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9.2: Maxwell's Equations and Electromagnetic Waves

4b Learning Objectives

By the end of this section, you will be able to:

e Explain Maxwell’s correction of Ampeére’s law by including the displacement current

o State and apply Maxwell’s equations in integral form

e Describe how the symmetry between changing electric and changing magnetic fields explains Maxwell’s prediction of
electromagnetic waves

o Describe how Hertz confirmed Maxwell’s prediction of electromagnetic waves

James Clerk Maxwell (1831-1879) was one of the major contributors to physics in the nineteenth century (Figure 9.2.1). Although
he died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision,
and to the nature of Saturn’s rings. He is probably best known for having combined existing knowledge of the laws of electricity
and of magnetism with insights of his own into a complete overarching electromagnetic theory, represented by Maxwell’s
equations.

Figure 9.2.1: James Clerk Maxwell, a nineteenth-century physicist, developed a theory that explained the relationship between
electricity and magnetism, and correctly predicted that visible light consists of electromagnetic waves.

Maxwell’s Correction to the Laws of Electricity and Magnetism

The four basic laws of electricity and magnetism had been discovered experimentally through the work of physicists such as
Oersted, Coulomb, Gauss, and Faraday. Maxwell discovered logical inconsistencies in these earlier results and identified the
incompleteness of Ampeére’s law as their cause.

Recall that according to Ampére’s law, the integral of the magnetic field around a closed loop C is proportional to the current I
passing through any surface whose boundary is loop C itself:

j{E’-dE:uOI. (9.2.1)

There are infinitely many surfaces that can be attached to any loop, and Ampére’s law stated in Equation 9.2.1 is independent of
the choice of surface.

Consider the set-up in Figure 9.2.2. A source of emf is abruptly connected across a parallel-plate capacitor so that a time-dependent
current I develops in the wire. Suppose we apply Ampere’s law to loop C shown at a time before the capacitor is fully charged, so
that I # 0. Surface S; gives a nonzero value for the enclosed current I, whereas surface Sy gives zero for the enclosed current
because no current passes through it:
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Clearly, Ampére’s law in its usual form does not work here. This may not be surprising, because Ampére’s law as applied in earlier
chapters required a steady current, whereas the current in this experiment is changing with time and is not steady at all.

w

Figure 9.2.2: The currents through surface S; and surface S, are unequal, despite having the same boundary loop C.

How can Ampére’s law be modified so that it works in all situations? Maxwell suggested including an additional contribution,
called the displacement current I, to the real current I,

‘%é-dg:ﬂo(.[-f—fd) (9.2.4)
s
where the displacement current is defined to be
d®g
I;= . 9.2.5
=€ (9.2.5)

Here € is the permittivity of free space and ® is the electric flux, defined as

3y :// E-dA. (9.2.6)
Surface S

The displacement current is analogous to a real current in Ampére’s law, entering into Ampeére’s law in the same way. It is
produced, however, by a changing electric field. It accounts for a changing electric field producing a magnetic field, just as a real
current does, but the displacement current can produce a magnetic field even where no real current is present. When this extra term
is included, the modified Ampeére’s law equation becomes

d®

%‘ é'dfé:uoI—i—egpg—E (927)
g at

and is independent of the surface S through which the current I is measured.

We can now examine this modified version of Ampére’s law to confirm that it holds independent of whether the surface S or the
surface Sy in Figure 9.2.2 is chosen. The electric field E corresponding to the flux ® g in Equation 9.2.5 is between the capacitor
plates. Therefore, the F field and the displacement current through the surface S; are both zero, and Equation 9.2.4 takes the form

fé-dgzuof. (9.2.8)
C
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We must now show that for surface Ss, through which no actual current flows, the displacement current leads to the same value
wol for the right side of the Ampére’s law equation. For surface S, the equation becomes

f é-d;:uoi [60 // E-dﬁ] . (9.2.9)
C dt Surface Sz

Gauss’s law for electric charge requires a closed surface and cannot ordinarily be applied to a surface like S; alone or Sy alone. But
the two surfaces .S and S5 form a closed surface in Figure 9.2.2 and can be used in Gauss’s law. Because the electric field is zero
on S, the flux contribution through S; is zero. This gives us

]4 E-dA :// E-dA'+// E-dA (9.2.10)
Surface S1+S2 Surface S Surface Sz
=0+// E-dA (9.2.11)
Surface Sz
:// E-dA. (9.2.12)
Surface Sy
Therefore, we can replace the integral over S5 in Equation 9.2.8 with the closed Gaussian surface S7 4+ S5 and apply Gauss’s law
to obtain
—d - d n
]{ B-ds = py @ = pol. (9.2.13)
5 dt

Thus, the modified Ampére’s law equation is the same using surface S3, where the right-hand side results from the displacement
current, as it is for the surface S7, where the contribution comes from the actual flow of electric charge.

v Displacement current in a charging capacitor

A parallel-plate capacitor with capacitance C whose plates have area A and separation distance d is connected to a resistor R
and a battery of voltage V. The current starts to flow att =0.

a. Find the displacement current between the capacitor plates at time t.
b. From the properties of the capacitor, find the corresponding real current I = % , and compare the answer to the expected
current in the wires of the corresponding RC circuit.
Strategy

We can use the equations from the analysis of an RC circuit (Alternating-Current Circuits) plus Maxwell’s version of
Ampére’s law.

Solution

a. The voltage between the plates at time t is given by

Vo = %Q(t) ~V (1 —e-t/RC) .

Let the z-axis point from the positive plate to the negative plate. Then the z-component of the electric field between the
plates as a function of time t is

B.(t) = 2 (1),

Therefore, the z-component of the displacement current I; between the plates is

_ 40E.() Vo 1 _pe Vo _yre
Ii(t) =¢A ot —€0Ad 7ok =g¢ ,

A
where we have used C' = ¢ rl for the capacitance.

b. From the expression for V> the charge on the capacitor is
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Q(t)=CVe =CVy (1 —e—t/RC) .
The current into the capacitor after the circuit is closed, is therefore

I: ﬂ = Ee_t/RC‘
dt R

This current is the same as I; found in (a).

Maxwell’s Equations

With the correction for the displacement current, Maxwell’s equations take the form

%E’ dA = Qin (Gauss’s law) (9.2.14)
€0
]{é dA =0 (Gauss’s law for magnetism) (9.2.15)
S d®
%E- ds = _d_tm (Faraday’s law) (9.2.16)
- d®g
B-ds = pol +eyl +eoug TS (Ampere-Maxwell law). (9.2.17)

Once the fields have been calculated using these four equations, the Lorentz force equation
F=qE+qixB (9.2.18)

gives the force that the fields exert on a particle with charge q moving with velocity ¥. The Lorentz force equation combines the
force of the electric field and of the magnetic field on the moving charge. The magnetic and electric forces have been examined in
earlier modules. These four Maxwell’s equations are, respectively:

X Maxwell's Equations

1. Gauss’s law

The electric flux through any closed surface is equal to the electric charge @Q;, enclosed by the surface. Gauss’s law (Equation
9.2.14) describes the relation between an electric charge and the electric field it produces. This is often pictured in terms of
electric field lines originating from positive charges and terminating on negative charges, and indicating the direction of the
electric field at each point in space.

2. Gauss’s law for magnetism

The magnetic field flux through any closed surface is zero (Equation 9.2.15). This is equivalent to the statement that magnetic
field lines are continuous, having no beginning or end. Any magnetic field line entering the region enclosed by the surface
must also leave it. No magnetic monopoles, where magnetic field lines would terminate, are known to exist (see section on
Magnetic Fields and Lines).

3. Faraday’s law

A changing magnetic field induces an electromotive force (emf) and, hence, an electric field. The direction of the emf opposes
the change. Equation 9.2.161s Faraday’s law of induction and includes Lenz’s law. The electric field from a changing magnetic
field has field lines that form closed loops, without any beginning or end.

4. Ampeére-Maxwell law

Magnetic fields are generated by moving charges or by changing electric fields. This fourth of Maxwell’s equations, Equation
9.2.17, encompasses Ampeére’s law and adds another source of magnetic fields, namely changing electric fields.

Maxwell’s equations and the Lorentz force law together encompass all the laws of electricity and magnetism. The symmetry that
Maxwell introduced into his mathematical framework may not be immediately apparent. Faraday’s law describes how changing

magnetic fields produce electric fields. The displacement current introduced by Maxwell results instead from a changing electric
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field and accounts for a changing electric field producing a magnetic field. The equations for the effects of both changing electric
fields and changing magnetic fields differ in form only where the absence of magnetic monopoles leads to missing terms. This
symmetry between the effects of changing magnetic and electric fields is essential in explaining the nature of electromagnetic
waves.

Later application of Einstein’s theory of relativity to Maxwell’s complete and symmetric theory showed that electric and magnetic
forces are not separate but are different manifestations of the same thing—the electromagnetic force. The electromagnetic force and
weak nuclear force are similarly unified as the electroweak force. This unification of forces has been one motivation for attempts to
unify all of the four basic forces in nature—the gravitational, electrical, strong, and weak nuclear forces (see Particle Physics and
Cosmology).

The Mechanism of Electromagnetic Wave Propagation

To see how the symmetry introduced by Maxwell accounts for the existence of combined electric and magnetic waves that
propagate through space, imagine a time-varying magnetic field .é(] (t) produced by the high-frequency alternating current seen in
Figure 9.2.3. We represent BO (t) in the diagram by one of its field lines. From Faraday’s law, the changing magnetic field through
a surface induces a time-varying electric field E’g (t) at the boundary of that surface. The displacement current source for the

electric field, like the Faraday’s law source for the magnetic field, produces only closed loops of field lines, because of the
mathematical symmetry involved in the equations for the induced electric and induced magnetic fields. A field line representation
of E, (t) is shown. In turn, the changing electric field Ey () creates a magnetic field By (t) according to the modified Ampére’s
law. This changing field induces E; (£) which induces B, (t) and so on. We then have a self-continuing process that leads to the
creation of time-varying electric and magnetic fields in regions farther and farther away from O. This process may be visualized as
the propagation of an electromagnetic wave through space.
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Figure 9.2.3: How changing E and B fields propagate through space.

In the next section, we show in more precise mathematical terms how Maxwell’s equations lead to the prediction of
electromagnetic waves that can travel through space without a material medium, implying a speed of electromagnetic waves equal
to the speed of light.

Prior to Maxwell’s work, experiments had already indicated that light was a wave phenomenon, although the nature of the waves
was yet unknown. In 1801, Thomas Young (1773—-1829) showed that when a light beam was separated by two narrow slits and then
recombined, a pattern made up of bright and dark fringes was formed on a screen. Young explained this behavior by assuming that
light was composed of waves that added constructively at some points and destructively at others (see Interference). Subsequently,
Jean Foucault (1819-1868), with measurements of the speed of light in various media, and Augustin Fresnel (1788-1827), with
detailed experiments involving interference and diffraction of light, provided further conclusive evidence that light was a wave. So,
light was known to be a wave, and Maxwell had predicted the existence of electromagnetic waves that traveled at the speed of
light. The conclusion seemed inescapable: Light must be a form of electromagnetic radiation. But Maxwell’s theory showed that
other wavelengths and frequencies than those of light were possible for electromagnetic waves. He showed that electromagnetic
radiation with the same fundamental properties as visible light should exist at any frequency. It remained for others to test, and
confirm, this prediction.

? Exercise 9.2.1

When the emf across a capacitor is turned on and the capacitor is allowed to charge, when does the magnetic field induced by
the displacement current have the greatest magnitude?

Solution
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It is greatest immediately after the current is switched on. The displacement current and the magnetic field from it are proportional
to the rate of change of electric field between the plates, which is greatest when the plates first begin to charge.

Hertz’'s Observations

The German physicist Heinrich Hertz (1857-1894) was the first to generate and detect certain types of electromagnetic waves in
the laboratory. Starting in 1887, he performed a series of experiments that not only confirmed the existence of electromagnetic
waves but also verified that they travel at the speed of light.

Hertz used an alternating-current RLC (resistor-inductor-capacitor) circuit that resonates at a known frequency fy = d

1
———— an
21/ LC
connected it to a loop of wire, as shown in Figure 9.2.4. High voltages induced across the gap in the loop produced sparks that
were visible evidence of the current in the circuit and helped generate electromagnetic waves.

Across the laboratory, Hertz placed another loop attached to another RLC circuit, which could be tuned (as the dial on a radio) to
the same resonant frequency as the first and could thus be made to receive electromagnetic waves. This loop also had a gap across
which sparks were generated, giving solid evidence that electromagnetic waves had been received.
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Figure 9.2.4: The apparatus used by Hertz in 1887 to generate and detect electromagnetic waves.

Hertz also studied the reflection, refraction, and interference patterns of the electromagnetic waves he generated, confirming their
wave character. He was able to determine the wavelengths from the interference patterns, and knowing their frequencies, he could
calculate the propagation speed using the equation v= f\, where v is the speed of a wave, f is its frequency, and A is its
wavelength. Hertz was thus able to prove that electromagnetic waves travel at the speed of light. The SI unit for frequency, the
hertz (1 Hz = 1 cycle/ second), is named in his honor.

? Exercise 9.2.2

Could a purely electric field propagate as a wave through a vacuum without a magnetic field? Justify your answer.

Solution

No. The changing electric field according to the modified version of Ampére’s law would necessarily induce a changing magnetic
field.
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