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2.9.6: Products of Vectors

Explain the difference between the scalar product and the vector product of two vectors.
Determine the scalar product of two vectors.
Determine the vector product of two vectors.
Describe how the products of vectors are used in physics.

A vector can be multiplied by another vector but may not be divided by another vector. There are two kinds of products of vectors
used broadly in physics and engineering. One kind of multiplication is a scalar multiplication of two vectors. Taking a scalar
product of two vectors results in a number (a scalar), as its name indicates. Scalar products are used to define work and energy
relations. For example, the work that a force (a vector) performs on an object while causing its displacement (a vector) is defined as
a scalar product of the force vector with the displacement vector. A quite different kind of multiplication is a vector multiplication
of vectors. Taking a vector product of two vectors returns as a result a vector, as its name suggests. Vector products are used to
define other derived vector quantities. For example, in describing rotations, a vector quantity called torque is defined as a vector
product of an applied force (a vector) and its lever arm (a vector). It is important to distinguish between these two kinds of vector
multiplications because the scalar product is a scalar quantity and a vector product is a vector quantity.

2.9.6.1 The Scalar Product of Two Vectors (the Dot Product)
Scalar multiplication of two vectors yields a scalar product.

The scalar product  of two vectors  and  is a number defined by the equation

where  is the angle between the vectors (shown in Figure ). The scalar product is also called the dot product because
of the dot notation that indicates it.

In the definition of the dot product, the direction of angle  does not matter, and  can be measured from either of the two vectors
to the other because  =  = . The dot product is a negative number when 90° <  ≤ 180° and is a positive
number when 0° ≤  < 90°. Moreover, the dot product of two parallel vectors is  = AB cos 0° = AB, and the dot product of
two antiparallel vectors is  = AB cos 180° = −AB. The scalar product of two orthogonal vectors vanishes:  = AB cos
90° = 0. The scalar product of a vector with itself is the square of its magnitude:

Figure : The scalar product of two vectors. (a) The angle between the two vectors. (b) The orthogonal projection A  of
vector  onto the direction of vector . (c) The orthogonal projection B  of vector  onto the direction of vector .

For the vectors shown in Figure 2.3.6, find the scalar product .

Strategy

 Learning Objectives

 Definition: Scalar Product (Dot Product)

⋅A ⃗  B⃗  A ⃗  B⃗ 

⋅ = AB cosφ,A ⃗  B⃗  (2.9.6.1)

ϕ 2.9.6.1

φ φ

cosφ cos(−φ) cos(2π−φ) φ

ϕ ⋅A ⃗  B⃗ 

⋅A ⃗  B⃗  ⋅A ⃗  B⃗ 

≡ ⋅ = AA cos =A ⃗ 2 A ⃗  A ⃗  0o A2 (2.9.6.2)

2.9.6.1 ⊥

A ⃗  B⃗ 
⊥ B⃗  A ⃗ 

 Example : The Scalar Product2.9.6.1

⋅A ⃗  F ⃗ 
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From Figure 2.3.6, the magnitudes of vectors  and  are A = 10.0 and F = 20.0. Angle , between them, is the difference: 
 = 110° − 35° = 75°. Substituting these values into Equation  gives the scalar product.

Solution
A straightforward calculation gives us

For the vectors given in Figure 2.3.6, find the scalar products  and .

In the Cartesian coordinate system, scalar products of the unit vector of an axis with other unit vectors of axes always vanish
because these unit vectors are orthogonal:

In these equations, we use the fact that the magnitudes of all unit vectors are one:  = 1. For unit vectors of the axes,
Equation  gives the following identities:

The scalar product  can also be interpreted as either the product of B with the projection A  of vector  onto the direction of
vector  (Figure (b)) or the product of A with the projection B  of vector  onto the direction of vector  (Figure 

(c)):

For example, in the rectangular coordinate system in a plane, the scalar x-component of a vector is its dot product with the unit
vector , and the scalar y-component of a vector is its dot product with the unit vector :

Scalar multiplication of vectors is communtative,

and obeys the distributive law:

We can use the commutative and distributive laws to derive various relations for vectors, such as expressing the dot product of two
vectors in terms of their scalar components.

For vector  in a rectangular coordinate system, use Equation  through Equation  to
show that  and .

When the vectors in Equation  are given in their vector component forms,

A ⃗  B⃗  θ

θ = φ−α 2.9.6.1

⋅ = AF cosθ = (10.0)(20.0) cos = 51.76.A ⃗  F ⃗  75o (2.9.6.3)

 Exercise 2.11

⋅A ⃗  B⃗  ⋅B⃗  C ⃗ 

⋅ = | || | cos = (1)(1)(0) = 0,î ĵ î ĵ 90o (2.9.6.4)

⋅ = | || | cos = (1)(1)(0) = 0,î k̂ î k̂ 90o (2.9.6.5)

⋅ = | || | cos = (1)(1)(0) = 0.k̂ ĵ k̂ ĵ 90o (2.9.6.6)

| | = | | = | |î ĵ k̂

2.9.6.2

⋅ = = ⋅ = = ⋅ = 1.î î i2 ĵ ĵ j2 k̂ k̂ (2.9.6.7)

⋅A ⃗  B⃗ 
∥ A ⃗ 

B⃗  2.9.6.1 ∥ B⃗  A ⃗ 

2.9.6.1

⋅A ⃗  B⃗ = AB cosφ

= B(A cosφ) = BA∥

= A(B cosφ) = A .B∥

î ĵ

{
⋅ = | || | cos = A cos = A cos =A ⃗  î A ⃗  î θA θA θA Ax

⋅ = | || | cos( − ) = A sin =A ⃗  ĵ A ⃗  ĵ 90o θA θA Ay

(2.9.6.8)

⋅ = ⋅ ,A ⃗  B⃗  B⃗  A ⃗  (2.9.6.9)

⋅ ( + ) = ⋅ + ⋅ .A ⃗  B⃗  C ⃗  A ⃗  B⃗  A ⃗  C ⃗  (2.9.6.10)

 Exercise 2.12

= + +A ⃗  Ax î Ay ĵ Az k̂ 2.9.6.4 2.9.6.10

⋅ = ⋅ =A ⃗  î AxA ⃗  ĵ Ay ⋅ =A ⃗  k̂ Az

2.9.6.1
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we can compute their scalar product as follows:

Since scalar products of two different unit vectors of axes give zero, and scalar products of unit vectors with themselves give one
(see Equation  and Equation ), there are only three nonzero terms in this expression. Thus, the scalar product
simplifies to

We can use Equation  for the scalar product in terms of scalar components of vectors to find the angle between two
vectors. When we divide Equation  by AB, we obtain the equation for cos , into which we substitute Equation :

Angle  between vectors  and  is obtained by taking the inverse cosine of the expression in Equation .

Three dogs are pulling on a stick in different directions, as shown in Figure . The first dog pulls with force  = (10.0 
− 20.4  + 2.0 )N, the second dog pulls with force  = (−15.0  − 6.2 )N , and the third dog pulls with force  = (5.0  +
12.5 )N . What is the angle between forces  and ?

Figure : Three dogs are playing with a stick.

Strategy

The components of force vector  are F  = 10.0 N, F = −20.4 N, and F  = 2.0 N, whereas those of force vector  are F
= −15.0 N, F  = 0.0 N, and F  = −6.2 N. Computing the scalar product of these vectors and their magnitudes, and substituting
into Equation  gives the angle of interest.

Solution
The magnitudes of forces  and  are

and

Substituting the scalar components into Equation  yields the scalar product

= + + and = + + ,A ⃗  Ax î Ay ĵ Az k̂ B⃗  Bx î By ĵ Bz k̂ (2.9.6.11)

⋅A ⃗  B⃗  = ( + + ) ⋅ ( + + )Ax î Ay ĵ Az k̂ Bx î By ĵ Bz k̂

= ⋅ + ⋅ + ⋅AxBx î î AxBy î ĵ AxBz î k̂

+ ⋅ + ⋅ + ⋅AyBx ĵ î AyBy ĵ ĵ AyBz ĵ k̂

+ ⋅ + ⋅ + ⋅ .AzBx k̂ î AzBy k̂ ĵ AzBz k̂ k̂

2.9.6.4 2.9.6.7

⋅ = + + .A ⃗  B⃗  AxBx AyBy AzBz (2.9.6.12)

2.9.6.12
2.9.6.1 φ 2.9.6.12

cosφ = = .
⋅A ⃗  B⃗ 

AB

+ +AxBx AyBy AzBz

AB
(2.9.6.13)

φ A ⃗  B⃗  2.9.6.13

 Example 2.9.6.2

2.9.6.2 F ⃗ 
1 î

ĵ k̂ F ⃗ 
2 î k̂ F ⃗ 

3 î

ĵ F ⃗ 
1 F ⃗ 

2

2.9.6.2

F ⃗ 
1 1x 1y 1z F ⃗ 

2 2x

2y 2z
2.9.6.13

F ⃗ 
1 F ⃗ 

2

= = N = 22.8 NF1 + +F 2
1x

F 2
1y

F 2
1z

− −−−−−−−−−−−
√ + +10.02 20.42 2.02− −−−−−−−−−−−−−−−

√ (2.9.6.14)

= = N = 16.2 N .F2 + +F 2
2x F 2

2y F 2
2z

− −−−−−−−−−−−
√ +15.02 6.22− −−−−−−−−−

√ (2.9.6.15)

2.9.6.12
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Finally, substituting everything into Equation  gives the angle

Significance

Notice that when vectors are given in terms of the unit vectors of axes, we can find the angle between them without knowing
the specifics about the geographic directions the unit vectors represent. Here, for example, the +x-direction might be to the east
and the +y-direction might be to the north. But, the angle between the forces in the problem is the same if the +x-direction is to
the west and the +y-direction is to the south.

Find the angle between forces  and  in Example .

When force  pulls on an object and when it causes its displacement , we say the force performs work. The amount of work
the force does is the scalar product . If the stick in Example  moves momentarily and gets displaced by vector  =
(−7.9  − 4.2 )cm, how much work is done by the third dog in Example ?

Strategy

We compute the scalar product of displacement vector  with force vector  = (5.0  + 12.5 )N, which is the pull from the
third dog. Let’s use W  to denote the work done by force  on displacement .

Solution
Calculating the work is a straightforward application of the dot product:

Significance

The SI unit of work is called the joule (J) , where 1 J = 1 N · m. The unit cm · N can be written as 10 m · N = 10  J, so the
answer can be expressed as W  = −0.9875 J ≈ −1.0 J.

How much work is done by the first dog and by the second dog in Example  on the displacement in Example ?

2.9.6.2 The Vector Products of Two Vectors (the Cross Product)
Vector multiplication of two vectors yields a vector product.

The vector product of two vectors  and  is denoted by  ×  and is often referred to as a cross product. The vector product
is a vector that has its direction perpendicular to both vectors  and . In other words, vector  ×  is perpendicular to the
plane that contains vectors  and , as shown in Figure . The magnitude of the vector product is defined as

⋅F ⃗ 
1 F ⃗ 

2 = + +F1xF2x F1yF2y F1zF2z

= (10.0 N)(−15.0 N) +(−20.4 N)(0.0 N) +(2.0 N)(−6.2 N)

= −162.4 .N 2

2.9.6.13

cosφ = = = −0.439 ⇒ φ = (−0.439) = .
⋅F ⃗ 

1 F ⃗ 
2

F1F2

−162.4 N 2

(22.8 N)(16.2 N)
cos−1 116.0o (2.9.6.16)

 Exercise 2.13

F ⃗ 
1 F ⃗ 

3 2.9.6.2

 Example : The Work of a Force2.9.6.3

F ⃗  D⃗ 

⋅F ⃗  D⃗  2.9.6.2 D⃗ 

ĵ k̂ 2.9.6.2

D⃗  F ⃗ 
3 î ĵ

3 F ⃗ 
3 D⃗ 

W3 = ⋅ = + +F ⃗ 
3 D⃗  F3xDx F3yDy F3zDz

= (5.0 N)(0.0 cm) +(12.5 N)(−7.9 cm) +(0.0 N)(−4.2 cm)

= −98.7 N ⋅ cm.

−2 −2

3

 Exercise 2.14

2.9.6.2 2.9.6.3

 Vector Product (Cross Product)

A ⃗  B⃗  A ⃗  B⃗ 

A ⃗  B⃗  A ⃗  B⃗ 

A ⃗  B⃗  2.9.6.1
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where angle , between the two vectors, is measured from vector  (first vector in the product) to vector  (second vector in
the product), as indicated in Figure , and is between 0° and 180°.

According to Equation , the vector product vanishes for pairs of vectors that are either parallel (  = 0°) or antiparallel (  =
180°) because sin 0° = sin 180° = 0.

Figure : The vector product of two vectors is drawn in three-dimensional space. (a) The vector product  is a vector
perpendicular to the plane that contains vectors  and . Small squares drawn in perspective mark right angles between  and ,
and between  and  so that if  and  lie on the floor, vector  points vertically upward to the ceiling. (b) The vector product 

 is a vector antiparallel to vector .

On the line perpendicular to the plane that contains vectors  and  there are two alternative directions—either up or down, as
shown in Figure —and the direction of the vector product may be either one of them. In the standard right-handed
orientation, where the angle between vectors is measured counterclockwise from the first vector, vector  points upward, as
seen in Figure (a). If we reverse the order of multiplication, so that now  comes first in the product, then vector 
must point downward, as seen in Figure (b). This means that vectors  and  are antiparallel to each other and
that vector multiplication is not commutative but anticommutative. The anticommutative property means the vector product
reverses the sign when the order of multiplication is reversed:

The corkscrew right-hand rule is a common mnemonic used to determine the direction of the vector product. As shown in Figure 
, a corkscrew is placed in a direction perpendicular to the plane that contains vectors  and , and its handle is turned in the

direction from the first to the second vector in the product. The direction of the cross product is given by the progression of the
corkscrew.

Figure : The corkscrew right-hand rule can be used to determine the direction of the cross product . Place a
corkscrew in the direction perpendicular to the plane that contains vectors  and , and turn it in the direction from the first to the
second vector in the product. The direction of the cross product is given by the progression of the corkscrew. (a) Upward
movement means the cross-product vector points up. (b) Downward movement means the cross-product vector points downward.

| × | = AB sinφ,A ⃗  B⃗  (2.9.6.17)

φ A ⃗  B⃗ 

2.9.6.1

2.9.6.17 φ φ

2.9.6.1 ×A ⃗  B⃗ 

A ⃗  B⃗  A ⃗  C ⃗ 

B⃗  C ⃗  A ⃗  B⃗  B⃗ 

×B⃗  A ⃗  ×A ⃗  B⃗ 

A ⃗  B⃗ 

2.9.6.1

×A ⃗  B⃗ 

2.9.6.1 B⃗  ×B⃗  A ⃗ 

2.9.6.1 ×A ⃗  B⃗  ×B⃗  A ⃗ 

× = − × .A ⃗  B⃗  B⃗  A ⃗  (2.9.6.18)

2.9.6.2 A ⃗  B⃗ 

2.9.6.2 ×A ⃗  B⃗ 

A ⃗  B⃗ 
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The mechanical advantage that a familiar tool called a wrench provides (Figure ) depends on magnitude F of the
applied force, on its direction with respect to the wrench handle, and on how far from the nut this force is applied. The distance
R from the nut to the point where force vector  is attached is called the lever arm and is represented by the radial vector .
The physical vector quantity that makes the nut turn is called torque (denoted by ), and it is the vector product of the lever
arm with the force: .

To loosen a rusty nut, a 20.00-N force is applied to the wrench handle at angle  = 40° and at a distance of 0.25 m from the
nut, as shown in Figure (a). Find the magnitude and direction of the torque applied to the nut. What would the
magnitude and direction of the torque be if the force were applied at angle  = 45°, as shown in Figure (b)? For what
value of angle  does the torque have the largest magnitude?

Figure : A wrench provides grip and mechanical advantage in applying torque to turn a nut. (a) Turn counterclockwise
to loosen the nut. (b) Turn clockwise to tighten the nut.

Strategy

We adopt the frame of reference shown in Figure , where vectors  and  lie in the xy-plane and the origin is at the
position of the nut. The radial direction along vector  (pointing away from the origin) is the reference direction for measuring
the angle  because  is the first vector in the vector product  = . Vector  must lie along the z-axis because this is the
axis that is perpendicular to the xy-plane, where both  and  lie. To compute the magnitude , we use Equation . To
find the direction of , we use the corkscrew right-hand rule (Figure ).

Solution
For the situation in (a), the corkscrew rule gives the direction of  in the positive direction of the z-axis. Physically, it
means the torque vector  points out of the page, perpendicular to the wrench handle. We identify F = 20.00 N and R = 0.25 m,
and compute the magnitude using Equation :

For the situation in (b), the corkscrew rule gives the direction of  in the negative direction of the z-axis. Physically, it
means the vector  points into the page, perpendicular to the wrench handle. The magnitude of this torque is

The torque has the largest value when sin  = 1, which happens when  = 90°. Physically, it means the wrench is most
effective—giving us the best mechanical advantage—when we apply the force perpendicular to the wrench handle. For the
situation in this example, this best-torque value is  = RF = (0.25 m)(20.00 N) = 5.00 N • m.

Significance

When solving mechanics problems, we often do not need to use the corkscrew rule at all, as we’ll see now in the following
equivalent solution. Notice that once we have identified that vector  lies along the z-axis, we can write this vector in
terms of the unit vector  of the z-axis:

 Example : The Torque of a Force2.9.6.1

2.9.6.3

F ⃗  R⃗ 

τ ⃗ 

= ×τ ⃗  R⃗  F ⃗ 

φ

2.9.6.3
φ 2.9.6.3

φ

2.9.6.3

2.9.6.3 R⃗  F ⃗ 

R⃗ 

φ R⃗  τ ⃗  ×R⃗  F ⃗  τ ⃗ 

R⃗  F ⃗  τ 2.9.6.17
τ ⃗  2.9.6.2

×R⃗  F ⃗ 

τ ⃗ 

2.9.6.17

τ = | × | = RF sinφ = (0.25 m)(20.00 N) sin = 3.21 N ⋅m.R⃗  F ⃗  40o (2.9.6.19)

×R⃗  F ⃗ 

τ ⃗ 

τ = | × | = RF sinφ = (0.25 m)(20.00 N) sin = 3.53 N ⋅m.R⃗  F ⃗  45o (2.9.6.20)

φ φ

τbest

×R⃗  F ⃗ 

k̂
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In this equation, the number that multiplies  is the scalar z-component of the vector . In the computation of this
component, care must be taken that the angle  is measured counterclockwise from  (first vector) to  (second vector)
Following this principle for the angles, we obtain RF sin (+ 40°) = + 3.2 N • m for the situation in (a), and we obtain RF sin
(−45°) = −3.5 N • m for the situation in (b). In the latter case, the angle is negative because the graph in Figure 
indicates the angle is measured clockwise; but, the same result is obtained when this angle is measured counterclockwise
because +(360° − 45°) = + 315° and sin (+ 315°) = sin (−45°). In this way, we obtain the solution without reference to the
corkscrew rule. For the situation in (a), the solution is  = + 3.2 N • m ; for the situation in (b), the solution is  =
−3.5 N • m .

For the vectors given in Figure 2.3.6, find the vector products  and .

Similar to the dot product (Equation 2.8.10), the cross product has the following distributive property:

The distributive property is applied frequently when vectors are expressed in their component forms, in terms of unit vectors of
Cartesian axes. When we apply the definition of the cross product, Equation , to unit vectors , , and  that define the
positive x-, y-, and z-directions in space, we find that

All other cross products of these three unit vectors must be vectors of unit magnitudes because , , and  are orthogonal. For
example, for the pair  and , the magnitude is | | = ij sin 90° = (1)(1)(1) = 1. The direction of the vector product  must
be orthogonal to the xy-plane, which means it must be along the z-axis. The only unit vectors along the z-axis are −  or + . By the
corkscrew rule, the direction of vector  must be parallel to the positive z-axis. Therefore, the result of the multiplication 
is identical to + . We can repeat similar reasoning for the remaining pairs of unit vectors. The results of these multiplications are

Notice that in Equation , the three unit vectors , , and  appear in the cyclic order shown in a diagram in Figure 
(a). The cyclic order means that in the product formula,  follows  and comes before , or  follows  and comes before ,

or  follows  and comes before . The cross product of two different unit vectors is always a third unit vector. When two unit
vectors in the cross product appear in the cyclic order, the result of such a multiplication is the remaining unit vector, as illustrated
in Figure (b). When unit vectors in the cross product appear in a different order, the result is a unit vector that is antiparallel
to the remaining unit vector (i.e., the result is with the minus sign, as shown by the examples in Figure (c) and Figure 

(d). In practice, when the task is to find cross products of vectors that are given in vector component form, this rule for the
cross-multiplication of unit vectors is very useful.

× = RF sinφ .R⃗  F ⃗  k̂ (2.9.6.21)

k̂ ×R⃗  F ⃗ 

φ R⃗  F ⃗ 

2.9.6.3

×R⃗  F ⃗  k̂ ×R⃗  F ⃗ 

k̂

 Exercise 2.15

×A ⃗  B⃗  ×C ⃗  F ⃗ 

×( + ) = × + × .A ⃗  B⃗  C ⃗  A ⃗  B⃗  A ⃗  C ⃗  (2.9.6.22)

2.9.6.17 î ĵ k̂

× = × = × = 0.î î ĵ ĵ k̂ k̂ (2.9.6.23)

î ĵ k̂

î ĵ ×î ĵ ×î ĵ

k̂ k̂

×î ĵ ×î ĵ

k̂

⎧

⎩
⎨
⎪

⎪

× = + ,î ĵ k̂

× = + ,ĵ k̂ î

× = + .k̂ î ĵ

(2.9.6.24)

2.9.6.24 î ĵ k̂

2.9.6.4 î k̂ ĵ k̂ ĵ î

ĵ î k̂

2.9.6.4
2.9.6.4

2.9.6.4
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Figure : (a) The diagram of the cyclic order of the unit vectors of the axes. (b) The only cross products where the unit
vectors appear in the cyclic order. These products have the positive sign. (c, d) Two examples of cross products where the unit
vectors do not appear in the cyclic order. These products have the negative sign.

Suppose we want to find the cross product  for vectors = A + A  + A  and  = B  + B  + B . We can use the
distributive property (Equation ), the anticommutative property (Equation ), and the results in Equation 
and Equation  for unit vectors to perform the following algebra:

When performing algebraic operations involving the cross product, be very careful about keeping the correct order of
multiplication because the cross product is anticommutative. The last two steps that we still have to do to complete our task are,
first, grouping the terms that contain a common unit vector and, second, factoring. In this way we obtain the following very useful
expression for the computation of the cross product:

In this expression, the scalar components of the cross-product vector are

When finding the cross product, in practice, we can use either Equation  or Equation , depending on which one of
them seems to be less complex computationally. They both lead to the same final result. One way to make sure if the final result is
correct is to use them both.

When moving in a magnetic field, some particles may experience a magnetic force. Without going into details—a detailed
study of magnetic phenomena comes in later chapters—let’s acknowledge that the magnetic field  is a vector, the magnetic
force  is a vector, and the velocity  of the particle is a vector. The magnetic force vector is proportional to the vector product
of the velocity vector with the magnetic field vector, which we express as  = . In this equation, a constant  takes care
of the consistency in physical units, so we can omit physical units on vectors  and . In this example, let’s assume the

2.9.6.4

×A ⃗  B⃗  A ⃗ 
x î y ĵ z k̂ B⃗ 

x î y ĵ z k̂

2.9.6.22 2.9.6.18 2.9.6.23
2.9.6.24

×A ⃗  B⃗  = ( + + ) ×( + + )Ax î Ay ĵ Az k̂ Bx î By ĵ Bz k̂

= ×( + + ) + ×( + + ) + ×( + + )Ax î Bx î By ĵ Bz k̂ Ay ĵ Bx î By ĵ Bz k̂ Az k̂ Bx î By ĵ Bz k̂

= × + × + ×AxBx î î AxBy î ĵ AzBz î k̂

+ × + × + ×AyBx ĵ î AyBy ĵ ĵ AyBz ĵ k̂

+ × + × + ×AzBx k̂ î AzBy k̂ ĵ AzBz k̂ k̂

= (0) + (+ ) + (− )AxBx AxBy k̂ AxBz ĵ

+ (− ) + (0) + (+ )AyBx k̂ AyBy AyBz î

+ (+ ) + (− ) + (0).AzBx ĵ AzBy î AzBz

= × = ( − ) +( − ) +( − ) .C ⃗  A ⃗  B⃗  AyBz AzBy î AzBx AxBz ĵ AxBy AyBx k̂ (2.9.6.25)

⎧

⎩
⎨
⎪

⎪

= − ,Cx AyBz AzBy

= − ,Cy AzBx AxBz

= − .Cz AxBy AyBx

(2.9.6.26)

2.9.6.17 2.9.6.25

 Example : A Particle in a Magnetic Field2.9.6.2

B⃗ 

F ⃗  u⃗ 

F ⃗  ζ ×u⃗  B⃗  ζ

u⃗  B⃗ 
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constant  is positive. A particle moving in space with velocity vector  = −5.0  − 2.0 + 3.5  enters a region with a
magnetic field and experiences a magnetic force. Find the magnetic force  on this particle at the entry point to the region
where the magnetic field vector is (a)  = 7.2  −  − 2.4  and (b)  = 4.5 . In each case, find magnitude F of the magnetic
force and angle  the force vector  makes with the given magnetic field vector .

Strategy

First, we want to find the vector product , because then we can determine the magnetic force using  = .

Magnitude F can be found either by using components, F = , or by computing the magnitude | |

directly using Equation . In the latter approach, we would have to find the angle between vectors  and . When we
have , the general method for finding the direction angle  involves the computation of the scalar product  and
substitution into Equation 2.8.13. To compute the vector product we can either use Equation  or compute the product
directly, whichever way is simpler.

Solution
The components of the velocity vector are u  = −5.0, u  = −2.0, and u  = 3.5. (a) The components of the magnetic field vector
are B  = 7.2, B  = −1.0, and B  = −2.4. Substituting them into Equation  gives the scalar components of vector 

:

Thus, the magnetic force is  = (8.3  + 13.2  + 19.4 ) and its magnitude is

To compute angle , we may need to find the magnitude of the magnetic field vector

and the scalar product :

Now, substituting into Equation 2.8.13 gives angle :

Hence, the magnetic force vector is perpendicular to the magnetic field vector. (We could have saved some time if we had
computed the scalar product earlier.)

(b) Because vector  = 4.5  has only one component, we can perform the algebra quickly and find the vector product
directly:

The magnitude of the magnetic force is

Because the scalar product is

ζ u⃗  î ĵ k̂

F ⃗ 

B⃗  î ĵ k̂ B⃗  k̂

θ F ⃗  B⃗ 

×u⃗  B⃗  F ⃗  ζ ×u⃗  B⃗ 

+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ ×u⃗  B⃗ 

2.9.6.17 u⃗  B⃗ 

F ⃗  θ ⋅F ⃗  B⃗ 

2.9.6.25

x y z

x y z 2.9.6.26

= ζ ×F ⃗  u⃗  B⃗ 

⎧

⎩
⎨
⎪

⎪

= ζ( − ) = ζ[(−2.0)(−2.4) −(3.5)(−1.0)] = 8.3ζFx uyBz uzBy

= ζ( − ) = ζ[(3.5)(7.2) −(−5.0)(−2.4)] = 13.2ζFy uzBx uxBz

= ζ( − ) = ζ[(−5.0)(−1.0) −(−2.0)(7.2)] = 19.4ζFz uxBy uyBx

(2.9.6.27)

F ⃗  ζ î ĵ k̂

F = = ζ = 24.9ζ.+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ (8.3 +(13.2 +(19.4)2 )2 )2

− −−−−−−−−−−−−−−−−−−−
√ (2.9.6.28)

θ

B = = = 7.6,+ +B2
x B2

y B2
z

− −−−−−−−−−−
√ (7.2 +(−1.0 +(−2.4)2 )2 )2

− −−−−−−−−−−−−−−−−−−−−
√ (2.9.6.29)

⋅F ⃗  B⃗ 

⋅ = + + = (8.3ζ)(7.2) +(13.2ζ)(−1.0) +(19.4ζ)(−2.4) =.F ⃗  B⃗  FxBx FyBy FzBz (2.9.6.30)

θ

cosθ = = = 0 ⇒ θ = .
⋅F ⃗  B⃗ 

FB

0

(18.2ζ)(7.6)
90o (2.9.6.31)

B⃗  k̂

F ⃗  = ζ × = ζ(−5.0 −2.0 +3.5 ) ×(4.5 )u⃗  B⃗  î ĵ k̂ k̂

= ζ[(−5.0)(4.5) × +(−2.0)(4.5) × +(3.5)(4.5) × ]î k̂ ĵ k̂ k̂ k̂

= ζ[−22.5(− ) −9.0(+ ) +0] = ζ(−9.0 +22.5 ).ĵ î î ĵ

F = = ζ = 24.2ζ.+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ (−9.0 +(22.5 +(0.0)2 )2 )2

− −−−−−−−−−−−−−−−−−−−
√ (2.9.6.32)

⋅ = + + = (−9.0ζ)(90) +(22.5ζ)(0) +(0)(4.5) = 0,F ⃗  B⃗  FxBx FyBy FzBz (2.9.6.33)
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the magnetic force vector  is perpendicular to the magnetic field vector .

Significance

Even without actually computing the scalar product, we can predict that the magnetic force vector must always be
perpendicular to the magnetic field vector because of the way this vector is constructed. Namely, the magnetic force vector is
the vector product  =  and, by the definition of the vector product (see Figure ), vector  must be
perpendicular to both vectors  and .

Given two vectors  and  = 3  − , find (a) , (b) | |, (c) the angle between  and , and (d) the
angle between  and vector .

In conclusion to this section, we want to stress that “dot product” and “cross product” are entirely different mathematical objects
that have different meanings. The dot product is a scalar; the cross product is a vector. Later chapters use the terms dot product
and scalar product interchangeably. Similarly, the terms cross product and vector product are used interchangeably.
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F ⃗  B⃗ 

F ⃗  ζ ×u⃗  B⃗  2.9.6.1 F ⃗ 

u⃗  B⃗ 

 Exercise 2.16

= − +A ⃗  î ĵ B⃗  î ĵ ×A ⃗  B⃗  ×(A ⃗  B⃗  A ⃗  B⃗ 

×A ⃗  B⃗  = +C ⃗  î k̂
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