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2.9.3: Scalars and Vectors
Vectors are essential to physics and engineering. Many fundamental physical quantities are vectors, including displacement,
velocity, force, and electric and magnetic vector fields. Scalar products of vectors define other fundamental scalar physical
quantities, such as energy. Vector products of vectors define still other fundamental vector physical quantities, such as torque and
angular momentum. In other words, vectors are a component part of physics in much the same way as sentences are a component
part of literature.

Figure : A signpost gives information about distances and directions to towns or to other locations relative to the location of
the signpost. Distance is a scalar quantity. Knowing the distance alone is not enough to get to the town; we must also know the
direction from the signpost to the town. The direction, together with the distance, is a vector quantity commonly called the
displacement vector. A signpost, therefore, gives information about displacement vectors from the signpost to towns. (credit:
modification of work by “studio tdes”/Flickr)

In introductory physics, vectors are Euclidean quantities that have geometric representations as arrows in one dimension (in a line),
in two dimensions (in a plane), or in three dimensions (in space). They can be added, subtracted, or multiplied.

Describe the difference between vector and scalar quantities.
Identify the magnitude and direction of a vector.
Explain the effect of multiplying a vector quantity by a scalar.
Describe how one-dimensional vector quantities are added or subtracted.
Explain the geometric construction for the addition or subtraction of vectors in a plane.
Distinguish between a vector equation and a scalar equation.

Many familiar physical quantities can be specified completely by giving a single number and the appropriate unit. For example, “a
class period lasts 50 min” or “the gas tank in my car holds 65 L” or “the distance between two posts is 100 m.” A physical quantity
that can be specified completely in this manner is called a scalar quantity. Scalar is a synonym of “number.” Time, mass, distance,
length, volume, temperature, and energy are examples of scalar quantities.

Scalar quantities that have the same physical units can be added or subtracted according to the usual rules of algebra for numbers.
For example, a class ending 10 min earlier than 50 min lasts 50 min − 10 min = 40 min. Similarly, a 60-cal serving of corn
followed by a 200-cal serving of donuts gives 60 cal + 200 cal = 260 cal of energy. When we multiply a scalar quantity by a
number, we obtain the same scalar quantity but with a larger (or smaller) value. For example, if yesterday’s breakfast had 200 cal of
energy and today’s breakfast has four times as much energy as it had yesterday, then today’s breakfast has 4(200 cal) = 800 cal of
energy. Two scalar quantities can also be multiplied or divided by each other to form a derived scalar quantity. For example, if a
train covers a distance of 100 km in 1.0 h, its speed is 100.0 km/1.0 h = 27.8 m/s, where the speed is a derived scalar quantity
obtained by dividing distance by time.

Many physical quantities, however, cannot be described completely by just a single number of physical units. For example, when
the U.S. Coast Guard dispatches a ship or a helicopter for a rescue mission, the rescue team must know not only the distance to the
distress signal, but also the direction from which the signal is coming so they can get to its origin as quickly as possible. Physical
quantities specified completely by giving a number of units (magnitude) and a direction are called vector quantities. Examples of
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vector quantities include displacement, velocity, position, force, and torque. In the language of mathematics, physical vector
quantities are represented by mathematical objects called vectors (Figure ). We can add or subtract two vectors, and we can
multiply a vector by a scalar or by another vector, but we cannot divide by a vector. The operation of division by a vector is not
defined.

Figure : We draw a vector from the initial point or origin (called the “tail” of a vector) to the end or terminal point (called
the “head” of a vector), marked by an arrowhead. Magnitude is the length of a vector and is always a positive scalar quantity.
(credit: modification of work by Cate Sevilla)

Let’s examine vector algebra using a graphical method to be aware of basic terms and to develop a qualitative understanding. In
practice, however, when it comes to solving physics problems, we use analytical methods. Analytical methods are more simple
computationally and more accurate than graphical methods. From now on, to distinguish between a vector and a scalar quantity, we
adopt the common convention that a letter with an arrow above it denotes a vector, and a letter without an arrow denotes a scalar.
For example, a distance of 2.0 km, which is a scalar quantity, is denoted by d = 2.0 km, whereas a displacement of 2.0 km in some
direction, which is a vector quantity, is denoted by .

Suppose you tell a friend on a camping trip that you have discovered a terrific fishing hole 6 km from your tent. It is unlikely your
friend would be able to find the hole easily unless you also communicate the direction in which it can be found with respect to your
campsite. You may say, for example, “Walk about 6 km northeast from my tent.” The key concept here is that you have to give not
one but two pieces of information—namely, the distance or magnitude (6 km) and the direction (northeast).

Displacement is a general term used to describe a change in position, such as during a trip from the tent to the fishing hole.
Displacement is an example of a vector quantity. If you walk from the tent (location A) to the hole (location B), as shown in Figure 

, the vector , representing your displacement, is drawn as the arrow that originates at point A and ends at point B. The
arrowhead marks the end of the vector. The direction of the displacement vector  is the direction of the arrow. The length of the
arrow represents the magnitude (or size) D of vector . Here, D = 6 km. Since the magnitude of a vector is its length, which is a
positive number, the magnitude is also indicated by placing the absolute value notation around the symbol that denotes the vector;
so, we can write equivalently that D ≡ | |. To solve a vector problem graphically, we need to draw the vector  to scale. For
example, if we assume 1 unit of distance (1 km) is represented in the drawing by a line segment of length u = 2 cm, then the total
displacement in this example is represented by a vector of length d = 6u = 6(2 cm) = 12 cm , as shown in Figure . Notice
that here, to avoid confusion, we used D = 6 km to denote the magnitude of the actual displacement and d = 12 cm to denote the
length of its representation in the drawing.

Figure : The displacement vector from point A (the initial position at the campsite) to point B (the final position at the
fishing hole) is indicated by an arrow with origin at point A and end at point B. The displacement is the same for any of the actual
paths (dashed curves) that may be taken between points A and B.
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Figure : A displacement of magnitude 6 km is drawn to scale as a vector of length 12 cm when the length of 2 cm
represents 1 unit of displacement (which in this case is 1 km).

Suppose your friend walks from the campsite at A to the fishing pond at B and then walks back: from the fishing pond at B to the
campsite at A. The magnitude of the displacement vector  from A to B is the same as the magnitude of the displacement
vector  from B to A (it equals 6 km in both cases), so we can write  = . However, vector  is not equal to vector 

 because these two vectors have different directions:  ≠ . In Figure 2.3, vector  would be represented by a
vector with an origin at point B and an end at point A, indicating vector  points to the southwest, which is exactly 180°
opposite to the direction of vector . We say that vector  is antiparallel to vector  and write  = , where
the minus sign indicates the antiparallel direction.

Two vectors that have identical directions are said to be parallel vectors—meaning, they are parallel to each other. Two parallel
vectors  and  are equal, denoted by  = , if and only if they have equal magnitudes | | = | |. Two vectors with directions
perpendicular to each other are said to be orthogonal vectors. These relations between vectors are illustrated in Figure .

Figure : Various relations between two vectors  and . (a)  ≠  because A ≠ B . (b)  ≠  because they are not parallel
and A ≠ B . (c)  ≠  because they have different directions (even though |  | = |  | = A) . (d)  =  because they are
parallel and have identical magnitudes A = B. (e)  ≠  because they have different directions (are not parallel); here, their
directions differ by 90° —meaning, they are orthogonal.

Two motorboats named Alice and Bob are moving on a lake. Given the information about their velocity vectors in each of the
following situations, indicate whether their velocity vectors are equal or otherwise.

a. Alice moves north at 6 knots and Bob moves west at 6 knots.
b. Alice moves west at 6 knots and Bob moves west at 3 knots.
c. Alice moves northeast at 6 knots and Bob moves south at 3 knots.
d. Alice moves northeast at 6 knots and Bob moves southwest at 6 knots.
e. Alice moves northeast at 2 knots and Bob moves closer to the shore northeast at 2 knots.

2.9.3.1 Algebra of Vectors in One Dimension
Vectors can be multiplied by scalars, added to other vectors, or subtracted from other vectors. We can illustrate these vector
concepts using an example of the fishing trip seen in Figure .
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Figure : Displacement vectors for a fishing trip. (a) Stopping to rest at point C while walking from camp (point A) to the
pond (point B). (b) Going back for the dropped tackle box (point D). (c) Finishing up at the fishing pond.

Suppose your friend departs from point A (the campsite) and walks in the direction to point B (the fishing pond), but, along the
way, stops to rest at some point C located three-quarters of the distance between A and B, beginning from point A (Figure 

). What is his displacement vector  when he reaches point C? We know that if he walks all the way to B, his
displacement vector relative to A is , which has magnitude D  = 6 km and a direction of northeast. If he walks only a 0.75
fraction of the total distance, maintaining the northeasterly direction, at point C he must be 0.75 D  = 4.5 km away from the
campsite at A. So, his displacement vector at the rest point C has magnitude D  = 4.5 km = 0.75 D  and is parallel to the
displacement vector . All of this can be stated succinctly in the form of the following vector equation:

In a vector equation, both sides of the equation are vectors. The previous equation is an example of a vector multiplied by a
positive scalar (number)  = 0.75. The result, , of such a multiplication is a new vector with a direction parallel to the
direction of the original vector . In general, when a vector  is multiplied by a positive scalar , the result is a new vector 

 that is parallel to :

The magnitude | | of this new vector is obtained by multiplying the magnitude | | of the original vector, as expressed by the
scalar equation:

In a scalar equation, both sides of the equation are numbers. Equation  is a scalar equation because the magnitudes of
vectors are scalar quantities (and positive numbers). If the scalar  is negative in the vector equation Equation , then the
magnitude | | of the new vector is still given by Equation , but the direction of the new vector  is antiparallel to the
direction of . These principles are illustrated in Figure  by two examples where the length of vector  is 1.5 units. When 

 = 2, the new vector  = 2  has length B = 2A = 3.0 units (twice as long as the original vector) and is parallel to the original
vector. When  = −2, the new vector  = −2  has length C = |−2| A = 3.0 units (twice as long as the original vector) and is
antiparallel to the original vector.

Figure : Algebra of vectors in one dimension. (a) Multiplication by a scalar. (b) Addition of two vectors (  is called the
resultant of vectors (  and ( ). (c) Subtraction of two vectors (  is the difference of vectors (  and ).

Now suppose your fishing buddy departs from point A (the campsite), walking in the direction to point B (the fishing hole), but he
realizes he lost his tackle box when he stopped to rest at point C (located three-quarters of the distance between A and B, beginning
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from point A). So, he turns back and retraces his steps in the direction toward the campsite and finds the box lying on the path at
some point D only 1.2 km away from point C (see Figure ). What is his displacement vector  when he finds the box at
point D? What is his displacement vector  from point D to the hole? We have already established that at rest point C his
displacement vector is  = 0.75 . Starting at point C, he walks southwest (toward the campsite), which means his new
displacement vector  from point C to point D is antiparallel to . Its magnitude | | is D  = 1.2 km = 0.2 D , so his
second displacement vector is  = −0.2 . His total displacement  relative to the campsite is the vector sum of the two
displacement vectors: vector  (from the campsite to the rest point) and vector  (from the rest point to the point where he
finds his box):

The vector sum of two (or more vectors is called the resultant vector or, for short, the resultant. When the vectors on the right-
hand-side of Equation  are known, we can find the resultant  as follows:

When your friend finally reaches the pond at B, his displacement vector  from point A is the vector sum of his displacement
vector  from point A to point D and his displacement vector  from point D to the fishing hole:  =  +  (see
Figure ). This means his displacement vector  is the difference of two vectors:

Notice that a difference of two vectors is nothing more than a vector sum of two vectors because the second term in Equation 
 is vector  (which is antiparallel to ). When we substitute Equation  into Equation , we obtain the

second displacement vector:

This result means your friend walked D  = 0.45 D  = 0.45(6.0 km) = 2.7 km from the point where he finds his tackle box to the
fishing hole.

When vectors  and  lie along a line (that is, in one dimension), such as in the camping example, their resultant  =  +  and
their difference  =  −  both lie along the same direction. We can illustrate the addition or subtraction of vectors by drawing
the corresponding vectors to scale in one dimension, as shown in Figure .

To illustrate the resultant when  and  are two parallel vectors, we draw them along one line by placing the origin of one vector
at the end of the other vector in head-to-tail fashion (see Figure (\PageIndex{6b}\)). The magnitude of this resultant is the sum of
their magnitudes: R = A + B. The direction of the resultant is parallel to both vectors. When vector  is antiparallel to vector , we
draw them along one line in either head-to-head fashion (Figure (\PageIndex{6c}\)) or tail-to-tail fashion. The magnitude of the
vector difference, then, is the absolute value D = |A − B| of the difference of their magnitudes. The direction of the difference
vector  is parallel to the direction of the longer vector.

In general, in one dimension—as well as in higher dimensions, such as in a plane or in space—we can add any number of vectors
and we can do so in any order because the addition of vectors is commutative,

and associative,

Moreover, multiplication by a scalar is distributive:

We used the distributive property in Equation  and Equation .

When adding many vectors in one dimension, it is convenient to use the concept of a unit vector. A unit vector, which is denoted
by a letter symbol with a hat, such as , has a magnitude of one and does not have any physical unit so that | | ≡ u = 1. The only
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role of a unit vector is to specify direction. For example, instead of saying vector  has a magnitude of 6.0 km and a direction
of northeast, we can introduce a unit vector  that points to the northeast and say succinctly that  = (6.0 km) . Then the
southwesterly direction is simply given by the unit vector . In this way, the displacement of 6.0 km in the southwesterly direction
is expressed by the vector

A long measuring stick rests against a wall in a physics laboratory with its 200-cm end at the floor. A ladybug lands on the
100-cm mark and crawls randomly along the stick. It first walks 15 cm toward the floor, then it walks 56 cm toward the wall,
then it walks 3 cm toward the floor again. Then, after a brief stop, it continues for 25 cm toward the floor and then, again, it
crawls up 19 cm toward the wall before coming to a complete rest (Figure ). Find the vector of its total displacement
and its final resting position on the stick.

Strategy

If we choose the direction along the stick toward the floor as the direction of unit vector , then the direction toward the floor
is  and the direction toward the wall is . The ladybug makes a total of five displacements:

The total displacement  is the resultant of all its displacement vectors.

Figure : Five displacements of the ladybug. Note that in this schematic drawing, magnitudes of displacements are not
drawn to scale. (credit: modification of work by “Persian Poet Gal”/Wikimedia Commons)

Solution
The resultant of all the displacement vectors is

In this calculation, we use the distributive law given by Equation 2.2.9. The result reads that the total displacement vector
points away from the 100-cm mark (initial landing site) toward the end of the meter stick that touches the wall. The end that
touches the wall is marked 0 cm, so the final position of the ladybug is at the (100 – 32) cm = 68-cm mark.
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= (25 cm)(+ ), andû
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= (15 −56 +3 +25 −19)cm û
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A cave diver enters a long underwater tunnel. When her displacement with respect to the entry point is 20 m, she accidentally
drops her camera, but she doesn’t notice it missing until she is some 6 m farther into the tunnel. She swims back 10 m but
cannot find the camera, so she decides to end the dive. How far from the entry point is she? Taking the positive direction out of
the tunnel, what is her displacement vector relative to the entry point?

2.9.3.2 Algebra of Vectors in Two Dimensions
When vectors lie in a plane—that is, when they are in two dimensions—they can be multiplied by scalars, added to other vectors,
or subtracted from other vectors in accordance with the general laws expressed by Equation 2.2.1, Equation 2..2.2, Equation 2.2.7,
and Equation 2.2.8. However, the addition rule for two vectors in a plane becomes more complicated than the rule for vector
addition in one dimension. We have to use the laws of geometry to construct resultant vectors, followed by trigonometry to find
vector magnitudes and directions. This geometric approach is commonly used in navigation (Figure ). In this section, we
need to have at hand two rulers, a triangle, a protractor, a pencil, and an eraser for drawing vectors to scale by geometric
constructions.

Figure : In navigation, the laws of geometry are used to draw resultant displacements on nautical maps.

For a geometric construction of the sum of two vectors in a plane, we follow the parallelogram rule. Suppose two vectors  and 
 are at the arbitrary positions shown in Figure . Translate either one of them in parallel to the beginning of the other

vector, so that after the translation, both vectors have their origins at the same point. Now, at the end of vector  we draw a line
parallel to vector  and at the end of vector  we draw a line parallel to vector  (the dashed lines in Figure ). In this way,
we obtain a parallelogram. From the origin of the two vectors we draw a diagonal that is the resultant  of the two vectors:  = 
+  (Figure ). The other diagonal of this parallelogram is the vector difference of the two vectors  =  − , as shown in
Figure . Notice that the end of the difference vector is placed at the end of vector .

Figure : The parallelogram rule for the addition of two vectors. Make the parallel translation of each vector to a point where
their origins (marked by the dot) coincide and construct a parallelogram with two sides on the vectors and the other two sides
(indicated by dashed lines) parallel to the vectors. (a) Draw the resultant vector  along the diagonal of the parallelogram from the
common point to the opposite corner. Length R of the resultant vector is not equal to the sum of the magnitudes of the two vectors.
(b) Draw the difference vector  =  −  along the diagonal connecting the ends of the vectors. Place the origin of vector  at
the end of vector  and the end (arrowhead) of vector  at the end of vector . Length D of the difference vector is not equal to
the difference of magnitudes of the two vectors.

It follows from the parallelogram rule that neither the magnitude of the resultant vector nor the magnitude of the difference vector
can be expressed as a simple sum or difference of magnitudes A and B, because the length of a diagonal cannot be expressed as a
simple sum of side lengths. When using a geometric construction to find magnitudes | | and | |, we have to use trigonometry laws
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for triangles, which may lead to complicated algebra. There are two ways to circumvent this algebraic complexity. One way is to
use the method of components, which we examine in the next section. The other way is to draw the vectors to scale, as is done in
navigation, and read approximate vector lengths and angles (directions) from the graphs. In this section we examine the second
approach.

If we need to add three or more vectors, we repeat the parallelogram rule for the pairs of vectors until we find the resultant of all of
the resultants. For three vectors, for example, we first find the resultant of vector 1 and vector 2, and then we find the resultant of
this resultant and vector 3. The order in which we select the pairs of vectors does not matter because the operation of vector
addition is commutative and associative (see Equation 2.2.7 and Equation 2.2.8). Before we state a general rule that follows from
repetitive applications of the parallelogram rule, let’s look at the following example.

Suppose you plan a vacation trip in Florida. Departing from Tallahassee, the state capital, you plan to visit your uncle Joe in
Jacksonville, see your cousin Vinny in Daytona Beach, stop for a little fun in Orlando, see a circus performance in Tampa, and visit
the University of Florida in Gainesville. Your route may be represented by five displacement vectors , , , , and , which
are indicated by the red vectors in Figure . What is your total displacement when you reach Gainesville? The total
displacement is the vector sum of all five displacement vectors, which may be found by using the parallelogram rule four times.
Alternatively, recall that the displacement vector has its beginning at the initial position (Tallahassee) and its end at the final
position (Gainesville), so the total displacement vector can be drawn directly as an arrow connecting Tallahassee with Gainesville
(see the green vector in Figure ). When we use the parallelogram rule four times, the resultant  we obtain is exactly this
green vector connecting Tallahassee with Gainesville:  =  +  +  +  + .

Figure : When we use the parallelogram rule four times, we obtain the resultant vector  =  +  +  +  + , which is
the green vector connecting Tallahassee with Gainesville.

Drawing the resultant vector of many vectors can be generalized by using the following tail-to-head geometric construction.
Suppose we want to draw the resultant vector  of four vectors , , , and  (Figure ). We select any one of the
vectors as the first vector and make a parallel translation of a second vector to a position where the origin (“tail”) of the second
vector coincides with the end (“head”) of the first vector. Then, we select a third vector and make a parallel translation of the third
vector to a position where the origin of the third vector coincides with the end of the second vector. We repeat this procedure until
all the vectors are in a head-to-tail arrangement like the one shown in Figure . We draw the resultant vector  by connecting
the origin (“tail”) of the first vector with the end (“head”) of the last vector. The end of the resultant vector is at the end of the last
vector. Because the addition of vectors is associative and commutative, we obtain the same resultant vector regardless of which
vector we choose to be first, second, third, or fourth in this construction.

A ⃗  B⃗  C ⃗  D⃗  E ⃗ 

2.9.3.4

2.9.3.4 R⃗ 

R⃗  A ⃗  B⃗  C ⃗  D⃗  E ⃗ 

2.9.3.4 R⃗  A ⃗  B⃗  C ⃗  D⃗  E ⃗ 

R⃗  A ⃗  B⃗  C ⃗  D⃗  2.9.3.5a

2.9.3.5 R⃗ 
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Figure : Tail-to-head method for drawing the resultant vector  =  +  +  + . (a) Four vectors of different magnitudes
and directions. (b) Vectors in (a) are translated to new positions where the origin (“tail”) of one vector is at the end (“head”) of
another vector. The resultant vector is drawn from the origin (“tail”) of the first vector to the end (“head”) of the last vector in this
arrangement.

The three displacement vectors , , and  in Figure  are specified by their magnitudes A = 10.0, B = 7.0, and C =
8.0, respectively, and by their respective direction angles with the horizontal direction  = 35°,  = −110°, and  = 30°. The
physical units of the magnitudes are centimeters. Choose a convenient scale and use a ruler and a protractor to find the
following vector sums: (a)  =  + , (b)  =  − , and (c)  =  −  + .

Figure : Vectors used in Example  and in the Exercise feature that follows.

Strategy

In geometric construction, to find a vector means to find its magnitude and its direction angle with the horizontal direction. The
strategy is to draw to scale the vectors that appear on the right-hand side of the equation and construct the resultant vector.
Then, use a ruler and a protractor to read the magnitude of the resultant and the direction angle. For parts (a) and (b) we use the
parallelogram rule. For (c) we use the tail-to-head method.

Solution
For parts (a) and (b), we attach the origin of vector  to the origin of vector , as shown in Figure , and construct a
parallelogram. The shorter diagonal of this parallelogram is the sum  + . The longer of the diagonals is the difference  − 

. We use a ruler to measure the lengths of the diagonals, and a protractor to measure the angles with the horizontal. For the
resultant , we obtain R = 5.8 cm and  ≈ 0°. For the difference , we obtain D = 16.2 cm and  = 49.3°, which are shown
in Figure .

Figure : Using the parallelogram rule to solve (a) (finding the resultant, red) and (b) (finding the difference, blue).

For (c), we can start with vector −3  and draw the remaining vectors tail-to-head as shown in Figure . In vector
addition, the order in which we draw the vectors is unimportant, but drawing the vectors to scale is very important. Next, we
draw vector  from the origin of the first vector to the end of the last vector and place the arrowhead at the end of . We use a

2.9.3.5 R⃗  A ⃗  B⃗  C ⃗  D⃗ 

 Example : Geometric Construction of the Resultant2.9.3.2

A ⃗  B⃗  C ⃗  2.9.3.6

α β γ

R⃗  A ⃗  B⃗  D⃗  A ⃗  B⃗  S ⃗  A ⃗  3B⃗  C ⃗ 

2.9.3.6 2.9.3.2

B⃗  A ⃗  2.9.3.7

A ⃗  B⃗  A ⃗ 

B⃗ 

R⃗  θR D⃗  θD
2.9.3.7

2.9.3.7

B⃗  2.9.3.8

S ⃗  S ⃗ 
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ruler to measure the length of , and find that its magnitude is S = 36.9 cm. We use a protractor and find that its direction angle
is  = 52.9°. This solution is shown in Figure .

Figure : Using the tail-to-head method to solve (c) (finding vector , green).

Using the three displacement vectors , , and  in Figure , choose a convenient scale, and use a ruler and a protractor
to find vector  given by the vector equation  =  +  − .
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 Exercise 2.3

A ⃗  B⃗  F ⃗  2.9.3.6

G⃗  G⃗  A ⃗  2B⃗  F ⃗ 
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