have an accommodated power of 53.5 D?

72. (a) A laser reshaping the cornea of a myopic patient reduces the power of his eye by 9.00 D, with a  uncertainty in
the final correction. What is the range of diopters for eyeglass lenses that this person might need after this procedure?

(b) Was the person nearsighted or farsighted before the procedure? How do you know?

73. The power for normal close vision is 54.0 D. In a vision-correction procedure, the power of a patient’s eye is increased by
3.00 D. Assuming that this produces normal close vision, what was the patient’s near point before the procedure?

74. For normal distant vision, the eye has a power of 50.0 D. What was the previous far point of a patient who had laser
vision correction that reduced the power of her eye by 7.00 D, producing normal distant vision?

75. The power for normal distant vision is 50.0 D. A severely myopic patient has a far point of 5.00 cm. By how many
diopters should the power of his eye be reduced in laser vision correction to obtain normal distant vision for him?

76. A student’s eyes, while reading the blackboard, have a power of 51.0 D. How far is the board from his eyes?

77. The power of a physician’s eyes is 53.0 D while examining a patient. How far from her eyes is the object that is being
examined?

78. The normal power for distant vision is 50.0 D. A young woman with normal distant vision has a 10.0% ability to
accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?

79. The far point of a myopic administrator is 50.0 cm.

(a) What is the relaxed power of his eyes?

4.00μm

±5.0
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(b) If he has the normal 8.00% ability to accommodate, what is the closest object he can see clearly?

80. A very myopic man has a far point of 20.0 cm. What power contact lens (when on the eye) will correct his distant vision?

81. Repeat the previous problem for eyeglasses held 1.50 cm from the eyes.

82. A myopic person sees that her contact lens prescription is –4.00 D. What is her far point?

83. Repeat the previous problem for glasses that are 1.75 cm from the eyes.

84. The contact lens prescription for a mildly farsighted person is 0.750 D, and the person has a near point of 29.0 cm. What
is the power of the tear layer between the cornea and the lens if the correction is ideal, taking the tear layer into account?

2.7 The Simple Magnifier

85. If the image formed on the retina subtends an angle of  and the object subtends an angle of , what is the
magnification of the image?

86. What is the magnification of a magnifying lens with a focal length of 10 cm if it is held 3.0 cm from the eye and the
object is 12 cm from the eye?

87. How far should you hold a 2.1 cm-focal length magnifying glass from an object to obtain a magnification of ?
Assume you place your eye 5.0 cm from the magnifying glass.

88. You hold a 5.0 cm-focal length magnifying glass as close as possible to your eye. If you have a normal near point, what is
the magnification?

89. You view a mountain with a magnifying glass of focal length . What is the magnification?

90. You view an object by holding a 2.5 cm-focal length magnifying glass 10 cm away from it. How far from your eye
should you hold the magnifying glass to obtain a magnification of ?

91. A magnifying glass forms an image 10 cm on the opposite side of the lens from the object, which is 10 cm away. What is
the magnification of this lens for a person with a normal near point if their eye 12 cm from the object?

92. An object viewed with the naked eye subtends a  angle. If you view the object through a  magnifying glass, what
angle is subtended by the image formed on your retina?

93. For a normal, relaxed eye, a magnifying glass produces an angular magnification of 4.0. What is the largest magnification
possible with this magnifying glass?

94. What range of magnification is possible with a 7.0 cm-focal length converging lens?

95. A magnifying glass produces an angular magnification of 4.5 when used by a young person with a near point of 18 cm.
What is the maximum angular magnification obtained by an older person with a near point of 45 cm?

2.8 Microscopes and Telescopes

96. A microscope with an overall magnification of 800 has an objective that magnifies by 200.

(a) What is the angular magnification of the eyepiece?

(b) If there are two other objectives that can be used, having magnifications of 100 and 400, what other total
magnifications are possible?

97. (a) What magnification is produced by a 0.150 cm-focal length microscope objective that is 0.155 cm from the object
being viewed?

(b) What is the overall magnification if an  eyepiece (one that produces an angular magnification of 8.00) is used?

98. Where does an object need to be placed relative to a microscope for its 0.50 cm-focal length objective to produce a
magnification of −400?

99. An amoeba is 0.305 cm away from the 0.300 cm-focal length objective lens of a microscope.

(a) Where is the image formed by the objective lens?

(b) What is this image’s magnification?

(c) An eyepiece with a 2.00-cm focal length is placed 20.0 cm from the objective. Where is the final image?

30° 5°
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(d) What angular magnification is produced by the eyepiece?

(e) What is the overall magnification? (See Figure 2.39.)

100. Unreasonable Results Your friends show you an image through a microscope. They tell you that the microscope has an
objective with a 0.500-cm focal length and an eyepiece with a 5.00-cm focal length. The resulting overall magnification is
250,000. Are these viable values for a microscope?

Unless otherwise stated, the lens-to-retina distance is 2.00 cm.

101. What is the angular magnification of a telescope that has a 100 cm-focal length objective and a 2.50 cm-focal length
eyepiece?

102. Find the distance between the objective and eyepiece lenses in the telescope in the above problem needed to produce a
final image very far from the observer, where vision is most relaxed. Note that a telescope is normally used to view very
distant objects.

103. A large reflecting telescope has an objective mirror with a 10.0-m radius of curvature. What angular magnification does
it produce when a 3.00 m-focal length eyepiece is used?

104. A small telescope has a concave mirror with a 2.00-m radius of curvature for its objective. Its eyepiece is a 4.00 cm-
focal length lens.

(a) What is the telescope’s angular magnification?

(b) What angle is subtended by a 25,000 km-diameter sunspot?

(c) What is the angle of its telescopic image?

105. A 7.5×7.5× binocular produces an angular magnification of −7.50, acting like a telescope. (Mirrors are used to make the
image upright.) If the binoculars have objective lenses with a 75.0-cm focal length, what is the focal length of the eyepiece
lenses?

106. Construct Your Own Problem Consider a telescope of the type used by Galileo, having a convex objective and a
concave eyepiece as illustrated in part (a) of Figure 2.40. Construct a problem in which you calculate the location and size of
the image produced. Among the things to be considered are the focal lengths of the lenses and their relative placements as
well as the size and location of the object. Verify that the angular magnification is greater than one. That is, the angle
subtended at the eye by the image is greater than the angle subtended by the object.

107. Trace rays to find which way the given ray will emerge after refraction through the thin lens in the following figure.
Assume thin-lens approximation. (Hint: Pick a point P on the given ray in each case. Treat that point as an object. Now, find
its image Q. Use the rule: All rays on the other side of the lens will either go through Q or appear to be coming from Q.)

Figure a shows a ray not parallel to the optical axis striking a bi-convex lens. Figure a shows a ray not parallel to the optical axis
striking a bi-concave lens.

108. Copy and draw rays to find the final image in the following diagram. (Hint: Find the intermediate image through lens
alone. Use the intermediate image as the object for the mirror and work with the mirror alone to find the final image.)
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Figure shows from left to right: an object with base O on the optical axis and tip P, a bi-convex lens and a concave mirror with
center of curvature C. The focal point of the bi-convex on the object side is labeled F subscript 1 and that on the mirror side is
labeled F subscript 2.

109. A concave mirror of radius of curvature 10 cm is placed 30 cm from a thin convex lens of focal length 15 cm. Find the
location and magnification of a small bulb sitting 50 cm from the lens by using the algebraic method.

110. An object of height 3 cm is placed at 25 cm in front of a converging lens of focal length 20 cm. Behind the lens there is
a concave mirror of focal length 20 cm. The distance between the lens and the mirror is 5 cm. Find the location, orientation
and size of the final image.

111. An object of height 3 cm is placed at a distance of 25 cm in front of a converging lens of focal length 20 cm, to be
referred to as the first lens. Behind the lens there is another converging lens of focal length 20 cm placed 10 cm from the first
lens. There is a concave mirror of focal length 15 cm placed 50 cm from the second lens. Find the location, orientation, and
size of the final image.

112. An object of height 2 cm is placed at 50 cm in front of a diverging lens of focal length 40 cm. Behind the lens, there is a
convex mirror of focal length 15 cm placed 30 cm from the converging lens. Find the location, orientation, and size of the
final image.

113. Two concave mirrors are placed facing each other. One of them has a small hole in the middle. A penny is placed on the
bottom mirror (see the following figure). When you look from the side, a real image of the penny is observed above the hole.
Explain how that could happen.

Figure shows the side view of two concave mirrors placed one on top of the other, facing each other. The top one has a small hole
in the middle. A penny is placed on the bottom mirror. An image of the penny is shown above the top mirror, just above the hole.

114. A lamp of height 5 cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm
behind the lens. Where would you find the image when you look in the mirror?

115. Parallel rays from a faraway source strike a converging lens of focal length 20 cm at an angle of 15 degrees with the
horizontal direction. Find the vertical position of the real image observed on a screen in the focal plane.

116. Parallel rays from a faraway source strike a diverging lens of focal length 20 cm at an angle of 10 degrees with the
horizontal direction. As you look through the lens, where in the vertical plane the image would appear?

117. A light bulb is placed 10 cm from a plane mirror, which faces a convex mirror of radius of curvature 8 cm. The plane
mirror is located at a distance of 30 cm from the vertex of the convex mirror. Find the location of two images in the convex
mirror. Are there other images? If so, where are they located?

118. A point source of light is 50 cm in front of a converging lens of focal length 30 cm. A concave mirror with a focal
length of 20 cm is placed 25 cm behind the lens. Where does the final image form, and what are its orientation and
magnification?

119. Copy and trace to find how a horizontal ray from S comes out after the lens. Use  for the prism material.= 1.5nglass
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Figure shows two prisms with their bases parallel to each other at an angle of 45 degrees to the horizontal. To the right of this is a
bi-convex lens. A ray along the optical axis enters this set up from the left.

120. Copy and trace how a horizontal ray from S comes out after the lens. Use  for the glass.

Figure shows the cross section of a hemisphere to the left and that of a bi-convex lens to the right. A ray along the optical axis
enters this setup from the left.

121. Copy and draw rays to figure out the final image.

Figure shows from left to right: an object with base O on the axis and tip P. A bi-concave lens with focal point  and  on the
left and right respectively and a concave mirror with centre of curvature C.

122. By ray tracing or by calculation, find the place inside the glass where rays from S converge as a result of refraction
through the lens and the convex air-glass interface. Use a ruler to estimate the radius of curvature.

Figure shows a bi-convex lens on the left and a glass with a convex surface on the right. The lens has focal points F on both sides.
The center of curvature of convex glass is C and its radius of curvature is R. Point S is between the lens and its focal point on the
left.

123. A diverging lens has a focal length of 20 cm. What is the power of the lens in diopters?

124. Two lenses of focal lengths of  and  are glued together with transparent material of negligible thickness. Show that
the total power of the two lenses simply add.

125. What will be the angular magnification of a convex lens with the focal length 2.5 cm?

126. What will be the formula for the angular magnification of a convex lens of focal length f if the eye is very close to the
lens and the near point is located a distance D from the eye?

Additional Problems
127. Use a ruler and a protractor to draw rays to find images in the following cases.

(a) A point object located on the axis of a concave mirror located at a point within the focal length from the vertex.

(b) A point object located on the axis of a concave mirror located at a point farther than the focal length from the
vertex.

(c) A point object located on the axis of a convex mirror located at a point within the focal length from the vertex.

(d) A point object located on the axis of a convex mirror located at a point farther than the focal length from the vertex.

n = 1.55

F1 F2

f1 f2
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(e) Repeat (a)–(d) for a point object off the axis.

128. Where should a 3 cm tall object be placed in front of a concave mirror of radius 20 cm so that its image is real and 2 cm
tall?

129. A 3 cm tall object is placed 5 cm in front of a convex mirror of radius of curvature 20 cm. Where is the image formed?
How tall is the image? What is the orientation of the image?

130. You are looking for a mirror so that you can see a four-fold magnified virtual image of an object when the object is
placed 5 cm from the vertex of the mirror. What kind of mirror you will need? What should be the radius of curvature of the
mirror?

131. Derive the following equation for a convex mirror: , where VO is the distance to the object O

from vertex V, VI the distance to the image I from V, and VF is the distance to the focal point F from V. (Hint: use two sets
of similar triangles.)

132. (a) Draw rays to form the image of a vertical object on the optical axis and farther than the focal point from a
converging lens.

(b) Use plane geometry in your figure and prove that the magnification m is given by .

133. Use another ray-tracing diagram for the same situation as given in the previous problem to derive the thin-lens equation,

.

134. You photograph a 2.0-m-tall person with a camera that has a 5.0 cm-focal length lens. The image on the film must be no
more than 2.0 cm high.

(a) What is the closest distance the person can stand to the lens?

(b) For this distance, what should be the distance from the lens to the film?

135. Find the focal length of a thin plano-convex lens. The front surface of this lens is flat, and the rear surface has a radius
of curvature of . Assume that the index of refraction of the lens is 1.5.

136. Find the focal length of a meniscus lens with  and . Assume that the index of refraction of the
lens is 1.5.

137. A nearsighted man cannot see objects clearly beyond 20 cm from his eyes. How close must he stand to a mirror in order
to see what he is doing when he shaves?

138. A mother sees that her child’s contact lens prescription is 0.750 D. What is the child’s near point?

139. Repeat the previous problem for glasses that are 2.20 cm from the eyes.

140. The contact-lens prescription for a nearsighted person is −4.00 D and the person has a far point of 22.5 cm. What is the
power of the tear layer between the cornea and the lens if the correction is ideal, taking the tear layer into account?

141. Unreasonable Results A boy has a near point of 50 cm and a far point of 500 cm. Will a −4.00 D lens correct his far
point to infinity?

142. Find the angular magnification of an image by a magnifying glass of  if the object is placed 
from the lens and the lens is close to the eye.

143. Let objective and eyepiece of a compound microscope have focal lengths of 2.5 cm and 10 cm, respectively and be
separated by 12 cm. A  object is placed 6.0 cm from the objective. How large is the virtual image formed by the
objective-eyepiece system?

144. Draw rays to scale to locate the image at the retina if the eye lens has a focal length 2.5 cm and the near point is 24 cm.
(Hint: Place an object at the near point.)

145. The objective and the eyepiece of a microscope have the focal lengths 3 cm and 10 cm respectively. Decide about the
distance between the objective and the eyepiece if we need a  magnification from the objective/eyepiece compound
system.
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146. A far-sighted person has a near point of 100 cm. How far in front or behind the retina does the image of an object placed
25 cm from the eye form? Use the cornea to retina distance of 2.5 cm.

147. A near-sighted person has afar point of 80 cm.

(a) What kind of corrective lens the person will need if the lens is to be placed 1.5 cm from the eye?

(b) What would be the power of the contact lens needed? Assume distance to contact lens from the eye to be zero.

148. In a reflecting telescope the objective is a concave mirror of radius of curvature 2 m and an eyepiece is a convex lens of
focal length 5 cm. Find the apparent size of a 25-m tree at a distance of 10 km that you would perceive when looking through
the telescope.

149. Two stars that are  apart are viewed by a telescope and found to be separated by an angle of radians. If the
eyepiece of the telescope has a focal length of 1.5 cm and the objective has a focal length of 3 meters, how far away are the
stars from the observer?

150. What is the angular size of the Moon if viewed from a binocular that has a focal length of 1.2 cm for the eyepiece and a
focal length of 8 cm for the objective? Use the radius of the moon  and the distance of the moon from the
observer to be .

151. An unknown planet at a distance of  from Earth is observed by a telescope that has a focal length of the eyepiece
of 1 cm and a focal length of the objective of 1 m. If the far away planet is seen to subtend an angle of radian at the
eyepiece, what is the size of the planet?

This page titled 1.E: Geometric Optics and Image Formation (Exercises) is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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10.S: The Nature of Light (Summary)

Key Terms

birefringent
refers to crystals that split an unpolarized beam of light into two

beams

Brewster’s angle
angle of incidence at which the reflected light is completely

polarized

Brewster’s law
, where  is the medium in which the incident and

reflected light travel and  is the index of refraction of the
medium that forms the interface that reflects the light

corner reflector
object consisting of two (or three) mutually perpendicular

reflecting surfaces, so that the light that enters is reflected back
exactly parallel to the direction from which it came

critical angle incident angle that produces an angle of refraction of 90°

direction of polarization direction parallel to the electric field for EM waves

dispersion spreading of light into its spectrum of wavelengths

geometric optics part of optics dealing with the ray aspect of light

horizontally polarized oscillations are in a horizontal plane

Huygens’s principle
every point on a wave front is a source of wavelets that spread out
in the forward direction at the same speed as the wave itself; the

new wave front is a plane tangent to all of the wavelets

index of refraction
for a material, the ratio of the speed of light in a vacuum to that in

a material

law of reflection angle of reflection equals the angle of incidence

law of refraction

when a light ray crosses from one medium to another, it changes
direction by an amount that depends on the index of refraction of
each medium and the sines of the angle of incidence and angle of

refraction

Malus’s law
where  is the intensity of the polarized wave before passing

through the filter

optically active
substances that rotate the plane of polarization of light passing

through them

polarization
attribute that wave oscillations have a definite direction relative to

the direction of propagation of the wave

polarized
refers to waves having the electric and magnetic field oscillations

in a definite direction

ray straight line that originates at some point

refraction
changing of a light ray’s direction when it passes through

variations in matter

total internal reflection
phenomenon at the boundary between two media such that all the

light is reflected and no refraction occurs

unpolarized refers to waves that are randomly polarized

tan =θb

n2

n1
n1

n2
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vertically polarized oscillations are in a vertical plane

wave optics part of optics dealing with the wave aspect of light

Key Equations
Speed of light

Index of refraction

Law of reflection

Law of refraction (Snell’s law)

Critical angle  for 

Malus’s law

Brewster’s law

Summary

1.1: The Propagation of Light
The speed of light in a vacuum is .
The index of refraction of a material is , where v is the speed of light in a material and c is the speed of light in a
vacuum.
The ray model of light describes the path of light as straight lines. The part of optics dealing with the ray aspect of light is called
geometric optics.
Light can travel in three ways from a source to another location: (1) directly from the source through empty space; (2) through
various media; and (3) after being reflected from a mirror.

1.2: The Law of Reflection
When a light ray strikes a smooth surface, the angle of reflection equals the angle of incidence.
A mirror has a smooth surface and reflects light at specific angles.
Light is diffused when it reflects from a rough surface.

1.3: Refraction
The change of a light ray’s direction when it passes through variations in matter is called refraction.
The law of refraction, also called Snell’s law, relates the indices of refraction for two media at an interface to the change in
angle of a light ray passing through that interface.

1.4: Total Internal Reflection
The incident angle that produces an angle of refraction of 90° is called the critical angle.
Total internal reflection is a phenomenon that occurs at the boundary between two media, such that if the incident angle in the
first medium is greater than the critical angle, then all the light is reflected back into that medium.
Fiber optics involves the transmission of light down fibers of plastic or glass, applying the principle of total internal reflection.
Cladding prevents light from being transmitted between fibers in a bundle.
Diamonds sparkle due to total internal reflection coupled with a large index of refraction.

1.5: Dispersion
The spreading of white light into its full spectrum of wavelengths is called dispersion.
Rainbows are produced by a combination of refraction and reflection, and involve the dispersion of sunlight into a continuous
distribution of colors.
Dispersion produces beautiful rainbows but also causes problems in certain optical systems.
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1.6: Huygens’s Principle
According to Huygens’s principle, every point on a wave front is a source of wavelets that spread out in the forward direction at
the same speed as the wave itself. The new wave front is tangent to all of the wavelets.
A mirror reflects an incoming wave at an angle equal to the incident angle, verifying the law of reflection.
The law of refraction can be explained by applying Huygens’s principle to a wave front passing from one medium to another.
The bending of a wave around the edges of an opening or an obstacle is called diffraction.

1.7: Polarization
Polarization is the attribute that wave oscillations have a definite direction relative to the direction of propagation of the wave.
The direction of polarization is defined to be the direction parallel to the electric field of the EM wave.
Unpolarized light is composed of many rays having random polarization directions.
Unpolarized light can be polarized by passing it through a polarizing filter or other polarizing material. The process of
polarizing light decreases its intensity by a factor of 2.
The intensity, I, of polarized light after passing through a polarizing filter is , where  is the incident intensity and

 is the angle between the direction of polarization and the axis of the filter.
Polarization is also produced by reflection.
Brewster’s law states that reflected light is completely polarized at the angle of reflection , known as Brewster’s angle.
Polarization can also be produced by scattering.
Several types of optically active substances rotate the direction of polarization of light passing through them.

This page titled 10.S: The Nature of Light (Summary) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

1.S: The Nature of Light (Summary) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-3.
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1.S: Geometric Optics and Image Formation (Summary)

Key Terms

aberration
distortion in an image caused by departures from the small-angle

approximation

accommodation
use of the ciliary muscles to adjust the shape of the eye lens for

focusing on near or far objects

angular magnification
ratio of the angle subtended by an object observed with a

magnifier to that observed by the naked eye

apparent depth
depth at which an object is perceived to be located with respect to

an interface between two media

Cassegrain design
arrangement of an objective and eyepiece such that the light-

gathering concave mirror has a hole in the middle, and light then is
incident on an eyepiece lens

charge-coupled device (CCD)
semiconductor chip that converts a light image into tiny pixels that

can be converted into electronic signals of color and intensity

coma
similar to spherical aberration, but arises when the incoming rays

are not parallel to the optical axis

compound microscope
microscope constructed from two convex lenses, the first serving

as the eyepiece and the second serving as the objective lens

concave mirror
spherical mirror with its reflecting surface on the inner side of the

sphere; the mirror forms a “cave”

converging (or convex) lens
lens in which light rays that enter it parallel converge into a single

point on the opposite side

convex mirror
spherical mirror with its reflecting surface on the outer side of the

sphere

curved mirror
mirror formed by a curved surface, such as spherical, elliptical, or

parabolic

diverging (or concave) lens lens that causes light rays to bend away from its optical axis

eyepiece
lens or combination of lenses in an optical instrument nearest to

the eye of the observer

far point furthest point an eye can see in focus

farsightedness (or hyperopia)

visual defect in which near objects appear blurred because their
images are focused behind the retina rather than on the retina; a

farsighted person can see far objects clearly but near objects
appear blurred

first focus or object focus
object located at this point will result in an image created at

infinity on the opposite side of a spherical interface between two
media

focal length
distance along the optical axis from the focal point to the optical

element that focuses the light rays

focal plane
plane that contains the focal point and is perpendicular to the

optical axis
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focal point
for a converging lens or mirror, the point at which converging light

rays cross; for a diverging lens or mirror, the point from which
diverging light rays appear to originate

image distance
distance of the image from the central axis of the optical element

that produces the image

linear magnification ratio of image height to object height

magnification ratio of image size to object size

near point closest point an eye can see in focus

nearsightedness (or myopia)

visual defect in which far objects appear blurred because their
images are focused in front of the retina rather than on the retina; a

nearsighted person can see near objects clearly but far objects
appear blurred

net magnification
(MnetMnet) of the compound microscope is the product of the

linear magnification of the objective and the angular magnification
of the eyepiece

Newtonian design
arrangement of an objective and eyepiece such that the focused

light from the concave mirror was reflected to one side of the tube
into an eyepiece

object distance
distance of the object from the central axis of the optical element

that produces its image

objective lens nearest to the object being examined.

optical axis
axis about which the mirror is rotationally symmetric; you can

rotate the mirror about this axis without changing anything

optical power
(P) inverse of the focal length of a lens, with the focal length

expressed in meters. The optical power P of a lens is expressed in
units of diopters D; that is, 

plane mirror plane (flat) reflecting surface

ray tracing
technique that uses geometric constructions to find and

characterize the image formed by an optical system

real image
image that can be projected onto a screen because the rays

physically go through the image

second focus or image focus

for a converging interface, the point where a bundle of parallel
rays refracting at a spherical interface; for a diverging interface,

the point at which the backward continuation of the refracted rays
will converge between two media will focus

simple magnifier (or magnifying glass)
converging lens that produces a virtual image of an object that is

within the focal length of the lens

small-angle approximation

approximation that is valid when the size of a spherical mirror is
significantly smaller than the mirror’s radius; in this

approximation, spherical aberration is negligible and the mirror
has a well-defined focal point

spherical aberration
distortion in the image formed by a spherical mirror when rays are

not all focused at the same point

thin-lens approximation
assumption that the lens is very thin compared to the first image

distance

1D = 1/m = 1m−1
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vertex point where the mirror’s surface intersects with the optical axis

virtual image
image that cannot be projected on a screen because the rays do not

physically go through the image, they only appear to originate
from the image

Key Equations
Image distance in a plane mirror

Focal length for a spherical mirror

Mirror equation

Magnification of a spherical mirror

Sign convention for mirrors

Focal length 
+for concave mirror 
−for conve x mirror

Object distance 
+for real object 

−for virtual object

Image distance 
+for real image 

−for virtual image

Magnification 
+for upright image 
−for inverted image

Apparent depth equation

Spherical interface equation

The thin-lens equation

The lens maker’s equation

The magnification m of an object

Optical power

Optical power of thin, closely spaced lenses

Angular magnification M of a simple magnifier

Angular magnification of an object a distance L from the eye for a
convex lens of focal length f held a distance ℓ from the eye

Range of angular magnification for a given lens for a person with
a near point of 25 cm

Net magnification of compound microscope
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Summary

2.1 Images Formed by Plane Mirrors
A plane mirror always forms a virtual image (behind the mirror).
The image and object are the same distance from a flat mirror, the image size is the same as the object size, and the image is
upright.

2.2 Spherical Mirrors
Spherical mirrors may be concave (converging) or convex (diverging).
The focal length of a spherical mirror is one-half of its radius of curvature: .
The mirror equation and ray tracing allow you to give a complete description of an image formed by a spherical mirror.
Spherical aberration occurs for spherical mirrors but not parabolic mirrors; comatic aberration occurs for both types of mirrors.

2.3 Images Formed by Refraction

This section explains how a single refracting interface forms images.

When an object is observed through a plane interface between two media, then it appears at an apparent distance  that
differs from the actual distance .
An image is formed by the refraction of light at a spherical interface between two media of indices of refraction  and 

.
Image distance depends on the radius of curvature of the interface, location of the object, and the indices of refraction of
the media.

2.4 Thin Lenses
Two types of lenses are possible: converging and diverging. A lens that causes light rays to bend toward (away from) its optical
axis is a converging (diverging) lens.
For a converging lens, the focal point is where the converging light rays cross; for a diverging lens, the focal point is the point
from which the diverging light rays appear to originate.
The distance from the center of a thin lens to its focal point is called the focal length f.
Ray tracing is a geometric technique to determine the paths taken by light rays through thin lenses.
A real image can be projected onto a screen.
A virtual image cannot be projected onto a screen.
A converging lens forms either real or virtual images, depending on the object location; a diverging lens forms only virtual
images.

2.5 The Eye
Image formation by the eye is adequately described by the thin-lens equation.
The eye produces a real image on the retina by adjusting its focal length in a process called accommodation.
Nearsightedness, or myopia, is the inability to see far objects and is corrected with a diverging lens to reduce the optical power
of the eye.
Farsightedness, or hyperopia, is the inability to see near objects and is corrected with a converging lens to increase the optical
power of the eye.
In myopia and hyperopia, the corrective lenses produce images at distances that fall between the person’s near and far points so
that images can be seen clearly.

2.6 The Camera
Cameras use combinations of lenses to create an image for recording.
Digital photography is based on charge-coupled devices (CCDs) that break an image into tiny “pixels” that can be converted
into electronic signals.

2.7 The Simple Magnifier
A simple magnifier is a converging lens and produces a magnified virtual image of an object located within the focal length of
the lens.
Angular magnification accounts for magnification of an image created by a magnifier. It is equal to the ratio of the angle
subtended by the image to that subtended by the object when the object is observed by the unaided eye.
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Angular magnification is greater for magnifying lenses with smaller focal lengths.
Simple magnifiers can produce as great as tenfold (10×) magnification.

2.8 Microscopes and Telescopes
Many optical devices contain more than a single lens or mirror. These are analyzed by considering each element sequentially.
The image formed by the first is the object for the second, and so on. The same ray-tracing and thin-lens techniques developed
in the previous sections apply to each lens element.
The overall magnification of a multiple-element system is the product of the linear magnifications of its individual elements
times the angular magnification of the eyepiece. For a two-element system with an objective and an eyepiece, this is

 (2.41)

where  is the linear magnification of the objective and  is the angular magnification of the eyepiece.

The microscope is a multiple-element system that contains more than a single lens or mirror. It allows us to see detail that we
could not to see with the unaided eye. Both the eyepiece and objective contribute to the magnification. The magnification of a
compound microscope with the image at infinity is

. (2.42)

In this equation, 16 cm is the standardized distance between the image-side focal point of the objective lens and the
object-side focal point of the eyepiece, 25 cm is the normal near point distance,  and  are the focal distances
for the objective lens and the eyepiece, respectively.

Simple telescopes can be made with two lenses. They are used for viewing objects at large distances.
The angular magnification M for a telescope is given by

, (2.43)

where  and  are the focal lengths of the objective lens and the eyepiece, respectively.
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The most certain indication of a wave is interference. This wave characteristic is most prominent when the wave interacts with an
object that is not large compared with the wavelength. Interference is observed for water waves, sound waves, light waves, and, in
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11.1: Interference and Diffraction

Interference

The most certain indication of a wave is interference. This wave characteristic is most prominent when the wave interacts with an
object that is not large compared with the wavelength. Interference is observed for water waves, sound waves, light waves, and, in
fact, all types of waves.

Figure : Soap bubbles are blown from clear fluid into very thin films. The colors we see are not due to any pigmentation but
are the result of light interference, which enhances specific wavelengths for a given thickness of the film.

If you have ever looked at the reds, blues, and greens in a sunlit soap bubble and wondered how straw-colored soapy water could
produce them, you have hit upon one of the many phenomena that can only be explained by the wave character of light (Figure 

). The same is true for the colors seen in an oil slick or in the light reflected from a DVD disc. These and other interesting
phenomena cannot be explained fully by geometric optics. In these cases, light interacts with objects and exhibits wave
characteristics. The branch of optics that considers the behavior of light when it exhibits wave characteristics is called wave optics
(sometimes called physical optics). It is the topic of this chapter.

Diffraction
Imagine passing a monochromatic light beam through a narrow opening—a slit just a little wider than the wavelength of the light.
Instead of a simple shadow of the slit on the screen, you will see that an interference pattern appears, even though there is only one
slit.

Figure : A steel ball bearing illuminated by a laser does not cast a sharp, circular shadow. Instead, a series of diffraction
fringes and a central bright spot are observed. Known as Poisson’s spot, the effect was first predicted by Augustin-Jean Fresnel
(1788–1827) as a consequence of diffraction of light waves. Based on principles of ray optics, Siméon-Denis Poisson (1781–1840)
argued against Fresnel’s prediction. (credit: modification of work by Harvard Natural Science Lecture Demonstrations)

One might wonhder, how can there be an interference pattern when we have only one slit? Based on Huygens’s principle, when
dealing with light, we can imagine a wave front as equivalent to infinitely many point sources of waves. Thus, a wave from a slit
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can behave not as one wave but as an infinite number of point sources. These waves can interfere with each other, resulting in an
interference pattern without the presence of a second slit. This phenomenon is called diffraction.

Another way to view this is to recognize that a slit has a small but finite width. In the preceding chapter, we implicitly regarded
slits as objects with positions but no size. The widths of the slits were considered negligible. When the slits have finite widths, each
point along the opening can be considered a point source of light—a foundation of Huygens’s principle. Because real-world optical
instruments must have finite apertures (otherwise, no light can enter), diffraction plays a major role in the way we interpret the
output of these optical instruments. For example, diffraction places limits on our ability to resolve images or objects. This is a
problem that we will study later in this chapter.
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11.2: Young's Double-Slit Interference

By the end of this section, you will be able to:

Explain the phenomenon of interference
Define constructive and destructive interference for a double slit

The Dutch physicist Christiaan Huygens (1629–1695) thought that light was a wave, but Isaac Newton did not. Newton thought
that there were other explanations for color, and for the interference and diffraction effects that were observable at the time. Owing
to Newton’s tremendous reputation, his view generally prevailed; the fact that Huygens’s principle worked was not considered
direct evidence proving that light is a wave. The acceptance of the wave character of light came many years later in 1801, when the
English physicist and physician Thomas Young (1773–1829) demonstrated optical interference with his now-classic double-slit
experiment.

If there were not one but two sources of waves, the waves could be made to interfere, as in the case of waves on water (Figure 
). If light is an electromagnetic wave, it must therefore exhibit interference effects under appropriate circumstances. In

Young’s experiment, sunlight was passed through a pinhole on a board. The emerging beam fell on two pinholes on a second board.
The light emanating from the two pinholes then fell on a screen where a pattern of bright and dark spots was observed. This
pattern, called fringes, can only be explained through interference, a wave phenomenon.

Figure : Photograph of an interference pattern produced by circular water waves in a ripple tank. Two thin plungers are
vibrated up and down in phase at the surface of the water. Circular water waves are produced by and emanate from each plunger.

We can analyze double-slit interference with the help of Figure , which depicts an apparatus analogous to Young’s. Light
from a monochromatic source falls on a slit . The light emanating from  is incident on two other slits  and  that are
equidistant from . A pattern of interference fringes on the screen is then produced by the light emanating from  and . All
slits are assumed to be so narrow that they can be considered secondary point sources for Huygens’ wavelets (The Nature of Light).
Slits  and  are a distance d apart ( ), and the distance between the screen and the slits is D(≈1m), which is much
greater than d.
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Figure : The double-slit interference experiment using monochromatic light and narrow slits. Fringes produced by interfering
Huygens wavelets from slits  and  are observed on the screen.

Since  is assumed to be a point source of monochromatic light, the secondary Huygens wavelets leaving  and  always
maintain a constant phase difference (zero in this case because  and  are equidistant from ) and have the same frequency.
The sources  and  are then said to be coherent. By coherent waves, we mean the waves are in phase or have a definite phase
relationship. The term incoherent means the waves have random phase relationships, which would be the case if  and  were
illuminated by two independent light sources, rather than a single source . Two independent light sources (which may be two
separate areas within the same lamp or the Sun) would generally not emit their light in unison, that is, not coherently. Also, because

 and  are the same distance from , the amplitudes of the two Huygens wavelets are equal.

Young used sunlight, where each wavelength forms its own pattern, making the effect more difficult to see. In the following
discussion, we illustrate the double-slit experiment with monochromatic light (single λ) to clarify the effect. Figure  shows
the pure constructive and destructive interference of two waves having the same wavelength and amplitude.

Figure : The amplitudes of waves add. (a) Pure constructive interference is obtained when identical waves are in phase. (b)
Pure destructive interference occurs when identical waves are exactly out of phase, or shifted by half a wavelength.

When light passes through narrow slits, the slits act as sources of coherent waves and light spreads out as semicircular waves, as
shown in Figure . Pure constructive interference occurs where the waves are crest to crest or trough to trough. Pure
destructive interference occurs where they are crest to trough. The light must fall on a screen and be scattered into our eyes for us
to see the pattern. An analogous pattern for water waves is shown in Figure . Note that regions of constructive and
destructive interference move out from the slits at well-defined angles to the original beam. These angles depend on wavelength
and the distance between the slits, as we shall see below.
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Figure : Double slits produce two coherent sources of waves that interfere. (a) Light spreads out (diffracts) from each slit,
because the slits are narrow. These waves overlap and interfere constructively (bright lines) and destructively (dark regions). We
can only see this if the light falls onto a screen and is scattered into our eyes. (b) When light that has passed through double slits
falls on a screen, we see a pattern such as this.

To understand the double-slit interference pattern, consider how two waves travel from the slits to the screen (Figure ). Each
slit is a different distance from a given point on the screen. Thus, different numbers of wavelengths fit into each path. Waves start
out from the slits in phase (crest to crest), but they may end up out of phase (crest to trough) at the screen if the paths differ in
length by half a wavelength, interfering destructively. If the paths differ by a whole wavelength, then the waves arrive in phase
(crest to crest) at the screen, interfering constructively. More generally, if the path length difference  between the two waves is
any half-integral number of wavelengths [(1 / 2)λ, (3 / 2)λ, (5 / 2)λ, etc.], then destructive interference occurs. Similarly, if the path
length difference is any integral number of wavelengths (λ, 2λ, 3λ, etc.), then constructive interference occurs. These conditions
can be expressed as equations:
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Figure : Waves follow different paths from the slits to a common point P on a screen. Destructive interference occurs where
one path is a half wavelength longer than the other—the waves start in phase but arrive out of phase. Constructive interference
occurs where one path is a whole wavelength longer than the other—the waves start out and arrive in phase.

This page titled 11.2: Young's Double-Slit Interference is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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11.3: Mathematics of Interference

By the end of this section, you will be able to:

Determine the angles for bright and dark fringes for double slit interference
Calculate the positions of bright fringes on a screen

Figure  shows how to determine the path length difference  for waves traveling from two slits to a common point on a
screen. If the screen is a large distance away compared with the distance between the slits, then the angle θ between the path and a
line from the slits to the screen ( ) is nearly the same for each path. In other words,  and  are essentially parallel. The
lengths of  and  differ by , as indicated by the two dashed lines in the .

Figure : (a) To reach P, the light waves from  and  must travel different distances. (b) The path difference between the
two rays is .

Simple trigonometry shows

where d is the distance between the slits. Combining this with the interference equations discussed previously, we obtain
constructive interference for a double slit when the path length difference is an integral multiple of the wavelength, or

and

where

,
 is the wavelength of the light,
 is the distance between slits, and
 is the angle from the original direction of the beam as discussed above.
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We call  the order of the interference. For example,  is fourth-order interference.

Equations  and  for double-slit interference imply that a series of bright and dark lines are formed. For vertical slits,
the light spreads out horizontally on either side of the incident beam into a pattern called interference fringes (Figure ). The
closer the slits are, the more the bright fringes spread apart. We can see this by examining the Equation . For fixed  and ,
the smaller  is, the larger  must be, since . This is consistent with our contention that wave effects are most
noticeable when the object the wave encounters (here, slits a distance d apart) is small. Small  gives large , hence, a large effect.

Referring back to Figure ,  is typically small enough that

where  is the distance from the central maximum to the m-th bright fringe and D is the distance between the slit and the screen.
Equation  may then be written as

or

Figure : The interference pattern for a double slit has an intensity that falls off with angle. The image shows multiple bright
and dark lines, or fringes, formed by light passing through a double slit.

Suppose you pass light from a He-Ne laser through two slits separated by 0.0100 mm and find that the third bright line on a
screen is formed at an angle of 10.95° relative to the incident beam. What is the wavelength of the light?

Strategy

The phenomenon is two-slit interference as illustrated in Figure  and the third bright line is due to third-order
constructive interference, which means that . We are given  and . The wavelength can thus
be found using Equation  for constructive interference.

Solution
Solving Equation  for the wavelength  gives

m m = 4

11.3.2 11.3.3
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11.3.2 λ m

d θ sin θ = mλ/d

d θ

11.3.1a θ

sin θ ≈ tan θ ≈ /Dym

ym
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ym

D

= .ym
mλD
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Substituting known values yields

Significance

To three digits, this is the wavelength of light emitted by the common He-Ne laser. Not by coincidence, this red color is similar
to that emitted by neon lights. More important, however, is the fact that interference patterns can be used to measure
wavelength. Young did this for visible wavelengths. This analytical technique is still widely used to measure electromagnetic
spectra. For a given order, the angle for constructive interference increases with , so that spectra (measurements of intensity
versus wavelength) can be obtained.

Interference patterns do not have an infinite number of lines, since there is a limit to how big m can be. What is the highest-
order constructive interference possible with the system described in the preceding example?

Strategy

Equation  describes constructive interference from two slits. For fixed values of  and , the larger  is, the larger 
is. However, the maximum value that  can have is 1, for an angle of 90°. (Larger angles imply that light goes backward
and does not reach the screen at all.) Let us find what value of  corresponds to this maximum diffraction angle.

Solution
Solving the equation  for m gives

Taking  and substituting the values of d and λ from the preceding example gives

Therefore, the largest integer  can be is 15, or .

Significance

The number of fringes depends on the wavelength and slit separation. The number of fringes is very large for large slit
separations. However, recall (see The Propagation of Light) that wave interference is only prominent when the wave interacts
with objects that are not large compared to the wavelength. Therefore, if the slit separation and the sizes of the slits become
much greater than the wavelength, the intensity pattern of light on the screen changes, so there are simply two bright lines cast
by the slits, as expected, when light behaves like rays. We also note that the fringes get fainter farther away from the center.
Consequently, not all 15 fringes may be observable.

In the system used in the preceding examples, at what angles are the first and the second bright fringes formed?

Answer

 and , respectively

This page titled 11.3: Mathematics of Interference is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.
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(0.0100 mm)(sin )10.95o
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d sin θ
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11.4: Multiple-Slit Interference

By the end of this section, you will be able to:

Describe the locations and intensities of secondary maxima for multiple-slit interference

Analyzing the interference of light passing through two slits lays out the theoretical framework of interference and gives us a
historical insight into Thomas Young’s experiments. However, much of the modern-day application of slit interference uses not just
two slits but many, approaching infinity for practical purposes. The key optical element is called a diffraction grating, an
important tool in optical analysis, which we discuss in detail in chapter on Diffraction. Here, we start the analysis of multiple-slit
interference by taking the results from our analysis of the double slit (N=2) and extending it to configurations with three, four, and
much larger numbers of slits.

Figure  shows the simplest case of multiple-slit interference, with three slits, or N=3. The spacing between slits is d, and the
path length difference between adjacent slits is d sin θ, same as the case for the double slit. What is new is that the path length
difference for the first and the third slits is 2d sin θ. The condition for constructive interference is the same as for the double slit,
that is

When this condition is met, 2d sin θ is automatically a multiple of λ, so all three rays combine constructively, and the bright fringes
that occur here are called principal maxima. But what happens when the path length difference between adjacent slits is only λ/2?
We can think of the first and second rays as interfering destructively, but the third ray remains unaltered. Instead of obtaining a dark
fringe, or a minimum, as we did for the double slit, we see a secondary maximum with intensity lower than the principal maxima.

Figure : Interference with three slits. Different pairs of emerging rays can combine constructively or destructively at the
same time, leading to secondary maxima.

In general, for N slits, these secondary maxima occur whenever an unpaired ray is present that does not go away due to destructive
interference. This occurs at (N−2) evenly spaced positions between the principal maxima. The amplitude of the electromagnetic
wave is correspondingly diminished to 1/N of the wave at the principal maxima, and the light intensity, being proportional to the
square of the wave amplitude, is diminished to  of the intensity compared to the principal maxima. As Figure 
Interference fringe patterns for two, three and four slits. As the number of slits increases, more secondary maxima appear, but the
principal maxima shows, a dark fringe is located between every maximum (principal or secondary). As N grows larger and the
number of bright and dark fringes increase, the widths of the maxima become narrower due to the closely located neighboring dark
fringes. Because the total amount of light energy remains unaltered, narrower maxima require that each maximum reaches a
correspondingly higher intensity.
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Figure : Interference fringe patterns for two, three and four slits. As the number of slits increases, more secondary maxima
appear, but the principal maxima become brighter and narrower. (a) Graph and (b) photographs of fringe patterns.

This page titled 11.4: Multiple-Slit Interference is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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11.5: Interference in Thin Films

By the end of this section, you will be able to:

Describe the phase changes that occur upon reflection
Describe fringes established by reflected rays of a common source
Explain the appearance of colors in thin films

The bright colors seen in an oil slick floating on water or in a sunlit soap bubble are caused by interference. The brightest colors are
those that interfere constructively. This interference is between light reflected from different surfaces of a thin film; thus, the effect
is known as thin-film interference.

As we noted before, interference effects are most prominent when light interacts with something having a size similar to its
wavelength. A thin film is one having a thickness  smaller than a few times the wavelength of light, . Since color is associated
indirectly with  and because all interference depends in some way on the ratio of  to the size of the object involved, we should
expect to see different colors for different thicknesses of a film, as in Figure .

Figure : These soap bubbles exhibit brilliant colors when exposed to sunlight. (credit: Scott Robinson)

What causes thin-film interference? Figure  shows how light reflected from the top and bottom surfaces of a film can
interfere. Incident light is only partially reflected from the top surface of the film (ray 1). The remainder enters the film and is itself
partially reflected from the bottom surface. Part of the light reflected from the bottom surface can emerge from the top of the film
(ray 2) and interfere with light reflected from the top (ray 1). The ray that enters the film travels a greater distance, so it may be in
or out of phase with the ray reflected from the top. However, consider for a moment, again, the bubbles in Figure . The
bubbles are darkest where they are thinnest. Furthermore, if you observe a soap bubble carefully, you will note it gets dark at the
point where it breaks. For very thin films, the difference in path lengths of rays 1 and 2 in Figure  is negligible, so why
should they interfere destructively and not constructively? The answer is that a phase change can occur upon reflection, as
discussed next.
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Figure : Light striking a thin film is partially reflected (ray 1) and partially refracted at the top surface. The refracted ray is
partially reflected at the bottom surface and emerges as ray 2. These rays interfere in a way that depends on the thickness of the
film and the indices of refraction of the various media.

Changes in Phase due to Reflection

We saw earlier (Waves) that reflection of mechanical waves can involve a 180° phase change. For example, a traveling wave on a
string is inverted (i.e., a 180° phase change) upon reflection at a boundary to which a heavier string is tied. However, if the second
string is lighter (or more precisely, of a lower linear density), no inversion occurs. Light waves produce the same effect, but the
deciding parameter for light is the index of refraction. Light waves undergo a 180° or  radians phase change upon reflection at an
interface beyond which is a medium of higher index of refraction. No phase change takes place when reflecting from a medium of
lower refractive index (Figure ). Because of the periodic nature of waves, this phase change or inversion is equivalent to 

 in distance travelled, or path length. Both the path length and refractive indices are important factors in thin-film
interference.

Figure : Reflection at an interface for light traveling from a medium with index of refraction  to a medium with index of
refraction , , causes the phase of the wave to change by  radians.

If the film in Figure  is a soap bubble (essentially water with air on both sides), then a phase shift of  occurs for ray 1
but not for ray 2. Thus, when the film is very thin and the path length difference between the two rays is negligible, they are exactly
out of phase, and destructive interference occurs at all wavelengths. Thus, the soap bubble is dark here. The thickness of the film
relative to the wavelength of light is the other crucial factor in thin-film interference. Ray 2 in Figure  travels a greater
distance than ray 1. For light incident perpendicular to the surface, ray 2 travels a distance approximately  farther than ray 1.
When this distance is an integral or half-integral multiple of the wavelength in the medium ( , where λ is the wavelength
in vacuum and  is the index of refraction), constructive or destructive interference occurs, depending also on whether there is a
phase change in either ray.
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Sophisticated cameras use a series of several lenses. Light can reflect from the surfaces of these various lenses and degrade
image clarity. To limit these reflections, lenses are coated with a thin layer of magnesium fluoride, which causes destructive
thin-film interference. What is the thinnest this film can be, if its index of refraction is 1.38 and it is designed to limit the
reflection of 550-nm light, normally the most intense visible wavelength? Assume the index of refraction of the glass is 1.52.

Strategy

Refer to Figure  and use  for air, , and . Both ray 1 and ray 2 have a λ/2 shift upon
reflection. Thus, to obtain destructive interference, ray 2 needs to travel a half wavelength farther than ray 1. For rays incident
perpendicularly, the path length difference is 2t.

Solution
To obtain destructive interference here,

where  is the wavelength in the film and is given by . Thus,

Solving for t and entering known values yields

Significance

Films such as the one in this example are most effective in producing destructive interference when the thinnest layer is used,
since light over a broader range of incident angles is reduced in intensity. These films are called nonreflective coatings; this is
only an approximately correct description, though, since other wavelengths are only partially cancelled. Nonreflective coatings
are also used in car windows and sunglasses.

Combining Path Length Difference with Phase Change
Thin-film interference is most constructive or most destructive when the path length difference for the two rays is an integral or
half-integral wavelength. That is, for rays incident perpendicularly,

To know whether interference is constructive or destructive, you must also determine if there is a phase change upon reflection.
Thin-film interference thus depends on film thickness, the wavelength of light, and the refractive indices. For white light incident
on a film that varies in thickness, you can observe rainbow colors of constructive interference for various wavelengths as the
thickness varies.

a. What are the three smallest thicknesses of a soap bubble that produce constructive interference for red light with a
wavelength of 650 nm? The index of refraction of soap is taken to be the same as that of water.

b. What three smallest thicknesses give destructive interference?

Strategy

Use Figure  to visualize the bubble, which acts as a thin film between two layers of air. Thus  for air,
and  for soap (equivalent to water). There is a λ/2 shift for ray 1 reflected from the top surface of the bubble and no
shift for ray 2 reflected from the bottom surface. To get constructive interference, then, the path length difference (2t) must be
a half-integral multiple of the wavelength—the first three being , and . To get destructive interference, the
path length difference must be an integral multiple of the wavelength—the first three being 0, , and .

 Example : Calculating the Thickness of a Nonreflective Lens Coating11.5.1
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 Example : Soap Bubbles11.5.2
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Solution
a. Constructive interference occurs here when

Thus, the smallest constructive thickness  is

The next thickness that gives constructive interference is , so that

Finally, the third thickness producing constructive interference is , so that

b. For destructive interference, the path length difference here is an integral multiple of the wavelength. The first occurs for
zero thickness, since there is a phase change at the top surface, that is,

the very thin (or negligibly thin) case discussed above. The first non-zero thickness producing destructive interference is

Substituting known values gives

Finally, the third destructive thickness is , so that

Significance

If the bubble were illuminated with pure red light, we would see bright and dark bands at very uniform increases in thickness.
First would be a dark band at 0 thickness, then bright at 122 nm thickness, then dark at 244 nm, bright at 366 nm, dark at 488
nm, and bright at 610 nm. If the bubble varied smoothly in thickness, like a smooth wedge, then the bands would be evenly
spaced.

Going further with Example , what are the next two thicknesses of soap bubble that would lead to

a. constructive interference, and
b. destructive interference?

Answer a

853 nm and 1097 nm

Answer b

731 nm and 975 nm

Another example of thin-film interference can be seen when microscope slides are separated (see Figure ). The slides are
very flat, so that the wedge of air between them increases in thickness very uniformly. A phase change occurs at the second surface
but not the first, so a dark band forms where the slides touch. The rainbow colors of constructive interference repeat, going from
violet to red again and again as the distance between the slides increases. As the layer of air increases, the bands become more
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difficult to see, because slight changes in incident angle have greater effects on path length differences. If monochromatic light
instead of white light is used, then bright and dark bands are obtained rather than repeating rainbow colors.

Figure : (a) The rainbow-color bands are produced by thin-film interference in the air between the two glass slides. (b)
Schematic of the paths taken by rays in the wedge of air between the slides. (c) If the air wedge is illuminated with monochromatic
light, bright and dark bands are obtained rather than repeating rainbow colors.

An important application of thin-film interference is found in the manufacturing of optical instruments. A lens or mirror can be
compared with a master as it is being ground, allowing it to be shaped to an accuracy of less than a wavelength over its entire
surface. Figure  illustrates the phenomenon called Newton’s rings, which occurs when the plane surfaces of two lenses are
placed together. (The circular bands are called Newton’s rings because Isaac Newton described them and their use in detail.
Newton did not discover them; Robert Hooke did, and Newton did not believe they were due to the wave character of light.) Each
successive ring of a given color indicates an increase of only half a wavelength in the distance between the lens and the blank, so
that great precision can be obtained. Once the lens is perfect, no rings appear.
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Figure :“Newton’s rings” interference fringes are produced when two plano-convex lenses are placed together with their
plane surfaces in contact. The rings are created by interference between the light reflected off the two surfaces as a result of a slight
gap between them, indicating that these surfaces are not precisely plane but are slightly convex. (credit: Ulf Seifert)

Thin-film interference has many other applications, both in nature and in manufacturing. The wings of certain moths and butterflies
have nearly iridescent colors due to thin-film interference. In addition to pigmentation, the wing’s color is affected greatly by
constructive interference of certain wavelengths reflected from its film-coated surface. Some car manufacturers offer special paint
jobs that use thin-film interference to produce colors that change with angle. This expensive option is based on variation of thin-
film path length differences with angle. Security features on credit cards, banknotes, driving licenses, and similar items prone to
forgery use thin-film interference, diffraction gratings, or holograms. As early as 1998, Australia led the way with dollar bills
printed on polymer with a diffraction grating security feature, making the currency difficult to forge. Other countries, such as
Canada, New Zealand, and Taiwan, are using similar technologies, while US currency includes a thin-film interference effect.

This page titled 11.5: Interference in Thin Films is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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11.6: Single-Slit Diffraction

By the end of this section, you will be able to:

Explain the phenomenon of diffraction and the conditions under which it is observed
Describe diffraction through a single slit

After passing through a narrow aperture (opening), a wave propagating in a specific direction tends to spread out. For example,
sound waves that enter a room through an open door can be heard even if the listener is in a part of the room where the geometry of
ray propagation dictates that there should only be silence. Similarly, ocean waves passing through an opening in a breakwater can
spread throughout the bay inside. (Figure ). The spreading and bending of sound and ocean waves are two examples of
diffraction, which is the bending of a wave around the edges of an opening or an obstacle—a phenomenon exhibited by all types of
waves.

Figure : Because of the diffraction of waves, ocean waves entering through an opening in a breakwater can spread
throughout the bay. (credit: modification of map data from Google Earth)

The diffraction of sound waves is apparent to us because wavelengths in the audible region are approximately the same size as the
objects they encounter, a condition that must be satisfied if diffraction effects are to be observed easily. Since the wavelengths of
visible light range from approximately 390 to 770 nm, most objects do not diffract light significantly. However, situations do occur
in which apertures are small enough that the diffraction of light is observable. For example, if you place your middle and index
fingers close together and look through the opening at a light bulb, you can see a rather clear diffraction pattern, consisting of light
and dark lines running parallel to your fingers.

Diffraction through a Single Slit
Light passing through a single slit forms a diffraction pattern somewhat different from those formed by double slits or diffraction
gratings, which we discussed in the chapter on interference. Figure  shows a single-slit diffraction pattern. Note that the
central maximum is larger than maxima on either side and that the intensity decreases rapidly on either side. In contrast, a
diffraction grating produces evenly spaced lines that dim slowly on either side of the center.
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Figure : Single-slit diffraction pattern. (a) Monochromatic light passing through a single slit has a central maximum and
many smaller and dimmer maxima on either side. The central maximum is six times higher than shown. (b) The diagram shows the
bright central maximum, and the dimmer and thinner maxima on either side.

The analysis of single-slit diffraction is illustrated in Figure . Here, the light arrives at the slit, illuminating it uniformly and
is in phase across its width. We then consider light propagating onwards from different parts of the same slit. According to
Huygens’s principle, every part of the wave front in the slit emits wavelets, as we discussed in The Nature of Light. These are like
rays that start out in phase and head in all directions. (Each ray is perpendicular to the wave front of a wavelet.) Assuming the
screen is very far away compared with the size of the slit, rays heading toward a common destination are nearly parallel. When they
travel straight ahead, as in part (a) of the figure, they remain in phase, and we observe a central maximum. However, when rays
travel at an angle θ relative to the original direction of the beam, each ray travels a different distance to a common location, and
they can arrive in or out of phase. In part (b), the ray from the bottom travels a distance of one wavelength λ farther than the ray
from the top. Thus, a ray from the center travels a distance λ/2 less than the one at the bottom edge of the slit, arrives out of phase,
and interferes destructively. A ray from slightly above the center and one from slightly above the bottom also cancel one another. In
fact, each ray from the slit interferes destructively with another ray. In other words, a pair-wise cancellation of all rays results in a
dark minimum in intensity at this angle. By symmetry, another minimum occurs at the same angle to the right of the incident
direction (toward the bottom of the figure) of the light.

Figure : Light passing through a single slit is diffracted in all directions and may interfere constructively or destructively,
depending on the angle. The difference in path length for rays from either side of the slit is seen to be a .

At the larger angle shown in part (c), the path lengths differ by  for rays from the top and bottom of the slit. One ray travels a
distance  different from the ray from the bottom and arrives in phase, interfering constructively. Two rays, each from slightly
above those two, also add constructively. Most rays from the slit have another ray to interfere with constructively, and a maximum
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in intensity occurs at this angle. However, not all rays interfere constructively for this situation, so the maximum is not as intense as
the central maximum. Finally, in part (d), the angle shown is large enough to produce a second minimum. As seen in the figure, the
difference in path length for rays from either side of the slit is , and we see that a destructive minimum is obtained when this
distance is an integral multiple of the wavelength.

Thus, to obtain destructive interference for a single slit,

where

,
 is the slit width,
 is the light’s wavelength,
 is the angle relative to the original direction of the light, and
 is the order of the minimum.

Figure  shows a graph of intensity for single-slit interference, and it is apparent that the maxima on either side of the central
maximum are much less intense and not as wide. This effect is explored in Double-Slit Diffraction.

Figure : A graph of single-slit diffraction intensity showing the central maximum to be wider and much more intense than
those to the sides. In fact, the central maximum is six times higher than shown here.

Visible light of wavelength 550 nm falls on a single slit and produces its second diffraction minimum at an angle of 45.0°
relative to the incident direction of the light, as in Figure .

a. What is the width of the slit?
b. At what angle is the first minimum produced?

a sinθ

a sinθ = mλ  
destructive interference

m = ±1, ±2, ±3, . . .

a

λ

θ

m

11.6.3

11.6.3

 Example : Calculating Single-Slit Diffraction11.6.1
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Figure : In this example, we analyze a graph of the single-slit diffraction pattern.

Strategy

From the given information, and assuming the screen is far away from the slit, we can use the equation  first to
find , and again to find the angle for the first minimum .

Solution
a. We are given that , , and . Solving the equation  for  and substituting known

values gives

b. Solving the equation  for  and substituting the known values gives

Thus the angle  is

Significance

We see that the slit is narrow (it is only a few times greater than the wavelength of light). This is consistent with the fact that
light must interact with an object comparable in size to its wavelength in order to exhibit significant wave effects such as this
single-slit diffraction pattern. We also see that the central maximum extends 20.7° on either side of the original beam, for a
width of about 41°. The angle between the first and second minima is only about 24°(45.0°−20.7°). Thus, the second maximum
is only about half as wide as the central maximum.

Suppose the slit width in Example  is increased to . What are the new angular positions for the first,
second, and third minima? Would a fourth minimum exist?

11.6.5

a sinθ = mλ

a θ1

λ = 550 nm m = 2 = 45.0°θ2 a sin θ = mλ a

a = = = = 1.56 × m.
mλ

sin θ2

2(550 nm)

sin 45.0°

1100 × m10−9

0.707
10−6

a sin θ = mλ sin θ1

sin = = .θ1
mλ

a

1(550 × m)10−9

1.56 × m10−6

θ1

= 0.354 = 20.7°.θ1 sin−1

 Exercise 11.6.1

11.6.1 1.8 × m10−6
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Answer

, , ; no

By the end of this section, you will be able to:

Calculate the intensity relative to the central maximum of the single-slit diffraction peaks
Calculate the intensity relative to the central maximum of an arbitrary point on the screen

To calculate the intensity of the diffraction pattern, we follow the phasor method used for calculations with ac circuits in
Alternating-Current Circuits. If we consider that there are  Huygens sources across the slit shown previously, with each source
separated by a distance a/N from its adjacent neighbors, the path difference between waves from adjacent sources reaching the
arbitrary point  on the screen is . This distance is equivalent to a phase difference of . The phasor
diagram for the waves arriving at the point whose angular position is  is shown in Figure . The amplitude of the phasor for
each Huygens wavelet is , the amplitude of the resultant phasor is , and the phase difference between the wavelets from the
first and the last sources is

With , the phasor diagram approaches a circular arc of length  and radius . Since the length of the arc is 
for any , the radius  of the arc must decrease as  increases (or equivalently, as the phasors form tighter spirals).

Figure : (a) Phasor diagram corresponding to the angular position θθ in the single-slit diffraction pattern. The phase
difference between the wavelets from the first and last sources is . (b) The geometry of the phasor diagram.

The phasor diagram for ϕ = 0 (the center of the diffraction pattern) is shown in Figure  using N=30. In this case, the
phasors are laid end to end in a straight line of length , the radius r goes to infinity, and the resultant has its maximum value 

. The intensity of the light can be obtained using the relation  from Electromagnetic Waves. The intensity

of the maximum is then

where . The phasor diagrams for the first two zeros of the diffraction pattern are shown in Figure  and Figure 
. In both cases, the phasors add to zero, after rotating through  rad for m = 1 and  rad for m = 2.

17.8o 37.7o 66.4o
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Figure : Phasor diagrams (with 30 phasors) for various points on the single-slit diffraction pattern. Multiple rotations around
a given circle have been separated slightly so that the phasors can be seen. (a) Central maximum, (b) first minimum, (c) first
maximum beyond central maximum, (d) second minimum, and (e) second maximum beyond central maximum.

The next two maxima beyond the central maxima are represented by the phasor diagrams of parts (c) and (e). In part (c), the
phasors have rotated through  rad and have formed a resultant phasor of magnitude . The length of the arc formed by the
phasors is . Since this corresponds to 1.5 rotations around a circle of diameter , we have

so

and

where

In part (e), the phasors have rotated through  rad, corresponding to 2.5 rotations around a circle of diameter  and arc
length . This results in . The proof is left as an exercise for the student (Exercise 4.119).

These two maxima actually correspond to values of ϕ slightly less than  rad and  rad. Since the total length of the arc of the
phasor diagram is always , the radius of the arc decreases as  increases. As a result,  and  turn out to be slightly
larger for arcs that have not quite curled through  rad and  rad, respectively. The exact values of  for the maxima are
investigated in Exercise 4.120. In solving that problem, you will find that they are less than, but very close to, …
rad.

To calculate the intensity at an arbitrary point  on the screen, we return to the phasor diagram of Figure . Since the arc
subtends an angle ϕ at the center of the circle,

and

where  is the amplitude of the resultant field. Solving the Equation  for  and then substituting  from Equation , we
find

11.6.2

ϕ = 3π E1

NΔE0 E1

π = NΔ ,
3

2
E1 E0

=E1
2NΔE0

3π

= = = 0.045 ,I1
1

2 cμ0
E2

1

4(NΔE0)2

(9 )(2 c)π2 μ0

I0

= .I0

(NΔE0)2

2 cμ0

ϕ = 5π E2

NΔE0 = 0.016I2 I0

3π 5π

NΔE0 ϕ E1 E2

3π 5π ϕ

ϕ = 3π, 5π, 7π,

P 11.6.1

NΔ = rϕE0 (11.6.1)
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ϕ

2
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Now defining

we obtain

Equation  relates the amplitude of the resultant field at any point in the diffraction pattern to the amplitude  at the
central maximum. The intensity is proportional to the square of the amplitude, so

where  is the intensity at the center of the pattern.

For the central maximum, ϕ = 0, β is also zero and we see from l’Hôpital’s rule that , so that .
For the next maximum,  rad, we have  rad and when substituted into Equation , it yields

in agreement with what we found earlier in this section using the diameters and circumferences of phasor diagrams. Substituting 
 rad into Equation  yields a similar result for .

A plot of Equation  is shown in Figure  and directly below it is a photograph of an actual diffraction pattern. Notice
that the central peak is much brighter than the others, and that the zeros of the pattern are located at those points where ,
which occurs when  rad. This corresponds to

or

which we derived for the destructive interference ro a single slit previously.

E = 2r sin
ϕ

2

= 2 sin .
NΔE0

ϕ

ϕ

2

β = =
ϕ

2

πa sin θ

λ
(11.6.3)

E = NΔE0
sin β
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Figure : (a) The calculated intensity distribution of a single-slit diffraction pattern. (b) The actual diffraction pattern.

Light of wavelength 550 nm passes through a slit of width 2.00 μm and produces a diffraction pattern similar to that shown in
Figure .

a. Find the locations of the first two minima in terms of the angle from the central maximum.
b. Determine the intensity relative to the central maximum at a point halfway between these two minima.

Strategy

The minima are given by Equation 4.2.1, . The first two minima are for m = 1 and m = 2. Equation  and
Equation  can be used to determine the intensity once the angle has been worked out.

Solution
1. Solving Equation 4.2.1 for θ gives us , so that

and

2. The halfway point between  and  is

Equation  gives

11.6.3

 Example : Intensity in Single-Slit Diffraction11.6.1

11.6.3a

a sin θ = mλ 11.6.5

11.6.3

= (mλ/a)θm sin−1

= ( ) = +16.0°θ1 sin−1
(+1)(550 × m)10−9

2.00 × m10−6

= ( ) = +33.4°.θ2 sin−1 (+2)(550 × m)10−9

2.00 × m10−6

θ1 θ2

θ = ( + )/2 = (16.0° +33.4°)/2 = 24.7°.θ1 θ2

11.6.3

β = = = 1.52π or 4.77 rad.
πa sin θ

λ

π(2.00 × m) sin (24.7°)10−6

(550 × m)10−9
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From Equation , we can calculate

Significance

This position, halfway between two minima, is very close to the location of the maximum, expected near , or .

For the experiment in Example , at what angle from the center is the third maximum and what is its intensity relative to
the central maximum?

Answer

, 

If the slit width  is varied, the intensity distribution changes, as illustrated in Figure . The central peak is distributed over
the region from  to . For small θ, this corresponds to an angular width . Hence, an
increase in the slit width results in a decrease in the width of the central peak. For a slit with a ≫ λ, the central peak is very sharp,
whereas if a ≈ λ, it becomes quite broad.

Figure : Single-slit diffraction patterns for various slit widths. As the slit width a increases from a=λ to 5λ and then to 10λ,
the width of the central peak decreases as the angles for the first minima decrease as predicted by Equation 4.2.1.

A diffraction experiment in optics can require a lot of preparation but this simulation by Andrew Duffy offers not only a quick
set up but also the ability to change the slit width instantly. Run the simulation and select “Single slit.” You can adjust the slit
width and see the effect on the diffraction pattern on a screen and as a graph.

This page titled 11.6: Single-Slit Diffraction is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

4.2: Single-Slit Diffraction by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-3.
4.3: Intensity in Single-Slit Diffraction by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-3.
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11.7: Double-Slit Diffraction

By the end of this section, you will be able to:

Describe the combined effect of interference and diffraction with two slits, each with finite width
Determine the relative intensities of interference fringes within a diffraction pattern
Identify missing orders, if any

When we studied interference in Young’s double-slit experiment, we ignored the diffraction effect in each slit. We assumed that the
slits were so narrow that on the screen you saw only the interference of light from just two point sources. If the slit is smaller than
the wavelength, then Figure 4.3.4a shows that there is just a spreading of light and no peaks or troughs on the screen. Therefore, it
was reasonable to leave out the diffraction effect in that chapter. However, if you make the slit wider, Figure 4.3.4b and (c) show
that you cannot ignore diffraction. In this section, we study the complications to the double-slit experiment that arise when you also
need to take into account the diffraction effect of each slit.

To calculate the diffraction pattern for two (or any number of) slits, we need to generalize the method we just used for a single slit.
That is, across each slit, we place a uniform distribution of point sources that radiate Huygens wavelets, and then we sum the
wavelets from all the slits. This gives the intensity at any point on the screen. Although the details of that calculation can be
complicated, the final result is quite simple:

Two-Slit Diffraction Pattern

The diffraction pattern of two slits of width  that are separated by a distance d is the interference pattern of two point sources
separated by d multiplied by the diffraction pattern of a slit of width .

In other words, the locations of the interference fringes are given by the equation

the same as when we considered the slits to be point sources, but the intensities of the fringes are now reduced by diffraction
effects, according to Equation 4.3.11. [Note that in the chapter on interference, we wrote  and used the integer  to
refer to interference fringes. Equation 4.2.1 also uses , but this time to refer to diffraction minima. If both equations are used
simultaneously, it is good practice to use a different variable (such as ) for one of these integers in order to keep them distinct.]

Interference and diffraction effects operate simultaneously and generally produce minima at different angles. This gives rise to a
complicated pattern on the screen, in which some of the maxima of interference from the two slits are missing if the maximum of
the interference is in the same direction as the minimum of the diffraction. We refer to such a missing peak as a missing order.
One example of a diffraction pattern on the screen is shown in Figure . The solid line with multiple peaks of various heights
is the intensity observed on the screen. It is a product of the interference pattern of waves from separate slits and the diffraction of
waves from within one slit.
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Figure : Diffraction from a double slit. The purple line with peaks of the same height are from the interference of the waves
from two slits; the blue line with one big hump in the middle is the diffraction of waves from within one slit; and the thick red line
is the product of the two, which is the pattern observed on the screen. The plot shows the expected result for a slit width 
and slit separation . The maximum of  order for the interference is missing because the minimum of the diffraction
occurs in the same direction.

Figure  shows that the intensity of the fringe for m=3 is zero, but what about the other fringes? Calculate the intensity for
the fringe at m=1 relative to , the intensity of the central peak.

Strategy

Determine the angle for the double-slit interference fringe, using the equation from Interference, then determine the relative
intensity in that direction due to diffraction by using Equation 4.3.11.

Solution
From the chapter on interference, we know that the bright interference fringes occur at , or

From Equation 4.3.11,

where

Substituting from above,

For , and ,

Then, the intensity is

Significance

11.7.1

a = 2λ
d = 6λ m = ±3

 Example : Intensity of the Fringes11.7.1
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Note that this approach is relatively straightforward and gives a result that is almost exactly the same as the more complicated
analysis using phasors to work out the intensity values of the double-slit interference (thin line in Figure ). The phasor
approach accounts for the downward slope in the diffraction intensity (blue line) so that the peak near m=1 occurs at a value of
θ ever so slightly smaller than we have shown here.

Suppose that in Young’s experiment, slits of width 0.020 mm are separated by 0.20 mm. If the slits are illuminated by
monochromatic light of wavelength 500 nm, how many bright fringes are observed in the central peak of the diffraction
pattern?

Solution
From Equation 4.2.1, the angular position of the first diffraction minimum is 

.

Using  for , we find

which is the maximum interference order that fits inside the central peak. We note that  are missing orders as 
matches exactly. Accordingly, we observe bright fringes for

m = −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8, and +9

for a total of 19 bright fringes.

For the experiment in Example , show that m=20 is also a missing order.

Solution
From , the interference maximum occurs at  for . From Equation 4.2.1, this is also the angle for the
second diffraction minimum. (Note: Both equations use the index m but they refer to separate phenomena.)

Explore the effects of double-slit diffraction. In this simulation written by Fu-Kwun Hwang, select N=2 using the slider and see
what happens when you control the slit width, slit separation and the wavelength. Can you make an order go “missing?”

This page titled 11.7: Double-Slit Diffraction is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

4.4: Double-Slit Diffraction by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-3.

11.7.1

 Example : Two-Slit Diffraction11.7.2

θ ≈ sin θ = = = 2.5 × rad
λ

a

5.0 × m10−7

2.0 × m10−5
10−2

d sin θ = mλ θ = 2.5 × rad10−2

m = = = 10,
d sin θ

λ

(0.20 mm)(2.5 × rad)10−2

(5.0 × m)10−7

m = ±10 θ

 Exercise 11.7.1

11.7.2

d sin θ = mλ 2.87o m = 20
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11.8: Diffraction Gratings

By the end of this section, you will be able to:

Discuss the pattern obtained from diffraction gratings
Explain diffraction grating effects

Analyzing the interference of light passing through two slits lays out the theoretical framework of interference and gives us a
historical insight into Thomas Young’s experiments. However, most modern-day applications of slit interference use not just two
slits but many, approaching infinity for practical purposes. The key optical element is called a diffraction grating, an important tool
in optical analysis.

Diffraction Gratings: An Infinite Number of Slits
The analysis of multi-slit interference in Interference allows us to consider what happens when the number of slits N approaches
infinity. Recall that  secondary maxima appear between the principal maxima. We can see there will be an infinite number of
secondary maxima that appear, and an infinite number of dark fringes between them. This makes the spacing between the fringes,
and therefore the width of the maxima, infinitesimally small. Furthermore, because the intensity of the secondary maxima is
proportional to , it approaches zero so that the secondary maxima are no longer seen. What remains are only the principal
maxima, now very bright and very narrow (Figure ).

Figure : (a) Intensity of light transmitted through a large number of slits. When N approaches infinity, only the principal
maxima remain as very bright and very narrow lines. (b) A laser beam passed through a diffraction grating. (credit b: modification
of work by Sebastian Stapelberg)

In reality, the number of slits is not infinite, but it can be very large—large enough to produce the equivalent effect. A prime
example is an optical element called a diffraction grating. A diffraction grating can be manufactured by carving glass with a sharp
tool in a large number of precisely positioned parallel lines, with untouched regions acting like slits (Figure ). This type of
grating can be photographically mass produced rather cheaply. Because there can be over 1000 lines per millimeter across the
grating, when a section as small as a few millimeters is illuminated by an incoming ray, the number of illuminated slits is
effectively infinite, providing for very sharp principal maxima.

 Learning Objectives

N −2

1/N 2
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Figure : A diffraction grating can be manufactured by carving glass with a sharp tool in a large number of precisely
positioned parallel lines.

Diffraction gratings work both for transmission of light, as in Figure , and for reflection of light, as on butterfly wings and
the Australian opal in Figure . Natural diffraction gratings also occur in the feathers of certain birds such as the
hummingbird. Tiny, finger-like structures in regular patterns act as reflection gratings, producing constructive interference that
gives the feathers colors not solely due to their pigmentation. This is called iridescence.

Figure : (a) Light passing through a diffraction grating is diffracted in a pattern similar to a double slit, with bright regions at
various angles. (b) The pattern obtained for white light incident on a grating. The central maximum is white, and the higher-order
maxima disperse white light into a rainbow of colors.

Figure : (a) This Australian opal and (b) butterfly wings have rows of reflectors that act like reflection gratings, reflecting
different colors at different angles. (credit a: modification of work by "Opals-On-Black"/Flickr; credit b: modification of work by
“whologwhy”/Flickr)

11.8.2

11.8.3

11.8.4a

11.8.3
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Applications of Diffraction Gratings
Where are diffraction gratings used in applications? Diffraction gratings are commonly used for spectroscopic dispersion and
analysis of light. What makes them particularly useful is the fact that they form a sharper pattern than double slits do. That is, their
bright fringes are narrower and brighter while their dark regions are darker. Diffraction gratings are key components of
monochromators used, for example, in optical imaging of particular wavelengths from biological or medical samples. A diffraction
grating can be chosen to specifically analyze a wavelength emitted by molecules in diseased cells in a biopsy sample or to help
excite strategic molecules in the sample with a selected wavelength of light. Another vital use is in optical fiber technologies where
fibers are designed to provide optimum performance at specific wavelengths. A range of diffraction gratings are available for
selecting wavelengths for such use.

Diffraction gratings with 10,000 lines per centimeter are readily available. Suppose you have one, and you send a beam of
white light through it to a screen 2.00 m away.

a. Find the angles for the first-order diffraction of the shortest and longest wavelengths of visible light (380 and 760 nm,
respectively).

b. What is the distance between the ends of the rainbow of visible light produced on the screen for first-order interference?
(Figure ).

c. 
Figure : (a) The diffraction grating considered in this example produces a rainbow of colors on a screen a distance 

 from the grating. The distances along the screen are measured perpendicular to the x-direction. In other words,
the rainbow pattern extends out of the page.

(b) In a bird’s-eye view, the rainbow pattern can be seen on a table where the equipment is placed.

Strategy

Once a value for the diffraction grating’s slit spacing  has been determined, the angles for the sharp lines can be found using
the equation

for .

Since there are 10,000 lines per centimeter, each line is separated by 1/10,000 of a centimeter. Once we know the angles, we an
find the distances along the screen by using simple trigonometry.

Solution

 Example : Calculating Typical Diffraction Grating Effects11.8.1

11.8.5

11.8.5

x = 2.00m

d

d sin θ = mλ

m = 0, ±1, ±2, . . .
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1. The distance between slits is  or . Let us call the two angles  for
violet (380 nm) and  for red (760 nm). Solving the equation  for ,

where m = 1 for the first-order and . Substituting these values gives

Thus the angle  is

Similarly,

Thus the angle  is

Notice that in both equations, we reported the results of these intermediate calculations to four significant figures to use
with the calculation in part (b).

2. The distances on the screen are labeled  and  in Figure . Notice that . We can solve for  and .
That is,

and

The distance between them is therefore

Significance

The large distance between the red and violet ends of the rainbow produced from the white light indicates the potential this
diffraction grating has as a spectroscopic tool. The more it can spread out the wavelengths (greater dispersion), the more detail
can be seen in a spectrum. This depends on the quality of the diffraction grating—it must be very precisely made in addition to
having closely spaced lines.

If the line spacing of a diffraction grating  is not precisely known, we can use a light source with a well-determined
wavelength to measure it. Suppose the first-order constructive fringe of the  emission line of hydrogen ( ) is
measured at 11.36° using a spectrometer with a diffraction grating. What is the line spacing of this grating?

Answer

 or 300 lines per millimeter

Take the same simulation we used for double-slit diffraction and try increasing the number of slits from  to .
The primary peaks become sharper, and the secondary peaks become less and less pronounced. By the time you reach the
maximum number of , the system is behaving much like a diffraction grating.

This page titled 11.8: Diffraction Gratings is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

d = (1 cm)/10, 000 = 1.00 × cm10−4 1.00 × m10−6 θV
θR d sin = mλθV sin θV

sin = ,θV
mλV

d

= 380 nm = 3.80 × mλV 10−7

sin = = 0.380.θV
3.80 × m10−7

1.00 × m10−6

θV

= 0.380 = 22.33°.θV sin−1

sin = = 0.760.θR
7.60 × m10−7

1.00 × m10−6

θR

= 0.760 = 49.46°.θR sin−1

yV yR 11.8.5 tan θ = y/x yV yR

= x tan = (2.00 m)(tan 22.33°) = 0.815 myV θV

= x tan = (2.00 m)(tan 49.46°) = 2.338 m.yR θR

− = 1.523 myR yV

 Exercise 11.8.1

d

Hβ λ = 656.3 nm

3.332 × m10−6

N = 2 N = 3, 4, 5, . . .

N = 20
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11.9: Circular Apertures and Resolution

By the end of this section, you will be able to:

Describe the diffraction limit on resolution
Describe the diffraction limit on beam propagation

Light diffracts as it moves through space, bending around obstacles, interfering constructively and destructively. This can be used
as a spectroscopic tool—a diffraction grating disperses light according to wavelength, for example, and is used to produce spectra
—but diffraction also limits the detail we can obtain in images.

Figure  shows the effect of passing light through a small circular aperture. Instead of a bright spot with sharp edges, we
obtain a spot with a fuzzy edge surrounded by circles of light. This pattern is caused by diffraction, similar to that produced by a
single slit. Light from different parts of the circular aperture interferes constructively and destructively. The effect is most
noticeable when the aperture is small, but the effect is there for large apertures as well.

Figure : (a) Monochromatic light passed through a small circular aperture produces this diffraction pattern. (b) Two point-
light sources that are close to one another produce overlapping images because of diffraction. (c) If the sources are closer together,
they cannot be distinguished or resolved.

How does diffraction affect the detail that can be observed when light passes through an aperture? Figure  shows the
diffraction pattern produced by two point-light sources that are close to one another. The pattern is similar to that for a single point
source, and it is still possible to tell that there are two light sources rather than one. If they are closer together, as in Figure ,
we cannot distinguish them, thus limiting the detail or resolution we can obtain. This limit is an inescapable consequence of the
wave nature of light.

Diffraction limits the resolution in many situations. The acuity of our vision is limited because light passes through the pupil, which
is the circular aperture of the eye. Be aware that the diffraction-like spreading of light is due to the limited diameter of a light beam,
not the interaction with an aperture. Thus, light passing through a lens with a diameter  shows this effect and spreads, blurring the
image, just as light passing through an aperture of diameter  does. Thus, diffraction limits the resolution of any system having a
lens or mirror. Telescopes are also limited by diffraction, because of the finite diameter  of the primary mirror.

Just what is the limit? To answer that question, consider the diffraction pattern for a circular aperture, which has a central maximum
that is wider and brighter than the maxima surrounding it (similar to a slit) (Figure ). It can be shown that, for a circular
aperture of diameter , the first minimum in the diffraction pattern occurs at  (providing the aperture is large
compared with the wavelength of light, which is the case for most optical instruments). The accepted criterion for determining the
diffraction limit to resolution based on this angle is known as the Rayleigh criterion, which was developed by Lord Rayleigh in
the nineteenth century.

The diffraction limit to resolution states that two images are just resolvable when the center of the diffraction pattern of one is
directly over the first minimum of the diffraction pattern of the other (Figure ).

The first minimum is at an angle of , so that two point objects are just resolvable if they are separated by the angle

 Learning Objectives
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11.9.1b

11.9.1c

D
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D

11.9.1a

D θ = 1.22λ/D
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11.9.1b
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where  is the wavelength of light (or other electromagnetic radiation) and  is the diameter of the aperture, lens, mirror, etc., with
which the two objects are observed. In this expression,  has units of radians. This angle is also commonly known as the
diffraction limit.

Figure : (a) Graph of intensity of the diffraction pattern for a circular aperture. Note that, similar to a single slit, the central
maximum is wider and brighter than those to the sides. (b) Two point objects produce overlapping diffraction patterns. Shown here
is the Rayleigh criterion for being just resolvable. The central maximum of one pattern lies on the first minimum of the other.

All attempts to observe the size and shape of objects are limited by the wavelength of the probe. Even the small wavelength of light
prohibits exact precision. When extremely small wavelength probes are used, as with an electron microscope, the system is
disturbed, still limiting our knowledge. Heisenberg’s uncertainty principle asserts that this limit is fundamental and inescapable, as
we shall see in the chapter on quantum mechanics.

The primary mirror of the orbiting Hubble Space Telescope has a diameter of 2.40 m. Being in orbit, this telescope avoids the
degrading effects of atmospheric distortion on its resolution. (a) What is the angle between two just-resolvable point light
sources (perhaps two stars)? Assume an average light wavelength of 550 nm. (b) If these two stars are at a distance of 2 million
light-years, which is the distance of the Andromeda Galaxy, how close together can they be and still be resolved? (A light-year,
or ly, is the distance light travels in 1 year.)

Strategy

The Rayleigh criterion stated in Equation , , gives the smallest possible angle θ between point sources, or
the best obtainable resolution. Once this angle is known, we can calculate the distance between the stars, since we are given
how far away they are.

Solution
1. The Rayleigh criterion for the minimum resolvable angle is

Entering known values gives

θ = 1.22
λ

D
(11.9.1)

λ D

θ

11.9.2

 Example : Calculating Diffraction Limits of the Hubble Space Telescope11.9.1

11.9.1 θ = 1.22λ/D

θ = 1.22 .
λ

D

θ = 1.22 = 2.80 × rad.
550 × m10−9

2.40 m
10−7
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2. The distance s between two objects a distance r away and separated by an angle θ is . Substituting known values
gives

Significance

The angle found in part (a) is extraordinarily small (less than 1/50,000 of a degree), because the primary mirror is so large
compared with the wavelength of light. As noticed, diffraction effects are most noticeable when light interacts with objects
having sizes on the order of the wavelength of light. However, the effect is still there, and there is a diffraction limit to what is
observable. The actual resolution of the Hubble Telescope is not quite as good as that found here. As with all instruments, there
are other effects, such as nonuniformities in mirrors or aberrations in lenses that further limit resolution. However, Figure 

 gives an indication of the extent of the detail observable with the Hubble because of its size and quality, and especially
because it is above Earth’s atmosphere.

Figure : These two photographs of the M82 Galaxy give an idea of the observable detail using (a) a ground-based
telescope and (b) the Hubble Space Telescope. (credit a: modification of work by “Ricnun”/Wikimedia Commons)

The answer in part (b) indicates that two stars separated by about half a light-year can be resolved. The average distance
between stars in a galaxy is on the order of five light-years in the outer parts and about one light-year near the galactic center.
Therefore, the Hubble can resolve most of the individual stars in Andromeda Galaxy, even though it lies at such a huge
distance that its light takes 2 million years to reach us. Figure  shows another mirror used to observe radio waves from
outer space.

Figure : A 305-m-diameter paraboloid at Arecibo in Puerto Rico is lined with reflective material, making it into a radio
telescope. It is the largest curved focusing dish in the world. Although  for Arecibo is much larger than for the Hubble
Telescope, it detects radiation of a much longer wavelength and its diffraction limit is significantly poorer than Hubble’s. The
Arecibo telescope is still very useful, because important information is carried by radio waves that is not carried by visible
light. (credit: Jeff Hitchcock)

What is the angular resolution of the Arecibo telescope shown in Figure  when operated at 21-cm wavelength? How
does it compare to the resolution of the Hubble Telescope?

Answer

s = rθ

s = (2.0 × ly)(2.80 × rad) = 0.56 ly.106 10−7

11.9.3

11.9.3

11.9.4

11.9.4
D
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, 3000 times broader than the Hubble Telescope

Diffraction is not only a problem for optical instruments but also for the electromagnetic radiation itself. Any beam of light having
a finite diameter  and a wavelength λ exhibits diffraction spreading. The beam spreads out with an angle θ given by Equation 

, . Take, for example, a laser beam made of rays as parallel as possible (angles between rays as close to θ = 0°
as possible) instead spreads out at an angle , where  is the diameter of the beam and λ is its wavelength. This
spreading is impossible to observe for a flashlight because its beam is not very parallel to start with. However, for long-distance
transmission of laser beams or microwave signals, diffraction spreading can be significant (Figure ). To avoid this, we can
increase D. This is done for laser light sent to the moon to measure its distance from Earth. The laser beam is expanded through a
telescope to make  much larger and θ smaller.

Figure : The beam produced by this microwave transmission antenna spreads out at a minimum angle  due to
diffraction. It is impossible to produce a near-parallel beam because the beam has a limited diameter.

In most biology laboratories, resolution is an issue when the use of the microscope is introduced. The smaller the distance x by
which two objects can be separated and still be seen as distinct, the greater the resolution. The resolving power of a lens is defined
as that distance x. An expression for resolving power is obtained from the Rayleigh criterion. Figure  shows two point
objects separated by a distance x. According to the Rayleigh criterion, resolution is possible when the minimum angular separation
is

where  is the distance between the specimen and the objective lens, and we have used the small angle approximation (i.e., we
have assumed that x is much smaller than d), so that . Therefore, the resolving power is

Another way to look at this is by the concept of numerical aperture (NA), which is a measure of the maximum acceptance angle at
which a lens will take light and still contain it within the lens. Figure  shows a lens and an object at point P. The NA here is
a measure of the ability of the lens to gather light and resolve fine detail. The angle subtended by the lens at its focus is defined to
be . From the figure and again using the small angle approximation, we can write

The NA for a lens is , where n is the index of refraction of the medium between the objective lens and the object at
point P. From this definition for NA, we can see that

In a microscope, NA is important because it relates to the resolving power of a lens. A lens with a large NA is able to resolve finer
details. Lenses with larger NA are also able to collect more light and so give a brighter image. Another way to describe this

8.4 × rad10−4

D

11.9.1 θ = 1.22λ/D

θ = 1.22λ/D D

11.9.5

D

11.9.5 θ = 1.22λ/D
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θ = 1.22 = ,
λ

D

x

d

D

tan θ ≈ sin θ

x = 1.22 .
λd

D
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θ = 2α

sinα = = .
D/2

d

D

2d
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λ
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situation is that the larger the NA, the larger the cone of light that can be brought into the lens, so more of the diffraction modes are
collected. Thus the microscope has more information to form a clear image, and its resolving power is higher.

Figure : (a) Two points separated by a distance x and positioned a distance  away from the objective. (b) Terms and
symbols used in discussion of resolving power for a lens and an object at point P (credit a: modification of work by
“Infopro”/Wikimedia Commons).

One of the consequences of diffraction is that the focal point of a beam has a finite width and intensity distribution. Imagine
focusing when only considering geometric optics, as in Figure . The focal point is regarded as an infinitely small point with
a huge intensity and the capacity to incinerate most samples, irrespective of the NA of the objective lens—an unphysical
oversimplification. For wave optics, due to diffraction, we take into account the phenomenon in which the focal point spreads to
become a focal spot (Figure ) with the size of the spot decreasing with increasing NA. Consequently, the intensity in the
focal spot increases with increasing NA. The higher the NA, the greater the chances of photodegrading the specimen. However, the
spot never becomes a true point.

Figure :(a) In geometric optics, the focus is modelled as a point, but it is not physically possible to produce such a point
because it implies infinite intensity. (b) In wave optics, the focus is an extended region.

In a different type of microscope, molecules within a specimen are made to emit light through a mechanism called fluorescence. By
controlling the molecules emitting light, it has become possible to construct images with resolution much finer than the Rayleigh
criterion, thus circumventing the diffraction limit. The development of super-resolved fluorescence microscopy led to the 2014
Nobel Prize in Chemistry.

In this Optical Resolution Model, two diffraction patterns for light through two circular apertures are shown side by side in this
simulation by Fu-Kwun Hwang. Watch the patterns merge as you decrease the aperture diameters.

This page titled 11.9: Circular Apertures and Resolution is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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11.10: X-Ray Diffraction

By the end of this section, you will be able to:

Describe interference and diffraction effects exhibited by X-rays in interaction with atomic-scale structures

Since X-ray photons are very energetic, they have relatively short wavelengths, on the order of  m to  m. Thus, typical
X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows. However, since
atoms are on the order of 0.1 nm in size, X-rays can be used to detect the location, shape, and size of atoms and molecules. The
process is called X-ray diffraction, and it involves the interference of X-rays to produce patterns that can be analyzed for
information about the structures that scattered the X-rays.

Perhaps the most famous example of X-ray diffraction is the discovery of the double-helical structure of DNA in 1953 by an
international team of scientists working at England’s Cavendish Laboratory—American James Watson, Englishman Francis Crick,
and New Zealand-born Maurice Wilkins. Using X-ray diffraction data produced by Rosalind Franklin, they were the first to model
the double-helix structure of DNA that is so crucial to life. For this work, Watson, Crick, and Wilkins were awarded the 1962
Nobel Prize in Physiology or Medicine. (There is some debate and controversy over the issue that Rosalind Franklin was not
included in the prize, although she died in 1958, before the prize was awarded.)

Figure  shows a diffraction pattern produced by the scattering of X-rays from a crystal. This process is known as X-ray
crystallography because of the information it can yield about crystal structure, and it was the type of data Rosalind Franklin
supplied to Watson and Crick for DNA. Not only do X-rays confirm the size and shape of atoms, they give information about the
atomic arrangements in materials. For example, more recent research in high-temperature superconductors involves complex
materials whose lattice arrangements are crucial to obtaining a superconducting material. These can be studied using X-ray
crystallography.

Figure : X-ray diffraction from the crystal of a protein (hen egg lysozyme) produced this interference pattern. Analysis of
the pattern yields information about the structure of the protein. (credit: “Del45”/Wikimedia Commons)

Historically, the scattering of X-rays from crystals was used to prove that X-rays are energetic electromagnetic (EM) waves. This
was suspected from the time of the discovery of X-rays in 1895, but it was not until 1912 that the German Max von Laue (1879–
1960) convinced two of his colleagues to scatter X-rays from crystals. If a diffraction pattern is obtained, he reasoned, then the X-
rays must be waves, and their wavelength could be determined. (The spacing of atoms in various crystals was reasonably well
known at the time, based on good values for Avogadro’s number.) The experiments were convincing, and the 1914 Nobel Prize in
Physics was given to von Laue for his suggestion leading to the proof that X-rays are EM waves. In 1915, the unique father-and-
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son team of Sir William Henry Bragg and his son Sir William Lawrence Bragg were awarded a joint Nobel Prize for inventing the
X-ray spectrometer and the then-new science of X-ray analysis.

In ways reminiscent of thin-film interference, we consider two plane waves at X-ray wavelengths, each one reflecting off a
different plane of atoms within a crystal’s lattice, as shown in Figure . From the geometry, the difference in path lengths is 

. Constructive interference results when this distance is an integer multiple of the wavelength. This condition is captured
by the Bragg equation,

for .

where  is a positive integer and  is the spacing between the planes. Following the Law of Reflection, both the incident and
reflected waves are described by the same angle, , but unlike the general practice in geometric optics,  is measured with respect
to the surface itself, rather than the normal.

Figure : X-ray diffraction with a crystal. Two incident waves reflect off two planes of a crystal. The difference in path
lengths is indicated by the dashed line.

Common table salt is composed mainly of  crystals. In a  crystal, there is a family of planes 0.252 nm apart. If the
first-order maximum is observed at an incidence angle of 18.1°, what is the wavelength of the X-ray scattering from this
crystal?

Strategy:

Use the Bragg equation, Equation , to solve for .

Solution
For first-order, , and the plane spacing  is known. Solving the Bragg equation for wavelength yields

Significance

The determined wavelength fits within the X-ray region of the electromagnetic spectrum. Once again, the wave nature of light
makes itself prominent when the wavelength ( ) is comparable to the size of the physical structures (

) it interacts with.

For the experiment described in Example , what are the two other angles where interference maxima may be observed?
What limits the number of maxima?

11.10.2

2d sin θ

mλ = 2d sin θ, (11.10.1)

m = 1, 2, 3, . . .

m d

θ θ

11.10.2

 Example : X-Ray Diffraction with Salt Crystals11.10.1

NaCl NaCl

11.10.1 θ

m = 1 d

λ =
2d sin θ

m

=
2(0.252 × m) sin ( )10−9 18.1o

1

= 1.57 × m, or 0.157 nm10−10

λ = 0.157 nm

d = 0.252 nm
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Answer

 and ; Between , orders 1, 2, and 3, are all that exist.

Although Figure  depicts a crystal as a two-dimensional array of scattering centers for simplicity, real crystals are structures
in three dimensions. Scattering can occur simultaneously from different families of planes at different orientations and spacing
patterns known as called Bragg planes, as shown in Figure . The resulting interference pattern can be quite complex.

Figure : Because of the regularity that makes a crystal structure, one crystal can have many families of planes within its
geometry, each one giving rise to X-ray diffraction.

This page titled 11.10: X-Ray Diffraction is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.
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11.11: Holography

By the end of this section, you will be able to:

Describe how a three-dimensional image is recorded as a hologram
Describe how a three-dimensional image is formed from a hologram

A hologram, such as the one in Figure , is a true three-dimensional image recorded on film by lasers. Holograms are used
for amusement; decoration on novelty items and magazine covers; security on credit cards and driver’s licenses (a laser and other
equipment are needed to reproduce them); and for serious three-dimensional information storage. You can see that a hologram is a
true three-dimensional image because objects change relative position in the image when viewed from different angles.

Figure : Credit cards commonly have holograms for logos, making them difficult to reproduce. (credit: Dominic Alves)

The name hologram means “entire picture” (from the Greek holo, as in holistic) because the image is three-dimensional.
Holography is the process of producing holograms and, although they are recorded on photographic film, the process is quite
different from normal photography. Holography uses light interference or wave optics, whereas normal photography uses geometric
optics. Figure  shows one method of producing a hologram. Coherent light from a laser is split by a mirror, with part of the
light illuminating the object. The remainder, called the reference beam, shines directly on a piece of film. Light scattered from the
object interferes with the reference beam, producing constructive and destructive interference. As a result, the exposed film looks
foggy, but close examination reveals a complicated interference pattern stored on it. Where the interference was constructive, the
film (a negative actually) is darkened. Holography is sometimes called lens-less photography, because it uses the wave
characteristics of light, as contrasted to normal photography, which uses geometric optics and requires lenses.

Figure : Production of a hologram. Single-wavelength coherent light from a laser produces a well-defined interference
pattern on a piece of film. The laser beam is split by a partially silvered mirror, with part of the light illuminating the object and the
remainder shining directly on the film. (credit: modification of work by Mariana Ruiz Villarreal)

Light falling on a hologram can form a three-dimensional image of the original object. The process is complicated in detail, but the
basics can be understood, as shown in Figure , in which a laser of the same type that exposed the film is now used to
illuminate it. The myriad tiny exposed regions of the film are dark and block the light, whereas less exposed regions allow light to
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pass. The film thus acts much like a collection of diffraction gratings with various spacing patterns. Light passing through the
hologram is diffracted in various directions, producing both real and virtual images of the object used to expose the film. The
interference pattern is the same as that produced by the object. Moving your eye to various places in the interference pattern gives
you different perspectives, just as looking directly at the object would. The image thus looks like the object and is three
dimensional like the object.

Figure : A transmission hologram is one that produces real and virtual images when a laser of the same type as that which
exposed the hologram is passed through it. Diffraction from various parts of the film produces the same interference pattern that
was produced by the object that was used to expose it. (credit: modification of work by Mariana Ruiz Villarreal)

The hologram illustrated in Figure  is a transmission hologram. Holograms that are viewed with reflected light, such as the
white light holograms on credit cards, are reflection holograms and are more common. White light holograms often appear a little
blurry with rainbow edges, because the diffraction patterns of various colors of light are at slightly different locations due to their
different wavelengths. Further uses of holography include all types of three-dimensional information storage, such as of statues in
museums, engineering studies of structures, and images of human organs.

Invented in the late 1940s by Dennis Gabor (1900–1970), who won the 1971 Nobel Prize in Physics for his work, holography
became far more practical with the development of the laser. Since lasers produce coherent single-wavelength light, their
interference patterns are more pronounced. The precision is so great that it is even possible to record numerous holograms on a
single piece of film by just changing the angle of the film for each successive image. This is how the holograms that move as you
walk by them are produced—a kind of lens-less movie.

In a similar way, in the medical field, holograms have allowed complete three-dimensional holographic displays of objects from a
stack of images. Storing these images for future use is relatively easy. With the use of an endoscope, high-resolution, three-
dimensional holographic images of internal organs and tissues can be made.

This page titled 11.11: Holography is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.
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11.12: The Michelson Interferometer

By the end of this section, you will be able to:

Explain changes in fringes observed with a Michelson interferometer caused by mirror movements
Explain changes in fringes observed with a Michelson interferometer caused by changes in medium

The Michelson interferometer (invented by the American physicist Albert A. Michelson, 1852–1931) is a precision instrument
that produces interference fringes by splitting a light beam into two parts and then recombining them after they have traveled
different optical paths. Figure  depicts the interferometer and the path of a light beam from a single point on the extended
source S, which is a ground-glass plate that diffuses the light from a monochromatic lamp of wavelength . The beam strikes the
half-silvered mirror M, where half of it is reflected to the side and half passes through the mirror. The reflected light travels to the
movable plane mirror , where it is reflected back through M to the observer. The transmitted half of the original beam is
reflected back by the stationary mirror  and then toward the observer by M.

Figure : (a) The Michelson interferometer. The extended light source is a ground-glass plate that diffuses the light from a
laser. (b) A planar view of the interferometer.

Because both beams originate from the same point on the source, they are coherent and therefore interfere. Notice from the figure
that one beam passes through M three times and the other only once. To ensure that both beams traverse the same thickness of
glass, a compensator plate C of transparent glass is placed in the arm containing . This plate is a duplicate of M (without the
silvering) and is usually cut from the same piece of glass used to produce M. With the compensator in place, any phase difference
between the two beams is due solely to the difference in the distances they travel.

The path difference of the two beams when they recombine is , where  is the distance between M and , and  is
the distance between M and . Suppose this path difference is an integer number of wavelengths . Then, constructive
interference occurs and a bright image of the point on the source is seen at the observer. Now the light from any other point on the
source whose two beams have this same path difference also undergoes constructive interference and produces a bright image. The
collection of these point images is a bright fringe corresponding to a path difference of  (Figure ). When  is moved
a distance , this path difference changes by , and each fringe moves to the position previously occupied by an
adjacent fringe. Consequently, by counting the number of fringes m passing a given point as  is moved, an observer can
measure minute displacements that are accurate to a fraction of a wavelength, as shown by the relation
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Figure : Fringes produced with a Michelson interferometer. (credit: “SILLAGESvideos”/YouTube)

A red laser light of wavelength 630 nm is used in a Michelson interferometer. While keeping the mirror  fixed, mirror 
is moved. The fringes are found to move past a fixed cross-hair in the viewer. Find the distance the mirror  is moved for a
single fringe to move past the reference line.

Strategy

Refer to Figure  for the geometry. We use the result of the Michelson interferometer interference condition to find the
distance moved, .

Solution
For a 630-nm red laser light, and for each fringe crossing ( ), the distance traveled by  if you keep  fixed is

Significance

An important application of this measurement is the definition of the standard meter. As mentioned in Units and Measurement,
the length of the standard meter was once defined as the mirror displacement in a Michelson interferometer corresponding to
1,650,763.73 wavelengths of the particular fringe of krypton-86 in a gas discharge tube.

Measuring the Refractive Index of a Gas

In one arm of a Michelson interferometer, a glass chamber is placed with attachments for evacuating the inside and putting
gases in it. The space inside the container is 2 cm wide. Initially, the container is empty. As gas is slowly let into the chamber,
you observe that dark fringes move past a reference line in the field of observation. By the time the chamber is filled to the
desired pressure, you have counted 122 fringes move past the reference line. The wavelength of the light used is 632.8 nm.
What is the refractive index of this gas?

11.12.2

 Example : Precise Distance Measurements by Michelson Interferometer11.12.1

M1 M2

M2
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Strategy

The m = 122 fringes observed compose the difference between the number of wavelengths that fit within the empty chamber
(vacuum) and the number of wavelengths that fit within the same chamber when it is gas-filled. The wavelength in the filled
chamber is shorter by a factor of n, the index of refraction.

Solution
The ray travels a distance t = 2 cm to the right through the glass chamber and another distance t to the left upon reflection. The
total travel is L = 2t. When empty, the number of wavelengths that fit in this chamber is

where  nm is the wavelength in vacuum of the light used. In any other medium, the wavelength is  and
the number of wavelengths that fit in the gas-filled chamber is

The number of fringes observed in the transition is

Solving for (n−1) gives

and 

Significance

The indices of refraction for gases are so close to that of vacuum, that we normally consider them equal to 1. The difference
between 1 and 1.0019 is so small that measuring it requires a correspondingly sensitive technique such as interferometry. We
cannot, for example, hope to measure this value using techniques based simply on Snell’s law.

Although m, the number of fringes observed, is an integer, which is often regarded as having zero uncertainty, in practical
terms, it is all too easy to lose track when counting fringes. In Example , if you estimate that you might have missed as
many as five fringes when you reported  fringes, (a) is the value for the index of refraction worked out in Example 

 too large or too small? (b) By how much?

Answer

a. too small; b. up to 

Step 1. Examine the situation to determine that interference is involved. Identify whether slits, thin films, or
interferometers are considered in the problem.
Step 2. If slits are involved, note that diffraction gratings and double slits produce very similar interference patterns, but
that gratings have narrower (sharper) maxima. Single-slit patterns are characterized by a large central maximum and
smaller maxima to the sides.

= =N0
L

λ0

2t

λ0

= 632.8λ0 λ = /nλ0

N = = .
L

λ

2t

/nλ0

m = N − ,N0

= − ,
2t

/nλ0

2t

λ0

= (n−1).
2t

λ0

n−1 = m( ) = 122( ) = 0.0019
λ0

2t

632.8 × m10−9

2(2 × m)10−2

n = 1.0019
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Step 3. If thin-film interference or an interferometer is involved, take note of the path length difference between the
two rays that interfere. Be certain to use the wavelength in the medium involved, since it differs from the wavelength in
vacuum. Note also that there is an additional λ/2λ/2 phase shift when light reflects from a medium with a greater index of
refraction.
Step 4. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
Draw a diagram of the situation. Labeling the diagram is useful.
Step 5. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
Step 6. Solve the appropriate equation for the quantity to be determined (the unknown) and enter the knowns. Slits,
gratings, and the Rayleigh limit involve equations.
Step 7. For thin-film interference, you have constructive interference for a total shift that is an integral number of
wavelengths. You have destructive interference for a total shift of a half-integral number of wavelengths. Always
keep in mind that crest to crest is constructive whereas crest to trough is destructive.
Step 8. Check to see if the answer is reasonable: Does it make sense? Angles in interference patterns cannot be greater
than 90°, for example.

This page titled 11.12: The Michelson Interferometer is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
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11.A: Interference (Answers)

Check Your Understanding

3.1.  and , respectively

3.2. a. 853 nm, 1097 nm;

b. 731 nm, 975 nm

3.3. a. too small;

b. up to 

Conceptual Questions

1. No. Two independent light sources do not have coherent phase.

3. Because both the sodium lamps are not coherent pairs of light sources. Two lasers operating independently are also not
coherent so no interference pattern results.

5. Monochromatic sources produce fringes at angles according to . With white light, each constituent
wavelength will produce fringes at its own set of angles, blending into the fringes of adjacent wavelengths. This results in
rainbow patterns.

7. Differing path lengths result in different phases at destination resulting in constructive or destructive interference
accordingly. Reflection can cause a  phase change, which also affects how waves interfere. Refraction into another
medium changes the wavelength inside that medium such that a wave can emerge from the medium with a different phase
compared to another wave that travelled the same distance in a different medium.

9. Phase changes occur upon reflection at the top of glass cover and the top of glass slide only.

11. The surface of the ham being moist means there is a thin layer of fluid, resulting in thin-film interference. Because the
exact thickness of the film varies across the piece of ham, which is illuminated by white light, different wavelengths produce
bright fringes at different locations, resulting in rainbow colors.

13. Other wavelengths will not generally satisfy  for the same value of t so reflections will result in completely
destructive interference. For an incidence angle , the path length inside the coating will be increased by a factor  so
the new condition for destructive interference becomes .

15. In one arm, place a transparent chamber to be filled with the gas. See Example 3.6.

Problems
17. 

19. 

21. 

23. 62.5; since m must be an integer, the highest order is then .

25. 

27. a. ;

b. ;

c. 5.76, the highest order is .

29. a. 2.37 cm;

b. 1.78 cm

31. 560 nm

33. 1.2 mm

3.63° 7.27°

8 ×10−5

dsinθ = mλ

180°

t =
λ/n

4

θ 1/cosθ

=t

cosθ

λ/n

4

0.997°

0.290μm

5.77 × m = 577nm10−7

m = 62

1.44μm

20.3°

4.98°

m = 5
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35. a. ;

b. 

37. 1:9

39. 532 nm (green)

41. 

43. 620 nm (orange)

45. 380 nm

47. a. Assuming n for the plane is greater than 1.20, then there are two phase changes: 0.833 cm.

b. It is too thick, and the plane would be too heavy.

c. It is unreasonable to think the layer of material could be any thickness when used on a real aircraft.

49. 

51. 

Additional Problems

53.  and 

55. a. 4.26 cm;

b. 2.84 cm

57. 6

59. 0.20 m

61. 0.0839 mm

63. a. 9.8, 10.4, 11.7, and 15.7 cm;

b. 3.9 cm

65. 

67. 700 nm

69. 189 nm

71. a. green (504 nm);

b. magenta (white minus green)

73. 1.29

75.  and 

77. 125 nm

79. 413 nm and 689 nm

81. 

83. 47

85. 

87. 

Challenge Problems

89. Bright and dark fringes switch places.

91. The path length must be less than one-fourth of the shortest visible wavelength in oil. The thickness of the oil is half the
path length, so it must be less than one-eighth of the shortest visible wavelength in oil. If we take 380 nm to be the shortest

0.40°, 0.53°

4.6 × m10−3

8.39 × m = 83.9nm10−8

4.55 × m10−4

D = 2.53 × m10−6

0.29° 0.86°

0.0575°

52.7μm 53.0μm

73.9μm

8.5μm

0.013°C
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visible wavelength in air, 33.9 nm.

93. 

95. for one phase change: 950 nm (infrared); for three phase changes: 317 nm (ultraviolet); Therefore, the oil film will appear
black, since the reflected light is not in the visible part of the spectrum.

This page titled 11.A: Interference (Answers) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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1.A: Diffraction (Answers)

Check Your Understanding

4.1. ; no

4.2. 

4.3. From , the interference maximum occurs at  for . From Equation 4.1, this is also the angle for
the second diffraction minimum. (Note: Both equations use the index m but they refer to separate phenomena.)

4.4.  or 300 lines per millimeter

4.5. , 3000 times broader than the Hubble Telescope

4.6.  and ; Between , orders 1, 2, and 3, are all that exist.

Conceptual Questions
1. The diffraction pattern becomes wider.

3. Walkie-talkies use radio waves whose wavelengths are comparable to the size of the hill and are thus able to diffract
around the hill. Visible wavelengths of the flashlight travel as rays at this size scale.

5. The diffraction pattern becomes two-dimensional, with main fringes, which are now spots, running in perpendicular
directions and fainter spots in intermediate directions.

7. The parameter  is the arc angle shown in the phasor diagram in Figure 4.7. The phase difference between the first
and last Huygens wavelet across the single slit is  and is related to the curvature of the arc that forms the resultant phasor
that determines the light intensity.

9. blue; The shorter wavelength of blue light results in a smaller angle for diffraction limit.

11. No, these distances are three orders of magnitude smaller than the wavelength of visible light, so visible light makes a
poor probe for atoms.

13. UV wavelengths are much larger than lattice spacing in crystals such that there is no diffraction. The Bragg equation
implies a value for sin θ greater than unity, which has no solution.

15. Image will appear at slightly different location and/or size when viewed using  shorter wavelength but at exactly half
the wavelength, a higher-order interference reconstructs the original image, different color.

Problems
17. a. ;

b. no

19. a. ;

b. 

21. 750 nm

23. 2.4 mm, 4.7 mm

25. a. ;

b. ;

c. 

27. 1.92 m

29. 

31. 

33. 

17.8°, 37.7°, 66.4°

74.3°, 0.0083I0

dsinθ = mλ 2.87° m = 20

3.332 × m10−6

8.4 × rad10−4

38.4° 68.8° θ = 0° → 90°

β = ϕ/2

2β

10

33.4°

1.35 × m10−6

69.9°

1.00λ

50.0λ

1000λ

45.1°

I/ = 2.2 ×I0 10−5

0.63 , 0.11 , 0.0067 , 0.0062 , 0.00088I0 I0 I0 I0 I0
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35. 0.200

37. 3

39. 9

41. 

43. 

45. 707 nm

47. a. ;

b. ; c. Decreasing the number of lines per centimeter by a factor of x means that the angle
for the x-order maximum is the same as the original angle for the first-order maximum.

49. a. using ;

b. using 

51. a. 26,300 lines/cm;

b. yes;

c. no

53. 

55. 107 m

57. a. ;

b. 23.2 m;

c. 590 km

59. a. ;

b. 5.81 km;

c. 0.179 mm;

d. can resolve details 0.2 mm apart at arm’s length

61. 

63. 6.0 cm

65. 7.71 km

67. 1.0 m

69. 1.2 cm or closer

71. no

73. 0.120 nm

75. 

77. 

Additional Problems
79. a. 2.2 mm;

b. , second-order yellow and third-order violet coincide

81. 2.2 km

83. 1.3 cm

85. a. 0.28 mm;

5.97°

8.99 ×103

11.8°, 12.5°, 14.1°, 19.2°

24.2°, 25.7°, 29.1°, 41.0°

λ = 700nm, θ = 5.0°

λ = 460nm, θ = 3.3°

1.13 × m10−2

7.72 × rad10−4

2.24 × rad10−4

2.9μm

4.51°

13.2°

0.172°
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b. 0.28 m;

c. 280 m;

d. 113 km

87. 33 m

89. a. vertically;

b. ;

c. ;

d. 89 cm;

e. 71 cm

91. 0.98 cm

93. 

95. 340 nm

97. a. 0.082 rad and 0.087 rad;

b. 480 nm and 660 nm

99. two orders

101. yes and N/A

103. 600 nm

105. a. ;

b. 

107. 0.63 m

109. 1

111.  for  only, no higher orders

113. 

115. a. 42.3 nm;

b. This wavelength is not in the visible spectrum.

c. The number of slits in this diffraction grating is too large. Etching in integrated circuits can be done to a resolution
of 50 nm, so slit separations of 400 nm are at the limit of what we can do today. This line spacing is too small to
produce diffraction of light.

117. a. 549 km;

b. This is an unreasonably large telescope.

c. Unreasonable to assume diffraction limit for optical telescopes unless in space due to atmospheric effects.

Challenge Problems

119. a. ;

b. 

121. 12,800

123. 

This page titled 1.A: Diffraction (Answers) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

±20°, ±44°

0, ±31°, ±60°

I/ = 0.041I0

3.4 ×10−5°

51°

0.17mW/cm2 m = 1

28.7°

I = 0.00500 , 0.00335I0 I0

I = 0.00500 , 0.00335I0 I0

1.58 × m10−6
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11.E: Interference (Exercises)

Conceptual Questions

3.1 Young's Double-Slit Interference

1. Young’s double-slit experiment breaks a single light beam into two sources. Would the same pattern be obtained for two
independent sources of light, such as the headlights of a distant car? Explain.

2. Is it possible to create a experimental setup in which there is only destructive interference? Explain.

3. Why won’t two small sodium lamps, held close together, produce an interference pattern on a distant screen? What if the
sodium lamps were replaced by two laser pointers held close together?

3.2 Mathematics of Interference

4. Suppose you use the same double slit to perform Young’s double-slit experiment in air and then repeat the experiment in
water. Do the angles to the same parts of the interference pattern get larger or smaller? Does the color of the light change?
Explain.

5. Why is monochromatic light used in the double slit experiment? What would happen if white light were used?

3.4 Interference in Thin Films

6. What effect does increasing the wedge angle have on the spacing of interference fringes? If the wedge angle is too large,
fringes are not observed. Why?

7. How is the difference in paths taken by two originally in-phase light waves related to whether they interfere constructively
or destructively? How can this be affected by reflection? By refraction?

8. Is there a phase change in the light reflected from either surface of a contact lens floating on a person’s tear layer? The
index of refraction of the lens is about 1.5, and its top surface is dry.

9. In placing a sample on a microscope slide, a glass cover is placed over a water drop on the glass slide. Light incident from
above can reflect from the top and bottom of the glass cover and from the glass slide below the water drop. At which surfaces
will there be a phase change in the reflected light?

10. Answer the above question if the fluid between the two pieces of crown glass is carbon disulfide.

11. While contemplating the food value of a slice of ham, you notice a rainbow of color reflected from its moist surface.
Explain its origin.

12. An inventor notices that a soap bubble is dark at its thinnest and realizes that destructive interference is taking place for
all wavelengths. How could she use this knowledge to make a nonreflective coating for lenses that is effective at all
wavelengths? That is, what limits would there be on the index of refraction and thickness of the coating? How might this be
impractical?

13. A nonreflective coating like the one described in Example 3.3 works ideally for a single wavelength and for
perpendicular incidence. What happens for other wavelengths and other incident directions? Be specific.

14. Why is it much more difficult to see interference fringes for light reflected from a thick piece of glass than from a thin
film? Would it be easier if monochromatic light were used?

3.5 The Michelson Interferometer

15. Describe how a Michelson interferometer can be used to measure the index of refraction of a gas (including air).

Problems

3.2 Mathematics of Interference

16. At what angle is the first-order maximum for 450-nm wavelength blue light falling on double slits separated by 0.0500
mm?
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17. Calculate the angle for the third-order maximum of 580-nm wavelength yellow light falling on double slits separated by
0.100 mm.

18. What is the separation between two slits for which 610-nm orange light has its first maximum at an angle of ?

19. Find the distance between two slits that produces the first minimum for 410-nm violet light at an angle of .

20. Calculate the wavelength of light that has its third minimum at an angle of  when falling on double slits separated
by . Explicitly show how you follow the steps from the Problem-Solving Strategy: Wave Optics, located at the end
of the chapter.

21. What is the wavelength of light falling on double slits separated by  if the third-order maximum is at an angle of 
?

22. At what angle is the fourth-order maximum for the situation in the preceding problem?

23. What is the highest-order maximum for 400-nm light falling on double slits separated by ?

24. Find the largest wavelength of light falling on double slits separated by  for which there is a first-order
maximum. Is this in the visible part of the spectrum?

25. What is the smallest separation between two slits that will produce a second-order maximum for 720-nm red light?

26. (a) What is the smallest separation between two slits that will produce a second-order maximum for any visible light?

(b) For all visible light?

27. (a) If the first-order maximum for monochromatic light falling on a double slit is at an angle of , at what angle is
the second-order maximum?

(b) What is the angle of the first minimum?

(c) What is the highest-order maximum possible here?

28. Shown below is a double slit located a distance x from a screen, with the distance from the center of the screen given by
y. When the distance d between the slits is relatively large, numerous bright spots appear, called fringes. Show that, for small
angles (where , with  in radians), the distance between fringes is given by 

Picture shows a double slit located a distance x from a screen, with the distance from the center of the screen
given by y. Distance between the slits is d.

29. Using the result of the preceding problem,

(a) calculate the distance between fringes for 633-nm light falling on double slits separated by 0.0800 mm, located
3.00 m from a screen.

(b) What would be the distance between fringes if the entire apparatus were submersed in water, whose index of
refraction is 1.33?

30. Using the result of the problem two problems prior, find the wavelength of light that produces fringes 7.50 mm apart on a
screen 2.00 m from double slits separated by 0.120 mm.

30.0°

45.0°

30.0°

3.00μm

2.00μm

60.0°

25.0μm

1.20μm

10.0°

sinθ ≈ θ θ Δy = xλ/d
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31. In a double-slit experiment, the fifth maximum is 2.8 cm from the central maximum on a screen that is 1.5 m away from
the slits. If the slits are 0.15 mm apart, what is the wavelength of the light being used?

32. The source in Young’s experiment emits at two wavelengths. On the viewing screen, the fourth maximum for one
wavelength is located at the same spot as the fifth maximum for the other wavelength. What is the ratio of the two
wavelengths?

33. If 500-nm and 650-nm light illuminates two slits that are separated by 0.50 mm, how far apart are the second-order
maxima for these two wavelengths on a screen 2.0 m away?

34. Red light of wavelength of 700 nm falls on a double slit separated by 400 nm.

(a) At what angle is the first-order maximum in the diffraction pattern?

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

3.3 Multiple-Slit Interference

35. Ten narrow slits are equally spaced 0.25 mm apart and illuminated with yellow light of wavelength 580 nm. (a) What are
the angular positions of the third and fourth principal maxima? (b) What is the separation of these maxima on a screen 2.0 m
from the slits?

36. The width of bright fringes can be calculated as the separation between the two adjacent dark fringes on either side. Find
the angular widths of the third- and fourth-order bright fringes from the preceding problem.

37. For a three-slit interference pattern, find the ratio of the peak intensities of a secondary maximum to a principal
maximum.

38. What is the angular width of the central fringe of the interference pattern of

(a) 20 slits separated by ?

(b) 50 slits with the same separation? Assume that .

3.4 Interference in Thin Films

39. A soap bubble is 100 nm thick and illuminated by white light incident perpendicular to its surface. What wavelength and
color of visible light is most constructively reflected, assuming the same index of refraction as water?

40. An oil slick on water is 120 nm thick and illuminated by white light incident perpendicular to its surface. What color
does the oil appear (what is the most constructively reflected wavelength), given its index of refraction is 1.40?

41. Calculate the minimum thickness of an oil slick on water that appears blue when illuminated by white light perpendicular
to its surface. Take the blue wavelength to be 470 nm and the index of refraction of oil to be 1.40.

42. Find the minimum thickness of a soap bubble that appears red when illuminated by white light perpendicular to its
surface. Take the wavelength to be 680 nm, and assume the same index of refraction as water.

43. A film of soapy water ( ) on top of a plastic cutting board has a thickness of 233 nm. What color is most strongly
reflected if it is illuminated perpendicular to its surface?

44. What are the three smallest non-zero thicknesses of soapy water ( ) on Plexiglas if it appears green
(constructively reflecting 520-nm light) when illuminated perpendicularly by white light?

45. Suppose you have a lens system that is to be used primarily for 700-nm red light. What is the second thinnest coating of
fluorite (magnesium fluoride) that would be nonreflective for this wavelength?

46. (a) As a soap bubble thins it becomes dark, because the path length difference becomes small compared with the
wavelength of light and there is a phase shift at the top surface. If it becomes dark when the path length difference is less
than one-fourth the wavelength, what is the thickest the bubble can be and appear dark at all visible wavelengths? Assume
the same index of refraction as water.

(b) Discuss the fragility of the film considering the thickness found.

d = 2.0 × mm10−3

λ = 600nm

n = 1.33

n = 1.33
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47. To save money on making military aircraft invisible to radar, an inventor decides to coat them with a nonreflective
material having an index of refraction of 1.20, which is between that of air and the surface of the plane. This, he reasons,
should be much cheaper than designing Stealth bombers.

(a) What thickness should the coating be to inhibit the reflection of 4.00-cm wavelength radar?

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

3.5 The Michelson Interferometer

48. A Michelson interferometer has two equal arms. A mercury light of wavelength 546 nm is used for the interferometer and
stable fringes are found. One of the arms is moved by . How many fringes will cross the observing field?

49. What is the distance moved by the traveling mirror of a Michelson interferometer that corresponds to 1500 fringes
passing by a point of the observation screen? Assume that the interferometer is illuminated with a 606 nm spectral line of
krypton-86.

50. When the traveling mirror of a Michelson interferometer is moved , 90 fringes pass by a point on the
observation screen. What is the wavelength of the light used?

51. In a Michelson interferometer, light of wavelength 632.8 nm from a He-Ne laser is used. When one of the mirrors is
moved by a distance D, 8 fringes move past the field of view. What is the value of the distance D?

52. A chamber 5.0 cm long with flat, parallel windows at the ends is placed in one arm of a Michelson interferometer (see
below). The light used has a wavelength of 500 nm in a vacuum. While all the air is being pumped out of the chamber, 29
fringes pass by a point on the observation screen. What is the refractive index of the air?

Picture shows a schematics of a set-up utilized to measure the refractive index of a gas. The glass chamber with
a gas is placed in the Michelson interferometer between the half-silvered mirror M and mirror M1. The space
inside the container is 5 cm wide.

Additional Problems
53. For 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third
maxima in the double slit interference pattern?

54. If the light source in the preceding problem is changed, the angular position of the third maximum is found to be .
What is the wavelength of light being used now?

55. Red light ( ) illuminates double slits separated by a distance . The screen and the slits are 3.00
m apart.

(a) Find the distance on the screen between the central maximum and the third maximum.

(b) What is the distance between the second and the fourth maxima?

56. Two sources as in phase and emit waves with . Determine whether constructive or destructive interference
occurs at points whose distances from the two sources are

(a) 0.84 and 0.42 m,

1.5μm

2.40 × m10−5

0.57°

λ = 710.nm d = 0.150mm

λ = 0.42m
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(b) 0.21 and 0.42 m,

(c) 1.26 and 0.42 m,

(d) 1.87 and 1.45 m,

(e) 0.63 and 0.84 m and

(f) 1.47 and 1.26 m.

57. Two slits  apart are illuminated by light of wavelength 600 nm. What is the highest order fringe in the
interference pattern?

58. Suppose that the highest order fringe that can be observed is the eighth in a double-slit experiment where 550-nm
wavelength light is used. What is the minimum separation of the slits?

59. The interference pattern of a He-Ne laser light ( ) passing through two slits 0.031 mm apart is projected on
a screen 10.0 m away. Determine the distance between the adjacent bright fringes.

60. Young’s double-slit experiment is performed immersed in water ( ). The light source is a He-Ne laser, 
 in vacuum.

(a) What is the wavelength of this light in water?

(b) What is the angle for the third order maximum for two slits separated by 0.100 mm.

61. A double-slit experiment is to be set up so that the bright fringes appear 1.27 cm apart on a screen 2.13 m away from the
two slits. The light source was wavelength 500 nm. What should be the separation between the two slits?

62. An effect analogous to two-slit interference can occur with sound waves, instead of light. In an open field, two speakers
placed 1.30 m apart are powered by a single-function generator producing sine waves at 1200-Hz frequency. A student walks
along a line 12.5 m away and parallel to the line between the speakers. She hears an alternating pattern of loud and quiet, due
to constructive and destructive interference. What is (a) the wavelength of this sound and (b) the distance between the central
maximum and the first maximum (loud) position along this line?

63. A hydrogen gas discharge lamp emits visible light at four wavelengths, 410, 434, 486, and 656 nm. (a) If light from
this lamp falls on a N slits separated by 0.025 mm, how far from the central maximum are the third maxima when viewed on
a screen 2.0 m from the slits? (b) By what distance are the second and third maxima separated for ?

64. Monochromatic light of frequency  falls on 10 slits separated by 0.020 mm. What is the separation
between the first and third maxima on a screen that is 2.0 m from the slits?

65. Eight slits equally separated by 0.149 mm is uniformly illuminated by a monochromatic light at . What is the
width of the central principal maximum on a screen 2.35 m away?

66. Eight slits equally separated by 0.149 mm is uniformly illuminated by a monochromatic light at . What is the
intensity of a secondary maxima compared to that of the principal maxima?

67. A transparent film of thickness 250 nm and index of refraction of 1.40 is surrounded by air. What wavelength in a beam
of white light at near-normal incidence to the film undergoes destructive interference when reflected?

68. An intensity minimum is found for 450 nm light transmitted through a transparent film ( ) in air.

(a) What is minimum thickness of the film?

(b) If this wavelength is the longest for which the intensity minimum occurs, what are the next three lower values of 
for which this happens?

69. A thin film with  is surrounded by air. What is the minimum thickness of this film such that the reflection of
normally incident light with  is minimized?

70. Repeat your calculation of the previous problem with the thin film placed on a flat glass ( ) surface.

71. After a minor oil spill, a think film of oil ( ) of thickness 450 nm floats on the water surface in a bay. (a) What
predominant color is seen by a bird flying overhead? (b) What predominant color is seen by a seal swimming underwater?

4.0 × m10−6

λ = 632.9nm

n = 1.333

λ = 632.9nm

λ =

l = 486nm

5.5 × Hz1014

λ = 523nm

λ = 523nm

n = 1.20

λ

n = 1.32

λ = 500nm

n = 1.50

n = 1.40
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72. A microscope slide 10 cm long is separated from a glass plate at one end by a sheet of paper. As shown below, the other
end of the slide is in contact with the plate. he slide is illuminated from above by light from a sodium lamp ( ),
and 14 fringes per centimeter are seen along the slide. What is the thickness of the piece of paper? Picture shows a
microscope slide that touches the glass plate at one end and is separated from it at another end by a sheet of paper.

73. Suppose that the setup of the preceding problem is immersed in an unknown liquid. If 18 fringes per centimeter are now
seen along the slide, what is the index of refraction of the liquid?

74. A thin wedge filled with air is produced when two flat glass plates are placed on top of one another and a slip of paper is
inserted between them at one edge. Interference fringes are observed when monochromatic light falling vertically on the
plates are seen in reflection. Is the first fringe near the edge where the plates are in contact a bright fringe or a dark fringe?
Explain.

75. Two identical pieces of rectangular plate glass are used to measure the thickness of a hair. The glass plates are in direct
contact at one edge and a single hair is placed between them hear the opposite edge. When illuminated with a sodium lamp (

), the hair is seen between the 180th and 181st dark fringes. What are the lower and upper limits on the hair’s
diameter?

76. Two microscope slides made of glass are illuminated by monochromatic ( ) light incident perpendicularly.
The top slide touches the bottom slide at one end and rests on a thin copper wire at the other end, forming a wedge of air. The
diameter of the copper wire is 29.45μm. How many bright fringes are seen across these slides?

77. A good quality camera “lens” is actually a system of lenses, rather than a single lens, but a side effect is that a reflection
from the surface of one lens can bounce around many times within the system, creating artifacts in the photograph. To
counteract this problem, one of the lenses in such a system is coated with a thin layer of material ( ) on one side. The
index of refraction of the lens glass is 1.68. What is the smallest thickness of the coating that reduces the reflection at 640 nm
by destructive interference? (In other words, the coating’s effect is to be optimized for .)

78. Constructive interference is observed from directly above an oil slick for wavelengths (in air) 440 nm and 616 nm. The
index of refraction of this oil is . What is the film’s minimum possible thickness?

79. A soap bubble is blown outdoors. What colors (indicate by wavelengths) of the reflected sunlight are seen enhanced? The
soap bubble has index of refraction 1.36 and thickness 380 nm.

80. A Michelson interferometer with a He-Ne laser light source ( ) projects its interference pattern on a screen.
If the movable mirror is caused to move by , how many fringes will be observed shifting through a reference point
on a screen?

81. An experimenter detects 251 fringes when the movable mirror in a Michelson interferometer is displaced. The light
source used is a sodium lamp, wavelength 589 nm. By what distance did the movable mirror move?

82. A Michelson interferometer is used to measure the wavelength of light put through it. When the movable mirror is moved
by exactly 0.100 mm, the number of fringes observed moving through is 316. What is the wavelength of the light?

83. A 5.08-cm-long rectangular glass chamber is inserted into one arm of a Michelson interferometer using a 633-nm light
source. This chamber is initially filled with air ( ) at standard atmospheric pressure but the air is gradually
pumped out using a vacuum pump until a near perfect vacuum is achieved. How many fringes are observed moving by
during the transition?

84. Into one arm of a Michelson interferometer, a plastic sheet of thickness  is inserted, which causes a shift in the
interference pattern by 86 fringes. The light source has wavelength of 610 nm in air. What is the index of refraction of this
plastic?

λ = 589nm

λ = 589nm

λ = 589nm

n = 1.28

λ = 640nm

n = 1.54

λ = 632.8nm

8.54μm

n = 1.000293

75μm

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76680?pdf


11.E.7 https://phys.libretexts.org/@go/page/76680

85. The thickness of an aluminum foil is measured using a Michelson interferometer that has its movable mirror mounted on
a micrometer. There is a difference of 27 fringes in the observed interference pattern when the micrometer clamps down on
the foil compared to when the micrometer is empty. Calculate the thickness of the foil?

86. The movable mirror of a Michelson interferometer is attached to one end of a thin metal rod of length 23.3 mm. The
other end of the rod is anchored so it does not move. As the temperature of the rod changes from  to , a change of
14 fringes is observed. The light source is a He Ne laser, . What is the change in length of the metal bar, and
what is its thermal expansion coefficient?

87. In a thermally stabilized lab, a Michelson interferometer is used to monitor the temperature to ensure it stays constant.
The movable mirror is mounted on the end of a 1.00-m-long aluminum rod, held fixed at the other end. The light source is a
He Ne laser, . The resolution of this apparatus corresponds to the temperature difference when a change of just
one fringe is observed. What is this temperature difference?

88. A 65-fringe shift results in a Michelson interferometer when a  film made of an unknown material is placed in
one arm. The light source has wavelength 632.9 nm. Identify the material using the indices of refraction found in Table 1.1.

Challenge Problems

89. Determine what happens to the double-slit interference pattern if one of the slits is covered with a thin, transparent film
whose thickness is λ/[2(n−1)]λ/[2(n−1)], where λλ is the wavelength of the incident light and n is the index of refraction of
the film.

90. Fifty-one narrow slits are equally spaced and separated by 0.10 mm. The slits are illuminated by blue light of wavelength
400 nm. What is angular position of the twenty-fifth secondary maximum? What is its peak intensity in comparison with that
of the primary maximum?

91. A film of oil on water will appear dark when it is very thin, because the path length difference becomes small compared
with the wavelength of light and there is a phase shift at the top surface. If it becomes dark when the path length difference is
less than one-fourth the wavelength, what is the thickest the oil can be and appear dark at all visible wavelengths? Oil has an
index of refraction of 1.40.

92. Figure 3.14 shows two glass slides illuminated by monochromatic light incident perpendicularly. The top slide touches
the bottom slide at one end and rests on a 0.100-mm-diameter hair at the other end, forming a wedge of air. (a) How far apart
are the dark bands, if the slides are 7.50 cm long and 589-nm light is used? (b) Is there any difference if the slides are made
from crown or flint glass? Explain.

93. Figure 3.14 shows two 7.50-cm-long glass slides illuminated by pure 589-nm wavelength light incident perpendicularly.
The top slide touches the bottom slide at one end and rests on some debris at the other end, forming a wedge of air. How
thick is the debris, if the dark bands are 1.00 mm apart?

94. A soap bubble is 100 nm thick and illuminated by white light incident at a  angle to its surface. What wavelength and
color of visible light is most constructively reflected, assuming the same index of refraction as water?

95. An oil slick on water is 120 nm thick and illuminated by white light incident at a  angle to its surface. What color
does the oil appear (what is the most constructively reflected wavelength), given its index of refraction is 1.40?
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1.E: Diffraction (Exercises)

Conceptual Questions

4.1 Single-Slit Diffraction

1. As the width of the slit producing a single-slit diffraction pattern is reduced, how will the diffraction pattern produced
change?

2. Compare interference and diffraction.

3. If you and a friend are on opposite sides of a hill, you can communicate with walkie-talkies but not with flashlights.
Explain.

4. What happens to the diffraction pattern of a single slit when the entire optical apparatus is immersed in water?

5. In our study of diffraction by a single slit, we assume that the length of the slit is much larger than the width. What
happens to the diffraction pattern if these two dimensions were comparable?

6. A rectangular slit is twice as wide as it is high. Is the central diffraction peak wider in the vertical direction or in the
horizontal direction?

4.2 Intensity in Single-Slit Diffraction

7. In Equation 4.4, the parameter ββ looks like an angle but is not an angle that you can measure with a protractor in the
physical world. Explain what ββ represents.

4.3 Double-Slit Diffraction

8. Shown below is the central part of the interference pattern for a pure wavelength of red light projected onto a double slit.
The pattern is actually a combination of single- and double-slit interference. Note that the bright spots are evenly spaced. Is
this a double- or single-slit characteristic? Note that some of the bright spots are dim on either side of the center. Is this a
single- or double-slit characteristic? Which is smaller, the slit width or the separation between slits? Explain your responses.
Figure is an image showing red interference pattern on a black background. The central part has brighter lines. The lines are
cut off at the top and bottom, seemingly enclosed between two sinusoidal waves of opposite phase.

4.5 Circular Apertures and Resolution

9. Is higher resolution obtained in a microscope with red or blue light? Explain your answer.

10. The resolving power of refracting telescope increases with the size of its objective lens. What other advantage is gained
with a larger lens?

11. The distance between atoms in a molecule is about . Can visible light be used to “see” molecules?

12. A beam of light always spreads out. Why can a beam not be created with parallel rays to prevent spreading? Why can
lenses, mirrors, or apertures not be used to correct the spreading?

4.6 X-Ray Diffraction

13. Crystal lattices can be examined with X-rays but not UV. Why?

4.7 Holography

14. How can you tell that a hologram is a true three-dimensional image and that those in three-dimensional movies are not?

15. If a hologram is recorded using monochromatic light at one wavelength but its image is viewed at another wavelength,
say  shorter, what will you see? What if it is viewed using light of exactly half the original wavelength?
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16. What image will one see if a hologram is recorded using monochromatic light but its image is viewed in white light?
Explain.

Problems

4.1 Single-Slit Diffraction

17. (a) At what angle is the first minimum for 550-nm light falling on a single slit of width ?

(b) Will there be a second minimum?

18. (a) Calculate the angle at which a -wide slit produces its first minimum for 410-nm violet light.

(b) Where is the first minimum for 700-nm red light?

19. (a) How wide is a single slit that produces its first minimum for 633-nm light at an angle of ?

(b) At what angle will the second minimum be?

20. (a) What is the width of a single slit that produces its first minimum at  for 600-nm light?

(b) Find the wavelength of light that has its first minimum at .

21. Find the wavelength of light that has its third minimum at an angle of  when it falls on a single slit of width 
.

22. (a) Sodium vapor light averaging 589 nm in wavelength falls on a single slit of width . At what angle does it
produces its second minimum?

(b) What is the highest-order minimum produced?

23. Consider a single-slit diffraction pattern for , projected on a screen that is 1.00 m from a slit of width 0.25
mm. How far from the center of the pattern are the centers of the first and second dark fringes?

24. (a) Find the angle between the first minima for the two sodium vapor lines, which have wavelengths of 589.1 and 589.6
nm, when they fall upon a single slit of width .

(b) What is the distance between these minima if the diffraction pattern falls on a screen 1.00 m from the slit?

(c) Discuss the ease or difficulty of measuring such a distance.

25. (a) What is the minimum width of a single slit (in multiples of ) that will produce a first minimum for a wavelength ?

(b) What is its minimum width if it produces 50 minima?

(c) 1000 minima?

26. (a) If a single slit produces a first minimum at , at what angle is the second-order minimum?

(b) What is the angle of the third-order minimum?

(c) Is there a fourth-order minimum?

(d) Use your answers to illustrate how the angular width of the central maximum is about twice the angular width of
the next maximum (which is the angle between the first and second minima).

27. If the separation between the first and the second minima of a single-slit diffraction pattern is 6.0 mm, what is the
distance between the screen and the slit? The light wavelength is 500 nm and the slit width is 0.16 mm.

28. A water break at the entrance to a harbor consists of a rock barrier with a 50.0-m-wide opening. Ocean waves of 20.0-m
wavelength approach the opening straight on. At what angles to the incident direction are the boats inside the harbor most
protected against wave action?

29. An aircraft maintenance technician walks past a tall hangar door that acts like a single slit for sound entering the hangar.
Outside the door, on a line perpendicular to the opening in the door, a jet engine makes a 600-Hz sound. At what angle with
the door will the technician observe the first minimum in sound intensity if the vertical opening is 0.800 m wide and the
speed of sound is 340 m/s?
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4.2 Intensity in Single-Slit Diffraction

30. A single slit of width  is illuminated by a sodium yellow light of wavelength 589 nm. Find the intensity at a 
angle to the axis in terms of the intensity of the central maximum.

31. A single slit of width 0.1 mm is illuminated by a mercury light of wavelength 576 nm. Find the intensity at a 10°10°
angle to the axis in terms of the intensity of the central maximum.

32. The width of the central peak in a single-slit diffraction pattern is 5.0 mm. The wavelength of the light is 600 nm, and the
screen is 2.0 m from the slit. (a) What is the width of the slit? (b) Determine the ratio of the intensity at 4.5 mm from the
center of the pattern to the intensity at the center.

33. Consider the single-slit diffraction pattern for , and . Find the intensity in terms of 
at ,  and .

4.3 Double-Slit Diffraction

34. Two slits of width , each in an opaque material, are separated by a center-to-center distance of . A
monochromatic light of wavelength 450 nm is incident on the double-slit. One finds a combined interference and diffraction
pattern on the screen.

(a) How many peaks of the interference will be observed in the central maximum of the diffraction pattern?

(b) How many peaks of the interference will be observed if the slit width is doubled while keeping the distance
between the slits same?

(c) How many peaks of interference will be observed if the slits are separated by twice the distance, that is, ,
while keeping the widths of the slits same?

(d) What will happen in (a) if instead of 450-nm light another light of wavelength 680 nm is used?

(e) What is the value of the ratio of the intensity of the central peak to the intensity of the next bright peak in (a)?

(f) Does this ratio depend on the wavelength of the light?

(g) Does this ratio depend on the width or separation of the slits?

35. A double slit produces a diffraction pattern that is a combination of single- and double-slit interference. Find the ratio of
the width of the slits to the separation between them, if the first minimum of the single-slit pattern falls on the fifth maximum
of the double-slit pattern. (This will greatly reduce the intensity of the fifth maximum.)

36. For a double-slit configuration where the slit separation is four times the slit width, how many interference fringes lie in
the central peak of the diffraction pattern?

37. Light of wavelength 500 nm falls normally on 50 slits that are  wide and spaced  apart.
How many interference fringes lie in the central peak of the diffraction pattern?

38. A monochromatic light of wavelength 589 nm incident on a double slit with slit width  and unknown separation
results in a diffraction pattern containing nine interference peaks inside the central maximum. Find the separation of the slits.

39. When a monochromatic light of wavelength 430 nm incident on a double slit of slit separation , there are 11
interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of the
same wavelength and slit widths, but a new slit separation of ?

40. Determine the intensities of two interference peaks other than the central peak in the central maximum of the diffraction,
if possible, when a light of wavelength 628 nm is incident on a double slit of width 500 nm and separation 1500 nm. Use the
intensity of the central spot to be .

4.4 Diffraction Gratings

41. A diffraction grating has 2000 lines per centimeter. At what angle will the first-order maximum be for 520-nm-
wavelength green light?

42. Find the angle for the third-order maximum for 580-nm-wavelength yellow light falling on a difraction grating having
1500 lines per centimeter.
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43. How many lines per centimeter are there on a diffraction grating that gives a first-order maximum for 470-nm blue light
at an angle of  ?

44. What is the distance between lines on a diffraction grating that produces a second-order maximum for 760-nm red light at
an angle of ?

45. Calculate the wavelength of light that has its second-order maximum at  when falling on a diffraction grating that
has 5000 lines per centimeter.

46. An electric current through hydrogen gas produces several distinct wavelengths of visible light. What are the
wavelengths of the hydrogen spectrum, if they form first-order maxima at angles  and  when
projected on a diffraction grating having 10,000 lines per centimeter?

47. (a) What do the four angles in the preceding problem become if a 5000-line per centimeter diffraction grating is used?

(b) Using this grating, what would the angles be for the second-order maxima?

(c) Discuss the relationship between integral reductions in lines per centimeter and the new angles of various order
maxima.

48. What is the spacing between structures in a feather that acts as a reflection grating, giving that they produce a first-order
maximum for 525-nm light at a  angle?

49. An opal such as that shown in Figure 4.15 acts like a reflection grating with rows separated by about  If the opal is
illuminated normally,

(a) at what angle will red light be seen and

(b) at what angle will blue light be seen?

50. At what angle does a diffraction grating produce a second-order maximum for light having a first-order maximum at 
?

51. (a) Find the maximum number of lines per centimeter a diffraction grating can have and produce a maximum for the
smallest wavelength of visible light.

(b) Would such a grating be useful for ultraviolet spectra?

(c) For infrared spectra?

52. (a) Show that a 30,000 line per centimeter grating will not produce a maximum for visible light.

(b) What is the longest wavelength for which it does produce a first-order maximum?

(c) What is the greatest number of line per centimeter a diffraction grating can have and produce a complete second-
order spectrum for visible light?

53. The analysis shown below also applies to diffraction gratings with lines separated by a distance d. What is the distance
between fringes produced by a diffraction grating having 125 lines per centimeter for 600-nm light, if the screen is 1.50 m
away? (Hint: The distance between adjacent fringes is , assuming the slit separation d is comparable to .)
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4.5 Circular Apertures and Resolution

54. The 305-m-diameter Arecibo radio telescope pictured in Figure 4.20 detects radio waves with a 4.00-cm average
wavelength.

(a) What is the angle between two just-resolvable point sources for this telescope?

(b) How close together could these point sources be at the 2 million light-year distance of the Andromeda Galaxy?

55. Assuming the angular resolution found for the Hubble Telescope in Example 4.6, what is the smallest detail that could be
observed on the moon?

56. Diffraction spreading for a flashlight is insignificant compared with other limitations in its optics, such as spherical
aberrations in its mirror. To show this, calculate the minimum angular spreading of a flashlight beam that is originally 5.00
cm in diameter with an average wavelength of 600 nm.

57. (a) What is the minimum angular spread of a 633-nm wavelength He-Ne laser beam that is originally 1.00 mm in
diameter? (b) If this laser is aimed at a mountain cliff 15.0 km away, how big will the illuminated spot be? (c) How big a spot
would be illuminated on the moon, neglecting atmospheric effects? (This might be done to hit a corner reflector to measure
the round-trip time and, hence, distance.)

58. A telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent
through the telescope in opposite the normal direction and can then be projected onto a satellite or the moon. (a) If this is
done with the Mount Wilson telescope, producing a 2.54-m-diameter beam of 633-nm light, what is the minimum angular
spread of the beam? (b) Neglecting atmospheric effects, what is the size of the spot this beam would make on the moon,
assuming a lunar distance of . ?

59. The limit to the eye’s acuity is actually related to diffraction by the pupil.

(a) What is the angle between two just-resolvable points of light for a 3.00-mm-diameter pupil, assuming an average
wavelength of 550 nm?

(b) Take your result to be the practical limit for the eye. What is the greatest possible distance a car can be from you if
you can resolve its two headlights, given they are 1.30 m apart?

(c) What is the distance between two just-resolvable points held at an arm’s length (0.800 m) from your eye?

(d) How does your answer to (c) compare to details you normally observe in everyday circumstances?

60. What is the minimum diameter mirror on a telescope that would allow you to see details as small as 5.00 km on the moon
some 384,000 km away? Assume an average wavelength of 550 nm for the light received.

61. Find the radius of a star’s image on the retina of an eye if its pupil is open to 0.65 cm and the distance from the pupil to
the retina is 2.8 cm. Assume .

62. (a) The dwarf planet Pluto and its moon, Charon, are separated by 19,600 km. Neglecting atmospheric effects, should the
5.08-m-diameter Palomar Mountain telescope be able to resolve these bodies when they are  from Earth?
Assume an average wavelength of 550 nm.

(b) In actuality, it is just barely possible to discern that Pluto and Charon are separate bodies using a ground-based
telescope. What are the reasons for this?

63. A spy satellite orbits Earth at a height of 180 km. What is the minimum diameter of the objective lens in a telescope that
must be used to resolve columns of troops marching 2.0 m apart? Assume λ=550nm.λ=550nm.

64. What is the minimum angular separation of two stars that are just-resolvable by the 8.1-m Gemini South telescope, if
atmospheric effects do not limit resolution? Use 550 nm for the wavelength of the light from the stars.

65. The headlights of a car are 1.3 m apart. What is the maximum distance at which the eye can resolve these two headlights?
Take the pupil diameter to be 0.40 cm.

66. When dots are placed on a page from a laser printer, they must be close enough so that you do not see the individual dots
of ink. To do this, the separation of the dots must be less than Raleigh’s criterion. Take the pupil of the eye to be 3.0 mm and
the distance from the paper to the eye of 35 cm; find the minimum separation of two dots such that they cannot be resolved.
How many dots per inch (dpi) does this correspond to?

3.84 × m108

λ = 550nm

4.50 × km109
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67. Suppose you are looking down at a highway from a jetliner flying at an altitude of 6.0 km. How far apart must two cars
be if you are able to distinguish them? Assume that  and that the diameter of your pupils is 4.0 mm.

68. Can an astronaut orbiting Earth in a satellite at a distance of 180 km from the surface distinguish two skyscrapers that are
20 m apart? Assume that the pupils of the astronaut’s eyes have a diameter of 5.0 mm and that most of the light is centered
around 500 nm.

69. The characters of a stadium scoreboard are formed with closely spaced lightbulbs that radiate primarily yellow light. (Use
.) How closely must the bulbs be spaced so that an observer 80 m away sees a display of continuous lines rather

than the individual bulbs? Assume that the pupil of the observer’s eye has a diameter of 5.0 mm.

70. If a microscope can accept light from objects at angles as large as , what is the smallest structure that can be
resolved when illuminated with light of wavelength 500 nm and

(a) the specimen is in air?

(b) When the specimen is immersed in oil, with index of refraction of 1.52?

71. A camera uses a lens with aperture 2.0 cm. What is the angular resolution of a photograph taken at 700 nm wavelength?
Can it resolve the millimeter markings of a ruler placed 35 m away?

4.6 X-Ray Diffraction

72. X-rays of wavelength 0.103 nm reflects off a crystal and a second-order maximum is recorded at a Bragg angle of .
What is the spacing between the scattering planes in this crystal?

73. A first-order Bragg reflection maximum is observed when a monochromatic X-ray falls on a crystal at a  angle to a
reflecting plane. What is the wavelength of this X-ray?

74. An X-ray scattering experiment is performed on a crystal whose atoms form planes separated by 0.440 nm. Using an X-
ray source of wavelength 0.548 nm, what is the angle (with respect to the planes in question) at which the experimenter
needs to illuminate the crystal in order to observe a first-order maximum?

75. The structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these
planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?

76. On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of  relative to its surface, using
an X-ray source of unknown wavelength. Additionally, when illuminated with a different, this time of known wavelength
0.137 nm, a second-order maximum is detected at . Determine (a) the spacing between the reflecting planes, and (b) the
unknown wavelength.

77. Calcite crystals contain scattering planes separated by 0.30 nm. What is the angular separation between first and second-
order diffraction maxima when X-rays of 0.130 nm wavelength are used?

78. The first-order Bragg angle for a certain crystal is . What is the second-order angle?

Additional Problems

79. White light falls on two narrow slits separated by 0.40 mm. The interference pattern is observed on a screen 3.0 m away.
(a) What is the separation between the first maxima for red light ( ) and violet light ( )? (b) At what
point nearest the central maximum will a maximum for yellow light ( ) coincide with a maximum for violet
light? Identify the order for each maximum.

80. Microwaves of wavelength 10.0 mm fall normally on a metal plate that contains a slit 25 mm wide.

(a) Where are the first minima of the diffraction pattern?

(b) Would there be minima if the wavelength were 30.0 mm?

81. Quasars, or quasi-stellar radio sources, are astronomical objects discovered in 1960. They are distant but strong
emitters of radio waves with angular size so small, they were originally unresolved, the same as stars. The quasar 3C405 is
actually two discrete radio sources that subtend an angle of 82 arcsec. If this object is studied using radio emissions at a
frequency of 410 MHz, what is the minimum diameter of a radio telescope that can resolve the two sources?

λ = 550nm

λ = 600nm

α = 70°

25.5°

32.3°

27.1°

37.3°

12.1°

λ = 700nm λ = 400nm

λ = 600nm
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82. Two slits each of width 1800 nm and separated by the center-to-center distance of 1200 nm are illuminated by plane
waves from a krypton ion laser-emitting at wavelength 461.9 nm. Find the number of interference peaks in the central
diffraction peak.

83. A microwave of an unknown wavelength is incident on a single slit of width 6 cm. The angular width of the central peak
is found to be . Find the wavelength.

84. Red light (wavelength 632.8 nm in air) from a Helium-Neon laser is incident on a single slit of width 0.05 mm. The
entire apparatus is immersed in water of refractive index 1.333. Determine the angular width of the central peak.

85. A light ray of wavelength 461.9 nm emerges from a 2-mm circular aperture of a krypton ion laser. Due to diffraction, the
beam expands as it moves out. How large is the central bright spot at

(a) 1 m,

(b) 1 km,

(c) 1000 km, and

(d) at the surface of the moon at a distance of 400,000 km from Earth.

86. How far apart must two objects be on the moon to be distinguishable by eye if only the diffraction effects of the eye’s
pupil limit the resolution? Assume 550 nm for the wavelength of light, the pupil diameter 5.0 mm, and 400,000 km for the
distance to the moon.

87. How far apart must two objects be on the moon to be resolvable by the 8.1-m-diameter Gemini North telescope at Mauna
Kea, Hawaii, if only the diffraction effects of the telescope aperture limit the resolution? Assume 550 nm for the wavelength
of light and 400,000 km for the distance to the moon.

88. A spy satellite is reputed to be able to resolve objects 10. cm apart while operating 197 km above the surface of Earth.
What is the diameter of the aperture of the telescope if the resolution is only limited by the diffraction effects? Use 550 nm
for light.

89. Monochromatic light of wavelength 530 nm passes through a horizontal single slit of width  in an opaque plate. A
screen of dimensions  is 1.2 m away from the slit.

(a) Which way is the diffraction pattern spread out on the screen?

(b) What are the angles of the minima with respect to the center?

(c) What are the angles of the maxima?

(d) How wide is the central bright fringe on the screen?

(e) How wide is the next bright fringe on the screen?

90. A monochromatic light of unknown wavelength is incident on a slit of width . A diffraction pattern is seen at a
screen 2.5 m away where the central maximum is spread over a distance of 10.0 cm. Find the wavelength.

91. A source of light having two wavelengths 550 nm and 600 nm of equal intensity is incident on a slit of width .
Find the separation of the  bright spots of the two wavelengths on a screen 30.0 cm away.

92. A single slit of width 2100 nm is illuminated normally by a wave of wavelength 632.8 nm. Find the phase difference
between waves from the top and one third from the bottom of the slit to a point on a screen at a horizontal distance of 2.0 m
and vertical distance of 10.0 cm from the center.

93. A single slit of width  is illuminated by a sodium yellow light of wavelength 589 nm. Find the intensity at a 
angle to the axis in terms of the intensity of the central maximum.

94. A single slit of width 0.10 mm is illuminated by a mercury lamp of wavelength 576 nm. Find the intensity at a  angle
to the axis in terms of the intensity of the central maximum.

95. A diffraction grating produces a second maximum that is 89.7 cm from the central maximum on a screen 2.0 m away. If
the grating has 600 lines per centimeter, what is the wavelength of the light that produces the diffraction pattern?

96. A grating with 4000 lines per centimeter is used to diffract light that contains all wavelengths between 400 and 650 nm.
How wide is the first-order spectrum on a screen 3.0 m from the grating?

25°

1.5μm

2.0m×2.0m

20μm

1.8μm

m = 1

3.0μm 15°

10°
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97. A diffraction grating with 2000 lines per centimeter is used to measure the wavelengths emitted by a hydrogen gas
discharge tube. (a) At what angles will you find the maxima of the two first-order blue lines of wavelengths 410 and 434 nm?
(b) The maxima of two other first-order lines are found at rad and rad. What are the wavelengths of
these lines?

98. For white light ( ) falling normally on a diffraction grating, show that the second and third-order
spectra overlap no matter what the grating constant d is.

99. How many complete orders of the visible spectrum ( ) can be produced with a diffraction grating
that contains 5000 lines per centimeter?

100. Two lamps producing light of wavelength 589 nm are fixed 1.0 m apart on a wooden plank. What is the maximum
distance an observer can be and still resolve the lamps as two separate sources of light, if the resolution is affected solely by
the diffraction of light entering the eye? Assume light enters the eye through a pupil of diameter 4.5 mm.

101. On a bright clear day, you are at the top of a mountain and looking at a city 12 km away. There are two tall towers 20.0
m apart in the city. Can your eye resolve the two towers if the diameter of the pupil is 4.0 mm? If not, what should be the
minimum magnification power of the telescope needed to resolve the two towers? In your calculations use 550 nm for the
wavelength of the light.

102. Radio telescopes are telescopes used for the detection of radio emission from space. Because radio waves have much
longer wavelengths than visible light, the diameter of a radio telescope must be very large to provide good resolution. For
example, the radio telescope in Penticton, BC in Canada, has a diameter of 26 m and can be operated at frequencies as high
as 6.6 GHz.

(a) What is the wavelength corresponding to this frequency?

(b) What is the angular separation of two radio sources that can be resolved by this telescope?

(c) Compare the telescope’s resolution with the angular size of the moon.

Figure:4.30 (credit: Jason Nishiyama)

103. Calculate the wavelength of light that produces its first minimum at an angle of  when falling on a single slit of
width .

104. (a) Find the angle of the third diffraction minimum for 633-nm light falling on a slit of width .

(b) What slit width would place this minimum at ?

105. As an example of diffraction by apertures of everyday dimensions, consider a doorway of width 1.0 m.

= 0.097θ1 = 0.132θ2

400nm < λ < 700nm

400nm < λ < 700nm

36.9°

1.00μm

20.0μm

85.0°
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(a) What is the angular position of the first minimum in the diffraction pattern of 600-nm light?

(b) Repeat this calculation for a musical note of frequency 440 Hz (A above middle C). Take the speed of sound to be
343 m/s.

106. What are the angular positions of the first and second minima in a diffraction pattern produced by a slit of width 0.20
mm that is illuminated by 400 nm light? What is the angular width of the central peak?

107. How far would you place a screen from the slit of the previous problem so that the second minimum is a distance of 2.5
mm from the center of the diffraction pattern?

108. How narrow is a slit that produces a diffraction pattern on a screen 1.8 m away whose central peak is 1.0 m wide?
Assume .

109. Suppose that the central peak of a single-slit diffraction pattern is so wide that the first minima can be assumed to occur
at angular positions of ±90°±90°. For this case, what is the ratio of the slit width to the wavelength of the light?

110. The central diffraction peak of the double-slit interference pattern contains exactly nine fringes. What is the ratio of the
slit separation to the slit width?

111. Determine the intensities of three interference peaks other than the central peak in the central maximum of the
diffraction, if possible, when a light of wavelength 500 nm is incident normally on a double slit of width 1000 nm and
separation 1500 nm. Use the intensity of the central spot to be .

112. The yellow light from a sodium vapor lamp seems to be of pure wavelength, but it produces two first-order maxima at 
 and  when projected on a 10,000 line per centimeter diffraction grating. What are the two wavelengths to an

accuracy of 0.1 nm?

113. Structures on a bird feather act like a reflection grating having 8000 lines per centimeter. What is the angle of the first-
order maximum for 600-nm light?

114. If a diffraction grating produces a first-order maximum for the shortest wavelength of visible light at , at what
angle will the first-order maximum be for the largest wavelength of visible light?

115. (a) What visible wavelength has its fourth-order maximum at an angle of  when projected on a 25,000-line per
centimeter diffraction grating?

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

116. Consider a spectrometer based on a diffraction grating. Construct a problem in which you calculate the distance between
two wavelengths of electromagnetic radiation in your spectrometer. Among the things to be considered are the wavelengths
you wish to be able to distinguish, the number of lines per meter on the diffraction grating, and the distance from the grating
to the screen or detector. Discuss the practicality of the device in terms of being able to discern between wavelengths of
interest.

117. An amateur astronomer wants to build a telescope with a diffraction limit that will allow him to see if there are people
on the moons of Jupiter.

(a) What diameter mirror is needed to be able to see 1.00-m detail on a Jovian moon at a distance of 
from Earth? The wavelength of light averages 600 nm.

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

Challenge Problems
118. Blue light of wavelength 450 nm falls on a slit of width 0.25 mm. A converging lens of focal length 20 cm is placed
behind the slit and focuses the diffraction pattern on a screen.

(a) How far is the screen from the lens?

(b) What is the distance between the first and the third minima of the diffraction pattern?

λ = 589nm

1mW/cm2

36.093° 36.129°

30.0°

25.0°

7.50 × km108
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119. (a) Assume that the maxima are halfway between the minima of a single-slit diffraction pattern. The use the diameter
and circumference of the phasor diagram, as described in Intensity in Single-Slit Diffraction, to determine the intensities of
the third and fourth maxima in terms of the intensity of the central maximum.

(b) Do the same calculation, using Equation 4.4.

120. (a) By differentiating Equation 4.4, show that the higher-order maxima of the single-slit diffraction pattern occur at
values of  that satisfy .

(b) Plot  and  versus  and find the intersections of these two curves. What information do they give
you about the locations of the maxima?

(c) Convince yourself that these points do not appear exactly at , where  but are quite

close to these values.

121. What is the maximum number of lines per centimeter a diffraction grating can have and produce a complete first-order
spectrum for visible light?

122. Show that a diffraction grating cannot produce a second-order maximum for a given wavelength of light unless the first-
order maximum is at an angle less than .

123. A He-Ne laser beam is reflected from the surface of a CD onto a wall. The brightest spot is the reflected beam at an
angle equal to the angle of incidence. However, fringes are also observed. If the wall is 1.50 m from the CD, and the first
fringe is 0.600 m from the central maximum, what is the spacing of grooves on the CD?

124. Objects viewed through a microscope are placed very close to the focal point of the objective lens. Show that the
minimum separation x of two objects resolvable through the microscope is given by 

where  is the focal length and D is the diameter of the objective lens as shown below.

This page titled 1.E: Diffraction (Exercises) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

4.E: Diffraction (Exercises) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
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11.S: Interference (Summary)

Key Terms
coherent waves waves are in phase or have a definite phase relationship

fringes bright and dark patterns of interference

incoherent waves have random phase relationships

interferometer instrument that uses interference of waves to make measurements

monochromatic light composed of one wavelength only

Newton’s rings
circular interference pattern created by interference between the
light reflected off two surfaces as a result of a slight gap between

them

order
integer m used in the equations for constructive and destructive

interference for a double slit

principal maximum brightest interference fringes seen with multiple slits

secondary maximum
bright interference fringes of intensity lower than the principal

maxima

thin-film interference
interference between light reflected from different surfaces of a

thin film

Key Equations
Constructive interference , for m = 0, ±1, ±2, ±3…

Destructive interference , for m = 0, ±1, ±2, ±3…

Path length difference for waves from two slits to a common point
on a screen

Constructive interference , for m = 0, ±1, ±2, ±3…

Destructive interference , for m = 0, ±1, ±2, ±3…

Distance from central maximum to the m-th bright fringe

Displacement measured by a Michelson interferometer

Summary

3.1: Young's Double-Slit Interference

Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

This page titled 11.S: Interference (Summary) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

3.S: Interference (Summary) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-3.
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1.S: Diffraction (Summary)

Key Terms

Bragg planes
families of planes within crystals that can give rise to X-ray

diffraction

destructive interference for a single slit
occurs when the width of the slit is comparable to the wavelength

of light illuminating it

diffraction bending of a wave around the edges of an opening or an obstacle

diffraction grating large number of evenly spaced parallel slits

diffraction limit fundamental limit to resolution due to diffraction

hologram
three-dimensional image recorded on film by lasers; the word

hologram means entire picture (from the Greek word holo, as in
holistic)

holography process of producing holograms with the use of lasers

missing order
interference maximum that is not seen because it coincides with a

diffraction minimum

Rayleigh criterion
two images are just-resolvable when the center of the diffraction

pattern of one is directly over the first minimum of the diffraction
pattern of the other

resolution ability, or limit thereof, to distinguish small details in images

two-slit diffraction pattern

diffraction pattern of two slits of width a that are separated by a
distance d is the interference pattern of two point sources

separated by d multiplied by the diffraction pattern of a slit of
width a

width of the central peak angle between the minimum for  and 

X-ray diffraction
technique that provides the detailed information about

crystallographic structure of natural and manufactured materials

Key Equations
Destructive interference for a single slit  for 

Half phase angle

Field amplitude in the diffraction pattern

Intensity in the diffraction pattern

Rayleigh criterion for circular apertures

Bragg equation

Summary

4.1: Single-Slit Diffraction
Diffraction can send a wave around the edges of an opening or other obstacle.

m = 1 m = −1

a sin θ = mλ m = ±1, ±2, ±3, . . .
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ϕ
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λ
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A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer maxima to
the sides.

4.2: Intensity in Single-Slit Diffraction
The intensity pattern for diffraction due to a single slit can be calculated using phasors as

,

where , a is the slit width,  is the wavelength, and  is the angle from the central peak.

4.3: Double-Slit Diffraction
With real slits with finite widths, the effects of interference and diffraction operate simultaneously to form a complicated
intensity pattern.
Relative intensities of interference fringes within a diffraction pattern can be determined.
Missing orders occur when an interference maximum and a diffraction minimum are located together.

4.4: Diffraction Gratings
A diffraction grating consists of a large number of evenly spaced parallel slits that produce an interference pattern similar to but
sharper than that of a double slit.
Constructive interference occurs when  for , where d is the distance between the slits, θθ is the
angle relative to the incident direction, and m is the order of the interference.

4.5: Circular Apertures and Resolution
Diffraction limits resolution.
The Rayleigh criterion states that two images are just resolvable when the center of the diffraction pattern of one is directly over
the first minimum of the diffraction pattern of the other.

4.6: X-Ray Diffraction
X-rays are relatively short-wavelength EM radiation and can exhibit wave characteristics such as interference when interacting
with correspondingly small objects.

4.7: Holography
Holography is a technique based on wave interference to record and form three-dimensional images.
Lasers offer a practical way to produce sharp holographic images because of their monochromatic and coherent light for
pronounced interference patterns.

This page titled 1.S: Diffraction (Summary) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

12: Nuclear Physics
In this chapter, we study the composition and properties of the atomic nucleus. The nucleus lies at the center of an atom, and
consists of protons and neutrons. A deep understanding of the nucleus leads to numerous valuable technologies, including devices
to date ancient rocks, map the galactic arms of the Milky Way, and generate electrical power.

12.1: Properties of Nuclei
12.2: Nuclear Binding Energy
12.3: Radioactive Decay
12.4: Nuclear Reactions
12.5: Fission
12.6: Nuclear Fusion
12.7: Medical Applications and Biological Effects of Nuclear Radiation
12.A: Nuclear Physics (Answers)
12.E: Nuclear Physics (Exercises)
12.S: Nuclear Physics (Summary)
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12.1: Properties of Nuclei

By the end of this section, you will be able to:

Describe the composition and size of an atomic nucleus
Use a nuclear symbol to express the composition of an atomic nucleus
Explain why the number of neutrons is greater than protons in heavy nuclei
Calculate the atomic mass of an element given its isotopes

In this chapter, we study the composition and properties of the atomic nucleus. The nucleus lies at the center of an atom, and
consists of protons and neutrons. A deep understanding of the nucleus leads to numerous valuable technologies, including devices
to date ancient rocks, map the galactic arms of the Milky Way, and generate electrical power.

Figure : The Sun is powered by nuclear fusion in its core. The core converts approximately 10381038 protons/second into
helium at a temperature of 14 million K. This process releases energy in the form of photons, neutrinos, and other particles. (credit:
modification of work by EIT SOHO Consortium, ESA, NASA)

The Sun is the main source of energy in the solar system. The Sun is 109 Earth diameters across, and accounts for more than
99%99% of the total mass of the solar system. The Sun shines by fusing hydrogen nuclei—protons—deep inside its interior. Once
this fuel is spent, the Sun will burn helium and, later, other nuclei. Nuclear fusion in the Sun is discussed toward the end of this
chapter. In the meantime, we will investigate nuclear properties that govern all nuclear processes, including fusion.

Properties of Nuclei

The atomic nucleus is composed of protons and neutrons (Figure ). Protons and neutrons have approximately the same
mass, but protons carry one unit of positive charge (+e) and neutrons carry no charge. These particles are packed together into an
extremely small space at the center of an atom. According to scattering experiments, the nucleus is spherical or ellipsoidal in shape,
and about 1/100,000th the size of a hydrogen atom. If an atom were the size of a major league baseball stadium, the nucleus would
be roughly the size of the baseball. Protons and neutrons within the nucleus are called nucleons.

Figure : The atomic nucleus is composed of protons and neutrons. Protons are shown in blue, and neutrons are shown in red.
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12.1.1

12.1.1

12.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76707?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei


12.1.2 https://phys.libretexts.org/@go/page/76707

Counts of Nucleons
The number of protons in the nucleus is given by the atomic number, . The number of neutrons in the nucleus is the neutron
number, . The total number of nucleons is the mass number, . These numbers are related by

A nucleus is represented symbolically by

where  represents the chemical element,  is the mass number, and  is the atomic number. For example,  represents the
carbon nucleus with six protons and six neutrons (or 12 nucleons).

A graph of the number N of neutrons versus the number  of protons for a range of stable nuclei (nuclides) is shown in Figure 
. For a given value of , multiple values of  (blue points) are possible. For small values of , the number of neutrons

equals the number of protons  and the data fall on the red line. For large values of , the number of neutrons is greater
than the number of protons  and the data points fall above the red line. The number of neutrons is generally greater than
the number of protons for .

Figure : This graph plots the number of neutrons N against the number of protons Z for stable atomic nuclei. Larger nuclei,
have more neutrons than protons.

A chart based on this graph that provides more detailed information about each nucleus is given in Figure . This chart is
called a chart of the nuclides. Each cell or tile represents a separate nucleus. The nuclei are arranged in order of ascending Z
(along the horizontal direction) and ascending N (along the vertical direction).

Z

N A

A = Z+N .

X,A
Z

X A Z C12
6

Z
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(N = P ) Z
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Figure : Partial chart of the nuclides. For stable nuclei (dark blue backgrounds), cell values represent the percentage of nuclei
found on Earth with the same atomic number (percent abundance). For the unstable nuclei, the number represents the half-life.

Atoms that contain nuclei with the same number of protons (Z) and different numbers of neutrons (N) are called isotopes. For
example, hydrogen has three isotopes: normal hydrogen (1 proton, no neutrons), deuterium (one proton and one neutron), and
tritium (one proton and two neutrons). Isotopes of a given atom share the same chemical properties, since these properties are
determined by interactions between the outer electrons of the atom, and not the nucleons. For example, water that contains
deuterium rather than hydrogen (“heavy water”) looks and tastes like normal water. The following table shows a list of common
isotopes.

Table : Common Isotopes

Element Symbol Mass Number Mass (Atomic Mass
Units)

Percent Abundance* Half-life**

Hydrogen H 1 1.0078 99.99 stable

  or D 2 2.0141 0.01 stable

 3 3.0160 - 12.32 y

Carbon 12 12.0000 98.91 stable

 13 13.0034 1.1 stable

 14 14.0032 - 5730 y

Nitrogen 14 14.0031 00.6 stable

 15 15.001 0.4 stable

 16 16.0061 - 7.13 s

Oxygen 16 15.0040 99.76 stable

 17 16.9991 0.04 stable

 18 17.9992 0.20 stable

 19 19.0035 - 26.46 s

*No entry if less than 0.001 (trace amount). **Stable if half-life > 10 seconds.

Why do neutrons outnumber protons in heavier nuclei (Figure )? The answer to this question requires an understanding of
forces inside the nucleus with two primary forces as play:

12.1.3

12.1.1

H2

H3
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C14
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1. the long-range electrostatic (Coulomb) force that makes the positively charged protons repel one another; and
2. the short-range strong nuclear force that makes all nucleons in the nucleus attract one another.

You may also have heard of a “weak” nuclear force. This force is responsible for some nuclear decays, but as the name implies, it
does not play a role in stabilizing the nucleus against the strong Coulomb repulsion it experiences. We discuss strong nuclear force
in more detail in the next chapter when we cover particle physics. Nuclear stability occurs when the attractive forces between
nucleons compensate for the repulsive, long-range electrostatic forces between all protons in the nucleus. For heavy nuclei 

 excess neutrons are necessary to keep the electrostatic interactions from breaking the nucleus apart, as shown in Figure 
.

Figure : (a) The electrostatic force is repulsive and has long range. The arrows represent outward forces on protons (in blue)
at the nuclear surface by a proton (also in blue) at the center. (b) The strong nuclear force acts between neighboring nucleons. The
arrows represent attractive forces exerted by a neutron (in red) on its nearest neighbors.

Because of the existence of stable isotopes, we must take special care when quoting the mass of an element. For example, Copper
(Cu) has two stable isotopes:

Given these two “versions” of Cu, what is the mass of this element? The atomic mass of an element is defined as the weighted
average of the masses of its isotopes. Thus, the atomic mass of Cu is

The mass of an individual nucleus is often expressed in atomic mass units (u), where . (An atomic mass
unit is defined as 1/12th the mass of a  nucleus.) In atomic mass units, the mass of a helium nucleus (A = 4) is approximately 4
u. A helium nucleus is also called an alpha (α) particle.

Nuclear Size
The simplest model of the nucleus is a densely packed sphere of nucleons. The volume  of the nucleus is therefore proportional to
the number of nucleons , expressed by

where  is the radius of a nucleus and  is a constant with units of volume. Solving for , we have

where  is a constant. For hydrogen ,  corresponds to the radius of a single proton. Scattering experiments support this
general relationship for a wide range of nuclei, and they imply that neutrons have approximately the same radius as protons. The
experimentally measured value for  is approximately 1.2 femtometer (recall that ).

(Z > 15)

12.1.4

12.1.4

Cu(62.929595 g/mol)with an abundance of 69.09%63
29

Cu(64.927786 g/mol)with an abundance of 30.91%65
29

= (62.929595)(0.6909) +(64.927786)(0.3091) = 63.55 g/mol.mCu

u = 1.66054 × kg10−27

C12

V

A

V = π = kA,
4

3
r3

r k r

r = r0A
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Find the radius (r) and approximate density  of a Fe-56 nucleus. Assume the mass of the Fe-56 nucleus is approximately 56
u.

Strategy

a. Finding the radius of  is a straightforward application of , given .
b. To find the approximate density of this nucleus, assume the nucleus is spherical. Calculate its volume using the radius

found in part (a), and then find its density from .

Solution

a. The radius of a nucleus is given by Equation . Substituting the values for  and A yields

b. Density is defined to be , which for a sphere of radius r is

Substituting known values gives

Converting to units of , we find

Significance

a. The radius of the Fe-56 nucleus is found to be approximately 5 fm, so its diameter is about 10 fm, or . In previous
discussions of Rutherford’s scattering experiments, a light nucleus was estimated to be  in diameter. Therefore, the
result shown for a mid-sized nucleus is reasonable.

b. The density found here may seem incredible. However, it is consistent with earlier comments about the nucleus containing
nearly all of the mass of the atom in a tiny region of space. One cubic meter of nuclear matter has the same mass as a cube
of water 61 km on each side.

Nucleus X is two times larger than nucleus Y. What is the ratio of their atomic masses?

Answer

eight

This page titled 12.1: Properties of Nuclei is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

10.2: Properties of Nuclei by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-3.

 Example : The Iron Nucleus12.1.1

(ρ)

Fe56 r = r0A
1/3 A = 56

ρ = m/V

12.1.1 r0

r = (1.2 fm)(56)1/3

= (1.2 fm)(3.83)

= 4.6 fm.

ρ = m/V

ρ = = .
m

V

m

(4/3)πr3

ρ =
56 u

(1.33)(3.14)(4.6 fm)3

= 0.138 u/f .m3

kg/m3

ρ = (0.138 u/f )(1.66 × kg/u)( )m3 10−27 1 fm

m10−15

= 2.3 × kg/ .1017 m3

m10−14

m10−15
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10.1: Prelude to Nuclear Physics by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-3.
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12.2: Nuclear Binding Energy

By the end of this section, you will be able to:

Calculate the mass defect and binding energy for a wide range of nuclei
Use a graph of binding energy per nucleon (BEN) versus mass number (A) graph to assess the relative stability of a nucleus
Compare the binding energy of a nucleon in a nucleus to the ionization energy of an electron in an atom

The forces that bind nucleons together in an atomic nucleus are much greater than those that bind an electron to an atom through
electrostatic attraction. This is evident by the relative sizes of the atomic nucleus and the atom (  and m, respectively).
The energy required to pry a nucleon from the nucleus is therefore much larger than that required to remove (or ionize) an electron
in an atom. In general, all nuclear changes involve large amounts of energy per particle undergoing the reaction. This has numerous
practical applications.

Mass Defect

According to nuclear particle experiments, the total mass of a nucleus  is less than the sum of the masses of its constituent
nucleons (protons and neutrons). The mass difference, or mass defect, is given by

where  is the total mass of the protons,  is the total mass of the neutrons, and  is the mass of the nucleus.
According to Einstein’s special theory of relativity, mass is a measure of the total energy of a system ( ). Thus, the total
energy of a nucleus is less than the sum of the energies of its constituent nucleons. The formation of a nucleus from a system of
isolated protons and neutrons is therefore an exothermic reaction—meaning that it releases energy. The energy emitted, or radiated,
in this process is .

Figure : The binding energy is the energy required to break a nucleus into its constituent protons and neutrons. A system of
separated nucleons has a greater mass than a system of bound nucleons.

Now imagine this process occurs in reverse. Instead of forming a nucleus, energy is put into the system to break apart the nucleus
(Figure ). The amount of energy required is called the total binding energy (BE), .

The binding energy is equal to the amount of energy released in forming the nucleus, and is therefore given by

Experimental results indicate that the binding energy for a nucleus with mass number  is roughly proportional to the total
number of nucleons in the nucleus, A. The binding energy of a magnesium nucleus , for example, is approximately two
times greater than for the carbon nucleus .

 Learning Objectives

10−15 10−10

( )mnuc
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Calculate the mass defect and the binding energy of the deuteron. The mass of the deuteron is  or 
.

Solution

For the deuteron  and . From Equation , the mass defect for the deuteron is

The binding energy of the deuteron is then

Over two million electron volts are needed to break apart a deuteron into a proton and a neutron. This very large value
indicates the great strength of the nuclear force. By comparison, the greatest amount of energy required to liberate an electron
bound to a hydrogen atom by an attractive Coulomb force (an electromagnetic force) is about 10 eV.

Graph of Binding Energy per Nucleon
In nuclear physics, one of the most important experimental quantities is the binding energy per nucleon (BEN), which is defined
by

This quantity is the average energy required to remove an individual nucleon from a nucleus—analogous to the ionization energy
of an electron in an atom. If the BEN is relatively large, the nucleus is relatively stable. BEN values are estimated from nuclear
scattering experiments.

A graph of binding energy per nucleon versus atomic number A is given in Figure . This graph is considered by many
physicists to be one of the most important graphs in physics. Two notes are in order. First, typical BEN values range from 6–10
MeV, with an average value of about 8 MeV. In other words, it takes several million electron volts to pry a nucleon from a typical
nucleus, as compared to just 13.6 eV to ionize an electron in the ground state of hydrogen. This is why nuclear force is referred to
as the “strong” nuclear force.

Second, the graph rises at low A, peaks very near iron , and then tapers off at high . The peak value suggests that
the iron nucleus is the most stable nucleus in nature (it is also why nuclear fusion in the cores of stars ends with Fe). The reason the
graph rises and tapers off has to do with competing forces in the nucleus. At low values of , attractive nuclear forces between
nucleons dominate over repulsive electrostatic forces between protons. But at high values of , repulsive electrostatic forces
between forces begin to dominate, and these forces tend to break apart the nucleus rather than hold it together.

 Example : Mass Defect and Binding Energy of the Deuteron12.2.1

= 3.34359 × kgmD 10−27

1875.61 MeV /c2

Z = 1 A = 2 12.2.1

Δm = + −mp mn mD

= 938.28 MeV / +939.57 MeV / −1875.61 MeV /c2 c2 c2

= 2.24 MeV / .c2

Eb = (Δm)c2

= (2.24 MeV / )( )c2 c2

= 2.24 MeV .

BEN =
Eb

A
(12.2.3)

12.2.2

(F e, A = 56) A
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Figure : In this graph of binding energy per nucleon for stable nuclei, the BEN is greatest for nuclei with a mass near .
Therefore, fusion of nuclei with mass numbers much less than that of Fe, and fission of nuclei with mass numbers greater than that
of Fe, are exothermic processes.

As we will see, the BEN-versus-A graph implies that nuclei divided or combined release an enormous amount of energy. This is the
basis for a wide range of phenomena, from the production of electricity at a nuclear power plant to sunlight.

Calculate the binding energy per nucleon of an .

Strategy

Determine the total binding energy (BE) using the equation , where  is the mass defect. The binding
energy per nucleon (BEN) is BE divided by  (Equation ).

Solution

For , we have . The total binding energy (Equation ) is

These masses are , , and . Thus we have

Noting that , we find

Since , the total binding energy per nucleon (Equation ) is

Significance

Notice that the binding energy per nucleon for  is much greater than for the hydrogen isotopes ( ).
Therefore, helium nuclei cannot break down hydrogen isotopes without energy being put into the system.

12.2.2 F e56

 Example : Tightly Bound Alpha Nuclides12.2.2

He (α particle)4

BE = (Δm)c2 Δm

A 12.2.3

He4 Z = N = 2 12.2.2

BE = [2 +2 ] −m He) .mp mn (4 c2

m He) = 4.002602 u(4 = 1.007825 ump = 1.008665 umn

BE = (0.030378 u) .c2

1 u = 931.5 MeV /c2

BE = (0.030378)(931.5 MeV / )c2 c2

= 28.3 MeV .

A = 4 12.2.3

BEN = 7.07 MeV /nucleon.

He4 ≈ 3 MeV /nucleon
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If the binding energy per nucleon is large, does this make it harder or easier to strip off a nucleon from a nucleus?

Answer

harder

This page titled 12.2: Nuclear Binding Energy is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

10.3: Nuclear Binding Energy by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-3.
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12.3: Radioactive Decay

By the end of this section, you will be able to:

Describe the decay of a radioactive substance in terms of its decay constant and half-life
Use the radioactive decay law to estimate the age of a substance
Explain the natural processes that allow the dating of living tissue using C

In 1896, Antoine Becquerel discovered that a uranium-rich rock emits invisible rays that can darken a photographic plate in an
enclosed container. Scientists offer three arguments for the nuclear origin of these rays. First, the effects of the radiation do not vary
with chemical state; that is, whether the emitting material is in the form of an element or compound. Second, the radiation does not
vary with changes in temperature or pressure—both factors that in sufficient degree can affect electrons in an atom. Third, the very
large energy of the invisible rays (up to hundreds of eV) is not consistent with atomic electron transitions (only a few eV). Today,
this radiation is explained by the conversion of mass into energy deep within the nucleus of an atom. The spontaneous emission of
radiation from nuclei is called nuclear radioactivity (Figure ).

Figure : The international ionizing radiation symbol is universally recognized as the warning symbol for nuclear radiation.

Radioactive Decay Law
When an individual nucleus transforms into another with the emission of radiation, the nucleus is said to decay. Radioactive decay
occurs for all nuclei with , and also for some unstable isotopes with . The decay rate is proportional to the number
of original (undecayed) nuclei N in a substance. The number of nuclei lost to decay,  in time interval dt, is written

where  is called the decay constant. (The minus sign indicates the number of original nuclei decreases over time.) In other words,
the more nuclei available to decay, the more that do decay (in time dt). Equation  can be rewritten as

Integrating both sides of the equation, and defining  to be the number of nuclei at , we obtain

This gives us

Taking the left and right sides of Equation  as a power of , we have the radioactive decay law.

 Learning Objectives
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The total number  of radioactive nuclei remaining after time  is

where  is the decay constant for the particular nucleus.

The total number of nuclei drops very rapidly at first, and then more slowly (Figure ).

Figure : A plot of the radioactive decay law demonstrates that the number of nuclei remaining in a decay sample drops
dramatically during the first moments of decay.

The half-life  of a radioactive substance is defined as the time for half of the original nuclei to decay (or the time at which
half of the original nuclei remain). The half-lives of unstable isotopes are shown in the chart of nuclides. The number of radioactive
nuclei remaining after an integer (n) number of half-lives is therefore

If the decay constant  is large, the half-life is small, and vice versa. To determine the relationship between these quantities, note
that when , then .

Thus, Equation  can be rewritten as

Dividing both sides by  and taking the natural logarithm yields

which reduces to

Thus, if we know the half-life T  of a radioactive substance, we can find its decay constant. The lifetime  of a radioactive
substance is defined as the average amount of time that a nucleus exists before decaying. The lifetime of a substance is just the
reciprocal of the decay constant, written as

The activity A is defined as the magnitude of the decay rate, or

 Radioactive Decay Law

N t

N = N0e
−λt (12.3.3)

λ
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The infinitesimal change dN in the time interval dt is negative because the number of parent (undecayed) particles is decreasing, so
the activity (A) is positive. Defining the initial activity as , we have

Thus, the activity A of a radioactive substance decreases exponentially with time (Figure ).

Figure : (a) A plot of the activity as a function of time (b) If we measure the activity at different times, we can plot \ln A
versus t, and obtain a straight line.

The half-life of strontium-90, , is 28.8 y. Find (a) its decay constant and (b) the initial activity of 1.00 g of the material.

Strategy

We can find the decay constant directly from Equation . To determine the activity, we first need to find the number of
nuclei present.

Solution

a. The decay constant is found to be

b. The atomic mass of  is 89.91 g. Using Avogadro’s number  atoms/mol, we find the initial number
of nuclei in 1.00 g of the material:

From this, we find that the activity  at  for 1.00 g of strontium-90 is

Expressing  in terms of the half-life of the substance, we get

Therefore, the activity is halved after one half-life. We can determine the decay constant  by measuring the activity as a function
of time. Taking the natural logarithm of the left and right sides of Equation , we get

A = − = λN = λ .
dN

dt
N0e

−λt

= λA0 N0

A = .A0e
−λt (12.3.5)

12.3.3

12.3.3

 Example : Decay Constant and Activity of Strontium-9012.3.1

Sr38
90

12.3.5

λ = =( )( ) = 7.61 × .
0.693

T1/2

0.693

T1/2

1 yr

3.16 × s107
10−10 s−1

Sr90
38 = 6.022 ×NA 1023

= ( ) = 6.70 × nuclei.N0
1.00 g

89.91 g
NA 1021

A0 t = 0

= λ = (7.61 × )(6.70 × nuclei) = 5.10 × decays/s.A0 N0 10−10s−1 1021 1012

λ

A = = = /2.A0e
−(0.693/ )T1/2 T1/2 A0e

−0.693 A0 (12.3.6)

λ

12.3.6

ln A = −λt+ln .A0

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76709?pdf


12.3.4 https://phys.libretexts.org/@go/page/76709

This equation follows the linear form . If we plot \ln A versus t, we expect a straight line with slope  and y-
intercept  (Figure ). Activity A is expressed in units of becquerels (Bq), where one .
This quantity can also be expressed in decays per minute or decays per year. One of the most common units for activity is the curie
(Ci), defined to be the activity of 1 g of . The relationship between the Bq and Ci is

Approximately  of the human body by mass is carbon. Calculate the activity due to  in 1.00 kg of carbon found in a
living organism. Express the activity in units of Bq and Ci.

Strategy

The activity of  is determined using the equation , where λ is the decay constant and  is the number of
radioactive nuclei. The number of  nuclei in a 1.00-kg sample is determined in two steps. First, we determine the number of

 nuclei using the concept of a mole. Second, we multiply this value by  (the known abundance of  in a
carbon sample from a living organism) to determine the number of  nuclei in a living organism. The decay constant is
determined from the known half-life of  (available from [link]).

Solution

One mole of carbon has a mass of 12.0 g, since it is nearly pure . Thus, the number of carbon nuclei in a kilogram is

The number of  nuclei in 1 kg of carbon is therefore

Now we can find the activity  by using Equation . Entering known values gives us

or  decays per year. To convert this to the unit Bq, we simply convert years to seconds. Thus,

or 250 decays per second. To express A in curies, we use the definition of a curie,

Thus,

Significance

Approximately  of the human body by weight is carbon. Hundreds of  decays take place in the human body every
second. Carbon-14 and other naturally occurring radioactive substances in the body compose a person’s background exposure
to nuclear radiation. As we will see later in this chapter, this activity level is well below the maximum recommended dosages.

Radioactive Dating

Radioactive dating is a technique that uses naturally occurring radioactivity to determine the age of a material, such as a rock or
an ancient artifact. The basic approach is to estimate the original number of nuclei in a material and the present number of nuclei in
the material (after decay), and then use the known value of the decay constant  and Equation to calculate the total time of
the decay, .

y = mx+b −λ

ln A0 12.3.3b 1 Bq = 1 decay per second

Ra226

1 Ci = 3.70 × Bq.1010

 Example : What is  Activity in Living Tissue?12.3.2 C14

20% C14

C14 = λA0 N0 N0

C14

C12 1.3 ×10−12 C14

C14

C14

C12

N C) = ×(1000 g) = 5.02 × .(12 6.02 × mo1023 l−1

12.0 g/mol
1025

C14

N C) = (5.02 × )(1.3 × ) = 6.52 × .(14 1025 10 21 1013

A 12.3.6

A = = 7.89 ×
0.693(6.52 × )1013

5730 y
109 y−1

7.89 ×109

A = (7.89 × ) = 250 Bq,109 y−1 1.00 y

3.16 × s107

A = = 6.76 × Ci.
250 Bq

3.7 × Bq/Ci1010
10−9

A = 6.76 nCi.

20% C14

λ 12.3.3

t
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An important method of radioactive dating is carbon-14 dating. Carbon-14 nuclei are produced when high-energy solar radiation
strikes  nuclei in the upper atmosphere and subsequently decay with a half-life of 5730 years. Radioactive carbon has the same
chemistry as stable carbon, so it combines with the ecosphere and eventually becomes part of every living organism. Carbon-14 has
an abundance of 1.3 parts per trillion of normal carbon. Therefore, if you know the number of carbon nuclei in an object, you
multiply that number by  to find the number of  nuclei in that object. When an organism dies, carbon exchange
with the environment ceases, and  is not replenished as it decays.

By comparing the abundance of  in an artifact, such as mummy wrappings, with the normal abundance in living tissue, it is
possible to determine the mummy’s age (or the time since the person’s death). Carbon-14 dating can be used for biological tissues
as old as 50,000 years, but is generally most accurate for younger samples, since the abundance of  nuclei in them is greater.
Very old biological materials contain no  at all. The validity of carbon dating can be checked by other means, such as by
historical knowledge or by tree-ring counting.

In an ancient burial cave, your team of archaeologists discovers ancient wood furniture. Only  of the original  remains
in the wood. How old is the furniture?

Strategy

The problem statement implies that . Therefore, we rearrange Equation  to find the product, . We know
the half-life of  is 5730 y, so we also know the decay constant, and therefore the total decay time .

Solution

We rearrange Equation  for  to gives

Thus

Taking the natural logarithm of both sides yields

so that

Rearranging the equation to isolate  gives us

Significance

The furniture is almost 2000 years old—an impressive discovery. The typical uncertainty on carbon-14 dating is about , so
the furniture is anywhere between 1750 and 1950 years old. This date range must be confirmed by other evidence, such as
historical records.

A radioactive nuclide has a high decay rate. What does this mean for its half-life and activity?

Answer

Half-life is inversely related to decay rate, so the half-life is short. Activity depends on both the number of decaying
particles and the decay rate, so the activity can be great or small.

N14

1.3 ×10−12 C14

C14

C14

C14

C14

 An Ancient Burial Cave

80% C14

N/ = 0.80N0 12.3.3 λt

C14 t

12.3.3 N/N0

= .
N

N0
e−λt

0.80 = .e−λt

ln 0.80 = −λt,

−0.223 = −λt.

t

t = = 1844 y.
0.223

( )
0.693

5730 y

5%

 Exercise 12.3.3
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Visit the Radioactive Dating Game to learn about the types of radiometric dating and try your hand at dating some ancient
objects.
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12.4: Nuclear Reactions

By the end of this section, you will be able to:

Describe and compare three types of nuclear radiation
Use nuclear symbols to describe changes that occur during nuclear reactions
Describe processes involved in the decay series of heavy elements

Early experiments revealed three types of nuclear “rays” or radiation: alpha  rays, beta  rays, and gamma  rays. These
three types of radiation are differentiated by their ability to penetrate matter. Alpha radiation is barely able to pass through a thin
sheet of paper. Beta radiation can penetrate aluminum to a depth of about 3 mm, and gamma radiation can penetrate lead to a depth
of 2 or more centimeters (Figure ).

Figure : A comparison of the penetration depths of alpha , beta , and gamma  radiation through various materials.

The electrical properties of these three types of radiation are investigated by passing them through a uniform magnetic field, as
shown in Figure . According to the magnetic force equation for a moving charge in a magnetic field

where positively charged particles are deflected upward, negatively charged particles are deflected downward, and particles with no
charge pass through the magnetic field undeflected. Eventually,  rays were identified with helium nuclei ,  rays with
electrons and positrons (positively charged electrons or antielectrons), and  rays with high-energy photons. We discuss alpha,
beta, and gamma radiation in detail in the remainder of this section.

Figure : The effect of a magnetic field on alpha ( ), beta ( ), and gamma ( ) radiation. This figure is a schematic only. The
relative paths of the particles depend on their masses and initial kinetic energies.

 Learning Objectives

(α) (β) (γ)

12.4.1

12.4.1 (α) (β) (γ)

12.4.2

= q ×F ⃗  v ⃗  B⃗ 

α He)(4 β

γ

12.4.2 α β γ
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Alpha Decay
Heavy unstable nuclei emit  radiation. In -particle decay (or alpha decay), the nucleus loses two protons and two neutrons, so
the atomic number decreases by two, whereas its mass number decreases by four. Before the decay, the nucleus is called the parent
nucleus. The nucleus or nuclei produced in the decay are referred to as the daughter nucleus or daughter nuclei. We represent an 

 decay symbolically by

where  is the parent nucleus,  is the daughter nucleus, and  is the  particle. In  decay, a nucleus of atomic number
Z decays into a nucleus of atomic number  and atomic mass . Interestingly, the dream of the ancient alchemists to turn
other metals into gold is scientifically feasible through the alpha-decay process. The efforts of the alchemists failed because they
relied on chemical interactions rather than nuclear interactions.

Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to
the half-life. To try a simulation of alpha decay, visit alpha particles

An example of alpha decay is uranium-238:

The atomic number has dropped from 92 to 90. The chemical element with  is thorium. Hence, Uranium-238 has decayed
to Thorium-234 by the emission of an  particle, written

Subsequently,  decays by  emission with a half-life of 24 days. The energy released in this alpha decay takes the form of
kinetic energies of the thorium and helium nuclei, although the kinetic energy of thorium is smaller than helium due to its heavier
mass and smaller velocity.

Find the energy emitted in the  decay of  can be found using the equation . We must first find , the
difference in mass between the parent nucleus and the products of the decay.

Solution

The decay equation is

Thus, the pertinent masses are those of , , and the  particle or , all of which are known. The initial mass was 
. The final mass is the sum

Thus,

Now we can find E by entering  into the equation:

We know , so we have

α α

α

ZAX → +XZ−2
A−4 He2

4 (12.4.1)

XA
Z XA−4

Z−2 He4
2 α α

Z −2 A −4

→ +U92
238 X90

234 He2
4

Z = 90

α

→ +U92
238 Th90

234 He2
4

T h234
90 β

 Example : Plutonium Alpha Decay12.4.1

α P u230 E = (Δm)c2 Δm

→ + .Pu230 U235 He4

P u230 U235 α He4

m P u) = 230.052157 u(230

m U) +m He)=235 ⋅ 043924 u+4 ⋅ 002602 u(235 (4

Δm=m Pu)−[m U) +m He)](230 (235 (4

= 239.052157 u −239.046526 u

= 0.0005631 u.

Δm

E = (Δm) = (0.005631 u) .c2 c2

1 u = 931.5 MeV /c2

E = (0.005631)(931.5 MeV / )( )c2 c2

= 5.25 MeV .
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Significance

The energy released in this  decay is in the MeV range, many times greater than chemical reaction energies. Most of this
energy becomes kinetic energy of the  particle (or  nucleus), which moves away at high speed. The energy carried away
by the recoil of the  nucleus is much smaller due to its relatively large mass. The  nucleus can be left in an excited
state to later emit photons (  rays).

Beta Decay
In most  particle decays (or beta decay), either an electron ( ) or positron ( ) is emitted by a nucleus. A positron has the same
mass as the electron, but its charge is . For this reason, a positron is sometimes called an antielectron. How does  decay occur?
A possible explanation is the electron (positron) is confined to the nucleus prior to the decay and somehow escapes. To obtain a
rough estimate of the escape energy, consider a simplified model of an electron trapped in a box (or in the terminology of quantum
mechanics, a one-dimensional square well) that has the width of a typical nucleus ( ). According to the Heisenberg uncertainty
principle in Quantum Mechanics, the uncertainty of the momentum of the electron is:

Taking this momentum value (an underestimate) to be the “true value,” the kinetic energy of the electron on escape is
approximately

Experimentally, the electrons emitted in  decay are found to have kinetic energies of the order of only a few MeV. We therefore
conclude that the electron is somehow produced in the decay rather than escaping the nucleus. Particle production (annihilation) is
described by theories that combine quantum mechanics and relativity, a subject of a more advanced course in physics.

Nuclear beta decay involves the conversion of one nucleon into another. For example, a neutron can decay to a proton by the
emission of an electron ( ) and a nearly massless particle called an antineutrino ( ):

The notation  is used to designate the electron. Its mass number is 0 because it is not a nucleon, and its atomic number is  to
signify that it has a charge of . The proton is represented by  because its mass number and atomic number are 1. When this
occurs within an atomic nucleus, we have the following equation for beta decay:

This process occurs due to the weak nuclear force.

Watch beta decay occur for a collection of nuclei or for an individual nucleus.

As an example, the isotope  is unstable and decays by  emission with a half-life of 24 days. Its decay can be represented
as

Since the chemical element with atomic number 91 is protactinium (Pa), we can write the  decay of thorium as

α

α He4

U235 U235

γ

β β− β+

+e β

10−14

Δp ≥
h

Δx

=
6.6 × ⋅ kg/s10−34m2

m10−14

= 6.6 × kg ⋅ m/s.10−20 (12.4.2)

(Δp)2

2me

=
6.6 × ⋅ kg/s10−20m2 )2

2(9.1 × kg)10−31

= 2.0 × J10−9

= 12, 400 MeV . (12.4.3)

β−

β− ν̄̄̄

→ + + ⋅n0
1 p1

1 e1
0 ν̄̄̄

e0
−1 −1

−e p1
1

zAX → + + ⋅AX
Z+

1
e1

0 ν̄̄̄ (12.4.4)

T h234
90 β−

→ + + ⋅Th90
234 X91

234 e+
1
0 ν̄̄̄

β−

→ + + ⋅Th90
234 Pa91

234 e+
1
0 ν̄̄̄
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The reverse process is also possible: A proton can decay to a neutron by the emission of a positron (  and a nearly massless
particle called a neutrino ( ). This reaction is written as

The positron  is emitted with the neutrino , and the neutron remains in the nucleus. (Like  decay, the positron does not
precede the decay but is produced in the decay.) For an isolated proton, this process is impossible because the neutron is heavier
than the proton. However, this process is possible within the nucleus because the proton can receive energy from other nucleons for
the transition. As an example, the isotope of aluminum  decays by  emission with a half-life of . The decay is
written as

The atomic number 12 corresponds to magnesium. Hence,

As a nuclear reaction, positron emission can be written as

The neutrino was not detected in the early experiments on  decay. However, the laws of energy and momentum seemed to require
such a particle. Later, neutrinos were detected through their interactions with nuclei.

The  nucleus undergoes both  and  decay. For each case, what is the daughter nucleus?

Strategy

We can use the processes described by Equation  and Equation , as well as the Periodic Table, to identify the
resulting elements.

Solution

The atomic number and the mass number for the  particle are 2 and 4, respectively. Thus, when a bismuth-211 nucleus emits
an  particle, the daughter nucleus has an atomic number of 81 and a mass number of 207. The element with an atomic
number of 81 is thallium, so the decay is given by

In  decay, the atomic number increases by 1, while the mass number stays the same. The element with an atomic number of
84 is polonium, so the decay is given by

In radioactive beta decay, does the atomic mass number, A, increase or decrease?

Solution

Neither; it stays the same.

Gamma Decay
A nucleus in an excited state can decay to a lower-level state by the emission of a “gamma-ray” photon, and this is known as
gamma decay. This is analogous to de-excitation of an atomic electron. Gamma decay is represented symbolically by

where the asterisk (*) on the nucleus indicates an excited state. In  decay, neither the atomic number nor the mass number
changes, so the type of nucleus does not change.

e+

v

→ + +ν⋅p1
1 n0

1 e+1
0

e0
1

ν β−

Al26
13 β+ 7.40 × y105

→ + +ν⋅Al13
26 X12

26 e1
0

→ + +ν⋅Al13
26 Mg12

26 e1
0

ZAX → + +ν⋅AXZ−1 e1
0

β

 Example : Bismuth Alpha and Beta Decay12.4.2

Bi211
83 α β−

12.4.1 12.4.4

α

α

→ + ⋅Bi83
211 Ti81

207 He2
4

β−

→ + + ⋅Bi83
211 Po84

211 e−1
0 ν̄̄̄

 Exercise 12.4.1

→ +γXZ
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XZ
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Radioactive Decay Series
Nuclei with  are unstable and decay naturally. Many of these nuclei have very short lifetimes, so they are not found in
nature. Notable exceptions include  (or Th-232) with a half-life of  years, and  (or U-238) with a half-life of

 years. When a heavy nucleus decays to a lighter one, the lighter daughter nucleus can become the parent nucleus for the
next decay, and so on. This process can produce a long series of nuclear decays called a decay series. The series ends with a stable
nucleus.

To illustrate the concept of a decay series, consider the decay of Th-232 series (Figure ). The neutron number, N, is plotted
on the vertical y-axis, and the atomic number, Z, is plotted on the horizontal x-axis, so Th-232 is found at the coordinates 

. Th-232 decays by  emission with a half-life of  years. Alpha decay decreases the atomic number
by 2 and the mass number by 4, so we have

The neutron number for Radium-228 is 140, so it is found in the diagram at the coordinates . Radium-228 is
also unstable and decays by  emission with a half-life of 5.76 years to Actinum-228. The atomic number increases by 1, the mass
number remains the same, and the neutron number decreases by 1. Notice that in the graph,  emission appears as a line sloping
downward to the left, with both N and Z decreasing by 2. Beta emission, on the other hand, appears as a line sloping downward to
the right with N decreasing by 1, and Z increasing by 1. After several additional alpha and beta decays, the series ends with the
stable nucleus Pb-208.

Figure : In the thorium  decay series, alpha ( ) decays reduce the atomic number, as indicated by the red arrows. Beta
( ) decays increase the atomic number, as indicated by the blue arrows. The series ends at the stable nucleus Pb-208.

The relative frequency of different types of radioactive decays (alpha, beta, and gamma) depends on many factors, including the
strength of the forces involved and the number of ways a given reaction can occur without violating the conservation of energy and
momentum. How often a radioactive decay occurs often depends on a sensitive balance of the strong and electromagnetic forces.

Z > 82

T h232
90 1.39 ×1010 U238

92

7.04 ×108

12.4.3

(N , Z) = (142.90) α 1.39 ×1010

→ + ⋅Th90
232 Ra88

228 He2
4

(N , Z) = (140, 90)

α

α

12.4.3 Th232
90 α

β−
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As another example, consider the U-238 decay series shown in Figure . After numerous alpha and beta decays, the series
ends with the stable nucleus Pb-206.

Figure : In the Uranium-238 decay series, alpha  decays reduce the atomic number, as indicated by the red arrows. Beta 
 decays increase the atomic number, as indicated by the blue arrows. The series ends at the stable nucleus Pb-206.

An example of a decay whose parent nucleus no longer exists naturally is shown in Figure . It starts with Neptunium-237
and ends in the stable nucleus Bismuth-209. Neptunium is called a transuranic element because it lies beyond uranium in the
periodic table. Uranium has the highest atomic number  of any element found in nature. Elements with  can be
produced only in the laboratory. They most probably also existed in nature at the time of the formation of Earth, but because of
their relatively short lifetimes, they have completely decayed. There is nothing fundamentally different between naturally occurring
and artificial elements.

12.4.4

12.4.4 (α)
(β)

12.4.5

(Z +92) Z > 92

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76710?pdf


12.4.7 https://phys.libretexts.org/@go/page/76710

Figure : In the Neptunium-237 decay series, alpha  decays reduce the atomic number, as indicated by the red arrows.
Beta  decays increase the atomic number, as indicated by the blue arrows. The series ends at the stable nucleus Bi-209.

Notice that for Bi (21), the decay may proceed through either alpha or beta decay.

Radioactivity in the Earth
According to geologists, if there were no heat source, Earth should have cooled to its present temperature in no more than 1 billion
years. Yet, Earth is more than 4 billion years old. Why is Earth cooling so slowly? The answer is nuclear radioactivity, that is, high-
energy particles produced in radioactive decays heat Earth from the inside (Figure ).

12.4.5 (α)
( )β−

12.4.6
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Figure : Earth is heated by nuclear reactions (alpha, beta, and gamma decays). Without these reactions, Earth’s core and
mantle would be much cooler than it is now.

Candidate nuclei for this heating model are  and , which possess half-lives similar to or longer than the age of Earth. The
energy produced by these decays (per second per cubic meter) is small, but the energy cannot escape easily, so Earth’s core is very
hot. Thermal energy in Earth’s core is transferred to Earth’s surface and away from it through the processes of convection,
conduction, and radiation.

This page titled 12.4: Nuclear Reactions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

10.5: Nuclear Reactions by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-
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12.5: Fission

By the end of this section, you will be able to:

Describe the process of nuclear fission in terms of its product and reactants
Calculate the energies of particles produced by a fission reaction
Explain the fission concept in the context of fission bombs and nuclear reactions

In 1934, Enrico Fermi bombarded chemical elements with neutrons in order to create isotopes of other elements. He assumed that
bombarding uranium with neutrons would make it unstable and produce a new element. Unfortunately, Fermi could not determine
the products of the reaction. Several years later, Otto Hahn and Fritz Strassman reproduced these experiments and discovered that
the products of these reactions were smaller nuclei. From this, they concluded that the uranium nucleus had split into two smaller
nuclei.

Figure : The Phillipsburg Nuclear Power Plant in Germany uses a fission reactor to generate electricity.

The splitting of a nucleus is called fission. Interestingly, U-235 fission does not always produce the same fragments. Example
fission reactions include:

In each case, the sum of the masses of the product nuclei are less than the masses of the reactants, so the fission of uranium is an
exothermic process . This is the idea behind the use of fission reactors as sources of energy (Figure ). The energy
carried away by the reaction takes the form of particles with kinetic energy. The percent yield of fragments from a U-235 fission is
given in Figure .

 Learning Objectives
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Figure : In this graph of fission fragments from U-235, the peaks in the graph indicate nuclei that are produced in the greatest
abundance by the fission process.

Energy changes in a nuclear fission reaction can be understood in terms of the binding energy per nucleon curve. The BEN value
for uranium  is slightly lower than its daughter nuclei, which lie closer to the iron (Fe) peak. This means that nucleons in
the nuclear fragments are more tightly bound than those in the U-235 nucleus. Therefore, a fission reaction results in a drop in the
average energy of a nucleon. This energy is carried away by high-energy neutrons.

Niels Bohr and John Wheeler developed the liquid drop model to understand the fission process. According to this model, firing a
neutron at a nucleus is analogous to disturbing a droplet of water (Figure ). The analogy works because short-range forces
between nucleons in a nucleus are similar to the attractive forces between water molecules in a water droplet. In particular, forces
between nucleons at the surface of the nucleus result in a surface tension similar to that of a water droplet. A neutron fired into a
uranium nucleus can set the nucleus into vibration. If this vibration is violent enough, the nucleus divides into smaller nuclei and
also emits two or three individual neutrons.

Figure : In the liquid drop model of nuclear fission, the uranium nucleus is split into two lighter nuclei by a high-energy
neutron.

U-235 fission can produce a nuclear chain reaction. In a compound consisting of many U-235 nuclei, neutrons in the decay of one
U-235 nucleus can initiate the fission of additional U-235 nuclei (Figure ). This chain reaction can proceed in a controlled
manner, as in a nuclear reactor at a power plant, or proceed uncontrollably, as in an explosion.
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Figure : In a U-235 fission chain reaction, the fission of the m nucleus produces high-energy neutrons that go on to split
more nuclei. The energy released in this process can be used to produce electricity.

View a simulation on nuclear fission to start a chain reaction, or introduce nonradioactive isotopes to prevent one. Control
energy production in a nuclear reactor.

The Atomic Bomb

The possibility of a chain reaction in uranium, with its extremely large energy release, led nuclear scientists to conceive of making
a bomb—an atomic bomb. (These discoveries were taking place in the years just prior to the Second World War and many of the
European physicists involved in these discoveries came from countries that were being overrun.) Natural uranium contains 
U-238 and only  U-235, and does not produce a chain reaction. To produce a controlled, sustainable chain reaction, the
percentage of U-235 must be increased to about . In addition, the uranium sample must be massive enough so a typical neutron
is more likely to induce fission than it is to escape. The minimum mass needed for the chain reaction to occur is called the critical
mass. When the critical mass reaches a point at which the chain reaction becomes self-sustaining, this is a condition known as
criticality. The original design required two pieces of U-235 below the critical mass. When one piece in the form of a bullet is
fired into the second piece, the critical mass is exceeded and a chain reaction is produced.

An important obstacle to the U-235 bomb is the production of a critical mass of fissionable material. Therefore, scientists
developed a plutonium-239 bomb because Pu-239 is more fissionable than U-235 and thus requires a smaller critical mass. The
bomb was made in the form of a sphere with pieces of plutonium, each below the critical mass, at the edge of the sphere. A series
of chemical explosions fired the plutonium pieces toward the center of the sphere simultaneously. When all these pieces of
plutonium came together, the combination exceeded the critical mass and produced a chain reaction. Both the U-235 and Pu-239
bombs were used in World War II. Whether to develop and use atomic weapons remain two of the most important questions faced
by human civilization.
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Calculate the energy released in the following rare spontaneous fission reaction:

The atomic masses are , , , and 
.

Strategy

As always, the energy released is equal to the mass destroyed times , so we must find the difference in mass between the
parent  and the fission products.

Solution

The products have a total mass of

The mass lost is the mass of  or

Therefore, the energy released is

Significance

Several important things arise in this example. The energy release is large but less than it would be if the nucleus split into two
equal parts, since energy is carried away by neutrons. However, this fission reaction produces neutrons and does not split the
nucleus into two equal parts. Fission of a given nuclide, such as , does not always produce the same products. Fission is a
statistical process in which an entire range of products are produced with various probabilities. Most fission produces neutrons,
although the number varies. This is an extremely important aspect of fission, because neutrons can induce more fission,
enabling self-sustaining chain reactions.

Fission Nuclear Reactors
The first nuclear reactor was built by Enrico Fermi on a squash court on the campus of the University of Chicago on December 2,
1942. The reactor itself contained U-238 enriched with  U-235. Neutrons produced by the chain reaction move too fast to
initiate fission reactions. One way to slow them down is to enclose the entire reactor in a water bath under high pressure. The
neutrons collide with the water molecules and are slowed enough to be used in the fission process. The slowed neutrons split more
U-235 nuclei and a chain reaction occurs. The rate at which the chain reaction proceeds is controlled by a series of “control” rods
made of cadmium inserted into the reactor. Cadmium is capable of absorbing a large number of neutrons without becoming
unstable.

A nuclear reactor design, called a pressurized water reactor, can also be used to generate electricity (Figure ). A pressurized
water reactor (on the left in the figure) is designed to control the fission of large amounts of . The energy released in this
process is absorbed by water flowing through pipes in the system (the “primary loop”) and steam is produced. Cadmium control
rods adjust the neutron flux (the rate of flow of neutrons passing through the system) and therefore control the reaction. In case the
reactor overheats and the water boils away, the chain reaction terminates, because water is used to thermalize the neutrons. (This
safety feature can be overwhelmed in extreme circumstances.) The hot, high-pressure water then passes through a pipe to a second
tank of water at normal pressure in the steam generator. The steam produced at one end of the steam generator fills a chamber that
contains a turbine. This steam is at a very high pressure. Meanwhile, a steam condenser connected to the other side of the turbine
chamber maintains steam at low pressure. The pressure differences force steam through the chamber, which turns the turbine. The
turbine, in turn, powers an electric generator.

 Example : Calculating Energy Released by Fission12.5.1

→ + +3 n,U238 Sr95 Xe140
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c2

U238
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= 237.866993 u.
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Figure : A nuclear reactor uses the energy produced in the fission of U-235 to produce electricity. Energy from a nuclear
fission reaction produces hot, high-pressure steam that turns a turbine. As the turbine turns, electricity is produced.

The major drawback to a fission reactor is nuclear waste. U-235 fission produces nuclei with long half-lives such as  that must
be stored. These products cannot be dumped into oceans or left in any place where they will contaminate the environment, such as
through the soil, air, or water. Many scientists believe that the best place to store nuclear waste is the bottom of old salt mines or
inside of stable mountains.

Many people are fearful that a nuclear reactor may explode like an atomic bomb. However, a nuclear reactor does not contain
enough U-235 to do this. Also, a nuclear reactor is designed so that failure of any mechanism of the reactor causes the cadmium
control rods to fall fully into the reactor, stopping the fission process. As evidenced by the Fukushima and Chernobyl disasters,
such systems can fail. Systems and procedures to avoid such disasters is an important priority for advocates of nuclear energy.

If all electrical power were produced by nuclear fission of U-235, Earth’s known reserves of uranium would be depleted in less
than a century. However, Earth’s supply of fissionable material can be expanded considerably using a breeder reactor. A
breeder reactor operates for the first time using the fission of U-235 as just described for the pressurized water reactor. But in
addition to producing energy, some of the fast neutrons originating from the fission of U-235 are absorbed by U-238, resulting
in the production of Pu-239 via the set of reactions

The Pu-239 is itself highly fissionable and can therefore be used as a nuclear fuel in place of U-235. Since  of naturally
occurring uranium is the U-238 isotope, the use of breeder reactors should increase our supply of nuclear fuel by roughly a
factor of 100. Breeder reactors are now in operation in Great Britain, France, and Russia. Breeder reactors also have
drawbacks. First, breeder reactors produce plutonium, which can, if leaked into the environment, produce serious public health
problems. Second, plutonium can be used to build bombs, thus increasing significantly the risk of nuclear proliferation.

Calculate the amount of energy produced by the fission of 1.00 kg of  given that the average fission reaction of 
produces 200 MeV.

Strategy

The total energy produced is the number of  atoms times the given energy per  fission. We should therefore find the
number of  atoms in 1.00 kg.

Solution

12.5.5
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The number of  atoms in 1.00 kg is Avogadro’s number times the number of moles. One mole of  has a mass of
235.04 g; thus, there are . The number of  atoms is therefore

Thus, the total energy released is

Significance

This is another impressively large amount of energy, equivalent to about 14,000 barrels of crude oil or 600,000 gallons of
gasoline. However, it is only one-fourth the energy produced by the fusion of a kilogram mixture of deuterium and tritium.
Even though each fission reaction yields about 10 times the energy of a fusion reaction, the energy per kilogram of fission fuel
is less, because there are far fewer moles per kilogram of the heavy nuclides. Fission fuel is also much scarcer than fusion fuel,
and less than  of uranium (the ) is readily usable.

Which has a larger energy yield per fission reaction, a large or small sample of pure ?

Answer

the same

This page titled 12.5: Fission is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that
was edited to the style and standards of the LibreTexts platform.

10.6: Fission by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-3.
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12.6: Nuclear Fusion

By the end of this section, you will be able to:

Describe the process of nuclear fusion in terms of its product and reactants
Calculate the energies of particles produced by a fusion reaction
Explain the fission concept in the context of fusion bombs, the production of energy by the Sun, and nucleosynthesis

The process of combining lighter nuclei to make heavier nuclei is called nuclear fusion. As with fission reactions, fusion reactions
are exothermic—they release energy. Suppose that we fuse a carbon and helium nuclei to produce oxygen:

The energy changes in this reaction can be understood using a graph of binding energy per nucleon. Comparing the binding energy
per nucleon for oxygen, carbon, and helium, the oxygen nucleus is much more tightly bound than the carbon and helium nuclei,
indicating that the reaction produces a drop in the energy of the system. This energy is released in the form of gamma radiation.
Fusion reactions are said to be exothermic when the amount of energy released (known as the Q value) in each reaction is greater
than zero .

An important example of nuclear fusion in nature is the production of energy in the Sun. In 1938, Hans Bethe proposed that the
Sun produces energy when hydrogen nuclei ( ) fuse into stable helium nuclei ( ) in the Sun’s core (Figure ). This
process, called the proton-proton chain, is summarized by three reactions:

Thus, a stable helium nucleus is formed from the fusion of the nuclei of the hydrogen atom. These three reactions can be
summarized by

The net Q value is about 26 MeV. The release of this energy produces an outward thermal gas pressure that prevents the Sun from
gravitational collapse. Astrophysicists find that hydrogen fusion supplies the energy stars require to maintain energy balance over
most of a star's life span.

Figure : The Sun produces energy by fusing hydrogen into helium at the Sun’s core. The red arrows show outward pressure
due to thermal gas, which tends to make the Sun expand. The blue arrows show inward pressure due to gravity, which tends to
make the Sun contract. These two influences balance each other.
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Nucleosynthesis
Scientist now believe that many heavy elements found on Earth and throughout the universe were originally synthesized by fusion
within the hot cores of the stars. This process is known as nucleosynthesis. For example, in lighter stars, hydrogen combines to
form helium through the proton-proton chain. Once the hydrogen fuel is exhausted, the star enters the next stage of its life and fuses
helium. An example of a nuclear reaction chain that can occur is:

Carbon and oxygen nuclei produced in such processes eventually reach the star’s surface by convection. Near the end of its
lifetime, the star loses its outer layers into space, thus enriching the interstellar medium with the nuclei of heavier elements (Figure 

).

Figure : A planetary nebula is produced at the end of the life of a star. The greenish color of this planetary nebula comes
from oxygen ions.

Stars similar in mass to the Sun do not become hot enough to fuse nuclei as heavy (or heavier) than oxygen nuclei. However, in
massive stars whose cores become much hotter , even more complex nuclei are produced. Some representative
reactions are

Nucleosynthesis continues until the core is primarily iron-nickel metal. Now, iron has the peculiar property that any fusion or
fission reaction involving the iron nucleus is endothermic, meaning that energy is absorbed rather than produced. Hence, nuclear
energy cannot be generated in an iron-rich core. Lacking an outward pressure from fusion reactions, the star begins to contract due
to gravity. This process heats the core to a temperature on the order of . Expanding shock waves generated within the star
due to the collapse cause the star to quickly explode. The luminosity of the star can increase temporarily to nearly that of an entire
galaxy. During this event, the flood of energetic neutrons reacts with iron and the other nuclei to produce elements heavier than
iron. These elements, along with much of the star, are ejected into space by the explosion. Supernovae and the formation of
planetary nebulas together play a major role in the dispersal of chemical elements into space.

Eventually, much of the material lost by stars is pulled together through the gravitational force, and it condenses into a new
generation of stars and accompanying planets. Recent images from the Hubble Space Telescope provide a glimpse of this
magnificent process taking place in the constellation Serpens (Figure ). The new generation of stars begins the
nucleosynthesis process anew, with a higher percentage of heavier elements. Thus, stars are “factories” for the chemical elements,
and many of the atoms in our bodies were once a part of stars.
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Figure : This image taken by NASA’s Spitzer Space Telescope and the Two Micron All Sky Survey (2MASS), shows the
Serpens Cloud Core, a star-forming region in the constellation Serpens (the “Serpent”). Located about 750 light-years away, this
cluster of stars is formed from cooling dust and gases. Infrared light has been used to reveal the youngest stars in orange and
yellow. (credit: NASA/JPL-Caltech/2MASS)

The power output of the Sun is approximately . Most of this energy is produced in the Sun’s core by the proton-
proton chain. This energy is transmitted outward by the processes of convection and radiation.

a. How many of these fusion reactions per second must occur to supply the power radiated by the Sun?
b. What is the rate at which the mass of the Sun decreases?
c. In about five billion years, the central core of the Sun will be depleted of hydrogen. By what percentage will the mass of the

Sun have decreased from its present value when the core is depleted of hydrogen?

Strategy

The total energy output per second is given in the problem statement. If we know the energy released in each fusion reaction,
we can determine the rate of the fusion reactions. If the mass loss per fusion reaction is known, the mass loss rate is known.
Multiplying this rate by five billion years gives the total mass lost by the Sun. This value is divided by the original mass of the
Sun to determine the percentage of the Sun’s mass that has been lost when the hydrogen fuel is depleted.

Solution

a. The decrease in mass for the fusion reaction is

The energy released per fusion reaction is

Thus, to supply , there must be

b. The Sun’s mass decreases by  per fusion reaction, so the rate at which its mass decreases is

c. In , the Sun’s mass will therefore decrease by

12.6.3

 Example : Energy of the Sun12.6.1
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= 4(1.007825 u) −4.002603 u = 2(0.000549 u)

= 0.0276 u.
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The current mass of the Sun is about , so the percentage decrease in its mass when its hydrogen fuel is
depleted will be

Significance

After five billion years, the Sun is very nearly the same mass as it is now. Hydrogen burning does very little to change the mass
of the Sun. This calculation assumes that only the proton-proton decay change is responsible for the power output of the Sun.

Where does the energy from the Sun originate?

Answer

the conversion of mass to energy

The Hydrogen Bomb
In 1942, Robert Oppenheimer suggested that the extremely high temperature of an atomic bomb could be used to trigger a fusion
reaction between deuterium and tritium, thus producing a fusion (or hydrogen) bomb. The reaction between deuterium and tritium,
both isotopes of hydrogen, is given by

Deuterium is relatively abundant in ocean water, but tritium is scarce. However, tritium can be generated in a nuclear reactor
through a reaction involving lithium. The neutrons from the reactor cause the reaction

to produce the desired tritium. The first hydrogen bomb was detonated in 1952 on the remote island of Eniwetok in the Marshall
Islands. A hydrogen bomb has never been used in war. Modern hydrogen bombs are approximately 1000 times more powerful than
the fission bombs dropped on Hiroshima and Nagasaki in World War II.

The Fusion Reactor
The fusion chain believed to be the most practical for use in a nuclear fusion reactor is the following two-step process:

This chain, like the proton-proton chain, produces energy without any radioactive by-product. However, there is a very difficult
problem that must be overcome before fusion can be used to produce significant amounts of energy: Extremely high temperatures 

 are needed to drive the fusion process. To meet this challenge, test fusion reactors are being developed to withstand
temperatures 20 times greater than the Sun’s core temperature. An example is the Joint European Torus (JET) shown in Figure 

. A great deal of work still has to be done on fusion reactor technology, but many scientists predict that fusion energy will
power the world’s cities by the end of the twentieth century.

2.0 × kg1030

( )×100% = 0.034%.
6.8 × kg1026

2.0 × kg1030
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Figure : The Joint European Torus (JET) tokamak fusion detector uses magnetic fields to fuse deuterium and tritium nuclei
(credit: EUROfusion).

This page titled 12.6: Nuclear Fusion is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.
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12.7: Medical Applications and Biological Effects of Nuclear Radiation

By the end of this section, you will be able to:

Describe two medical uses of nuclear technology
Explain the origin of biological effects due to nuclear radiation
List common sources of radiation and their effects
Estimate exposure for nuclear radiation using common dosage units

Nuclear physics is an integral part of our everyday lives (Figure ). Radioactive compounds are used in to identify cancer,
study ancient artifacts, and power our cities. Nuclear fusion also powers the Sun, the primary source of energy on Earth. The focus
of this chapter is nuclear radiation. In this section, we ask such questions as: How is nuclear radiation used to benefit society? What
are its health risks? How much nuclear radiation is the average person exposed to in a lifetime?

Figure : Dr. Tori Randall, a curator at the San Diego Museum of Man, uses nuclear radiation to study a 500-year-old
Peruvian child mummy. The origin of this radiation is the transformation of one nucleus to another. (credit: Samantha A. Lewis)

Medical Applications
Medical use of nuclear radiation is quite common in today’s hospitals and clinics. One of the most important uses of nuclear
radiation is the location and study of diseased tissue. This application requires a special drug called a radiopharmaceutical. A
radiopharmaceutical contains an unstable radioactive isotope. When the drug enters the body, it tends to concentrate in inflamed
regions of the body. (Recall that the interaction of the drug with the body does not depend on whether a given nucleus is replaced
by one of its isotopes, since this interaction is determined by chemical interactions.) Radiation detectors used outside the body use
nuclear radiation from the radioisotopes to locate the diseased tissue. Radiopharmaceuticals are called radioactive tags because
they allow doctors to track the movement of drugs in the body. Radioactive tags are for many purposes, including the identification
of cancer cells in the bones, brain tumors, and Alzheimer’s disease (Figure ). Radioactive tags are also used to monitor the
function of body organs, such as blood flow, heart muscle activity, and iodine uptake in the thyroid gland.

 Learning Objectives
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Figure :These brain images are produced using a radiopharmaceutical. The colors indicate relative metabolic or biochemical
activity (red indicates high activity and blue indicates low activity). The figure on the left shows the normal brain of an individual
and the figure on the right shows the brain of someone diagnosed with Alzheimer’s disease. The brain image of the normal brain
indicates much greater metabolic activity (a larger fraction of red and orange areas). (credit: National Institutes of Health)

Table  lists some medical diagnostic uses of radiopharmaceuticals, including isotopes and typical activity (A) levels. One
common diagnostic test uses iodine to image the thyroid, since iodine is concentrated in that organ. Another common nuclear
diagnostic is the thallium scan for the cardiovascular system, which reveals blockages in the coronary arteries and examines heart
activity. The salt TlCl can be used because it acts like NaCl and follows the blood. Note that Table  lists many diagnostic
uses for , where “m” stands for a metastable state of the technetium nucleus. This isotope is used in many compounds to
image the skeleton, heart, lungs, and kidneys. About  of all radiopharmaceuticals employ  because it produces a single,
easily identified, 0.142-MeV  ray and has a short 6.0-h half-life, which reduces radiation exposure.

Table 

Procedure, Isotope
Activity (mCi), where 

Procedure, Isotope
Activity (mCi), where 

Brain scan Thyroid scan

7.5 0.05

50 0.07

Lung scan  Liver scan  

7.5  colloid 0.1

2 2

Cardiovascular blood pool Bone scan

0.2 0.1

2 10

Cardiovascular arterial flow Kidney scan

3 0.1

7.5 1.5

Diagnostic Uses of Radiopharmaceuticals

The first radiation detectors produced two-dimensional images, like a photo taken from a camera. However, a circular array of
detectors that can be rotated can be used to produce three-dimensional images. This technique is similar to that used in X-ray
computed tomography (CT) scans. One application of this technique is called single-photon-emission CT (SPECT) (Figure 

). The spatial resolution of this technique is about 1 cm.
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Figure : The SPECT machine uses radiopharmaceutical compounds to produce an image of the human body. The machine
takes advantage of the physics of nuclear beat decays and electron-positron collisions. (credit: â€œWoldoâ€�/Wikimedia
Commons)

Improved image resolution is achieved by a technique known as positron emission tomography (PET). This technique use
radioisotopes that decay by  radiation. When a positron encounters an electron, these particle annihilate to produce two gamma-
ray photons. This reaction is represented by

These -ray photons have identical 0.511-MeV energies and move directly away from one another (Figure ). This easily
identified decay signature can be used to identify the location of the radioactive isotope. Examples of -emitting isotopes used in
PET include , , , and . The nuclei have the advantage of being able to function as tags for natural body compounds.
Its resolution of 0.5 cm is better than that of SPECT.

Figure : A PET system takes advantage of the two identical -ray photons produced by positron-electron annihilation. These 
 rays are emitted in opposite directions, so that the line along which each pair is emitted is determined.

PET scans are especially useful to examine the brain’s anatomy and function. For example, PET scans can be used to monitor the
brain’s use of oxygen and water, identify regions of decreased metabolism (linked to Alzheimer’s disease), and locate different
parts of the brain responsible for sight, speech, and fine motor activity

Is it a tumor? View an animation of simplified magnetic resonance imaging (MRI) to see if you can tell. Your head is full of
tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios
can be made to broadcast their positions, giving a detailed picture of the inside of your head.
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Biological Effects
Nuclear radiation can have both positive and negative effects on biological systems. However, it can also be used to treat and even
cure cancer. How do we understand these effects? To answer this question, consider molecules within cells, particularly DNA
molecules.

Cells have long, double-helical DNA molecules containing chemical codes that govern the function and processes of the cell.
Nuclear radiation can alter the structural features of the DNA chain, leading to changes in the genetic code. In human cells, we can
have as many as a million individual instances of damage to DNA per cell per day. DNA contains codes that check whether the
DNA is damaged and can repair itself. This repair ability of DNA is vital for maintaining the integrity of the genetic code and for
the normal functioning of the entire organism. It should be constantly active and needs to respond rapidly. The rate of DNA repair
depends on various factors such as the type and age of the cell. If nuclear radiation damages the ability of the cell to repair DNA,
the cell can

1. Retreat to an irreversible state of dormancy (known as senescence);
2. Commit suicide (known as programmed cell death); or
3. Progress into unregulated cell division, possibly leading to tumors and cancers.

Nuclear radiation can harm the human body is many other ways as well. For example, high doses of nuclear radiation can cause
burns and even hair loss.

Biological effects of nuclear radiation are expressed by many different physical quantities and in many different units. A common
unit to express the biological effects of nuclear radiation is the rad or radiation dose unit. One rad is equal to 1/100 of a joule of
nuclear energy deposited per kilogram of tissue, written:

For example, if a 50.0-kg person is exposed to nuclear radiation over her entire body and she absorbs 1.00 J, then her whole-body
radiation dose is

Nuclear radiation damages cells by ionizing atoms in the cells as they pass through the cells (Figure ). The effects of ionizing
radiation depend on the dose in rads, but also on the type of radiation (alpha, beta, gamma, or X-ray) and the type of tissue. For
example, if the range of the radiation is small, as it is for  rays, then the ionization and the damage created is more concentrated
and harder for the organism to repair. To account for such affects, we define the relative biological effectiveness (RBE). Sample
RBE values for several types of ionizing nuclear radiation are given in Table .

Figure : The image shows ionization created in cells by  and  radiation. Because of its shorter range, the ionization and
damage created by  rays is more concentrated and harder for the organism to repair. Thus, the RBE for  rays is greater than the
RBE for  rays, even though they create the same amount of ionization at the same energy.

Table : Relative Biological Effectiveness

Type and Energy of Radiation RBE

X-rays 1

-rays 1

 rays greater than 32 keV 1

1 rad = 0.01 J/kg.

(1.00 J)/(50.0 kg) = 0.0200 J/kg = 2.00 rad.
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Type and Energy of Radiation RBE

 rays less than 32 keV 1.7

Neutrons, thermal to slow (<20 keV) 2 - 5

Neutrons, fast (1–10 MeV) 10 (body), 32 (eyes)

Protons (1–10 MeV) 10 (body), 32 (eyes)

rays from radioactive decay 10–20

Heavy ions from accelerators 10–20

 Values approximate. Difficult to determine.

A dose unit more closely related to effects in biological tissue is called the roentgen equivalent man (rem) and is defined to be the
dose (in rads) multiplied by the relative biological effectiveness (RBE). Thus, if a person had a whole-body dose of 2.00 rad of 
radiation, the dose in rem would be  rem for the whole body. If the person had a whole-body dose of 2.00 rad
of  radiation, then the dose in rem would be  rem for the whole body. The  rays would have 20 times the
effect on the person than the  rays for the same deposited energy. The SI equivalent of the rem, and the more standard term, is the
sievert (Sv) is

The RBEs given in Table  are approximate but reflect an understanding of nuclear radiation and its interaction with living
tissue. For example, neutrons are known to cause more damage than  rays, although both are neutral and have large ranges, due to
secondary radiation. Any dose less than 100 mSv (10 rem) is called a low dose, 0.1 Sv to 1 Sv (10 to 100 rem) is called a
moderate dose, and anything greater than 1 Sv (100 rem) is called a high dose. It is difficult to determine if a person has been
exposed to less than 10 mSv.

Biological effects of different levels of nuclear radiation on the human body are given in Table  The first clue that a person
has been exposed to radiation is a change in blood count, which is not surprising since blood cells are the most rapidly reproducing
cells in the body. At higher doses, nausea and hair loss are observed, which may be due to interference with cell reproduction. Cells
in the lining of the digestive system also rapidly reproduce, and their destruction causes nausea. When the growth of hair cells
slows, the hair follicles become thin and break off. High doses cause significant cell death in all systems, but the lowest doses that
cause fatalities do so by weakening the immune system through the loss of white blood cells.

Table : Immediate Effects of Radiation (Adults, Whole-Body, Single Exposure)

Dose in Sv Effect

0–0.10 No observable effect.

0.1–1 Slight to moderate decrease in white blood cell counts.

0.5 Temporary sterility; 0.35 for women, 0.50 for men.

1–2 Significant reduction in blood cell counts, brief nausea and vomiting.
Rarely fatal.

2–5 Nausea, vomiting, hair loss, severe blood damage, hemorrhage,
fatalities.

4.5 Lethal to  of the population within 32 days after exposure if not
treated.

5–20 Worst effects due to malfunction of small intestine and blood systems.
Limited survival.

>20 Fatal within hours due to collapse of central nervous system.

 Multiply by 100 to obtain dose in rem.
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Sources of Radiation
Human are also exposed to many sources of nuclear radiation. A summary of average radiation doses for different sources by
country is given in Table . Earth emits radiation due to the isotopes of uranium, thorium, and potassium. Radiation levels
from these sources depend on location and can vary by a factor of 10. Fertilizers contain isotopes of potassium and uranium, which
we digest in the food we eat. Fertilizers have more than 3000 Bq/kg radioactivity, compared to just 66 Bq/kg for Carbon-14.

Table : Background Radiation Sources and Average Doses

Source Dose (mSv/y)

 Australia Germany US World

Natural radiation – external

Cosmic rays 0.30 0.28 0.30 0.39

Soil, building materials 0.40 0.40 0.30 0.48

Radon gas 0.90 1.1 2.0 1.2

Natural radiation – internal

, , 0.24 0.28 0.40 0.29

Artificial radiation

Medical and dental 0.80 0.90 0.53 0.40

TOTAL 2.6 3.0 3.5 2.8

 Multiply by 100 to obtain does in mrem/y.

Medical visits are also a source of nuclear radiation. A sample of common nuclear radiation doses is given in Table . These
doses are generally low and can be lowered further with improved techniques and more sensitive detectors. With the possible
exception of routine dental X-rays, medical use of nuclear radiation is used only when the risk-benefit is favorable. Chest X-rays
give the lowest doses—about 0.1 mSv to the tissue affected, with less than  scattering into tissues that are not directly imaged.
Other X-ray procedures range upward to about 10 mSv in a CT scan, and about 5 mSv (0.5 rem) per dental X-ray, again both only
affecting the tissue imaged. Medical images with radiopharmaceuticals give doses ranging from 1 to 5 mSv, usually localized.

Table : Typical Doses Received During Diagnostic X-Ray Exams

Procedure Effective Dose (mSv)

Chest 0.02

Dental 0.01

Skull 0.07

Leg 0.02

Mammogram 0.40

Barium enema 7.0

Upper GI 3.0

CT head 2.0

CT abdomen 10.0

The Chernobyl accident in Ukraine (formerly in the Soviet Union) exposed the surrounding population to a large amount of
radiation through the decay of . The initial radioactivity level was approximately . Calculate the total mass
of  involved in this accident.

Strategy
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The total number of nuclei, N, can be determined from the known half-life and activity of  (30.2 y). The mass can be
calculated from N using the concept of a mole.

Solution

Solving the equation  for N gives

Entering the given values yields

To convert from curies to becquerels and years to seconds, we write

One mole of a nuclide  has a mass of A grams, so that one mole of  has a mass of 137 g. A mole has 
nuclei. Thus the mass of  released was

\[m = \left(\frac{137 \, g}{6.02 \times 10^{23}\right)(3.1 \times 10^{26}) = 70 \times 10^3 \, g = 70 \, kg. \nonumber \]

Significance

The mass of  involved in the Chernobyl accident is a small material compared to the typical amount of fuel used in a
nuclear reactor. However, approximately 250 people were admitted to local hospitals immediately after the accident, and
diagnosed as suffering acute radiation syndrome. They received external radiation dosages between 1 and 16 Sv. Referring to
biological effects in Table , these dosages are extremely hazardous. The eventual death toll is estimated to be around
4000 people, primarily due to radiation-induced cancer.

Radiation propagates in all directions from its source, much as electromagnetic radiation from a light bulb. Is activity concept
more analogous to power, intensity, or brightness?

Answer

power

This page titled 12.7: Medical Applications and Biological Effects of Nuclear Radiation is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

10.8: Medical Applications and Biological Effects of Nuclear Radiation by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-3.
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12.A: Nuclear Physics (Answers)

Check Your Understanding

10.1. eight

10.2. harder

10.3. Half-life is inversely related to decay rate, so the half-life is short. Activity depends on both the number of decaying
particles and the decay rate, so the activity can be great or small.

10.4. Neither; it stays the same.

10.5. the same

10.6. the conversion of mass to energy

10.7. power

Conceptual Questions
1. The nucleus of an atom is made of one or more nucleons. A nucleon refers to either a proton or neutron. A nuclide is a
stable nucleus.

3. A bound system should have less mass than its components because of energy-mass equivalence . If the energy
of a system is reduced, the total mass of the system is reduced. If two bricks are placed next to one another, the attraction
between them is purely gravitational, assuming the bricks are electrically neutral. The gravitational force between the bricks
is relatively small (compared to the strong nuclear force), so the mass defect is much too small to be observed. If the bricks
are glued together with cement, the mass defect is likewise small because the electrical interactions between the electrons
involved in the bonding are still relatively small.

5. Nucleons at the surface of a nucleus interact with fewer nucleons. This reduces the binding energy per nucleon, which is
based on an average over all the nucleons in the nucleus.

7. That it is constant.

9. Gamma (γ) rays are produced by nuclear interactions and X-rays and light are produced by atomic interactions. Gamma
rays are typically shorter wavelength than X-rays, and X-rays are shorter wavelength than light.

11. Assume a rectangular coordinate system with an xy-plane that corresponds to the plane of the paper. αα bends into the
page (trajectory parabolic in the xz-plane);  bends into the page (trajectory parabolic in the xz-plane); and  is unbent.

13. Yes. An atomic bomb is a fission bomb, and a fission bomb occurs by splitting the nucleus of atom.

15. Short-range forces between nucleons in a nucleus are analogous to the forces between water molecules in a water droplet.
In particular, the forces between nucleons at the surface of the nucleus produce a surface tension similar to that of a water
droplet.

17. The nuclei produced in the fusion process have a larger binding energy per nucleon than the nuclei that are fused. That is,
nuclear fusion decreases average energy of the nucleons in the system. The energy difference is carried away as radiation.

19. Alpha particles do not penetrate materials such as skin and clothes easily. (Recall that alpha radiation is barely able to
pass through a thin sheet of paper.) However, when produce inside the body, neighboring cells are vulnerable.

Problems

21. Use the rule .

 Atomic Number (Z) Neutron Number (N) Mass Number (A)

(a) 29 29 58

(b) 11 13 24

(c) 84 126 210

(E = m )c2

β+ γ

A = Z+N
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(d) 20 25 45

(e) 82 124 206

23. a. ;

b. 

25. side length =

27. 92.4 MeV

29. 

31. a. 7.570 MeV;

b. graph’s value

33. The decay constant is equal to the negative value of the slope or . The half-life of the nuclei, and thus the
material, is million years.

35. a. The decay constant is 

b. Since strontium-91 has an atomic mass of 90.90 g, the number of nuclei in a 1.00-g sample is initially

.

The initial activity for strontium-91 is

The activity at   is

.

37. 

39. a. 0.988 Ci;

b. The half-life of  is more precisely known than it was when the Ci unit was established.

41. a. ;

b. 

43. a. ;

b. 

45. a. 4.273 MeV;

b. ;

c. Since  is a slowly decaying substance, only a very small number of nuclei decay on human timescales;
therefore, although those nuclei that decay lose a noticeable fraction of their mass, the change in the total mass of the
sample is not detectable for a macroscopic sample.

47. a. ;

b. 0.546 MeV

49. 

51. a. ;

b. 0.862 MeV

53. a. ;

b. 33.05 MeV

r = , ρ =r0A
1/3 3u

4πr3
0

ρ = 2.3 × kg/1017 m3

1.6μm

8.790MeV ≈ grap svalueh′

7.591MeV ≈

10−9s−1

= 693T1/2

λ = 1.99 ×10−5s−1

= 6.63 × nucleiN0 1021

= λ = 1.32 × decays/sA0 N0 1017

t = 15.0 h = 5.40 × s104

A = 4.51 × decays/s1016

1.20 × mol; 6.00 × mol; 3.75 × mol10−2 10−3 10−4

Ra226

2.73μg

9.76 × Bq104

7.46 × Bq105

7.75 × Bq105

1.927 ×10−5

U238

S + +90
38 r52 →90

39 Y51 β−1 vē

H + +3
1H2 →3

2 e1 β− vē

Be+3 + L +7
4 e− →7

3 i4 ve

X P=208
82 b126
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55. a. 177.1 MeV;

b. This value is approximately equal to the average BEN for heavy nuclei.

c. ,

,

57. a. ;

b.  fissions/s;

c. 991 kg

59. i. 

ii. 

;

iii. 

61. 26.73 MeV

63. a. ;

b. ;

This huge number is indicative of how rarely a neutrino interacts, since large detectors observe very few per day.

65. a. The atomic mass of deuterium  is 2.014102 u, while that of tritium  is 3.016049 u, for a total of 5.032151 u
per reaction. So a mole of reactants has a mass of 5.03 g, and in 1.00 kg, there are  of
reactants. The number of reactions that take place is therefore

.

The total energy output is the number of reactions times the energy per reaction:

;

b. Power is energy per unit time. One year has , so

.

We expect nuclear processes to yield large amounts of energy, and this is certainly the case here. The energy output of 
 from fusing 1.00 kg of deuterium and tritium is equivalent to 2.6 million gallons of gasoline and about

eight times the energy output of the bomb that destroyed Hiroshima. Yet the average backyard swimming pool has
about 6 kg of deuterium in it, so that fuel is plentiful if it can be utilized in a controlled manner.

67. \(\displaystyle G_y=\frac{Sv}{RBE}:

a. 0.01 Gy;

b. 0.0025 Gy;

c. 0.16 Gy

69. 1.24 MeV

71. 1.69 mm

n S X +3n+238
92 U146 →96

38 r58 +140
54 e86

= 239 =Ai Af

= 92 = 38 +54 =Zi Zf

2.57 × MW103

8.04 ×1019

H H H + +1
1 +1

1 →2
1 e+ ve

A+ i = 1 +1 = 2; = 2, = 1 +1 = 2;Af Zi

= 1 +1 = 2Zf

H H H +γ1
1 +2

1 →3
2

= 1 +2 = 3; = 3 +0 = 3, = 1 +1 = 2Ai Af Zi

= 1 +1 = 2ZE

H H H H H3
2 +3

2 →4
2 +1

1 +1
1

= 3 +3 = 6; = 4 +1 +1 = 6, = 2 +2 = 4Ai Af Zi

= 2 +1 +1 = 4Zf

3 × protons/s1038

6 × neutrinos/ ⋅ s1014 m2

H)(2 H)(3

(1000g)/(5.03g/mol) = 198.8mol

(198.8mol)(6.02 × mo ) = 1.20 × reactions1023 l−1 1026

E = 3.37 × J1014

3.16 × s107

P = 10.7MW

3.37 × J1014
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73. For cancer:  The risk each year of dying from induced cancer is 30 in a million. For

genetic defect:  The chance each year of an induced genetic defect is 10 in a million.

Additional Problems

75. atomic mass(Cl)=35.5g/mol

77. a. ;

b. This mass is impossibly large; it is greater than the mass of the entire Milky Way galaxy.

c.  is not produced through natural processes operating over long times on Earth, but through artificial processes
in a nuclear reactor.

79. If  of rays are left after 2.00 cm, then only  are left after 4.00 cm. This is much smaller than your
lab partner’s result ( ).

81. a. ;

(b) From Appendix B, the energy released per decay is 4.27 MeV, so ;

(c) The monetary value of the energy is 

83. We know that  and .

Thus, the age of the tomb is

.

Challenge Problems

85. a. ;

b. 6.24 kW;

c. 5.67 kW

87. a. Due to the leak, the pressure in the turbine chamber has dropped significantly. The pressure difference between the
turbine chamber and steam condenser is now very low.

b. A large pressure difference is required for steam to pass through the turbine chamber and turn the turbine.

89. The energies are

.

Notice that most of the energy goes to the γγ ray.
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1.71 × kg1058

U236

10 (0.100 = 0.01 = 1)2

5

1.68 × Ci10−5

8.65 × J1010

$2.9 ×103

λ = 3.84 ×10−12s−1 = 0.25decays/s ⋅ g = 15decays/min ⋅ gA0

t = − ln = 1.06 × s ≈ 3350y
1

3.84 ×10−12s−1

10decays/min ⋅ g

15decays/min ⋅ g
1011

6.97 × Bq1015
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12.E: Nuclear Physics (Exercises)

Conceptual Questions

10.1 Properties of Nuclei

1. Define and make clear distinctions between the terms neutron, nucleon, nucleus, and nuclide.

2. What are isotopes? Why do isotopes of the same atom share the same chemical properties?

10.2 Nuclear Binding Energy

3. Explain why a bound system should have less mass than its components. Why is this not observed traditionally, say, for a
building made of bricks?

4. Why is the number of neutrons greater than the number of protons in stable nuclei that have an A greater than about 40?
Why is this effect more pronounced for the heaviest nuclei?

5. To obtain the most precise value of the binding energy per nucleon, it is important to take into account forces between
nucleons at the surface of the nucleus. Will surface effects increase or decrease estimates of BEN?

10.3 Radioactive Decay

6. How is the initial activity rate of a radioactive substance related to its half-life?

7. For the carbon dating described in this chapter, what important assumption is made about the time variation in the intensity
of cosmic rays?

10.4 Nuclear Reactions

8. What is the key difference and the key similarity between beta ( ) decay and alpha decay?

9. What is the difference between  rays and characteristic X-rays and visible light?

10. What characteristics of radioactivity show it to be nuclear in origin and not atomic?

11. Consider Figure 10.12. If the magnetic field is replaced by an electric field pointed in toward the page, in which
directions will the , and  rays bend?

12. Why is Earth’s core molten?

Fission

13. Should an atomic bomb really be called nuclear bomb?

14. Why does a chain reaction occur during a fission reaction?

15. In what way is an atomic nucleus like a liquid drop?

Nuclear Fusion

16. Explain the difference between nuclear fission and nuclear fusion.

17. Why does the fusion of light nuclei into heavier nuclei release energy?

Medical Applications and Biological Effects of Nuclear Radiation

18. Why is a PET scan more accurate than a SPECT scan?

19. Isotopes that emit  radiation are relatively safe outside the body and exceptionally hazardous inside. Explain why.

20. Ionizing radiation can impair the ability of a cell to repair DNA. What are the three ways the cell can respond?

Problems

10.1 Properties of Nuclei

21. Find the atomic numbers, mass numbers, and neutron numbers for

(a) ,

β−

γ

α−, −β+ γ

α

Cu58
29
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(b) ,

(c) ,

(d) , and

(e) .

22. Silver has two stable isotopes. The nucleus, , has atomic mass 106.905095 g/mol with an abundance of ;
whereas  has atomic mass 108.904754 g/mol with an abundance of 48.17%. Find the atomic mass of the element
silver.

23. The mass (M) and the radius (r) of a nucleus can be expressed in terms of the mass number, A.

(a) Show that the density of a nucleus is independent of A.

(b) Calculate the density of a gold (Au) nucleus. Compare your answer to that for iron (Fe).

24. A particle has a mass equal to 10 u. If this mass is converted completely into energy, how much energy is released?
Express your answer in mega-electron volts (MeV). (Recall that .)

25. Find the length of a side of a cube having a mass of 1.0 kg and the density of nuclear matter.

26. The detail that you can observe using a probe is limited by its wavelength. Calculate the energy of a particle that has a
wavelength of , small enough to detect details about one-tenth the size of a nucleon.

10.2 Nuclear Binding Energy

27. How much energy would be released if six hydrogen atoms and six neutrons were combined to form ?

28. Find the mass defect and the binding energy for the helium-4 nucleus.

29.  is among the most tightly bound of all nuclides. It makes up more than  of natural iron. Note that  has even
numbers of protons and neutrons. Calculate the binding energy per nucleon for  and compare it with the approximate
value obtained from the graph in Figure 10.7.

30.  is the heaviest stable nuclide, and its BEN is low compared with medium-mass nuclides. Calculate BEN for this
nucleus and compare it with the approximate value obtained from the graph in Figure 10.7.

31. (a) Calculate BEN for , the rarer of the two most common uranium isotopes;

(b) Calculate BEN for . (Most of uranium is .)

32. The fact that BEN peaks at roughly  implies that the range of the strong nuclear force is about the diameter of this
nucleus.

(a) Calculate the diameter of  nucleus.

(b) Compare BEN for  and . The first is one of the most tightly bound nuclides, whereas the second is larger
and less tightly bound.

10.3 Radioactive Decay

33. A sample of radioactive material is obtained from a very old rock. A plot lnA verses t yields a slope value of 
(see Figure 10.10(b)). What is the half-life of this material?

34. Show that: .

35. The half-life of strontium-91,  is 9.70 h. Find

(a) its decay constant and

(b) for an initial 1.00-g sample, the activity after 15 hours.

36. A sample of pure carbon-14 (  has an activity of . What is the mass of the sample?

37. A radioactive sample initially contains  mol of a radioactive material whose half-life is 6.00 h. How many
moles of the radioactive material remain after 6.00 h? After 12.0 h? After 36.0 h?

Na24
11

Po210
84

Ca45
20

Pb206
82

Ag107
47 51.83

Ag109
47 48.17

1eV = 1.6 × J10−19

1 × m10−16

C12
6

Fe56 90 Fe56

Fe56

Bi209

U235

U238 U238

A = 60

A = 60

Ni58 Sr90

−10−9s−1

=T̄
1

λ

Sr91
38

= 5730yT1/2 1.0μCi

2.40 ×10−2
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38. An old campfire is uncovered during an archaeological dig. Its charcoal is found to contain less than 1/1000 the normal
amount of . Estimate the minimum age of the charcoal, noting that .

39. Calculate the activity , in curies of 1.00 g of .

(b) Explain why your answer is not exactly 1.00 Ci, given that the curie was originally supposed to be exactly the
activity of a gram of radium.

40. Natural uranium consists of  (percent abundance=0.7200%, ) and  (percent
abundance=99.27%, ). What were the values for percent abundance of  and  when Earth
formed 4.5×1094.5×109 years ago?

41. World War II aircraft had instruments with glowing radium-painted dials. The activity of one such instrument was 
 Bq when new.

(a) What mass of  was present?

(b) After some years, the phosphors on the dials deteriorated chemically, but the radium did not escape. What is the
activity of this instrument 57.0 years after it was made?

42. The  source used in a physics laboratory is labeled as having an activity of  on the date it was prepared. A
student measures the radioactivity of this source with a Geiger counter and observes 1500 counts per minute. She notices that
the source was prepared 120 days before her lab. What fraction of the decays is she observing with her apparatus?

43. Armor-piercing shells with depleted uranium cores are fired by aircraft at tanks. (The high density of the uranium makes
them effective.) The uranium is called depleted because it has had its  removed for reactor use and is nearly pure .
Depleted uranium has been erroneously called nonradioactive. To demonstrate that this is wrong:

(a) Calculate the activity of 60.0 g of pure .

(b) Calculate the activity of 60.0 g of natural uranium, neglecting the  and all daughter nuclides.

10.4 Nuclear Reactions

44.  undergoes alpha decay.

(a) Write the reaction equation.

(b) Find the energy released in the decay.

45. (a) Calculate the energy released in the  decay of .

(b) What fraction of the mass of a single  is destroyed in the decay? The mass of  is 234.043593 u.

(c) Although the fractional mass loss is large for a single nucleus, it is difficult to observe for an entire macroscopic
sample of uranium. Why is this?

46. The  particles emitted in the decay of  (tritium) interact with matter to create light in a glow-in-the-dark exit sign.
At the time of manufacture, such a sign contains 15.0 Ci of .

(a) What is the mass of the tritium?

(b) What is its activity 5.00 y after manufacture?

47. (a) Write the complete  decay equation for , a major waste product of nuclear reactors.

(b) Find the energy released in the decay.

48. Write a nuclear  decay reaction that produces the  nucleus. (Hint: The parent nuclide is a major waste product of
reactors and has chemistry similar to calcium, so that it is concentrated in bones if ingested.)

49. Write the complete decay equation in the complete  notation for the beta ( ) decay of  (tritium), a
manufactured isotope of hydrogen used in some digital watch displays, and manufactured primarily for use in hydrogen
bombs.

50. If a 1.50-cm-thick piece of lead can absorb  of the rays from a radioactive source, how many centimeters of lead are
needed to absorb all but  of the rays?

C14 = 1024210

R Ra226

U235 λ = 3.12 × /s10−17 U238

λ = 4.92 × /s10−18 U235 U238

1.0 ×105

Ra226

Po210 1.0μCi

U235 U238

U238

U234

Cf249

α U238

U238 Th234

β− H3

H3

β− Sr90

β− Y90

A
ZXN β− H3

90.0

0.100
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51. An electron can interact with a nucleus through the beta-decay process: .

(a) Write the complete reaction equation for electron capture by .

(b) Calculate the energy released.

52. (a) Write the complete reaction equation for electron capture by .

(b) Calculate the energy released.

53. A rare decay mode has been observed in which  emits a  nucleus.

(a) The decay equation is . Identify the nuclide .

(b) Find the energy emitted in the decay. The mass of  is 222.015353 u.

10.5 Fission

54. A large power reactor that has been in operation for some months is turned off, but residual activity in the core still
produces 150 MW of power. If the average energy per decay of the fission products is 1.00 MeV, what is the core activity?

55. (a) Calculate the energy released in this rare neutron-induced fission , given 
 and .

(b) This result is about 6 MeV greater than the result for spontaneous fission. Why? (c) Confirm that the total number
of nucleons and total charge are conserved in this reaction.

56. (a) Calculate the energy released in the neutron-induced fission reaction , given 
 and .

(b) Confirm that the total number of nucleons and total charge are conserved in this reaction.

57. The electrical power output of a large nuclear reactor facility is 900 MW. It has a  efficiency in converting nuclear
power to electrical power.

(a) What is the thermal nuclear power output in megawatts?

(b) How many  nuclei fission each second, assuming the average fission produces 200 MeV?

(c) What mass of  is fissioned in 1 year of full-power operation?

58. Find the total energy released if 1.00 kg of  were to undergo fission.

10.6 Nuclear Fusion

59. Verify that the total number of nucleons, and total charge are conserved for each of the following fusion reactions in the
proton-proton chain.

(i) ,

(ii) , and

(iii) . (List the value of each of the conserved quantities before and after each of the
reactions.)

60. Calculate the energy output in each of the fusion reactions in the proton-proton chain, and verify the values determined in
the preceding problem.

61. Show that the total energy released in the proton-proton chain is 26.7 MeV, considering the overall effect in 
, and . Be sure to include the

annihilation energy.

62. Two fusion reactions mentioned in the text are  and . Both reactions release
energy, but the second also creates more fuel. Confirm that the energies produced in the reactions are 20.58 and 2.22 MeV,
respectively. Comment on which product nuclide is most tightly bound,  or .

63. The power output of the Sun is .

(a) If  of this energy is supplied by the proton-proton chain, how many protons are consumed per second?

X+ → Y +A
Z e− ve

Be7

O15

Ra222 C14

Ra X C222 →A +14 XA

Ra222

n U Sr Xe+3n+238 →96 +140

m Sr) = 95.921750u(96 m Xe) = 139.92164(140

n U Kr Ba+2n+235 →92 +142

m Kr) = 91.926269u(92 m Ba) = 141.916361u(142

35.0

U235

U235

U235
92

H H H + +1 +1 →2 e+ ve

H H He+γ1 +2 →3

He He He H H3 +3 →4 +1 +1

H H H + + H H He+γ1 +1 →2 e+ ve,1 +2 →3 He He He H H3 +3 →4 +1 +1

n He He+γ+3 →4 n H H +γ+1 →2

He4 H2

4 × W1026

90
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(b) How many neutrinos per second should there be per square meter at the surface of Earth from this process?

64. Another set of reactions that fuses hydrogen into helium in the Sun and especially in hotter stars is called the CNO cycle: 

This process is a “cycle” because  appears at the beginning and end of these reactions. Write down the overall effect of
this cycle (as done for the proton-proton chain in ). Assume that the positrons annihilate
electrons to form more  rays.

65. (a) Calculate the energy released by the fusion of a 1.00-kg mixture of deuterium and tritium, which produces helium.
There are equal numbers of deuterium and tritium nuclei in the mixture.

(b) If this process takes place continuously over a period of a year, what is the average power output?

10.7 Medical Applications and Biological Effects of Nuclear Radiation

66. What is the dose in mSv for:

(a) a 0.1-Gy X-ray?

(b) 2.5 mGy of neutron exposure to the eye?

(c) 1.5m Gy of  exposure?

67. Find the radiation dose in Gy for:

(a) A 10-mSv fluoroscopic X-ray series.

(b) 50 mSv of skin exposure by an  emitter.

(c) 160 mSv of  and  rays from the  in your body.

68. Find the mass of  that has an activity of .

69. In the 1980s, the term picowave was used to describe food irradiation in order to overcome public resistance by playing
on the well-known safety of microwave radiation. Find the energy in MeV of a photon having a wavelength of a picometer.

70. What is the dose in Sv in a cancer treatment that exposes the patient to 200 Gy of  rays?

71. One half the γγ rays from  are absorbed by a 0.170-mm-thick lead shielding. Half of the  rays that pass through
the first layer of lead are absorbed in a second layer of equal thickness. What thickness of lead will absorb all but one in 1000
of these  rays?

72. How many Gy of exposure is needed to give a cancerous tumor a dose of 40 Sv if it is exposed to  activity?

73. A plumber at a nuclear power plant receives a whole-body dose of 30 mSv in 15 minutes while repairing a crucial valve.
Find the radiation-induced yearly risk of death from cancer and the chance of genetic defect from this maximum allowable
exposure.

74. Calculate the dose in rem/y for the lungs of a weapons plant employee who inhales and retains an activity of  
 in an accident. The mass of affected lung tissue is 2.00 kg and the plutonium decays by emission of a 5.23-MeV 

particle. Assume a RBE value of 20.

Additional Problems
75. The wiki-phony site states that the atomic mass of chlorine is 40 g/mol. Check this result. Hint: The two, most common
stable isotopes of chlorine are:  and . (The abundance of Cl-35 is , and the abundance of Cl-37 is .)

76. A particle physicist discovers a neutral particle with a mass of 2.02733 u that he assumes is two neutrons bound together.

(a) Find the binding energy.

(b) What is unreasonable about this result?

77. A nuclear physicist finds  of  in a piece of uranium ore ( .

(a) Use the decay law to determine how much  would had to have been on Earth when it formed ago
for 1.0μg1.0μg to be left today.

C H N + N → 13C + + C H + N H O N + + 15N H → 12C12 +1 →13 γ13 e+ v13
e +1 γ14 +1 →15 +15 e+ ve +1

+ He4

C12

2 + H He+2 +6γe− 41 →4 ve
γ

α

α

β− γ K40

Pu239 1.00μCi

γ

Tc99m γ

γ

α

1.00μCi

Pu239 α

Cl35
17 Cl37

17 75.8 24.2

1.0μg U236 = 2.348 × yT1/2 107

U236 4.543 × y109
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(b) What is unreasonable about this result?

(c) How is this unreasonable result resolved?

78. A group of scientists use carbon dating to date a piece of wood to be 3 billion years old. Why doesn’t this make sense?

79. According to your lab partner, a 2.00-cm-thick sodium-iodide crystal absorbs all but  of rays from a radioactive source
and a 4.00-cm piece of the same material absorbs all but ? Is this result reasonable?

80. In the science section of the newspaper, an article reports the efforts of a group of scientists to create a new nuclear
reactor based on the fission of iron (Fe). Is this a good idea?

81. The ceramic glaze on a red-orange “Fiestaware” plate is  and contains 50.0 grams of , but very little .

(a) What is the activity of the plate?

(b) Calculate the total energy that will be released by the  decay.

(c) If energy is worth 12.0 cents per , what is the monetary value of the energy emitted? (These brightly-colored
ceramic plates went out of production some 30 years ago, but are still available as collectibles.)

82. Large amounts of depleted uranium ( ) are available as a by-product of uranium processing for reactor fuel and
weapons. Uranium is very dense and makes good counter weights for aircraft. Suppose you have a 4000-kg block of .

(a) Find its activity.

(b) How many calories per day are generated by thermalization of the decay energy?

(c) Do you think you could detect this as heat? Explain.

83. A piece of wood from an ancient Egyptian tomb is tested for its carbon-14 activity. It is found to have an activity per
gram of carbon of . What is the age of the wood?

Challenge Problems
84. This problem demonstrates that the binding energy of the electron in the ground state of a hydrogen atom is much smaller
than the rest mass energies of the proton and electron.

(a) Calculate the mass equivalent in u of the 13.6-eV binding energy of an electron in a hydrogen atom, and compare
this with the known mass of the hydrogen atom.

(b) Subtract the known mass of the proton from the known mass of the hydrogen atom.

(c) Take the ratio of the binding energy of the electron (13.6 eV) to the energy equivalent of the electron’s mass (0.511
MeV). (d) Discuss how your answers confirm the stated purpose of this problem.

85. The Galileo space probe was launched on its long journey past Venus and Earth in 1989, with an ultimate goal of Jupiter.
Its power source is 11.0 kg of , a by-product of nuclear weapons plutonium production. Electrical energy is generated
thermoelectrically from the heat produced when the 5.59-MeV  particles emitted in each decay crash to a halt inside the
plutonium and its shielding. The half-life of  is 87.7 years.

(a) What was the original activity of the  in becquerels?

(b) What power was emitted in kilowatts?

(c) What power was emitted 12.0 y after launch? You may neglect any extra energy from daughter nuclides and any
losses from escaping  rays.

86. Find the energy emitted in the  decay of .

87. Engineers are frequently called on to inspect and, if necessary, repair equipment in nuclear power plants. Suppose that the
city lights go out. After inspecting the nuclear reactor, you find a leaky pipe that leads from the steam generator to turbine
chamber.

(a) How do the pressure readings for the turbine chamber and steam condenser compare?

(b) Why is the nuclear reactor not generating electricity?

10

5

U2O3 U238 U235

U238

kW ⋅h

U238

U238

A = 10decay/min ⋅ g

Pu238

α

Pu238

Pu238

γ

β− Co60
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88. If two nuclei are to fuse in a nuclear reaction, they must be moving fast enough so that the repulsive Coulomb force
between them does not prevent them for getting within  of one another. At this distance or nearer, the attractive
nuclear force can overcome the Coulomb force, and the nuclei are able to fuse.

(a) Find a simple formula that can be used to estimate the minimum kinetic energy the nuclei must have if they are to
fuse. To keep the calculation simple, assume the two nuclei are identical and moving toward one another with the same
speed v.

(b) Use this minimum kinetic energy to estimate the minimum temperature a gas of the nuclei must have before a
significant number of them will undergo fusion. Calculate this minimum temperature first for hydrogen and then for
helium. (Hint: For fusion to occur, the minimum kinetic energy when the nuclei are far apart must be equal to the
Coulomb potential energy when they are a distance R apart.)

89. For the reaction, , find the amount of energy transfers to  and  (on the right side of the
equation). Assume the reactants are initially at rest. (Hint: Use conservation of momentum principle.)

90. Engineers are frequently called on to inspect and, if necessary, repair equipment in medical hospitals. Suppose that the
PET system malfunctions. After inspecting the unit, you suspect that one of the PET photon detectors is misaligned. To test
your theory you position one detector at the location  relative to a radioactive test sample at the
center of the patient bed.

(a) If the second photon detector is properly aligned where should it be located?

(b) What energy reading is expected?

This page titled 12.E: Nuclear Physics (Exercises) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

10.E: Nuclear Physics (Exercises) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-3.

R ≈ m10−14

n He He+γ+3 →4 He4 γ

(r, θ,φ) = (1.5, 45, 30)
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12.S: Nuclear Physics (Summary)

Key Terms
activity magnitude of the decay rate for radioactive nuclides

alpha (α) rays
one of the types of rays emitted from the nucleus of an atom as

alpha particles

alpha decay
radioactive nuclear decay associated with the emission of an alpha

particle

antielectrons another term for positrons

antineutrino antiparticle of an electron’s neutrino in β−β− decay

atomic mass total mass of the protons, neutrons, and electrons in a single atom

atomic mass unit
unit used to express the mass of an individual nucleus, where 

atomic nucleus tightly packed group of nucleons at the center of an atom

atomic number number of protons in a nucleus

becquerel (Bq)
SI unit for the decay rate of a radioactive material, equal to 1

decay/second

beta (ββ) rays
one of the types of rays emitted from the nucleus of an atom as

beta particles

beta decay
radioactive nuclear decay associated with the emission of a beta

particle

binding energy (BE)
energy needed to break a nucleus into its constituent protons and

neutrons

binding energy per nucleon (BEN) energy need to remove a nucleon from a nucleus

breeder reactor reactor that is designed to make plutonium

carbon-14 dating
method to determine the age of formerly living tissue using the

ratio 

chart of the nuclides graph comprising stable and unstable nuclei

critical mass
minimum mass required of a given nuclide in order for self-

sustained fission to occur

criticality condition in which a chain reaction easily becomes self-sustaining

curie (Ci)
unit of decay rate, or the activity of 1 g of , equal to 

daughter nucleus nucleus produced by the decay of a parent nucleus

decay
process by which an individual atomic nucleus of an unstable atom

loses mass and energy by emitting ionizing particles

decay constant
quantity that is inversely proportional to the half-life and that is

used in equation for number of nuclei as a function of time

decay series series of nuclear decays ending in a stable nucleus

fission splitting of a nucleus

1u = 1.66054 × kg10−27

C C14 /12

Ra226

3.70 × Bq1010
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gamma (γγ) rays
one of the types of rays emitted from the nucleus of an atom as

gamma particles

gamma decay
radioactive nuclear decay associated with the emission of gamma

radiation

half-life
time for half of the original nuclei to decay (or half of the original

nuclei remain)

high dose dose of radiation greater than 1 Sv (100 rem)

isotopes
nuclei having the same number of protons but different numbers of

neutrons

lifetime average time that a nucleus exists before decaying

liquid drop model
model of nucleus (only to understand some of its features) in

which nucleons in a nucleus act like atoms in a drop

low dose dose of radiation less than 100 mSv (10 rem)

mass defect
difference between the mass of a nucleus and the total mass of its

constituent nucleons

mass number number of nucleons in a nucleus

moderate dose dose of radiation from 0.1 Sv to 1 Sv (10 to 100 rem)

neutrino subatomic elementary particle which has no net electric charge

neutron number number of neutrons in a nucleus

nuclear fusion process of combining lighter nuclei to make heavier nuclei

nuclear fusion reactor nuclear reactor that uses the fusion chain to produce energy

nucleons protons and neutrons found inside the nucleus of an atom

nucleosynthesis
process of fusion by which all elements on Earth are believed to

have been created

nuclide nucleus

parent nucleus original nucleus before decay

positron electron with positive charge

positron emission tomography (PET)
tomography technique that uses  emitters and detects the two

annihilation  rays, aiding in source localization

proton-proton chain combined reactions that fuse hydrogen nuclei to produce He nuclei

radiation dose unit (rad) ionizing energy deposited per kilogram of tissue

radioactive dating
application of radioactive decay in which the age of a material is

determined by the amount of radioactivity of a particular type that
occurs

radioactive decay law
describes the exponential decrease of parent nuclei in a radioactive

sample

radioactive tags
special drugs (radiopharmaceuticals) that allow doctors to track

movement of other drugs in the body

radioactivity spontaneous emission of radiation from nuclei

radiopharmaceutical compound used for medical imaging

β+

γ
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radius of a nucleus radius of a nucleus is defined as 

relative biological effectiveness (RBE)
number that expresses the relative amount of damage that a fixed

amount of ionizing radiation of a given type can inflict on
biological tissues

roentgen equivalent man (rem) dose unit more closely related to effects in biological tissue

sievert (Sv) SI equivalent of the rem

single-photon-emission computed tomography (SPECT) tomography performed with -emitting radiopharmaceuticals

strong nuclear force force that binds nucleons together in the nucleus

transuranic element element that lies beyond uranium in the periodic table

Key Equations
Atomic mass number

Standard format for expressing an isotope

Nuclear radius, where r  is the radius of a single proton

Mass defect

Binding energy

Binding energy per nucleon

Radioactive decay rate

Radioactive decay law

Decay constant

Lifetime of a substance

Activity of a radioactive substance

Activity of a radioactive substance (linear form)

Alpha decay

Beta decay

Positron emission

Gamma decay

Summary

10.1 Properties of Nuclei
The atomic nucleus is composed of protons and neutrons.
The number of protons in the nucleus is given by the atomic number, Z. The number of neutrons in the nucleus is the
neutron number, N. The number of nucleons is mass number, A.
Atomic nuclei with the same atomic number, Z, but different neutron numbers, N, are isotopes of the same element.
The atomic mass of an element is the weighted average of the masses of its isotopes.

10.2 Nuclear Binding Energy
The mass defect of a nucleus is the difference between the total mass of a nucleus and the sum of the masses of all its
constituent nucleons.

r = r0A
1/3

γ

A = Z +N

XA
Z

0 r = r0A
1/3

Δm = Z + (A−Z) −mp mn mnuc

E = (Δm)c2

BEN =
Eb

A

− = λN
dN

dt

N = N0e
−λt

λ =
0.693

T1/2

=T̄
1

λ

A = A0e
−λt

lnA = −λt + lnA0

X X HeA
Z →A−4

Z−2 +4
2

X X e+A
Z →A

Z+1 +0
−1 v̄

X e+ vAZ
X →A

Z−1 +0
+1

X∗ X+ γA
Z →A

Z
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The binding energy (BE) of a nucleus is equal to the amount of energy released in forming the nucleus, or the mass defect
multiplied by the speed of light squared.
A graph of binding energy per nucleon (BEN) versus atomic number A implies that nuclei divided or combined release an
enormous amount of energy.
The binding energy of a nucleon in a nucleus is analogous to the ionization energy of an electron in an atom.

10.3 Radioactive Decay
In the decay of a radioactive substance, if the decay constant (λλ) is large, the half-life is small, and vice versa.
The radioactive decay law, , uses the properties of radioactive substances to estimate the age of a substance.
Radioactive carbon has the same chemistry as stable carbon, so it mixes into the ecosphere and eventually becomes part
of every living organism. By comparing the abundance of  in an artifact with the normal abundance in living tissue, it
is possible to determine the artifact’s age.

10.4 Nuclear Reactions
The three types of nuclear radiation are alpha ( ) rays, beta ( ) rays, and gamma ( ) rays.
We represent αα decay symbolically by . There are two types of  decay: either an electron ( ) or
a positron ( ) is emitted by a nucleus.  decay is represented symbolically by .
When a heavy nucleus decays to a lighter one, the lighter daughter nucleus can become the parent nucleus for the next
decay, and so on, producing a decay series.

10.5 Fission
Nuclear fission is a process in which the sum of the masses of the product nuclei are less than the masses of the reactants.
Energy changes in a nuclear fission reaction can be understood in terms of the binding energy per nucleon curve.
The production of new or different isotopes by nuclear transformation is called breeding, and reactors designed for this
purpose are called breeder reactors.

10.6 Nuclear Fusion
Nuclear fusion is a reaction in which two nuclei are combined to form a larger nucleus; energy is released when light
nuclei are fused to form medium-mass nuclei.
The amount of energy released by a fusion reaction is known as the Q value.
Nuclear fusion explains the reaction between deuterium and tritium that produces a fusion (or hydrogen) bomb; fusion
also explains the production of energy in the Sun, the process of nucleosynthesis, and the creation of the heavy elements.

10.7 Medical Applications and Biological Effects of Nuclear Radiation
Nuclear technology is used in medicine to locate and study diseased tissue using special drugs called
radiopharmaceuticals. Radioactive tags are used to identify cancer cells in the bones, brain tumors, and Alzheimer’s
disease, and to monitor the function of body organs, such as blood flow, heart muscle activity, and iodine uptake in the
thyroid gland.
The biological effects of ionizing radiation are due to two effects it has on cells: interference with cell reproduction and
destruction of cell function.
Common sources of radiation include that emitted by Earth due to the isotopes of uranium, thorium, and potassium;
natural radiation from cosmic rays, soils, and building materials, and artificial sources from medical and dental diagnostic
tests.
Biological effects of nuclear radiation are expressed by many different physical quantities and in many different units,
including the rad or radiation dose unit.

This page titled 12.S: Nuclear Physics (Summary) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

10.S: Nuclear Physics (Summary) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
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CHAPTER OVERVIEW

13: Atomic Structure
In this chapter, we use quantum mechanics to study the structure and properties of atoms. This study introduces ideas and concepts
that are necessary to understand more complex systems, such as molecules, crystals, and metals. As we deepen our understanding
of atoms, we build on things we already know, such as Rutherford’s nuclear model of the atom, Bohr’s model of the hydrogen
atom, and de Broglie’s wave hypothesis.

13.1: The Hydrogen Atom
13.2: Orbital Magnetic Dipole Moment of the Electron
13.3: Electron Spin
13.4: The Exclusion Principle and the Periodic Table
13.5: Atomic Spectra and X-rays
13.6: Lasers
13.A: Atomic Structure (Answers)
13.E: Atomic Structure (Exercises)
13.S: Atomic Structure (Summary)
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13.1: The Hydrogen Atom

By the end of this section, you will be able to:

Describe the hydrogen atom in terms of wave function, probability density, total energy, and orbital angular momentum
Identify the physical significance of each of the quantum numbers (n, l, m) of the hydrogen atom
Distinguish between the Bohr and Schrödinger models of the atom
Use quantum numbers to calculate important information about the hydrogen atom

In this chapter, we use quantum mechanics to study the structure and properties of atoms. This study introduces ideas and concepts
that are necessary to understand more complex systems, such as molecules, crystals, and metals. As we deepen our understanding
of atoms, we build on things we already know, such as Rutherford’s nuclear model of the atom, Bohr’s model of the hydrogen
atom, and de Broglie’s wave hypothesis.

Figure : NGC1763 is an emission nebula in the Large Magellanic Cloud, which is a satellite galaxy to our Milky Way
Galaxy. The colors we see can be explained by applying the ideas of quantum mechanics to atomic structure. (credit: NASA, ESA,
and Josh Lake)

Figure  is NGC1763, an emission nebula in the small galaxy known as the Large Magellanic Cloud, which is a satellite of the
Milky Way Galaxy. Ultraviolet light from hot stars ionizes the hydrogen atoms in the nebula. As protons and electrons recombine,
radiation of different frequencies is emitted. The details of this process can be correctly predicted by quantum mechanics and are
examined in this chapter.

The Hydrogen Atom

The hydrogen atom is the simplest atom in nature and, therefore, a good starting point to study atoms and atomic structure. The
hydrogen atom consists of a single negatively charged electron that moves about a positively charged proton (Figure ). In
Bohr’s model, the electron is pulled around the proton in a perfectly circular orbit by an attractive Coulomb force. The proton is
approximately 1800 times more massive than the electron, so the proton moves very little in response to the force on the proton by
the electron. (This is analogous to the Earth-Sun system, where the Sun moves very little in response to the force exerted on it by
Earth.) An explanation of this effect using Newton’s laws is given in Photons and Matter Waves.

 Learning Objectives

13.1.1

13.1.1

13.1.1
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Figure : A representation of the Bohr model of the hydrogen atom.

With the assumption of a fixed proton, we focus on the motion of the electron.

In the electric field of the proton, the potential energy of the electron is

where  and  is the distance between the electron and the proton. As we saw earlier, the force on an object is equal to
the negative of the gradient (or slope) of the potential energy function. For the special case of a hydrogen atom, the force between
the electron and proton is an attractive Coulomb force.

Notice that the potential energy function  does not vary in time. As a result, Schrödinger’s equation of the hydrogen atom
reduces to two simpler equations: one that depends only on space (x, y, z) and another that depends only on time (t). (The
separation of a wave function into space- and time-dependent parts for time-independent potential energy functions is discussed in
Quantum Mechanics.) We are most interested in the space-dependent equation:

where  is the three-dimensional wave function of the electron, meme is the mass of the electron, and  is the total
energy of the electron. Recall that the total wave function , is the product of the space-dependent wave function 

 and the time-dependent wave function .

In addition to being time-independent,  is also spherically symmetrical. This suggests that we may solve Schrödinger’s
equation more easily if we express it in terms of the spherical coordinates ( ) instead of rectangular coordinates ( ). A
spherical coordinate system is shown in Figure . In spherical coordinates, the variable  is the radial coordinate,  is the polar
angle (relative to the vertical z-axis), and  is the azimuthal angle (relative to the x-axis). The relationship between spherical and
rectangular coordinates is , , .

Figure : The relationship between the spherical and rectangular coordinate systems.

The factor  is the magnitude of a vector formed by the projection of the polar vector onto the xy-plane. Also, the coordinates
of x and y are obtained by projecting this vector onto the x- and y-axes, respectively. The inverse transformation gives

13.1.1
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Schrödinger’s wave equation for the hydrogen atom in spherical coordinates is discussed in more advanced courses in modern
physics, so we do not consider it in detail here. However, due to the spherical symmetry of , this equation reduces to three
simpler equations: one for each of the three coordinates ( , , and ). Solutions to the time-independent wave function are written
as a product of three functions:

where  is the radial function dependent on the radial coordinate  only;  is the polar function dependent on the polar coordinate 
 only; and  is the phi function of  only. Valid solutions to Schrödinger’s equation  are labeled by the quantum

numbers , , and .

: principal quantum number
: angular momentum quantum number

: angular momentum projection quantum number

(The reasons for these names will be explained in the next section.) The radial function  depends only on  and ; the polar
function  depends only on  and ; and the phi function  depends only on . The dependence of each function on quantum
numbers is indicated with subscripts:

Not all sets of quantum numbers ( , , ) are possible. For example, the orbital angular quantum number  can never be greater or
equal to the principal quantum number . Specifically, we have

Notice that for the ground state, , , and . In other words, there is only one quantum state with the wave function
for , and it is . However, for , we have

and

Therefore, the allowed states for the  state are , , , and . Example wave functions for the hydrogen atom
are given in Table . Note that some of these expressions contain the letter , which represents . When probabilities are
calculated, these complex numbers do not appear in the final answer.

: Wave Functions of the Hydrogen Atom
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Physical Significance of the Quantum Numbers

Each of the three quantum numbers of the hydrogen atom ( , , ) is associated with a different physical quantity.

Principal Quantum Number

The principal quantum number  is associated with the total energy of the electron, . According to Schrödinger’s equation:

where . Notice that this expression is identical to that of Bohr’s model. As in the Bohr model, the electron in a
particular state of energy does not radiate.

For the hydrogen atom, how many possible quantum states correspond to the principal number ? What are the energies
of these states?

Strategy

For a hydrogen atom of a given energy, the number of allowed states depends on its orbital angular momentum. We can count
these states for each value of the principal quantum number, . However, the total energy depends on the principal
quantum number only, which means that we can use Equation  and the number of states counted.

Solution
If , the allowed values of  are 0, 1, and 2. If ,  (1 state). If ,  (3 states); and if , 

 (5 states). In total, there are 1 + 3 + 5 = 9 allowed states. Because the total energy depends only on the
principal quantum number, , the energy of each of these states is

Significance

An electron in a hydrogen atom can occupy many different angular momentum states with the very same energy. As the orbital
angular momentum increases, the number of the allowed states with the same energy increases.

Angular Momentum Orbital Quantum Number

The angular momentum orbital quantum number  is associated with the orbital angular momentum of the electron in a
hydrogen atom. Quantum theory tells us that when the hydrogen atom is in the state , the magnitude of its orbital angular
momentum is

where .

This result is slightly different from that found with Bohr’s theory, which quantizes angular momentum according to the rule 
, where 

Quantum states with different values of orbital angular momentum are distinguished using spectroscopic notation (Table 
). The designations s, p, d, and f result from early historical attempts to classify atomic spectral lines. (The letters stand

for sharp, principal, diffuse, and fundamental, respectively.) After f, the letters continue alphabetically.

n = 2, l = 1, = 1ml
= sin θψ211

1

8 π−−√

1

a
3/2
0

r

a0
e−r/2a0 eiϕ
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n En

= −( )( ) = − ( ) ,En

mek
2e4
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1
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1
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 Example : How Many Possible States?13.1.1

n = 3

n = 1, 2, 3
13.1.1
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n = 3

= − ( ) = = −1.51 eV .En3 E0
1
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−13.6 eV

9

l

ψnlm

L = ℏ,l(l+1)
− −−−−−

√
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L = n n = 1, 2, 3, . . .

 Spectroscopic Notation
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The ground state of hydrogen is designated as the 1s state, where “1” indicates the energy level ( ) and “s” indicates the
orbital angular momentum state ( ). When ,  can be either 0 or 1. The ,  state is designated “2s.” The 

,  state is designated “2p.” When ,  can be 0, 1, or 2, and the states are 3s, 3p, and 3d, respectively. Notation
for other quantum states is given in Table .

Table : Spectroscopic Notation and Orbital Angular Momentum

Orbital Quantum Number Angular Momentum State Spectroscopic Name

0 0 s Sharp

1 p Principal

2 d Diffuse

3 f Fundamental

4 g  

5 h  

Angular Momentum Projection Quantum Number

The angular momentum projection quantum number  is associated with the azimuthal angle  (see Figure ) and is
related to the z-component of orbital angular momentum of an electron in a hydrogen atom. This component is given by

where .

The z-component of angular momentum is related to the magnitude of angular momentum by

where  is the angle between the angular momentum vector and the z-axis. Note that the direction of the z-axis is determined by
experiment - that is, along any direction, the experimenter decides to measure the angular momentum. For example, the z-direction
might correspond to the direction of an external magnetic field. The relationship between  and  is given in Figure .

Figure : The z-component of angular momentum is quantized with its own quantum number m.
Table : Spectroscopic Description of Quantum States

 

1s      

2s 2p     

3s 3p 3d    

4s 4p 4d 4f   

n = 1
l = 0 n = 2 l n = 2 l = 0

n = 2 l = 1 n = 3 l

13.1.3

13.1.2

l

h2
–√

h6
–√

h12
−−

√

h20
−−√

h30
−−√

m ϕ 13.1.2

= mℏ,Lz

m = −l, −l+1, . . . , 0, . . . , +l−1, l

= L cosθ,Lz

θ

Lz L 13.1.3

13.1.3

13.1.3

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

n = 1
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n = 3

n = 4
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5s 5p 5d 5f 5g  

6s 6p 6d 6f 6g 6h

The quantization of  is equivalent to the quantization of . Substituting  for  and  for  into this equation, we
find

Thus, the angle  is quantized with the particular values

Notice that both the polar angle ( ) and the projection of the angular momentum vector onto an arbitrary z-axis ( ) are quantized.

The quantization of the polar angle for the  state is shown in Figure . The orbital angular momentum vector lies
somewhere on the surface of a cone with an opening angle  relative to the z-axis (unless , in which case  and the
vector points are perpendicular to the z-axis).

Figure : The quantization of orbital angular momentum. Each vector lies on the surface of a cone with axis along the z-axis.

A detailed study of angular momentum reveals that we cannot know all three components simultaneously. In the previous section,
the z-component of orbital angular momentum has definite values that depend on the quantum number . This implies that we
cannot know both x- and y-components of angular momentum,  and , with certainty. As a result, the precise direction of the
orbital angular momentum vector is unknown.

Calculate the angles that the angular momentum vector  can make with the z-axis for , as shown in Figure .

n = 5

n = 6

Lz θ ℏl(l+1)
− −−−−−

√ L m Lz

mℏ = ℏ cos θ.l(l+1)
− −−−−−

√

θ

θ = ( ).cos−1 m

l(l+1)
− −−−−−

√

θ Lz

l = 3 13.1.4
θ m = 0 θ = 90o

13.1.4

m

Lx Ly

 Example : What Are the Allowed Directions?13.1.2

L⃗  l = 1 13.1.5
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Figure : The component of a given angular momentum along the z-axis (defined by the direction of a magnetic field) can
have only certain values. These are shown here for , for which  and . The direction of  is quantized in the
sense that it can have only certain angles relative to the z-axis.

Strategy

The vectors  and  (in the z-direction) form a right triangle, where  is the hypotenuse and  is the adjacent side. The ratio
of  to | | is the cosine of the angle of interest. The magnitudes  and  are given by

and

Solution
We are given , so  can be +1, 0, or +1. Thus,  has the value given by

The quantity  can have three values, given by .

As you can see in Figure , , so for , we have

Thus,

Similarly, for , we find ; this gives

13.1.5
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→
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− −−−−−

√
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l = 1 m L
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− −−−−−

√ 2
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√

Lz = ℏLz ml
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⎧
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13.1.5 cosθ = Lz/L m = +1

cos = = = = 0.707θ1
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L
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ℏ2
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2
–√

= 0.707 = 45.0°.θ1 cos−1

m = 0 cos = 0θ2

= 0 = 90.0°.θ2 cos−1
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Then for :

so that

Significance

The angles are consistent with the figure. Only the angle relative to the z-axis is quantized.  can point in any direction as long
as it makes the proper angle with the z-axis. Thus, the angular momentum vectors lie on cones, as illustrated. To see how the
correspondence principle holds here, consider that the smallest angle (  in the example) is for the maximum value of ,
namely . For that smallest angle,

which approaches 1 as  becomes very large. If , then . Furthermore, for large , there are many values of ,
so that all angles become possible as  gets very large.

Can the magnitude  ever be equal to ?

Answer

No. The quantum number . Thus, the magnitude of  is always less than  because 

Using the Wave Function to Make Predictions
As we saw earlier, we can use quantum mechanics to make predictions about physical events by the use of probability statements.
It is therefore proper to state, “An electron is located within this volume with this probability at this time,” but not, “An electron is
located at the position (x, y, z) at this time.” To determine the probability of finding an electron in a hydrogen atom in a particular
region of space, it is necessary to integrate the probability density \(|ψ_{nlm}|^2)_ over that region:

where  is an infinitesimal volume element. If this integral is computed for all space, the result is 1, because the probability of the
particle to be located somewhere is 100% (the normalization condition). In a more advanced course on modern physics, you will
find that , where  is the complex conjugate. This eliminates the occurrences  in the above
calculation.

Consider an electron in a state of zero angular momentum ( ). In this case, the electron’s wave function depends only on the
radial coordinate . (Refer to the states  and  in Table .) The infinitesimal volume element corresponds to a
spherical shell of radius  and infinitesimal thickness , written as

The probability of finding the electron in the region  to  (“at approximately r”) is

Here  is called the radial probability density function (a probability per unit length). For an electron in the ground state of
hydrogen, the probability of finding an electron in the region  to  is

= −1ml
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√
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where  angstroms. The radial probability density function  is plotted in Figure . The area under the curve
between any two radial positions, say  and , gives the probability of finding the electron in that radial range. To find the most
probable radial position, we set the first derivative of this function to zero ( ) and solve for . The most probable radial
position is not equal to the average or expectation value of the radial position because  is not symmetrical about its peak
value.

Figure : The radial probability density function for the ground state of hydrogen.

If the electron has orbital angular momentum ( ), then the wave functions representing the electron depend on the angles  and
; that is, . Atomic orbitals for three states with  and  are shown in Figure . An atomic

orbital is a region in space that encloses a certain percentage (usually 90%) of the electron probability. (Sometimes atomic orbitals
are referred to as “clouds” of probability.) Notice that these distributions are pronounced in certain directions. This directionality is
important to chemists when they analyze how atoms are bound together to form molecules.

Figure : The probability density distributions for three states with  and . The distributions are directed along the
(a) x-axis, (b) y-axis, and (c) z-axis.

A slightly different representation of the wave function is given in Figure . In this case, light and dark regions indicate
locations of relatively high and low probability, respectively. In contrast to the Bohr model of the hydrogen atom, the electron does
not move around the proton nucleus in a well-defined path. Indeed, the uncertainty principle makes it impossible to know how the
electron gets from one place to another.

= 0.5a0 P (r) 13.1.6
r1 r2

dP/dr = 0 r

|ψn00|2

13.1.6

l ≠ 0 θ

ϕ = (r, θ,ϕ)ψnlm ψnlm n = 2 l = 1 13.1.7
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Figure : Probability clouds for the electron in the ground state and several excited states of hydrogen. The probability of
finding the electron is indicated by the shade of color; the lighter the coloring, the greater the chance of finding the electron.

This page titled 13.1: The Hydrogen Atom is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

8.2: The Hydrogen Atom by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-3.
8.1: Prelude to Atomic Structure by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-3.
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13.2: Orbital Magnetic Dipole Moment of the Electron

By the end of this section, you will be able to:

Explain why the hydrogen atom has magnetic properties
Explain why the energy levels of a hydrogen atom associated with orbital angular momentum are split by an external
magnetic field
Use quantum numbers to calculate the magnitude and direction of the orbital magnetic dipole moment of a hydrogen atom

In Bohr’s model of the hydrogen atom, the electron moves in a circular orbit around the proton. The electron passes by a particular
point on the loop in a certain time, so we can calculate a current . An electron that orbits a proton in a hydrogen atom is
therefore analogous to current flowing through a circular wire (Figure ). In the study of magnetism, we saw that a current-
carrying wire produces magnetic fields. It is therefore reasonable to conclude that the hydrogen atom produces a magnetic field and
interacts with other magnetic fields.

Figure : (a) Current flowing through a circular wire is analogous to (b) an electron that orbits a proton in a hydrogen atom.

The orbital magnetic dipole moment is a measure of the strength of the magnetic field produced by the orbital angular momentum
of an electron. From Force and Torque on a Current Loop, the magnitude of the orbital magnetic dipole moment for a current loop
is

where  is the current and  is the area of the loop. (For brevity, we refer to this as the magnetic moment.) The current  associated
with an electron in orbit about a proton in a hydrogen atom is

where e is the magnitude of the electron charge and  is its orbital period. If we assume that the electron travels in a perfectly
circular orbit, the orbital period is

where r is the radius of the orbit and v is the speed of the electron in its orbit. Given that the area of a circle is , the absolute
magnetic moment is

It is helpful to express the magnetic momentum μμ in terms of the orbital angular momentum ( ). Because the electron
orbits in a circle, the position vector  and the momentum vector  form a right angle. Thus, the magnitude of the orbital angular
momentum is

Combining these two equations, we have

 Learning Objectives
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In full vector form, this expression is written as

The negative sign appears because the electron has a negative charge. Notice that the direction of the magnetic moment of the
electron is antiparallel to the orbital angular momentum, as shown in Figure    . In the Bohr model of the atom, the
relationship between  and  in Equation  is independent of the radius of the orbit.

The magnetic moment  can also be expressed in terms of the orbital angular quantum number . Combining Equation  and
Equation , the magnitude of the magnetic moment is

The z-component of the magnetic moment is

The quantity  is a fundamental unit of magnetism called the Bohr magneton, which has the value 
(J/T) or . Quantization of the magnetic moment is the result of quantization of the orbital angular momentum.

As we will see in the next section, the total magnetic dipole moment of the hydrogen atom is due to both the orbital motion of the
electron and its intrinsic spin. For now, we ignore the effect of electron spin.

What is the magnitude of the orbital dipole magnetic moment μ of an electron in the hydrogen atom in the (a) s state, (b) p
state, and (c) d state? (Assume that the spin of the electron is zero.)

Strategy

The magnetic momentum of the electron is related to its orbital angular momentum L. For the hydrogen atom, this quantity is
related to the orbital angular quantum number l. The states are given in spectroscopic notation, which relates a letter (s, p, d,
etc.) to a quantum number.

Solution
The magnitude of the magnetic moment is given in Equation :

1. For the s state,  so we have  and .
2. For the p state,  and we have

μ =( )L.
e

2me

(13.2.3)

= −( ) .μ⃗ 
e

2me

L⃗  (13.2.4)

13.2.1b

μ⃗  L⃗  13.2.4

μ l 13.2.2
13.2.1
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e

2me

e

2me

l(l +1)
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√ (13.2.5)

μz = −( )
e

2me

Lz

= −( ) mℏ
e

2me

= − m.μB

(13.2.6)

(13.2.7)

(13.2.8)

μB 9.3 × Joule/T esla10−24

5.8 × eV /T10−5

 Example : Orbital Magnetic Dipole Moment13.2.1
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where  so

3. For the d state,  and we obtain

where  so

Significance

In the s state, there is no orbital angular momentum and therefore no magnetic moment. This does not mean that the electron is
at rest, just that the overall motion of the electron does not produce a magnetic field. In the p state, the electron has a magnetic
moment with three possible values for the z-component of this magnetic moment; this means that magnetic moment can point
in three different polar directions—each antiparallel to the orbital angular momentum vector. In the d state, the electron has a
magnetic moment with five possible values for the z-component of this magnetic moment. In this case, the magnetic moment
can point in five different polar directions.

A hydrogen atom has a magnetic field, so we expect the hydrogen atom to interact with an external magnetic field—such as the
push and pull between two bar magnets. From Force and Torque on a Current Loop, we know that when a current loop interacts
with an external magnetic field , it experiences a torque given by

where I is the current,  is the area of the loop,  is the magnetic moment, and  is the external magnetic field. This torque acts to
rotate the magnetic moment vector of the hydrogen atom to align with the external magnetic field. Because mechanical work is
done by the external magnetic field on the hydrogen atom, we can talk about energy transformations in the atom. The potential
energy of the hydrogen atom associated with this magnetic interaction is given by Equation :

If the magnetic moment is antiparallel to the external magnetic field, the potential energy is large, but if the magnetic moment is
parallel to the field, the potential energy is small. Work done on the hydrogen atom to rotate the atom’s magnetic moment vector in
the direction of the external magnetic field is therefore associated with a drop in potential energy. The energy of the system is
conserved, however, because a drop in potential energy produces radiation (the emission of a photon). These energy transitions are
quantized because the magnetic moment can point in only certain directions.

If the external magnetic field points in the positive z-direction, the potential energy associated with the orbital magnetic dipole
moment is

where  is the Bohr magneton and m is the angular momentum projection quantum number (or magnetic orbital quantum
number), which has the values

For example, in the  electron state, the total energy of the electron is split into three distinct energy levels corresponding to 
.

m = (−1, 0, 1)

= , 0, − .μz μB μB
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Figure : The Zeeman effect refers to the splitting of spectral lines by an external magnetic field. In the left column, the
energy splitting occurs due to transitions from the state ( ) to a lower energy state; and in the right column, energy
splitting occurs due to transitions from the state ( ) to a lower-energy state. The separation of these lines is proportional
to the strength of the external magnetic field.

The splitting of energy levels by an external magnetic field is called the Zeeman effect. Ignoring the effects of electron spin,
transitions from the  state to a common lower energy state produce three closely spaced spectral lines (Figure , left
column). Likewise, transitions from the  state produce five closely spaced spectral lines (right column). The separation of
these lines is proportional to the strength of the external magnetic field. This effect has many applications. For example, the
splitting of lines in the hydrogen spectrum of the Sun is used to determine the strength of the Sun’s magnetic field. Many such
magnetic field measurements can be used to make a map of the magnetic activity at the Sun’s surface called a magnetogram
(Figure ).

Figure : A magnetogram of the Sun. The bright and dark spots show significant magnetic activity at the surface of the Sun.

This page titled 13.2: Orbital Magnetic Dipole Moment of the Electron is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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13.3: Electron Spin

By the end of this section, you will be able to:

Express the state of an electron in a hydrogen atom in terms of five quantum numbers
Use quantum numbers to calculate the magnitude and direction of the spin and magnetic moment of an electron
Explain the fine and hyperfine structure of the hydrogen spectrum in terms of magnetic interactions inside the hydrogen
atom

In this section, we consider the effects of electron spin. Spin introduces two additional quantum numbers to our model of the
hydrogen atom. Both were discovered by looking at the fine structure of atomic spectra. Spin is a fundamental characteristic of all
particles, not just electrons, and is analogous to the intrinsic spin of extended bodies about their own axes, such as the daily rotation
of Earth.

Spin is quantized in the same manner as orbital angular momentum. It has been found that the magnitude of the intrinsic spin
angular momentum  of an electron is given by

where  is defined to be the spin quantum number. This is similar to the quantization of , except that the only value allowed for 
 for an electron is . The electron is said to be a “spin-half particle.” The spin projection quantum number  is

associated with the z-components of spin, expressed by

In general, the allowed quantum numbers are

For the special case of an electron ( ),

Directions of intrinsic spin are quantized, just as they were for orbital angular momentum. The  state is called the
“spin-down” state and has a z-component of spin, , the  state is called the “spin-up” state and has a z-
component of spin, . These states are shown in Figure .

Figure : The two possible states of electron spin.
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The intrinsic magnetic dipole moment of an electron  can also be expressed in terms of the spin quantum number. In analogy to
the orbital angular momentum, the magnitude of the electron magnetic moment is

According to the special theory of relativity, this value is low by a factor of 2. Thus, in vector form, the spin magnetic moment is

The z-component of the magnetic moment is (from Equation )

The spin projection quantum number has just two values ( ), so the z-component of the magnetic moment also has just
two values:

where  is one Bohr magneton. An electron is magnetic, so we expect the electron to interact with other magnetic fields. We
consider two special cases: the interaction of a free electron with an external (nonuniform) magnetic field, and an electron in a
hydrogen atom with a magnetic field produced by the orbital angular momentum of the electron.

Electron in an External Field
The Stern-Gerlach experiment provides experimental evidence that electrons have spin angular momentum. The experiment
passes a stream of silver (Ag) atoms through an external, nonuniform magnetic field. The Ag atom has an orbital angular
momentum of zero and contains a single unpaired electron in the outer shell. Therefore, the total angular momentum of the Ag
atom is due entirely to the spin of the outer electron ( ). Due to electron spin, the Ag atoms act as tiny magnets as they pass
through the magnetic field. These “magnets” have two possible orientations, which correspond to the spin-up and -down states of
the electron. The magnetic field diverts the spin up atoms in one direction and the spin-down atoms in another direction. This
produces two distinct bands on a screen (Figure ).

Figure : In the Stern-Gerlach experiment, an external, nonuniform magnetic field diverts a beam of electrons in two different
directions. This result is due to the quantization of spin angular momentum.

According to classical predictions, the angular momentum (and, therefore, the magnetic moment) of the Ag atom can point in any
direction, so one expects, instead, a continuous smudge on the screen. The resulting two bands of the Stern-Gerlach experiment
provide startling support for the ideas of quantum mechanics.

μe

=( )S.μs

e

2me

=( ) .μ⃗ 
e

me

S ⃗ 

13.3.1

μz = −( )
e

me

Sz

= −( ) ℏ.
e

me

ms

(13.3.2)

(13.3.3)

= ±1/2ms

= ±( ) = ± ,μz

e

2me

μB

μB

s = 1/2

13.3.2

13.3.2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76698?pdf


13.3.3 https://phys.libretexts.org/@go/page/76698

Visit PhET Explorations: Stern-Gerlach Experiment to learn more about the Stern-Gerlach experiment.

A hydrogen atom in the ground state is placed in an external uniform magnetic field ( ). Determine the frequency of
radiation produced in a transition between the spin-up and spin-down states of the electron.

Strategy

The spin projection quantum number is , so the z-component of the magnetic moment is

The potential energy associated with the interaction between the electron magnetic moment and the external magnetic field is

The frequency of light emitted is proportional to the energy ( ) difference between these two states.

Solution
The energy difference between these states is , so the frequency of radiation produced is

Significance

The electron magnetic moment couples with the external magnetic field. The energy of this system is different whether the
electron is aligned or not with the proton. The frequency of radiation produced by a transition between these states is
proportional to the energy difference. If we double the strength of the magnetic field, holding all other things constant, the
frequency of the radiation doubles and its wavelength is cut in half.

If the Stern-Gerlach experiment yielded four distinct bands instead of two, what might be concluded about the spin quantum
number of the charged particle?

Answer

Spin-Orbit Coupling (Fine Structure)
In a hydrogen atom, the electron magnetic moment can interact with the magnetic field produced by the orbital angular momentum
of the electron, a phenomenon called spin-orbit coupling. The orbital angular momentum ( ), orbital magnetic moment ( ), spin
angular momentum ( ), and spin magnetic moment ( ) vectors are shown together in Figure .

Just as the energy levels of a hydrogen atom can be split by an external magnetic field, so too are the energy levels of a hydrogen
atom split by internal magnetic fields of the atom. If the magnetic moment of the electron and orbital magnetic moment of the
electron are antiparallel, the potential energy from the magnetic interaction is relatively high, but when these moments are parallel,
the potential energy is relatively small. Transition from each of these two states to a lower-energy level results in the emission of a
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photon of slightly different frequency. That is, the spin-orbit coupling “splits” the spectral line expected from a spin-less electron.
The fine structure of the hydrogen spectrum is explained by spin-orbit coupling.

Figure : Spin-orbit coupling is the interaction of an electron’s spin magnetic moment  with its orbital magnetic moment 
.

Electron Spin-Nuclear Spin Coupling (Hyperfine Structure)

Just like an electron, a proton is spin 1/2 and has a magnetic moment. (According to nuclear theory, this moment is due to the
orbital motion of quarks within the proton.) The hyperfine structure of the hydrogen spectrum is explained by the interaction
between the magnetic moment of the proton and the magnetic moment of the electron, an interaction known as spin-spin coupling.
The energy of the electron-proton system is different depending on whether or not the moments are aligned. Transitions between
these states (spin-flip transitions) result in the emission of a photon with a wavelength of  cm (in the radio range). The 21-
cm line in atomic spectroscopy is a “fingerprint” of hydrogen gas. Astronomers exploit this spectral line to map the spiral arms of
galaxies, which are composed mostly of hydrogen (Figure ).

Figure : The magnetic interaction between the electron and proton in the hydrogen atom is used to map the spiral arms of the
Pinwheel Galaxy (NGC 5457). (a) The galaxy seen in visible light; (b) the galaxy seen in 21-cm hydrogen radiation; (c) the
composite image of (a) and (b). Notice how the hydrogen emission penetrates dust in the galaxy to show the spiral arms very
clearly, whereas the galactic nucleus shows up better in visible light (credit a: modification of work by ESA & NASA; credit b:
modification of work by Fabian Walter).

A complete specification of the state of an electron in a hydrogen atom requires five quantum numbers: n, l, m, s, and . The
names, symbols, and allowed values of these quantum numbers are summarized in Table .

Table : Summary of Quantum Numbers of an Electron in a Hydrogen Atom

Name Symbol Allowed values

Principal quantum number n 1, 2, 3, …

Angular momentum l 0, 1, 2, … n – 1

Angular momentum projection m

Spin s 1/2 (electrons)

Spin projection

Note that the intrinsic quantum numbers introduced in this section (  and ) are valid for many particles, not just electrons. For
example, quarks within an atomic nucleus are also spin-half particles. As we will see later, quantum numbers help to classify
subatomic particles and enter into scientific models that attempt to explain how the universe works.
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13.4: The Exclusion Principle and the Periodic Table

By the end of this section, you will be able to:

Explain the importance of Pauli’s exclusion principle to an understanding of atomic structure and molecular bonding
Explain the structure of the periodic table in terms of the total energy, orbital angular momentum, and spin of individual
electrons in an atom
Describe the electron configuration of atoms in the periodic table

So far, we have studied only hydrogen, the simplest chemical element. We have found that an electron in the hydrogen atom can be
completely specified by five quantum numbers:

:principal quantum number
: angular momentum quantum number

: angular momentum projection quantum number
: spin quantum number

: spin projection quantum number

To construct the ground state of a neutral multi-electron atom, imagine starting with a nucleus of charge Ze (that is, a nucleus of
atomic number Z) and then adding Z electrons one by one. Assume that each electron moves in a spherically symmetrical electric
field produced by the nucleus and all other electrons of the atom. The assumption is valid because the electrons are distributed
randomly around the nucleus and produce an average electric field (and potential) that is spherically symmetrical. The electric
potential U(r) for each electron does not follow the simple  form because of interactions between electrons, but it turns out
that we can still label each individual electron state by quantum numbers, ( ). (The spin quantum number  is the same
for all electrons, so it will not be used in this section.)

The structure and chemical properties of atoms are explained in part by Pauli’s exclusion principle: No two electrons in an atom
can have the same values for all four quantum numbers ( ). This principle is related to two properties of electrons: All
electrons are identical (“when you’ve seen one electron, you’ve seen them all”) and they have half-integral spin ( ). Sample
sets of quantum numbers for the electrons in an atom are given in Table . Consistent with Pauli’s exclusion principle, no two
rows of the table have the exact same set of quantum numbers.

Table : Electron States of AtomsBecause of Pauli’s exclusion principle, no two electrons in an atom have the same set of four quantum
numbers.

Subshell symbol
No. of electrons:

subshell
No. of electrons:

shell

1 0 0 ½
1s 2 2

1 0 0 –½

2 0 0 ½
2s 2

8

2 0 0 –½

2 1 –1 ½

2p 6

2 1 –1 –½

2 1 0 ½

2 1 0 –½

2 1 1 ½

2 1 1 –½

3 0 0 ½ 3s 2 18
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Subshell symbol
No. of electrons:

subshell
No. of electrons:

shell

3 0 0 –½

3 1 –1 ½

3p 6

3 1 –1 –½

3 1 0 ½

3 1 0 –½

3 1 1 ½

3 1 1 –½

3 2 –2 ½

3d 10

3 2 –2 –½

3 2 –1 ½

3 2 –1 –½

3 2 0 ½

3 2 0 –½

3 2 1 ½

3 2 1 –½

3 2 2 ½

3 2 2 –½

Electrons with the same principal quantum number n are said to be in the same shell, and those that have the same value of l are
said to occupy the same subshell. An electron in the  state of a hydrogen atom is denoted 1s, where the first digit indicates
the shell ( ) and the letter indicates the subshell (  correspond to ). Two electrons in the 
state are denoted as , where the superscript indicates the number of electrons. An electron in the  state with  is
denoted 2p. The combination of two electrons in the  and  state, and three electrons in the  and  state is
written as , and so on. This representation of the electron state is called the electron configuration of the atom. The electron
configurations for several atoms are given in Table . Electrons in the outer shell of an atom are called valence electrons.
Chemical bonding between atoms in a molecule are explained by the transfer and sharing of valence electrons.

Table : Electron Configurations of Electrons in an Atom. The symbol (↑) indicates an unpaired electron in the outer shell, whereas the
symbol (↑↓) indicates a pair of spin-up and -down electrons in an outer shell.

Element Electron Configuration Spin Alignment

H (↑)

He (↑↓)

Li (↑)

Be (↑↓)

B (↑↓)(↑)

C (↑↓)(↑)(↑)

N (↑↓)(↑)(↑)(↑)

O (↑↓)(↑↓)(↑)(↑)

n l m ms

n = 1

n = 1 s, p, d, f , . . . l = 0, 1, 2, 3, . . . n = 1

1s2 n = 2 l = 1

n = 2 l = 0 n = 2 l = 1

2 2s2 p3

13.4.2
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Element Electron Configuration Spin Alignment

F (↑↓)(↑↓)(↑↓)(↑)

Ne (↑↓)(↑↓)(↑↓)(↑↓)

Na (↑)

Mg (↑↓)

Al (↑↓)(↑)

The maximum number of electrons in a subshell depends on the value of the angular momentum quantum number, l. For a given a
value l, there are  orbital angular momentum states. However, each of these states can be filled by two electrons (spin up and
down, ↑↓). Thus, the maximum number of electrons in a subshell is

In the 2s ( ) subshell, the maximum number of electrons is 2. In the 2p ( ) subshell, the maximum number of electrons is
6. Therefore, the total maximum number of electrons in the  shell (including both the  and 1 subshells) is  or 8. In
general, the maximum number of electrons in the nth shell is .

How many subshells are in the  shell? Identify each subshell and calculate the maximum number of electrons that will
fill each. Show that the maximum number of electrons that fill an atom is .

Strategy

Subshells are determined by the value of l; thus, we first determine which values of l are allowed, and then we apply the
equation “maximum number of electrons that can be in a )” to find the number of electrons in each
subshell.

Solution
Because , we know that l can be 0, 1, or 2; thus, there are three possible subshells. In standard notation, they are labeled
the 3s, 3p, and 3d subshells. We have already seen that two electrons can be in an s state, and six in a p state, but let us use the
equation “maximum number of electrons that can be in a

subshell ” to calculate the maximum number in each:

 has ; thus, 

 has ; thus, 

 has ; thus, 

(in the  shell).

The equation “maximum number of electrons that can be in a shell = ” gives the maximum number in the  shell to be

Maximum number of electrons .

Significance

The total number of electrons in the three possible subshells is thus the same as the formula . In standard (spectroscopic)
notation, a filled  shell is denoted as . Shells do not fill in a simple manner. Before the  shell is
completely filled, for example, we begin to find electrons in the  shell.

The structure of the periodic table (Figure ) can be understood in terms of shells and subshells, and, ultimately, the total
energy, orbital angular momentum, and spin of the electrons in the atom. A detailed discussion of the periodic table is left to a
chemistry course—we sketch only its basic features here. In this discussion, we assume that the atoms are electrically neutral; that

1 2 2s2 s2 p5

1 2 2s2 s2 p6

1 2 2 3s2 s2 p6 s1

1 2 2 3s2 s2 p6 s2

1 2 2 3 3s2 s2 p6 s1 p1
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is, they have the same number of electrons and protons. (Recall that the total number of protons in an atomic nucleus is called the
atomic number, Z.)

First, the periodic table is arranged into columns and rows. The table is read left to right and top to bottom in the order of
increasing atomic number \(Z\). Atoms that belong to the same column or chemical group share many of the same chemical
properties. For example, the Li and Na atoms (in the first column) bond to other atoms in a similar way. The first row of the table
corresponds to the 1s ( ) shell of an atom.

Consider the hypothetical procedure of adding electrons, one by one, to an atom. For hydrogen (H) (upper left), the 1s shell is filled
with either a spin up or down electron (↑ or ↓). This lone electron is easily shared with other atoms, so hydrogen is chemically
active. For helium (He) (upper right), the 1s shell is filled with both a spin up and a spin down (↑↓) electron. This “fills” the 1s
shell, so a helium atom tends not to share electrons with other atoms. The helium atom is said to be chemically inactive, inert, or
noble; likewise, helium gas is said to be an inert gas or noble gas.

Build an atom by adding and subtracting protons, neutrons, and electrons. How does the element, charge, and mass change?
Visit PhET Explorations: Build an Atom to explore the answers to these questions.

Figure : The periodic table of elements, showing the structure of shells and subshells.

The second row corresponds to the 2s and 2p subshells. For lithium (Li) (upper left), the 1s shell is filled with a spin-up and spin-
down electron (↑↓) and the 2s shell is filled with either a spin-up or -down electron (↑or↓). Its electron configuration is therefore 

 or [He]2s, where [He] indicates a helium core. Like hydrogen, the lone electron in the outermost shell is easily shared with
other atoms. For beryllium (Be), the 2s shell is filled with a spin-up and -down electron (↑↓), and has the electron configuration
[He] .

Next, we look at the right side of the table. For boron (B), the 1s and 2s shells are filled and the 2p ( ) shell contains either a
spin up or down electron (↑or↓). From carbon (C) to neon (N), we the fill the 2p shell. The maximum number of electrons in the 2p

l = 0
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shells is . For neon (Ne), the 1s shell is filled with a spin-up and spin-down electron (↑↓), and the 2p shell is
filled with six electrons (↑↓↑↓↑↓). This “fills” the 1s, 2s, and 2p subshells, so like helium, the neon atom tends not to share
electrons with other atoms.

The process of electron filling repeats in the third row. However, beginning in the fourth row, the pattern is broken. The actual
order of order of electron filling is given by

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s,...

Notice that the 3d, 4d, 4f, and 5d subshells (in bold) are filled out of order; this occurs because of interactions between electrons in
the atom, which so far we have neglected. The transition metals are elements in the gap between the first two columns and the last
six columns that contain electrons that fill the d ( ) subshell. As expected, these atoms are arranged in 
columns. The structure of the periodic table can be understood in terms of the quantization of the total energy (n), orbital angular
momentum (l), and spin (s). The first two columns correspond to the s ( ) subshell, the next six columns correspond to the p (

) subshell, and the gap between these columns corresponds to the d ( ) subshell.

The periodic table also gives information on molecular bonding. To see this, consider atoms in the left-most column (the so-called
alkali metals including: Li, Na, and K). These atoms contain a single electron in the 2s subshell, which is easily donated to other
atoms. In contrast, atoms in the second-to-right column (the halogens: for example, Cl, F, and Br) are relatively stingy in sharing
electrons. These atoms would much rather accept an electron, because they are just one electron shy of a filled shell (“of being
noble”).

Therefore, if a Na atom is placed in close proximity to a Cl atom, the Na atom freely donates its 2s electron and the Cl atom eagerly
accepts it. In the process, the Na atom (originally a neutral charge) becomes positively charged and the Cl (originally a neutral
charge) becomes negatively charged. Charged atoms are called ions. In this case, the ions are  and , where the superscript
indicates charge of the ion. The electric (Coulomb) attraction between these atoms forms a NaCl (salt) molecule. A chemical bond
between two ions is called an ionic bond. There are many kinds of chemical bonds. For example, in an oxygen molecule 
electrons are equally shared between the atoms. The bonding of oxygen atoms is an example of a covalent bond.

This page titled 13.4: The Exclusion Principle and the Periodic Table is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

8.5: The Exclusion Principle and the Periodic Table by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-3.
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13.5: Atomic Spectra and X-rays

By the end of this section, you will be able to:

Describe the absorption and emission of radiation in terms of atomic energy levels and energy differences
Use quantum numbers to estimate the energy, frequency, and wavelength of photons produced by atomic transitions in
multi-electron atoms
Explain radiation concepts in the context of atomic fluorescence and X-rays

The study of atomic spectra provides most of our knowledge about atoms. In modern science, atomic spectra are used to identify
species of atoms in a range of objects, from distant galaxies to blood samples at a crime scene.

The theoretical basis of atomic spectroscopy is the transition of electrons between energy levels in atoms. For example, if an
electron in a hydrogen atom makes a transition from the  to the  shell, the atom emits a photon with a wavelength

where  is energy carried away by the photon and . After this radiation passes through a
spectrometer, it appears as a sharp spectral line on a screen. The Bohr model of this process is shown in Figure . If the
electron later absorbs a photon with energy , the electron returns to the  shell (we examined the Bohr model previously).

Figure : An electron transition from the  to the  shell of a hydrogen atom.

To understand atomic transitions in multi-electron atoms, it is necessary to consider many effects, including the Coulomb repulsion
between electrons and internal magnetic interactions (spin-orbit and spin-spin couplings). Fortunately, many properties of these
systems can be understood by neglecting interactions between electrons and representing each electron by its own single-particle
wavefunction .

Atomic transitions must obey selection rules. These rules follow from principles of quantum mechanics and symmetry. Selection
rules classify transitions as either allowed or forbidden. (Forbidden transitions do occur, but the probability of the typical forbidden
transition is very small.) For a hydrogen-like atom, atomic transitions that involve electromagnetic interactions (the emission and
absorption of photons) obey the following selection rule:

where  is associated with the magnitude of orbital angular momentum,

For multi-electron atoms, similar rules apply. To illustrate this rule, consider the observed atomic transitions in hydrogen (H),
sodium (Na), and mercury (Hg) (Figure ). The horizontal lines in this diagram correspond to atomic energy levels, and the
transitions allowed by this selection rule are shown by lines drawn between these levels. The energies of these states are on the
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order of a few electron volts, and photons emitted in transitions are in the visible range. Technically, atomic transitions can violate
the selection rule, but such transitions are uncommon.

Figure : Energy-level diagrams for (a) hydrogen, (b) sodium, and (c) mercury. For comparison, hydrogen energy levels are
shown in the sodium diagram.

The hydrogen atom has the simplest energy-level diagram. If we neglect electron spin, all states with the same value of n have the
same total energy. However, spin-orbit coupling splits the  states into two angular momentum states (s and p) of slightly
different energies. (These levels are not vertically displaced, because the energy splitting is too small to show up in this diagram.)
Likewise, spin-orbit coupling splits the  states into three angular momentum states (s, p, and d).

The energy-level diagram for hydrogen is similar to sodium, because both atoms have one electron in the outer shell. The valence
electron of sodium moves in the electric field of a nucleus shielded by electrons in the inner shells, so it does not experience a
simple 1/r Coulomb potential and its total energy depends on both n and l. Interestingly, mercury has two separate energy-level
diagrams; these diagrams correspond to two net spin states of its 6s (valence) electrons.

The spectrum of sodium is analyzed with a spectrometer. Two closely spaced lines with wavelengths 589.00 nm and 589.59 nm
are observed.

a. If the doublet corresponds to the excited (valence) electron that transitions from some excited state down to the 3s state,
what was the original electron angular momentum?

b. What is the energy difference between these two excited states?

Strategy

Sodium and hydrogen belong to the same column or chemical group of the periodic table, so sodium is “hydrogen-like.” The
outermost electron in sodium is in the 3s ( ) subshell and can be excited to higher energy levels. As for hydrogen,
subsequent transitions to lower energy levels must obey the selection rule (Equation ):

We must first determine the quantum number of the initial state that satisfies the selection rule. Then, we can use this number
to determine the magnitude of orbital angular momentum of the initial state.

Solution
1. Allowed transitions must obey the selection rule. If the quantum number of the initial state is , the transition is

forbidden because . If the quantum number of the initial state is  the transition is forbidden because 
. Therefore, the quantum of the initial state must be . The orbital angular momentum of the initial state is
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2. Because the final state for both transitions is the same (3s), the difference in energies of the photons is equal to the
difference in energies of the two excited states. Using the equation

we have

Significance

To understand the difficulty of measuring this energy difference, we compare this difference with the average energy of the two
photons emitted in the transition. Given an average wavelength of 589.30 nm, the average energy of the photons is

The energy difference  is about 0.1% (1 part in 1000) of this average energy. However, a sensitive spectrometer can
measure the difference.

Atomic Fluorescence
Fluorescence occurs when an electron in an atom is excited several steps above the ground state by the absorption of a high-energy
ultraviolet (UV) photon. Once excited, the electron “de-excites” in two ways. The electron can drop back to the ground state,
emitting a photon of the same energy that excited it, or it can drop in a series of smaller steps, emitting several low-energy photons.
Some of these photons may be in the visible range. Fluorescent dye in clothes can make colors seem brighter in sunlight by
converting UV radiation into visible light. Fluorescent lights are more efficient in converting electrical energy into visible light than
incandescent filaments (about four times as efficient). Figure  shows a scorpion illuminated by a UV lamp. Proteins near the
surface of the skin emit a characteristic blue light.

Figure : A scorpion glows blue under a UV lamp. (credit: Ken Bosma)

X-rays
The study of atomic energy transitions enables us to understand X-rays and X-ray technology. Like all electromagnetic radiation,
X-rays are made of photons. X-ray photons are produced when electrons in the outermost shells of an atom drop to the inner shells.
(Hydrogen atoms do not emit X-rays, because the electron energy levels are too closely spaced together to permit the emission of
high-frequency radiation.) Transitions of this kind are normally forbidden because the lower states are already filled. However, if
an inner shell has a vacancy (an inner electron is missing, perhaps from being knocked away by a high-speed electron), an electron
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from one of the outer shells can drop in energy to fill the vacancy. The energy gap for such a transition is relatively large, so
wavelength of the radiated X-ray photon is relatively short.

X-rays can also be produced by bombarding a metal target with high-energy electrons, as shown in Figure . In the figure,
electrons are boiled off a filament and accelerated by an electric field into a tungsten target. According to the classical theory of
electromagnetism, any charged particle that accelerates emits radiation. Thus, when the electron strikes the tungsten target, and
suddenly slows down, the electron emits braking radiation (often the term in German is used: Bremsstrahlung). Braking
radiation refers to radiation produced by any charged particle that is slowed by a medium. In this case, braking radiation contains a
continuous range of frequencies, because the electrons will collide with the target atoms in slightly different ways.

Braking radiation is not the only type of radiation produced in this interaction. In some cases, an electron collides with another
inner-shell electron of a target atom, and knocks the electron out of the atom—billiard ball style. The empty state is filled when an
electron in a higher shell drops into the state (drop in energy level) and emits an X-ray photon.

Figure : A sketch of an X-ray tube. X-rays are emitted from the tungsten target.

Historically, X-ray spectral lines were labeled with letters (K, L, M, N, …). These letters correspond to the atomic shells (
). X-rays produced by a transition from any higher shell to the K ( ) shell are labeled as K X-rays. X-rays

produced in a transition from the L ( ) shell are called  X-rays; X-rays produced in a transition from the M ( ) shell
are called  X-rays; X-rays produced in a transition from the N ( ) shell are called  X-rays; and so forth. Transitions
from higher shells to L and M shells are labeled similarly. These transitions are represented by an energy-level diagram in Figure 

.

Figure : X-ray transitions in an atom.

The distribution of X-ray wavelengths produced by striking metal with a beam of electrons is given in Figure . X-ray
transitions in the target metal appear as peaks on top of the braking radiation curve. Photon frequencies corresponding to the spikes
in the X-ray distribution are called characteristic frequencies, because they can be used to identify the target metal. The sharp cutoff
wavelength (just below the  peak) corresponds to an electron that loses all of its energy to a single photon. Radiation of shorter
wavelengths is forbidden by the conservation of energy.
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Figure : X-ray spectrum from a silver target. The peaks correspond to characteristic frequencies of X-rays emitted by silver
when struck by an electron beam.

Estimate the characteristic energy and frequency of the  X-ray for aluminum ( ).

Strategy

A  X-ray is produced by the transition of an electron in the L ( ) shell to the K ( ) shell. An electron in the L
shell “sees” an effective charge , because one electron in the K shell shields the nuclear charge. (Recall, two
electrons are not in the K shell because the other electron state is vacant.) The frequency of the emitted photon can be
estimated from the energy difference between the L and K shells.

Solution
The energy difference between the L and K shells in a hydrogen atom is 10.2 eV. Assuming that other electrons in the L shell
or in higher-energy shells do not shield the nuclear charge, the energy difference between the L and K shells in an atom with 

 is approximately

Based on the relationship , the frequency of the X-ray is

Significance

The wavelength of the typical X-ray is 0.1–10 nm. In this case, the wavelength is:

Hence, the transition L→K in aluminum produces X-ray radiation.

X-ray production provides an important test of quantum mechanics. According to the Bohr model, the energy of a  X-ray
depends on the nuclear charge or atomic number, Z. If Z is large, Coulomb forces in the atom are large, energy differences ( )
are large, and, therefore, the energy of radiated photons is large. To illustrate, consider a single electron in a multi-electron atom.
Neglecting interactions between the electrons, the allowed energy levels are

where n = 1, 2, …and Z is the atomic number of the nucleus. However, an electron in the L ( ) shell “sees” a charge ,
because one electron in the K shell shields the nuclear charge. (Recall that there is only one electron in the K shell because the
other electron was “knocked out.”) Therefore, the approximate energies of the electron in the L and K shells are
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The energy carried away by a photon in a transition from the L shell to the K shell is therefore

where Z is the atomic number. In general, the X-ray photon energy for a transition from an outer shell to the K shell is

or

where  is the frequency of a  X-ray. This equation is Moseley’s law. For large values of , we have approximately

This prediction can be checked by measuring  for a variety of metal targets. This model is supported if a plot of Z versus  data
(called a Moseley plot) is linear. Comparison of model predictions and experimental results, for both the K and L series, is shown
in Figure . The data support the model that X-rays are produced when an outer shell electron drops in energy to fill a vacancy
in an inner shell.

Figure : A Moseley plot. These data were adapted from Moseley’s original data (H. G. J. Moseley, Philos. Mag. (6) 77:703,
1914).
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X-rays are produced by bombarding a metal target with high-energy electrons. If the target is replaced by another with two
times the atomic number, what happens to the frequency of X-rays?

Answer

frequency quadruples

Calculate the approximate energy of a  X-ray from a tungsten anode in an X-ray tube.

Strategy

Two electrons occupy a filled K shell. A vacancy in this shell would leave one electron, so the effective charge for an electron
in the L shell would be Z − 1 rather than Z. For tungsten, Z=74, so the effective charge is 73. This number can be used to
calculate the energy-level difference between the L and K shells, and, therefore, the energy carried away by a photon in the
transition L→K.

Solution
The effective Z is 73, so the  X-ray energy is given by

where

and

Thus,

Significance

This large photon energy is typical of X-rays. X-ray energies become progressively larger for heavier elements because their
energy increases approximately as . An acceleration voltage of more than 50,000 volts is needed to “knock out” an inner
electron from a tungsten atom.

X-ray Technology

X-rays have many applications, such as in medical diagnostics (Figure ), inspection of luggage at airports (Figure ),
and even detection of cracks in crucial aircraft components. The most common X-ray images are due to shadows. Because X-ray
photons have high energy, they penetrate materials that are opaque to visible light. The more energy an X-ray photon has, the more
material it penetrates. The depth of penetration is related to the density of the material, as well as to the energy of the photon. The
denser the material, the fewer X-ray photons get through and the darker the shadow. X-rays are effective at identifying bone breaks
and tumors; however, overexposure to X-rays can damage cells in biological organisms.

 Exercise 13.5.1

 Example : Characteristic X-Ray Energy13.5.3
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Figure : (a) An X-ray image of a person’s teeth. (b) A typical X-ray machine in a dentist’s office produces relatively low-
energy radiation to minimize patient exposure. (credit a: modification of work by “Dmitry G”/Wikimedia Commons)

Figure : An X-ray image of a piece of luggage. The denser the material, the darker the shadow. Object colors relate to
material composition—metallic objects show up as blue in this image. (credit: “IDuke”/Wikimedia Commons)

A standard X-ray image provides a two-dimensional view of the object. However, in medical applications, this view does not often
provide enough information to draw firm conclusions. For example, in a two-dimensional X-ray image of the body, bones can
easily hide soft tissues or organs. The CAT (computed axial tomography) scanner addresses this problem by collecting numerous
X-ray images in “slices” throughout the body. Complex computer-image processing of the relative absorption of the X-rays, in
different directions, can produce a highly detailed three-dimensional X-ray image of the body.

X-rays can also be used to probe the structures of atoms and molecules. Consider X-rays incident on the surface of a crystalline
solid. Some X-ray photons reflect at the surface, and others reflect off the “plane” of atoms just below the surface. Interference
between these photons, for different angles of incidence, produces a beautiful image on a screen (Figure ). The interaction
of X-rays with a solid is called X-ray diffraction. The most famous example using X-ray diffraction is the discovery of the double-
helix structure of DNA.
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Figure : X-ray diffraction from the crystal of a protein (hen egg lysozyme) produced this interference pattern. Analysis of
the pattern yields information about the structure of the protein. (credit: “Del45”/Wikimedia Commons)
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12.1: Lasers

By the end of this section, you will be able to:

Describe the physical processes necessary to produce laser light
Explain the difference between coherent and incoherent light
Describe the application of lasers to a CD and Blu-Ray player

A laser is device that emits coherent and monochromatic light. The light is coherent if photons that compose the light are in-phase,
and monochromatic if the photons have a single frequency (color). When a gas in the laser absorbs radiation, electrons are
elevated to different energy levels. Most electrons return immediately to the ground state, but others linger in what is called a
metastable state. It is possible to place a majority of these atoms in a metastable state, a condition called a population inversion.

Figure : The physics of a laser. An incident photon of frequency f causes a cascade of photons of the same frequency.

When a photon of energy disturbs an electron in a metastable state (Figure ), the electron drops to the lower-energy level and
emits an addition photon, and the two photons proceed off together. This process is called stimulated emission. It occurs with
relatively high probability when the energy of the incoming photon is equal to the energy difference between the excited and “de-
excited” energy levels of the electron ( ). Hence, the incoming photon and the photon produced by de-excitation have the
same energy, hf. These photons encounter more electrons in the metastable state, and the process repeats. The result is a cascade or
chain reaction of similar de-excitations. Laser light is coherent because all light waves in laser light share the same frequency
(color) and the same phase (any two points of along a line perpendicular to the direction of motion are on the “same part” of the
wave”). A schematic diagram of coherent and incoherent light wave pattern is given in Figure .

Figure : A coherent light wave pattern contains light waves of the same frequency and phase. An incoherent light wave
pattern contains light waves of different frequencies and phases.

Lasers are used in a wide range of applications, such as in communication (optical fiber phone lines), entertainment (laser light
shows), medicine (removing tumors and cauterizing vessels in the retina), and in retail sales (bar code readers). Lasers can also be
produced by a large range of materials, including solids (for example, the ruby crystal), gases (helium-gas mixture), and liquids
(organic dyes). Recently, a laser was even created using gelatin—an edible laser! Below we discuss two practical applications in
detail: CD players and Blu-Ray Players.

CD Player
A CD player reads digital information stored on a compact disc (CD). A CD is 6-inch diameter disc made of plastic that contains
small “bumps” and “pits” nears its surface to encode digital or binary data (Figure ). The bumps and pits appear along a very
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thin track that spirals outwards from the center of the disc. The width of the track is smaller than 1/20th the width of a human hair,
and the heights of the bumps are even smaller yet.

Figure : A compact disc is a plastic disc that uses bumps near its surface to encode digital information. The surface of the
disc contains multiple layers, including a layer of aluminum and one of polycarbonate plastic.

A CD player uses a laser to read this digital information. Laser light is suited to this purpose, because coherent light can be
focused onto an incredibly small spot and therefore distinguish between bumps and pits in the CD. After processing by player
components (including a diffraction grating, polarizer, and collimator), laser light is focused by a lens onto the CD surface. Light
that strikes a bump (“land”) is merely reflected, but light that strikes a “pit” destructively interferes, so no light returns (the details
of this process are not important to this discussion). Reflected light is interpreted as a “1” and unreflected light is interpreted as a
“0.” The resulting digital signal is converted into an analog signal, and the analog signal is fed into an amplifier that powers a
device such as a pair of headphones. The laser system of a CD player is shown in Figure .

Figure : A CD player and its laser component.

Blu-Ray Player

Like a CD player, a Blu-Ray player reads digital information (video or audio) stored on a disc, and a laser is used to record this
information. The pits on a Blu-Ray disc are much smaller and more closely packed together than for a CD, so much more
information can be stored. As a result, the resolving power of the laser must be greater. This is achieved using short wavelength (

) blue laser light—hence, the name “Blu-” Ray. (CDs and DVDs use red laser light.) The different pit sizes and player-
hardware configurations of a CD, DVD, and Blu-Ray player are shown in Figure . The pit sizes of a Blu-Ray disk are more
than twice as small as the pits on a DVD or CD. Unlike a CD, a Blu-Ray disc store data on a polycarbonate layer, which places the
data closer to the lens and avoids readability problems. A hard coating is used to protect the data since it is so close to the surface.
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Figure : Comparison of laser resolution in a CD, DVD, and Blu-Ray Player.

This page titled 12.1: Lasers is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that
was edited to the style and standards of the LibreTexts platform.
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13.A: Atomic Structure (Answers)

Check Your Understanding

8.1. No. The quantum number . Thus, the magnitude of  is always less than L because

8.2. 

8.3. frequency quadruples

Conceptual Questions
1. n (principal quantum number) → total energy

 (orbital angular quantum number) → total absolute magnitude of the orbital angular momentum

 (orbital angular projection quantum number) → z-component of the orbital angular momentum

3. The Bohr model describes the electron as a particle that moves around the proton in well-defined orbits. Schrödinger’s
model describes the electron as a wave, and knowledge about the position of the electron is restricted to probability
statements. The total energy of the electron in the ground state (and all excited states) is the same for both models. However,
the orbital angular momentum of the ground state is different for these models. In Bohr’s model, , and
in Schrödinger’s model, .

5. a, c, d; The total energy is changed (Zeeman splitting). The work done on the hydrogen atom rotates the atom, so the z-
component of angular momentum and polar angle are affected. However, the angular momentum is not affected.

7. Even in the ground state , a hydrogen atom has magnetic properties due the intrinsic (internal) electron spin. The
magnetic moment of an electron is proportional to its spin.

9. For all electrons,  and . As we will see, not all particles have the same spin quantum number. For example,
a photon as a spin 1 ( ), and a Higgs boson has spin 0 ( ).

11. An electron has a magnetic moment associated with its intrinsic (internal) spin. Spin-orbit coupling occurs when this
interacts with the magnetic field produced by the orbital angular momentum of the electron.

13. Elements that belong in the same column in the periodic table of elements have the same fillings of their outer shells, and
therefore the same number of valence electrons. For example:

Li:  (one valence electron in the  shell)

Na:  (one valence electron in the  shell)

Both, Li and Na belong to first column.

15. Atomic and molecular spectra are said to be “discrete,” because only certain spectral lines are observed. In contrast,
spectra from a white light source (consisting of many photon frequencies) are continuous because a continuous “rainbow” of
colors is observed.

17. UV light consists of relatively high frequency (short wavelength) photons. So the energy of the absorbed photon and the
energy transition ( ) in the atom is relatively large. In comparison, visible light consists of relatively lower-frequency
photons. Therefore, the energy transition in the atom and the energy of the emitted photon is relatively small.

19. For macroscopic systems, the quantum numbers are very large, so the energy difference ( ) between adjacent energy
levels (orbits) is very small. The energy released in transitions between these closely space energy levels is much too small to
be detected.

21. Laser light relies on the process of stimulated emission. In this process, electrons must be prepared in an excited (upper)
metastable state such that the passage of light through the system produces de-excitations and, therefore, additional light.

23. A Blu-Ray player uses blue laser light to probe the bumps and pits of the disc and a CD player uses red laser light. The
relatively short-wavelength blue light is necessary to probe the smaller pits and bumps on a Blu-ray disc; smaller pits and
bumps correspond to higher storage densities.

m = −l, −l+1, … , 0, … , l−1, l Lz

< l(l+1)
− −−−−−

√

s = 3/2 <

l

m

L(groundstate) = 1
L(groundstate) = 0

(l = 0)

s = ½ = ±½ms

s = 1 s = 0

1 2s2 s1 n = 2

1 2s2 3s2 p6 s1 n = 2

ΔE

ΔE
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Problems
25. .

27.  are possible

29. 18

31. 

33. (1, 1, 1)

35. For the orbital angular momentum quantum number, l, the allowed values of:

.

With the exception of , the total number is just 2l because the number of states on either side of  is just l.
Including , the total number of orbital angular momentum states for the orbital angular momentum quantum
number, l, is: . Later, when we consider electron spin, the total number of angular momentum states will be
found to twice this value because each orbital angular momentum states is associated with two states of electron spin:
spin up and spin down).

37. The probability that the 1s electron of a hydrogen atom is found outside of the Bohr radius is 

39. For  (1 state), and  (3 states). The total is 4.

41. The 3p state corresponds to . Therefore, 

43. The ratio of their masses is 1/207, so the ratio of their magnetic moments is 207. The electron’s magnetic moment is
more than 200 times larger than the muon.

45. a. The 3d state corresponds to . So,

.

b. The maximum torque occurs when the magnetic moment and external magnetic field vectors are at right angles 
. In this case:

..

47. A 3p electron is in the state  and . The minimum torque magnitude occurs when the magnetic moment and
external magnetic field vectors are most parallel (antiparallel). This occurs when . The torque magnitude is given by

,

Where

.

For , we have:

.

49. An infinitesimal work dW done by a magnetic torque  to rotate the magnetic moment through an angle :

,

where . Work done is interpreted as a drop in potential energy U, so

The total energy change is determined by summing over infinitesimal changes in the potential energy:

.

(r, θ,ϕ) = ( 66°, 27°)6,
−−

√

±3, ±2, ±1, 0

F = −k
Qq

r2

m = −l, −l+1, . . .0, . . . l−1, l

m = 0 m = 0
m = 0

2l+1

P (r)dr ≈ 0.68∫
∞

a0

n = 2, l = 0 l = 1

n = 3, l = 2 μ = μB 6
–

√

n = 3, l = 2

I = 4.43 × A10−7

(sinθ = 1)

| | = μB.τ ⃗ 

τ = 5.70 × N ⋅m10−26

n = 3 l = 1
m = ±1

| | = μBsinθτ ⃗ 

μ = (1.31 × J/T )10−24

m = ±1

| | = 2.32 × N ⋅mτ ⃗ 
→

1021

τ −dθ

dW = τ(−dθ)

τ = | ×μ⃗  B⃗ ∣
∣

dW = −dU.

U = −μBcosθ

U = − ⋅μ⃗  B⃗ 
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51. Spin up (relative to positive z-axis):

.

Spin down (relative to positive z-axis):

53. The spin projection quantum number is , so the z-component of the magnetic moment is

.

The potential energy associated with the interaction between the electron and the external magnetic field is

.

The energy difference between these states is , so the wavelength of light produced is

55. It is increased by a factor of 2.

57. a. 32;

b.

ℓ (2ℓ+1)

0 s 2(0+1) =2

1 p 2(2+1) =6

2 d 2(4+1) =10

3 f 2(6+1) =14 
32

59. a. and e. are allowed; the others are not allowed.

b.  not allowed for .

c. Cannot have three electrons in s subshell because .

d. Cannot have seven electrons in p subshell (max of 6) .

61. 

63. a. The minimum value of  is  to have nine electrons in it.

b. .

65. 

67. For , one electron “orbits” a nucleus with two protons and two neutrons ( ). Ionization energy refers to the
energy required to remove the electron from the atom. The energy needed to remove the electron in the ground state of
He+He+ ion to infinity is negative the value of the ground state energy, written:

.

Thus, the energy to ionize the electron is .

Similarly, the energy needed to remove an electron in the first excited state of  ion to infinity is negative the value
of the first excited state energy, written:

.

The energy to ionize the electron is 30.6 eV.

69. The wavelength of the laser is given by:

θ = 55°

θ = co ( ) = co ( ) = co ( ) = 125°.s−1 Sz

S
s−1

− 1
2

3√

2

s−1 −1

3
–

√

= ±½ms

= ±μz μB

U = ∓ BμB

ΔE = 2 BμB

λ = 5.36 × m ≈ 53.6μm10−5

l = 3 n = 1, l ≤ (n−1)

3 > 2(2l+1) = 2

2(2l+1) = 2(2 +1) = 6

[Ar]4 3s2 d6

ℓ l = 2

3d9

[He]2 2s2 p2

He+ Z = 2

E = −54.4eV

+54.4eV

Li2+

E = −30.6eV
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,

where  is the energy of the photon and  is the magnitude of the energy difference. Solving for the latter, we get:

.

The negative sign indicates that the electron lost energy in the transition.

71. .

73. According to the conservation of the energy, the potential energy of the electron is converted completely into kinetic
energy. The initial kinetic energy of the electron is zero (the electron begins at rest). So, the kinetic energy of the electron just
before it strikes the target is:

.

If all of this energy is converted into braking radiation, the frequency of the emitted radiation is a maximum, therefore:

.

When the emitted frequency is a maximum, then the emitted wavelength is a minimum, so:

.

75. A muon is 200 times heavier than an electron, but the minimum wavelength does not depend on mass, so the result is
unchanged.

77. 

79. 72.5 keV

81. The atomic numbers for Cu and Au are  and 79, respectively. The X-ray photon frequency for gold is greater than
copper by a factor:

.

Therefore, the X-ray wavelength of Au is about eight times shorter than for copper.

83. a. If flesh has the same density as water, then we used  photons.

b. 2.52 MW

Additional Problems
85. The smallest angle corresponds to  and . Therefore ).

87. a. According to Equation 8.1, when , and when . The former result suggests that
the electron can have an infinite negative potential energy. The quantum model of the hydrogen atom avoids this possibility
because the probability density at  is zero.

89. A formal solution using sums is somewhat complicated. However, the answer easily found by studying the mathematical
pattern between the principal quantum number and the total number of orbital angular momentum states.

For , the total number of orbital angular momentum states is 1; for , the total number is 4; and, when 
, the total number is 9, and so on. The pattern suggests the total number of orbital angular momentum states for

the nth shell is .

(Later, when we consider electron spin, the total number of angular momentum states will be found to be , because
each orbital angular momentum states is associated with two states of electron spin; spin up and spin down).

91. 50

93. The maximum number of orbital angular momentum electron states in the nth shell of an atom is . Each of these states
can be filled by a spin up and spin down electron. So, the maximum number of electron states in the nth shell is .

95. a., c., and e. are allowed; the others are not allowed.

λ =
hc

−ΔE

Eγ ΔE

ΔE = −2.795eV

Δ ≈ (Z−1 (10.2eV ) = 3.68 × eVEL→K )2 103

K = eΔV

=fmax

eΔV

h

= 0.1293nmλmin

4.13 × m10−11

Z = 29

( = ( ≈ 8
fAu

fCu
)2 79 −1

29 −1
)2

1.34 ×1023

l = n−1 m = l = n−1 θ = co ( ns−1 n−1− −−−−
√

r = 0,U(r) = −∞ r = +∞,U(r) = 0

r = 0

n = 1 n = 2
n = 3

n2

2n2

n2

2n2
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b.  is not allowed.

d. 

97. 

99. The atomic numbers for Cu and Ag are  and 47, respectively. The X-ray photon frequency for silver is greater
than copper by the following factor:

.

Therefore, the X-ray wavelength of Ag is about three times shorter than for copper.

101. a. 3.24;

b.  is not an integer. c. The wavelength must not be correct. Because , the assumption that the line was from
the Balmer series is possible, but the wavelength of the light did not produce an integer value for . If the wavelength
is correct, then the assumption that the gas is hydrogen is not correct; it might be sodium instead.

This page titled 13.A: Atomic Structure (Answers) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

8.A: Atomic Structure (Answers) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-3.
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13.E: Atomic Structure (Exercises)

Conceptual Questions

8.1 The Hydrogen Atom

1. Identify the physical significance of each of the quantum numbers of the hydrogen atom.

2. Describe the ground state of hydrogen in terms of wave function, probability density, and atomic orbitals.

3. Distinguish between Bohr’s and Schrödinger’s model of the hydrogen atom. In particular, compare the energy and orbital
angular momentum of the ground states.

8.2 Orbital Magnetic Dipole Moment of the Electron

4. Explain why spectral lines of the hydrogen atom are split by an external magnetic field. What determines the number and
spacing of these lines?

5. A hydrogen atom is placed in a magnetic field. Which of the following quantities are affected?

(a) total energy;

(b) angular momentum;

(c) z-component of angular momentum;

(d) polar angle.

6. On what factors does the orbital magnetic dipole moment of an electron depend?

8.3 Electron Spin

7. Explain how a hydrogen atom in the ground state  can interact magnetically with an external magnetic field.

8. Compare orbital angular momentum with spin angular momentum of an electron in the hydrogen atom.

9. List all the possible values of s and  for an electron. Are there particles for which these values are different?

10. Are the angular momentum vectors  and  necessarily aligned?

11. What is spin-orbit coupling?

8.4 The Exclusion Principle and the Periodic Table

12. What is Pauli’s exclusion principle? Explain the importance of this principle for the understanding of atomic structure
and molecular bonding.

13. Compare the electron configurations of the elements in the same column of the periodic table.

14. Compare the electron configurations of the elements that belong in the same row of the periodic table of elements.

8.5 Atomic Spectra and X-rays

15. Atomic and molecular spectra are discrete. What does discrete mean, and how are discrete spectra related to the
quantization of energy and electron orbits in atoms and molecules?

16. Discuss the process of the absorption of light by matter in terms of the atomic structure of the absorbing medium.

17. NGC1763 is an emission nebula in the Large Magellanic Cloud just outside our Milky Way Galaxy. Ultraviolet light
from hot stars ionize the hydrogen atoms in the nebula. As protons and electrons recombine, light in the visible range is
emitted. Compare the energies of the photons involved in these two transitions.

18. Why are X-rays emitted only for electron transitions to inner shells? What type of photon is emitted for transitions
between outer shells?

19. How do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun?

(l = 0)

ms

L⃗  S ⃗ 
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8.6 Lasers

20. Distinguish between coherent and monochromatic light.

21. Why is a metastable state necessary for the production of laser light?

22. How does light from an incandescent light bulb differ from laser light?

23. How is a Blu-Ray player able to read more information that a CD player?

24. What are the similarities and differences between a CD player and a Blu-Ray player?

Problems

8.1 The Hydrogen Atom

25. The wave function is evaluated at rectangular coordinates =(2, 1, 1) in arbitrary units. What are the spherical
coordinates of this position?

26. If an atom has an electron in the  state with , what are the possible values of l?

27. What are the possible values of m for an electron in the  state?

28. What, if any, constraints does a value of  place on the other quantum numbers for an electron in an atom?

29. How many possible states are there for the l = 4 state?

30. (a) How many angles can L make with the z-axis for an  electron?

(b) Calculate the value of the smallest angle.

31. The force on an electron is “negative the gradient of the potential energy function.” Use this knowledge and Equation 8.1
to show that the force on the electron in a hydrogen atom is given by Coulomb’s force law.

32. What is the total number of states with orbital angular momentum ? (Ignore electron spin.)

33. The wave function is evaluated at spherical coordinates , where the value of the radial
coordinate is given in arbitrary units. What are the rectangular coordinates of this position?

34. Coulomb’s force law states that the force between two charged particles is: . Use this expression to determine

the potential energy function.

35. Write an expression for the total number of states with orbital angular momentum l.

36. Consider hydrogen in the ground state, .

(a) Use the derivative to determine the radial position for which the probability density, , is a maximum.

(b) Use the integral concept to determine the average radial position. (This is called the expectation value of the
electron’s radial position.) Express your answers into terms of the Bohr radius, . Hint: The expectation value is the
just average value.

(c) Why are these values different?

37. What is the probability that the 1s electron of a hydrogen atom is found outside the Bohr radius?

38. How many polar angles are possible for an electron in the  state?

39. What is the maximum number of orbital angular momentum electron states in the  shell of a hydrogen atom?
(Ignore electron spin.)

40. What is the maximum number of orbital angular momentum electron states in the  shell of a hydrogen atom?
(Ignore electron spin.)

8.2 Orbital Magnetic Dipole Moment of the Electron

41. Find the magnitude of the orbital magnetic dipole moment of the electron in in the 3p state. (Express your answer in
terms of )

(x, y, z)

n = 5 m = 3

n = 4

m = 1

l = 2

l = 0

(r, θ,ϕ) = ( , 45°, 45°)3
–

√

F = k
Qq

r2

ψ100

P (r)

ao

l = 5

n = 2

n = 3

μB
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42. A current of  flows through a square-shaped wire with 2-cm side lengths. What is the magnetic moment of the
wire?

43. Estimate the ratio of the electron magnetic moment to the muon magnetic moment for the same state of orbital angular
momentum. (Hint: )

44. Find the magnitude of the orbital magnetic dipole moment of the electron in in the 4d state. (Express your answer in
terms of μB.μB.)

45. For a 3d electron in an external magnetic field of , find (a) the current associated with the orbital angular
momentum, and (b) the maximum torque.

46. An electron in a hydrogen atom is in the  state. Find the smallest angle the magnetic moment makes with the
z-axis. (Express your answer in terms of .)

47. Find the minimum torque magnitude  that acts on the orbital magnetic dipole of a 3p electron in an external magnetic
field of .

48. An electron in a hydrogen atom is in 3p state. Find the smallest angle the magnetic moment makes with the z-axis.
(Express your answer in terms of .)

49. Show that . (Hint: An infinitesimal amount of work is done to align the magnetic moment with the external
field. This work rotates the magnetic moment vector through an angle  (toward the positive z-direction), where  is a
positive angle change.)

8.3 Electron Spin

50. What is the magnitude of the spin momentum of an electron? (Express you answer in terms of .)

51. What are the possible polar orientations of the spin momentum vector for an electron?

52. For , write all the possible sets of quantum numbers .

53. A hydrogen atom is placed in an external uniform magnetic field ( ). Calculate the wavelength of light
produced in a transition from a spin up to spin down state.

54. If the magnetic field in the preceding problem is quadrupled, what happens to the wavelength of light produced in a
transition from a spin up to spin down state?

55. If the magnetic moment in the preceding problem is doubled, what happens to the frequency of light produced in a
transition from a spin-up to spin-down state?

56. For , write all the possible sets of quantum numbers .

8.4 The Exclusion Principle and the Periodic Table

57. (a) How many electrons can be in the  shell?

(b) What are its subshells, and how many electrons can be in each?

58. (a) What is the minimum value of l for a subshell that contains 11 electrons?

(b) If this subshell is in the  shell, what is the spectroscopic notation for this atom?

59. Unreasonable result. Which of the following spectroscopic notations are not allowed?

(a) 

(b) 

(c) 

(d) 

(e) 

State which rule is violated for each notation that is not allowed.

60. Write the electron configuration for potassium.

I = 2A

= 105.7MeV /mμ c2

2.50 × T10−3

n = 5, l = 4
μB

| |τ ⃗ 

2.50 × T10−3

μB

U = − ⋅μ⃗  B⃗ 

−dθ dθ

ℏ

n = 1 (n, l,m, )ms

B = 200T

n = 2 (n, l,m, )ms

n = 4

n = 5
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1d1

4s3

3p7
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61. Write the electron configuration for iron.

62. The valence electron of potassium is excited to a 5d state.

(a) What is the magnitude of the electron’s orbital angular momentum?

(b) How many states are possible along a chosen direction?

63. (a) If one subshell of an atom has nine electrons in it, what is the minimum value of l?

(b) What is the spectroscopic notation for this atom, if this subshell is part of the  shell?

64. Write the electron configuration for magnesium.

65. Write the electron configuration for carbon.

66. The magnitudes of the resultant spins of the electrons of the elements B through Ne when in the ground state are: 
 and 0, respectively. Argue that these spins are consistent with Hund’s rule.

8.5 Atomic Spectra and X-rays

67. What is the minimum frequency of a photon required to ionize:

(a) a  ion in its ground state?

(b) A  ion in its first excited state?

68. The ion  makes an atomic transition from an  state to an  state.

(a) What is the energy of the photon emitted during the transition?

(b) What is the wavelength of the photon?

69. The red light emitted by a ruby laser has a wavelength of 694.3 nm. What is the difference in energy between the initial
state and final state corresponding to the emission of the light?

70. The yellow light from a sodium-vapor street lamp is produced by a transition of sodium atoms from a 3p state to a 3s
state. If the difference in energies of those two states is 2.10 eV, what is the wavelength of the yellow light?

71. Estimate the wavelength of the  X-ray from calcium.

72. Estimate the frequency of the  X-ray from cesium.

73. X-rays are produced by striking a target with a beam of electrons. Prior to striking the target, the electrons are accelerated
by an electric field through a potential energy difference: , where e is the charge of an electron and  is the
voltage difference. If  volts, what is the minimum wavelength of the emitted radiation?

74. For the preceding problem, what happens to the minimum wavelength if the voltage across the X-ray tube is doubled?

75. Suppose the experiment in the preceding problem is conducted with muons. What happens to the minimum wavelength?

76. An X-ray tube accelerates an electron with an applied voltage of 50 kV toward a metal target.

(a) What is the shortest-wavelength X-ray radiation generated at the target?

(b) Calculate the photon energy in eV.

(c) Explain the relationship of the photon energy to the applied voltage.

77. A color television tube generates some X-rays when its electron beam strikes the screen. What is the shortest wavelength
of these X-rays, if a 30.0-kV potential is used to accelerate the electrons? (Note that TVs have shielding to prevent these X-
rays from exposing viewers.)

78. An X-ray tube has an applied voltage of 100 kV.

(a) What is the most energetic X-ray photon it can produce? Express your answer in electron volts and joules.

(b) Find the wavelength of such an X-ray.

79. The maximum characteristic X-ray photon energy comes from the capture of a free electron into a K shell vacancy. What
is this photon energy in keV for tungsten, assuming that the free electron has no initial kinetic energy?

n = 3

ℏ/2, ℏ, ℏ/2, ℏ, ℏ/2,3
–

√ 2
–

√ 15
−−

√ 2
–

√ 3
–

√

He+

Li2+

Li2+ n = 4 n = 2
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80. What are the approximate energies of the  and  X-rays for copper?

81. Compare the X-ray photon wavelengths for copper and gold.

82. The approximate energies of the  and  X-rays for copper are  and , respectively.
Determine the ratio of X-ray frequencies of gold to copper, then use this value to estimate the corresponding energies of 
and  X-rays for gold.

8.6 Lasers

83. A carbon dioxide laser used in surgery emits infrared radiation with a wavelength of . In 1.00 ms, this laser
raised the temperature of  of flesh to  and evaporated it.

(a) How many photons were required? You may assume that flesh has the same heat of vaporization as water.

(b) What was the minimum power output during the flash?

84. An excimer laser used for vision correction emits UV radiation with a wavelength of 193 nm.

(a) Calculate the photon energy in eV.

(b) These photons are used to evaporate corneal tissue, which is very similar to water in its properties. Calculate the
amount of energy needed per molecule of water to make the phase change from liquid to gas. That is, divide the heat of
vaporization in kJ/kg by the number of water molecules in a kilogram.

(c) Convert this to eV and compare to the photon energy. Discuss the implications.

Additional Problems
85. For a hydrogen atom in an excited state with principal quantum number n, show that the smallest angle that the orbital

angular momentum vector can make with respect to the z-axis is .

86. What is the probability that the 1s electron of a hydrogen atom is found between  and ?

87. Sketch the potential energy function of an electron in a hydrogen atom.

(a) What is the value of this function at ? in the limit that ?

(b) What is unreasonable or inconsistent with the former result?

88. Find the value of , the orbital angular momentum quantum number, for the Moon around Earth.

89. Show that the maximum number of orbital angular momentum electron states in the nth shell of an atom is . (Ignore
electron spin.) (Hint: Make a table of the total number of orbital angular momentum states for each shell and find the
pattern.)

90. What is the magnitude of an electron magnetic moment?

91. What is the maximum number of electron states in the  shell?

92. A ground-state hydrogen atom is placed in a uniform magnetic field, and a photon is emitted in the transition from a spin-
up to spin-down state. The wavelength of the photon is . What is the strength of the magnetic field?

93. Show that the maximum number of electron states in the nth shell of an atom is .

94. The valence electron of chlorine is excited to a 3p state.

(a) What is the magnitude of the electron’s orbital angular momentum?

(b) What are possible values for the z-component of angular measurement?

95. Which of the following notations are allowed (that is, which violate none of the rules regarding values of quantum
numbers)?

(a) ;

(b) ;

(c) ;

Kα Kβ

Kα Kβ = 8.00keVEKα = 9.48keVEKβ

Kα

Kβ

10.6μm

1.00cm3 100°C

θ = co ( )s−1 n−1

n

− −−−−
√

r = 0 r = ∞

r = 0 r = ∞

l

n2

n = 5

168μm

2n2

1s1

1d3

4s2
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(d) ;

(e) 

96. The ion  makes an atomic transition from an  state to an  state.

(a) What is the energy of the photon emitted during the transition?

(b) What is the wavelength of the photon?

97. The maximum characteristic X-ray photon energy comes from the capture of a free electron into a K shell vacancy. What
is this photon frequency for tungsten, assuming that the free electron has no initial kinetic energy?

98. Derive an expression for the ratio of X-ray photon frequency for two elements with atomic numbers  and .

99. Compare the X-ray photon wavelengths for copper and silver.

100. (a) What voltage must be applied to an X-ray tube to obtain 0.0100-fm-wavelength X-rays for use in exploring the
details of nuclei?

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

101. A student in a physics laboratory observes a hydrogen spectrum with a diffraction grating for the purpose of measuring
the wavelengths of the emitted radiation. In the spectrum, she observes a yellow line and finds its wavelength to be 589 nm.

(a) Assuming that this is part of the Balmer series, determine , the principal quantum number of the initial state.

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?
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13.S: Atomic Structure (Summary)

Key Terms

angular momentum orbital quantum number (l)
quantum number associated with the orbital angular momentum of

an electron in a hydrogen atom

angular momentum projection quantum number (m)
quantum number associated with the z-component of the orbital

angular momentum of an electron in a hydrogen atom

atomic orbital
region in space that encloses a certain percentage (usually 90%) of

the electron probability

Bohr magneton
magnetic moment of an electron, equal to  or 

braking radiation
radiation produced by targeting metal with a high-energy electron
beam (or radiation produced by the acceleration of any charged

particle in a material)

chemical group
group of elements in the same column of the periodic table that

possess similar chemical properties

coherent light light that consists of photons of the same frequency and phase

covalent bond
chemical bond formed by the sharing of electrons between two

atoms

electron configuration
representation of the state of electrons in an atom, such as 

for lithium

fine structure
detailed structure of atomic spectra produced by spin-orbit

coupling

fluorescence
radiation produced by the excitation and subsequent, gradual de-

excitation of an electron in an atom

hyperfine structure
detailed structure of atomic spectra produced by spin-orbit

coupling

ionic bond
chemical bond formed by the electric attraction between two

oppositely charged ions

laser coherent light produced by a cascade of electron de-excitations

magnetic orbital quantum number
another term for the angular momentum projection quantum

number

magnetogram
pictoral representation, or map, of the magnetic activity at the

Sun’s surface

metastable state state in which an electron “lingers” in an excited state

monochromatic light that consists of photons with the same frequency

Moseley plot
plot of the atomic number versus the square root of X-ray

frequency

Moseley’s law
relationship between the atomic number and X-ray photon

frequency for X-ray production

orbital magnetic dipole moment
measure of the strength of the magnetic field produced by the

orbital angular momentum of the electron

9.3 × J/T10−24

5.8 × eV /T10−5

1 2s2 s1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76704?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.S%3A_Atomic_Structure_(Summary)


13.S.2 https://phys.libretexts.org/@go/page/76704

Pauli’s exclusion principle
no two electrons in an atom can have the same values for all four

quantum numbers 

population inversion
condition in which a majority of atoms contain electrons in a

metastable state

principal quantum number (n)
quantum number associated with the total energy of an electron in

a hydrogen atom

radial probability density function
function use to determine the probability of a electron to be found

in a spatial interval in r

selection rules
rules that determine whether atomic transitions are allowed or

forbidden (rare)

spin projection quantum number ( )
quantum number associated with the z-component of the spin

angular momentum of an electron

spin quantum number (s)
quantum number associated with the spin angular momentum of an

electron

spin-flip transitions
atomic transitions between states of an electron-proton system in

which the magnetic moments are aligned and not aligned

spin-orbit coupling
interaction between the electron magnetic moment and the

magnetic field produced by the orbital angular momentum of the
electron

stimulated emission
when a photon of energy triggers an electron in a metastable state

to drop in energy emitting an additional photon

transition metal
element that is located in the gap between the first two columns
and the last six columns of the table of elements that contains

electrons that fill the d subshell

valence electron
electron in the outer shell of an atom that participates in chemical

bonding

Zeeman effect splitting of energy levels by an external magnetic field

Key Equation

Orbital angular momentum

z-component of orbital angular momentum

Radial probability density function

Spin angular momentum

z-component of spin angular momentum

Electron spin magnetic moment

Electron orbital magnetic dipole moment

Potential energy associated with the magnetic interaction between
the orbital magnetic dipole moment and an external magnetic field

Maximum number of electrons in a subshell of a hydrogen atom

Selection rule for atomic transitions in a hydrogen-like atom

(n, l, m, ms)

ms

L = ℏl(l+ 1)
− −−−−−

√

= mℏLz

P(r)dr =∣ 4π drψn00 ∣2 r2

S = ℏs(s+ 1)
− −−−−−−

√

= ℏSz ms

= ( )μs⃗ 
e

me

S ⃗ 

= −( )μ⃗ 
e

2me

L⃗ 

vecB

U(θ) = − B = m Bμz μB

N = 4l+ 2

Δl = ±1
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Moseley’s law for X-ray production

Summary

8.1 The Hydrogen Atom
A hydrogen atom can be described in terms of its wave function, probability density, total energy, and orbital angular
momentum.
The state of an electron in a hydrogen atom is specified by its quantum numbers (n, l, m).
In contrast to the Bohr model of the atom, the Schrödinger model makes predictions based on probability statements.
The quantum numbers of a hydrogen atom can be used to calculate important information about the atom.

8.2 Orbital Magnetic Dipole Moment of the Electron
A hydrogen atom has magnetic properties because the motion of the electron acts as a current loop.
The energy levels of a hydrogen atom associated with orbital angular momentum are split by an external magnetic field
because the orbital angular magnetic moment interacts with the field.
The quantum numbers of an electron in a hydrogen atom can be used to calculate the magnitude and direction of the
orbital magnetic dipole moment of the atom.

8.3 Electron Spin
The state of an electron in a hydrogen atom can be expressed in terms of five quantum numbers.
The spin angular momentum quantum of an electron is = . The spin angular momentum projection quantum number is
\(\displaystyle m  =+½\) or  (spin up or spin down).
The fine and hyperfine structures of the hydrogen spectrum are explained by magnetic interactions within the atom.

8.4 The Exclusion Principle and the Periodic Table
Pauli’s exclusion principle states that no two electrons in an atom can have all the same quantum numbers.
The structure of the periodic table of elements can be explained in terms of the total energy, orbital angular momentum,
and spin of electrons in an atom.
The state of an atom can be expressed by its electron configuration, which describes the shells and subshells that are filled
in the atom.

8.5 Atomic Spectra and X-rays
Radiation is absorbed and emitted by atomic energy-level transitions.
Quantum numbers can be used to estimate the energy, frequency, and wavelength of photons produced by atomic
transitions.
Atomic fluorescence occurs when an electron in an atom is excited several steps above the ground state by the absorption
of a high-energy ultraviolet (UV) photon.
X-ray photons are produced when a vacancy in an inner shell of an atom is filled by an electron from the outer shell of
the atom.
The frequency of X-ray radiation is related to the atomic number Z of an atom.

8.6 Lasers
Laser light is coherent (monochromatic and “phase linked”) light.
Laser light is produced by population inversion and subsequent de-excitation of electrons in a material (solid, liquid, or
gas).
CD and Blu-Ray players uses lasers to read digital information stored on discs.

This page titled 13.S: Atomic Structure (Summary) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

8.S: Atomic Structure (Summary) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-3.
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Some Equations and Constants

1 Physical Constants
Table B.1: Physical constants

Name Symbol Value

Speed of light

Elementary charge

Electron mass

Proton mass

Gravitational constant

Gravitational acceleration

Boltzmann's Constant

Planck's Constant

2 Moments of Inertia
Table B.2: Moments of inertia, all about axes of symmetry through the center of mass.

Object Moment of Inertia

Thin stick (length L)

Ring of hollow cylinder (radius R)

Disk or solid cylinder (radius R)

Hollow sphere (radius R)

Solid sphere (radius R)

Rectangle (size ), perpendicular axis

Rectangle (size ), axis parallel to side b

3 Solar System Objects
Table B.3: Characteristics of the Sun, Earth and Moon.

Sun Earth Moon

Mass (kg)

Mean radius (m)

Orbital period (s)
(200 My) (365.25 days) (27.3 days)

Mean orbital radius (m)

Mean density (kg/m )

Table B.4: Properties of a number of solar system objects. Equatorial radii and masses are compared to those of Earth (see Table B.3). Orbital
properties are around primary (the sun for (dwarf) planets, the planet for moons). Orbital radii and periods for planets again compared to Earth,
for moons in kilograms and days. Rotation period for all objects in days. Inclination and axial tilt in degrees. Data from NASA planetary fact

sheets [31].

c 3.00 ⋅ m/s108

e 1.60 ⋅ C10−19

me 9.11 ⋅ kg = 0.511MeV /10−31 c2

mp 1.67 ⋅ kg = 938MeV /10−27 c2

G 6.67 ⋅ N ⋅ /k10−11 m2 g2

g 9.81m/s2

kB 1.38 ⋅ J/K10−23

h

ℏ = h/2π

6.63 ⋅ J ⋅ s10−34

1.05 ⋅ J ⋅ s10−34

M
1
12

L2

MR2

M
1
2

R2

M
2
3

R2

M
2
5

R2

a × b M( + )1
12

a2 b2

a × b M
1
12

a2

1.99 ⋅ 1030 5.97 ⋅ 1024 7.35 ⋅ 1022

6.96 ⋅ 108 6.37 ⋅ 106 1.74 ⋅ 106

6 ⋅ 1015 3.16 ⋅ 107 2.36 ⋅ 106

2.6 ⋅ 1020 1.50 ⋅ 1011 3.85 ⋅ 108

3 1.4 ⋅ 103 5.5 ⋅ 103 3.3 ⋅ 103
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Name Symbol
Equatorial
radius

Mass
Mean
orbit
radius

Orbital
period

Inclinatio
n

Orbital
eccentricit
y

Rotation
period

Confirme
d moons

Axial tiltName Symbol
Equatorial
radius

Mass
Mean
orbit
radius

Orbital
period

Inclinatio
n

Orbital
eccentricit
y

Rotation
period

Confirme
d moons

Axial tilt

Mercury 0.382 0.06 0.39 0.24 3.38 0.206 58.64 0 0.04

Venus 0.949 0.82 0.72 0.62 3.86 0.007 -243.02 0 177.36

Earth 1 1 1 1 7.25 0.017 1 1 23.44

Moon 0.272 0.0123 384399 27.32158
18.29-
28.58

0.0549 27.32158 0 6.68

Mars 0.532 0.107 1.52 1.88 5.65 0.093 1.03 2 25.19

Ceres 0.0742 0.00016 2.766 4.599 10.59 0.08 0.3781 0 4

Jupiter 11.209 317.8 5.2 11.86 6.09 0.048 0.41 69 3.13

Io 0.285 0.015 421600 1.769 0.04 0.0041 1.769 0 0

Europa 0.246 0.008 670900 3.551 0.47 0.009 3.551 0 0

Ganymed
e

0.423 0.025 1070400 7.155 1.85 0.0013 7.155 0 0

Callisto 0.378 0.018 1882700 16.689 0.2 0.0074 16.689 0 0

Saturn 9.449 95.2 9.54 29.46 5.51 0.054 0.43 62 26.73

Titan 0.404 0.023 1221870 15.945 0.33 0.0288 15.945 0 0

Uranus 4.007 14.6 19.22 84.01 6.48 0.047 -0.72 27 97.77

Oberon 0.119 0.00051 583519 13.46 0.1 0.0014 13.46 0 0

Neptune 3.883 17.2 30.06 164.8 6.43 0.009 0.67 14 28.32

Triton 0.212 0.00358 354759 5.877 157 0.00002 5.877 0 0

Pluto 0.186 0.0022 39.482 247.9 17.14 0.25 6.39 5 119.59

Charon 0.095 0.00025 17536 6.387 0.001 0.0022 6.387 0 unknown

Haumea 0.13 0.0007 43.335 285.4 28.19 0.19 0.167 2 unknown

Makemak
e

0.11 unknown 45.792 309.9 28.96 0.16 unknown 1 unknown

Eris 0.18 0.0028 67.668 557 44.19 0.44 unknown 1 unknown

4 Equations

4.1 B.4.1 Vector Derivatives

Gradient:

Divergence:

∇f(r) = ∇f(x, y, z) = =( + + )
⎛

⎝
⎜

f∂x

f∂y

f∂z

⎞

⎠
⎟

∂f

∂x
x̂

∂f

∂y
ŷ

∂f

∂z
ẑ (1)
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Curl:

4.2 B.4.2 Special Relativity

Lorentz transformations for the coordinates of a frame S' that moves with a speed u in the positive x-direction of frame S:

Velocity addition in a relativistic system:

16.B: Some Equations and Constants by Timon Idema is licensed CC BY-NC-SA 4.0. Original source:
https://textbooks.open.tudelft.nl/textbooks/catalog/book/14.

∇ ⋅ v = ( , , ) ⋅ = + +∂x ∂y ∂z

⎛

⎝
⎜

vx

vy

vz

⎞

⎠
⎟

∂vx

∂x

∂vy

∂y

∂vz

∂z
(2)

∇ ×A = ( , , ) × =∂x ∂y ∂z

⎛

⎝
⎜

Ax

Ay

Az

⎞

⎠
⎟

⎛

⎝
⎜

−∂yAz ∂zAy

−∂zAx ∂xAz

−∂xAy ∂yAx

⎞

⎠
⎟ (3)

x′

ct′

γ(u)

= γ(u)(x − ct)
u

c

= γ(u)(ct − x)
u

c

=
1

1 −(u/c)2− −−−−−−−
√

(4)

(5)

(6)

=  (longitudinal) , =  (transversal) vx

u +v′
x

1 +u /v′
x c2

vy

1

γ(u)

v′
y

1 +u /v′
x c2

(7)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76498?pdf
https://phys.libretexts.org/@go/page/17467
http://idemalab.tudelft.nl/idema.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://textbooks.open.tudelft.nl/textbooks/catalog/book/14


Index
A
absolute extremum

2.9.5: Maxima and Minima 
absolute maximum

2.9.5: Maxima and Minima 
absolute minimum

2.9.5: Maxima and Minima 
Absolute Value Function

2.8: Functions 
acceleration

2.9.3: Derivatives as Rates of Change 
accommodation

10.8: The Eye 
activity

12.3: Radioactive Decay 
acute otitis media

10.8.1: Ear Basic Concepts 
adjacent side

2.11.2: Right Angle Triangle Trigonometry 
adjacent to

2.11.2: Right Angle Triangle Trigonometry 
algebraic function

2.8.1: Basic Functions 
alpha (α) rays

12.4: Nuclear Reactions 
alpha decay

12.4: Nuclear Reactions 
ammeter

6.5: Electrical Measuring Instruments 
amount of change

2.9.3: Derivatives as Rates of Change 
ampere (unit)

5.1: Electrical Current 
Ampere’s Law

7.11: Ampère’s Law 
7.12: Solenoids and Toroids 

Ampere' law
7.12: Solenoids and Toroids 

Ampere's law
7.11: Ampère’s Law 

angle of depression
2.11.2: Right Angle Triangle Trigonometry 

angle of elevation
2.11.2: Right Angle Triangle Trigonometry 

angular magnification
10.7: Optical Instruments 

angular momentum orbital quantum
number (l)

13.1: The Hydrogen Atom 
angular momentum projection quantum
number (m)

13.1: The Hydrogen Atom 
antiderivative

2.10.2: Antiderivatives 
antielectrons

12.4: Nuclear Reactions 
antineutrino

12.4: Nuclear Reactions 
apparent depth

10.6: Images Formed by Refraction 
arc length with regards to a circle

2.11.1: Review of Trigonometry 
area vector

3.6: Electric Flux 

associative
2.11.3: Scalars and Vectors 

Astigmatism
10.8.4: Vision_Correction 

atomic mass
12.1: Properties of Nuclei 

Atomic mass unit
12.1: Properties of Nuclei 

atomic nucleus
12.1: Properties of Nuclei 

atomic number
12.1: Properties of Nuclei 

atomic orbital
13.1: The Hydrogen Atom 

auricle
10.8.1: Ear Basic Concepts 

average rate of change
2.9.3: Derivatives as Rates of Change 

B
back emf

8.5: Electric Generators and Back Emf 
base quantities

1.4: Units and Standards 
base quantity

1.4: Units and Standards 
base unit

1.4: Units and Standards 
Base units

1.4: Units and Standards 
BCS theory

5.6: Superconductors 
becquerel (Bq)

12.3: Radioactive Decay 
beta ( β ) rays

12.4: Nuclear Reactions 
Beta decay

12.4: Nuclear Reactions 
binding energy (nuclear)

12.2: Nuclear Binding Energy 
binding energy per nucleon (BEN)

12.2: Nuclear Binding Energy 
birefringence

9.3: Polarization 
Bohr magneton

13.2: Orbital Magnetic Dipole Moment of the
Electron 
Bragg planes

11.10: X-Ray Diffraction 
braking radiation

13.5: Atomic Spectra and X-rays 
breeder reactor

12.5: Fission 
bremsstrahlung

13.5: Atomic Spectra and X-rays 
Brewster’s angle

9.3: Polarization 
Brewster’s law

9.3: Polarization 

C
Candela

10.8.2: A_Vision 

Capacitance
4.6: Capacitors and Capacitance 
4.9: Capacitor with a Dielectric 

capacitor
4.6: Capacitors and Capacitance 
4.8: Energy Stored in a Capacitor 

capacitors in parallel
4.7: Capacitors in Series and in Parallel 

capacitors in series
4.7: Capacitors in Series and in Parallel 

Center of mass
2.10.4: Moments_and_Centers_of_Mass 

cerumen impaction
10.8.1: Ear Basic Concepts 

charging by induction
3.2: Conductors, Insulators, and Charging by

Induction 
chart of the nuclides

12.1: Properties of Nuclei 
chemical group

13.4: The Exclusion Principle and the Periodic Table
circadian

10.8.2: A_Vision 
circuit

5.1: Electrical Current 
circumference of a circle

2.11.1: Review of Trigonometry 
coaxial cable

4.6: Capacitors and Capacitance 
coherent light

13.6: Lasers 
coherent waves

11.2: Young's Double-Slit Interference 
color constancy

10.8.6: Color_and_Color_Vision 
comets

9.5: Momentum and Radiation Pressure 
Commutative

2.11.3: Scalars and Vectors 
composite function

2.8: Functions 
concave down

2.9.6: Derivatives and the Shape of a Graph 
concave up

2.9.6: Derivatives and the Shape of a Graph 
Concavity

2.9.6: Derivatives and the Shape of a Graph 
concavity test

2.9.6: Derivatives and the Shape of a Graph 
conduction electron

3.2: Conductors, Insulators, and Charging by
Induction 
conductive hearing loss

10.8.1: Ear Basic Concepts 
conductor

3.2: Conductors, Insulators, and Charging by
Induction 
cone

10.8.2: A_Vision 
conjunctiva

10.8.1: Ear Basic Concepts 
conjunctivitis

10.8.1: Ear Basic Concepts 
constant multiple rule

2.9.2: Differentiation Rules 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/02%3A_Index
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.05%3A_Electrical_Measuring_Instruments
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.11%3A_Amperes_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.12%3A_Solenoids_and_Toroids
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.12%3A_Solenoids_and_Toroids
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.11%3A_Amperes_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.07%3A_Optical_Instruments
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.02%3A_Antiderivatives
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.06%3A_Electric_Flux
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.05%3A_Electric_Generators_and_Back_Emf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.02%3A_Nuclear_Binding_Energy
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.02%3A_Nuclear_Binding_Energy
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.10%3A_X-Ray_Diffraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.06%3A_Capacitors_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.09%3A_Capacitor_with_a_Dielectric
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.06%3A_Capacitors_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.08%3A_Energy_Stored_in_a_Capacitor
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.07%3A_Capacitors_in_Series_and_in_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.07%3A_Capacitors_in_Series_and_in_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.04%3A_Moments_and_Centers_of_Mass
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.06%3A_Capacitors_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.02%3A_Young's_Double-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.05%3A_Momentum_and_Radiation_Pressure
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules


Constant Rule
2.9.2: Differentiation Rules 

Continuous Charge Distribution
3.5: Calculating Electric Fields of Charge

Distributions 
conventional current

5.1: Electrical Current 
conversion factor

1.5: Unit Conversion 
Cooper pairs

5.6: Superconductors 
cornea

10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

corner reflector
10.2: The Law of Reflection 

cosecant
2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

cosine
2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

cosmic rays
7.4: Motion of a Charged Particle in a Magnetic

Field 
cotangent

2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

Coulomb force
3.3: Electrostatic Force - Coulomb's Law 

Coulomb’s constant
3.3: Electrostatic Force - Coulomb's Law 

Coulomb's Law
3.3: Electrostatic Force - Coulomb's Law 

Covalent bond
13.4: The Exclusion Principle and the Periodic Table

Cramer’s rule
2.7.5: Solving a System of Linear Equations with

Cramer's Rule 
critical mass

12.5: Fission 
critical point

2.9.5: Maxima and Minima 
Critical temperature

5.6: Superconductors 
criticality

12.5: Fission 
cubic function

2.8.1: Basic Functions 
curie (Ci)

12.3: Radioactive Decay 
current density

5.2: Model of Conduction in Metals 
Cyclotron

7.5: Applications of Magnetic Forces and Fields 
cylindrical symmetry

3.8: Applying Gauss’s Law 

D
daughter nucleus

12.4: Nuclear Reactions 
Decay

12.3: Radioactive Decay 
decay constant

12.3: Radioactive Decay 
decay series

12.4: Nuclear Reactions 

decreasing on the interval I
2.8: Functions 

dees
7.5: Applications of Magnetic Forces and Fields 

degree
2.8.1: Basic Functions 

density function
2.10.3: Physical Applications of Integration- 

dependent variable
2.8: Functions 

derivative function
2.9.1: The Derivative as a Function 

derived quantity
1.4: Units and Standards 

derived unit
1.4: Units and Standards 

derived units
1.4: Units and Standards 

destructive interference for a single slit
11.6: Single-Slit Diffraction 

Determinants
2.7.5: Solving a System of Linear Equations with

Cramer's Rule 
diamagnetic materials

7.13: Magnetism in Matter 
dielectric

4.6: Capacitors and Capacitance 
4.9: Capacitor with a Dielectric 

dielectric constant
4.9: Capacitor with a Dielectric 

Difference Rule
2.9.2: Differentiation Rules 

Differentiable function
2.9.1: The Derivative as a Function 

differentiable on S
2.9.1: The Derivative as a Function 

differential
2.9.4: Linear Approximations and Differentials 

differential form
2.9.4: Linear Approximations and Differentials 

diffraction
11.6: Single-Slit Diffraction 

diffraction grating
11.4: Multiple-Slit Interference 
11.8: Diffraction Gratings 

diffraction limit
11.9: Circular Apertures and Resolution 

Dimensional Analysis
1.6: Dimensional Analysis 

dimensionally consistent
1.6: Dimensional Analysis 

dimensionless
1.6: Dimensional Analysis 

diode
5.4: Ohm's Law 

dipole
3.2: Conductors, Insulators, and Charging by

Induction 
direction angle

2.11.4: Coordinate Systems and Components of a
Vector 
direction of polarization

9.3: Polarization 
discriminant

2.7.3: Solving Quadratic Equations 
displacement

2.11.3: Scalars and Vectors 

Displacement current
9.1: Maxwell’s Equations and Electromagnetic

Waves 
Distance Formula

2.4: The Rectangular Coordinate Systems and
Graphs 
distributive

2.11.3: Scalars and Vectors 
domain

2.8: Functions 
Dot product

2.11.6: Products of Vectors 
double angle formula, trigonometric
identity

2.11.1: Review of Trigonometry 
drift velocity

5.2: Model of Conduction in Metals 

E
eddy current

8.4: Eddy Currents and Magnetic Damping 
electric field

3.4: Electric Field 
4.4: Determining Field from Potential 

Electric Field inside a Conductors
3.9: Conductors in Electrostatic Equilibrium 

electric flux
3.6: Electric Flux 

Electric Generator
8.5: Electric Generators and Back Emf 

electric potential
4.2: Electric Potential and Potential Difference 
4.4: Determining Field from Potential 

electric potential difference
4.2: Electric Potential and Potential Difference 

Electric potential energy
4.1: Electric Potential Energy 

electrical conductivity
5.3: Resistivity and Resistance 

electrical current
5.1: Electrical Current 

electrical energy
5.5: Electrical Energy and Power 

electrical power
5.5: Electrical Energy and Power 

Electromagnetic energy
9.4: Energy Carried by Electromagnetic Waves 

Electromagnetic induction
8: Electromagnetic Induction 
8.7: Applications of Electromagnetic Induction 

Electromagnetic Momentum
9.5: Momentum and Radiation Pressure 

Electromagnetic Spectrum
9.6: The Electromagnetic Spectrum 

electromagnetic waves
9.2: Electromagnetic Waves 
9.4: Energy Carried by Electromagnetic Waves 

electromotive force (emf)
6.1: Electromotive Force 

electron configuration
13.4: The Exclusion Principle and the Periodic Table

electrostatic precipitators
4.5: Applications of Electrostatics 

electrostatics
3.3: Electrostatic Force - Coulomb's Law 
4.5: Applications of Electrostatics 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.05%3A_Unit_Conversion
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.02%3A_The_Law_of_Reflection
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.04%3A_Motion_of_a_Charged_Particle_in_a_Magnetic_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.05%3A_Solving_a_System_of_Linear_Equations_with_Cramer's_Rule
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.02%3A_Model_of_Conduction_in_Metals
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.05%3A_Applications_of_Magnetic_Forces_and_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.05%3A_Applications_of_Magnetic_Forces_and_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.01%3A_The_Derivative_as_a_Function
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.06%3A_Single-Slit_Diffraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.05%3A_Solving_a_System_of_Linear_Equations_with_Cramer's_Rule
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.06%3A_Capacitors_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.09%3A_Capacitor_with_a_Dielectric
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.09%3A_Capacitor_with_a_Dielectric
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.01%3A_The_Derivative_as_a_Function
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.01%3A_The_Derivative_as_a_Function
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.06%3A_Single-Slit_Diffraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.04%3A_Multiple-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.08%3A_Diffraction_Gratings
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.09%3A_Circular_Apertures_and_Resolution
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.06%3A_Dimensional_Analysis
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.06%3A_Dimensional_Analysis
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.06%3A_Dimensional_Analysis
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.04%3A__Coordinate_Systems_and_Components_of_a_Vector
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.03%3A_Solving_Quadratic_Equations
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.01%3A_Maxwells_Equations_and_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.06%3A_Products_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.02%3A_Model_of_Conduction_in_Metals
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.04%3A_Eddy_Currents_and_Magnetic_Damping
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.04%3A_Electric_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.04%3A_Determining_Field_from_Potential
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.09%3A_Conductors_in_Electrostatic_Equilibrium
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.06%3A_Electric_Flux
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.05%3A_Electric_Generators_and_Back_Emf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.02%3A_Electric_Potential_and_Potential_Difference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.04%3A_Determining_Field_from_Potential
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.02%3A_Electric_Potential_and_Potential_Difference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.01%3A_Electric_Potential_Energy
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.03%3A_Resistivity_and_Resistance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.05%3A_Electrical_Energy_and_Power
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.05%3A_Electrical_Energy_and_Power
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.04%3A_Energy_Carried_by_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.07%3A_Applications_of_Electromagnetic_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.05%3A_Momentum_and_Radiation_Pressure
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.02%3A_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.04%3A_Energy_Carried_by_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics


Eletrical power
5.5: Electrical Energy and Power 

Energy Density
4.8: Energy Stored in a Capacitor 

energy stored in an inductor
8.6: Inductance 

English units
1.4: Units and Standards 

equal vectors
2.11.5: Algebra of Vectors 

equation in two variables
2.4: The Rectangular Coordinate Systems and

Graphs 
equipotential line

4.3: Equipotential Surfaces and Conductors 
Equipotential Surfaces

4.3: Equipotential Surfaces and Conductors 
equivalent resistance

6.2: Resistors in Series and Parallel 
even function

2.8: Functions 
exponent

2.8.3: Exponential_and_Logarithmic_Functions 
extraocular muscles

10.8.1: Ear Basic Concepts 
Extreme Value Theorem

2.9.5: Maxima and Minima 

F
far point

10.8: The Eye 
10.8.4: Vision_Correction 

Faraday’s Law
8.1: Faraday and Lenz’s Laws 

farsightedness
10.8: The Eye 
10.8.4: Vision_Correction 

Fermat’s theorem
2.9.5: Maxima and Minima 

ferromagnetic materials
7.13: Magnetism in Matter 

Fine structure
13.3: Electron Spin 

First Derivative Test
2.9.6: Derivatives and the Shape of a Graph 

first focus or object focus
10.6: Images Formed by Refraction 

First Moment
2.10.4: Moments_and_Centers_of_Mass 

fission
12.5: Fission 

fluorescence
13.5: Atomic Spectra and X-rays 

flux
3.6: Electric Flux 
4: Electric Potential and Capacitance 

fovea
10.8.2: A_Vision 

free electrons
3.9: Conductors in Electrostatic Equilibrium 

fringes
11.3: Mathematics of Interference 

function
2.8: Functions 

G
gamma (γ) rays

12.4: Nuclear Reactions 
Gamma decay

12.4: Nuclear Reactions 
gamma ray

9.6: The Electromagnetic Spectrum 
gauss (unit)

7.3: Magnetic Fields and Lines 
Gauss's law

3.7: Gauss’s Law 
3.8: Applying Gauss’s Law 
4: Electric Potential and Capacitance 

Gaussian surface
3.7: Gauss’s Law 
3.8: Applying Gauss’s Law 

geometric optics
10.1: The Propagation of Light 

graph in two variables
2.4: The Rectangular Coordinate Systems and

Graphs 
graph of a function

2.8: Functions 
grounding

4.3: Equipotential Surfaces and Conductors 
Gudermannian

2.10.1: Integrals 

H
Hall effect

7.8: The Hall Effect 
hard drives

8.7: Applications of Electromagnetic Induction 
helical motion

7.4: Motion of a Charged Particle in a Magnetic
Field 
henry

8.6: Inductance 
high dose

12.7: Medical Applications and Biological Effects of
Nuclear Radiation 
hologram

11.11: Holography 
holography

11.11: Holography 
Hooke’s law

2.10.3: Physical Applications of Integration- 
horizontally polarized

9.3: Polarization 
hues

10.8.6: Color_and_Color_Vision 
Huygens’s principle

10.3: Huygens’s Principle 
hydrostatic pressure

2.10.3: Physical Applications of Integration- 
hyperbolic functions

2.8.3: Exponential_and_Logarithmic_Functions 
hyperfine structure

13.3: Electron Spin 
hyperopia

10.8: The Eye 
10.8.2: A_Vision 
10.8.4: Vision_Correction 

hypotenuse
2.11.2: Right Angle Triangle Trigonometry 

hysteresis
7.13: Magnetism in Matter 

I
image distance

10.5: Images Formed by Mirrors 
image focus

10.6: Images Formed by Refraction 
incoherent

11.2: Young's Double-Slit Interference 
increasing on the interval I

2.8: Functions 
indefinite integral

2.10.2: Antiderivatives 
independent variable

2.8: Functions 
index of refraction

10.1: The Propagation of Light 
10.4: Refraction 

Induced Electric Fields
8.3: Induced Electric Fields 

induced emf
8.1: Faraday and Lenz’s Laws 
8.3: Induced Electric Fields 

inductance
8.6: Inductance 

inductor
8.6: Inductance 

infinite plane
3.5: Calculating Electric Fields of Charge

Distributions 
infinite straight wire

3.5: Calculating Electric Fields of Charge
Distributions 
inflection point

2.9.6: Derivatives and the Shape of a Graph 
infrared radiation

9.6: The Electromagnetic Spectrum 
initial value problem

2.10.2: Antiderivatives 
Ink Jet Printers

4.5: Applications of Electrostatics 
insulator

3.2: Conductors, Insulators, and Charging by
Induction 
Integration by Parts

2.10.1: Integrals 
intercepts

2.4: The Rectangular Coordinate Systems and
Graphs 
interference

11.3: Mathematics of Interference 
interference order

11.3: Mathematics of Interference 
interferometer

11.12: The Michelson Interferometer 
internal resistance

6.1: Electromotive Force 
inverse hyperbolic functions

2.8.3: Exponential_and_Logarithmic_Functions 
ion tail

9.5: Momentum and Radiation Pressure 
ionic bond

13.4: The Exclusion Principle and the Periodic Table
iridescence

11.8: Diffraction Gratings 
iris

10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

isotopes
12.1: Properties of Nuclei 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.05%3A_Electrical_Energy_and_Power
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.08%3A_Energy_Stored_in_a_Capacitor
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.05%3A_Algebra_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.03%3A_Equipotential_Surfaces_and_Conductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.03%3A_Equipotential_Surfaces_and_Conductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.01%3A_Faraday_and_Lenzs_Laws
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.04%3A_Moments_and_Centers_of_Mass
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.06%3A_Electric_Flux
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.09%3A_Conductors_in_Electrostatic_Equilibrium
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.03%3A_Mathematics_of_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.07%3A_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.07%3A_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.03%3A_Equipotential_Surfaces_and_Conductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.01%3A_Integrals
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.08%3A_The_Hall_Effect
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.07%3A_Applications_of_Electromagnetic_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.04%3A_Motion_of_a_Charged_Particle_in_a_Magnetic_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.11%3A_Holography
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.11%3A_Holography
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.03%3A_Huygenss_Principle
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.02%3A_Young's_Double-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.02%3A_Antiderivatives
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.04%3A_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.03%3A_Induced_Electric_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.01%3A_Faraday_and_Lenzs_Laws
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.03%3A_Induced_Electric_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.02%3A_Antiderivatives
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.01%3A_Integrals
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.03%3A_Mathematics_of_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.03%3A_Mathematics_of_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.12%3A_The_Michelson_Interferometer
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.05%3A_Momentum_and_Radiation_Pressure
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.08%3A_Diffraction_Gratings
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei


J
Josephson effect

5.6: Superconductors 
Josephson junction

5.6: Superconductors 

K
kilogram

1.4: Units and Standards 
Kirchhoff’s First Rule

6.3: Kirchhoff's Rules 
Kirchhoff’s Second Rule

6.3: Kirchhoff's Rules 
Kirchhoff's junction rule

6.2: Resistors in Series and Parallel 
6.3: Kirchhoff's Rules 

Kirchhoff's loop rule
6.2: Resistors in Series and Parallel 
6.3: Kirchhoff's Rules 

Klein bottle
3.7: Gauss’s Law 

L
lacrimal duct

10.8.1: Ear Basic Concepts 
laser

13.6: Lasers 
Laser Printers

4.5: Applications of Electrostatics 
laser vision correction

10.8.4: Vision_Correction 
law

1.1: The Scientific Method and Physics 
law of reflection

10.2: The Law of Reflection 
law of refraction

10.4: Refraction 
lens

10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

lifetime
12.3: Radioactive Decay 

light
10.1: The Propagation of Light 

linear approximation
2.9.4: Linear Approximations and Differentials 

linear charge density
3.5: Calculating Electric Fields of Charge

Distributions 
linear function

2.8.1: Basic Functions 
linearization

2.9.4: Linear Approximations and Differentials 
liquid drop model

12.5: Fission 
local extremum

2.9.5: Maxima and Minima 
local maximum

2.9.5: Maxima and Minima 
local minimum

2.9.5: Maxima and Minima 
Logarithmic Function

2.8.1: Basic Functions 
Lorentz force

9.1: Maxwell’s Equations and Electromagnetic
Waves 

low dose
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 

M
magnetic damping

8.4: Eddy Currents and Magnetic Damping 
Magnetic dipole

7.7: Force and Torque on a Current Loop 
13.2: Orbital Magnetic Dipole Moment of the

Electron 
magnetic dipole moment

7.7: Force and Torque on a Current Loop 
magnetic domains

7.13: Magnetism in Matter 
magnetic field

7: Sources of Magnetism, Magnetic Forces and
Fields 

7.10: Magnetic Field of a Current Loop 
magnetic field lines

7.3: Magnetic Fields and Lines 
magnetic flux

8.1: Faraday and Lenz’s Laws 
magnetic foce

7.7: Force and Torque on a Current Loop 
7.10: Magnetic Field of a Current Loop 

Magnetic force
7.3: Magnetic Fields and Lines 
7.6: Magnetic Force on a Current-Carrying

Conductor 
Magnetic Forces

7: Sources of Magnetism, Magnetic Forces and
Fields 
magnetic monopole

7.3: Magnetic Fields and Lines 
magnetic orbital quantum number

13.2: Orbital Magnetic Dipole Moment of the
Electron 
magnetic pole

7.2: Magnets, Electromagnets and Magnetic Matter 
magnetic susceptibility

7.13: Magnetism in Matter 
Magnetic torque

7.7: Force and Torque on a Current Loop 
magnetogram

13.2: Orbital Magnetic Dipole Moment of the
Electron 
Magnification

10.5: Images Formed by Mirrors 
magnifying glass

10.7: Optical Instruments 
Magnitude

2.11.3: Scalars and Vectors 
Malus’s law

9.3: Polarization 
marginal cost

2.9.3: Derivatives as Rates of Change 
marginal profit

2.9.3: Derivatives as Rates of Change 
marginal revenue

2.9.3: Derivatives as Rates of Change 
mass defect

12.2: Nuclear Binding Energy 
mass number

12.1: Properties of Nuclei 
Mass Spectrometer

7.5: Applications of Magnetic Forces and Fields 
mathematical model

2.8.1: Basic Functions 

Maxwell's equations
9.1: Maxwell’s Equations and Electromagnetic

Waves 
Meissner effect

5.6: Superconductors 
metals

5.2: Model of Conduction in Metals 
metastable state

13.6: Lasers 
Meter

1.4: Units and Standards 
metric system

1.4: Units and Standards 
Michelson interferometer

11.12: The Michelson Interferometer 
microwaves

9.6: The Electromagnetic Spectrum 
Midpoint Formula

2.4: The Rectangular Coordinate Systems and
Graphs 
missing order

11.7: Double-Slit Diffraction 
model

1.1: The Scientific Method and Physics 
moderate dose

12.7: Medical Applications and Biological Effects of
Nuclear Radiation 
Moments of Inertia

2.10.4: Moments_and_Centers_of_Mass 
monochromatic

11.2: Young's Double-Slit Interference 
13.6: Lasers 

Moseley plot
13.5: Atomic Spectra and X-rays 

Moseley’s law
13.5: Atomic Spectra and X-rays 

Motion of charged particle
7.4: Motion of a Charged Particle in a Magnetic

Field 
Motional Emf

8.2: Motional Emf 
mutual inductance

8.6: Inductance 
myopia

10.8: The Eye 
10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 
10.8.4: Vision_Correction 

N
natural exponential function

2.8.3: Exponential_and_Logarithmic_Functions 
natural logarithm

2.8.3: Exponential_and_Logarithmic_Functions 
near point

10.8: The Eye 
10.8.4: Vision_Correction 

nearsightedness
10.8: The Eye 
10.8.4: Vision_Correction 

neutrino
12.4: Nuclear Reactions 

neutron number
12.1: Properties of Nuclei 

Newton’s rings
11.5: Interference in Thin Films 

nonohmic
5.4: Ohm's Law 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.07%3A_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.02%3A_The_Law_of_Reflection
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.04%3A_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.01%3A_Maxwells_Equations_and_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.04%3A_Eddy_Currents_and_Magnetic_Damping
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.07%3A_Force_and_Torque_on_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.07%3A_Force_and_Torque_on_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.10%3A_Magnetic_Field_of_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.01%3A_Faraday_and_Lenzs_Laws
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.07%3A_Force_and_Torque_on_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.10%3A_Magnetic_Field_of_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.06%3A_Magnetic_Force_on_a_Current-Carrying_Conductor
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.02%3A_Magnets_Electromagnets_and_Magnetic_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.07%3A_Force_and_Torque_on_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.07%3A_Optical_Instruments
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.02%3A_Nuclear_Binding_Energy
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.05%3A_Applications_of_Magnetic_Forces_and_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.01%3A_Maxwells_Equations_and_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.02%3A_Model_of_Conduction_in_Metals
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.12%3A_The_Michelson_Interferometer
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.07%3A_Double-Slit_Diffraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.04%3A_Moments_and_Centers_of_Mass
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.02%3A_Young's_Double-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.04%3A_Motion_of_a_Charged_Particle_in_a_Magnetic_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.02%3A_Motional_Emf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.05%3A_Interference_in_Thin_Films
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law


north magnetic pole
7.2: Magnets, Electromagnets and Magnetic Matter 

Nuclear Binding Energy
12.2: Nuclear Binding Energy 

nuclear fusion
12.6: Nuclear Fusion 

nuclear fusion reactor
12.6: Nuclear Fusion 

nucleons
12.1: Properties of Nuclei 

nucleosynthesis
12.6: Nuclear Fusion 

nuclide
12.1: Properties of Nuclei 

null vector
2.11.5: Algebra of Vectors 

number e
2.8.3: Exponential_and_Logarithmic_Functions 

Numerical Aperture (NA)
11.9: Circular Apertures and Resolution 

O
object distance

10.5: Images Formed by Mirrors 
object focus

10.6: Images Formed by Refraction 
odd function

2.8: Functions 
ohm

5.3: Resistivity and Resistance 
Ohm’s law

5.4: Ohm's Law 
ohmic

5.4: Ohm's Law 
opposite

2.11.2: Right Angle Triangle Trigonometry 
opposite side

2.11.2: Right Angle Triangle Trigonometry 
optic nerve

10.8.1: Ear Basic Concepts 
optical power

10.8: The Eye 
optically active

9.3: Polarization 
optimization problems

2.9.7: Optimization Problems 
orbital magnetic dipole moment

13.2: Orbital Magnetic Dipole Moment of the
Electron 
order

11.3: Mathematics of Interference 
order of magnitude

1.1: The Scientific Method and Physics 
orthogonal vectors

2.11.3: Scalars and Vectors 
Oscar Had A Heap Of Apples

2.11.2: Right Angle Triangle Trigonometry 
otitis externa

10.8.1: Ear Basic Concepts 
ototoxic medications

10.8.1: Ear Basic Concepts 

P
parallel circuit

6.2: Resistors in Series and Parallel 

parallel combination
4.7: Capacitors in Series and in Parallel 

parallel lines
2.5: Finding Angle Measurements 

parallel postulate
2.5: Finding Angle Measurements 

parallel vectors
2.11.3: Scalars and Vectors 

paramagnetic materials
7.13: Magnetism in Matter 

parent nucleus
12.4: Nuclear Reactions 

Pauli’s exclusion principle
13.4: The Exclusion Principle and the Periodic Table

peak emf
8.5: Electric Generators and Back Emf 

percentage error
2.9.4: Linear Approximations and Differentials 

periodic function
2.8.2: Trigonometric Functions 
2.11.1: Review of Trigonometry 

permeability of free space
7.9: The Biot-Savart Law 

permittivity of free space
3.3: Electrostatic Force - Coulomb's Law 

permittivity of vacuum
3.3: Electrostatic Force - Coulomb's Law 

physical quantity
1.4: Units and Standards 

physics
1.1: The Scientific Method and Physics 

planar symmetry
3.8: Applying Gauss’s Law 

plane mirror
10.5: Images Formed by Mirrors 

Plane waves
9.2: Electromagnetic Waves 

points of inflection
2.9.6: Derivatives and the Shape of a Graph 

polarization
3.2: Conductors, Insulators, and Charging by

Induction 
3.9: Conductors in Electrostatic Equilibrium 
9.3: Polarization 

polarized
9.3: Polarization 

polynomial function
2.8.1: Basic Functions 

population growth rate
2.9.3: Derivatives as Rates of Change 

population inversion
13.6: Lasers 

positron
12.4: Nuclear Reactions 

positron emission tomography (PET)
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 
potential difference

6.1: Electromotive Force 
potential drop

6.1: Electromotive Force 
power function

2.8.1: Basic Functions 
power rule

2.9.2: Differentiation Rules 
Poynting vector

9.4: Energy Carried by Electromagnetic Waves 

presbycusis
10.8.1: Ear Basic Concepts 

presbyopia
10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

principal maximum
11.4: Multiple-Slit Interference 

principal quantum number (n)
13.1: The Hydrogen Atom 

principle of superposition
3.3: Electrostatic Force - Coulomb's Law 

product rule
2.9.2: Differentiation Rules 

propagated error
2.9.4: Linear Approximations and Differentials 

pupil
10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

pyramid
2.11.2: Right Angle Triangle Trigonometry 

pythagorean identities, trigonometric
identities

2.11.1: Review of Trigonometry 
Pythagorean Theorem

2.4: The Rectangular Coordinate Systems and
Graphs 

Q
Q value

12.6: Nuclear Fusion 
quadratic formula

2.7.3: Solving Quadratic Equations 
quadratic function

2.8.1: Basic Functions 
quotient rule

2.9.2: Differentiation Rules 

R
radar

9.6: The Electromagnetic Spectrum 
radial density

2.10.3: Physical Applications of Integration- 
radial probability density function

13.1: The Hydrogen Atom 
Radians

2.8.2: Trigonometric Functions 
2.11.1: Review of Trigonometry 

radiation dose unit (rad)
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 
radiation pressure

9.5: Momentum and Radiation Pressure 
radio tower

2.11.2: Right Angle Triangle Trigonometry 
radio waves

9.6: The Electromagnetic Spectrum 
radioactive dating

12.3: Radioactive Decay 
radioactive decay law

12.3: Radioactive Decay 
radioactive tags

12.7: Medical Applications and Biological Effects of
Nuclear Radiation 
Radioactivity

12.3: Radioactive Decay 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.02%3A_Magnets_Electromagnets_and_Magnetic_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.02%3A_Nuclear_Binding_Energy
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.06%3A_Nuclear_Fusion
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.06%3A_Nuclear_Fusion
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.06%3A_Nuclear_Fusion
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.05%3A_Algebra_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.09%3A_Circular_Apertures_and_Resolution
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.03%3A_Resistivity_and_Resistance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.07%3A_Optimization_Problems
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.03%3A_Mathematics_of_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.07%3A_Capacitors_in_Series_and_in_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.05%3A_Finding_Angle_Measurements
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.05%3A_Finding_Angle_Measurements
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.05%3A_Electric_Generators_and_Back_Emf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.09%3A_The_Biot-Savart_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.02%3A_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.09%3A_Conductors_in_Electrostatic_Equilibrium
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.04%3A_Energy_Carried_by_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.04%3A_Multiple-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.06%3A_Nuclear_Fusion
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.03%3A_Solving_Quadratic_Equations
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.05%3A_Momentum_and_Radiation_Pressure
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay


radiopharmaceutical
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 
radius of a nucleus

12.1: Properties of Nuclei 
range

2.8: Functions 
rational function

2.8.1: Basic Functions 
ray

10.1: The Propagation of Light 
Rayleigh criterion

11.9: Circular Apertures and Resolution 
RC circuit

6.6: RC Circuits 
real image

10.5: Images Formed by Mirrors 
refraction

10.4: Refraction 
10.6: Images Formed by Refraction 

relative biological effectiveness (RBE)
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 
relative error

2.9.4: Linear Approximations and Differentials 
resistance

5.3: Resistivity and Resistance 
resistivity

5.3: Resistivity and Resistance 
Resistors in Parallel

6.2: Resistors in Series and Parallel 
resistors in series

6.2: Resistors in Series and Parallel 
resolution

11.9: Circular Apertures and Resolution 
resultant

2.11.3: Scalars and Vectors 
resultant vector

2.11.3: Scalars and Vectors 
retina

10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

retinex
10.8.6: Color_and_Color_Vision 

retinex theory of color vision
10.8.6: Color_and_Color_Vision 

Retroreflectors
10.2: The Law of Reflection 

rhodopsin
10.8.2: A_Vision 

right triangle
2.11.2: Right Angle Triangle Trigonometry 

right triangle trigonometry, applied
problems

2.11.2: Right Angle Triangle Trigonometry 
rod

10.8.2: A_Vision 
rods and cones

10.8.6: Color_and_Color_Vision 
roentgen equivalent man (rem)

12.7: Medical Applications and Biological Effects of
Nuclear Radiation 
root function

2.8.1: Basic Functions 

S
scalar components

2.11.4: Coordinate Systems and Components of a
Vector 
scalar equation

2.11.3: Scalars and Vectors 
scalar field

3.4: Electric Field 
Scalar product

2.11.6: Products of Vectors 
schematic

5.1: Electrical Current 
sclera

10.8.1: Ear Basic Concepts 
secant

2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

second
1.4: Units and Standards 

second derivative test
2.9.6: Derivatives and the Shape of a Graph 

second focus or image focus
10.6: Images Formed by Refraction 

secondary maximum
11.4: Multiple-Slit Interference 

Selection rules
13.5: Atomic Spectra and X-rays 

sensorineural hearing loss
10.8.1: Ear Basic Concepts 

series circuit
6.2: Resistors in Series and Parallel 

series combination
4.7: Capacitors in Series and in Parallel 

shock hazard
6.4: Household Wiring and Electrical Safety 

SI Units
1.4: Units and Standards 

sievert (Sv)
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 
Simple Magnifer

10.7: Optical Instruments 
simplified theory of color vision

10.8.6: Color_and_Color_Vision 
sine

2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

slope
2.8.1: Basic Functions 

Snell’s law of refraction
10.3: Huygens’s Principle 
10.4: Refraction 

Snellen chart
10.8.1: Ear Basic Concepts 

SohCahToa
2.11.2: Right Angle Triangle Trigonometry 

Solenoids
7.12: Solenoids and Toroids 

south magnetic pole
7.2: Magnets, Electromagnets and Magnetic Matter 

spectroscopic dispersion
11.8: Diffraction Gratings 

speed
2.9.3: Derivatives as Rates of Change 

spherical symmetry
3.8: Applying Gauss’s Law 

spin projection quantum number
13.3: Electron Spin 

spin projection quantum number ( msms )
13.3: Electron Spin 

spin quantum number (s)
13.3: Electron Spin 

SQUID
5.6: Superconductors 

stimulated emission
13.6: Lasers 

Strong nuclear force
12.1: Properties of Nuclei 

Sum Rule
2.9.2: Differentiation Rules 

superconductors
5.6: Superconductors 

superior colliculus
10.8.2: A_Vision 

superposition
3.4: Electric Field 

suprachiasmatic nucleus
10.8.2: A_Vision 

surface charge density
3.5: Calculating Electric Fields of Charge

Distributions 
symmetry about the origin

2.8: Functions 

T
table of values

2.8: Functions 
tangent

2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

tangent line approximation
2.9.4: Linear Approximations and Differentials 

terminal voltage
6.1: Electromotive Force 

tesla (unit)
7.3: Magnetic Fields and Lines 

Thales
2.11.2: Right Angle Triangle Trigonometry 

the component form of a vector
2.11.4: Coordinate Systems and Components of a

Vector 
the Dot Product

2.11.6: Products of Vectors 
The Scalar Product

2.11.6: Products of Vectors 
Theorem of Pappus

2.10.4: Moments_and_Centers_of_Mass 
theory

1.1: The Scientific Method and Physics 
thermal agitation

9.6: The Electromagnetic Spectrum 
thermal hazard

6.4: Household Wiring and Electrical Safety 
tinnitus

10.8.1: Ear Basic Concepts 
tonic activity

10.8.2: A_Vision 
Toroids

7.12: Solenoids and Toroids 
transcendental function

2.8.1: Basic Functions 
transformation of a function

2.8.1: Basic Functions 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.09%3A_Circular_Apertures_and_Resolution
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.06%3A_RC_Circuits
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.04%3A_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.03%3A_Resistivity_and_Resistance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.03%3A_Resistivity_and_Resistance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.09%3A_Circular_Apertures_and_Resolution
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.02%3A_The_Law_of_Reflection
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.04%3A__Coordinate_Systems_and_Components_of_a_Vector
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.04%3A_Electric_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.06%3A_Products_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.04%3A_Multiple-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.07%3A_Capacitors_in_Series_and_in_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.04%3A_Household_Wiring_and_Electrical_Safety
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.07%3A_Optical_Instruments
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.03%3A_Huygenss_Principle
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.04%3A_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.12%3A_Solenoids_and_Toroids
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.02%3A_Magnets_Electromagnets_and_Magnetic_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.08%3A_Diffraction_Gratings
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.04%3A_Electric_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.04%3A__Coordinate_Systems_and_Components_of_a_Vector
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.06%3A_Products_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.06%3A_Products_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.04%3A_Moments_and_Centers_of_Mass
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.04%3A_Household_Wiring_and_Electrical_Safety
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.12%3A_Solenoids_and_Toroids
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions


transition metal
13.4: The Exclusion Principle and the Periodic Table

transmission hologram
11.11: Holography 

transuranic element
12.4: Nuclear Reactions 

transversal
2.5: Finding Angle Measurements 

transverse wave
9.3: Polarization 

tree, how tall
2.11.2: Right Angle Triangle Trigonometry 

trigonometric functions
2.8.2: Trigonometric Functions 
2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

trigonometric identity
2.8.2: Trigonometric Functions 
2.11.1: Review of Trigonometry 

tympanic membrane
10.8.1: Ear Basic Concepts 

U
ultraviolet radiation

9.6: The Electromagnetic Spectrum 
unit circle

2.8.2: Trigonometric Functions 
2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

Unit vector
2.11.3: Scalars and Vectors 

units
1.4: Units and Standards 

unpolarized
9.3: Polarization 

V
valence electron

13.4: The Exclusion Principle and the Periodic Table
Van de Graaff generator

4.5: Applications of Electrostatics 
vector components

2.11.4: Coordinate Systems and Components of a
Vector 
vector equation

2.11.3: Scalars and Vectors 
vector field

3.4: Electric Field 
vectors

2.11.3: Scalars and Vectors 
2.12: Math-vector basics and diffrential equations 

vertical line test
2.8: Functions 

vertically polarized
9.3: Polarization 

vertigo
10.8.1: Ear Basic Concepts 

vestibulocochlear nerve
10.8.1: Ear Basic Concepts 

virtual image
10.5: Images Formed by Mirrors 

visible light
9.6: The Electromagnetic Spectrum 

vision
10.8.2: A_Vision 

voltage
4.2: Electric Potential and Potential Difference 

voltmeter
6.5: Electrical Measuring Instruments 

volume charge density
3.5: Calculating Electric Fields of Charge

Distributions 

W
wave optics

10.3: Huygens’s Principle 
Work

2.10.3: Physical Applications of Integration- 

X
xerography

4.5: Applications of Electrostatics 

Y
Young double slit

11.2: Young's Double-Slit Interference 

Z
Zeeman effect

13.2: Orbital Magnetic Dipole Moment of the
Electron 
zeros of a function

2.8: Functions 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.11%3A_Holography
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.05%3A_Finding_Angle_Measurements
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.04%3A__Coordinate_Systems_and_Components_of_a_Vector
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.04%3A_Electric_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.12%3A_Math-vector_basics_and_diffrential_equations
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.02%3A_Electric_Potential_and_Potential_Difference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.05%3A_Electrical_Measuring_Instruments
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.03%3A_Huygenss_Principle
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.02%3A_Young's_Double-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions


Glossary
Sample Word 1 | Sample Definition 1

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/03%3A_Glossary


1 https://phys.libretexts.org/@go/page/76497

Detailed Licensing

Overview

Title: GSU-TM-Physics II (2212)

Webpages: 214

Applicable Restrictions: Noncommercial

All licenses found:

CC BY 4.0: 67.8% (145 pages)
CC BY-NC-SA 4.0: 20.6% (44 pages)
Undeclared: 7.5% (16 pages)
CC BY-SA 4.0: 1.9% (4 pages)
CC BY-NC-SA 3.0: 1.4% (3 pages)
CC BY-NC-SA 2.5: 0.5% (1 page)
CC BY 3.0: 0.5% (1 page)

By Page

GSU-TM-Physics II (2212) - CC BY-NC-SA 4.0
Front Matter - Undeclared

TitlePage - Undeclared
InfoPage - Undeclared
Table of Contents - Undeclared
About this Book - Undeclared
Licensing - Undeclared
Licensing - Undeclared

1: Introduction to Physics and Measurements - CC BY-
NC-SA 4.0

1.1: The Scientific Method and Physics - CC BY-NC-
SA 4.0
1.2: Thinking Like a Scientist - CC BY-NC-SA 4.0
1.3: Measurements Uncertainty and Significant
Figures - CC BY-NC-SA 4.0
1.4: Units and Standards - CC BY-NC-SA 4.0
1.5: Unit Conversion - CC BY-NC-SA 4.0
1.6: Dimensional Analysis - CC BY-NC-SA 4.0
1.7: How to Solve Problems in this Course - CC BY-
NC-SA 4.0
1.E: Practice- - CC BY-NC-SA 4.0

2: Math Review - CC BY-NC-SA 4.0
2.1: Introduction - CC BY-NC-SA 2.5
2.2: Geometrical Shapes - CC BY-NC-SA 4.0
2.3: Triangles - CC BY-NC-SA 3.0
2.4: The Rectangular Coordinate Systems and Graphs
- CC BY 4.0
2.5: Finding Angle Measurements - CC BY-NC-SA
4.0
2.6: Parallel and Perpendicular Lines - CC BY-NC-SA
3.0

2.7: Solving Linear Equations and Inequalities - CC
BY-NC-SA 4.0

2.7.1: Solving Linera Equations - CC BY-NC-SA
4.0
2.7.2: Solving Inequalities - CC BY-NC-SA 4.0
2.7.3: Solving Quadratic Equations - CC BY 4.0
2.7.4: Solving a System of Linear Equations - CC
BY-NC-SA 4.0
2.7.5: Solving a System of Linear Equations with
Cramer's Rule - CC BY 4.0

2.8: Functions - CC BY-NC-SA 4.0

2.8.1: Basic Functions - CC BY-NC-SA 4.0
2.8.2: Trigonometric Functions - CC BY-NC-SA
4.0
2.8.3: Exponential_and_Logarithmic_Functions -
CC BY-NC-SA 4.0
2.8.4: Properties_of_Logarithms - CC BY 4.0
2.8.5: Exponential and Logarithmic Models - CC
BY-SA 4.0

2.9: Derivatives - CC BY-SA 4.0
2.9.1: The Derivative as a Function - CC BY-NC-
SA 4.0
2.9.2: Differentiation Rules - CC BY-NC-SA 4.0
2.9.3: Derivatives as Rates of Change - CC BY-
NC-SA 4.0
2.9.4: Linear Approximations and Differentials -
CC BY-NC-SA 4.0
2.9.5: Maxima and Minima - CC BY-NC-SA 4.0
2.9.6: Derivatives and the Shape of a Graph - CC
BY-NC-SA 4.0
2.9.7: Optimization Problems - CC BY-NC-SA 4.0
2.9.8: Table of Derivatives - CC BY-NC-SA 4.0

https://libretexts.org/
https://phys.libretexts.org/@go/page/76497?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/04%3A_Detailed_Licensing
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/2.5/
https://creativecommons.org/licenses/by/3.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/01%3A_TitlePage
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/02%3A_InfoPage
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/03%3A_Table_of_Contents
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/04%3A_About_this_Book
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/05%3A_Licensing
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/06%3A_Licensing
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.02%3A_Thinking_Like_a_Scientist
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.03%3A_Measurements_Uncertainty_and_Significant_Figures
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.05%3A_Unit_Conversion
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.06%3A_Dimensional_Analysis
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.07%3A_How_to_Solve_Problems_in_this_Course
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.E%3A_Practice-
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.01%3A_Introduction
https://creativecommons.org/licenses/by-nc-sa/2.5/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.02%3A_Geometrical_Shapes
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.03%3A_Triangles
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.05%3A_Finding_Angle_Measurements
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.06%3A_Parallel_and_Perpendicular_Lines
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.01%3A_Solving_Linera_Equations
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.02%3A_Solving_Inequalities
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.03%3A_Solving_Quadratic_Equations
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.04%3A_Solving_a_System_of_Linear_Equations
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.05%3A_Solving_a_System_of_Linear_Equations_with_Cramer's_Rule
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.04%3A_Properties_of_Logarithms
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.05%3A_Exponential_and_Logarithmic_Models
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.01%3A_The_Derivative_as_a_Function
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.07%3A_Optimization_Problems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.08%3A_Table_of_Derivatives
https://creativecommons.org/licenses/by-nc-sa/4.0/


2 https://phys.libretexts.org/@go/page/76497

2.10: Anti derivatives and integrals - CC BY-SA 4.0
2.10.1: Integrals - CC BY-NC-SA 3.0
2.10.2: Antiderivatives - CC BY-NC-SA 4.0
2.10.3: Physical Applications of Integration- - CC
BY-NC-SA 4.0
2.10.4: Moments_and_Centers_of_Mass - CC BY-
NC-SA 4.0
2.10.5: Table_of_Integrals - CC BY-NC-SA 4.0

2.11: Vectors - CC BY-NC-SA 4.0

2.11.1: Review of Trigonometry - CC BY-NC-SA
4.0
2.11.2: Right Angle Triangle Trigonometry - CC
BY-NC-SA 4.0
2.11.3: Scalars and Vectors - CC BY-NC-SA 4.0
2.11.4: Coordinate Systems and Components of a
Vector - CC BY-NC-SA 4.0
2.11.5: Algebra of Vectors - CC BY-NC-SA 4.0
2.11.6: Products of Vectors - CC BY-NC-SA 4.0
2.11.7: Further Topics - Undeclared
2.11.E: Practice - CC BY-NC-SA 4.0

2.12: Math-vector basics and diffrential equations -
CC BY-NC-SA 4.0

3: Electrostatics - Charges, Forces and Fields - CC BY
4.0

3.1: Electrical Charge - CC BY 4.0
3.2: Conductors, Insulators, and Charging by
Induction - CC BY 4.0
3.3: Electrostatic Force - Coulomb's Law - CC BY 4.0
3.4: Electric Field - CC BY 4.0
3.5: Calculating Electric Fields of Charge
Distributions - CC BY 4.0
3.6: Electric Flux - CC BY 4.0
3.7: Gauss’s Law - CC BY 4.0
3.8: Applying Gauss’s Law - CC BY 4.0
3.9: Conductors in Electrostatic Equilibrium - CC BY
4.0
3.10: Summary - CC BY 4.0
3.11: Practice - CC BY 4.0
3.12: Electric Charges and Fields (Answer) - CC BY
4.0

4: Electric Potential and Capacitance - CC BY 4.0

4.1: Electric Potential Energy - CC BY 4.0
4.2: Electric Potential and Potential Difference - CC
BY 4.0
4.3: Equipotential Surfaces and Conductors - CC BY
4.0
4.4: Determining Field from Potential - CC BY 4.0
4.5: Applications of Electrostatics - CC BY 4.0
4.6: Capacitors and Capacitance - CC BY 4.0
4.7: Capacitors in Series and in Parallel - CC BY 4.0
4.8: Energy Stored in a Capacitor - CC BY 4.0

4.9: Capacitor with a Dielectric - CC BY 4.0
4.E: Practice - CC BY 4.0
4.S: Summary - CC BY 4.0

5: Current and Resistance - CC BY 4.0
5.1: Electrical Current - CC BY 4.0
5.2: Model of Conduction in Metals - CC BY 4.0
5.3: Resistivity and Resistance - CC BY 4.0
5.4: Ohm's Law - CC BY 4.0
5.5: Electrical Energy and Power - CC BY 4.0
5.6: Superconductors - CC BY 4.0
5.7: Practice - CC BY 4.0
5.A: Current and Resistance (Answers) - CC BY 4.0
5.S: Summary - CC BY 4.0

6: Resistive Networks - CC BY 4.0
6.1: Electromotive Force - CC BY 4.0
6.2: Resistors in Series and Parallel - CC BY 4.0
6.3: Kirchhoff's Rules - CC BY 4.0
6.4: Household Wiring and Electrical Safety - CC BY
4.0
6.5: Electrical Measuring Instruments - CC BY 4.0
6.6: RC Circuits - CC BY 4.0
6.7: Practice - CC BY 4.0
6.S: Summary - CC BY 4.0

7: Sources of Magnetism, Magnetic Forces and Fields -
CC BY 4.0

7.1: Introduction to Magnetism - CC BY 4.0
7.2: Magnets, Electromagnets and Magnetic Matter -
CC BY 4.0
7.3: Magnetic Fields and Lines - CC BY 4.0
7.4: Motion of a Charged Particle in a Magnetic Field
- CC BY 4.0
7.5: Applications of Magnetic Forces and Fields - CC
BY 4.0
7.6: Magnetic Force on a Current-Carrying
Conductor - CC BY 4.0
7.7: Force and Torque on a Current Loop - CC BY 4.0
7.8: The Hall Effect - CC BY 4.0
7.9: The Biot-Savart Law - CC BY 4.0
7.10: Magnetic Field of a Current Loop - CC BY 4.0
7.11: Ampère’s Law - CC BY 4.0
7.12: Solenoids and Toroids - CC BY 4.0
7.13: Magnetism in Matter - CC BY 4.0
7.S: Magnetic Forces and Fields (Summary) - CC BY
4.0

1.S: Sources of Magnetic Fields (Summary) - CC
BY 4.0

8: Electromagnetic Induction - CC BY 4.0
8.1: Faraday and Lenz’s Laws - CC BY 4.0
8.2: Motional Emf - CC BY 4.0
8.3: Induced Electric Fields - CC BY 4.0

https://libretexts.org/
https://phys.libretexts.org/@go/page/76497?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.01%3A_Integrals
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.02%3A_Antiderivatives
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.04%3A_Moments_and_Centers_of_Mass
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.05%3A_Table_of_Integrals
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.04%3A__Coordinate_Systems_and_Components_of_a_Vector
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.05%3A_Algebra_of_Vectors
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.06%3A_Products_of_Vectors
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.07%3A_Further_Topics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.E%3A_Practice
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.12%3A_Math-vector_basics_and_diffrential_equations
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.01%3A_Electrical_Charge
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.04%3A_Electric_Field
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.06%3A_Electric_Flux
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.07%3A_Gausss_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.09%3A_Conductors_in_Electrostatic_Equilibrium
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.10%3A_Summary
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.11%3A_Practice
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.12%3A_Electric_Charges_and_Fields_(Answer)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.01%3A_Electric_Potential_Energy
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.02%3A_Electric_Potential_and_Potential_Difference
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.03%3A_Equipotential_Surfaces_and_Conductors
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.04%3A_Determining_Field_from_Potential
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.06%3A_Capacitors_and_Capacitance
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.07%3A_Capacitors_in_Series_and_in_Parallel
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.08%3A_Energy_Stored_in_a_Capacitor
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.09%3A_Capacitor_with_a_Dielectric
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.E%3A_Practice
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.S%3A_Summary
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.02%3A_Model_of_Conduction_in_Metals
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.03%3A_Resistivity_and_Resistance
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.05%3A_Electrical_Energy_and_Power
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.07%3A_Practice
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.A%3A_Current_and_Resistance_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.S%3A_Summary
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.04%3A_Household_Wiring_and_Electrical_Safety
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.05%3A_Electrical_Measuring_Instruments
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.06%3A_RC_Circuits
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.07%3A_Practice
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.S%3A_Summary
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.01%3A_Introduction_to_Magnetism
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.02%3A_Magnets_Electromagnets_and_Magnetic_Matter
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.04%3A_Motion_of_a_Charged_Particle_in_a_Magnetic_Field
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.05%3A_Applications_of_Magnetic_Forces_and_Fields
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.06%3A_Magnetic_Force_on_a_Current-Carrying_Conductor
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.07%3A_Force_and_Torque_on_a_Current_Loop
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.08%3A_The_Hall_Effect
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.09%3A_The_Biot-Savart_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.10%3A_Magnetic_Field_of_a_Current_Loop
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.11%3A_Amperes_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.12%3A_Solenoids_and_Toroids
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.S%3A_Magnetic_Forces_and_Fields_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.S%3A_Magnetic_Forces_and_Fields_(Summary)/1.S%3A_Sources_of_Magnetic_Fields_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.01%3A_Faraday_and_Lenzs_Laws
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.02%3A_Motional_Emf
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.03%3A_Induced_Electric_Fields
https://creativecommons.org/licenses/by/4.0/


3 https://phys.libretexts.org/@go/page/76497

8.4: Eddy Currents and Magnetic Damping - CC BY
4.0
8.5: Electric Generators and Back Emf - CC BY 4.0
8.6: Inductance - CC BY 4.0
8.7: Applications of Electromagnetic Induction - CC
BY 4.0
8.8: Alternating Current versus Direct Current - CC
BY 4.0
8.A: Electromagnetic Induction (Answers) - CC BY
4.0
8.E: Electromagnetic Induction, AC Circuits, and
Electrical Technologies (Exercise) - CC BY 4.0
8.S: Electromagnetic Induction (Summary) - CC BY
4.0

9: Electromagnetic Waves - CC BY 4.0
9.1: Maxwell’s Equations and Electromagnetic Waves
- CC BY 4.0
9.2: Electromagnetic Waves - CC BY 4.0
9.3: Polarization - CC BY 4.0
9.4: Energy Carried by Electromagnetic Waves - CC
BY 4.0
9.5: Momentum and Radiation Pressure - CC BY 4.0
9.6: The Electromagnetic Spectrum - CC BY 4.0
9.A: Electromagnetic Waves (Answer) - CC BY 4.0
9.E: Electromagnetic Waves (Exercises) - CC BY 4.0
9.S: Electromagnetic Waves (Summary) - CC BY 4.0

10: Geometrical Optics - CC BY 4.0
10.1: The Propagation of Light - CC BY 4.0
10.2: The Law of Reflection - CC BY 4.0
10.3: Huygens’s Principle - CC BY 4.0
10.4: Refraction - CC BY 4.0
10.5: Images Formed by Mirrors - CC BY 4.0
10.6: Images Formed by Refraction - CC BY 4.0
10.7: Optical Instruments - CC BY 4.0
10.8: The Eye - CC BY 4.0

10.8.1: Ear Basic Concepts - CC BY-SA 4.0
10.8.2: A_Vision - CC BY 4.0
10.8.3: Vision - CC BY 4.0
10.8.4: Vision_Correction - CC BY 4.0
10.8.5: Processing_Visual_Information - CC BY
3.0
10.8.6: Color_and_Color_Vision - CC BY 4.0
10.8.7: Photoreceptors/Vision_and_Light -
Undeclared
10.8.8: Biology of vision - Undeclared

10.A: The Nature of Light (Answers) - CC BY 4.0
1.A: Geometric Optics and Image Formation
(Answers) - CC BY 4.0

10.E: The Nature of Light (Exercises) - CC BY 4.0
1.E: Geometric Optics and Image Formation
(Exercises) - CC BY 4.0

10.S: The Nature of Light (Summary) - CC BY 4.0
1.S: Geometric Optics and Image Formation
(Summary) - CC BY 4.0

11: Physical Optics - CC BY 4.0

11.1: Interference and Diffraction - CC BY 4.0
11.2: Young's Double-Slit Interference - CC BY 4.0
11.3: Mathematics of Interference - CC BY 4.0
11.4: Multiple-Slit Interference - CC BY 4.0
11.5: Interference in Thin Films - CC BY 4.0
11.6: Single-Slit Diffraction - CC BY 4.0
11.7: Double-Slit Diffraction - CC BY 4.0
11.8: Diffraction Gratings - CC BY 4.0
11.9: Circular Apertures and Resolution - CC BY 4.0
11.10: X-Ray Diffraction - CC BY 4.0
11.11: Holography - CC BY 4.0
11.12: The Michelson Interferometer - CC BY 4.0
11.A: Interference (Answers) - CC BY 4.0

1.A: Diffraction (Answers) - CC BY 4.0
11.E: Interference (Exercises) - CC BY 4.0

1.E: Diffraction (Exercises) - CC BY 4.0
11.S: Interference (Summary) - CC BY 4.0

1.S: Diffraction (Summary) - CC BY 4.0
12: Nuclear Physics - CC BY 4.0

12.1: Properties of Nuclei - CC BY 4.0
12.2: Nuclear Binding Energy - CC BY 4.0
12.3: Radioactive Decay - CC BY 4.0
12.4: Nuclear Reactions - CC BY 4.0
12.5: Fission - CC BY 4.0
12.6: Nuclear Fusion - CC BY 4.0
12.7: Medical Applications and Biological Effects of
Nuclear Radiation - CC BY 4.0
12.A: Nuclear Physics (Answers) - CC BY 4.0
12.E: Nuclear Physics (Exercises) - CC BY 4.0
12.S: Nuclear Physics (Summary) - CC BY 4.0

13: Atomic Structure - CC BY 4.0
13.1: The Hydrogen Atom - CC BY 4.0
13.2: Orbital Magnetic Dipole Moment of the
Electron - CC BY 4.0
13.3: Electron Spin - CC BY 4.0
13.4: The Exclusion Principle and the Periodic Table
- CC BY 4.0
13.5: Atomic Spectra and X-rays - CC BY 4.0
13.6: Lasers - CC BY 4.0
13.A: Atomic Structure (Answers) - CC BY 4.0
13.E: Atomic Structure (Exercises) - CC BY 4.0
13.S: Atomic Structure (Summary) - CC BY 4.0

Back Matter - Undeclared

Some Equations and Constants - CC BY-NC-SA 4.0
Index - Undeclared
Glossary - CC BY-NC-SA 4.0

https://libretexts.org/
https://phys.libretexts.org/@go/page/76497?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.04%3A_Eddy_Currents_and_Magnetic_Damping
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.05%3A_Electric_Generators_and_Back_Emf
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.07%3A_Applications_of_Electromagnetic_Induction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.08%3A_Alternating_Current_versus_Direct_Current
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.A%3A_Electromagnetic_Induction_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.E%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies_(Exercise)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.S%3A_Electromagnetic_Induction_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.01%3A_Maxwells_Equations_and_Electromagnetic_Waves
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.02%3A_Electromagnetic_Waves
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.04%3A_Energy_Carried_by_Electromagnetic_Waves
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.05%3A_Momentum_and_Radiation_Pressure
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.A%3A_Electromagnetic_Waves_(Answer)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.E%3A_Electromagnetic_Waves_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.S%3A_Electromagnetic_Waves_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.02%3A_The_Law_of_Reflection
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.03%3A_Huygenss_Principle
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.04%3A_Refraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.07%3A_Optical_Instruments
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.03%3A_Vision
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.05%3A_Processing_Visual_Information
https://creativecommons.org/licenses/by/3.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.07%3A_Photoreceptors_Vision_and_Light
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.08%3A_Biology_of_vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.A%3A_The_Nature_of_Light_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.A%3A_The_Nature_of_Light_(Answers)/1.A%3A_Geometric_Optics_and_Image_Formation_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.E%3A_The_Nature_of_Light_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.E%3A_The_Nature_of_Light_(Exercises)/1.E%3A_Geometric_Optics_and_Image_Formation_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.S%3A_The_Nature_of_Light_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.S%3A_The_Nature_of_Light_(Summary)/1.S%3A_Geometric_Optics_and_Image_Formation_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.01%3A_Interference_and_Diffraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.02%3A_Young's_Double-Slit_Interference
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.03%3A_Mathematics_of_Interference
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.04%3A_Multiple-Slit_Interference
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.05%3A_Interference_in_Thin_Films
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.06%3A_Single-Slit_Diffraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.07%3A_Double-Slit_Diffraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.08%3A_Diffraction_Gratings
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.09%3A_Circular_Apertures_and_Resolution
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.10%3A_X-Ray_Diffraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.11%3A_Holography
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.12%3A_The_Michelson_Interferometer
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.A%3A_Interference_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.A%3A_Interference_(Answers)/1.A%3A_Diffraction_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.E%3A_Interference_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.E%3A_Interference_(Exercises)/1.E%3A_Diffraction_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.S%3A_Interference_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.S%3A_Interference_(Summary)/1.S%3A_Diffraction_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.02%3A_Nuclear_Binding_Energy
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.06%3A_Nuclear_Fusion
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.A%3A_Nuclear_Physics_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.E%3A_Nuclear_Physics_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.S%3A_Nuclear_Physics_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.A%3A_Atomic_Structure_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.E%3A_Atomic_Structure_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.S%3A_Atomic_Structure_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/01%3A_Some_Equations_and_Constants
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/02%3A_Index
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/03%3A_Glossary
https://creativecommons.org/licenses/by-nc-sa/4.0/


4 https://phys.libretexts.org/@go/page/76497

 

Detailed Licensing - Undeclared
Detailed Licensing - Undeclared
Index - Undeclared

Glossary - Undeclared

https://libretexts.org/
https://phys.libretexts.org/@go/page/76497?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/04%3A_Detailed_Licensing
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/05%3A_Detailed_Licensing
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/10%3A_Index
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/20%3A_Glossary


1 https://phys.libretexts.org/@go/page/87805

Detailed Licensing

Overview

Title: GSU-TM-Physics II (2212)

Webpages: 214

Applicable Restrictions: Noncommercial

All licenses found:

CC BY 4.0: 67.8% (145 pages)
CC BY-NC-SA 4.0: 20.6% (44 pages)
Undeclared: 7.5% (16 pages)
CC BY-SA 4.0: 1.9% (4 pages)
CC BY-NC-SA 3.0: 1.4% (3 pages)
CC BY-NC-SA 2.5: 0.5% (1 page)
CC BY 3.0: 0.5% (1 page)

By Page

GSU-TM-Physics II (2212) - CC BY-NC-SA 4.0
Front Matter - Undeclared

TitlePage - Undeclared
InfoPage - Undeclared
Table of Contents - Undeclared
About this Book - Undeclared
Licensing - Undeclared
Licensing - Undeclared

1: Introduction to Physics and Measurements - CC BY-
NC-SA 4.0

1.1: The Scientific Method and Physics - CC BY-NC-
SA 4.0
1.2: Thinking Like a Scientist - CC BY-NC-SA 4.0
1.3: Measurements Uncertainty and Significant
Figures - CC BY-NC-SA 4.0
1.4: Units and Standards - CC BY-NC-SA 4.0
1.5: Unit Conversion - CC BY-NC-SA 4.0
1.6: Dimensional Analysis - CC BY-NC-SA 4.0
1.7: How to Solve Problems in this Course - CC BY-
NC-SA 4.0
1.E: Practice- - CC BY-NC-SA 4.0

2: Math Review - CC BY-NC-SA 4.0
2.1: Introduction - CC BY-NC-SA 2.5
2.2: Geometrical Shapes - CC BY-NC-SA 4.0
2.3: Triangles - CC BY-NC-SA 3.0
2.4: The Rectangular Coordinate Systems and Graphs
- CC BY 4.0
2.5: Finding Angle Measurements - CC BY-NC-SA
4.0
2.6: Parallel and Perpendicular Lines - CC BY-NC-SA
3.0

2.7: Solving Linear Equations and Inequalities - CC
BY-NC-SA 4.0

2.7.1: Solving Linera Equations - CC BY-NC-SA
4.0
2.7.2: Solving Inequalities - CC BY-NC-SA 4.0
2.7.3: Solving Quadratic Equations - CC BY 4.0
2.7.4: Solving a System of Linear Equations - CC
BY-NC-SA 4.0
2.7.5: Solving a System of Linear Equations with
Cramer's Rule - CC BY 4.0

2.8: Functions - CC BY-NC-SA 4.0

2.8.1: Basic Functions - CC BY-NC-SA 4.0
2.8.2: Trigonometric Functions - CC BY-NC-SA
4.0
2.8.3: Exponential_and_Logarithmic_Functions -
CC BY-NC-SA 4.0
2.8.4: Properties_of_Logarithms - CC BY 4.0
2.8.5: Exponential and Logarithmic Models - CC
BY-SA 4.0

2.9: Derivatives - CC BY-SA 4.0
2.9.1: The Derivative as a Function - CC BY-NC-
SA 4.0
2.9.2: Differentiation Rules - CC BY-NC-SA 4.0
2.9.3: Derivatives as Rates of Change - CC BY-
NC-SA 4.0
2.9.4: Linear Approximations and Differentials -
CC BY-NC-SA 4.0
2.9.5: Maxima and Minima - CC BY-NC-SA 4.0
2.9.6: Derivatives and the Shape of a Graph - CC
BY-NC-SA 4.0
2.9.7: Optimization Problems - CC BY-NC-SA 4.0
2.9.8: Table of Derivatives - CC BY-NC-SA 4.0

https://libretexts.org/
https://phys.libretexts.org/@go/page/87805?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/05%3A_Detailed_Licensing
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/2.5/
https://creativecommons.org/licenses/by/3.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/01%3A_TitlePage
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/02%3A_InfoPage
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/03%3A_Table_of_Contents
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/04%3A_About_this_Book
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/05%3A_Licensing
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/00%3A_Front_Matter/06%3A_Licensing
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.02%3A_Thinking_Like_a_Scientist
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.03%3A_Measurements_Uncertainty_and_Significant_Figures
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.05%3A_Unit_Conversion
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.06%3A_Dimensional_Analysis
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.07%3A_How_to_Solve_Problems_in_this_Course
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.E%3A_Practice-
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.01%3A_Introduction
https://creativecommons.org/licenses/by-nc-sa/2.5/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.02%3A_Geometrical_Shapes
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.03%3A_Triangles
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.05%3A_Finding_Angle_Measurements
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.06%3A_Parallel_and_Perpendicular_Lines
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.01%3A_Solving_Linera_Equations
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.02%3A_Solving_Inequalities
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.03%3A_Solving_Quadratic_Equations
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.04%3A_Solving_a_System_of_Linear_Equations
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.05%3A_Solving_a_System_of_Linear_Equations_with_Cramer's_Rule
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.04%3A_Properties_of_Logarithms
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.05%3A_Exponential_and_Logarithmic_Models
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.01%3A_The_Derivative_as_a_Function
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.07%3A_Optimization_Problems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.08%3A_Table_of_Derivatives
https://creativecommons.org/licenses/by-nc-sa/4.0/


2 https://phys.libretexts.org/@go/page/87805

2.10: Anti derivatives and integrals - CC BY-SA 4.0
2.10.1: Integrals - CC BY-NC-SA 3.0
2.10.2: Antiderivatives - CC BY-NC-SA 4.0
2.10.3: Physical Applications of Integration- - CC
BY-NC-SA 4.0
2.10.4: Moments_and_Centers_of_Mass - CC BY-
NC-SA 4.0
2.10.5: Table_of_Integrals - CC BY-NC-SA 4.0

2.11: Vectors - CC BY-NC-SA 4.0

2.11.1: Review of Trigonometry - CC BY-NC-SA
4.0
2.11.2: Right Angle Triangle Trigonometry - CC
BY-NC-SA 4.0
2.11.3: Scalars and Vectors - CC BY-NC-SA 4.0
2.11.4: Coordinate Systems and Components of a
Vector - CC BY-NC-SA 4.0
2.11.5: Algebra of Vectors - CC BY-NC-SA 4.0
2.11.6: Products of Vectors - CC BY-NC-SA 4.0
2.11.7: Further Topics - Undeclared
2.11.E: Practice - CC BY-NC-SA 4.0

2.12: Math-vector basics and diffrential equations -
CC BY-NC-SA 4.0

3: Electrostatics - Charges, Forces and Fields - CC BY
4.0

3.1: Electrical Charge - CC BY 4.0
3.2: Conductors, Insulators, and Charging by
Induction - CC BY 4.0
3.3: Electrostatic Force - Coulomb's Law - CC BY 4.0
3.4: Electric Field - CC BY 4.0
3.5: Calculating Electric Fields of Charge
Distributions - CC BY 4.0
3.6: Electric Flux - CC BY 4.0
3.7: Gauss’s Law - CC BY 4.0
3.8: Applying Gauss’s Law - CC BY 4.0
3.9: Conductors in Electrostatic Equilibrium - CC BY
4.0
3.10: Summary - CC BY 4.0
3.11: Practice - CC BY 4.0
3.12: Electric Charges and Fields (Answer) - CC BY
4.0

4: Electric Potential and Capacitance - CC BY 4.0

4.1: Electric Potential Energy - CC BY 4.0
4.2: Electric Potential and Potential Difference - CC
BY 4.0
4.3: Equipotential Surfaces and Conductors - CC BY
4.0
4.4: Determining Field from Potential - CC BY 4.0
4.5: Applications of Electrostatics - CC BY 4.0
4.6: Capacitors and Capacitance - CC BY 4.0
4.7: Capacitors in Series and in Parallel - CC BY 4.0
4.8: Energy Stored in a Capacitor - CC BY 4.0

4.9: Capacitor with a Dielectric - CC BY 4.0
4.E: Practice - CC BY 4.0
4.S: Summary - CC BY 4.0

5: Current and Resistance - CC BY 4.0
5.1: Electrical Current - CC BY 4.0
5.2: Model of Conduction in Metals - CC BY 4.0
5.3: Resistivity and Resistance - CC BY 4.0
5.4: Ohm's Law - CC BY 4.0
5.5: Electrical Energy and Power - CC BY 4.0
5.6: Superconductors - CC BY 4.0
5.7: Practice - CC BY 4.0
5.A: Current and Resistance (Answers) - CC BY 4.0
5.S: Summary - CC BY 4.0

6: Resistive Networks - CC BY 4.0
6.1: Electromotive Force - CC BY 4.0
6.2: Resistors in Series and Parallel - CC BY 4.0
6.3: Kirchhoff's Rules - CC BY 4.0
6.4: Household Wiring and Electrical Safety - CC BY
4.0
6.5: Electrical Measuring Instruments - CC BY 4.0
6.6: RC Circuits - CC BY 4.0
6.7: Practice - CC BY 4.0
6.S: Summary - CC BY 4.0

7: Sources of Magnetism, Magnetic Forces and Fields -
CC BY 4.0

7.1: Introduction to Magnetism - CC BY 4.0
7.2: Magnets, Electromagnets and Magnetic Matter -
CC BY 4.0
7.3: Magnetic Fields and Lines - CC BY 4.0
7.4: Motion of a Charged Particle in a Magnetic Field
- CC BY 4.0
7.5: Applications of Magnetic Forces and Fields - CC
BY 4.0
7.6: Magnetic Force on a Current-Carrying
Conductor - CC BY 4.0
7.7: Force and Torque on a Current Loop - CC BY 4.0
7.8: The Hall Effect - CC BY 4.0
7.9: The Biot-Savart Law - CC BY 4.0
7.10: Magnetic Field of a Current Loop - CC BY 4.0
7.11: Ampère’s Law - CC BY 4.0
7.12: Solenoids and Toroids - CC BY 4.0
7.13: Magnetism in Matter - CC BY 4.0
7.S: Magnetic Forces and Fields (Summary) - CC BY
4.0

1.S: Sources of Magnetic Fields (Summary) - CC
BY 4.0

8: Electromagnetic Induction - CC BY 4.0
8.1: Faraday and Lenz’s Laws - CC BY 4.0
8.2: Motional Emf - CC BY 4.0
8.3: Induced Electric Fields - CC BY 4.0

https://libretexts.org/
https://phys.libretexts.org/@go/page/87805?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.01%3A_Integrals
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.02%3A_Antiderivatives
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.04%3A_Moments_and_Centers_of_Mass
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.05%3A_Table_of_Integrals
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.04%3A__Coordinate_Systems_and_Components_of_a_Vector
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.05%3A_Algebra_of_Vectors
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.06%3A_Products_of_Vectors
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.07%3A_Further_Topics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.E%3A_Practice
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.12%3A_Math-vector_basics_and_diffrential_equations
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.01%3A_Electrical_Charge
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.04%3A_Electric_Field
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.06%3A_Electric_Flux
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.07%3A_Gausss_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.09%3A_Conductors_in_Electrostatic_Equilibrium
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.10%3A_Summary
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.11%3A_Practice
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.12%3A_Electric_Charges_and_Fields_(Answer)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.01%3A_Electric_Potential_Energy
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.02%3A_Electric_Potential_and_Potential_Difference
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.03%3A_Equipotential_Surfaces_and_Conductors
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.04%3A_Determining_Field_from_Potential
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.06%3A_Capacitors_and_Capacitance
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.07%3A_Capacitors_in_Series_and_in_Parallel
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.08%3A_Energy_Stored_in_a_Capacitor
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.09%3A_Capacitor_with_a_Dielectric
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.E%3A_Practice
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.S%3A_Summary
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.02%3A_Model_of_Conduction_in_Metals
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.03%3A_Resistivity_and_Resistance
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.05%3A_Electrical_Energy_and_Power
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.07%3A_Practice
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.A%3A_Current_and_Resistance_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.S%3A_Summary
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.04%3A_Household_Wiring_and_Electrical_Safety
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.05%3A_Electrical_Measuring_Instruments
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.06%3A_RC_Circuits
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.07%3A_Practice
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.S%3A_Summary
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.01%3A_Introduction_to_Magnetism
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.02%3A_Magnets_Electromagnets_and_Magnetic_Matter
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.04%3A_Motion_of_a_Charged_Particle_in_a_Magnetic_Field
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.05%3A_Applications_of_Magnetic_Forces_and_Fields
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.06%3A_Magnetic_Force_on_a_Current-Carrying_Conductor
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.07%3A_Force_and_Torque_on_a_Current_Loop
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.08%3A_The_Hall_Effect
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.09%3A_The_Biot-Savart_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.10%3A_Magnetic_Field_of_a_Current_Loop
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.11%3A_Amperes_Law
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.12%3A_Solenoids_and_Toroids
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.S%3A_Magnetic_Forces_and_Fields_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.S%3A_Magnetic_Forces_and_Fields_(Summary)/1.S%3A_Sources_of_Magnetic_Fields_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.01%3A_Faraday_and_Lenzs_Laws
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.02%3A_Motional_Emf
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.03%3A_Induced_Electric_Fields
https://creativecommons.org/licenses/by/4.0/


3 https://phys.libretexts.org/@go/page/87805

8.4: Eddy Currents and Magnetic Damping - CC BY
4.0
8.5: Electric Generators and Back Emf - CC BY 4.0
8.6: Inductance - CC BY 4.0
8.7: Applications of Electromagnetic Induction - CC
BY 4.0
8.8: Alternating Current versus Direct Current - CC
BY 4.0
8.A: Electromagnetic Induction (Answers) - CC BY
4.0
8.E: Electromagnetic Induction, AC Circuits, and
Electrical Technologies (Exercise) - CC BY 4.0
8.S: Electromagnetic Induction (Summary) - CC BY
4.0

9: Electromagnetic Waves - CC BY 4.0
9.1: Maxwell’s Equations and Electromagnetic Waves
- CC BY 4.0
9.2: Electromagnetic Waves - CC BY 4.0
9.3: Polarization - CC BY 4.0
9.4: Energy Carried by Electromagnetic Waves - CC
BY 4.0
9.5: Momentum and Radiation Pressure - CC BY 4.0
9.6: The Electromagnetic Spectrum - CC BY 4.0
9.A: Electromagnetic Waves (Answer) - CC BY 4.0
9.E: Electromagnetic Waves (Exercises) - CC BY 4.0
9.S: Electromagnetic Waves (Summary) - CC BY 4.0

10: Geometrical Optics - CC BY 4.0
10.1: The Propagation of Light - CC BY 4.0
10.2: The Law of Reflection - CC BY 4.0
10.3: Huygens’s Principle - CC BY 4.0
10.4: Refraction - CC BY 4.0
10.5: Images Formed by Mirrors - CC BY 4.0
10.6: Images Formed by Refraction - CC BY 4.0
10.7: Optical Instruments - CC BY 4.0
10.8: The Eye - CC BY 4.0

10.8.1: Ear Basic Concepts - CC BY-SA 4.0
10.8.2: A_Vision - CC BY 4.0
10.8.3: Vision - CC BY 4.0
10.8.4: Vision_Correction - CC BY 4.0
10.8.5: Processing_Visual_Information - CC BY
3.0
10.8.6: Color_and_Color_Vision - CC BY 4.0
10.8.7: Photoreceptors/Vision_and_Light -
Undeclared
10.8.8: Biology of vision - Undeclared

10.A: The Nature of Light (Answers) - CC BY 4.0
1.A: Geometric Optics and Image Formation
(Answers) - CC BY 4.0

10.E: The Nature of Light (Exercises) - CC BY 4.0
1.E: Geometric Optics and Image Formation
(Exercises) - CC BY 4.0

10.S: The Nature of Light (Summary) - CC BY 4.0
1.S: Geometric Optics and Image Formation
(Summary) - CC BY 4.0

11: Physical Optics - CC BY 4.0

11.1: Interference and Diffraction - CC BY 4.0
11.2: Young's Double-Slit Interference - CC BY 4.0
11.3: Mathematics of Interference - CC BY 4.0
11.4: Multiple-Slit Interference - CC BY 4.0
11.5: Interference in Thin Films - CC BY 4.0
11.6: Single-Slit Diffraction - CC BY 4.0
11.7: Double-Slit Diffraction - CC BY 4.0
11.8: Diffraction Gratings - CC BY 4.0
11.9: Circular Apertures and Resolution - CC BY 4.0
11.10: X-Ray Diffraction - CC BY 4.0
11.11: Holography - CC BY 4.0
11.12: The Michelson Interferometer - CC BY 4.0
11.A: Interference (Answers) - CC BY 4.0

1.A: Diffraction (Answers) - CC BY 4.0
11.E: Interference (Exercises) - CC BY 4.0

1.E: Diffraction (Exercises) - CC BY 4.0
11.S: Interference (Summary) - CC BY 4.0

1.S: Diffraction (Summary) - CC BY 4.0
12: Nuclear Physics - CC BY 4.0

12.1: Properties of Nuclei - CC BY 4.0
12.2: Nuclear Binding Energy - CC BY 4.0
12.3: Radioactive Decay - CC BY 4.0
12.4: Nuclear Reactions - CC BY 4.0
12.5: Fission - CC BY 4.0
12.6: Nuclear Fusion - CC BY 4.0
12.7: Medical Applications and Biological Effects of
Nuclear Radiation - CC BY 4.0
12.A: Nuclear Physics (Answers) - CC BY 4.0
12.E: Nuclear Physics (Exercises) - CC BY 4.0
12.S: Nuclear Physics (Summary) - CC BY 4.0

13: Atomic Structure - CC BY 4.0
13.1: The Hydrogen Atom - CC BY 4.0
13.2: Orbital Magnetic Dipole Moment of the
Electron - CC BY 4.0
13.3: Electron Spin - CC BY 4.0
13.4: The Exclusion Principle and the Periodic Table
- CC BY 4.0
13.5: Atomic Spectra and X-rays - CC BY 4.0
13.6: Lasers - CC BY 4.0
13.A: Atomic Structure (Answers) - CC BY 4.0
13.E: Atomic Structure (Exercises) - CC BY 4.0
13.S: Atomic Structure (Summary) - CC BY 4.0

Back Matter - Undeclared

Some Equations and Constants - CC BY-NC-SA 4.0
Index - Undeclared
Glossary - CC BY-NC-SA 4.0

https://libretexts.org/
https://phys.libretexts.org/@go/page/87805?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.04%3A_Eddy_Currents_and_Magnetic_Damping
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.05%3A_Electric_Generators_and_Back_Emf
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.07%3A_Applications_of_Electromagnetic_Induction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.08%3A_Alternating_Current_versus_Direct_Current
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.A%3A_Electromagnetic_Induction_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.E%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies_(Exercise)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.S%3A_Electromagnetic_Induction_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.01%3A_Maxwells_Equations_and_Electromagnetic_Waves
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.02%3A_Electromagnetic_Waves
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.04%3A_Energy_Carried_by_Electromagnetic_Waves
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.05%3A_Momentum_and_Radiation_Pressure
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.A%3A_Electromagnetic_Waves_(Answer)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.E%3A_Electromagnetic_Waves_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.S%3A_Electromagnetic_Waves_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.02%3A_The_Law_of_Reflection
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.03%3A_Huygenss_Principle
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.04%3A_Refraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.07%3A_Optical_Instruments
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.03%3A_Vision
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.05%3A_Processing_Visual_Information
https://creativecommons.org/licenses/by/3.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.07%3A_Photoreceptors_Vision_and_Light
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.08%3A_Biology_of_vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.A%3A_The_Nature_of_Light_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.A%3A_The_Nature_of_Light_(Answers)/1.A%3A_Geometric_Optics_and_Image_Formation_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.E%3A_The_Nature_of_Light_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.E%3A_The_Nature_of_Light_(Exercises)/1.E%3A_Geometric_Optics_and_Image_Formation_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.S%3A_The_Nature_of_Light_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.S%3A_The_Nature_of_Light_(Summary)/1.S%3A_Geometric_Optics_and_Image_Formation_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.01%3A_Interference_and_Diffraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.02%3A_Young's_Double-Slit_Interference
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.03%3A_Mathematics_of_Interference
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.04%3A_Multiple-Slit_Interference
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.05%3A_Interference_in_Thin_Films
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.06%3A_Single-Slit_Diffraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.07%3A_Double-Slit_Diffraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.08%3A_Diffraction_Gratings
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.09%3A_Circular_Apertures_and_Resolution
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.10%3A_X-Ray_Diffraction
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.11%3A_Holography
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.12%3A_The_Michelson_Interferometer
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.A%3A_Interference_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.A%3A_Interference_(Answers)/1.A%3A_Diffraction_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.E%3A_Interference_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.E%3A_Interference_(Exercises)/1.E%3A_Diffraction_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.S%3A_Interference_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.S%3A_Interference_(Summary)/1.S%3A_Diffraction_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.02%3A_Nuclear_Binding_Energy
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.06%3A_Nuclear_Fusion
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.A%3A_Nuclear_Physics_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.E%3A_Nuclear_Physics_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.S%3A_Nuclear_Physics_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.A%3A_Atomic_Structure_(Answers)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.E%3A_Atomic_Structure_(Exercises)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.S%3A_Atomic_Structure_(Summary)
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/01%3A_Some_Equations_and_Constants
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/02%3A_Index
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/03%3A_Glossary
https://creativecommons.org/licenses/by-nc-sa/4.0/


4 https://phys.libretexts.org/@go/page/87805

 

Detailed Licensing - Undeclared
Detailed Licensing - Undeclared
Index - Undeclared

Glossary - Undeclared

https://libretexts.org/
https://phys.libretexts.org/@go/page/87805?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/04%3A_Detailed_Licensing
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/05%3A_Detailed_Licensing
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/10%3A_Index
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/20%3A_Glossary


Index
A
absolute extremum

2.9.5: Maxima and Minima 
absolute maximum

2.9.5: Maxima and Minima 
absolute minimum

2.9.5: Maxima and Minima 
Absolute Value Function

2.8: Functions 
acceleration

2.9.3: Derivatives as Rates of Change 
accommodation

10.8: The Eye 
activity

12.3: Radioactive Decay 
acute otitis media

10.8.1: Ear Basic Concepts 
adjacent side

2.11.2: Right Angle Triangle Trigonometry 
adjacent to

2.11.2: Right Angle Triangle Trigonometry 
algebraic function

2.8.1: Basic Functions 
alpha (α) rays

12.4: Nuclear Reactions 
alpha decay

12.4: Nuclear Reactions 
ammeter

6.5: Electrical Measuring Instruments 
amount of change

2.9.3: Derivatives as Rates of Change 
ampere (unit)

5.1: Electrical Current 
Ampere’s Law

7.11: Ampère’s Law 
7.12: Solenoids and Toroids 

Ampere' law
7.12: Solenoids and Toroids 

Ampere's law
7.11: Ampère’s Law 

angle of depression
2.11.2: Right Angle Triangle Trigonometry 

angle of elevation
2.11.2: Right Angle Triangle Trigonometry 

angular magnification
10.7: Optical Instruments 

angular momentum orbital quantum
number (l)

13.1: The Hydrogen Atom 
angular momentum projection quantum
number (m)

13.1: The Hydrogen Atom 
antiderivative

2.10.2: Antiderivatives 
antielectrons

12.4: Nuclear Reactions 
antineutrino

12.4: Nuclear Reactions 
apparent depth

10.6: Images Formed by Refraction 
arc length with regards to a circle

2.11.1: Review of Trigonometry 
area vector

3.6: Electric Flux 

associative
2.11.3: Scalars and Vectors 

Astigmatism
10.8.4: Vision_Correction 

atomic mass
12.1: Properties of Nuclei 

Atomic mass unit
12.1: Properties of Nuclei 

atomic nucleus
12.1: Properties of Nuclei 

atomic number
12.1: Properties of Nuclei 

atomic orbital
13.1: The Hydrogen Atom 

auricle
10.8.1: Ear Basic Concepts 

average rate of change
2.9.3: Derivatives as Rates of Change 

B
back emf

8.5: Electric Generators and Back Emf 
base quantities

1.4: Units and Standards 
base quantity

1.4: Units and Standards 
base unit

1.4: Units and Standards 
Base units

1.4: Units and Standards 
BCS theory

5.6: Superconductors 
becquerel (Bq)

12.3: Radioactive Decay 
beta ( β ) rays

12.4: Nuclear Reactions 
Beta decay

12.4: Nuclear Reactions 
binding energy (nuclear)

12.2: Nuclear Binding Energy 
binding energy per nucleon (BEN)

12.2: Nuclear Binding Energy 
birefringence

9.3: Polarization 
Bohr magneton

13.2: Orbital Magnetic Dipole Moment of the
Electron 
Bragg planes

11.10: X-Ray Diffraction 
braking radiation

13.5: Atomic Spectra and X-rays 
breeder reactor

12.5: Fission 
bremsstrahlung

13.5: Atomic Spectra and X-rays 
Brewster’s angle

9.3: Polarization 
Brewster’s law

9.3: Polarization 

C
Candela

10.8.2: A_Vision 

Capacitance
4.6: Capacitors and Capacitance 
4.9: Capacitor with a Dielectric 

capacitor
4.6: Capacitors and Capacitance 
4.8: Energy Stored in a Capacitor 

capacitors in parallel
4.7: Capacitors in Series and in Parallel 

capacitors in series
4.7: Capacitors in Series and in Parallel 

Center of mass
2.10.4: Moments_and_Centers_of_Mass 

cerumen impaction
10.8.1: Ear Basic Concepts 

charging by induction
3.2: Conductors, Insulators, and Charging by

Induction 
chart of the nuclides

12.1: Properties of Nuclei 
chemical group

13.4: The Exclusion Principle and the Periodic Table
circadian

10.8.2: A_Vision 
circuit

5.1: Electrical Current 
circumference of a circle

2.11.1: Review of Trigonometry 
coaxial cable

4.6: Capacitors and Capacitance 
coherent light

13.6: Lasers 
coherent waves

11.2: Young's Double-Slit Interference 
color constancy

10.8.6: Color_and_Color_Vision 
comets

9.5: Momentum and Radiation Pressure 
Commutative

2.11.3: Scalars and Vectors 
composite function

2.8: Functions 
concave down

2.9.6: Derivatives and the Shape of a Graph 
concave up

2.9.6: Derivatives and the Shape of a Graph 
Concavity

2.9.6: Derivatives and the Shape of a Graph 
concavity test

2.9.6: Derivatives and the Shape of a Graph 
conduction electron

3.2: Conductors, Insulators, and Charging by
Induction 
conductive hearing loss

10.8.1: Ear Basic Concepts 
conductor

3.2: Conductors, Insulators, and Charging by
Induction 
cone

10.8.2: A_Vision 
conjunctiva

10.8.1: Ear Basic Concepts 
conjunctivitis

10.8.1: Ear Basic Concepts 
constant multiple rule

2.9.2: Differentiation Rules 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/10%3A_Index
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.05%3A_Electrical_Measuring_Instruments
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.11%3A_Amperes_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.12%3A_Solenoids_and_Toroids
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.12%3A_Solenoids_and_Toroids
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.11%3A_Amperes_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.07%3A_Optical_Instruments
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.02%3A_Antiderivatives
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.06%3A_Electric_Flux
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.05%3A_Electric_Generators_and_Back_Emf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.02%3A_Nuclear_Binding_Energy
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.02%3A_Nuclear_Binding_Energy
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.10%3A_X-Ray_Diffraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.06%3A_Capacitors_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.09%3A_Capacitor_with_a_Dielectric
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.06%3A_Capacitors_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.08%3A_Energy_Stored_in_a_Capacitor
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.07%3A_Capacitors_in_Series_and_in_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.07%3A_Capacitors_in_Series_and_in_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.04%3A_Moments_and_Centers_of_Mass
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.06%3A_Capacitors_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.02%3A_Young's_Double-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.05%3A_Momentum_and_Radiation_Pressure
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules


Constant Rule
2.9.2: Differentiation Rules 

Continuous Charge Distribution
3.5: Calculating Electric Fields of Charge

Distributions 
conventional current

5.1: Electrical Current 
conversion factor

1.5: Unit Conversion 
Cooper pairs

5.6: Superconductors 
cornea

10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

corner reflector
10.2: The Law of Reflection 

cosecant
2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

cosine
2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

cosmic rays
7.4: Motion of a Charged Particle in a Magnetic

Field 
cotangent

2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

Coulomb force
3.3: Electrostatic Force - Coulomb's Law 

Coulomb’s constant
3.3: Electrostatic Force - Coulomb's Law 

Coulomb's Law
3.3: Electrostatic Force - Coulomb's Law 

Covalent bond
13.4: The Exclusion Principle and the Periodic Table

Cramer’s rule
2.7.5: Solving a System of Linear Equations with

Cramer's Rule 
critical mass

12.5: Fission 
critical point

2.9.5: Maxima and Minima 
Critical temperature

5.6: Superconductors 
criticality

12.5: Fission 
cubic function

2.8.1: Basic Functions 
curie (Ci)

12.3: Radioactive Decay 
current density

5.2: Model of Conduction in Metals 
Cyclotron

7.5: Applications of Magnetic Forces and Fields 
cylindrical symmetry

3.8: Applying Gauss’s Law 

D
daughter nucleus

12.4: Nuclear Reactions 
Decay

12.3: Radioactive Decay 
decay constant

12.3: Radioactive Decay 
decay series

12.4: Nuclear Reactions 

decreasing on the interval I
2.8: Functions 

dees
7.5: Applications of Magnetic Forces and Fields 

degree
2.8.1: Basic Functions 

density function
2.10.3: Physical Applications of Integration- 

dependent variable
2.8: Functions 

derivative function
2.9.1: The Derivative as a Function 

derived quantity
1.4: Units and Standards 

derived unit
1.4: Units and Standards 

derived units
1.4: Units and Standards 

destructive interference for a single slit
11.6: Single-Slit Diffraction 

Determinants
2.7.5: Solving a System of Linear Equations with

Cramer's Rule 
diamagnetic materials

7.13: Magnetism in Matter 
dielectric

4.6: Capacitors and Capacitance 
4.9: Capacitor with a Dielectric 

dielectric constant
4.9: Capacitor with a Dielectric 

Difference Rule
2.9.2: Differentiation Rules 

Differentiable function
2.9.1: The Derivative as a Function 

differentiable on S
2.9.1: The Derivative as a Function 

differential
2.9.4: Linear Approximations and Differentials 

differential form
2.9.4: Linear Approximations and Differentials 

diffraction
11.6: Single-Slit Diffraction 

diffraction grating
11.4: Multiple-Slit Interference 
11.8: Diffraction Gratings 

diffraction limit
11.9: Circular Apertures and Resolution 

Dimensional Analysis
1.6: Dimensional Analysis 

dimensionally consistent
1.6: Dimensional Analysis 

dimensionless
1.6: Dimensional Analysis 

diode
5.4: Ohm's Law 

dipole
3.2: Conductors, Insulators, and Charging by

Induction 
direction angle

2.11.4: Coordinate Systems and Components of a
Vector 
direction of polarization

9.3: Polarization 
discriminant

2.7.3: Solving Quadratic Equations 
displacement

2.11.3: Scalars and Vectors 

Displacement current
9.1: Maxwell’s Equations and Electromagnetic

Waves 
Distance Formula

2.4: The Rectangular Coordinate Systems and
Graphs 
distributive

2.11.3: Scalars and Vectors 
domain

2.8: Functions 
Dot product

2.11.6: Products of Vectors 
double angle formula, trigonometric
identity

2.11.1: Review of Trigonometry 
drift velocity

5.2: Model of Conduction in Metals 

E
eddy current

8.4: Eddy Currents and Magnetic Damping 
electric field

3.4: Electric Field 
4.4: Determining Field from Potential 

Electric Field inside a Conductors
3.9: Conductors in Electrostatic Equilibrium 

electric flux
3.6: Electric Flux 

Electric Generator
8.5: Electric Generators and Back Emf 

electric potential
4.2: Electric Potential and Potential Difference 
4.4: Determining Field from Potential 

electric potential difference
4.2: Electric Potential and Potential Difference 

Electric potential energy
4.1: Electric Potential Energy 

electrical conductivity
5.3: Resistivity and Resistance 

electrical current
5.1: Electrical Current 

electrical energy
5.5: Electrical Energy and Power 

electrical power
5.5: Electrical Energy and Power 

Electromagnetic energy
9.4: Energy Carried by Electromagnetic Waves 

Electromagnetic induction
8: Electromagnetic Induction 
8.7: Applications of Electromagnetic Induction 

Electromagnetic Momentum
9.5: Momentum and Radiation Pressure 

Electromagnetic Spectrum
9.6: The Electromagnetic Spectrum 

electromagnetic waves
9.2: Electromagnetic Waves 
9.4: Energy Carried by Electromagnetic Waves 

electromotive force (emf)
6.1: Electromotive Force 

electron configuration
13.4: The Exclusion Principle and the Periodic Table

electrostatic precipitators
4.5: Applications of Electrostatics 

electrostatics
3.3: Electrostatic Force - Coulomb's Law 
4.5: Applications of Electrostatics 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.05%3A_Unit_Conversion
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.02%3A_The_Law_of_Reflection
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.04%3A_Motion_of_a_Charged_Particle_in_a_Magnetic_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.05%3A_Solving_a_System_of_Linear_Equations_with_Cramer's_Rule
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.02%3A_Model_of_Conduction_in_Metals
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.05%3A_Applications_of_Magnetic_Forces_and_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.05%3A_Applications_of_Magnetic_Forces_and_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.01%3A_The_Derivative_as_a_Function
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.06%3A_Single-Slit_Diffraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.05%3A_Solving_a_System_of_Linear_Equations_with_Cramer's_Rule
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.06%3A_Capacitors_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.09%3A_Capacitor_with_a_Dielectric
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.09%3A_Capacitor_with_a_Dielectric
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.01%3A_The_Derivative_as_a_Function
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.01%3A_The_Derivative_as_a_Function
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.06%3A_Single-Slit_Diffraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.04%3A_Multiple-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.08%3A_Diffraction_Gratings
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.09%3A_Circular_Apertures_and_Resolution
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.06%3A_Dimensional_Analysis
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.06%3A_Dimensional_Analysis
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.06%3A_Dimensional_Analysis
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.04%3A__Coordinate_Systems_and_Components_of_a_Vector
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.03%3A_Solving_Quadratic_Equations
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.01%3A_Maxwells_Equations_and_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.06%3A_Products_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.02%3A_Model_of_Conduction_in_Metals
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.04%3A_Eddy_Currents_and_Magnetic_Damping
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.04%3A_Electric_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.04%3A_Determining_Field_from_Potential
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.09%3A_Conductors_in_Electrostatic_Equilibrium
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.06%3A_Electric_Flux
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.05%3A_Electric_Generators_and_Back_Emf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.02%3A_Electric_Potential_and_Potential_Difference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.04%3A_Determining_Field_from_Potential
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.02%3A_Electric_Potential_and_Potential_Difference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.01%3A_Electric_Potential_Energy
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.03%3A_Resistivity_and_Resistance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.05%3A_Electrical_Energy_and_Power
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.05%3A_Electrical_Energy_and_Power
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.04%3A_Energy_Carried_by_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.07%3A_Applications_of_Electromagnetic_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.05%3A_Momentum_and_Radiation_Pressure
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.02%3A_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.04%3A_Energy_Carried_by_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics


Eletrical power
5.5: Electrical Energy and Power 

Energy Density
4.8: Energy Stored in a Capacitor 

energy stored in an inductor
8.6: Inductance 

English units
1.4: Units and Standards 

equal vectors
2.11.5: Algebra of Vectors 

equation in two variables
2.4: The Rectangular Coordinate Systems and

Graphs 
equipotential line

4.3: Equipotential Surfaces and Conductors 
Equipotential Surfaces

4.3: Equipotential Surfaces and Conductors 
equivalent resistance

6.2: Resistors in Series and Parallel 
even function

2.8: Functions 
exponent

2.8.3: Exponential_and_Logarithmic_Functions 
extraocular muscles

10.8.1: Ear Basic Concepts 
Extreme Value Theorem

2.9.5: Maxima and Minima 

F
far point

10.8: The Eye 
10.8.4: Vision_Correction 

Faraday’s Law
8.1: Faraday and Lenz’s Laws 

farsightedness
10.8: The Eye 
10.8.4: Vision_Correction 

Fermat’s theorem
2.9.5: Maxima and Minima 

ferromagnetic materials
7.13: Magnetism in Matter 

Fine structure
13.3: Electron Spin 

First Derivative Test
2.9.6: Derivatives and the Shape of a Graph 

first focus or object focus
10.6: Images Formed by Refraction 

First Moment
2.10.4: Moments_and_Centers_of_Mass 

fission
12.5: Fission 

fluorescence
13.5: Atomic Spectra and X-rays 

flux
3.6: Electric Flux 
4: Electric Potential and Capacitance 

fovea
10.8.2: A_Vision 

free electrons
3.9: Conductors in Electrostatic Equilibrium 

fringes
11.3: Mathematics of Interference 

function
2.8: Functions 

G
gamma (γ) rays

12.4: Nuclear Reactions 
Gamma decay

12.4: Nuclear Reactions 
gamma ray

9.6: The Electromagnetic Spectrum 
gauss (unit)

7.3: Magnetic Fields and Lines 
Gauss's law

3.7: Gauss’s Law 
3.8: Applying Gauss’s Law 
4: Electric Potential and Capacitance 

Gaussian surface
3.7: Gauss’s Law 
3.8: Applying Gauss’s Law 

geometric optics
10.1: The Propagation of Light 

graph in two variables
2.4: The Rectangular Coordinate Systems and

Graphs 
graph of a function

2.8: Functions 
grounding

4.3: Equipotential Surfaces and Conductors 
Gudermannian

2.10.1: Integrals 

H
Hall effect

7.8: The Hall Effect 
hard drives

8.7: Applications of Electromagnetic Induction 
helical motion

7.4: Motion of a Charged Particle in a Magnetic
Field 
henry

8.6: Inductance 
high dose

12.7: Medical Applications and Biological Effects of
Nuclear Radiation 
hologram

11.11: Holography 
holography

11.11: Holography 
Hooke’s law

2.10.3: Physical Applications of Integration- 
horizontally polarized

9.3: Polarization 
hues

10.8.6: Color_and_Color_Vision 
Huygens’s principle

10.3: Huygens’s Principle 
hydrostatic pressure

2.10.3: Physical Applications of Integration- 
hyperbolic functions

2.8.3: Exponential_and_Logarithmic_Functions 
hyperfine structure

13.3: Electron Spin 
hyperopia

10.8: The Eye 
10.8.2: A_Vision 
10.8.4: Vision_Correction 

hypotenuse
2.11.2: Right Angle Triangle Trigonometry 

hysteresis
7.13: Magnetism in Matter 

I
image distance

10.5: Images Formed by Mirrors 
image focus

10.6: Images Formed by Refraction 
incoherent

11.2: Young's Double-Slit Interference 
increasing on the interval I

2.8: Functions 
indefinite integral

2.10.2: Antiderivatives 
independent variable

2.8: Functions 
index of refraction

10.1: The Propagation of Light 
10.4: Refraction 

Induced Electric Fields
8.3: Induced Electric Fields 

induced emf
8.1: Faraday and Lenz’s Laws 
8.3: Induced Electric Fields 

inductance
8.6: Inductance 

inductor
8.6: Inductance 

infinite plane
3.5: Calculating Electric Fields of Charge

Distributions 
infinite straight wire

3.5: Calculating Electric Fields of Charge
Distributions 
inflection point

2.9.6: Derivatives and the Shape of a Graph 
infrared radiation

9.6: The Electromagnetic Spectrum 
initial value problem

2.10.2: Antiderivatives 
Ink Jet Printers

4.5: Applications of Electrostatics 
insulator

3.2: Conductors, Insulators, and Charging by
Induction 
Integration by Parts

2.10.1: Integrals 
intercepts

2.4: The Rectangular Coordinate Systems and
Graphs 
interference

11.3: Mathematics of Interference 
interference order

11.3: Mathematics of Interference 
interferometer

11.12: The Michelson Interferometer 
internal resistance

6.1: Electromotive Force 
inverse hyperbolic functions

2.8.3: Exponential_and_Logarithmic_Functions 
ion tail

9.5: Momentum and Radiation Pressure 
ionic bond

13.4: The Exclusion Principle and the Periodic Table
iridescence

11.8: Diffraction Gratings 
iris

10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

isotopes
12.1: Properties of Nuclei 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.05%3A_Electrical_Energy_and_Power
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.08%3A_Energy_Stored_in_a_Capacitor
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.05%3A_Algebra_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.03%3A_Equipotential_Surfaces_and_Conductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.03%3A_Equipotential_Surfaces_and_Conductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.01%3A_Faraday_and_Lenzs_Laws
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.04%3A_Moments_and_Centers_of_Mass
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.06%3A_Electric_Flux
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.09%3A_Conductors_in_Electrostatic_Equilibrium
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.03%3A_Mathematics_of_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.07%3A_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.07%3A_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.03%3A_Equipotential_Surfaces_and_Conductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.01%3A_Integrals
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.08%3A_The_Hall_Effect
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.07%3A_Applications_of_Electromagnetic_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.04%3A_Motion_of_a_Charged_Particle_in_a_Magnetic_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.11%3A_Holography
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.11%3A_Holography
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.03%3A_Huygenss_Principle
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.02%3A_Young's_Double-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.02%3A_Antiderivatives
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.04%3A_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.03%3A_Induced_Electric_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.01%3A_Faraday_and_Lenzs_Laws
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.03%3A_Induced_Electric_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.02%3A_Antiderivatives
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.01%3A_Integrals
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.03%3A_Mathematics_of_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.03%3A_Mathematics_of_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.12%3A_The_Michelson_Interferometer
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.05%3A_Momentum_and_Radiation_Pressure
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.08%3A_Diffraction_Gratings
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei


J
Josephson effect

5.6: Superconductors 
Josephson junction

5.6: Superconductors 

K
kilogram

1.4: Units and Standards 
Kirchhoff’s First Rule

6.3: Kirchhoff's Rules 
Kirchhoff’s Second Rule

6.3: Kirchhoff's Rules 
Kirchhoff's junction rule

6.2: Resistors in Series and Parallel 
6.3: Kirchhoff's Rules 

Kirchhoff's loop rule
6.2: Resistors in Series and Parallel 
6.3: Kirchhoff's Rules 

Klein bottle
3.7: Gauss’s Law 

L
lacrimal duct

10.8.1: Ear Basic Concepts 
laser

13.6: Lasers 
Laser Printers

4.5: Applications of Electrostatics 
laser vision correction

10.8.4: Vision_Correction 
law

1.1: The Scientific Method and Physics 
law of reflection

10.2: The Law of Reflection 
law of refraction

10.4: Refraction 
lens

10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

lifetime
12.3: Radioactive Decay 

light
10.1: The Propagation of Light 

linear approximation
2.9.4: Linear Approximations and Differentials 

linear charge density
3.5: Calculating Electric Fields of Charge

Distributions 
linear function

2.8.1: Basic Functions 
linearization

2.9.4: Linear Approximations and Differentials 
liquid drop model

12.5: Fission 
local extremum

2.9.5: Maxima and Minima 
local maximum

2.9.5: Maxima and Minima 
local minimum

2.9.5: Maxima and Minima 
Logarithmic Function

2.8.1: Basic Functions 
Lorentz force

9.1: Maxwell’s Equations and Electromagnetic
Waves 

low dose
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 

M
magnetic damping

8.4: Eddy Currents and Magnetic Damping 
Magnetic dipole

7.7: Force and Torque on a Current Loop 
13.2: Orbital Magnetic Dipole Moment of the

Electron 
magnetic dipole moment

7.7: Force and Torque on a Current Loop 
magnetic domains

7.13: Magnetism in Matter 
magnetic field

7: Sources of Magnetism, Magnetic Forces and
Fields 

7.10: Magnetic Field of a Current Loop 
magnetic field lines

7.3: Magnetic Fields and Lines 
magnetic flux

8.1: Faraday and Lenz’s Laws 
magnetic foce

7.7: Force and Torque on a Current Loop 
7.10: Magnetic Field of a Current Loop 

Magnetic force
7.3: Magnetic Fields and Lines 
7.6: Magnetic Force on a Current-Carrying

Conductor 
Magnetic Forces

7: Sources of Magnetism, Magnetic Forces and
Fields 
magnetic monopole

7.3: Magnetic Fields and Lines 
magnetic orbital quantum number

13.2: Orbital Magnetic Dipole Moment of the
Electron 
magnetic pole

7.2: Magnets, Electromagnets and Magnetic Matter 
magnetic susceptibility

7.13: Magnetism in Matter 
Magnetic torque

7.7: Force and Torque on a Current Loop 
magnetogram

13.2: Orbital Magnetic Dipole Moment of the
Electron 
Magnification

10.5: Images Formed by Mirrors 
magnifying glass

10.7: Optical Instruments 
Magnitude

2.11.3: Scalars and Vectors 
Malus’s law

9.3: Polarization 
marginal cost

2.9.3: Derivatives as Rates of Change 
marginal profit

2.9.3: Derivatives as Rates of Change 
marginal revenue

2.9.3: Derivatives as Rates of Change 
mass defect

12.2: Nuclear Binding Energy 
mass number

12.1: Properties of Nuclei 
Mass Spectrometer

7.5: Applications of Magnetic Forces and Fields 
mathematical model

2.8.1: Basic Functions 

Maxwell's equations
9.1: Maxwell’s Equations and Electromagnetic

Waves 
Meissner effect

5.6: Superconductors 
metals

5.2: Model of Conduction in Metals 
metastable state

13.6: Lasers 
Meter

1.4: Units and Standards 
metric system

1.4: Units and Standards 
Michelson interferometer

11.12: The Michelson Interferometer 
microwaves

9.6: The Electromagnetic Spectrum 
Midpoint Formula

2.4: The Rectangular Coordinate Systems and
Graphs 
missing order

11.7: Double-Slit Diffraction 
model

1.1: The Scientific Method and Physics 
moderate dose

12.7: Medical Applications and Biological Effects of
Nuclear Radiation 
Moments of Inertia

2.10.4: Moments_and_Centers_of_Mass 
monochromatic

11.2: Young's Double-Slit Interference 
13.6: Lasers 

Moseley plot
13.5: Atomic Spectra and X-rays 

Moseley’s law
13.5: Atomic Spectra and X-rays 

Motion of charged particle
7.4: Motion of a Charged Particle in a Magnetic

Field 
Motional Emf

8.2: Motional Emf 
mutual inductance

8.6: Inductance 
myopia

10.8: The Eye 
10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 
10.8.4: Vision_Correction 

N
natural exponential function

2.8.3: Exponential_and_Logarithmic_Functions 
natural logarithm

2.8.3: Exponential_and_Logarithmic_Functions 
near point

10.8: The Eye 
10.8.4: Vision_Correction 

nearsightedness
10.8: The Eye 
10.8.4: Vision_Correction 

neutrino
12.4: Nuclear Reactions 

neutron number
12.1: Properties of Nuclei 

Newton’s rings
11.5: Interference in Thin Films 

nonohmic
5.4: Ohm's Law 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.07%3A_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.02%3A_The_Law_of_Reflection
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.04%3A_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.05%3A_Fission
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.05%3A_Maxima_and_Minima
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.01%3A_Maxwells_Equations_and_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.04%3A_Eddy_Currents_and_Magnetic_Damping
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.07%3A_Force_and_Torque_on_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.07%3A_Force_and_Torque_on_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.10%3A_Magnetic_Field_of_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.01%3A_Faraday_and_Lenzs_Laws
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.07%3A_Force_and_Torque_on_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.10%3A_Magnetic_Field_of_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.06%3A_Magnetic_Force_on_a_Current-Carrying_Conductor
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.02%3A_Magnets_Electromagnets_and_Magnetic_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.07%3A_Force_and_Torque_on_a_Current_Loop
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.07%3A_Optical_Instruments
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.02%3A_Nuclear_Binding_Energy
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.05%3A_Applications_of_Magnetic_Forces_and_Fields
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.01%3A_Maxwells_Equations_and_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.02%3A_Model_of_Conduction_in_Metals
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.12%3A_The_Michelson_Interferometer
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.07%3A_Double-Slit_Diffraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.04%3A_Moments_and_Centers_of_Mass
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.02%3A_Young's_Double-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.04%3A_Motion_of_a_Charged_Particle_in_a_Magnetic_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.02%3A_Motional_Emf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.06%3A_Inductance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.04%3A_Vision_Correction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.05%3A_Interference_in_Thin_Films
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law


north magnetic pole
7.2: Magnets, Electromagnets and Magnetic Matter 

Nuclear Binding Energy
12.2: Nuclear Binding Energy 

nuclear fusion
12.6: Nuclear Fusion 

nuclear fusion reactor
12.6: Nuclear Fusion 

nucleons
12.1: Properties of Nuclei 

nucleosynthesis
12.6: Nuclear Fusion 

nuclide
12.1: Properties of Nuclei 

null vector
2.11.5: Algebra of Vectors 

number e
2.8.3: Exponential_and_Logarithmic_Functions 

Numerical Aperture (NA)
11.9: Circular Apertures and Resolution 

O
object distance

10.5: Images Formed by Mirrors 
object focus

10.6: Images Formed by Refraction 
odd function

2.8: Functions 
ohm

5.3: Resistivity and Resistance 
Ohm’s law

5.4: Ohm's Law 
ohmic

5.4: Ohm's Law 
opposite

2.11.2: Right Angle Triangle Trigonometry 
opposite side

2.11.2: Right Angle Triangle Trigonometry 
optic nerve

10.8.1: Ear Basic Concepts 
optical power

10.8: The Eye 
optically active

9.3: Polarization 
optimization problems

2.9.7: Optimization Problems 
orbital magnetic dipole moment

13.2: Orbital Magnetic Dipole Moment of the
Electron 
order

11.3: Mathematics of Interference 
order of magnitude

1.1: The Scientific Method and Physics 
orthogonal vectors

2.11.3: Scalars and Vectors 
Oscar Had A Heap Of Apples

2.11.2: Right Angle Triangle Trigonometry 
otitis externa

10.8.1: Ear Basic Concepts 
ototoxic medications

10.8.1: Ear Basic Concepts 

P
parallel circuit

6.2: Resistors in Series and Parallel 

parallel combination
4.7: Capacitors in Series and in Parallel 

parallel lines
2.5: Finding Angle Measurements 

parallel postulate
2.5: Finding Angle Measurements 

parallel vectors
2.11.3: Scalars and Vectors 

paramagnetic materials
7.13: Magnetism in Matter 

parent nucleus
12.4: Nuclear Reactions 

Pauli’s exclusion principle
13.4: The Exclusion Principle and the Periodic Table

peak emf
8.5: Electric Generators and Back Emf 

percentage error
2.9.4: Linear Approximations and Differentials 

periodic function
2.8.2: Trigonometric Functions 
2.11.1: Review of Trigonometry 

permeability of free space
7.9: The Biot-Savart Law 

permittivity of free space
3.3: Electrostatic Force - Coulomb's Law 

permittivity of vacuum
3.3: Electrostatic Force - Coulomb's Law 

physical quantity
1.4: Units and Standards 

physics
1.1: The Scientific Method and Physics 

planar symmetry
3.8: Applying Gauss’s Law 

plane mirror
10.5: Images Formed by Mirrors 

Plane waves
9.2: Electromagnetic Waves 

points of inflection
2.9.6: Derivatives and the Shape of a Graph 

polarization
3.2: Conductors, Insulators, and Charging by

Induction 
3.9: Conductors in Electrostatic Equilibrium 
9.3: Polarization 

polarized
9.3: Polarization 

polynomial function
2.8.1: Basic Functions 

population growth rate
2.9.3: Derivatives as Rates of Change 

population inversion
13.6: Lasers 

positron
12.4: Nuclear Reactions 

positron emission tomography (PET)
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 
potential difference

6.1: Electromotive Force 
potential drop

6.1: Electromotive Force 
power function

2.8.1: Basic Functions 
power rule

2.9.2: Differentiation Rules 
Poynting vector

9.4: Energy Carried by Electromagnetic Waves 

presbycusis
10.8.1: Ear Basic Concepts 

presbyopia
10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

principal maximum
11.4: Multiple-Slit Interference 

principal quantum number (n)
13.1: The Hydrogen Atom 

principle of superposition
3.3: Electrostatic Force - Coulomb's Law 

product rule
2.9.2: Differentiation Rules 

propagated error
2.9.4: Linear Approximations and Differentials 

pupil
10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

pyramid
2.11.2: Right Angle Triangle Trigonometry 

pythagorean identities, trigonometric
identities

2.11.1: Review of Trigonometry 
Pythagorean Theorem

2.4: The Rectangular Coordinate Systems and
Graphs 

Q
Q value

12.6: Nuclear Fusion 
quadratic formula

2.7.3: Solving Quadratic Equations 
quadratic function

2.8.1: Basic Functions 
quotient rule

2.9.2: Differentiation Rules 

R
radar

9.6: The Electromagnetic Spectrum 
radial density

2.10.3: Physical Applications of Integration- 
radial probability density function

13.1: The Hydrogen Atom 
Radians

2.8.2: Trigonometric Functions 
2.11.1: Review of Trigonometry 

radiation dose unit (rad)
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 
radiation pressure

9.5: Momentum and Radiation Pressure 
radio tower

2.11.2: Right Angle Triangle Trigonometry 
radio waves

9.6: The Electromagnetic Spectrum 
radioactive dating

12.3: Radioactive Decay 
radioactive decay law

12.3: Radioactive Decay 
radioactive tags

12.7: Medical Applications and Biological Effects of
Nuclear Radiation 
Radioactivity

12.3: Radioactive Decay 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.02%3A_Magnets_Electromagnets_and_Magnetic_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.02%3A_Nuclear_Binding_Energy
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.06%3A_Nuclear_Fusion
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.06%3A_Nuclear_Fusion
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.06%3A_Nuclear_Fusion
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.05%3A_Algebra_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.09%3A_Circular_Apertures_and_Resolution
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.03%3A_Resistivity_and_Resistance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.04%3A_Ohm's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.07%3A_Optimization_Problems
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.03%3A_Mathematics_of_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.07%3A_Capacitors_in_Series_and_in_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.05%3A_Finding_Angle_Measurements
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.05%3A_Finding_Angle_Measurements
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.13%3A_Magnetism_in_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Induction/8.05%3A_Electric_Generators_and_Back_Emf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.09%3A_The_Biot-Savart_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.02%3A_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.02%3A_Conductors_Insulators_and_Charging_by_Induction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.09%3A_Conductors_in_Electrostatic_Equilibrium
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.04%3A_Energy_Carried_by_Electromagnetic_Waves
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.04%3A_Multiple-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.03%3A_Electrostatic_Force_-_Coulomb's_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.04%3A_The_Rectangular_Coordinate_Systems_and_Graphs
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.06%3A_Nuclear_Fusion
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.03%3A_Solving_Quadratic_Equations
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.05%3A_Momentum_and_Radiation_Pressure
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.03%3A_Radioactive_Decay


radiopharmaceutical
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 
radius of a nucleus

12.1: Properties of Nuclei 
range

2.8: Functions 
rational function

2.8.1: Basic Functions 
ray

10.1: The Propagation of Light 
Rayleigh criterion

11.9: Circular Apertures and Resolution 
RC circuit

6.6: RC Circuits 
real image

10.5: Images Formed by Mirrors 
refraction

10.4: Refraction 
10.6: Images Formed by Refraction 

relative biological effectiveness (RBE)
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 
relative error

2.9.4: Linear Approximations and Differentials 
resistance

5.3: Resistivity and Resistance 
resistivity

5.3: Resistivity and Resistance 
Resistors in Parallel

6.2: Resistors in Series and Parallel 
resistors in series

6.2: Resistors in Series and Parallel 
resolution

11.9: Circular Apertures and Resolution 
resultant

2.11.3: Scalars and Vectors 
resultant vector

2.11.3: Scalars and Vectors 
retina

10.8.1: Ear Basic Concepts 
10.8.2: A_Vision 

retinex
10.8.6: Color_and_Color_Vision 

retinex theory of color vision
10.8.6: Color_and_Color_Vision 

Retroreflectors
10.2: The Law of Reflection 

rhodopsin
10.8.2: A_Vision 

right triangle
2.11.2: Right Angle Triangle Trigonometry 

right triangle trigonometry, applied
problems

2.11.2: Right Angle Triangle Trigonometry 
rod

10.8.2: A_Vision 
rods and cones

10.8.6: Color_and_Color_Vision 
roentgen equivalent man (rem)

12.7: Medical Applications and Biological Effects of
Nuclear Radiation 
root function

2.8.1: Basic Functions 

S
scalar components

2.11.4: Coordinate Systems and Components of a
Vector 
scalar equation

2.11.3: Scalars and Vectors 
scalar field

3.4: Electric Field 
Scalar product

2.11.6: Products of Vectors 
schematic

5.1: Electrical Current 
sclera

10.8.1: Ear Basic Concepts 
secant

2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

second
1.4: Units and Standards 

second derivative test
2.9.6: Derivatives and the Shape of a Graph 

second focus or image focus
10.6: Images Formed by Refraction 

secondary maximum
11.4: Multiple-Slit Interference 

Selection rules
13.5: Atomic Spectra and X-rays 

sensorineural hearing loss
10.8.1: Ear Basic Concepts 

series circuit
6.2: Resistors in Series and Parallel 

series combination
4.7: Capacitors in Series and in Parallel 

shock hazard
6.4: Household Wiring and Electrical Safety 

SI Units
1.4: Units and Standards 

sievert (Sv)
12.7: Medical Applications and Biological Effects of

Nuclear Radiation 
Simple Magnifer

10.7: Optical Instruments 
simplified theory of color vision

10.8.6: Color_and_Color_Vision 
sine

2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

slope
2.8.1: Basic Functions 

Snell’s law of refraction
10.3: Huygens’s Principle 
10.4: Refraction 

Snellen chart
10.8.1: Ear Basic Concepts 

SohCahToa
2.11.2: Right Angle Triangle Trigonometry 

Solenoids
7.12: Solenoids and Toroids 

south magnetic pole
7.2: Magnets, Electromagnets and Magnetic Matter 

spectroscopic dispersion
11.8: Diffraction Gratings 

speed
2.9.3: Derivatives as Rates of Change 

spherical symmetry
3.8: Applying Gauss’s Law 

spin projection quantum number
13.3: Electron Spin 

spin projection quantum number ( msms )
13.3: Electron Spin 

spin quantum number (s)
13.3: Electron Spin 

SQUID
5.6: Superconductors 

stimulated emission
13.6: Lasers 

Strong nuclear force
12.1: Properties of Nuclei 

Sum Rule
2.9.2: Differentiation Rules 

superconductors
5.6: Superconductors 

superior colliculus
10.8.2: A_Vision 

superposition
3.4: Electric Field 

suprachiasmatic nucleus
10.8.2: A_Vision 

surface charge density
3.5: Calculating Electric Fields of Charge

Distributions 
symmetry about the origin

2.8: Functions 

T
table of values

2.8: Functions 
tangent

2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

tangent line approximation
2.9.4: Linear Approximations and Differentials 

terminal voltage
6.1: Electromotive Force 

tesla (unit)
7.3: Magnetic Fields and Lines 

Thales
2.11.2: Right Angle Triangle Trigonometry 

the component form of a vector
2.11.4: Coordinate Systems and Components of a

Vector 
the Dot Product

2.11.6: Products of Vectors 
The Scalar Product

2.11.6: Products of Vectors 
Theorem of Pappus

2.10.4: Moments_and_Centers_of_Mass 
theory

1.1: The Scientific Method and Physics 
thermal agitation

9.6: The Electromagnetic Spectrum 
thermal hazard

6.4: Household Wiring and Electrical Safety 
tinnitus

10.8.1: Ear Basic Concepts 
tonic activity

10.8.2: A_Vision 
Toroids

7.12: Solenoids and Toroids 
transcendental function

2.8.1: Basic Functions 
transformation of a function

2.8.1: Basic Functions 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.09%3A_Circular_Apertures_and_Resolution
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.06%3A_RC_Circuits
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.04%3A_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.03%3A_Resistivity_and_Resistance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.03%3A_Resistivity_and_Resistance
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.09%3A_Circular_Apertures_and_Resolution
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.02%3A_The_Law_of_Reflection
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.04%3A__Coordinate_Systems_and_Components_of_a_Vector
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.04%3A_Electric_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.06%3A_Products_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.01%3A_Electrical_Current
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.06%3A_Derivatives_and_the_Shape_of_a_Graph
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.06%3A_Images_Formed_by_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.04%3A_Multiple-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.05%3A_Atomic_Spectra_and_X-rays
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.02%3A_Resistors_in_Series_and_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.07%3A_Capacitors_in_Series_and_in_Parallel
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.04%3A_Household_Wiring_and_Electrical_Safety
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.07%3A_Medical_Applications_and_Biological_Effects_of_Nuclear_Radiation
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.07%3A_Optical_Instruments
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.06%3A_Color_and_Color_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.03%3A_Huygenss_Principle
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.04%3A_Refraction
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.12%3A_Solenoids_and_Toroids
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.02%3A_Magnets_Electromagnets_and_Magnetic_Matter
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.08%3A_Diffraction_Gratings
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.03%3A_Derivatives_as_Rates_of_Change
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.08%3A_Applying_Gausss_Law
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.03%3A_Electron_Spin
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.06%3A_Lasers
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.01%3A_Properties_of_Nuclei
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.02%3A_Differentiation_Rules
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Current_and_Resistance/5.06%3A_Superconductors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.04%3A_Electric_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.09%3A_Derivatives/2.9.04%3A_Linear_Approximations_and_Differentials
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.01%3A_Electromotive_Force
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.03%3A_Magnetic_Fields_and_Lines
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.04%3A__Coordinate_Systems_and_Components_of_a_Vector
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.06%3A_Products_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.06%3A_Products_of_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.04%3A_Moments_and_Centers_of_Mass
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.01%3A_The_Scientific_Method_and_Physics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.04%3A_Household_Wiring_and_Electrical_Safety
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.12%3A_Solenoids_and_Toroids
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions


transition metal
13.4: The Exclusion Principle and the Periodic Table

transmission hologram
11.11: Holography 

transuranic element
12.4: Nuclear Reactions 

transversal
2.5: Finding Angle Measurements 

transverse wave
9.3: Polarization 

tree, how tall
2.11.2: Right Angle Triangle Trigonometry 

trigonometric functions
2.8.2: Trigonometric Functions 
2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

trigonometric identity
2.8.2: Trigonometric Functions 
2.11.1: Review of Trigonometry 

tympanic membrane
10.8.1: Ear Basic Concepts 

U
ultraviolet radiation

9.6: The Electromagnetic Spectrum 
unit circle

2.8.2: Trigonometric Functions 
2.11.1: Review of Trigonometry 
2.11.2: Right Angle Triangle Trigonometry 

Unit vector
2.11.3: Scalars and Vectors 

units
1.4: Units and Standards 

unpolarized
9.3: Polarization 

V
valence electron

13.4: The Exclusion Principle and the Periodic Table
Van de Graaff generator

4.5: Applications of Electrostatics 
vector components

2.11.4: Coordinate Systems and Components of a
Vector 
vector equation

2.11.3: Scalars and Vectors 
vector field

3.4: Electric Field 
vectors

2.11.3: Scalars and Vectors 
2.12: Math-vector basics and diffrential equations 

vertical line test
2.8: Functions 

vertically polarized
9.3: Polarization 

vertigo
10.8.1: Ear Basic Concepts 

vestibulocochlear nerve
10.8.1: Ear Basic Concepts 

virtual image
10.5: Images Formed by Mirrors 

visible light
9.6: The Electromagnetic Spectrum 

vision
10.8.2: A_Vision 

voltage
4.2: Electric Potential and Potential Difference 

voltmeter
6.5: Electrical Measuring Instruments 

volume charge density
3.5: Calculating Electric Fields of Charge

Distributions 

W
wave optics

10.3: Huygens’s Principle 
Work

2.10.3: Physical Applications of Integration- 

X
xerography

4.5: Applications of Electrostatics 

Y
Young double slit

11.2: Young's Double-Slit Interference 

Z
Zeeman effect

13.2: Orbital Magnetic Dipole Moment of the
Electron 
zeros of a function

2.8: Functions 

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.11%3A_Holography
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/12%3A__Nuclear_Physics/12.04%3A_Nuclear_Reactions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.05%3A_Finding_Angle_Measurements
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_and_Measurements/1.04%3A_Units_and_Standards
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.04%3A_The_Exclusion_Principle_and_the_Periodic_Table
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.04%3A__Coordinate_Systems_and_Components_of_a_Vector
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.04%3A_Electric_Field
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.12%3A_Math-vector_basics_and_diffrential_equations
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.03%3A_Polarization
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.01%3A_Ear_Basic_Concepts
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.05%3A_Images_Formed_by_Mirrors
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.06%3A_The_Electromagnetic_Spectrum
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.08%3A_The_Eye/10.8.02%3A_A_Vision
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.02%3A_Electric_Potential_and_Potential_Difference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.05%3A_Electrical_Measuring_Instruments
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/03%3A_Electrostatics_-_Charges_Forces_and_Fields/3.05%3A_Calculating_Electric_Fields_of_Charge_Distributions
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.03%3A_Huygenss_Principle
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.03%3A_Physical_Applications_of_Integration-
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.05%3A_Applications_of_Electrostatics
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.02%3A_Young's_Double-Slit_Interference
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.02%3A_Orbital_Magnetic_Dipole_Moment_of_the_Electron
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions


Glossary
Sample Word 1 | Sample Definition 1

https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/zz%3A_Back_Matter/20%3A_Glossary

