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2.8.1: Basic Functions

Calculate the slope of a linear function and interpret its meaning.
Recognize the degree of a polynomial.
Find the roots of a quadratic polynomial.
Describe the graphs of basic odd and even polynomial functions.
Identify a rational function.
Describe the graphs of power and root functions.
Explain the difference between algebraic and transcendental functions.
Graph a piecewise-defined function.
Sketch the graph of a function that has been shifted, stretched, or reflected from its initial graph position.

We have studied the general characteristics of functions, so now let’s examine some specific classes of functions. We begin by
reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By
combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental
functions we examine later in this chapter. We finish the section with examples of piecewise-defined functions and take a look at
how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.

Linear Functions and Slope
The easiest type of function to consider is a linear function. Linear functions have the form , where  and  are
constants. In Figure , we see examples of linear functions when a is positive, negative, and zero. Note that if , the
graph of the line rises as  increases. In other words,  is increasing on . If , the graph of the line
falls as  increases. In this case,  is decreasing on . If , the line is horizontal.

Figure : These linear functions are increasing or decreasing on  and one function is a horizontal line.

As suggested by Figure , the graph of any linear function is a line. One of the distinguishing features of a line is its slope.
The slope is the change in  for each unit change in . The slope measures both the steepness and the direction of a line. If the
slope is positive, the line points upward when moving from left to right. If the slope is negative, the line points downward when
moving from left to right. If the slope is zero, the line is horizontal. To calculate the slope of a line, we need to determine the ratio
of the change in  versus the change in . To do so, we choose any two points  and  on the line and calculate 

. In Figure , we see this ratio is independent of the points chosen.

 Learning Objectives

f(x) = ax+b a b

2.8.1.1 a > 0
x f(x) = ax+b (−∞, ∞) a < 0

x f(x) = ax+b (−∞, ∞) a = 0

2.8.1.1 (∞, ∞)

2.8.1.1
y x

y x ( , )x1 y1 ( , )x2 y2
−y2 y1

−x2 x1
2.8.1.2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/83876?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.08%3A_Functions/2.8.01%3A_Basic_Functions


2.8.1.2 https://phys.libretexts.org/@go/page/83876

Figure : For any linear function, the slope  is independent of the choice of points  and 
on the line.

Consider line  passing through points  and . Let  and  denote the changes in 
and ,respectively. The slope of the line is

We now examine the relationship between slope and the formula for a linear function. Consider the linear function given by the
formula . As discussed earlier, we know the graph of a linear function is given by a line. We can use our definition
of slope to calculate the slope of this line. As shown, we can determine the slope by calculating  for any
points  and  on the line. Evaluating the function  at , we see that  is a point on this line. Evaluating this
function at , we see that  is also a point on this line. Therefore, the slope of this line is

We have shown that the coefficient  is the slope of the line. We can conclude that the formula  describes a line with
slope . Furthermore, because this line intersects the -axis at the point , we see that the -intercept for this linear function is 

. We conclude that the formula  tells us the slope, , and the -intercept, , for this line. Since we often
use the symbol  to denote the slope of a line, we can write

to denote the slope-intercept form of a linear function.

Sometimes it is convenient to express a linear function in different ways. For example, suppose the graph of a linear function
passes through the point  and the slope of the line is . Since any other point  on the graph of  must satisfy the
equation

this linear function can be expressed by writing
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 Definition: Slope of a Linear Function

L ( , )x1 y1 ( , )x2 y2 Δy = −y2 y1 Δx = −x2 x1 y

x

m = =
−y2 y1

−x2 x1

Δy

Δx

f(x) = ax+b

( − )/( − )y2 y1 x2 x1

( , )x1 y1 ( , )x2 y2 f x = 0 (0, b)
x = 1 (1, a+b)

= a.
(a+b) −b

1 −0

a f(x) = ax+b

a y (0, b) y

(0, b) f(x) = ax+b a y (0, b)
m

f(x) = mx+b
  
slope-intercept form

( , )x1 y1 m (x, f(x)) f

m = ,
f(x) −y1

x−x1

.f(x) − = m(x− )y1 x1
  

point-slope equation

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/83876?pdf


2.8.1.3 https://phys.libretexts.org/@go/page/83876

We call this equation the point-slope equation for that linear function.

Since every nonvertical line is the graph of a linear function, the points on a nonvertical line can be described using the slope-
intercept or point-slope equations. However, a vertical line does not represent the graph of a function and cannot be expressed in
either of these forms. Instead, a vertical line is described by the equation  for some constant . Since neither the slope-
intercept form nor the point-slope form allows for vertical lines, we use the notation

where  are both not zero, to denote the standard form of a line.

Consider a line passing through the point  with slope . The equation

is the point-slope equation for that line.

Consider a line with slope  and -intercept  The equation

is an equation for that line in slope-intercept form.

The standard form of a line is given by the equation

where  and  are both not zero. This form is more general because it allows for a vertical line, .

Consider the line passing through the points  and , as shown in Figure .

Figure : Finding the equation of a linear function with a graph that is a line between two given points.

1. Find the slope of the line.
2. Find an equation for this linear function in point-slope form.
3. Find an equation for this linear function in slope-intercept form.

Solution

1. The slope of the line is

x = k k

,ax+by = c
  
standard form

a, b

 Definition: Point-Slope Equation, and the Slope-Intercept Form and Standard Form of the Equation of a Line

( , )x1 y1 m

y− = m(x− )y1 x1

m y (0, b).

y = mx+b

ax+by = c,

a b x = k

 Example : Finding the Slope and Equations of Lines2.8.1.1
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2. To find an equation for the linear function in point-slope form, use the slope  and choose any point on the line. If
we choose the point , we get the equation

3. To find an equation for the linear function in slope-intercept form, solve the equation in part b. for . When we do this,
we get the equation

Consider the line passing through points  and .

a. Find the slope of the line.
b. Find an equation of that line in point-slope form.
c. Find an equation of that line in slope-intercept form.

Hint

The slope .

Answer a

.

Answer b

The point-slope form is .

Answer c

The slope-intercept form is .

Jessica leaves her house at 5:50 a.m. and goes for a 9-mile run. She returns to her house at 7:08 a.m. Answer the following
questions, assuming Jessica runs at a constant pace.

a. Describe the distance  (in miles) Jessica runs as a linear function of her run time  (in minutes).
b. Sketch a graph of .
c. Interpret the meaning of the slope.

Solution

a. At time , Jessica is at her house, so . At time  minutes, Jessica has finished running  mi, so 
. The slope of the linear function is

The -intercept is , so the equation for this linear function is

b. To graph , use the fact that the graph passes through the origin and has slope 

m = −3/5
(11, −4)

f(x) +4 = − (x−11).
3
5

f(x)

f(x) = − x+ .
3
5

13
5

 Exercise 2.8.1.1

(−3, 2) (1, 4)

m = Δy/Δx

m = 1/2

y−4 = (x−1)
1
2

y = x+
1
2

7
2

 Example :2.8.1.2

D t

D

t = 0 D(0) = 0 t = 78 9
D(78) = 9

m = = .
9 −0

78 −0
3

26

y (0, 0)

D(t) = t.
3

26

D m = 3/26.
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c. The slope  describes the distance (in miles) Jessica runs per minute, or her average velocity.

Polynomials
A linear function is a special type of a more general class of functions: polynomials. A polynomial function is any function that can
be written in the form

for some integer  and constants , where . In the case when , we allow for ; if ,
the function  is called the zero function. The value  is called the degree of the polynomial; the constant  is called the
leading coefficient. A linear function of the form  is a polynomial of degree 1 if  and degree 0 if . A
polynomial of degree 0 is also called a constant function. A polynomial function of degree 2 is called a quadratic function. In
particular, a quadratic function has the form

where . A polynomial function of degree  is called a cubic function.

Power Functions
Some polynomial functions are power functions. A power function is any function of the form , where  and  are any
real numbers. The exponent in a power function can be any real number, but here we consider the case when the exponent is a
positive integer. (We consider other cases later.) If the exponent is a positive integer, then  is a polynomial. If  is even,
then  is an even function because  if  is even. If  is odd, then  is an odd
function because  if  is odd (Figure ).

m = 3/26 ≈ 0.115

f(x) = + +… + x+anx
n an−1x

n−1 a1 a0

n ≥ 0 , , … ,an an−1 a0 ≠ 0an n = 0 = 0a0 = 0a0

f(x) = 0 n an
f(x) = mx+b m ≠ 0 m = 0

f(x) = a +bx+c,x2

a ≠ 0 3

f(x) = axb a b

f(x) = axn n

f(x) = axn f(−x) = a(−x = a)n xn n n f(x) = axn

f(−x) = a(−x = −a)n xn n 2.8.1.4
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Figure : (a) For any even integer ,  is an even function. (b) For any odd integer ,  is an odd
function.

Behavior at Infinity
To determine the behavior of a function  as the inputs approach infinity, we look at the values  as the inputs, , become
larger. For some functions, the values of  approach a finite number. For example, for the function , the values 

 become closer and closer to zero for all values of  as they get larger and larger. For this function, we say “  approaches
two as  goes to infinity,” and we write  as . The line  is a horizontal asymptote for the function 

 because the graph of the function gets closer to the line as  gets larger.

For other functions, the values  may not approach a finite number but instead may become larger for all values of  as they get
larger. In that case, we say “  approaches infinity as  approaches infinity,” and we write  as . For example,
for the function , the outputs  become larger as the inputs  get larger. We can conclude that the function 

 approaches infinity as  approaches infinity, and we write  as . The behavior as  and the
meaning of  as  or  can be defined similarly. We can describe what happens to the values of  as 

 and as  as the end behavior of the function.

To understand the end behavior for polynomial functions, we can focus on quadratic and cubic functions. The behavior for higher-
degree polynomials can be analyzed similarly. Consider a quadratic function . If , the values 

 as . If , the values  as . Since the graph of a quadratic function is a parabola, the
parabola opens upward if .; the parabola opens downward if  (Figure ).

Now consider a cubic function . If , then  as  and  as .
If , then  as  and  as . As we can see from both of these graphs, the leading term of
the polynomial determines the end behavior (Figure ).

2.8.1.4 n f(x) = axn n f(x) = axn

f f(x) x

f(x) f(x) = 2 +1/x
1/x x f(x)

x f(x) → 2 x → ∞ y = 2
f(x) = 2 +1/x x

f(x) x

f(x) x f(x) → ∞ x → ∞
f(x) = 3x2 f(x) x

f(x) = 3x2 x 3 → ∞x2 x → ∞ x → −∞
f(x) → −∞ x → ∞ x → −∞ f(x)

x → ∞ x → −∞

f(x) = a +bx+cx2 a > 0
f(x) → ∞ x → ±∞ a < 0 f(x) → −∞ x → ±∞

a > 0 a < 0 2.8.1.5a

f(x) = a +b +cx+dx3 x2 a > 0 f(x) → ∞ x → ∞ f(x) → −∞ x → −∞
a < 0 f(x) → −∞ x → ∞ f(x) → ∞ x → −∞

2.8.1.5b
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Figure : (a) For a quadratic function, if the leading coefficient ,the parabola opens upward. If , the parabola
opens downward. (b) For a cubic function , if the leading coefficient , the values  as  and the values 

 as . If the leading coefficient , the opposite is true.

Zeros of Polynomial Functions
Another characteristic of the graph of a polynomial function is where it intersects the -axis. To determine where a function 
intersects the -axis, we need to solve the equation  for . In the case of the linear function , the -
intercept is given by solving the equation . In this case, we see that the -intercept is given by . In the case
of a quadratic function, finding the -intercept(s) requires finding the zeros of a quadratic equation: . In some
cases, it is easy to factor the polynomial  to find the zeros. If not, we make use of the quadratic formula.

Consider the quadratic equation

where . The solutions of this equation are given by the quadratic formula

If the discriminant , Equation  tells us there are two real numbers that satisfy the quadratic equation. If 
, this formula tells us there is only one solution, and it is a real number. If , no real numbers satisfy

the quadratic equation.

In the case of higher-degree polynomials, it may be more complicated to determine where the graph intersects the -axis. In some
instances, it is possible to find the -intercepts by factoring the polynomial to find its zeros. In other cases, it is impossible to
calculate the exact values of the -intercepts. However, as we see later in the text, in cases such as this, we can use analytical tools
to approximate (to a very high degree) where the -intercepts are located. Here we focus on the graphs of polynomials for which
we can calculate their zeros explicitly.

For the following functions,

a. 
b. 

i. describe the behavior of  as ,

2.8.1.5 a > 0 a < 0
f a > 0 f(x) → ∞ x → ∞

f(x) → −∞ x → −∞ a < 0

x f

x f(x) = 0 x f(x) = mx+b x

mx+b = 0 x (−b/m, 0)
x a +bx+c = 0x2

a +bx+cx2

 The Quadratic Formula

a +bx+c = 0,x2

a ≠ 0

x = .
−b± −4acb2− −−−−−−√

2a
(2.8.1.1)

−4ac > 0b2 2.8.1.1
−4ac = 0b2 −4ac < 0b2

x

x

x

x

 Example : Graphing Polynomial Functions2.8.1.3

f(x) = −2 +4x−1x2

f(x) = −3 −4xx3 x2

f(x) x → ±∞
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ii. find all zeros of , and
iii. sketch a graph of .

Solution

1. The function  is a quadratic function.

1. Because , as 

2. To find the zeros of , use the quadratic formula. The zeros are

3. To sketch the graph of ,use the information from your previous answers and combine it with the fact that the
graph is a parabola opening downward.

2. The function  is a cubic function.

1. Because , as , . As , .

2. To find the zeros of , we need to factor the polynomial. First, when we factor  out of all the terms, we find

Then, when we factor the quadratic function , we find

Therefore, the zeros of  are .

3. Combining the results from parts i. and ii., draw a rough sketch of .

f

f

f(x) = −2 +4x−1x2

a = −2 < 0 x → ±∞, f(x) → −∞.

f

x = = = = .
−4 ± −4(−2)(−1)42

− −−−−−−−−−−−
√

2(−2)
−4 ± 8–√

−4
−4 ±2 2–√

−4
2 ± 2–√

2

f

f(x) = −3 −4xx3 x2

a = 1 > 0 x → ∞ f(x) → ∞ x → −∞ f(x) → −∞

f x

f(x) = x( −3x−4).x2

−3x−4x2

f(x) = x(x−4)(x+1).

f x = 0, 4, −1

f
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Consider the quadratic function  Find the zeros of . Does the parabola open upward or downward?

Hint

Use the quadratic formula.

Answer

The zeros are . The parabola opens upward.

Algebraic Functions
By allowing for quotients and fractional powers in polynomial functions, we create a larger class of functions. An algebraic
function is one that involves addition, subtraction, multiplication, division, rational powers, and roots. Two types of algebraic
functions are rational functions and root functions.

Just as rational numbers are quotients of integers, rational functions are quotients of polynomials. In particular, a rational function
is any function of the form ,where  and  are polynomials. For example,

 and 

are rational functions. A root function is a power function of the form , where  is a positive integer greater than one.
For example,  is the square-root function and  is the cube-root function. By allowing for
compositions of root functions and rational functions, we can create other algebraic functions. For example,  is an
algebraic function.

For each of the following functions, find the domain and range.

a. 

b. 

 Exercise 2.8.1.2

f(x) = 3 −6x+2.x2 f

x = 1 ± /33–√

f(x) = p(x)/q(x) p(x) q(x)

f(x) =
3x−1
5x+2

g(x) =
4
+1x2

f(x) = x1/n n

f(x) = =x1/2 x−−√ g(x) = =x1/3 x−−√3

f(x) = 4 −x2− −−−−√

 Example : Finding Domain and Range for Algebraic Functions2.8.1.5

f(x) =
3x−1
5x+2

f(x) = 4 −x2− −−−−√
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Solution

1. It is not possible to divide by zero, so the domain is the set of real numbers  such that . To find the range, we
need to find the values  for which there exists a real number  such that

When we multiply both sides of this equation by , we see that  must satisfy the equation

From this equation, we can see that  must satisfy

If y= , this equation has no solution. On the other hand, as long as ,

satisfies this equation. We can conclude that the range of  is .

2. To find the domain of , we need . When we factor, we write . This inequality
holds if and only if both terms are positive or both terms are negative. For both terms to be positive, we need to find  such
that

 and 

These two inequalities reduce to  and . Therefore, the set  must be part of the domain. For
both terms to be negative, we need

 and 

These two inequalities also reduce to  and . There are no values of  that satisfy both of these inequalities. Thus,
we can conclude the domain of this function is 

If , then . Therefore, , and the range of  is 

Find the domain and range for the function 

Hint

The denominator cannot be zero. Solve the equation  for  to find the range.

Answer

The domain is the set of real numbers  such that . The range is the set .

The root functions  have defining characteristics depending on whether  is odd or even. For all even integers ,
the domain of  is the interval . For all odd integers , the domain of  is the set of all real
numbers. Since  for odd integers ,  is an odd function if  is odd. See the graphs of root functions for
different values of  in Figure .

x x ≠ −2/5
y x

y =
3x−1
5x+2

5x+2 x

5xy+2y = 3x−1.

x

2y+1 = x(3 −5y).

3/5 y ≠ 3/5

x =
2y+1
3 −5y

f {y | y ≠ 3/5}

f 4 − ≥ 0x2 4 − = (2 −x)(2 +x) ≥ 0x2

x

2 −x ≥ 0 2 +x ≥ 0.

2 ≥ x x ≥ −2 {x | −2 ≤ x ≤ 2}

2 −x ≤ 0 2 +x ≤ 0.

2 ≤ x x ≤ −2 x

{x | −2 ≤ x ≤ 2}.

−2 ≤ x ≤ 2 0 ≤ 4 − ≤ 4x2 0 ≤ ≤ 24 −x2
− −−−−

√ f {y | 0 ≤ y ≤ 2}.

 Exercise 2.8.1.3

f(x) = (5x+2)/(2x−1).

y = (5x+2)/(2x−1) x

x x ≠ 1/2 {y | y ≠ 5/2}

f(x) = x1/n n n ≥ 2
f(x) = x1/n [0, ∞) n ≥ 1 f(x) = x1/n

= (−xx1/n )1/n n f(x) = x1/n n

n 2.8.1.7
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Figure : (a) If  is even, the domain of  is . (b) If  is odd, the domain of  is  and
the function  is an odd function.

For each of the following functions, determine the domain of the function.

a. 

b. 

c. 
d. 

Solution

a. You cannot divide by zero, so the domain is the set of values  such that . Therefore, the domain is 
.

b. You need to determine the values of  for which the denominator is zero. Since  for all real numbers , the
denominator is never zero. Therefore, the domain is 

c. Since the square root of a negative number is not a real number, the domain is the set of values  for which .
Therefore, the domain is 

d. The cube root is defined for all real numbers, so the domain is the interval 

Find the domain for each of the following functions:  and .

Hint

Determine the values of  when the expression in the denominator of  is nonzero, and find the values of  when the
expression inside the radical of  is nonnegative.

Answer

The domain of  is . The domain of  is 

Transcendental Functions
Thus far, we have discussed algebraic functions. Some functions, however, cannot be described by basic algebraic operations.
These functions are known as transcendental functions because they are said to “transcend,” or go beyond, algebra. The most
common transcendental functions are trigonometric, exponential, and logarithmic functions. A trigonometric function relates the
ratios of two sides of a right triangle. They are  (We discuss trigonometric functions
later in the chapter.) An exponential function is a function of the form , where the base . A logarithmic
function is a function of the form  for some constant  where  if and only if . (We
also discuss exponential and logarithmic functions later in the chapter.)

2.8.1.7 n f(x) = x−−√n [0, ∞) n f(x) = x−−√n (−∞, ∞)
f(x) = x−−√n

 Example : Finding Domains for Algebraic Functions2.8.1.6

f(x) =
3
−1x2

f(x) =
2x+5
3 +4x2

f(x) = 4 −3x− −−−−√
f(x) = 2x−1− −−−−√3

x −1 ≠ 0x2

{x | x ≠ ±1}
x 3 +4 ≥ 4x2 x

(−∞, ∞).
x 4 −3x ≥ 0

{x | x ≤ 4/3}.
(−∞, ∞).

 Exercise 2.8.1.4

f(x) = (5 −2x)/( +2)x2 g(x) = 5x−1− −−−−√

x f x

g

f (−∞, ∞) g {x | x ≥ 1/5}.

sinx, cosx, tanx, cotx, secx,  and  cscx.
f(x) = bx b > 0, b ≠ 1

f(x) = (x)logb b > 0, b ≠ 1, (x) = ylogb = xby
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Classify each of the following functions, a. through c., as algebraic or transcendental.

a. 

b. 
c. 

Solution

a. Since this function involves basic algebraic operations only, it is an algebraic function.
b. This function cannot be written as a formula that involves only basic algebraic operations, so it is transcendental. (Note that

algebraic functions can only have powers that are rational numbers.)
c. As in part b, this function cannot be written using a formula involving basic algebraic operations only; therefore, this

function is transcendental.

Is  an algebraic or a transcendental function?

Answer

Algebraic

Piecewise-Defined Functions
Sometimes a function is defined by different formulas on different parts of its domain. A function with this property is known as a
piecewise-defined function. The absolute value function is an example of a piecewise-defined function because the formula
changes with the sign of :

Other piecewise-defined functions may be represented by completely different formulas, depending on the part of the domain in
which a point falls. To graph a piecewise-defined function, we graph each part of the function in its respective domain, on the same
coordinate system. If the formula for a function is different for  and , we need to pay special attention to what happens
at  when we graph the function. Sometimes the graph needs to include an open or closed circle to indicate the value of the
function at . We examine this in the next example.

Sketch a graph of the following piecewise-defined function:

Solution

Graph the linear function  on the interval  and graph the quadratic function  on the interval 
. Since the value of the function at  is given by the formula , we see that . To indicate

this on the graph, we draw a closed circle at the point . The value of the function is given by  for all ,
but not at . To indicate this on the graph, we draw an open circle at .

 Example : Classifying Algebraic and Transcendental Functions2.8.1.7

f(x) =
+1x3− −−−−√

4x+2
f(x) = 2x

2

f(x) = sin(2x)

 Exercise :2.8.1.5

f(x) = x/2

x

f(x) = { .−x,
x,

if x < 0
if x ≥ 0

x < a x > a

x = a

x = a

 Example : Graphing a Piecewise-Defined Function2.8.1.8

f(x) = {
x+3,
(x−2 ,)2

if x < 1
if x ≥ 1

y = x+3 (−∞, 1) y = (x−2)2

[1, ∞) x = 1 f(x) = (x−2)2 f(1) = 1
(1, 1) f(x) = x+3 x < 1

x = 1 (1, 4)
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Figure : This piecewise-defined function is linear for  and quadratic for 

2) Sketch a graph of the function

Solution:

In a big city, drivers are charged variable rates for parking in a parking garage. They are charged $10 for the first hour or any
part of the first hour and an additional $2 for each hour or part thereof up to a maximum of $30 for the day. The parking garage
is open from 6 a.m. to 12 midnight.

a. Write a piecewise-defined function that describes the cost  to park in the parking garage as a function of hours parked .
b. Sketch a graph of this function 

Solution

1.Since the parking garage is open 18 hours each day, the domain for this function is . The cost to park a car
at this parking garage can be described piecewise by the function

2.The graph of the function consists of several horizontal line segments.

2.8.1.8 x < 1 x ≥ 1.

f(x) = { .
2 −x,
x+2,

if x ≤ 2
if x > 2

 Example : Parking Fees Described by a Piecewise-Defined Function2.8.1.9

C x

C(x).

{x | 0 < x ≤ 18}

C(x) = .

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪

10,
12,
14,
16,

⋮
30,

for 0 < x ≤ 1
for 1 < x ≤ 2
for 2 < x ≤ 3
for 3 < x ≤ 4

for 10 < x ≤ 18
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The cost of mailing a letter is a function of the weight of the letter. Suppose the cost of mailing a letter is  for the first ounce
and  for each additional ounce. Write a piecewise-defined function describing the cost  as a function of the weight  for 

, where  is measured in cents and  is measured in ounces.

Hint

The piecewise-defined function is constant on the intervals 

Answer

Transformations of Functions
We have seen several cases in which we have added, subtracted, or multiplied constants to form variations of simple functions. In
the previous example, for instance, we subtracted 2 from the argument of the function  to get the function .
This subtraction represents a shift of the function  two units to the right. A shift, horizontally or vertically, is a type of
transformation of a function. Other transformations include horizontal and vertical scalings, and reflections about the axes.

A vertical shift of a function occurs if we add or subtract the same constant to each output . For , the graph of  is a
shift of the graph of  up  units, whereas the graph of  is a shift of the graph of  down  units. For example, the
graph of the function  is the graph of  shifted up  units; the graph of the function  is the
graph of  shifted down  units (Figure ).

 Exercise 2.8.1.6

49¢
21¢ C x

0 < x ≤ 3 C x

(0, 1], (1, 2], … .

C(x) =
⎧

⎩⎨
49, 0 < x ≤ 1
70, 1 < x ≤ 2
91, 2 < x ≤ 3

y = x2 f(x) = (x−2)2

y = x2

y c > 0 f(x) +c

f(x) c f(x) −c f(x) c

f(x) = +4x3 y = x3 4 f(x) = −4x3

y = x3 4 2.8.1.9
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Figure : (a) For , the graph of  is a vertical shift up  units of the graph of . (b) For , the
graph of  is a vertical shift down c units of the graph of .

A horizontal shift of a function occurs if we add or subtract the same constant to each input . For , the graph of  is a
shift of the graph of  to the left  units; the graph of  is a shift of the graph of  to the right  units. Why does the
graph shift left when adding a constant and shift right when subtracting a constant? To answer this question, let’s look at an
example.

Consider the function  and evaluate this function at . Since  and , the graph of 
 is the graph of  shifted left  units. Similarly, the graph of  is the graph of  shifted

right  units (Figure ).

Figure : (a) For , the graph of  is a horizontal shift left  units of the graph of . (b) For ,
the graph of  is a horizontal shift right  units of the graph of 

A vertical scaling of a graph occurs if we multiply all outputs  of a function by the same positive constant. For , the graph of
the function  is the graph of  scaled vertically by a factor of . If , the values of the outputs for the function 
are larger than the values of the outputs for the function ; therefore, the graph has been stretched vertically. If , then
the outputs of the function  are smaller, so the graph has been compressed. For example, the graph of the function 

 is the graph of  stretched vertically by a factor of 3, whereas the graph of  is the graph of 
compressed vertically by a factor of  (Figure ).

2.8.1.9 c > 0 y = f(x) + c c y = f(x) c > 0
y = f(x) − c y = f(x)

x c > 0 f(x+c)
f(x) c f(x−c) f(x) c

f(x) = |x+3| x−3 f(x−3) = |x| x−3 < x

f(x) = |x+3| y = |x| 3 f(x) = |x−3| y = |x|
3 2.8.1.10

2.8.1.10 c > 0 y = f(x+ c) c y = f(x) c > 0
y = f(x− c) c y = f(x).

y c > 0
cf(x) f(x) c c > 1 cf(x)

f(x) 0 < c < 1
cf(x)

f(x) = 3x2 y = x2 f(x) = /3x2 y = x2

3 2.8.1.11b
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Figure : (a) If , the graph of  is a vertical stretch of the graph of . (b) If , the graph of 
 is a vertical compression of the graph of .

The horizontal scaling of a function occurs if we multiply the inputs  by the same positive constant. For , the graph of the
function  is the graph of  scaled horizontally by a factor of . If , the graph of  is the graph of 
compressed horizontally. If , the graph of  is the graph of  stretched horizontally. For example, consider the
function  and evaluate  at . Since , the graph of  is the graph of  compressed
horizontally. The graph of  is a horizontal stretch of the graph of  (Figure ).

Figure : (a) If , the graph of  is a horizontal compression of the graph of . (b) If , the
graph of  is a horizontal stretch of the graph of .

We have explored what happens to the graph of a function  when we multiply  by a constant  to get a new function .
We have also discussed what happens to the graph of a function when we multiply the independent variable  by  to get a
new function . However, we have not addressed what happens to the graph of the function if the constant  is negative. If we
have a constant , we can write  as a positive number multiplied by ; but, what kind of transformation do we get when we
multiply the function or its argument by  When we multiply all the outputs by , we get a reflection about the -axis. When
we multiply all inputs by , we get a reflection about the -axis. For example, the graph of  is the graph of 

 reflected about the -axis. The graph of  is the graph of  reflected about the -axis
(Figure ).

2.8.1.11 c > 1 y = cf(x) y = f(x) 0 < c < 1
y = cf(x) y = f(x)

x c > 0
f(cx) f(x) c c > 1 f(cx) f(x)

0 < c < 1 f(cx) f(x)
f(x) = 2x−−√ f x/2 f(x/2) = x−−√ f(x) = 2x−−√ y = x−−√

y = x/2
−−−

√ y = x−−√ 2.8.1.12

2.8.1.12 c > 1 y = f(cx) y = f(x) 0 < c < 1
y = f(cx) y = f(x)

f f c > 0 cf(x)
f x c > 0

f(cx) c

c < 0 c −1
−1? −1 x

−1 y f(x) = −( +1)x3

y = ( +1)x3 x f(x) = (−x +1)3 y = +1x3 y

2.8.1.13
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Figure : (a) The graph of  is the graph of  reflected about the -axis. (b) The graph of  is
the graph of  reflected about the -axis.

If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph in the
correct order. Given a function , the graph of the related function  can be obtained from the graph of 

by performing the transformations in the following order.

Horizontal shift of the graph of . If , shift left. If  shift right.
Horizontal scaling of the graph of  by a factor of . If , reflect the graph about the -axis.
Vertical scaling of the graph of  by a factor of . If , reflect the graph about the  -axis.
Vertical shift of the graph of . If , shift up. If , shift down.

We can summarize the different transformations and their related effects on the graph of a function in the following table.

Transformation of Effect of the graph of 

Vertical shift up  units

Vertical shift down  units

Shift left by  units

Shift right by  units

Vertical stretch if ;
vertical compression if 

Horizontal stretch if ;
horizontal compression if 

Reflection about the -axis

Reflection about the -axis

For each of the following functions, a. and b., sketch a graph by using a sequence of transformations of a well-known function.

a. 
b. 

Solution

1.Starting with the graph of , shift  units to the left, reflect about the -axis, and then shift down  units.

2.8.1.13 y = −f(x) y = f(x) x y = f(−x)
y = f(x) y

f(x) y = cf(a(x+b)) +d

y = f(x)

y = f(x) b > 0 b < 0
y = f(x+b) |a| a < 0 y

y = f(a(x+b)) |c| c < 0 x

y = cf(a(x+b)) d > 0 d < 0

f(c > 0) f

f(x) + c c

f(x) − c c

f(x+ c) c

f(x− c) c

cf(x)
c > 1
0 < c < 1

f(cx)
0 < c < 1

c > 1

−f(x) x

f(−x) y

 Example : Transforming a Function2.8.1.10

f(x) = −|x+2| −3
f(x) = +1x−−√3

y = |x| 2 x 3
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Figure : The function  can be viewed as a sequence of three transformations of the function 
.

2. Starting with the graph of  reflect about the -axis, stretch the graph vertically by a factor of 3, and move up 1
unit.

Figure : The function can be viewed as a sequence of three transformations of the function .

Describe how the function  can be graphed using the graph of  and a sequence of
transformations

Answer

Shift the graph  to the left 1 unit, reflect about the -axis, then shift down 4 units.

Key Concepts
The power function  is an even function if n is even and , and it is an odd function if  is odd.
The root function  has the domain  if n is even and the domain  if  is odd. If  is odd, then 

 is an odd function.
The domain of the rational function , where  and  are polynomial functions, is the set of  such that 

.
Functions that involve the basic operations of addition, subtraction, multiplication, division, and powers are algebraic functions.
All other functions are transcendental. Trigonometric, exponential, and logarithmic functions are examples of transcendental
functions.

2.8.1.14 f(x) = −|x+ 2| − 3
y = |x|

y = sqrtx, y

2.8.1.15 f(x) = + 1x−−√3 y = x−−√

 Exercise 2.8.1.7

f(x) = −(x+1 −4)2 y = x2

y = x2 x

f(x) = xn n ≠ 0 n

f(x) = x1/n [0, ∞) (−∞, ∞) n n

f(x) = x1/n

f(x) = p(x)/q(x) p(x) q(x) x

q(x) ≠ 0
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A polynomial function  with degree  satisfies  as . The sign of the output as  depends on
the sign of the leading coefficient only and on whether  is even or odd.
Vertical and horizontal shifts, vertical and horizontal scalings, and reflections about the - and -axes are examples of
transformations of functions.

Key Equations
Point-slope equation of a line

Slope-intercept form of a line

Standard form of a line

Polynomial function

Glossary

algebraic function
a function involving any combination of only the basic operations of addition, subtraction, multiplication, division, powers, and
roots applied to an input variable 

cubic function
a polynomial of degree 3; that is, a function of the form , where 

degree
for a polynomial function, the value of the largest exponent of any term

linear function
a function that can be written in the form 

logarithmic function
a function of the form  for some base  such that  if and only if 

mathematical model
A method of simulating real-life situations with mathematical equations

piecewise-defined function
a function that is defined differently on different parts of its domain

point-slope equation
equation of a linear function indicating its slope and a point on the graph of the function

polynomial function
a function of the form 

power function
a function of the form  for any positive integer 

quadratic function
a polynomial of degree 2; that is, a function of the form  where 

f n ≥ 1 f(x) → ±∞ x → ±∞ x → ∞
n

x y

y− = m(x− )y1 x1

y = mx+b

ax+by = c

f(x) = + +⋯ + x+anx
n an−1x

n−1 a1 a0

x

f(x) = a +b +cx+dx3 x2 a ≠ 0

f(x) = mx+b

f(x) = (x)logb b > 0, b ≠ 1 y = (x)logb = xby

f(x) = + +… + x+anx
n an−1x

n−1 a1 a0

f(x) = xn n ≥ 1

f(x) = a +bx+cx2 a ≠ 0
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rational function
a function of the form , where  and  are polynomials

root function
a function of the form  for any integer 

slope
the change in  for each unit change in 

slope-intercept form
equation of a linear function indicating its slope and -intercept

transcendental function
a function that cannot be expressed by a combination of basic arithmetic operations

transformation of a function
a shift, scaling, or reflection of a function
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f(x) = p(x)/q(x) p(x) q(x)

f(x) = x1/n n ≥ 2

y x

y
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