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6.3: Kirchhoff's Rules

&b Learning Objectives

By the end of the section, you will be able to:

 State Kirchhoff’s junction rule
o State Kirchhoff’s loop rule
o Analyze complex circuits using Kirchhoff’s rules

We have just seen that some circuits may be analyzed by reducing a circuit to a single voltage source and an equivalent resistance.
Many complex circuits cannot be analyzed with the series-parallel techniques developed in the preceding sections. In this section,
we elaborate on the use of Kirchhoff’s rules to analyze more complex circuits. For example, the circuit in Figure 6.3.1is known as
a multi-loop circuit, which consists of junctions. A junction, also known as a node, is a connection of three or more wires. In this
circuit, the previous methods cannot be used, because not all the resistors are in clear series or parallel configurations that can be
reduced. Give it a try. The resistors R; and R are in series and can be reduced to an equivalent resistance. The same is true of
resistors R4 and Rs5. But what do you do then?

Even though this circuit cannot be analyzed using the methods already learned, two circuit analysis rules can be used to analyze
any circuit, simple or complex. The rules are known as Kirchhoff’s rules, after their inventor Gustav Kirchhoff (1824-1887).
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Figure 6.3.1: This circuit cannot be reduced to a combination of series and parallel connections. However, we can use Kirchhoff’s
rules to analyze it.

v Kirchhoff’'s Rules

o Kirchhoff’s first rule—the junction rule. The sum of all currents entering a junction must equal the sum of all currents

leaving the junction:
ZIm :ZIout~ (631)

o Kirchhoff’s second rule—the loop rule. The algebraic sum of changes in potential around any closed circuit path (loop)
must be zero:

Y v=o. (6.3.2)

We now provide explanations of these two rules, followed by problem-solving hints for applying them and a worked example that
uses them.

Kirchhoff’'s First Rule

Kirchhoff’s first rule (the junction rule) applies to the charge entering and leaving a junction (Figure 6.3.2). As stated earlier, a
junction, or node, is a connection of three or more wires. Current is the flow of charge, and charge is conserved; thus, whatever
charge flows into the junction must flow out.
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Figure 6.3.2: Charge must be conserved, so the sum of currents into a junction must be equal to the sum of currents out of the
junction.
Although it is an over-simplification, an analogy can be made with water pipes connected in a plumbing junction. If the wires in
Figure 6.3.2 were replaced by water pipes, and the water was assumed to be incompressible, the volume of water flowing into the

junction must equal the volume of water flowing out of the junction.

Kirchhoff’'s Second Rule

Kirchhoff’s second rule (the loop rule) applies to potential differences. The loop rule is stated in terms of potential V rather than
potential energy, but the two are related since U = qV . In a closed loop, whatever energy is supplied by a voltage source, the
energy must be transferred into other forms by the devices in the loop, since there are no other ways in which energy can be
transferred into or out of the circuit. Kirchhoff’s loop rule states that the algebraic sum of potential differences, including voltage
supplied by the voltage sources and resistive elements, in any loop must be equal to zero. For example, consider a simple loop with
no junctions, as in Figure 6.3.3.
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Figure 6.3.3: A simple loop with no junctions. Kirchhoff’s loop rule states that the algebraic sum of the voltage differences is equal

to zero.
The circuit consists of a voltage source and three external load resistors. The labels a, b, ¢, and d serve as references, and have no
other significance. The usefulness of these labels will become apparent soon. The loop is designated as Loop abcda, and the labels
help keep track of the voltage differences as we travel around the circuit. Start at point a and travel to point b. The voltage of the
voltage source is added to the equation and the potential drop of the resistor R; is subtracted. From point b to c, the potential drop
across Ry is subtracted. From c to d, the potential drop across Rj is subtracted. From points d to a, nothing is done because there
are no components.

Figure 6.3.4 shows a graph of the voltage as we travel around the loop. Voltage increases as we cross the battery, whereas voltage
decreases as we travel across a resistor. The potential drop, or change in the electric potential, is equal to the current through the
resistor times the resistance of the resistor. Since the wires have negligible resistance, the voltage remains constant as we cross the
wires connecting the components.
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Figure 6.3.4: A voltage graph as we travel around the circuit. The voltage increases as we cross the battery and decreases as we
cross each resistor. Since the resistance of the wire is quite small, we assume that the voltage remains constant as we cross the
wires connecting the components.

Then Kirchhoff’s loop rule states
V—-IR,—IR,—IR;=0. (6.3.3)
The loop equation can be used to find the current through the loop:

. \% _ 12.00V
" Ri+Ry+R;  1.000+2.00Q+3.00Q

=2.00 A. (6.3.4)

This loop could have been analyzed using the previous methods, but we will demonstrate the power of Kirchhoff’s method in the
next section.

Applying Kirchhoff's Rules

By applying Kirchhoff’s rules, we generate a set of linear equations that allow us to find the unknown values in circuits. These may
be currents, voltages, or resistances. Each time a rule is applied, it produces an equation. If there are as many independent equations
as unknowns, then the problem can be solved.

Using Kirchhoff’s method of analysis requires several steps, as listed in the following procedure.

v/ Problem-Solving Strategy: Kirchhoff's Rules

1. Label points in the circuit diagram using lowercase letters a, b, c, .... These labels simply help with orientation.

2. Locate the junctions in the circuit. The junctions are points where three or more wires connect. Label each junction with the
currents and directions into and out of it. Make sure at least one current points into the junction and at least one current
points out of the junction.

3. Choose the loops in the circuit. Every component must be contained in at least one loop, but a component may be contained
in more than one loop.

4. Apply the junction rule. Again, some junctions should not be included in the analysis. You need only use enough nodes to
include every current.

5. Apply the loop rule. Use the map in Figure 6.3.5.
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Figure 6.3.5: Each of these resistors and voltage sources is traversed from a to b. (a) When moving across a resistor in the same

direction as the current flow, subtract the potential drop. (b) When moving across a resistor in the opposite direction as the current

flow, add the potential drop. (c¢) When moving across a voltage source from the negative terminal to the positive terminal, add the

potential drop. (d) When moving across a voltage source from the positive terminal to the negative terminal, subtract the potential

drop.
Let’s examine some steps in this procedure more closely. When locating the junctions in the circuit, do not be concerned about the
direction of the currents. If the direction of current flow is not obvious, choosing any direction is sufficient as long as at least one
current points into the junction and at least one current points out of the junction. If the arrow is in the opposite direction of the
conventional current flow, the result for the current in question will be negative but the answer will still be correct.

The number of nodes depends on the circuit. Each current should be included in a node and thus included in at least one junction
equation. Do not include nodes that are not linearly independent, meaning nodes that contain the same information.

Consider Figure 6.3.6. There are two junctions in this circuit: Junction b and Junction e. Points a, ¢, d, and f are not junctions,
because a junction must have three or more connections. The equation for Junction b is I; = Iy + I3 , and the equation for Junction
eis I + I3 = I; . These are equivalent equations, so it is necessary to keep only one of them.

Junction b
R, o .-- 13
a — h c

+
e R, R3§
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- -
f e s d

~ -

Junction e

Figure 6.3.6: At first glance, this circuit contains two junctions, Junction b and Junction e, but only one should be considered
because their junction equations are equivalent.

When choosing the loops in the circuit, you need enough loops so that each component is covered once, without repeating loops.
Figure 6.3.7 shows four choices for loops to solve a sample circuit; choices (a), (b), and (c) have a sufficient amount of loops to
solve the circuit completely. Option (d) reflects more loops than necessary to solve the circuit.
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Figure 6.3.7: Panels (a)—(c) are sufficient for the analysis of the circuit. In each case, the two loops shown contain all the circuit
elements necessary to solve the circuit completely. Panel (d) shows three loops used, which is more than necessary. Any two loops
in the system will contain all information needed to solve the circuit. Adding the third loop provides redundant information.
Consider the circuit in Figure 6.3.8a. Let us analyze this circuit to find the current through each resistor. First, label the circuit as
shown in part (b).

R, = 3.00 {} Ry =3.00 () q Ri=300Q p Ry=300( &
MN MN M ? M
R, =3.00(} § R, =4.00 () g R, =3.00 () R, =4.00() §
V, =24.00V V, =29.00V Vv, =24.00V V, =29.00V
+|il, = =hlE +|i| = t] [] e
| i ; It . i} :
@) ()

Figure 6.3.8: (a) A multi-loop circuit. (b) Label the circuit to help with orientation.

Next, determine the junctions. In this circuit, points b and e each have three wires connected, making them junctions. Start to apply
Kirchhoff’s junction rule (> I;;, = > I,,;) by drawing arrows representing the currents and labeling each arrow, as shown in
Figure 6.3.9. Junction b shows that I; =I5 + I3 and Junction e shows that I + I3 =1I; . Since Junction e gives the same
information of Junction b, it can be disregarded. This circuit has three unknowns, so we need three linearly independent equations
to analyze it.
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Figure 6.3.9: (a) This circuit has two junctions, labeled b and e, but only node b is used in the analysis. (b) Labeled arrows
represent the currents into and out of the junctions.
Next we need to choose the loops. In Figure 6.3.10 Loop abefa includes the voltage source V; and resistors R; and Rs. The loop
starts at point a, then travels through points b, e, and f, and then back to point a. The second loop, Loop ebcde, starts at point e and
includes resistors Ry and Rg, and the voltage source V5.
Junction b
R, =3008 I 7l Ry =300 Q

R, =3.00 () gl R, =4.00() §

Loop Loop
abefa ebcde
vV, =24.00V v, =29.00V

+|I|_ _|||+
' Tl

Figure 6.3.10: Choose the loops in the circuit.

Now we can apply Kirchhoff’s loop rule, using the map in Figure 6.3.5. Starting at point a and moving to point b, the resistor R; is
crossed in the same direction as the current flow I, so the potential drop I; R; is subtracted. Moving from point b to point e, the
resistor Ry is crossed in the same direction as the current flow I5 so the potential drop Is R» is subtracted. Moving from point e to
point f, the voltage source V; is crossed from the negative terminal to the positive terminal, so V; is added. There are no
components between points f and a. The sum of the voltage differences must equal zero:

Loopabefa: 711R1712R2 +Vi :00’/“/1 :IlRl +IQR2. (635)

Finally, we check loop ebcde. We start at point e and move to point b, crossing R in the opposite direction as the current flow I.
The potential drop I5 R» is added. Next, we cross R3 and R, in the same direction as the current flow I3 and subtract the potential
drops I3 R3 and I3 R,4. Note that the current is the same through resistors R3 and R4,because they are connected in series. Finally,
the voltage source is crossed from the positive terminal to the negative terminal, and the voltage source V5 is subtracted. The sum
of these voltage differences equals zero and yields the loop equation

Loop ebede : IRy —I3(R3+Ry) — V2 =0. (6.3.6)
We now have three equations, which we can solve for the three unknowns.
Junctionb: I; — I, — I3 = 0. (6.3.7)
Loop abefa: I1 Ry + I, Ry = V4. (6.3.8)
Loop ebcde: Iy Ry — Is(R3 + Ry) = Va. (6.3.9)

To solve the three equations for the three unknown currents, start by eliminating current I,. First add Equation 6.3.7 times Ry to
Equation 6.3.8. The result is Equation 6.3.11:

(R1 +R2)Il —RyI3 =V. (6.3.10)
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6 QL —3QI;=24V. (6.3.11)

Next, subtract Equation 6.3.9 from Equation 6.3.8. The result is Equation 6.3.13
LR, +I3(R3+ Ry) =V — Vs (6.3.12)
QL +7Q; =-5V. (6.3.13)

We can solve Equations 6.3.11 and 6.3.13 for current I;. Adding seven times Equation 6.3.11 and three times Equation 6.3.13
results in 51 QI; =153V, or I; =3.00 A. Using Equation 6.3.11 results in I3 = —2.00 A. Finally, Equation 6.3.7 yields

I, =1 — I3 =5.00 A . One way to check that the solutions are consistent is to check the power supplied by the voltage sources
and the power dissipated by the resistors:

Pp=LVi+LV, =130 W,
P =I?Ry +I}Ry +I?R3 + 2R, =130 W.

Note that the solution for the current I3 is negative. This is the correct answer, but suggests that the arrow originally drawn in the
junction analysis is the direction opposite of conventional current flow. The power supplied by the second voltage source is 58 W
and not -58 W.

v/ Example 6.3.1: Calculating Current by Using Kirchhoff's Rules

Find the currents flowing in the circuit in Figure 6.3.11

] V=050V 5 50 \
—=F MW
' M
R, =10
/
1], -
T s V=060V g _10
Junction:,  f ¢— +I||:_ AN c
|
Loop g Rg=20)
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R, =52 | Loop abcdefa )
V;=230V g 10
—|I AW

d

Figure 6.3.11: This circuit is combination of series and parallel configurations of resistors and voltage sources. This circuit
cannot be analyzed using the techniques discussed in Electromotive Force but can be analyzed using Kirchhoff’s rules.

e

Strategy

This circuit is sufficiently complex that the currents cannot be found using Ohm’s law and the series-parallel techniques—it is
necessary to use Kirchhoff’s rules. Currents have been labeled I, I5, and I3 in the figure, and assumptions have been made
about their directions. Locations on the diagram have been labeled with letters a through h. In the solution, we apply the
junction and loop rules, seeking three independent equations to allow us to solve for the three unknown currents.

Solution

Applying the junction and loop rules yields the following three equations. We have three unknowns, so three equations are

required.
Junctionc: I + 1, = I3. (6.3.14)
Loop abedefa: I (Ry + Ry) — (R + Rs + Rg) = V1 — V. (6.3.15)
Loopcdefc: Iy(Re+ Rs + Rg) + IsRs = Vo + V3. (6.3.16)

Simplify the equations by placing the unknowns on one side of the equations.
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Junctionc: I +1, — I3 = 0. (6.3.17)
Loop abedefa: I,(32) — [,(8Q) =0.5V —2.30 V. (6.3.18)
Loop cdefc: I,(8Q)+15(1Q)=0.6V +2.30 V. (6.3.19)

Simplify the equations. The first loop equation can be simplified by dividing both sides by 3.00. The second loop equation can
be simplified by dividing both sides by 6.00.

Junctionc: I1 + I, — I3 = 0. (6.3.20)
Loop abedefa: I (3Q) — I,(8Q2) = -1.8V. (6.3.21)
Loop cdefc: I,(8Q)+I3(1Q)=2.90V. (6.3.22)
The results are
I; =0.20 A, I, = 0.30 A, I; = 0.50 A. (6.3.23)

Significance

A method to check the calculations is to compute the power dissipated by the resistors and the power supplied by the voltage
sources:

Pg, =I2R; =0.04 W. ( )
Pg, =I2R, =0.45W. ( )
Pr,=I2R; =0.25W. ( )
Pg, =I2R; =0.08 W. ( )
Pp, = I2R5 = 0.09 W. (6.3.28)
Pp, = I2R; =0.18W. ( )
Pissipatea =1.09 W. ( )
Puouree = LVi + I, Va + I3V = 0.10 +0.69 W +0.30 W = 1.09 W. ( )

The power supplied equals the power dissipated by the resistors.

? Exercise 6.3.1

In considering the following schematic and the power supplied and consumed by a circuit, will a voltage source always provide
power to the circuit, or can a voltage source consume power?

éRl=1OKQ

I,|I|+

=V, =12V

1+
|||
~
Il
n
~
<

Answer

The circuit can be analyzed using Kirchhoff’s loop rule. The first voltage source supplies power: P, =IV; =7.20mW .
The second voltage source consumes power: P,,; = IVa +1 Ri+I’Ry =7.2mW.
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v/ Example 6.3.2: Calculating Current by Using Kirchhoff's Rules

Find the current flowing in the circuit in Figure 6.3.12

a b
é Ry =20.0() é R, =100

+
=V,=240V
+
=V, =120V
R, =3000Q
—AM——4
c d

Figure 6.3.12: This circuit consists of three resistors and two batteries connected in series. Note that the batteries are connected
with opposite polarities.

Strategy

This circuit can be analyzed using Kirchhoff’s rules. There is only one loop and no nodes. Choose the direction of current flow.
For this example, we will use the clockwise direction from point a to point b. Consider Loop abcda and use Figure 6.3.5 to
write the loop equation. Note that according to Figure 6.3.5, battery V; will be added and battery V2 will be subtracted.

Solution

Applying the junction rule yields the following three equations. We have one unknown, so one equation is required:

Loopabeda: —IR; — Vi —IRy + V5 —IR3 =0. (6.3.32)
Simplify the equations by placing the unknowns on one side of the equations. Use the values given in the figure.
I(Ri +Ry+R3)=Vo— V1. (6.3.33)
Vo—-1; 24V -12V

I

= = =0.20 A. 6.3.34
R, +Ry+Rs 10.02+30.02+10.0 2 ( )

Significance

The power dissipated or consumed by the circuit equals the power supplied to the circuit, but notice that the current in the
battery V; is flowing through the battery from the positive terminal to the negative terminal and consumes power.
Pr, =I’R; =0.40W (6.3.35)

Pr,=I’Ry =120W (6.3.36)
Pgr, =I’R3 =080 W (6.3.37)
Py, =1V =240W ( )
Piissipated =4.80 W ( )
( )

Psource = I‘/Z =4.80W

6.3.38
6.3.39
6.3.40

The power supplied equals the power dissipated by the resistors and consumed by the battery V; .

? Exercise 6.3.2

When using Kirchhoff’s laws, you need to decide which loops to use and the direction of current flow through each loop. In
analyzing the circuit in Example 6.3.2, the direction of current flow was chosen to be clockwise, from point a to point b. How
would the results change if the direction of the current was chosen to be counterclockwise, from point b to point a?

Answer
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The current calculated would be equal to I = —0.20 A instead of I =0.20 A. The sum of the power dissipated and the
power consumed would still equal the power supplied.

Multiple Voltage Sources

Many devices require more than one battery. Multiple voltage sources, such as batteries, can be connected in series configurations,
parallel configurations, or a combination of the two.

In series, the positive terminal of one battery is connected to the negative terminal of another battery. Any number of voltage
sources, including batteries, can be connected in series. Two batteries connected in series are shown in Figure 6.3.13 Using
Kirchhoff’s loop rule for the circuit in part (b) gives the result

€e1—Iri+e—Irs —IR=0, (6.3.41)
[(61 +€2)—I(’I’1 —l—’l“z)] —IR=0. (6.3.42)
=
§R
(@ (b)

Figure 6.3.13: (a) Two batteries connected in series with a load resistor. (b) The circuit diagram of the two batteries and the load
resistor, with each battery modeled as an idealized emf source and an internal resistance.

When voltage sources are in series, their internal resistances can be added together and their emfs can be added together to get the
total values. Series connections of voltage sources are common—for example, in flashlights, toys, and other appliances. Usually,
the cells are in series in order to produce a larger total emf. In Figure 6.3.13 the terminal voltage is

Vierminal = (€1 —Ir1) + (€2 — Iry) = [(e1 +€2) —I(r1 +72) —I(r1 +72)] = (€1 + €2) + Ireq. (6.3.43)

Note that the same current I is found in each battery because they are connected in series. The disadvantage of series connections
of cells is that their internal resistances are additive.

Batteries are connected in series to increase the voltage supplied to the circuit. For instance, an LED flashlight may have two AAA
cell batteries, each with a terminal voltage of 1.5V, to provide 3.0 V to the flashlight.

Any number of batteries can be connected in series. For N batteries in series, the terminal voltage is equal to

N
Vierminal = (61 + €. .. +€en_1 —|—EN) —I(’I‘l +7ro+...+rn_1 —|—’I‘N) = ZE,’ —I?"eq (6344)
i=1

where the equivalent resistance is

Teg = Z T (6.3.45)

When a load is placed across voltage sources in series, as in Figure 6.3.14 we can find the current:
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(61—IT1)+(62—I7'2):IR, (6346)
Iry +Iry+1R =€ + €, (6.3.47)
€1+ €
=—_— 6.3.48
r+ro+R ( )

As expected, the internal resistances increase the equivalent resistance.

—l

_

>

B

LA
EN i

g

@ &2

@) (b)

Figure 6.3.14: Two batteries connect in series to an LED bulb, as found in a flashlight.

Voltage sources, such as batteries, can also be connected in parallel. Figure 6.3.15 shows two batteries with identical emfs in
parallel and connected to a load resistance. When the batteries are connect in parallel, the positive terminals are connected together
and the negative terminals are connected together, and the load resistance is connected to the positive and negative terminals.
Normally, voltage sources in parallel have identical emfs. In this simple case, since the voltage sources are in parallel, the total emf
is the same as the individual emfs of each battery.

I=1, +1,

b [ |

f"l f’z

(@) (b)
Figure 6.3.15: (a) Two batteries connect in parallel to a load resistor. (b) The circuit diagram shows the shows battery as an emf
source and an internal resistor. The two emf sources have identical emfs (each labeled by €) connected in parallel that produce the
same emf.

Consider the Kirchhoff analysis of the circuit in Figure 6.3.15& There are two loops and a node at pointb and e = €; =€ .
Nodeb: I; + I, —I =0 .

Loop abcfa: € — Iy + Iaro —€ =0, I1r; = Ioro

Loop fcdef: e —Isre —IR=0, e—Iyrs —IR=0.

-1
where 7., = (l + l) . The terminal voltage is equal to

Solving for the current through the load resistor results in I = s

—c
Tegt R’

the potential drop across the load resistor IR = ( " i 7 ) .
eq

The parallel connection reduces the internal resistance and thus can produce a larger current.

Any number of batteries can be connected in parallel. For N batteries in parallel, the terminal voltage is equal to
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1 1 1 1\
Vierminat =€—1 <_+_+- 509P +_) =€—I7'eq (6'3'49)
T1 T2 TN-1 TN

where the equivalent resistance is

N -1
P, = = 6.3.50
As an example, some diesel trucks use two 12-V batteries in parallel; they produce a total emf of 12 V but can deliver the larger
current needed to start a diesel engine.

In summary, the terminal voltage of batteries in series is equal to the sum of the individual emfs minus the sum of the internal
resistances times the current. When batteries are connected in parallel, they usually have equal emfs and the terminal voltage is
equal to the emf minus the equivalent internal resistance times the current, where the equivalent internal resistance is smaller than
the individual internal resistances. Batteries are connected in series to increase the terminal voltage to the load. Batteries are
connected in parallel to increase the current to the load.

Solar Cell Arrays

Another example dealing with multiple voltage sources is that of combinations of selar cells - wired in both series and parallel
combinations to yield a desired voltage and current. Photovoltaic generation, which is the conversion of sunlight directly into
electricity, is based upon the photoelectric effect. The photoelectric effect is beyond the scope of this chapter and is covered in
Photons and Matter Waves, but in general, photons hitting the surface of a solar cell create an electric current in the cell.

Most solar cells are made from pure silicon. Most single cells have a voltage output of about 0.5 V, while the current output is a
function of the amount of sunlight falling on the cell (the incident solar radiation known as the insolation). Under bright noon
sunlight, a current per unit area of about 100 mA/ cm?of cell surface area is produced by typical single-crystal cells.

Individual solar cells are connected electrically in modules to meet electrical energy needs. They can be wired together in series or
in parallel - connected like the batteries discussed earlier. A solar-cell array or module usually consists of between 36 and 72 cells,
with a power output of 50 W to 140 W.

Solar cells, like batteries, provide a direct current (dc) voltage. Current from a dc voltage source is unidirectional. Most household
appliances need an alternating current (ac) voltage.
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