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This first section is going to serve two purposes: first, introduce some of the key important concepts that we will need right from
the beginning, like units and significant figures. Second, we want to open up the question: "what is physics"? Like many such
open-ended questions, there are many ways to answer it. It is not going to be our intention to answer this fully in any sense - we
just want to answer it enough so that as a student, you know why this book exists and what you should be getting out of it. To get
right to the point: physics is the study of the abstraction of the physical world.

So that's a pretty obscure statement, so let's break it down a bit. When we say "abstraction", that's basically a way of replacing all
the real physical objects out there that we want to understand (balls, cars, airplanes, etc...objects!) with mathematical
representations of those objects. These representations are simple - sometimes they are just points, or maybe box-shaped things
with wheels to represent cars, etc. The point of the abstraction is both to simplify the problem (points are easier to deal with than
real life planes), and also to make it mathematically precise. "how a car moves" is actually a question far too complicated for a
simple introduction to the world of physics to handle. There are literally millions (way more!) of interactions taking place in the
motion of a car - things like the engine, the wheels, and the transmission - but even little things like the air molecules hitting the
outside of the car and slowing it down. By replacing the entire thing with "a point" or "a box with wheels", we make the problem
simple enough for us to actually perform some calculations to understand it's motion.

We should be clear what the kind of mathematical precision we are talking about here as well. We don't mean "calculating the exact
value of the speed of the car to 5 decimal places" (we'll see in this chapter that kind of precision is not actually what we are after).
We mean something more like "well-defined". For example, if we said "The position of the car is 5 m from the end of the race", we
can't actually perform any calculations with that information, because which part of the car are we talking about? For sure, you
could say "the front", or "the back", or "30 cm from the driver", but now we might need to know even more things about the car -
how big is it, or how big the seats are (to determine the position of the driver relative to the finish line). The abstraction avoids all
this by the replacement of real objects with simple representations of them. If the car is represented as a point, then "5 m from the
end of the race" becomes very well-defined, because it can only refer to one location! Similarly for the representation of the car as
a box with wheels - more information is required (dimensions of the box and the wheels?), but it's still far less then what might be
required for the real, physical car.

Now that we've covered "abstraction", what does "study of the abstraction" mean? Well, it's often said that physics is "the study of
the fundamental interactions" - that's what we mean, but we mean it specifically within the abstraction. We aren't actually studying
how the fundamental interactions of the real world influence real physical objects - we are representing the world with an
abstraction, and studying the abstraction. The force of gravity is actually enormously complicated in the real world (it's
everywhere, it acts between each individual molecule and each other individual molecule....you'd be calculating for your entire
life!), but in our abstraction, it's just a simple force acting between two points. By proposing simple, fundamental interactions
between objects we are hoping to model the real world.

Of course, we claim that physics actually is the study of the real world, but you aren't ever going to see that connection by using
solely the abstraction - you have to go into the laboratory and perform experiments to verify that our abstraction is an "accurate and
precise" representation of the real world. We aren't going to talk much about that in this text, since it is primarily designed to give
you an introduction to the prediction and quantitative aspects of the field - hopefully, your theoretical experience with this text will
be coupled with a laboratory experience as well, so that you can see how well physics actually does as describing phenomena and
events in the real world.
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1.1: About this Text

Introduction to Text
This is a a remix of a remix of a text. Each class is taught a little differently and at Gettysburg College, we have been teaching an
introductory physics class for majors that follows the general structure of this text for many years. Our teaching has always
emphasized "active learning". This means that instead of passively listening to a lecture, students are actively engaged in the class:
Answering questions, discussing concepts with each other, and doing active problem solving on the board. Why teach this way?
Simply put, there is an ENORMOUS amount of research that shows that this is the most effective way to learn physics. Strangely,
often students do not like it quite as much and they even THINK that they are not learning as much, but study after study shows
that they simply learn more when using these techniques. (See Deslauriers et al., PNAS, 2019 if you don't believe me.) Since our
goal is for all of you to learn as much physics as possible in the short time we have together, these are the techniques we will use.

Below you will see the original introduction to this text. It explains a lot of what was done with this text originally. A lot of this is
true for our class as well with a few exceptions. The most prominent one is that we are not using a "studio physics" model. Instead,
this class will be more traditional with regular homework, as many examples in the text that I can write, and in-class exams.
However, a lot of the things that are said below are true. The main ones are:

1. You MUST do work before you come to class. There will be little-to-no lecture in class. The Professor will assume that you
have read the text before coming to class and are familiar with the basic concepts. If you come into class withought having
learned the basic material beforehand, the class will not be very useful at all.

2. We will try to do approximately one chapter per day or two days. The chapters are purposely very short to allow for this (and
for you to be able to read them the night before in an hour or so).

3. We will not be following a "traditional" order for the text. We will start with concervation laws (the most fundamental concepts
in physics) and then move onto Newtonian Physics from there. This makes sense for all of the reasons outlined below.

I have tried to update this text to fit better with Gettysburg College's course. This includes adding problems to the end of chapters
(largely from OpenStax) and updating chapters, adding chapters/sections, and fixing a few things I see. Hopefully I actually
improve the text, but who ever knows?

I want to thank Professor Christopher Duston for adapting the Gea-Banacloche text to the current iteration and, obviously, Gea-
Banacloche (and the OpenStax authors) for the original texts.

If you are reading this, please know that I am constantly trying to improve this text. Please contact me (kandrese at gettysburg dot
edu) with any errors that you find or suggestions for improvements. This is DEFINITELY a work in progress.

Original Introduction:
This text has been written with several goals in mind:

Break sections into short chucks appropriate for reading before each class meeting, specifically for use in "studio physics"
classrooms.
Present conservation laws before kinematics.
Acknowledge that students may be co-enrolled in their first calculus course.

Before proceeding with the text, we will motivate and explain each of these goals. Being an open source resource, this text is
constantly in a state of improvement. Feel free to write to the editor, Professor Christopher Duston (dustonc at merrimack dot edu)
if you find significant errors that you think should be corrected.

This text has been written to support a so-called "studio" approach to teaching physics. There are many flavors of this pedagogy
(for example, SCALE-UP from North Carolina State, Studio Physics from Florida State, and Studio Physics at The Massachusetts
Institute of Technology), but an essential element is that class time is significantly devoted to problem solving over lecture time. To
support this, it is necessary for students to be exposed to the material at some level before even entering the classroom. There are
several ways to achieve that (this is the so-called "flipped classroom model"), but it is our feeling that student success is maximized
by designing this initial exposure around the studio model, rather then using a traditional textbook. A traditional and carefully
constructed 1000-page physics textbook is a beautiful thing, but if the material is broken into sections appropriate for the content,
rather then the delivery system, there will be a fundamental mismatch between the goals of the students and the goals of the
textbook. So the first goal of this text is to break the content into sections appropriate for single class meetings. At Merrimack
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College (where this textbook was designed to be used), there are two class meetings per week, and each meeting tackles one
section of this text.

This text was also designed to be the initial source of exposure to the content. Another challenge when using a traditional physics
textbook in the studio model is that the first thing a novice reads about might be a completely well-thought out and well-motivated
description of a physical law, but a student is likely not prepared for that level of description. The process of learning is not linear
and hierarchical, but chaotic and varied. Of course, in the end we want students to be experts a la Bloom's Taxonomy, but starting
from the bottom and explaining how they get to the top will not service their own internalized development of the material. To that
end, the goal of this text is primarily to provide students with enough material to "soak the sponge", so that when they enter the
class they are prepared to learn (and make mistakes!), rather then prepared to solve problems on an exam. To achieve this, the
material is presented in a streamlined matter, with simplified motivations and only the first few initial steps spelled out. For sure,
this means more complicated material is occasionally only briefly touched upon, and in some cases left out completely. However,
we would argue that as a fundamental science, more complicated material in the field of physics can always be added in by
instructor demand, in a way that their own students can handle it. And, given that anything can be found on the internet, collecting
special topics in textbooks seems like something which has already been done by any number of a myriad of authors. If that's what
you want, this textbook is not for you!

The content order of this textbook (conservation laws before Newton's laws) is inspired by the wonderful texts of Eric Mazur and
Thomas Moore (in fact, the current version of this book blatantly steals the chapter order from Moore's Six Ideas In Physics, Units
C and N). For more well-thought out motivations, one can consult those admirable texts - for our part, we will simply motivate this
in two ways. First, in many ways conservation laws are more fundamental then Newton's laws. Indeed, the argument about the
invariance of specific quantities under time and space translations is so fundamental that it boarders on the Philosophical nature of
the Universe, rather then our particular approach to modeling it. More directly, equations like  are scalar and discrete, and
therefore typically easier for students to deal with then vector expressions that imply continuous change, like . Second, it
is our experience that students have already been exposed to Newton's laws and kinematics - and in some cases have built up
significant misunderstandings that are difficult to break down. (A trivial example might be the statement that "the force of gravity
is negative!", a viewpoint strongly held by many students. This concept is so rife with intellectual inconsistency that I regret even
bringing it up...) By starting students with new, consistently correct ideas about modeling and problem solving in the context of
conservation laws, we prepare them to tear down their previous knowledge and rebuild it on a more solid foundation.

Finally, this textbook is written with the knowledge that some (many?) students are going to be stepping into their first physics
class while simultaneously taking their first calculus class. This breaks the traditional "calculus before physics" mantra that has
been a part of our pedagogy for decades. The source of this change will not be covered here, but we are highly motivated to deal
with it rather then preach about its evils from the rooftops. Of course, as a textbook that primarily covers mechanics, it's absolutely
true that most of what can be found in this textbook is actually directly derivable from simple ideas based in calculus. However,
that is also not usually where students coming to the field are, and it would be an injustice to ask them to climb that mountain
before demonstrating the joy of understanding basic concepts in the field. More practically, it is our experience that in so-called
"calculus-based physics classes", the biggest challenges for students is not the calculus itself, but the vector algebra and analysis
which is utilized in nearly no other field as extensively as physics. Therefore, we do not view the loss of a semester of calculus
before this class as a significant barrier, and do not start by assuming students have it. By the second half of the book (Newton's
laws), it is assumed that students have a grasp of all the basic notations from calculus.

Open Source Resources and the Construction of This Text

From the outset, we must acknowledge that this text fails in all the goals presented above. Writing a text from scratch is a lengthy
business, and we have students to teach! However, since the advent of free and open source educational resources, another avenue
has been opened - the "collect, evaluate, and modify" approach. Open source solutions have been available for some time
(University Physics by OpenStax is perhaps the most well-known example, as well as Calculus-Based Physics by Jeffrey Schnick),
but these followed the more traditional order of material. However, once Julio Gea-Banacloche published his fantastic University
Physics I: Classical Mechanics, the possibility of satisfying our goals via open source publication became realizable. However,
rearranging and breaking apart a textbook comes with it's own dangers, and we are squarely in the middle of those dangers with
this text, which was constructed in the following way:

1. Rearrange the Gea-Banacloche text to match the specific order of material, which closely follows Thomas Moore's book.
2. Supplement material which is lacking from OpenStax.
3. Write new material to fill in some gaps.

ΔE = 0

Σ = mF ⃗  a⃗ 
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As such, we owe a great deal of gratitude to both Gea-Banacloche and the OpenStax organization, for making such an approach
feasible. However, the responsibility is now all on our shoulders, to continue to modify and develop this book so that eventually we
can satisfy the lofty pedagogical and practical goals we outlined at the beginning of this section.

Whiteboard Problems

In our studio classroom, over half the time is spent solving problems on whiteboards in groups. During this time, the instructor (and
typically one or two learning assistants) are on hand and available to assist if a group gets stuck. Over the years, we've developed
many more of these style problems then we will typically use (3-4 per class period, generally), so we've included the extras in this
text. At the end of each chapter we will have an "Example" section, and these whiteboard problems will be presented there (along
with some good examples from the two main source texts we discussed above). These can be used identically to example problems,
or they could be used as actual whiteboard problems for a studio classroom. In the future, we are planning on adding our entire set
of whiteboard problems to these sections - this will correspond with a generally shortening of the actual texts of the chapter, to
match our goal of being accessible as a pre-class reading assignment.

1.1: About this Text is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack College.
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1.2: Modeling in Physics
Classical mechanics is the branch of physics that deals with the study of the motion of anything (roughly speaking) larger than an
atom or a molecule. That is a lot of territory, and the methods and concepts of classical mechanics are at the foundation of any
branch of science or engineering that is concerned with the motion of anything from a star to an amoeba—fluids, rocks, animals,
planets, and any and all kinds of machines. Moreover, even though the accurate description of processes at the atomic level requires
the (formally very different) methods of quantum mechanics, at least three of the basic concepts of classical mechanics that we are
going to study this semester, namely, momentum, energy, and angular momentum, carry over into quantum mechanics as well, with
the last two playing, in fact, an essential role.

Particles in Classical Mechanics
In the study of motion, the most basic starting point is the concept of the position of an object. Clearly, if we want to describe
accurately the position of a macroscopic object such as a car, we may need a lot of information, including the precise shape of the
car, whether it is turned this way or that way, and so on; however, if all we want to know is how far the car is from Fort Smith or
Fayetteville, we do not need any of that: we can just treat the car as a dot, or mathematical point, on the map—which is the way
your GPS screen will show it, anyway. When we do this, we say that are describing the car (or whatever the macroscopic object
may be) as a particle.

In classical mechanics, an “ideal” particle is an object with no appreciable size—a mathematical point. In one dimension (that is to
say, along a straight line), its position can be specified just by giving a single number, the distance from some reference point, as
we shall see in a moment (in three dimensions, of course, three numbers are required). In terms of energy (which is perhaps the
most important concept in all of physics, and which we will introduce properly in due course), an ideal particle has only one kind
of energy, what we will later call translational kinetic energy; it cannot have, for instance, rotational kinetic energy (since it has “no
shape” for practical purposes), or any form of internal energy (elastic, thermal, etc.), since we assume it is too small to have any
internal structure in the first place.

The reason this is a useful concept is not just that we can often treat extended objects as particles in an approximate way (like the
car in the example above), but also, and most importantly, that if we want to be more precise in our calculations, we can always
treat an extended object (mathematically) as a collection of “particles.” The physical properties of the object, such as its energy,
momentum, rotational inertia, and so forth, can then be obtained by adding up the corresponding quantities for all the particles
making up the object. Not only that, but the interactions between two extended objects can also be calculated by adding up the
interactions between all the particles making up the two objects. This is how, once we know the form of the gravitational force
between two particles we can use that to calculate the force of gravity between a planet and its satellites, which can be fairly
complicated in detail, depending, for instance, on the relative orientation of the planet and the satellite.

The mathematical tool we use to calculate these “sums” is calculus—specifically, integration—and you will see many examples of
this... in your calculus courses. Calculus I is only lightly used in this text, so we will not make a lot of use of it here, and in any case
you would need multidimensional integrals, which are an even more advanced subject, to do these kinds of calculations. But it may
be good for you to keep these ideas on the back of your mind. Calculus was, in fact, invented by Sir Isaac Newton precisely for this
purpose, and the developments of physics and mathematics have been closely linked together ever since.

Anyway, back to particles, the plan for this semester is as follows: we will start our description of motion by treating every object
(even fairly large ones, such as cars) as a “particle,” because we will only be concerned at first with its translational motion and the
corresponding energy. Then we will progressively make things more complex: by considering systems of two or more particles, we
will start to deal with the internal energy of a system. Then we will move to the study of rigid bodies, which are another important
idealization: extended objects whose parts all move together as the object undergoes a translation or a rotation. This will allow us to
introduce the concept of rotational kinetic energy. Eventually we will consider wave motion, where different parts of an extended
object (or “medium”) move relative to each other. So, you see, there is a logical progression here, with most parts of the course
building on top of the previous ones, and energy as one of the main connecting themes. The technical word for the process being
described in the preceding paragraphs is abstraction; the essence of which is to take the physical world and model it with abstract
mathematical quantities. We can then use these quantities to construct physical theories, make predictions, and verify them with
experiments. In this text we will primarily be interested in the middle section of this process - taking physical laws and making
predictions about how objects in the real world will behave.
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Aside: The Atomic Perspective
As an aside, it should perhaps be mentioned that the building up of classical mechanics around this concept of ideal particles had
nothing to do, initially, with any belief in “atoms,” or an atomic theory of matter. Indeed, for most 18th and 19th century physicists,
matter was supposed to be a continuous medium, and its (mental) division into particles was just a mathematical convenience.

The atomic hypothesis became increasingly more plausible as the 19th century wore on, and by the 1920’s, when quantum
mechanics came along, physicists had to face a surprising development: matter, it turned out, was indeed made up of “elementary
particles,” but these particles could not, in fact, be themselves described by the laws of classical mechanics. One could not, for
instance, attribute to them simultaneously well-defined positions and velocities. Yet, in spite of this, most of the conclusions of
classical mechanics remain valid for macroscopic objects, because, most of the time, it is OK to (formally) “break up” extended
objects into chunks that are small enough to be treated as particles, but large enough that one does not need quantum mechanics to
describe their behavior.

Quantum properties were first found to manifest themselves at the macroscopic level when dealing with thermal energy, because at
one point it really became necessary to figure out where and how the energy was stored at the truly microscopic (atomic) level.
Thus, after centuries of successes, classical mechanics met its first failure with the so-called problem of the specific heats, and a
completely new physical theory—quantum mechanics—had to be developed in order to deal with the newly-discovered atomic
world. But all this, as they say, is another story, and for our very brief dealings with thermal physics—the last chapter in this book
—we will just take specific heats as given, that is to say, something you measure (or look up in a table), rather than something you
try to calculate from theory.

This page titled 1.2: Modeling in Physics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-
Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

1.1: Introduction by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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1.3: Units and Standards

Describe how SI base units are defined.
Describe how derived units are created from base units.
Express quantities given in SI units using metric prefixes.

As we saw previously, the range of objects and phenomena studied in physics is immense. From the incredibly short lifetime of a
nucleus to the age of Earth, from the tiny sizes of subnuclear particles to the vast distance to the edges of the known universe, from
the force exerted by a jumping flea to the force between Earth and the Sun, there are enough factors of 10 to challenge the
imagination of even the most experienced scientist. Giving numerical values for physical quantities and equations for physical
principles allows us to understand nature much more deeply than qualitative descriptions alone. To comprehend these vast ranges,
we must also have accepted units in which to express them. We shall find that even in the potentially mundane discussion of
meters, kilograms, and seconds, a profound simplicity of nature appears: all physical quantities can be expressed as combinations
of only seven base physical quantities.

We define a physical quantity either by specifying how it is measured or by stating how it is calculated from other measurements.
For example, we might define distance and time by specifying methods for measuring them, such as using a meter stick and a
stopwatch. Then, we could define average speed by stating that it is calculated as the total distance traveled divided by time of
travel.

Measurements of physical quantities are expressed in terms of units, which are standardized values. For example, the length of a
race, which is a physical quantity, can be expressed in units of meters (for sprinters) or kilometers (for distance runners). Without
standardized units, it would be extremely difficult for scientists to express and compare measured values in a meaningful way
(Figure ).

Figure : Distances given in unknown units are maddeningly useless.

Two major systems of units are used in the world: SI units (for the French Système International d’Unités), also known as the
metric system, and English units (also known as the customary or imperial system). English units were historically used in
nations once ruled by the British Empire and are still widely used in the United States. English units may also be referred to as the
foot–pound–second (fps) system, as opposed to the centimeter–gram–second (cgs) system. You may also encounter the term
SAE units, named after the Society of Automotive Engineers. Products such as fasteners and automotive tools (for example,
wrenches) that are measured in inches rather than metric units are referred to as SAE fasteners or SAE wrenches.

Virtually every other country in the world (except the United States) now uses SI units as the standard. The metric system is also
the standard system agreed on by scientists and mathematicians.

SI Units: Base and Derived Units
In any system of units, the units for some physical quantities must be defined through a measurement process. These are called the
base quantities for that system and their units are the system’s base units. All other physical quantities can then be expressed as
algebraic combinations of the base quantities. Each of these physical quantities is then known as a derived quantity and each unit
is called a derived unit. The choice of base quantities is somewhat arbitrary, as long as they are independent of each other and all
other quantities can be derived from them. Typically, the goal is to choose physical quantities that can be measured accurately to a
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high precision as the base quantities. The reason for this is simple. Since the derived units can be expressed as algebraic
combinations of the base units, they can only be as accurate and precise as the base units from which they are derived.

Based on such considerations, the International Standards Organization recommends using seven base quantities, which form the
International System of Quantities (ISQ). These are the base quantities used to define the SI base units. Table  lists these seven
ISQ base quantities and the corresponding SI base units.

Table : ISQ Base Quantities and Their SI Units

ISQ Base Quantity SI Base Unit

Length meter (m)

Mass kilogram (kg)

Time second (s)

Electrical Current ampere (A)

Thermodynamic Temperature kelvin (K)

Amount of Substance mole (mol)

Luminous Intensity candela (cd)

You are probably already familiar with some derived quantities that can be formed from the base quantities in Table . For
example, the geometric concept of area is always calculated as the product of two lengths. Thus, area is a derived quantity that can
be expressed in terms of SI base units using square meters (m x m = m ). Similarly, volume is a derived quantity that can be
expressed in cubic meters (m ). Speed is length per time; so in terms of SI base units, we could measure it in meters per second
(m/s). Volume mass density (or just density) is mass per volume, which is expressed in terms of SI base units such as kilograms per
cubic meter (kg/m ). Angles can also be thought of as derived quantities because they can be defined as the ratio of the arc length
subtended by two radii of a circle to the radius of the circle. This is how the radian is defined. Depending on your background and
interests, you may be able to come up with other derived quantities, such as the mass flow rate (kg/s) or volume flow rate (m /s) of
a fluid, electric charge (A • s), mass flux density [kg/(m • s)], and so on. We will see many more examples throughout this text. For
now, the point is that every physical quantity can be derived from the seven base quantities in Table , and the units of every
physical quantity can be derived from the seven SI base units.

For the most part, we use SI units in this text. Non-SI units are used in a few applications in which they are in very common use,
such as the measurement of temperature in degrees Celsius (°C), the measurement of fluid volume in liters (L), and the
measurement of energies of elementary particles in electron-volts (eV). Whenever non-SI units are discussed, they are tied to SI
units through conversions. For example, 1 L is 10  m .

Check out a comprehensive source of information on SI units at the National Institute of Standards and Technology (NIST)
Reference on Constants, Units, and Uncertainty.

Units of Time, Length, and Mass: The Second, Meter, and Kilogram
The initial chapters in this textmap are concerned with mechanics, fluids, and waves. In these subjects all pertinent physical
quantities can be expressed in terms of the base units of length, mass, and time. Therefore, we now turn to a discussion of these
three base units, leaving discussion of the others until they are needed later.

The Second

The SI unit for time, the second (abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar day.
More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a nonvarying or constant
physical phenomenon (because the solar day is getting longer as a result of the very gradual slowing of Earth’s rotation). Cesium
atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967, the second
was redefined as the time required for 9,192,631,770 of these vibrations to occur (Figure ). Note that this may seem like more
precision than you would ever need, but it isn’t—GPSs rely on the precision of atomic clocks to be able to give you turn-by-turn
directions on the surface of Earth, far from the satellites broadcasting their location.
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Figure : An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a
microsecond per year. The fundamental unit of time, the second, is based on such clocks. This image looks down from the top of an
atomic fountain nearly 30 feet tall. (credit: Steve Jurvetson)

The Meter

The SI unit for length is the meter (abbreviated m); its definition has also changed over time to become more precise. The meter
was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This measurement was improved in
1889 by redefining the meter to be the distance between two engraved lines on a platinum–iridium bar now kept near Paris. By
1960, it had become possible to define the meter even more accurately in terms of the wavelength of light, so it was again redefined
as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was given its current definition (in part
for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second (Figure ). This change came after
knowing the speed of light to be exactly 299,792,458 m/s. The length of the meter will change if the speed of light is someday
measured with greater accuracy.

Figure : The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is
speed multiplied by time.

The Kilogram

The SI unit for mass is the kilogram (abbreviated kg); From 1795–2018 it was defined to be the mass of a platinum–iridium
cylinder kept with the old meter standard at the International Bureau of Weights and Measures near Paris. However, this cylinder
has lost roughly 50 micrograms since it was created. Because this is the standard, this has shifted how we defined a kilogram.
Therefore, a new definition was adopted in May 2019 based on the Planck constant and other constants which will never change in
value. We will study Planck’s constant in quantum mechanics, which is an area of physics that describes how the smallest pieces of
the universe work. The kilogram is measured on a Kibble balance (see ). When a weight is placed on a Kibble balance, an
electrical current is produced that is proportional to Planck’s constant. Since Planck’s constant is defined, the exact current
measurements in the balance define the kilogram.

1.3.2

1.3.3

1.3.3

1.3.4

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/85763?pdf


1.3.4 https://phys.libretexts.org/@go/page/85763

Figure : Redefining the SI unit of mass. The U.S. National Institute of Standards and Technology’s Kibble balance is a
machine that balances the weight of a test mass with the resulting electrical current needed for a force to balance it.

Metric Prefixes
SI units are part of the metric system, which is convenient for scientific and engineering calculations because the units are
categorized by factors of 10. Table  lists the metric prefixes and symbols used to denote various factors of 10 in SI units. For
example, a centimeter is one-hundredth of a meter (in symbols, 1 cm = 10  m) and a kilometer is a thousand meters (1 km = 10
m). Similarly, a megagram is a million grams (1 Mg = 10  g), a nanosecond is a billionth of a second (1 ns = 10  s), and a
terameter is a trillion meters (1 Tm = 10  m).

Table : Metric Prefixes for Powers of 10 and Their Symbols

Prefix Symbol Meaning Prefix Symbol Meaning

yotta- Y 10 yocto- Y 10

zetta- Z 10 zepto- Z 10

exa- E 10 atto- E 10

peta- P 10 femto- P 10

tera- T 10 pico- T 10

giga- G 10 nano- G 10

mega- M 10 micro- M 10

kilo- k 10 milli- k 10

hecto- h 10 centi- h 10

deka- da 10 deci- da 10

The only rule when using metric prefixes is that you cannot “double them up.” For example, if you have measurements in
petameters (1 Pm = 10  m), it is not proper to talk about megagigameters, although 10  x 10  = 10 . In practice, the only time this
becomes a bit confusing is when discussing masses. As we have seen, the base SI unit of mass is the kilogram (kg), but metric
prefixes need to be applied to the gram (g), because we are not allowed to “double-up” prefixes. Thus, a thousand kilograms (10
kg) is written as a megagram (1 Mg) since
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Incidentally, 10  kg is also called a metric ton, abbreviated t. This is one of the units outside the SI system considered acceptable
for use with SI units.

As we see in the next section, metric systems have the advantage that conversions of units involve only powers of 10. There are
100 cm in 1 m, 1000 m in 1 km, and so on. In nonmetric systems, such as the English system of units, the relationships are not as
simple—there are 12 in in 1 ft, 5280 ft in 1 mi, and so on.

Another advantage of metric systems is that the same unit can be used over extremely large ranges of values simply by scaling it
with an appropriate metric prefix. The prefix is chosen by the order of magnitude of physical quantities commonly found in the task
at hand. For example, distances in meters are suitable in construction, whereas distances in kilometers are appropriate for air travel,
and nanometers are convenient in optical design. With the metric system there is no need to invent new units for particular
applications. Instead, we rescale the units with which we are already familiar.

Restate the mass 1.93 x 10  kg using a metric prefix such that the resulting numerical value is bigger than one but less than
1000.

Strategy

Since we are not allowed to “double-up” prefixes, we first need to restate the mass in grams by replacing the prefix symbol k
with a factor of 10  (Table ). Then, we should see which two prefixes in Table  are closest to the resulting power of
10 when the number is written in scientific notation. We use whichever of these two prefixes gives us a number between one
and 1000.

Solution
Replacing the k in kilogram with a factor of 10 , we find that

From Table , we see that 10  is between “peta-” (10 ) and “exa-” (10 ). If we use the “peta-” prefix, then we find that
1.93 × 10  g = 1.93 × 10  Pg, since 16 = 1 + 15. Alternatively, if we use the “exa-” prefix we find that 1.93 x 10  g = 1.93 x
10 Eg, since 16 = −2 + 18. Because the problem asks for the numerical value between one and 1000, we use the “peta-”
prefix and the answer is 19.3 Pg.

Significance

It is easy to make silly arithmetic errors when switching from one prefix to another, so it is always a good idea to check that
our final answer matches the number we started with. An easy way to do this is to put both numbers in scientific notation and
count powers of 10, including the ones hidden in prefixes. If we did not make a mistake, the powers of 10 should match up. In
this problem, we started with 1.93 x 10  kg, so we have 13 + 3 = 16 powers of 10. Our final answer in scientific notation is
1.93 x 10  Pg, so we have 1 + 15 = 16 powers of 10. So, everything checks out.

If this mass arose from a calculation, we would also want to check to determine whether a mass this large makes any sense in
the context of the problem. For this, Figure 1.4 might be helpful.

Restate 4.79 x 10  kg using a metric prefix such that the resulting number is bigger than one but less than 1000.

Answer

Add texts here. Do not delete this text first.

Getting a feeling for sizes
It is useful when solving problems (and in general) to know the approximate value that your final answer should be. To know this,
one needs to know the approximate lengths, masses, and times that exist in our everyday lives. Here is a list to get you started.

kg = × g = g = 1 Mg.103 103 103 106 (1.3.1)

3
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Table : Approximate Values of Length, Mass, and Time

Lengths in meters
Masses in kilograms
(more precise values
in parentheses)

Times in seconds
(more precise values
in parentheses)

10

Present
experimental limit
to smallest
observable detail

10 Mass of an electron 10
Time for light to
cross a proton

10
Diameter of a
proton

10
Mass of a hydrogen
atom

10
Mean life of an
extremely unstable
nucleus

10
Diameter of a
uranium nucleus

10 Mass of a bacterium 10
Time for one
oscillation of visible
light

10
Diameter of a
hydrogen atom

10 Mass of a mosquito 10
Time for one
vibration of an atom
in a solid

10
Thickness of
membranes in cells
of living organisms

10
Mass of a
hummingbird

10
Time for one
oscillation of an FM
radio wave

10
Wavelength of
visible light

1
Mass of a liter of
water (about a
quart)

10
Duration of a nerve
impulse

10
Size of a grain of
sand

10 Mass of a person 1
Time for one
heartbeat

1
Height of a 4-year-
old child

10 Mass of a car 10 One day 

10
Length of a football
field

10 Mass of a large ship 10
One year (y) 

10
Greatest ocean
depth

10
Mass of a large
iceberg

10
About half the life
expectancy of a
human

10
Diameter of the
Earth

10
Mass of the nucleus
of a comet

10 Recorded history

10
Distance from the
Earth to the Sun

10 Mass of the Moon 10 Age of the Earth

10
Distance traveled by
light in 1 year (a
light year)

10 Mass of the Earth 10 Age of the universe

10
Diameter of the
Milky Way galaxy

10 Mass of the Sun

10

Distance from the
Earth to the nearest
large galaxy
(Andromeda)

10
Mass of the Milky
Way galaxy (current
upper limit)
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Lengths in meters
Masses in kilograms
(more precise values
in parentheses)

Times in seconds
(more precise values
in parentheses)

10

Distance from the
Earth to the edges
of the known
universe

10
Mass of the known
universe (current
upper limit)
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1.4: Unit Conversion

Use conversion factors to express the value of a given quantity in different units.

It is often necessary to convert from one unit to another. For example, if you are reading a European cookbook, some quantities
may be expressed in units of liters and you need to convert them to cups. Or perhaps you are reading walking directions from one
location to another and you are interested in how many miles you will be walking. In this case, you may need to convert units of
feet or meters to miles.

Let’s consider a simple example of how to convert units. Suppose we want to convert 80 m to kilometers. The first thing to do is to
list the units you have and the units to which you want to convert. In this case, we have units in meters and we want to convert to
kilometers. Next, we need to determine a conversion factor relating meters to kilometers. A conversion factor is a ratio that
expresses how many of one unit are equal to another unit. For example, there are 12 in. in 1 ft, 1609 m in 1 mi, 100 cm in 1 m, 60 s
in 1 min, and so on. Refer to Appendix B for a more complete list of conversion factors. In this case, we know that there are 1000
m in 1 km. Now we can set up our unit conversion. We write the units we have and then multiply them by the conversion factor so
the units cancel out, as shown:

Note that the unwanted meter unit cancels, leaving only the desired kilometer unit. You can use this method to convert between any
type of unit. Now, the conversion of 80 m to kilometers is simply the use of a metric prefix, as we saw in the preceding section, so
we can get the same answer just as easily by noting that

since “kilo-” means 10  and 1 = −2 + 3. However, using conversion factors is handy when converting between units that are not
metric or when converting between derived units, as the following examples illustrate.

The distance from the university to home is 10 mi and it usually takes 20 min to drive this distance. Calculate the average
speed in meters per second (m/s). (Note: Average speed is distance traveled divided by time of travel.)

Strategy

First we calculate the average speed using the given units, then we can get the average speed into the desired units by picking
the correct conversion factors and multiplying by them. The correct conversion factors are those that cancel the unwanted units
and leave the desired units in their place. In this case, we want to convert miles to meters, so we need to know the fact that
there are 1609 m in 1 mi. We also want to convert minutes to seconds, so we use the conversion of 60 s in 1 min.

Solution
1. Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for

now. Average speed and other motion concepts are covered in later chapters.) In equation form,

2. Substitute the given values for distance and time:

3. Convert miles per minute to meters per second by multiplying by the conversion factor that cancels miles and leave meters,
and also by the conversion factor that cancels minutes and leave seconds:

 Learning Objectives

80 × = 0.080 km.m
1 km

1000 m
(1.4.1)

80 m = 8.0 × m = 8.0 × km = 0.080 km,101 10−2 (1.4.2)

3

 Example : Converting Nonmetric Units to Metric1.4.1

Average speed = .
Distance

T ime

Average speed = = 0.50 .
10 mi

20 min

mi

min
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Significance
Check the answer in the following ways:

1. Be sure the units in the unit conversion cancel correctly. If the unit conversion factor was written upside down, the units do
not cancel correctly in the equation. We see the “miles” in the numerator in 0.50 mi/min cancels the “mile” in the
denominator in the first conversion factor. Also, the “min” in the denominator in 0.50 mi/min cancels the “min” in the
numerator in the second conversion factor.

2. Check that the units of the final answer are the desired units. The problem asked us to solve for average speed in units of
meters per second and, after the cancelations, the only units left are a meter (m) in the numerator and a second (s) in the
denominator, so we have indeed obtained these units.

Light travels about 9 Pm in a year. Given that a year is about 3 x 10  s, what is the speed of light in meters per second?

Answer

Add texts here. Do not delete this text first.

The density of iron is 7.86 g/cm  under standard conditions. Convert this to kg/m .

Strategy

We need to convert grams to kilograms and cubic centimeters to cubic meters. The conversion factors we need are 1 kg = 10  g
and 1 cm = 10 m. However, we are dealing with cubic centimeters (cm  = cm x cm x cm), so we have to use the second
conversion factor three times (that is, we need to cube it). The idea is still to multiply by the conversion factors in such a way
that they cancel the units we want to get rid of and introduce the units we want to keep.

Solution

Significance
Remember, it’s always important to check the answer.

1. Be sure to cancel the units in the unit conversion correctly. We see that the gram (“g”) in the numerator in 7.86 g/cm
cancels the “g” in the denominator in the first conversion factor. Also, the three factors of “cm” in the denominator in 7.86
g/cm  cancel with the three factors of “cm” in the numerator that we get by cubing the second conversion factor.

2. Check that the units of the final answer are the desired units. The problem asked for us to convert to kilograms per cubic
meter. After the cancelations just described, we see the only units we have left are “kg” in the numerator and three factors
of “m” in the denominator (that is, one factor of “m” cubed, or “m ”). Therefore, the units on the final answer are correct.

We know from Figure 1.4 that the diameter of Earth is on the order of 10  m, so the order of magnitude of its surface area is
10  m . What is that in square kilometers (that is, km )? (Try doing this both by converting 10  m to km and then squaring it
and then by converting 10  m  directly to square kilometers. You should get the same answer both ways.)

Answer

Add texts here. Do not delete this text first.

0.50 × × = m/s = 13 m/s.
mile

min

1609 m

1 mile

1 min

60 s

(0.50)(1609)

60

 Exercise 1.4.1
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 Example : Converting between Metric Units1.4.2

3 3

3

−2 3

7.86 × × = kg/ = 7.86 × kg/
g

cm3

kg

103 g
( )

cm

m10−2

3
7.86

( )( )103 10−6
m3 103 m3

3

3

3
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Unit conversions may not seem very interesting, but not doing them can be costly. One famous example of this situation was seen
with the Mars Climate Orbiter. This probe was launched by NASA on December 11, 1998. On September 23, 1999, while
attempting to guide the probe into its planned orbit around Mars, NASA lost contact with it. Subsequent investigations showed a
piece of software called SM_FORCES (or “small forces”) was recording thruster performance data in the English units of pound-
seconds (lb • s). However, other pieces of software that used these values for course corrections expected them to be recorded in the
SI units of newton-seconds (N • s), as dictated in the software interface protocols. This error caused the probe to follow a very
different trajectory from what NASA thought it was following, which most likely caused the probe either to burn up in the Martian
atmosphere or to shoot out into space. This failure to pay attention to unit conversions cost hundreds of millions of dollars, not to
mention all the time invested by the scientists and engineers who worked on the project.

Given that 1 lb (pound) is 4.45 N, were the numbers being output by SM_FORCES too big or too small?

This page titled 1.4: Unit Conversion is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.
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1.5: Dimensional Analysis

Find the dimensions of a mathematical expression involving physical quantities.
Determine whether an equation involving physical quantities is dimensionally consistent.

The dimension of any physical quantity expresses its dependence on the base quantities as a product of symbols (or powers of
symbols) representing the base quantities. Table  lists the base quantities and the symbols used for their dimension. For
example, a measurement of length is said to have dimension L or L , a measurement of mass has dimension M or M , and a
measurement of time has dimension T or T . Like units, dimensions obey the rules of algebra. Thus, area is the product of two
lengths and so has dimension L , or length squared. Similarly, volume is the product of three lengths and has dimension L , or
length cubed. Speed has dimension length over time, L/T or LT . Volumetric mass density has dimension M/L  or ML , or mass
over length cubed. In general, the dimension of any physical quantity can be written as

for some powers a, b, c, d, e, f, and g. We can write the dimensions of a length in this form with a = 1 and the remaining six powers
all set equal to zero:

Any quantity with a dimension that can be written so that all seven powers are zero (that is, its dimension is )
is called dimensionless (or sometimes “of dimension 1,” because anything raised to the zero power is one). Physicists often call
dimensionless quantities pure numbers.

Table : Base Quantities and Their Dimensions

Base Quantity Symbol for Dimension

Length L

Mass M

Time T

Current I

Thermodynamic Temperature

Amount of Substance N

Luminous Intensity J

Physicists often use square brackets around the symbol for a physical quantity to represent the dimensions of that quantity. For
example, if r is the radius of a cylinder and h is its height, then we write [r] = L and [h] = L to indicate the dimensions of the radius
and height are both those of length, or L. Similarly, if we use the symbol A for the surface area of a cylinder and V for its volume,
then [A] = L  and [V] = L . If we use the symbol m for the mass of the cylinder and  for the density of the material from which
the cylinder is made, then [m] = M and [ ] = ML .

The importance of the concept of dimension arises from the fact that any mathematical equation relating physical quantities must
be dimensionally consistent, which means the equation must obey the following rules:

Every term in an expression must have the same dimensions; it does not make sense to add or subtract quantities of differing
dimension (think of the old saying: “You can’t add apples and oranges”). In particular, the expressions on each side of the
equality in an equation must have the same dimensions.
The arguments of any of the standard mathematical functions such as trigonometric functions (such as sine and cosine),
logarithms, or exponential functions that appear in the equation must be dimensionless. These functions require pure numbers
as inputs and give pure numbers as outputs.

 Learning Objectives

1.5.1
1 1

1

2 3

–1 3 –3

LaM bT cI dΘeN fJ g (1.5.1)

= .L1 L1M 0T 0I 0Θ0N 0J 0 (1.5.2)

L0M 0T 0I 0Θ0N 0J 0
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If either of these rules is violated, an equation is not dimensionally consistent and cannot possibly be a correct statement of physical
law. This simple fact can be used to check for typos or algebra mistakes, to help remember the various laws of physics, and even to
suggest the form that new laws of physics might take. This last use of dimensions is beyond the scope of this text, but is something
you will undoubtedly learn later in your academic career.

Suppose we need the formula for the area of a circle for some computation. Like many people who learned geometry too long
ago to recall with any certainty, two expressions may pop into our mind when we think of circles:  and . One expression
is the circumference of a circle of radius r and the other is its area. But which is which?

Strategy

One natural strategy is to look it up, but this could take time to find information from a reputable source. Besides, even if we
think the source is reputable, we shouldn’t trust everything we read. It is nice to have a way to double-check just by thinking
about it. Also, we might be in a situation in which we cannot look things up (such as during a test). Thus, the strategy is to find
the dimensions of both expressions by making use of the fact that dimensions follow the rules of algebra. If either expression
does not have the same dimensions as area, then it cannot possibly be the correct equation for the area of a circle.

Solution
We know the dimension of area is L . Now, the dimension of the expression  is

since the constant  is a pure number and the radius r is a length. Therefore,  has the dimension of area. Similarly, the
dimension of the expression  is

since the constants 2 and  are both dimensionless and the radius r is a length. We see that  has the dimension of length,
which means it cannot possibly be an area.

We rule out  because it is not dimensionally consistent with being an area. We see that  is dimensionally consistent with
being an area, so if we have to choose between these two expressions,  is the one to choose.

Significance
This may seem like kind of a silly example, but the ideas are very general. As long as we know the dimensions of the
individual physical quantities that appear in an equation, we can check to see whether the equation is dimensionally consistent.
On the other hand, knowing that true equations are dimensionally consistent, we can match expressions from our imperfect
memories to the quantities for which they might be expressions. Doing this will not help us remember dimensionless factors
that appear in the equations (for example, if you had accidentally conflated the two expressions from the example into ,
then dimensional analysis is no help), but it does help us remember the correct basic form of equations.

Suppose we want the formula for the volume of a sphere. The two expressions commonly mentioned in elementary discussions
of spheres are  and . One is the volume of a sphere of radius r and the other is its surface area. Which one is the
volume?

Answer

Add texts here. Do not delete this text first.

Consider the physical quantities s, v, a, and t with dimensions [s] = L, [v] = LT , [a] = LT , and [t] = T. Determine whether
each of the following equations is dimensionally consistent:

 Example : Using Dimensions to Remember an Equation1.5.1

πr2 2πr

2 πr2

[π ] = [π]⋅ [r = 1⋅ = ,r2 ]2 L2 L2 (1.5.3)

π πr2

2πr

[2πr] = [2]⋅ [π]⋅ [r] = 1⋅ 1⋅L = L, (1.5.4)

π 2πr

2πr πr2

πr2

2πr2
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a. s = vt + 0.5at ;
b. s = vt  + 0.5at; and
c. v = sin ( ).

Strategy

By the definition of dimensional consistency, we need to check that each term in a given equation has the same dimensions as
the other terms in that equation and that the arguments of any standard mathematical functions are dimensionless.

Solution
a. There are no trigonometric, logarithmic, or exponential functions to worry about in this equation, so we need only look at

the dimensions of each term appearing in the equation. There are three terms, one in the left expression and two in the
expression on the right, so we look at each in turn:

b. Again, there are no trigonometric, exponential, or logarithmic functions, so we only need to look at the dimensions of each
of the three terms appearing in the equation:

None of the three terms has the same dimension as any other, so this is about as far from being dimensionally consistent as you
can get. The technical term for an equation like this is nonsense.

c. This equation has a trigonometric function in it, so first we should check that the argument of the sine function is
dimensionless:

The argument is dimensionless. So far, so good. Now we need to check the dimensions of each of the two terms (that is, the left
expression and the right expression) in the equation:

The two terms have different dimensions—meaning, the equation is not dimensionally consistent. This equation is another
example of “nonsense.”

Significance
If we are trusting people, these types of dimensional checks might seem unnecessary. But, rest assured, any textbook on a
quantitative subject such as physics (including this one) almost certainly contains some equations with typos. Checking
equations routinely by dimensional analysis save us the embarrassment of using an incorrect equation. Also, checking the
dimensions of an equation we obtain through algebraic manipulation is a great way to make sure we did not make a mistake (or
to spot a mistake, if we made one).

Is the equation v = at dimensionally consistent?

Answer

2

2

at2

s

[s] = L (1.5.5)

[vt] = [v]⋅ [t] = L ⋅T = L = LT −1 T 0 (1.5.6)

[0.5a ] = [a]⋅ [t = L ⋅ = L = L.t2 ]2 T −2 T 2 T 0 (1.5.7)

[s] = L (1.5.8)

[v ] = [v]⋅ [t = L ⋅ = LTt2 ]2 T −1 T 2 (1.5.9)

[at] = [a]⋅ [t] = L ⋅T = L .T −2 T −1 (1.5.10)

[ ] = = = = 1.
at2

s

[a]⋅ [t]2

[s]

L ⋅T −2 T 2

L

L

L
(1.5.11)

[v] = LT −1 (1.5.12)

[sin( )] = 1.
at2

s
(1.5.13)
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Add texts here. Do not delete this text first.

One further point that needs to be mentioned is the effect of the operations of calculus on dimensions. We have seen that
dimensions obey the rules of algebra, just like units, but what happens when we take the derivative of one physical quantity with
respect to another or integrate a physical quantity over another? The derivative of a function is just the slope of the line tangent to
its graph and slopes are ratios, so for physical quantities v and t, we have that the dimension of the derivative of v with respect to t
is just the ratio of the dimension of v over that of t:

Similarly, since integrals are just sums of products, the dimension of the integral of v with respect to t is simply the dimension of v
times the dimension of t:

By the same reasoning, analogous rules hold for the units of physical quantities derived from other quantities by integration or
differentiation.

This page titled 1.5: Dimensional Analysis is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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[t]
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1.6: Estimates and Fermi Calculations

Estimate the values of physical quantities.

On many occasions, physicists, other scientists, and engineers need to make estimates for a particular quantity. Other terms
sometimes used are guesstimates, order-of-magnitude approximations, back-of-the-envelope calculations, or Fermi
calculations. (The physicist Enrico Fermi mentioned earlier was famous for his ability to estimate various kinds of data with
surprising precision.) Will that piece of equipment fit in the back of the car or do we need to rent a truck? How long will this
download take? About how large a current will there be in this circuit when it is turned on? How many houses could a proposed
power plant actually power if it is built? Note that estimating does not mean guessing a number or a formula at random. Rather,
estimation means using prior experience and sound physical reasoning to arrive at a rough idea of a quantity’s value. Because the
process of determining a reliable approximation usually involves the identification of correct physical principles and a good guess
about the relevant variables, estimating is very useful in developing physical intuition. Estimates also allow us perform “sanity
checks” on calculations or policy proposals by helping us rule out certain scenarios or unrealistic numbers. They allow us to
challenge others (as well as ourselves) in our efforts to learn truths about the world.

Many estimates are based on formulas in which the input quantities are known only to a limited precision. As you develop physics
problem-solving skills (which are applicable to a wide variety of fields), you also will develop skills at estimating. You develop
these skills by thinking more quantitatively and by being willing to take risks. As with any skill, experience helps. Familiarity with
dimensions (see Table 1.5.1) and units (see Table 1.3.1 and Table 1.3.2), and the scales of base quantities (see Figure 1.2.3) also
helps.

To make some progress in estimating, you need to have some definite ideas about how variables may be related. The following
strategies may help you in practicing the art of estimation:

Get big lengths from smaller lengths. When estimating lengths, remember that anything can be a ruler. Thus, imagine
breaking a big thing into smaller things, estimate the length of one of the smaller things, and multiply to get the length of the
big thing. For example, to estimate the height of a building, first count how many floors it has. Then, estimate how big a single
floor is by imagining how many people would have to stand on each other’s shoulders to reach the ceiling. Last, estimate the
height of a person. The product of these three estimates is your estimate of the height of the building. It helps to have
memorized a few length scales relevant to the sorts of problems you find yourself solving. For example, knowing some of the
length scales in Figure 1.2.3 might come in handy. Sometimes it also helps to do this in reverse—that is, to estimate the length
of a small thing, imagine a bunch of them making up a bigger thing. For example, to estimate the thickness of a sheet of paper,
estimate the thickness of a stack of paper and then divide by the number of pages in the stack. These same strategies of breaking
big things into smaller things or aggregating smaller things into a bigger thing can sometimes be used to estimate other physical
quantities, such as masses and times.
Get areas and volumes from lengths. When dealing with an area or a volume of a complex object, introduce a simple model
of the object such as a sphere or a box. Then, estimate the linear dimensions (such as the radius of the sphere or the length,
width, and height of the box) first, and use your estimates to obtain the volume or area from standard geometric formulas. If you
happen to have an estimate of an object’s area or volume, you can also do the reverse; that is, use standard geometric formulas
to get an estimate of its linear dimensions.
Get masses from volumes and densities. When estimating masses of objects, it can help first to estimate its volume and then
to estimate its mass from a rough estimate of its average density (recall, density has dimension mass over length cubed, so mass
is density times volume). For this, it helps to remember that the density of air is around 1 kg/m , the density of water is 10
kg/m , and the densest everyday solids max out at around 10  kg/m . Asking yourself whether an object floats or sinks in either
air or water gets you a ballpark estimate of its density. You can also do this the other way around; if you have an estimate of an
object’s mass and its density, you can use them to get an estimate of its volume.
If all else fails, bound it. For physical quantities for which you do not have a lot of intuition, sometimes the best you can do is
think something like: Well, it must be bigger than this and smaller than that. For example, suppose you need to estimate the
mass of a moose. Maybe you have a lot of experience with moose and know their average mass offhand. If so, great. But for
most people, the best they can do is to think something like: It must be bigger than a person (of order 10  kg) and less than a car
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(of order 10  kg). If you need a single number for a subsequent calculation, you can take the geometric mean of the upper and
lower bound—that is, you multiply them together and then take the square root. For the moose mass example, this would be

The tighter the bounds, the better. Also, no rules are unbreakable when it comes to estimation. If you think the value of the
quantity is likely to be closer to the upper bound than the lower bound, then you may want to bump up your estimate from the
geometric mean by an order or two of magnitude.
One “sig. fig.” is fine. There is no need to go beyond one significant figure when doing calculations to obtain an estimate. In
most cases, the order of magnitude is good enough. The goal is just to get in the ballpark figure, so keep the arithmetic as
simple as possible.
Ask yourself: Does this make any sense? Last, check to see whether your answer is reasonable. How does it compare with the
values of other quantities with the same dimensions that you already know or can look up easily? If you get some wacky answer
(for example, if you estimate the mass of the Atlantic Ocean to be bigger than the mass of Earth, or some time span to be longer
than the age of the universe), first check to see whether your units are correct. Then, check for arithmetic errors. Then, rethink
the logic you used to arrive at your answer. If everything checks out, you may have just proved that some slick new idea is
actually bogus.

Estimate the total mass of the oceans on Earth.

Strategy

We know the density of water is about 10  kg/m , so we start with the advice to “get masses from densities and volumes.”
Thus, we need to estimate the volume of the planet’s oceans. Using the advice to “get areas and volumes from lengths,” we can
estimate the volume of the oceans as surface area times average depth, or V = AD. We know the diameter of Earth from Figure
1.4 and we know that most of Earth’s surface is covered in water, so we can estimate the surface area of the oceans as being
roughly equal to the surface area of the planet. By following the advice to “get areas and volumes from lengths” again, we can
approximate Earth as a sphere and use the formula for the surface area of a sphere of diameter d—that is, A = , to estimate
the surface area of the oceans. Now we just need to estimate the average depth of the oceans. For this, we use the advice: “If all
else fails, bound it.” We happen to know the deepest points in the ocean are around 10 km and that it is not uncommon for the
ocean to be deeper than 1 km, so we take the average depth to be around (10  x 10 )  ≈ 3 x 10 m. Now we just need to put it
all together, heeding the advice that “one ‘sig. fig.’ is fine.”

Solution
We estimate the surface area of Earth (and hence the surface area of Earth’s oceans) to be roughly

Next, using our average depth estimate of D = 3 x 10 m, which was obtained by bounding, we estimate the volume of Earth’s
oceans to be

Last, we estimate the mass of the world's oceans to be

Thus, we estimate that the order of magnitude of the mass of the planet’s oceans is 10  kg.

Significance
To verify our answer to the best of our ability, we first need to answer the question: Does this make any sense? From Figure
1.4, we see the mass of Earth’s atmosphere is on the order of 10  kg and the mass of Earth is on the order of 10  kg. It is
reassuring that our estimate of 10  kg for the mass of Earth’s oceans falls somewhere between these two. So, yes, it does seem
to make sense. It just so happens that we did a search on the Web for “mass of oceans” and the top search results all said 1.4 x
10  kg, which is the same order of magnitude as our estimate. Now, rather than having to trust blindly whoever first put that
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= = × ≈ 3 × kg.( × )102 103 0.5
102.5 100.5 102 102 (1.6.1)

 Example : Mass of Earth’s Oceans1.6.1

3 3

πd2

3 4 0.5 3

A = π = π ≈ 3 × .d2 ( m)107 2
1014 m2 (1.6.2)

3

V = AD = (3 × ) (3 × m) = 9 × .1014 m2 103 1017m3 (1.6.3)

M = ρV = ( kg/ ) (9 × ) = 9 × kg.103 m3 1017 m3 1020 (1.6.4)

21

19 25

21

21

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/86203?pdf


1.6.3 https://phys.libretexts.org/@go/page/86203

number up on a website (most of the other sites probably just copied it from them, after all), we can have a little more
confidence in it.

Figure 1.4 says the mass of the atmosphere is 10  kg. Assuming the density of the atmosphere is 1 kg/m , estimate the height
of Earth’s atmosphere. Do you think your answer is an underestimate or an overestimate? Explain why.

How many piano tuners are there in New York City? How many leaves are on that tree? If you are studying photosynthesis or
thinking of writing a smartphone app for piano tuners, then the answers to these questions might be of great interest to you.
Otherwise, you probably couldn’t care less what the answers are. However, these are exactly the sorts of estimation problems that
people in various tech industries have been asking potential employees to evaluate their quantitative reasoning skills. If building
physical intuition and evaluating quantitative claims do not seem like sufficient reasons for you to practice estimation problems,
how about the fact that being good at them just might land you a high-paying job?

For practice estimating relative lengths, areas, and volumes, check out this PhET simulation, titled “Estimation.”

This page titled 1.6: Estimates and Fermi Calculations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

1.6: Estimates and Fermi Calculations by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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1.E: Exercises

Conceptual Questions

1.2 Modeling in Physics
1. What is physics?
2. Some have described physics as a “search for simplicity.” Explain why this might be an appropriate description.
3. If two different theories describe experimental observations equally well, can one be said to be more valid than the other

(assuming both use accepted rules of logic)?
4. What determines the validity of a theory?
5. Certain criteria must be satisfied if a measurement or observation is to be believed. Will the criteria necessarily be as strict for

an expected result as for an unexpected result?
6. Can the validity of a model be limited or must it be universally valid? How does this compare with the required validity of a

theory or a law?

1.3 Units and Standards
7. Identify some advantages of metric units.
8. What are the SI base units of length, mass, and time?
9. What is the difference between a base unit and a derived unit? (b) What is the difference between a base quantity and a derived

quantity? (c) What is the difference between a base quantity and a base unit?
10. For each of the following scenarios, refer to Figure 1.4 and Table 1.2 to determine which metric prefix on the meter is most

appropriate for each of the following scenarios. (a) You want to tabulate the mean distance from the Sun for each planet in the
solar system. (b) You want to compare the sizes of some common viruses to design a mechanical filter capable of blocking the
pathogenic ones. (c) You want to list the diameters of all the elements on the periodic table. (d) You want to list the distances to
all the stars that have now received any radio broadcasts sent from Earth 10 years ago.

Problems

1.3 Units and Standards

For the remaining questions, you need to use Figure 1.4 to obtain the necessary orders of magnitude of lengths, masses, and times.

1. Find the order of magnitude of the following physical quantities.
a. The mass of Earth’s atmosphere: 5.1 × 10  kg;
b. The mass of the Moon’s atmosphere: 25,000 kg;
c. The mass of Earth’s hydrosphere: 1.4 × 10  kg;
d. The mass of Earth: 5.97 × 10  kg;
e. The mass of the Moon: 7.34 × 10  kg;
f. The Earth–Moon distance (semi-major axis): 3.84 × 10 m;
g. The mean Earth–Sun distance: 1.5 × 10 m;
h. The equatorial radius of Earth: 6.38 × 10 m;
i. The mass of an electron: 9.11 × 10  kg;
j. The mass of a proton: 1.67 × 10  kg;
k. The mass of the Sun: 1.99 × 10  kg.

2. Use the orders of magnitude you found in the previous problem to answer the following questions to within an order of
magnitude.
a. How many electrons would it take to equal the mass of a proton?
b. How many Earths would it take to equal the mass of the Sun?
c. How many Earth–Moon distances would it take to cover the distance from Earth to the Sun?
d. How many Moon atmospheres would it take to equal the mass of Earth’s atmosphere?
e. How many moons would it take to equal the mass of Earth?
f. How many protons would it take to equal the mass of the Sun?

3. Roughly how many heartbeats are there in a lifetime?
4. A generation is about one-third of a lifetime. Approximately how many generations have passed since the year 0 AD?
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5. Roughly how many times longer than the mean life of an extremely unstable atomic nucleus is the lifetime of a human?
6. Calculate the approximate number of atoms in a bacterium. Assume the average mass of an atom in the bacterium is 10 times

the mass of a proton.
7. (a) Calculate the number of cells in a hummingbird assuming the mass of an average cell is 10 times the mass of a bacterium.

(b) Making the same assumption, how many cells are there in a human?
8. Assuming one nerve impulse must end before another can begin, what is the maximum firing rate of a nerve in impulses per

second?
9. About how many floating-point operations can a supercomputer perform each year?

10. Roughly how many floating-point operations can a supercomputer perform in a human lifetime?
11. The following times are given using metric prefixes on the base SI unit of time: the second. Rewrite them in scientific notation

without the prefix. For example, 47 Ts would be rewritten as 4.7 × 10  s.
a. 980 Ps;
b. 980 fs;
c. 17 ns;
d. 577 µs.

12. The following times are given in seconds. Use metric prefixes to rewrite them so the numerical value is greater than one but less
than 1000. For example, 7.9 × 10  s could be written as either 7.9 cs or 79 ms.

a. 9.57 × 10  s;
b. 0.045 s;
c. 5.5 × 10  s;
d. 3.16 × 10  s.

13. The following lengths are given using metric prefixes on the base SI unit of length: the meter. Rewrite them in scientific
notation without the prefix. For example, 4.2 Pm would be rewritten as 4.2 × 10 m.
a. 89 Tm;
b. 89 pm;
c. 711 mm;
d. 0.45 µm.

14. The following lengths are given in meters. Use metric prefixes to rewrite them so the numerical value is bigger than one but less
than 1000. For example, 7.9 × 10  m could be written either as 7.9 cm or 79 mm.
a. 7.59 × 10 m;
b. 0.0074 m;
c. 8.8 × 10 m;
d. 1.63 × 10 m.

15. The following masses are written using metric prefixes on the gram. Rewrite them in scientific notation in terms of the SI base
unit of mass: the kilogram. For example, 40 Mg would be written as 4 × 10  kg.
a. 23 mg;
b. 320 Tg;
c. 42 ng;
d. 7 g;
e. 9 Pg.

16. The following masses are given in kilograms. Use metric prefixes on the gram to rewrite them so the numerical value is bigger
than one but less than 1000. For example, 7 × 10−4 kg could be written as 70 cg or 700 mg.
a. 3.8 × 10−5 kg;
b. 2.3 × 1017 kg;
c. 2.4 × 10−11 kg;
d. 8 × 1015 kg;
e. 4.2 × 10−3 kg.
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1.4 Unit Conversion
17. The volume of Earth is on the order of 10  m . (a) What is this in cubic kilometers (km )? (b) What is it in cubic miles (mi )?

(c) What is it in cubic centimeters (cm )?
18. The speed limit on some interstate highways is roughly 100 km/h. (a) What is this in meters per second? (b) How many miles

per hour is this?
19. A car is traveling at a speed of 33 m/s. (a) What is its speed in kilometers per hour? (b) Is it exceeding the 90 km/ h speed limit?
20. In SI units, speeds are measured in meters per second (m/s). But, depending on where you live, you’re probably more

comfortable of thinking of speeds in terms of either kilometers per hour (km/h) or miles per hour (mi/h). In this problem, you
will see that 1 m/s is roughly 4 km/h or 2 mi/h, which is handy to use when developing your physical intuition. More precisely,
show that (a) 1.0 m/s = 3.6 km/h and (b) 1.0 m/s = 2.2 mi/h.

21. American football is played on a 100-yd-long field, excluding the end zones. How long is the field in meters? (Assume that 1 m
= 3.281 ft.)

22. Soccer fields vary in size. A large soccer field is 115 m long and 85.0 m wide. What is its area in square feet? (Assume that 1 m
= 3.281 ft.)

23. What is the height in meters of a person who is 6 ft 1.0 in. tall?
24. Mount Everest, at 29,028 ft, is the tallest mountain on Earth. What is its height in kilometers? (Assume that 1 m = 3.281 ft.)
25. The speed of sound is measured to be 342 m/s on a certain day. What is this measurement in kilometers per hour?
26. Tectonic plates are large segments of Earth’s crust that move slowly. Suppose one such plate has an average speed of 4.0 cm/yr.

(a) What distance does it move in 1.0 s at this speed? (b) What is its speed in kilometers per million years?
27. The average distance between Earth and the Sun is 1.5 × 10 m. (a) Calculate the average speed of Earth in its orbit (assumed

to be circular) in meters per second. (b) What is this speed in miles per hour?
28. The density of nuclear matter is about 10  kg/m . Given that 1 mL is equal in volume to cm , what is the density of nuclear

matter in megagrams per microliter (that is, Mg/µL)?
29. The density of aluminum is 2.7 g/cm . What is the density in kilograms per cubic meter?
30. A commonly used unit of mass in the English system is the pound-mass, abbreviated lbm, where 1 lbm = 0.454 kg. What is the

density of water in pound-mass per cubic foot?
31. A furlong is 220 yd. A fortnight is 2 weeks. Convert a speed of one furlong per fortnight to millimeters per second.
32. It takes  radians (rad) to get around a circle, which is the same as 360°. How many radians are in 1°?
33. Light travels a distance of about 3 × 10 m/s. A light-minute is the distance light travels in 1 min. If the Sun is 1.5 × 10 m

from Earth, how far away is it in lightminutes?
34. A light-nanosecond is the distance light travels in 1 ns. Convert 1 ft to light-nanoseconds.
35. An electron has a mass of 9.11 × 10  kg. A proton has a mass of 1.67 × 10  kg. What is the mass of a proton in electron-

masses?
36. A fluid ounce is about 30 mL. What is the volume of a 12 fl-oz can of soda pop in cubic meters?

1.5 Dimensional Analysis
37. A student is trying to remember some formulas from geometry. In what follows, assume A is area, V is volume, and all other

variables are lengths. Determine which formulas are dimensionally consistent. (a) V = ; (b) A = ; (c) V =
0.5bh; (d) V =  ; (e) V = 

38. Consider the physical quantities s, v, a, and t with dimensions [s] = L, [v] = LT , [a] = LT , and [t] = T. Determine whether
each of the following equations is dimensionally consistent. (a) v  = 2as; (b) s = vt  + 0.5at ; (c) v = s/t; (d) a = v/t.

39. Consider the physical quantities m, s, v, a, and t with dimensions [m] = M, [s] = L, [v] = LT , [a] = LT , and [t] = T. Assuming
each of the following equations is dimensionally consistent, find the dimension of the quantity on the left-hand side of the
equation: (a) F = ma; (b) K = 0.5mv  ; (c) p = mv; (d) W = mas; (e) L = mvr.

40. Suppose quantity s is a length and quantity t is a time. Suppose the quantities v and a are defined by v = ds/dt and a = dv/dt. (a)
What is the dimension of v? (b) What is the dimension of the quantity a? What are the dimensions of (c) vdt, (d) adt, and (e)
da/dt?

41. Suppose [V] = L3 , [ρ] = ML , and [t] = T. (a) What is the dimension of dV ? (b) What is the dimension of dV/dt? (c) What
is the dimension of (dV/dt)?

42. The arc length formula says the length s of arc subtended by angle  in a circle of radius r is given by the equation s = r .
What are the dimensions of (a) s, (b) r, and (c) ?

21 3 3 3

3

11 

18 3 3

3

2π
8 11 

−31 −27

π hr2 2π +2πrhr2

πd2 πd3

6
−1 −2

2 2 2

–1 –2

2

∫ ∫

–3 ∫ ρ
ρ

Θ Θ

Θ

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/86172?pdf


1.E.4 https://phys.libretexts.org/@go/page/86172

1.6 Estimates and Fermi Calculations
43. Assuming the human body is made primarily of water, estimate the volume of a person.
44. Assuming the human body is primarily made of water, estimate the number of molecules in it. (Note that water has a molecular

mass of 18 g/mol and there are roughly 10  atoms in a mole.)
45. Estimate the mass of air in a classroom.
46. Estimate the number of molecules that make up Earth, assuming an average molecular mass of 30 g/mol. (Note there are on the

order of 10  objects per mole.)
47. Estimate the surface area of a person.
48. Roughly how many solar systems would it take to tile the disk of the Milky Way?
49. (a) Estimate the density of the Moon. (b) Estimate the diameter of the Moon. (c) Given that the Moon subtends at an angle of

about half a degree in the sky, estimate its distance from Earth.
50. The average density of the Sun is on the order 10  kg/ m . (a) Estimate the diameter of the Sun. (b) Given that the Sun subtends

at an angle of about half a degree in the sky, estimate its distance from Earth. 64. Estimate the mass of a virus.
51. A floating-point operation is a single arithmetic operation such as addition, subtraction, multiplication, or division. (a) Estimate

the maximum number of floating-point operations a human being could possibly perform in a lifetime. (b) How long would it
take a supercomputer to perform that many floating-point operations?

52. Calculate the approximate mass and volume (both in SI units) of ketchup that your college uses every year (assume water’s
density of 1,000 kg/m )? Be sure to state all assumptions and be explicit in your calculations.

Challenge Problems
53. The first atomic bomb was detonated on July 16, 1945, at the Trinity test site about 200 mi south of Los Alamos. In 1947, the

U.S. government declassified a film reel of the explosion. From this film reel, British physicist G. I. Taylor was able to
determine the rate at which the radius of the fireball from the blast grew. Using dimensional analysis, he was then able to
deduce the amount of energy released in the explosion, which was a closely guarded secret at the time. Because of this, Taylor
did not publish his results until 1950. This problem challenges you to recreate this famous calculation.
a. Using keen physical insight developed from years of experience, Taylor decided the radius r of the fireball should depend

only on time since the explosion, t, the density of the air, ρ, and the energy of the initial explosion, E. Thus, he made the
educated guess that  for some dimensionless constant k and some unknown exponents a, b, and c. Given that
[E] = ML T , determine the values of the exponents necessary to make this equation dimensionally consistent. (Hint:
Notice the equation implies that  and that [k] = 1.)

b. By analyzing data from high-energy conventional explosives, Taylor found the formula he derived seemed to be valid as
long as the constant k had the value 1.03. From the film reel, he was able to determine many values of r and the
corresponding values of t. For example, he found that after 25.0 ms, the fireball had a radius of 130.0 m. Use these values,
along with an average air density of 1.25 kg/m , to calculate the initial energy release of the Trinity detonation in joules (J).
(Hint: To get energy in joules, you need to make sure all the numbers you substitute in are expressed in terms of SI base
units.) (c) The energy released in large explosions is often cited in units of “tons of TNT” (abbreviated “t TNT”), where 1 t
TNT is about 4.2 GJ. Convert your answer to (b) into kilotons of TNT (that is, kt TNT). Compare your answer with the
quick-and-dirty estimate of 10 kt TNT made by physicist Enrico Fermi shortly after witnessing the explosion from what was
thought to be a safe distance. (Reportedly, Fermi made his estimate by dropping some shredded bits of paper right before the
remnants of the shock wave hit him and looked to see how far they were carried by it.)

Contributors and Attributions

Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing
authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

This page titled 1.E: Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content
that was edited to the style and standards of the LibreTexts platform.

1.E: Units and Measurement (Exercises) has no license indicated. Original source: https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-013-electromagnetics-and-applications-spring-2009.

24

24

3 3

3

r = kEaρbtc

2 –2

k = rE−aρ−bt−c

3

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/86172?pdf
http://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/01%3A_C1)_Abstraction_and_Modeling/1.E%3A_Exercises
https://creativecommons.org/licenses/by/4.0
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-1
https://phys.libretexts.org/@go/page/8772
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-013-electromagnetics-and-applications-spring-2009


1

CHAPTER OVERVIEW

2: C2) Particles and Interactions
2.1: Inertia
2.2: Momentum
2.3: Force and Impulse
2.4: Examples
2.5: Particles and Interactions (Exercises)

In this chapter we will study particles and interactions. We will make our first step into the abstraction of the real world by
replacing any objects we want to describe with points. As we talked about in the last chapter, this is to make things not only 1)
simpler, but more importantly 2) mathematical well-defined. The way this works with points is dead simple - take a real object,
made up of many (essentially an infinite number of) points, and pick one of it's point to represent the entire thing. This is now well-
defined because we can now talk about the position  of the object as being exactly the position of the points. And it's far simpler,
since we are only dealing with a single point instead of innumerably many.

So after we have a bunch of points, what then? Well, we want to understand the interactions between the points (remember, that
was one of the ways we described what physics is - the study of these interactions). While we might be tempted to call these
interactions "forces", in many cases the forces acting on a particular object are relatively complicated. So first, we are actually
going to choose the simplist possible interaction between two objects we can consider - a collision. This is simply when one object
comes into contact with another, changing the motion of both.

So what can happen in such a collision? Well, the position  and the velocity  of either object can change - and that's kind of it,
since our objects are just points! The points might have masses, for sure, but for now we are going to assume these masses don't
change. (Consider a two-car collision - for sure, some mass is moved back and forth if the collision is bad enough, but generally the
two cars keep all their points within each other and don't exchange them.) But how does (for example) the velocity change when
the objects interact? It turns out that the velocity is actually not the thing that tells us what happens when two objects collide, it's
actually the product of the mass and the velocity, the momentum . It's pretty intuitive that both the mass and the velocity
have to play a role here, since a heavy object hitting a light object is going to be different from two light objects hitting each other.
This brings us to our first real principle of physics we are going to study:

Objects interact by transferring momentum

Although this statement seems quite trivial, it actually allows us to perform our first calculations. Consider a collision between two
points, each of mass 1 kg, and let's say one of the objects is at rest, while the other is moving towards the first at a speed of 10 m/s.
That means the first object has a momentum of 10 kg m/s, while the second has zero (since it's not moving). After they collide, let's
say the second object moved away at a speed of 2 m/s. That means it gained 2 kg m/s of momentum...and based on our principle of
momentum transfer, the first object must have lost that same 2 kg m/s, leaving it with 8 kg m/s. But that also means we know how
fast the object is moving after the collision - since it's mass is 1 kg, it's moving at 8 m/s! This simple example gives us all the
essential concepts we are going to be studying not just for this chapter, but for the entire first half of the text.

A brief final note - we didn't really consider anything about the directions that the two objects moved in that example, because it
was pretty clear they were moving in a straight line. However, some quantities in physics carry direction, like velocity  and
position  - what about momentum? Well, we defined momentum with a particular formula, . Velocity carries direction, but
mass does not, so the momentum will be in the same direction as the velocity. This makes perfect sense with our momentum
transfer principle above as well - an object with a particular momentum  in a particular direction will transfer that same
momentum to the other object, in the same direction.

This chapter is dedicated to a conceptual understanding of this principle - not that there are no calculations, but we are going to be a
little careless with things like vectors and directions. We first want to be sure we get some of the conceptual ideas surrounding
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momentum transfer, and in later chapters we will add in the mathematical formalism required to handle the directions - and all
kinds of other interesting collisions!

2: C2) Particles and Interactions is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College.
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2.1: Inertia
In everyday language, we speak of something or someone “having a large inertia” to mean, essentially, that they are very difficult
to set in motion. We do know, from experience, that lighter objects are easier to set in motion than heavier objects, but most of us
probably have an intuition that gravity (the force that pulls an object towards the earth and hence determines its weight) is not
involved in an essential way here. Imagine, for instance, the difference between slapping a volleyball and a bowling ball. It is not
hard to believe that the latter would hurt as much if we did it while floating in free fall in the space station (in a state of effective
“weightlessness”) as if we did it right here on the surface of the earth. In other words, it is not (necessarily) how heavy something
feels, but just how massive it is.

But just what is this “massiveness” quality that we associate intuitively with a large inertia? Is there a way (other than resorting to
the weight again) to assign to it a numerical value?

2.1.1: Relative Inertia and Collisions
One possible way to determine the relative inertias of two objects, conceptually, at least, is to try to use one of them to set the other
one in motion. Most of us are familiar with what happens when two identical objects (presumably, therefore, having the same
inertia) collide: if the collision is head-on (so the motion, before and after, is confined to a straight line), they basically exchange
velocities. For instance, a billiard ball hitting another one will stop dead and the second one will set off with the same speed as the
first one. The toy sometimes called “Newton’s balls” or “Newton’s cradle” also shows this effect. Intuitively, we understand that
what it takes to stop the first ball is exactly the same as it would take to set the second one in motion with the same velocity.

But what if the objects colliding have different inertias? We expect that the change in their velocities as a result of the collision will
be different: the velocity of the object with the largest inertia will not change very much, and conversely, the change in the velocity
of the object with the smallest inertia will be comparatively larger. A velocity vs. time graph for the two objects might look
somewhat like the one sketched in Figure .

Figure : An example of a velocity vs. time graph for a collision of two objects with different inertias.

In this picture, object 1, initially moving with velocity  = 1 m/s, collides with object 2, initially at rest. After the collision, which
here is assumed to take a millisecond or so, object 1 actually bounces back, so its final velocity is  = −1/3 m/s, whereas object 2

ends up moving to the right with velocity  = 2/3 m/s. So the change in the velocity of object 1 is  = −4/3 m/s,

whereas for object 2 we have  = 2/3 m/s. (Note: The small arrows above the velocity variables are simply
indications that velocity is a "vector", which means it has a magnitude and a direction. We will discuss this more later, but for now
just know that is what it stands for.)

It is tempting to use this ratio, , as a measure of the relative inertia of the two objects, only we’d want to use it upside

down and with the opposite sign: that is, since  = −1/2 we would say that object 2 has twice the inertia of object 1.
(Actually, it makes more sense to take the absolute value of each, but this will work for now.) But then we have to ask: is this a
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reliable, repeatable measure? Will it work for any kind of collision (within reason, of course: we clearly need to stay in one
dimension, and eliminate external influences such as friction), and for any initial velocity?

To begin with, we have reason to expect that it does not matter whether we shoot object 1 towards object 2 or object 2 towards
object 1, because (as we will learn later)only relative motion is detectable, and the relative motion is the same in both cases.
Consider, for instance, what the collision in Figure  appears like to a hypothetical observer moving along with object 1, at 1
m/s. To him, object 1 appears to be at rest, and it is object 2 that is coming towards him, with a velocity of −1 m/s. To see what the
outcome of the collision looks like to him, just add the same −1 m/s to the final velocities we obtained before: object 1 will end up

moving at  = −4/3 m/s, and object 2 would move at  = −1/3 m/s, and we would have a situation like the one shown in Figure 
, where both curves have simply been shifted down by 1 m/s:

Figure : Another example (really the same collision as in Figure , only as seen by an observer initially moving to the
right at 1 m/s).

But then, this is exactly what we should expect to find also in our laboratory if we actually did send the second object at 1 m/s
towards the first one sitting at rest. All the individual velocities have changed relative to Figure , but the velocity changes, 

 and , are clearly still the same, and therefore so is our (tentative) measure of the objects’ relative inertia.

Clearly, the same argument can be used to conclude that the same result will be obtained when both objects are initially moving
towards each other, as long as their relative velocity is the same as in these examples, namely, 1 m/s. However, unless we do the
experiments we cannot really predict what will happen if we increase (or decrease) their relative velocity. In fact, we could imagine
smashing the two objects at very high speed, so they might even become seriously mangled in the process. Yet, experimentally (and

this is not at all an obvious result!), we would still find the same value of −1/2 for the ratio , at least as long as the
collision is not so violent that the objects actually break up into pieces.

Perhaps the most surprising result of our experiments would be the following: imagine that the objects have a “sticky” side (for
instance, the small black rectangles shown in the pictures could be strips of Velcro), and we turn them around so that when they
collide they will end up stuck to each other. In this case (which, as we shall see later, is termed a completely inelastic collision),
the -vs-  graph might look like Figure  below.

Now the two objects end up moving together to the right, fairly slowly:  = 1/3 m/s. The velocity changes are  = −2/3

m/s and  = 1/3 m/s, both of which are different from what they were before, in Figs.  and : yet, the ratio 

is still equal to −1/2, just as in all the previous cases.
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Figure  became stuck together when they collided.

2.1.2: Inertial Mass: Definition and Properties
At this point, it would seem reasonable to assume that this ratio, , is, in fact, telling us something about an intrinsic
property of the two objects, what we have called above their “relative inertia.” It is easy, then, to see how one could assign a value
to the inertia of any object (at least, conceptually): choose a “standard” object, and decide, arbitrarily, that its inertia will have the
numerical value of 1, in whichever units you choose for it (these units will turn out, in fact, to be kilograms, as you will see in a
minute). Then, to determine the inertia of another object, which we will label with the subscript 1, just arrange a one-dimensional
collision between object 1 and the standard, under the right conditions (basically, no net external forces), measure the velocity
changes  and , and take the quantity  as the numerical value of the ratio of the inertia of object 1 to the inertia
of the standard object. In symbols, using the letter  to represent an object’s inertia,

But, since  = 1 by definition, this gives us directly the numerical value of .

The reason we use the letter  is, as you must have guessed, because, in fact, the inertia defined in this way turns out to be
identical to what we have traditionally called “mass.” More precisely, the quantity defined this way is an object’s inertial mass. The
remarkable fact that the force of gravity between two objects turns out to be proportional to their inertial masses, allows us to
determine the inertial mass of an object by the more traditional procedure of simply weighing it, rather than elaborately staging a
collision between it and the standard kilogram on an ice-hockey rink. But, in principle, we could conceive of the existence of two
different quantities that should be called “inertial mass” and “gravitational mass,” and the identity (or more precisely, the—so far as
we know—exact proportionality) of the two is a rather mysterious experimental fact .

In any case, by the way we have constructed it, the inertial mass, defined as in Equation ( ), does capture, in a quantitative way,
the concept that we were trying to express at the beginning of the chapter: namely, how difficult it may be to set an object in
motion. In principle, however, other experiments would need to be conducted to make sure that it does have the properties we have
traditionally associated with the concept of mass. For instance, suppose we join together two objects of mass . Is the mass of the
resulting object ? Collision experiments would, indeed, show this to be the case with great accuracy in the macroscopic world
(with which we are concerned this semester), but this is a good example of how you cannot take anything for granted: at the
microscopic level, it is again a fact that the inertial mass of an atomic nucleus is a little less than the sum of the masses of all its
constituent protons and neutrons .

Probably the last thing that would need to be checked is that the ratio of inertias is independent of the standard. Suppose that we
have two objects, to which we have assigned masses  and  by arranging for each to collide with the “standard object”
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independently. If we now arrange for a collision between objects 1 and 2 directly, will we actually find that the ratio of their
velocity changes is given by the ratio of the separately determined masses  and ? We certainly would need that to be the
case, in order for the concept of inertia to be truly useful; but again, we should not assume anything until we have tested it!
Fortunately, the tests would indeed reveal that, in every case, the expected relationship holds

At this point, we are not just in possession of a useful definition of inertia, but also of a veritable law of nature, as I will explain
next.

This fact, elevated to the category of a principle by Einstein (the equivalence principle) is the starting point of the general theory
of relativity. 
And this is not just an unimportant bit of trivia: all of nuclear power depends on this small difference. 
Equation  actually is found to hold also at the microscopic (or quantum) level, although there we prefer to state the result by

saying that conservation of momentum holds (see the following section).

This page titled 2.1: Inertia is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-Banacloche
(University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

3.1: Inertia by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.

m1 m2

3

− = .
Δv2

→

Δv1

→
m1

m2
(2.1.2)

1

2

3 2.1.2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85767?pdf
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/02%3A_C2)_Particles_and_Interactions/2.01%3A_Inertia
https://creativecommons.org/licenses/by-sa/4.0
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://libraries.uark.edu/
https://scholarworks.uark.edu/oer/3
https://phys.libretexts.org/@go/page/22211
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://creativecommons.org/licenses/by-sa/4.0/
https://scholarworks.uark.edu/oer/3


2.2.1 https://phys.libretexts.org/@go/page/85768

2.2: Momentum
For an object of (inertial) mass  moving, in one dimension, with velocity , we define its momentum as

(the choice of the letter  for momentum is apparently related to the Latin word “impetus”).

We can think of momentum as a sort of extension of the concept of inertia, from an object at rest to an object in motion. When we
speak of an object’s inertia, we typically think about what it may take to get it moving; when we speak of its momentum, we
typically think of that it may take to stop it (or perhaps deflect it). So, both the inertial mass  and the velocity  are involved in
the definition.

We may also observe that what looks like inertia in some reference frame may look like momentum in another. For instance, if you
are driving in a car towing a trailer behind you, the trailer has only a large amount of inertia, but no momentum, relative to you,
because its velocity relative to you is zero; however, the trailer definitely has a large amount of momentum (by virtue of both its
inertial mass and its velocity) relative to somebody standing by the side of the road.

2.2.1: Conservation of Momentum; Isolated Systems
For a system of objects, we treat the momentum as an additive quantity. So, if two colliding objects, of masses  and , have
initial velocities  and , we say that the total initial momentum of the system is , and similarly if the final
velocities are  and , the total final momentum will be .

We then assert that the total momentum of the system is not changed by the collision. Mathematically, this means

or

But this last equation, in fact, follows directly from Equation (2.1.2): to see this, move all the quantities in Equation ( ) having
to do with object 1 to one side of the equal sign, and those having to do with object 2 to the other side. You then get

which is just another way to write Equation (2.1.2). Hence, the result (2.1.2) ensures the conservation of the total momentum of a
system of any two interacting objects (“particles”), regardless of the form the interaction takes, as long as there are no external
forces acting on them.

Momentum conservation is one of the most important principles in all of physics, so let me take a little time to explain how we got
here and elaborate on this result. First, as I just mentioned, we have been more or less implicitly assuming that the two interacting
objects form an isolated system, by which we mean that, throughout, they interact with nothing other than each other.
(Equivalently, there are no external forces acting on them.)

It is pretty much impossible to set up a system so that it is really isolated in this strict sense; instead, in practice, we settle for
making sure that the external forces on the two objects cancel out. This is what happens on the air tracks with which you will be
doing experiments this semester: gravity is acting on the carts, but that force is balanced out by the upwards push of the air from
the track. A system on which there is no net external force is as good as isolated for practical purposes, and we will refer to it as
such. (It is harder, of course, to completely eliminate friction and drag forces, so we just have to settle for approximately isolated
systems in practice.)

Secondly, we have assumed so far that the motion of the two objects is restricted to a straight line—one dimension. In fact,
momentum is a vector quantity (just like velocity is), which is why we have been writing the previous equations with the small
arrows over them.

Conservation of momentum, in general, holds as a vector equation for any isolated system in three dimensions:
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What this means, in turn, is that each separate component ( ,  and ) of the momentum will be separately conserved (so Equation
( ) is equivalent to three scalar equations, in three dimensions).

Thirdly, although this may not be immediately obvious, for an isolated system of two colliding objects the momentum is truly
conserved throughout the whole collision process. It is not just a matter of comparing the initial and final velocities: at any of the
times shown in Figures 2.1.1, 2.1.2, or 2.1.3, if we were to measure  and  and compute , we would obtain the
same result. In other words, the total momentum of an isolated system is constant: it has the same value at all times.

Finally, all these examples have involved interactions between only two particles. Can we really generalize this to conclude that the
total momentum of an isolated system of any number of particles is constant, even when all the particles may be interacting with
each other simultaneously? Here, again, the experimental evidence is overwhelmingly in favor of this hypothesis , but much of our
confidence on its validity comes in fact from a consideration of the nature of the internal interactions themselves. It is a
mathematical fact that all of the interactions so far known to physics have the property of conserving momentum, whether acting
individually or simultaneously. No experiments have ever suggested the existence of an interaction that does not have this property.

For an important piece of indirect evidence, just consider that any extended object is in reality a collection of interacting particles,
and the experiments establishing conservation of momentum almost always involve such extended objects. See the following
section for further thoughts on this matter.

This page titled 2.2: Momentum is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-Banacloche
(University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

3.2: Momentum by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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2.3: Force and Impulse
We have already seen how we can think of interacting objects as objects that transfer momentum between each other. We've written
this transfer of momentum as , and we've discussed how this momentum cannot be lost (a phenomena known as conservation);
if one object gains , the object that it's interacting with must have lost that same amount of momentum. For a two-object system,
that means precisely that .

Fundamentally, you can imagine momentum as a "currency" that is constantly being exchanged between objects. When two objects
interact, one object can gain momentum only by the other losing momentum. There is no way to create "new"
momentum. (Unfortunately, in my experience, this is also true with money. I have not yet found a way to increase the amount I
have without getting it from some other person or entity.)

We often give a name to the momentum that is exchanged between two objects. It is called "impulse". If object A interacts with
object B, A might have a change in momentum,  that it has received from object B. This value is the "impulse" that object A
has received. We know from conservation of momentum (and our currency analogy) that B will also receive an impulse,  , that
is equal to  . ( ).

But of course we know that this is not the only way to describe interacting objects - in fact, perhaps the most intuitive way to
describe two objects interacting is actually using a force between them. We are going to talk a lot more about forces in the second
half of the this book, but right now we just want to acknowledge that if interactions can be described with either forces or
momentum transfer, there must be some relationship between these two quantities. In fact, the relationship can be made concrete
once you know the time period  over which the interaction occurs.

Specifically, if you have a change in momentum  (also called an "impulse") resulting from an interaction that happens over a
time period , we can associate a force with this interaction via

Notice that this definition only really works for an average force , since we are talking about the changes in time being
possibly relatively large. If the change in time is very small (in the sense of an infinitesimal  from calculus), we can actually
write

for the instantaneous force, which is the usual notion of force we are used to (this relationship can also be derived from Newton's
second law).

All of the above is a perfectly fine description of a force that does not depend on time, which is often what we are dealing with.
However, if a force does depend on time (think of throwing a baseball, or a car crash - the force over the time period of those
interactions may not be constant at all), we can still find the impulse delivered by performing an integration,

2.3.1: Gravity
We will be looking at many different forces in future chapters, but for now we will just learn one
of the most important forces, the force of gravity. Actually, we should be a little more specific. We
will learn about a special force which is the force of gravity on (and near) the surface of the Earth.
You are probably aware of this force. It is the reason you fall when you trip, why you shouldn't
hold your ice cream cone upside down, and (at least partially) why baseball is an interesting sport.
It is the force that pulls things down. In fact, I often tell my students, gravity is actually how we
know which direction is down. "Down" is generally agreed upon as the direction that gravity pulls
things. 

Close to earth, the force of gravity has a very simple form:
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Δt

Δp ⃗ 

Δt

=F ⃗ 
ave

Δp ⃗ 

Δt
(2.3.1)

F ⃗ 
ave

dt

=F ⃗  dp ⃗ 

dt
(2.3.2)

= ∫ dt.J ⃗  F ⃗  (2.3.3)
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Where  is the acceleration due to gravity and points "down" (generally towards the center of the Earth). The S.I.
unit for force is a Newton (N).

So what does this mean in terms of momentum and impulse? Let's take a 1 kg weight that is being acted on only by the force of
gravity. Using our Equation , we know that the magnitude of force it experiences will be . We know
from our Equation  that in every second (1 s), we will have a change of momentum (impulse) of:

where I have used absolute value signs around our momentum and force to show that I am just interested in the magnitude (not
direction). Besides, we already know that the impulse from the Earth will pull us down.

Since we knew from the beginning that we have a 1 kg weight, we can also calculate our change in speed in one second:

which, we will find later, we could have discovered directly just by knowing the acceleration due to gravity.

Hopefully, this gives some idea of how momentum, change in momentum, impulse, and force are all related.

2.3: Force and Impulse is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack
College & Kurt Andresen, Gettysburg College.

= mF ⃗ 
g g ⃗  (2.3.4)

= 9.8g ⃗  m/s2

2.3.4 (1 kg)(9.8m/s) = 9.8 N

2.3.1

|Δ | = | |Δt = (9.8 N)(1 s) = 9.8kg ⋅ m/sp ⃗  F ⃗  (2.3.5)

|Δ | = |Δ |/m = 9.8 m/sv ⃗  p ⃗  (2.3.6)
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2.4: Examples

Consider an extra-heavy hockey puck, of mass 5.0 kg, traveling between points A and B in a straight line at a speed of 10.0
m/s. At point B, it gets hit by a hockey stick which delivers an impulse of  to the puck. Using meter sticks and protractors,
make scale drawings of this process on the whiteboards, and answer the following two questions:

1. In figure 1, the amount of impulse delivered is =30 kg m/s at an angle of 30 , as shown.

1. What is the final momentum (magnitude and direction) of the hockey puck, ?

2. In figure 2, we measure the final momentum  to be 100 kg m/s, moving at an angle of 40 , as shown.
1. What was the impulse transferred to the hockey puck, ?
2. At what angle did the impulse act on the puck?

Suppose a cart with mass  is moving to the right at a speed of . It collides with a cart of mass , which is initially at rest.
After the collision, the first cart rebounds to the left with a speed of .

1. How much impulse did the first cart deliver to the second? Use  as the final speed of the second cart.
2. How much impulse did the second cart deliver to the first?
3. Assuming that these two impulse transfers are the same, determine the final speed  in terms of the initial speed .

I drop a golf ball of mass  g onto the floor, and right before it hits it has a velocity of  m/s.

1. What is the momentum of the ball right before it hits the ground?
2. If the speed of the ball after it bounces, , is 75\% of the speed right before it hits, what was the impulse the floor

delivered to the ball?
3. If the ball interacts with the floor for a time period , find an expression for the ratio between the average force the floor

acted on the ball with to the weight of the ball , in terms of , , , and .
4. Calculate this ratio using  = 150 ms and the other parameters of the problem.

The graph shows a collision between two carts (possibly equipped with magnets so that they repel each other before they
actually touch) on an air track. The inertia (mass) of cart 1 is 1 kg. Note: this is a position vs. time graph!

a. What are the initial velocities of the carts?
b. What are the final velocities of the carts?
c. What is the mass of the second cart?

 Practice Problem : Hockey Puck Scale Drawings2.4.1

Δp ⃗ 

Δp ⃗  ∘

pf
→

pf
→ ∘

Δp ⃗ 

 Practice Problem : Momentum Cart Transfer, Part II2.4.2
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 Practice Problem : Bouncing Ball2.4.3
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Δt
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 Example : Reading a Collision Graph2.4.1
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d. Does the air track appear to be level? Why? (Hint: does the graph show any evidence of acceleration, for either cart, outside
of the collision region?)

e. At the collision time, is the change in velocity (  )of the first cart positive or negative? How about the second cart?
(Justify your answers.)

f. For the system consisting of the two carts, what is its initial (total) momentum? What is its final momentum?
g. Imagine now that one of the magnets is reversed, so when the carts collide they stick to each other. What would then be the

final momentum of the system? What would be its final velocity?

Figure : A collision between two carts

Solution

(a) All the velocities are to be calculated by picking an easy straight part of each curve and calculating

for suitable intervals. In this way one gets

(b) Similarly, one gets

(c) Use this equation, or equivalent (conservation of momentum is OK)

so the mass of the second cart is 2 kg.

(d) Yes, the track appears to be level because the carts do not show any evidence of acceleration outside of the collision region
(the position vs. time curves are straight lines outside of the region approximately given by 4.5 s <  < 5.5 s).

(e) The change in velocity of the first cart is positive. You can see this either graphically (the curve is like a parabola that opens
upwards, i.e., concave), or algebraically (the cart’s velocity increases, going from −1 m/s to 1 m/s)

Similarly, the change in velocity of the second cart is negative. The curve is like a parabola that opens downwards, i.e., convex;
or, algebraically, the cart’s velocity decreases, going from 0.5 m/s to −0.5 m/s.

(f) The initial momentum of the system is

Δv ⃗ 

2.4.1

v =
Δx

Δt

= −1v1i

m

s

= 0.5v2i

m

s

= 1v1f
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= −0.5v2f

m

s

= −
m2

m1

Δv1

Δv2

= − = 2
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The final momentum is

You could also just say that the final momentum should be the same as the initial momentum, since the system appears to be
isolated.

(g) The momentum should be conserved in this case as well, so  = 0. The velocity would be

This page titled 2.4: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

3.5: Examples by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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2.5: Particles and Interactions (Exercises)

2.5.1: Conceptual Questions
1. An object that has a small mass and an object that has a large mass have the same momentum. Which object is moving

faster?
2. An object that has a small mass and an object that has a large mass are moving with the same speed. Which mass has the

largest momentum?

3. Is it possible for a small force to produce a larger impulse on a given object than a large force? Explain.
4. Why is a 10-m fall onto concrete far more dangerous than a 10-m fall onto water?
5. What external force is responsible for changing the momentum of a car moving along a horizontal road?
6. A piece of putty and a tennis ball with the same mass are thrown against a wall with the same velocity. Which object

experiences a greater force from the wall or are the forces equal? Explain.

2.5.2: Problems
1. (a) Calculate the momentum of a 2000-kg elephant charging a hunter at a speed of 7.50 m/s. (b) Compare the elephant’s

momentum with the momentum of a 0.0400-kg tranquilizer dart fired at a speed of 600 m/s. (c) What is the momentum of
the 90.0-kg hunter running at 7.40 m/s after missing the elephant?

2. A skater of mass 40 kg is carrying a box of mass 5 kg. The skater has a speed of 5 m/s with respect to the floor and is
gliding without any friction on a smooth surface. (a) Find the momentum of the box with respect to the floor. (b) Find the
momentum of the box with respect to the floor after she puts the box down on the frictionless skating surface.

3. A car of mass 2000 kg is moving with a constant velocity of 10 m/s due east. What is the momentum of the car?
4. The mass of Earth is 5.97 x 10  kg and its orbital radius is an average of 1.50 x 10  m. Calculate the magnitude of its

average linear momentum.
5. If a rainstorm drops 1 cm of rain over an area of 10 km  in the period of 1 hour, what is the momentum of the rain that

falls in one second? Assume the terminal velocity of a raindrop is 10 m/s.
6. What is the average momentum of an avalanche that moves a 40-cm-thick layer of snow over an area of 100 m by 500 m

over a distance of 1 km down a hill in 5.5 s? Assume a density of 350 kg/m  for the snow.
7. What is the average momentum of a 70.0-kg sprinter who runs the 100-m dash in 9.65 s?
8. A tennis ball of mass 0.06 kg is thrown at a wall with a speed of 15 m/s. The ball bounces back from the wall with a

speed of 12 m/s. What is the change in momentum and impulse of the ball due to the collision with the wall?
9. A 5 kg cannonball is shot out of a cannon at 400 m/s on the Gettysburg Battlefield. The cannon has a mass of 1,200 kg.

1. What is the impulse that was delivered to the cannonball by the cannon?
2. What is the impulse that is delivered to the cannon?
3. What is the final speed of the cannon?

10. One hazard of space travel is debris left by previous missions. There are several thousand objects orbiting Earth that are
large enough to be detected by radar, but there are far greater numbers of very small objects, such as flakes of paint.
Calculate the force exerted by a 0.100-mg chip of paint that strikes and sticks to a spacecraft window at a relative speed
of 4.00 x 10  m/s, given the collision lasts 6.00 x 10  s.

11. Calculate the final speed of a 110-kg rugby player who is initially running at 8.00 m/s but collides head-on with a padded
goalpost and experiences a backward force of 1.76 x 10  N for 5.50 x 10  s.

12. Water from a fire hose is directed horizontally against a wall at a rate of 50.0 kg/s and a speed of 42.0 m/s. Calculate the
force exerted on the wall, assuming the water’s horizontal momentum is reduced to zero.

13. A 300 g scoop of ice cream fall from a cone. It falls for 2 seconds.
1. What was the impulse that was delivered to the ice cream cone by the Earth?
2. What was the impulse that was delivered to the Earth by the ice cream cone?
3. If the ice cream started from rest, how fast is the ice cream going now?
4. If the Earth started from rest, how fast is it moving towards the ice cream now?

14. The x-component of a force on a 46-g golf ball by a 7-iron versus time is plotted in the following figure:
a. Find the x-component of the impulse during the intervals (i) [0, 50 ms], and (ii) [50 ms, 100 ms].
b. Find the change in the x-component of the momentum during the intervals (iii) [0, 50 ms], and (iv) [50 ms, 100 ms].
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2.5.3: Additional Problems
15. Which has a larger magnitude of momentum: a 3000-kg elephant moving at 40 km/h or a 60-kg cheetah moving at 112

km/h?
16. A driver applies the brakes and reduces the speed of her car by 20%, without changing the direction in which the car is

moving. By how much does the car’s momentum change?
17. You friend claims that momentum is mass multiplied by velocity, so things with more mass have more momentum. Do

you agree? Explain.
18. Dropping a glass on a cement floor is more likely to break the glass than if it is dropped from the same height on a grass

lawn. Explain in terms of the impulse.
19. Your 1500-kg sports car accelerates from 0 to 30 m/s in 10 s. What average force is exerted on it during this acceleration?
20. A 5.0-g egg falls from a 90-cm-high counter onto the floor and breaks. What impulse is exerted by the floor on the egg?
21. You are coasting on your 10-kg bicycle at 15 m/s and a 5.0-g bug splatters on your helmet. The bug was initially moving

at 2.0 m/s in the same direction as you. If your mass is 60 kg, (a) what is the initial momentum of you plus your bicycle?
(b) What is the initial momentum of the bug? (c) What is your change in velocity due to the collision with the bug? (d)
What would the change in velocity have been if the bug were traveling in the opposite direction?

22. A 100-kg astronaut finds himself separated from his spaceship by 10 m and moving away from the spaceship at 0.1 m/s.
To get back to the spaceship, he throws a 10-kg tool bag away from the spaceship at 5.0 m/s. How long will he take to
return to the spaceship?

23. You friend wonders how a rocket continues to climb into the sky once it is sufficiently high above the surface of Earth so
that its expelled gasses no longer push on the surface. How do you respond?

24. To increase the acceleration of a rocket, should you throw rocks out of the front window of the rocket or out of the back
window?
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CHAPTER OVERVIEW

3: C3) Vector Analysis
3.1: Position Vectors and Components
3.2: Vector Algebra in 1 Dimension
3.3: Vector Algebra in 2 Dimensions- Graphical
3.4: Vector Algebra in Multiple Dimensions- Calculations
3.E: Vectors (Exercises)

The language of physics is mathematics. This is not just a thing we tell ourselves, but is a basic fact that separates the physical
sciences from the social sciences. Although we may speak and write about physics using a spoken and written language (English,
in this case), this is just for descriptive convenience. Anytime we actually want to do anything with physics, we have to cast it into
mathematics. Part of this is a desire for precision - if I say "the acceleration due to gravity is 9.81 m/s ", I know exactly how
precise that number is (typically we assume the uncertainty is in the last decimal point, so that implies  on that
nunber). However, it's also a necessicity, since no amount of words can actually be used to exactly describe any physical law, since
words don't inherently have precise meaning. Take even the most basic of physical laws - Newton's first law "An object in motion
remains in motion until acted on by an external force." What is "motion"? What is "being acted on"? What is "force"? No amount
of language is going to answer these questions, only mathematics is going to give us careful definitions of these concepts .

So, once we are convinced that we need to use mathematics to do physics, we know that we need to understand how to associate
physics quantities ("mass", "speed", "force") with mathematical variables. In some cases, this is very easy - for example, the
temperature of something is just a number, call it . Or the mass of something is a number . Single numbers are called scalars.
Sometimes these numbers have constraints on them that come from reality - for example, mass must be positive, and temperature
has a minimum value (absolute zero). But there are also quantities which need more than just a single variable, or additional
conditions on that variable - they actually must carry more information. The most important of these are vectors, which carry both
a number (the magnitude, or length of the vector), and a direction.

The length of a vector is a pretty straightforward idea - vectors are arrows, and the size of the arrow is the length. But direction is a
little bit more confusing, because it can be specified in several different ways. For example, I can be driving at a speed of 32 mph,
in the direction "north". Or maybe in the direction "towards you", or "90  from East". Because of this uncertainty, we will often
choose to represent vectors using components - that is, an -Cartesian coordinate system. Of course, this coordinate system is
something we created out of thin air to help us solve the problem, so which coordinate system we pick should not influence our
calculation in the slightest.

For a concrete example, consider a vector of length 5, that is pointed  above the horizontal. We can choose to represent this
vector in a number of ways. In a coordinate system fixed to the horizontal, the vector has components

Alternatively, if you pick a coordinate system with the x-axis along the vector itself, the components would be

In some cases one of these might be preferable to the other, but there is something important here: although the coordinate
representation changed, the magnitude and direction did not. No choice of coordinate system can change the magnitude and
direction of a physical variable like a vector, because coordinates are just helping tools to do physics.

There is one last point to make about vectors in coordinate systems, which is summed up by the last figure: performing
mathematics like addition on vectors means the same mathematics applies to the components. This makes working with
components very convenient - we don't actually need to go around making pictures of arrows and measuring them, we can just use
the components and get the results algebraically.

2
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T m

∘

xy

45∘

= 5 cos(45) ≃ 3.53, = 5 sin(45) ≃ 3.53.vx vy (3.1)

= 5, = 0.vx vy (3.2)
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If you're interested, the mathematical statement of Newton's first law is something like " ", using the symbol 
 for "if".

3: C3) Vector Analysis is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack
College.
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3.1: Position Vectors and Components

Vectors
As we saw at the beginning of the chapter, vectors are a simple way of representing a value that has both a magnitude and a
direction. One of the simplest things we can represent using vectors is the position of an object. Imagine you have a teddy bear
somewhere on a football field.

Now, imagine you have forgotten it and you need to tell someone where to find it in the middle of the night.

First, you have to set up a coordinate system. This means you need to tell someone what direction your "x" values will go and what
direction your "y" values will go. What we can do is say that going the length of the field will be our "x" direction and going across
the field will be our "y" direction. We also need to say where we are going to be measuring from, in other words where do we start
from. This is called our origin. We will set this in the bottom left corner at the orange cone. When we have done all of this, we will
have the following.
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Now that we have this all set up, we can draw a vector that points directly to the teddy bear!

Great, but this is getting pretty hard to see. Let's remove all of the distracting parts and just show the representations of everything:
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where I've labeled the point the teddy bear is at "B" for Bear! The vector I will call . (For some reason, we often use the letter "r"
for vectors that point to positions.

Great! Now we can see everything and start do do some math! First, the best way of representing a vector is by its components.
You can think of components as telling someone how much to move in each direction to get to the bear. For instance, you may say
that they should move 17 yards in the x-direction and 35 yards in the y-direction. (Apologies for using silly units like "yards"
instead of nice units like "meters". That's American football for you! I promise not to do it again.) These measurements are called
the x-component and y-component, respectively. You would say that  and . We can show these
components on the graph.

However, this will get cumbersome very quickly and I hate the double subscripts (although they are necessary sometimes). This
representation will also be a real pain when we need to start adding and subtracting vectors. So, we will introduce a new
represenation of vectors called column vector notation. Here is that same vector,  represented in column vector form:

This is all looking great. But, what if the person getting your teddy bear is not starting at the origin? What do we do then?

rB

, x = 17 yardsrB , y = 35 yardsrB

rB

= [ ] = [ ]rB
→ , xrB

, yrB

17 yards

35 yards
(3.1.1)
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Well, of course now we need to construct our second position vector. To tell the person where to go, we also need a third vector.
This will be called a displacement vector. This is just a vector that points from one point to another. However, unlike our position
vectors, a displacement vector can start anywhere. We'll have our start at the person and point to the teddy bear.

As you can see,  is the vector that points between point P and point B. This is where the person, P, would need to walk to get to
the bear, B. How do we find this mathematically? Well, first we need to know the coordinates of point P. Let's say 

. Now, to get the displacement vector, , we simply subtract the components of vector  from the

components of .

So, this is the vector that says where the person should walk to get to the teddy bare from where they are currently standing.

We may want to express this vector in different ways. If we want to know how far the person needs to walk, we just use the
Pythagorean theorem. This is just the magnitude of the vector. We normally indicate this with an absolute value sign around the
vector, .

Δr ⃗ 

= [ ]rP
→ 68 yards

16 yards
Δr ⃗  rP

rB

Δ = [ ]−[ ]r ⃗ 
, xrB

, yrB

, xrP

, yrP

(3.1.2)

Δ = [ ]−[ ]r ⃗ 
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And we can find the angle by using , , or  functions. I will use , as it does not rely on me getting the magnitude of 
 correct.

So now, we can just tell our helper to walk 54.4 yards at an angle  above the x-axis.

Vectors in 3 Dimensions

The last thing we should do is extend this into three dimensions. After all, we live in a (spatially) 3D world. The good news is that
this is easy! Just add one more component (the z-component) to your column vector! For a 3-dimensional column vector, , we
will have:

This is pretty straightforward. Luckily, it is rare that we encounter a 3-dimensional problem, so often you will be setting one of
these components to zero.

In the next section, we will learn how to do math with vectors in one dimension and the two dimensions.

3.1: Position Vectors and Components is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Kurt Andresen,
Gettysburg College.

|Δ | = = = 54.4 yardsr ⃗  Δ +Δr2
x r2

y

− −−−−−−−−
√ (−51 yards +(19 yards)2 )2

− −−−−−−−−−−−−−−−−−−−−
√ (3.1.5)
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3.2: Vector Algebra in 1 Dimension

Explain the effect of multiplying a vector quantity by a scalar.
Describe how one-dimensional vector quantities are added or subtracted.
Explain the geometric construction for the addition or subtraction of vectors in a plane.
Distinguish between a vector equation and a scalar equation.

Suppose your friend walks from the campsite at A to the fishing pond at B and then walks back: from the fishing pond at B to the
campsite at A. The magnitude of the displacement vector  from A to B is the same as the magnitude of the displacement
vector  from B to A (it equals 6 km in both cases), so we can write  = . However, vector  is not equal to vector 

 because these two vectors have different directions:  ≠ . In Figure 2.3, vector  would be represented by a
vector with an origin at point B and an end at point A, indicating vector  points to the southwest, which is exactly 180°
opposite to the direction of vector . We say that vector  is antiparallel to vector  and write  = , where
the minus sign indicates the antiparallel direction.

Two vectors that have identical directions are said to be parallel vectors—meaning, they are parallel to each other. Two parallel
vectors  and  are equal, denoted by  = , if and only if they have equal magnitudes | | = | |. Two vectors with directions
perpendicular to each other are said to be orthogonal vectors. These relations between vectors are illustrated in Figure .

Figure : Various relations between two vectors  and . (a)  ≠  because A ≠ B . (b)  ≠  because they are not parallel
and A ≠ B . (c)  ≠  because they have different directions (even though |  | = |  | = A) . (d)  =  because they are
parallel and have identical magnitudes A = B. (e)  ≠  because they have different directions (are not parallel); here, their
directions differ by 90° —meaning, they are orthogonal.

Two motorboats named Alice and Bob are moving on a lake. Given the information about their velocity vectors in each of the
following situations, indicate whether their velocity vectors are equal or otherwise.

a. Alice moves north at 6 knots and Bob moves west at 6 knots.
b. Alice moves west at 6 knots and Bob moves west at 3 knots.
c. Alice moves northeast at 6 knots and Bob moves south at 3 knots.
d. Alice moves northeast at 6 knots and Bob moves southwest at 6 knots.
e. Alice moves northeast at 2 knots and Bob moves closer to the shore northeast at 2 knots.

Algebra of Vectors in One Dimension

Vectors can be multiplied by scalars, added to other vectors, or subtracted from other vectors. We can illustrate these vector
concepts using an example of the fishing trip seen in Figure .

 Learning Objectives
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Figure : Displacement vectors for a fishing trip. (a) Stopping to rest at point C while walking from camp (point A) to the pond
(point B). (b) Going back for the dropped tackle box (point D). (c) Finishing up at the fishing pond.

Suppose your friend departs from point A (the campsite) and walks in the direction to point B (the fishing pond), but, along the
way, stops to rest at some point C located three-quarters of the distance between A and B, beginning from point A (Figure ).
What is his displacement vector  when he reaches point C? We know that if he walks all the way to B, his displacement vector
relative to A is , which has magnitude D  = 6 km and a direction of northeast. If he walks only a 0.75 fraction of the total
distance, maintaining the northeasterly direction, at point C he must be 0.75 D  = 4.5 km away from the campsite at A. So, his
displacement vector at the rest point C has magnitude D  = 4.5 km = 0.75 D  and is parallel to the displacement vector .
All of this can be stated succinctly in the form of the following vector equation:

In a vector equation, both sides of the equation are vectors. The previous equation is an example of a vector multiplied by a
positive scalar (number)  = 0.75. The result, , of such a multiplication is a new vector with a direction parallel to the
direction of the original vector . In general, when a vector  is multiplied by a positive scalar , the result is a new vector 

 that is parallel to :

The magnitude | | of this new vector is obtained by multiplying the magnitude | | of the original vector, as expressed by the
scalar equation:

In a scalar equation, both sides of the equation are numbers. Equation  is a scalar equation because the magnitudes of vectors
are scalar quantities (and positive numbers). If the scalar  is negative in the vector equation Equation , then the magnitude |

| of the new vector is still given by Equation , but the direction of the new vector  is antiparallel to the direction of .
These principles are illustrated in Figure  by two examples where the length of vector  is 1.5 units. When  = 2, the new
vector  = 2  has length B = 2A = 3.0 units (twice as long as the original vector) and is parallel to the original vector. When  =
−2, the new vector  = −2  has length C = |−2| A = 3.0 units (twice as long as the original vector) and is antiparallel to the
original vector.

Figure : Algebra of vectors in one dimension. (a) Multiplication by a scalar. (b) Addition of two vectors (  is called the
resultant of vectors (  and ( ). (c) Subtraction of two vectors (  is the difference of vectors (  and ).
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Now suppose your fishing buddy departs from point A (the campsite), walking in the direction to point B (the fishing hole), but he
realizes he lost his tackle box when he stopped to rest at point C (located three-quarters of the distance between A and B, beginning
from point A). So, he turns back and retraces his steps in the direction toward the campsite and finds the box lying on the path at
some point D only 1.2 km away from point C (see Figure ). What is his displacement vector  when he finds the box at
point D? What is his displacement vector  from point D to the hole? We have already established that at rest point C his
displacement vector is  = 0.75 . Starting at point C, he walks southwest (toward the campsite), which means his new
displacement vector  from point C to point D is antiparallel to . Its magnitude | | is D  = 1.2 km = 0.2 D , so his
second displacement vector is  = −0.2 . His total displacement  relative to the campsite is the vector sum of the two
displacement vectors: vector  (from the campsite to the rest point) and vector  (from the rest point to the point where he
finds his box):

The vector sum of two (or more vectors is called the resultant vector or, for short, the resultant. When the vectors on the right-
hand-side of Equation  are known, we can find the resultant  as follows:

When your friend finally reaches the pond at B, his displacement vector  from point A is the vector sum of his displacement
vector  from point A to point D and his displacement vector  from point D to the fishing hole:  =  +  (see
Figure ). This means his displacement vector  is the difference of two vectors:

Notice that a difference of two vectors is nothing more than a vector sum of two vectors because the second term in Equation 
is vector  (which is antiparallel to ). When we substitute Equation  into Equation , we obtain the second
displacement vector:

This result means your friend walked D  = 0.45 D  = 0.45(6.0 km) = 2.7 km from the point where he finds his tackle box to the
fishing hole.

When vectors  and  lie along a line (that is, in one dimension), such as in the camping example, their resultant  =  +  and
their difference  =  −  both lie along the same direction. We can illustrate the addition or subtraction of vectors by drawing
the corresponding vectors to scale in one dimension, as shown in Figure .

To illustrate the resultant when  and  are two parallel vectors, we draw them along one line by placing the origin of one vector
at the end of the other vector in head-to-tail fashion (see Figure (\PageIndex{6b}\)). The magnitude of this resultant is the sum of
their magnitudes: R = A + B. The direction of the resultant is parallel to both vectors. When vector  is antiparallel to vector , we
draw them along one line in either head-to-head fashion (Figure (\PageIndex{6c}\)) or tail-to-tail fashion. The magnitude of the
vector difference, then, is the absolute value D = |A − B| of the difference of their magnitudes. The direction of the difference
vector  is parallel to the direction of the longer vector.

In general, in one dimension—as well as in higher dimensions, such as in a plane or in space—we can add any number of vectors
and we can do so in any order because the addition of vectors is commutative,

and associative,

Moreover, multiplication by a scalar is distributive:

We used the distributive property in Equation  and Equation .
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3.3: Vector Algebra in 2 Dimensions- Graphical

When vectors lie in a plane—that is, when they are in two dimensions—they can be multiplied by scalars, added to other vectors,
or subtracted from other vectors in accordance with the general laws expressed by Equation 2.2.1, Equation 2..2.2, Equation 2.2.7,
and Equation 2.2.8. However, the addition rule for two vectors in a plane becomes more complicated than the rule for vector
addition in one dimension. We have to use the laws of geometry to construct resultant vectors, followed by trigonometry to find
vector magnitudes and directions. This geometric approach is commonly used in navigation (Figure ). In this section, we need
to have at hand two rulers, a triangle, a protractor, a pencil, and an eraser for drawing vectors to scale by geometric constructions.

Figure : In navigation, the laws of geometry are used to draw resultant displacements on nautical maps.

For a geometric construction of the sum of two vectors in a plane, we follow the parallelogram rule. Suppose two vectors  and 
 are at the arbitrary positions shown in Figure . Translate either one of them in parallel to the beginning of the other vector,

so that after the translation, both vectors have their origins at the same point. Now, at the end of vector  we draw a line parallel to
vector  and at the end of vector  we draw a line parallel to vector  (the dashed lines in Figure ). In this way, we obtain a
parallelogram. From the origin of the two vectors we draw a diagonal that is the resultant  of the two vectors:  =  +  (Figure 

). The other diagonal of this parallelogram is the vector difference of the two vectors  =  − , as shown in Figure .
Notice that the end of the difference vector is placed at the end of vector .

Figure : The parallelogram rule for the addition of two vectors. Make the parallel translation of each vector to a point where
their origins (marked by the dot) coincide and construct a parallelogram with two sides on the vectors and the other two sides
(indicated by dashed lines) parallel to the vectors. (a) Draw the resultant vector  along the diagonal of the parallelogram from the
common point to the opposite corner. Length R of the resultant vector is not equal to the sum of the magnitudes of the two vectors.
(b) Draw the difference vector  =  −  along the diagonal connecting the ends of the vectors. Place the origin of vector  at
the end of vector  and the end (arrowhead) of vector  at the end of vector . Length D of the difference vector is not equal to
the difference of magnitudes of the two vectors.

It follows from the parallelogram rule that neither the magnitude of the resultant vector nor the magnitude of the difference vector
can be expressed as a simple sum or difference of magnitudes A and B, because the length of a diagonal cannot be expressed as a
simple sum of side lengths. When using a geometric construction to find magnitudes | | and | |, we have to use trigonometry laws
for triangles, which may lead to complicated algebra. There are two ways to circumvent this algebraic complexity. One way is to
use the method of components, which we examine in the next section. The other way is to draw the vectors to scale, as is done in
navigation, and read approximate vector lengths and angles (directions) from the graphs. In this section we examine the second
approach.

If we need to add three or more vectors, we repeat the parallelogram rule for the pairs of vectors until we find the resultant of all of
the resultants. For three vectors, for example, we first find the resultant of vector 1 and vector 2, and then we find the resultant of

Algebra of Vectors in Two Dimensions
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this resultant and vector 3. The order in which we select the pairs of vectors does not matter because the operation of vector
addition is commutative and associative (see Equation 2.2.7 and Equation 2.2.8). Before we state a general rule that follows from
repetitive applications of the parallelogram rule, let’s look at the following example.

Suppose you plan a vacation trip in Florida. Departing from Tallahassee, the state capital, you plan to visit your uncle Joe in
Jacksonville, see your cousin Vinny in Daytona Beach, stop for a little fun in Orlando, see a circus performance in Tampa, and visit
the University of Florida in Gainesville. Your route may be represented by five displacement vectors , , , , and , which
are indicated by the red vectors in Figure . What is your total displacement when you reach Gainesville? The total
displacement is the vector sum of all five displacement vectors, which may be found by using the parallelogram rule four times.
Alternatively, recall that the displacement vector has its beginning at the initial position (Tallahassee) and its end at the final
position (Gainesville), so the total displacement vector can be drawn directly as an arrow connecting Tallahassee with Gainesville
(see the green vector in Figure ). When we use the parallelogram rule four times, the resultant  we obtain is exactly this
green vector connecting Tallahassee with Gainesville:  =  +  +  +  + .

Figure : When we use the parallelogram rule four times, we obtain the resultant vector  =  +  +  +  + , which is the
green vector connecting Tallahassee with Gainesville.

Drawing the resultant vector of many vectors can be generalized by using the following tail-to-head geometric construction.
Suppose we want to draw the resultant vector  of four vectors , , , and  (Figure ). We select any one of the vectors
as the first vector and make a parallel translation of a second vector to a position where the origin (“tail”) of the second vector
coincides with the end (“head”) of the first vector. Then, we select a third vector and make a parallel translation of the third vector
to a position where the origin of the third vector coincides with the end of the second vector. We repeat this procedure until all the
vectors are in a head-to-tail arrangement like the one shown in Figure . We draw the resultant vector  by connecting the
origin (“tail”) of the first vector with the end (“head”) of the last vector. The end of the resultant vector is at the end of the last
vector. Because the addition of vectors is associative and commutative, we obtain the same resultant vector regardless of which
vector we choose to be first, second, third, or fourth in this construction.

Figure : Tail-to-head method for drawing the resultant vector  =  +  +  + . (a) Four vectors of different magnitudes
and directions. (b) Vectors in (a) are translated to new positions where the origin (“tail”) of one vector is at the end (“head”) of
another vector. The resultant vector is drawn from the origin (“tail”) of the first vector to the end (“head”) of the last vector in this
arrangement.
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The three displacement vectors , , and  in Figure  are specified by their magnitudes A = 10.0, B = 7.0, and C = 8.0,
respectively, and by their respective direction angles with the horizontal direction  = 35°,  = −110°, and  = 30°. The
physical units of the magnitudes are centimeters. Choose a convenient scale and use a ruler and a protractor to find the
following vector sums: (a)  =  + , (b)  =  − , and (c)  =  −  + .

Figure : Vectors used in Example  and in the Exercise feature that follows.

Strategy

In geometric construction, to find a vector means to find its magnitude and its direction angle with the horizontal direction. The
strategy is to draw to scale the vectors that appear on the right-hand side of the equation and construct the resultant vector.
Then, use a ruler and a protractor to read the magnitude of the resultant and the direction angle. For parts (a) and (b) we use the
parallelogram rule. For (c) we use the tail-to-head method.

Solution
For parts (a) and (b), we attach the origin of vector  to the origin of vector , as shown in Figure , and construct a
parallelogram. The shorter diagonal of this parallelogram is the sum  + . The longer of the diagonals is the difference  − 

. We use a ruler to measure the lengths of the diagonals, and a protractor to measure the angles with the horizontal. For the
resultant , we obtain R = 5.8 cm and  ≈ 0°. For the difference , we obtain D = 16.2 cm and  = 49.3°, which are shown
in Figure .

Figure : Using the parallelogram rule to solve (a) (finding the resultant, red) and (b) (finding the difference, blue).

For (c), we can start with vector −3  and draw the remaining vectors tail-to-head as shown in Figure . In vector addition,
the order in which we draw the vectors is unimportant, but drawing the vectors to scale is very important. Next, we draw vector

 from the origin of the first vector to the end of the last vector and place the arrowhead at the end of . We use a ruler to
measure the length of , and find that its magnitude is S = 36.9 cm. We use a protractor and find that its direction angle is  =
52.9°. This solution is shown in Figure .

 Example : Geometric Construction of the Resultant3.3.2

A ⃗  B⃗  C ⃗  3.3.6

α β γ

R⃗  A ⃗  B⃗  D⃗  A ⃗  B⃗  S ⃗  A ⃗ 
3B⃗  C ⃗ 

3.3.6 3.3.2

B⃗  A ⃗  3.3.7

A ⃗  B⃗  A ⃗ 

B⃗ 

R⃗  θR D⃗  θD

3.3.7

3.3.7

B⃗  3.3.8

S ⃗  S ⃗ 

S ⃗  θS

3.3.8

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/86956?pdf


3.3.4 https://phys.libretexts.org/@go/page/86956

Figure : Using the tail-to-head method to solve (c) (finding vector , green).

Using the three displacement vectors , , and  in Figure , choose a convenient scale, and use a ruler and a protractor
to find vector  given by the vector equation  =  +  − .

Observe the addition of vectors in a plane by visiting this vector calculator and this PhET simulation.

This page titled 3.3: Vector Algebra in 2 Dimensions- Graphical is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

2.3: Scalars and Vectors (Part 2) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.

3.3.8 S ⃗ 

 Exercise 2.3

A ⃗  B⃗  F ⃗  3.3.6

G⃗  G⃗  A ⃗ 
2B⃗  F ⃗ 

 Simulation
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3.4: Vector Algebra in Multiple Dimensions- Calculations

Adding Vectors
Luckily, adding vectors is very easy when we use our column vector notation. We simply add the components together, which is the
same as just adding across each row of the matrix. Let's say we have two vectors,  and , and we want to add them together to
create a new vector, . We can easily find the components of the new vector.

Vector  has components  m,  m,  m. Vector  has components  m,  m,  m.
What is ?

Solution

For multiplication, we simply multiply each component. So:

.

Subtraction is just the same as adding the negative of the matrix that is being subtracted.

You cannon multiply two vectors together in a normal way. We will cover different types of vector multiplication later in this book.

Finally, you cannot divide a vector by another vector.

Let's look at a little more realistic example.

During a takeoff of IAI Heron, its position with respect to a control tower is 100 m above the ground, 300 m to the east, and
200 m to the north. One minute later, its position is 250 m above the ground, 1200 m to the east, and 2100 m to the north. What
is the drone’s displacement vector with respect to the control tower? What is the magnitude of its displacement vector?

Figure The drone IAI Heron in flight. (credit: SSgt Reynaldo Ramon, USAF)

Solution

A ⃗  B⃗ 

= +C ⃗  A ⃗  B⃗ 

= + = + =C ⃗  A ⃗  B⃗ 
⎡

⎣
⎢

Ax

Ay

Az

⎤

⎦
⎥

⎡

⎣
⎢

Bx

By

Bz

⎤

⎦
⎥

⎡

⎣
⎢

+Ax Bx

+Ay By

+Az Bz

⎤

⎦
⎥ (3.4.1)

 Example 3.4.1

A ⃗  = 3Ax = 7Ay = −4Az B⃗  = 5Bx = −2By = 8Bz

= +C ⃗  A ⃗  B⃗ 

= + = + =C ⃗  A ⃗  B⃗ 
⎡

⎣
⎢

Ax

Ay

Az

⎤

⎦
⎥

⎡

⎣
⎢

Bx

By

Bz

⎤

⎦
⎥

⎡

⎣
⎢

3 m +5 m

7 m +(−2) m

−4 m +8 m

⎤

⎦
⎥ (3.4.2)

=C ⃗ 
⎡

⎣
⎢

8 m

5 m

4 m

⎤

⎦
⎥ (3.4.3)

3 =A ⃗ 
⎡

⎣
⎢

3Ax

3Ay

3Az

⎤

⎦
⎥ (3.4.4)

 Example  (Adapted from OpenStax)3.4.2
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We are given two position vectors. Let's call them  and . Let us call east +x, north +y, and "above the ground" +z. Then
these will be our two position vectors:

To find the displacment vector of the drone with respect to the control tower, we need to subtract the initial position  of the
drone from the final position, .

Finally, if we want the magnitude of the displacement, we should use our 3-dimensional Pythagorean theorem:

,

which sounds reasonable!

3.4: Vector Algebra in Multiple Dimensions- Calculations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Kurt Andresen, Gettysburg College.

r ⃗ i r ⃗ f

=  and  =r ⃗ i
⎡

⎣
⎢

300 m

200 m

100 m

⎤

⎦
⎥ r ⃗ f

⎡

⎣
⎢

1200 m

2100 m

250 m

⎤

⎦
⎥ (3.4.5)

r ⃗ i
r ⃗ f

Δ = − = −r ⃗  r ⃗ f r ⃗ i
⎡

⎣
⎢

1200 m

2100 m

250 m

⎤

⎦
⎥

⎡

⎣
⎢

300 m

200 m

100 m

⎤

⎦
⎥ (3.4.6)

Δ =r ⃗ 
⎡

⎣
⎢

900 m

1900 m

150 m

⎤

⎦
⎥ (3.4.7)

|Δ | =r ⃗  (900 m +(1900 m +(150 m)2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−−−−−

√ (3.4.8)

|Δ | = 2108 mr ⃗  (3.4.9)
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3.E: Vectors (Exercises)

Conceptual Questions
1. A weather forecast states the temperature is predicted to be −5 °C the following day. Is this temperature a vector or a

scalar quantity? Explain.
2. Which of the following is a vector: a person’s height, the altitude on Mt. Everest, the velocity of a fly, the age of Earth,

the boiling point of water, the cost of a book, Earth’s population, or the acceleration of gravity?
3. Give a specific example of a vector, stating its magnitude, units, and direction.
4. What do vectors and scalars have in common? How do they differ?
5. Suppose you add two vectors  and . What relative direction between them produces the resultant with the greatest

magnitude? What is the maximum magnitude? What relative direction between them produces the resultant with the
smallest magnitude? What is the minimum magnitude?

6. Is it possible to add a scalar quantity to a vector quantity?
7. Is it possible for two vectors of different magnitudes to add to zero? Is it possible for three vectors of different magnitudes

to add to zero? Explain.
8. Does the odometer in an automobile indicate a scalar or a vector quantity?
9. When a 10,000-m runner competing on a 400-m track crosses the finish line, what is the runner’s net displacement? Can

this displacement be zero? Explain.
10. A vector has zero magnitude. Is it necessary to specify its direction? Explain.
11. Can a magnitude of a vector be negative?
12. Can the magnitude of a particle’s displacement be greater that the distance traveled?
13. If two vectors are equal, what can you say about their components? What can you say about their magnitudes? What can

you say about their directions?
14. If three vectors sum up to zero, what geometric condition do they satisfy?

15. Give an example of a nonzero vector that has a component of zero.
16. Explain why a vector cannot have a component greater than its own magnitude.
17. If two vectors are equal, what can you say about their components?
18. If vectors  and  are orthogonal, what is the component of  along the direction of ? What is the component of 

along the direction of ?
19. If one of the two components of a vector is not zero, can the magnitude of the other vector component of this vector be

zero?
20. If two vectors have the same magnitude, do their components have to be the same?

Problems
21. A scuba diver makes a slow descent into the depths of the ocean. His vertical position with respect to a boat on the

surface changes several times. He makes the first stop 9.0 m from the boat but has a problem with equalizing the
pressure, so he ascends 3.0 m and then continues descending for another 12.0 m to the second stop. From there, he
ascends 4 m and then descends for 18.0 m, ascends again for 7 m and descends again for 24.0 m, where he makes a stop,
waiting for his buddy. Assuming the positive direction up to the surface, express his net vertical displacement vector in
terms of the unit vector. What is his distance to the boat?

22. Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point and what
is the compass direction of a line connecting your starting point to your final position? Write your displacement as a
column vector and compute its magnitude.

23. For the vectors given in the following figure, find the components of each lettered vector and find the following vectors:

a. ,
b. ,
c. ,
d. ,
e. ,
f. ,

A ⃗  B⃗ 

A ⃗  B⃗  B⃗  A ⃗  A ⃗ 

B⃗ 

+A ⃗  B⃗ 

+C ⃗  B⃗ 

+D⃗  F ⃗ 

−A ⃗  B⃗ 

−D⃗  F ⃗ 

+2A ⃗  F ⃗ 
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g. .

28. A delivery man starts at the post office, drives 40 km north, then 20 km west, then 60 km northeast, and finally 50 km
north to stop for lunch. What is the delivery man's displacement magnitude and direction from the post office?

29. An adventurous dog strays from home, runs three blocks east, two blocks north, one block east, one block north, and two
blocks west. Assuming that each block is about 100 m, how far from home and in what direction is the dog?

30. In an attempt to escape a desert island, a castaway builds a raft and sets out to sea. The wind shifts a great deal during the
day and he is blown along the following directions: 2.50 km and 45.0° north of west, then 4.70 km and 60.0° south of
east, then 1.30 km and 25.0° south of west, then 5.10 km straight east, then 1.70 km and 5.00° east of north, then 7.20 km
and 55.0° south of west, and finally 2.80 km and 10.0° north of east. Use a graphical method to find the castaway’s final
position relative to the island.

31. A small plane flies 40.0 km in a direction 60° north of east and then flies 30.0 km in a direction 15° north of east. Find
the total distance the plane covers from the starting point and the direction of the path to the final position.

32. A surveyor measures the distance across a river that flows straight north by the following method. Starting directly across
from a tree on the opposite bank, the surveyor walks 100 m along the river to establish a baseline. She then sights across
to the tree and reads that the angle from the baseline to the tree is 35°. How wide is the river?

33. The magnitudes of two displacement vectors are A = 20 m and B = 6 m. What are the largest and the smallest values of
the magnitude of the resultant ?

34. Assuming the +x-axis is horizontal and points to the right, resolve the vectors given in the following figure to their scalar
components and express them in vector component form.

35. Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point? What is
your displacement vector? What is the direction of your displacement? Assume the +x-axis is to the east.

36. You drive 7.50 km in a straight line in a direction 15° east of north. (a) Find the distances you would have to drive
straight east and then straight north to arrive at the same point. (b) Show that you still arrive at the same point if the east
and north legs are reversed in order. Assume the +xaxis is to the east.

−4 +2A ⃗  D⃗  F ⃗ 

= +R⃗  A ⃗  B⃗ 
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37. A sledge is being pulled by two horses on a flat terrain. The net force on the sledge can be expressed in the Cartesian

coordinate system as vector  N. Find the magnitude and direction of the pull.

38. A fly enters through an open window and zooms around the room. In a Cartesian coordinate system with three axes along
three edges of the room, the fly changes its position from point b(4.0 m, 1.5 m, 2.5 m) to point e(1.0 m, 4.5 m, 0.5 m).
Find the scalar components of the fly’s displacement vector and express its displacement vector in vector component
form. What is its magnitude?

39. For vectors  and  (a)  and its magnitude and direction angle, and (b)  and its

magnitude and direction angle.

40. A particle undergoes three consecutive displacements given by vectors  ,  , and 

 . (a) Find the resultant displacement vector of the particle. (b) What is the magnitude of the

resultant displacement? (c) If all displacements were along one line, how far would the particle travel?

41. Given two displacement vectors  and , find the displacements and their magnitudes

for (a)  and (b) .
42. A small plane flies 40.0 km in a direction 60° north of east and then flies 30.0 km in a direction 15° north of east. Use the

analytical method to find the total distance the plane covers from the starting point, and the geographic direction of its
displacement vector. What is its displacement vector?

43. . In an attempt to escape a desert island, a castaway builds a raft and sets out to sea. The wind shifts a great deal during
the day, and she is blown along the following straight lines: 2.50 km and 45.0° north of west, then 4.70 km and 60.0°
south of east, then 1.30 km and 25.0° south of west, then 5.10 km due east, then 1.70 km and 5.00° east of north, then
7.20 km and 55.0° south of west, and finally 2.80 km and 10.0° north of east. Use the analytical method to find the
resultant vector of all her displacement vectors. What is its magnitude and direction?

44. A barge is pulled by the two tugboats shown in the following figure. One tugboat pulls on the barge with a force of
magnitude 4000 units of force at 15° above the line AB (see the figure and the other tugboat pulls on the barge with a
force of magnitude 5000 units of force at 12° below the line AB. Resolve the pulling forces to their scalar components
and find the components of the resultant force pulling on the barge. What is the magnitude of the resultant pull? What is
its direction relative to the line AB?

45. In the control tower at a regional airport, an air traffic controller monitors two aircraft as their positions change with
respect to the control tower. One plane is a cargo carrier Boeing 747 and the other plane is a Douglas DC-3. The Boeing
is at an altitude of 2500 m, climbing at 10° above the horizontal, and moving 30° north of west. The DC-3 is at an altitude
of 3000 m, climbing at 5° above the horizontal, and cruising directly west. (a) Find the position vectors of the planes
relative to the control tower. (b) What is the distance between the planes at the moment the air traffic controller makes a
note about their positions?

Additional Problems
46. You fly 32.0 km in a straight line in still air in the direction 35.0° south of west. (a) Find the distances you would have to

fly due south and then due west to arrive at the same point. (b) Find the distances you would have to fly first in a
direction 45.0° south of west and then in a direction 45.0° west of north. Note these are the components of the
displacement along a different set of axes—namely, the one rotated by 45° with respect to the axes in (a).

47. An air traffic controller notices two signals from two planes on the radar monitor. One plane is at altitude 800 m and in a
19.2-km horizontal distance to the tower in a direction 25° south of west. The second plane is at altitude 1100 m and its
horizontal distance is 17.6 km and 20° south of west. What is the distance between these planes?

=F ⃗ 
⎡

⎣
⎢

−2980.0
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0

⎤

⎦
⎥
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−4

0

⎤

⎦
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⎡

⎣
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−3

−2

0

⎤

⎦
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⎡

⎣
⎢
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⎤

⎦
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⎢

4.0 mm

−7.0 mm
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⎤
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⎣
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⎦
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⎣
⎢
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⎤

⎦
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⎡

⎣
⎢
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⎤

⎦
⎥
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48. Show that when  +  = , then C  = A  + B  + 2AB cos , where  is the angle between vectors  and .
49. Four force vectors each have the same magnitude f. What is the largest magnitude the resultant force vector may have

when these forces are added? What is the smallest magnitude of the resultant? Make a graph of both situations.
50. A stubborn dog is being walked on a leash by its owner. At one point, the dog encounters an interesting scent at some

spot on the ground and wants to explore it in detail, but the owner gets impatient and pulls on the leash with force 

 along the leash. (a) What is the magnitude of the pulling force? (b) What angle does the leash make

with the vertical?

51. If the velocity vector of a polar bear is , how fast and in what geographic direction is it heading?

Here, the positive  and  axes are directions to geographic east and north, respectively.
52. Find the scalar components of three-dimensional vectors  and  in the following figure and write the vectors in column

vector form.

55. A diver explores a shallow reef off the coast of Belize. She initially swims 90.0 m north, makes a turn to the east and
continues for 200.0 m, then follows a big grouper for 80.0 m in the direction 30° north of east. In the meantime, a local
current displaces her by 150.0 m south. Assuming the current is no longer present, in what direction and how far should
she now swim to come back to the point where she started?

56. A force vector  has x- and y-components, respectively, of −8.80 units of force and 15.00 units of force. The x- and y-
components of force vector  are, respectively, 13.20 units of force and −6.60 units of force. Find the components of
force vector  that satisfies the vector equation −  + 3  = 0.

Challenge Problems
57. Vector  is 5.0 cm long and vector  is 4.0 cm long. Find the angle between these two vectors when | | = 3.0 cm

and |  − | = 3.0 cm.

A ⃗  B⃗  C ⃗  2 2 2 φ φ A ⃗  B⃗ 

=F ⃗ 
⎡

⎣
⎢

98.0 N

132.0 N

32.0 N

⎤

⎦
⎥

=u⃗ 
⎡

⎣
⎢

−18.0 km/h

−13.0 km/h

0.0 km/h

⎤

⎦
⎥

x y

G⃗  H⃗ 

A ⃗ 

B⃗ 

C ⃗  A ⃗  B⃗  C ⃗ 

B⃗  A ⃗  +A ⃗  B⃗ 

A ⃗  B⃗ 
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CHAPTER OVERVIEW

4: C4) Systems and The Center of Mass
4.1: The Law of Inertia
4.2: Extended Systems and Center of Mass
4.3: Reference Frame Changes and Relative Motion
4.4: Examples
4.E: Systems and the Center of Mass Exercises

There are two basic concepts we are going to cover in this chapter: what a system is, and the center of mass.

A system is a very generic word ("the system of the Earth and the Moon", "a fridge is a closed system","my computer system") that
we are going to make precise so that we can use it to describe our abstraction of the real world. Simply put, a system is a collection
of objects. When we turn our objects into points, we are going to describe specific collections of those points as the systems. For a
given problem, there may be multiple possible systems. For a simple example, consider the collision of two blocks sliding along
the ground. We replace the blocks with points, and say "the system is the two blocks." Well that's a fine system if we're going to
ignore friction, but if the blocks are experiencing friction between themselves and the ground, we had better include the ground in
our system as well. So maybe system A is the blocks, but system B is the blocks and the ground, and if we want to include the
effects of friction, we have to use system B. A simple idea, but really important for us as we start to think about how we model
interactions, and which interactions are present in any given physical problem.

The center of mass, in comparison, is a definite mathematical concept. It's the answer to "when we replace our objects with points,
what point do we actually use?" We use the center of mass because it's the balance point of the system, and therefore satisfies some
important properties that random other points in our system don't satisfy. For example, consider the motion of a runner. If we
replaced the runner with a point, and used the tip of their fingers as the point, we would have a very hard time confirming any of
calculations, because a real runners fingers are flying back and forth as they run! However, if we described their motion using their
center of mass (a point inside their chest, at the center of their body), their motion would essentially be just a straight line - much
easier to understand and verify.

The specific mathematical definition of the center of mass is

In this formula, each  is the mass of an object, and each  is the position of the mass. If we were going to use this definition to
find the center of mass of the runner, we would break up their body into a bunch of little masses and find all their vector positions -
it would take a long time ! In this course, we will generally do things more like "find the center of mass between two objects of
mass  and , separated by a distance ". So what are  and  in this situation? They are position vectors, so you first have to
decide where the origin of your system is - where you are measuring the position relative to. It's often easy to pick one of the
masses as the origin, say the first one, so that , , and the center of mass is

Notice that I got rid of the vector signs in this example - we will generally be more careful and keep track of both x- and y-
directions separately, but here it's easy to see that the center of mass will be in a line between the two masses. If our numbers were 

 kg,  kg, and  m, the answer is  m. This makes sense as "the balance point", because it's much
closer to the larger mass.

Of course, if we really wanted to do that calculation, we would probably use an integral!

4: C4) Systems and The Center of Mass is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College.
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4.1: The Law of Inertia
There is something funny about motion with constant velocity: it is indistinguishable from rest. Of course, you can usually tell
whether you are moving relative to something else. But if you are enjoying a smooth airplane ride, without looking out the window,
you have no idea how fast you are moving, or even, indeed (if the flight is exceptionally smooth) whether you are moving at all.

If I were to drop something from such an airplane, I know from experience that it would fall on a straight line—relative to me, that
is. If it falls from my hand it will land at my feet, just as if we were all at rest. But we are not at rest. In the half second or so it takes
for the object to fall, the airplane has moved forward 111 meters relative to the ground. Yet the (hypothetical) object I drop does not
land 300 feet behind me! It moves forward with me as it falls, even though I am not touching it. It keeps its initial forward velocity,
even though it is no longer in contact with me or anything connected to the airplane.

This remarkable observation is one of the most fundamental principles of physics, which we call the law of inertia. It can be stated
as follows: in the absence of any external influence (or force) acting on it, an object at rest will stay at rest, while an object that is
already moving with some velocity will keep that same velocity (speed and direction of motion)—at least until it is, in fact, acted
upon by some force.

Please let that sink in for a moment, before we start backtracking, which we have to do now on several accounts. First, we used
repeatedly the term “force,” but we have not defined it properly. What if we just said that forces are precisely any “external
influences” that may cause a change in the velocity of an object? That will work until it is time to explore the concept in more
detail, a few chapters from now.

Next, I need to draw your attention to the fact that the object I (hypothetically) dropped did not actually keep its total initial
velocity: it only kept its initial forward velocity. In the downward direction, it was speeding up from the moment it left my hand, as
would any other falling object (and as we shall see later in this chapter). But this actually makes sense in a certain way: there was
no forward force, so the forward velocity remained constant; there was, however, a vertical force acting all along (the force of
gravity), and so the object did speed up in that direction. This observation is, in fact, telling us something profound about the
world’s geometry: namely, that forces and velocities are vectors, and laws such as the law of inertia will typically apply to the
vector as a whole, as well as to each component separately (that is to say, each dimension of space). This anticipates, in fact, the
way we will deal, later on, with motion in two or more dimensions; but we do not need to worry about that for a few chapters still.

Finally, it is worth spending a moment reflecting on how radically the law of inertia seems to contradict our intuition about the way
the world works. What it seems to be telling us is that, if we throw or push an object, it should continue to move forever with the
same speed and in the same direction with which it set out—something that we know is certainly not true. But what’s happening in
“real life” is that, just because we have left something alone, it doesn’t mean the world has left it alone. After we lose contact with
the object, all sorts of other forces will continue to act on it. A ball we throw, for instance, will experience air resistance or drag,
and that will slow it down. An object sliding on a surface will experience friction, and that will slow it down too. Perhaps the
closest thing to the law of inertia in action that you may get to see is a hockey puck sliding on the ice: it is remarkable (perhaps
even a bit frightening) to see how little it slows down, but even so the ice does a exert a (very small) frictional force that would
bring the puck to a stop eventually.

This is why, historically, the law of inertia was not discovered until people started developing an appreciation for frictional forces,
and the way they are constantly acting all around us to oppose the relative motion of any objects trying to slide past each other.

This mention of relative motion, in a way, brings us full circle. Yes, relative motion is certainly detectable, and for objects in
contact it actually results in the occurrence of forces of the frictional, or drag, variety. But absolute (that is, without reference to
anything external) motion with constant velocity is fundamentally undetectable. And in view of the law of inertia, it makes sense: if
no force is required to keep me moving with constant velocity, it follows that as long as I am moving with constant velocity I
should not be feeling any net force acting on me; nor would any other detection apparatus I might be carrying with me.

This is the next very interesting fact about the physical world that we are about to discover: forces cause accelerations, or changes
in velocity, but they do so in different degrees for different objects; and, moreover, the ultimate change in velocity takes time. The
first part of this statement has to do with the concept of inertial mass, to be introduced in the next chapter; the second part we are
going to explore right now, after a brief detour to define inertial reference frames.
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Inertial Reference Frames
The example we just gave you of what happens when a plane in flight experiences turbulence points to an important phenomenon,
namely, that there may be times where the law of inertia may not seem to apply in a certain reference frame. By this we mean that
an object left at rest, like the water in a cup, may suddenly start to move—relative to the reference frame coordinates—even though
nothing and nobody is acting on it. More dramatically still, if a car comes to a sudden stop, the passengers may be “projected
forward”—they were initially at rest relative to the car frame, but now they find themselves moving forward (always in the car
reference frame), to the point that, if they are not wearing seat belts, they may end up hitting the dashboard, or the seat in front of
them.

Again, nobody has pushed on them, and in fact what we can see in this case, from outside the car, is nothing but the law of inertia
at work: the passengers were just keeping their initial velocity, when the car suddenly slowed down under and around them. So
there is nothing wrong with the law of inertia, but there is a problem with the reference frame: if one wants to describe the motion
of objects in a reference frame like a plane being shaken up or a car that is speeding up or slowing down, we need to allow for the
fact that objects may move—always relative to that frame—in an apparent violation of the law of inertia.

The way we deal with this in physics is by introducing the very important concept of an inertial reference frame, by which we
mean a reference frame in which all objects will, at all times, be observed to move (or not move) in a way fully consistent with the
law of inertia. In other words, the law of inertia has to hold when we use that frame’s own coordinates to calculate the objects’
velocities. This, of course, is what we always do instinctively: when I am on a plane I locate the various objects around me relative
to the plane frame itself, not relative to the distant ground.

To ascertain whether a frame is inertial or not, we start by checking to see if the description of motion using that frame’s
coordinates obeys the law of inertia: does an object left at rest on the counter in the laboratory stay at rest? If set in motion, does it
move with constant velocity on a straight line? The Earth’s surface, as it turns out, is not quite a perfect inertial reference frame, but
it is good enough that it made it possible for us to discover the law of inertia in the first place!

What spoils the inertial-ness of an Earth-bound reference frame is the Earth’s rotation, which, as we shall see later, is an example of
accelerated motion. In fact, if you think about the grossly non-inertial frames I have introduced above—the bouncy plane, the
braking car—they all have this in common: that their velocities are changing; they are not moving with constant speed on a straight
line.

So, once you have found an inertial reference frame, to decide whether another one is inertial or not is simple: if it is moving with
constant velocity (relative to the first, inertial frame), then it is itself inertial; if not, it is not. We will show you how this works,
formally, in a little bit (Chapter 15), after we get around to properly introducing the concept of acceleration.

It is a fundamental principle of physics that the laws of physics take the same form in all inertial reference frames. The law of
inertia is, of course, an example of such a law. Since all inertial frames are moving with constant velocity relative to each other, this
is another way to say that absolute motion is undetectable, and all motion is ultimately relative. Accordingly, this principle is
known as the principle of relativity.

This page titled 4.1: The Law of Inertia is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-
Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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4.2: Extended Systems and Center of Mass
Consider a collection of particles with masses , ,..., and located, at some given instant, at positions , .... (We are still, for
the time being, considering only motion in one dimension, but all these results generalize easily to three dimensions.) The center of
mass of such a system is a mathematical point whose position coordinate is given by

Clearly, the denominator of ( ) is just the total mass of the system, which we may just denote by . If all the particles have the
same mass, the center of mass will be somehow “in the middle” of all of them; otherwise, it will tend to be closer to the more
massive particle(s). The “particles” in question could be spread apart, or they could literally be the “parts” into which we choose to
subdivide, for computational purposes, a single extended object.

If the particles are in motion, the position of the center of mass, , will in general change with time. For a solid object, where all
the parts are moving together, the displacement of the center of mass will just be the same as the displacement of any part of the
object. In the most general case, we will have (by subtracting  from )

Dividing Equation ( ) by  and taking the limit as , we get the instantaneous velocity of the center of mass:

But this is just

where  is the total momentum of the system along the x-axis.

Center of Mass in 3 dimensions
So far, we have only been dealing with one dimension, and in particular the x-dimension. However, there is nothing special about
the x direction. We could simply call the direction we were calling "x" the "y" or "z" direction and show that everything above
holds for those dimensions as well. We can combine all of these results into one great equation with our column vector notation:

or in column vector notation:

Similarly, our velocity and momentum can be generalized to three dimesions simply by getting rid of the "x" subscript and putting
a vector symbol over the variables:

Center of Mass Motion for an Isolated System
Equation ( ) is a very interesting result. Since the total momentum of an isolated system is constant, it tells us that the center of
mass of an isolated system of particles moves at constant velocity, regardless of the relative motion of the particles themselves or
their possible interactions with each other. As indicated above, this generalizes straightforwardly to more than one dimension, so
we can write . Thus, we can say that, for an isolated system in space, not only the speed, but also the direction of
motion of its center of mass does not change with time.

m1 m2 x1 x2

= .xcm

+ +…m1x1 m2x2

+ +…m1 m2
(4.2.1)

4.2.1 M

xcm

xcmi xcmf

Δ = ( Δ + Δ +…) .xcm

1

M
m1 x1 m2 x2 (4.2.2)

4.2.2 Δt Δt → 0

= ( + +…) .vx,cm

1

M
m1vx,1 m2vx,2 (4.2.3)

= .vx,cm

px,sys

M
(4.2.4)

= + +…px,sys m1vx,1 m2vx,2

= ( + +…)  r ⃗ cm

1

M
m1r ⃗ 1 m2r ⃗ 2 (4.2.5)

= + +…
⎡

⎣
⎢

xcm

ycm

zcm

⎤

⎦
⎥

1

M

⎛

⎝
⎜m1

⎡

⎣
⎢

x1

y1

z1

⎤

⎦
⎥ m2

⎡

⎣
⎢

x2

y2

z2

⎤

⎦
⎥

⎞

⎠
⎟ (4.2.6)

= ( + +…)v ⃗ cm

1

M
m1v ⃗ 1 m2v ⃗ 2 (4.2.7)

= Mp ⃗ sys v ⃗ cm (4.2.8)

4.2.4

= /Mv ⃗ cm p ⃗ sys

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85777?pdf
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/04%3A_C4)_Systems_and_The_Center_of_Mass/4.02%3A_Extended_Systems_and_Center_of_Mass
https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/15%3A_Multiple_Integration/15.6%3A_Calculating_Centers_of_Mass_and_Moments_of_Inertia


4.2.2 https://phys.libretexts.org/@go/page/85777

Clearly this result is a sort of generalization of the law of inertia. For a solid, extended object, it does, in fact, provide us with the
precise form that the law of inertia must take: in the absence of external forces, the center of mass will just move on a straight line
with constant velocity, whereas the object itself may be moving in any way that does not affect the center of mass trajectory.
Specifically, the most general motion of an isolated rigid body is a straight line motion of its center of mass at constant speed,
combined with a possible rotation of the object as a whole around the center of mass.

For a system that consists of separate parts, on the other hand, the center of mass is generally just a point in space, which may or
may not coincide at any time with the position of any of the parts, but which will nonetheless move at constant velocity as long as
the system is isolated. This is illustrated by Figure , where the position vs. time curves have been drawn for the colliding
objects of Figure 2.1.1. I have assumed that object 1 starts out at  = −5 mm at  = 0, and object 2 starts at  = 0 at  = 0.
Because object 2 has twice the inertia of object 1, the position of the center of mass, as given by Equation ( ), will always be

that is to say, the center of mass will always be in between objects 1 and 2, and its distance from object 2 will always be half its
distance to object 1:

Figure  shows that this simple prescription does result in motion with constant velocity for the center of mass (the green
straight line), even though the -vs-  curves of the two objects themselves look relatively complicated. (Please check it out! Take a
ruler to Figure  and verify that the center of mass is, at every instant, where it is supposed to be.)

Figure . The green line shows the position of the center of mass as a function of time.

The concept of center of mass gives us an important way to simplify the description of the motion of potentially complicated
systems. We will make good use of it in forthcoming chapters.

A very nice demonstration of the motion of the center of mass in two-body one-dimensional collisions can be found at
https://phet.colorado.edu/sims/collision-lab/collision-lab_en.html (you need to check the “center of mass” box to see it).

Recoil and Rocket Propulsion
As we have just seen, you cannot alter the motion of your center of mass without relying on some external force—which is to say,
some kind of external support. This is actually something you may have experienced when you are resting on a very slippery
surface and you just cannot “get a grip” on it. There is, however, one way to circumvent this problem which, in fact, relies on
conservation of momentum itself: if you are carrying something with you, and can throw it away from you at high speed, you will
recoil as a result of that. If you can keep throwing things, you (with your store of as yet unthrown things) will speed up a little more
every time. This is, in essence, the principle behind rocket propulsion.

Mathematically, consider two objects, of masses  and , initially at rest, so their total momentum is zero. If mass 1 is thrown
away from mass 2 with a speed , then, by conservation of momentum (always assuming the system is isolated) we must have

4.2.1

x1i t x2i t

4.2.1

= /3 +2 /3xcm x1 x2

| − | = | − |xcm x1
2

3
x1 x2

| − | = | − |xcm x2
1

3
x1 x2

4.2.1

x t

4.2.1

4.2.1

m1 m2

v1f

0 = +m1v1f m2v2f (4.2.9)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85777?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/02%3A_C2)_Particles_and_Interactions/2.01%3A_Inertia#2.1.1
https://phet.colorado.edu/sims/collision-lab/collision-lab_en.html


4.2.3 https://phys.libretexts.org/@go/page/85777

and therefore . This is how a rocket moves forward, by constantly expelling mass (the hot exhaust gas)
backwards at a high velocity. Note that, even though both objects move, the center of mass of the whole system does not (in the
absence of any external force), as discussed above.

This page titled 4.2: Extended Systems and Center of Mass is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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4.3: Reference Frame Changes and Relative Motion
Everything up to this point assumes that we are using a fixed, previously agreed upon reference frame. Basically, this is just an
origin and a set of axes along which to measure our coordinates.

There are, however, a number of situations in physics that call for the use of different reference frames, and, more importantly, that
require us to convert various physical quantities from one reference frame to another. For instance, imagine you are on a boat on a
river, rowing downstream. You are moving with a certain velocity relative to the water around you, but the water itself is flowing
with a different velocity relative to the shore, and your actual velocity relative to the shore is the sum of those two quantities. Ships
generally have to do this kind of calculation all the time, as do airplanes: the “airspeed” is the speed of a plane relative to the air
around it, but that air is usually moving at a substantial speed relative to the earth.

The way we deal with all these situations is by introducing two reference frames, which here I am going to call A and B. One of
them, say A, is “at rest” relative to the earth, and the other one is “at rest” relative to something else—which means, really, moving
along with that something else. (For instance, a reference frame at rest “relative to the river” would be a frame that’s moving along
with the river water, like a piece of driftwood that you could measure your progress relative to.)

In any case, graphically, this will look as in Figure , which we have drawn for the two-dimensional case:

Figure : Position vectors and coordinates of a point P in two different reference frames, A and B.

In the reference frame A, the point P has position coordinates . Likewise, in the reference frame B, its coordinates are 
. As you can see, the notation chosen is such that every coordinate in A will have an “A” as a first subscript, while the

second subscript indicates the object to which it refers, and similarly for coordinates in B.

The coordinates  are special: they are the coordinates, in the reference frame A, of the origin of reference frame B. This
is enough to fully locate the frame B in A, as long as the frames are not rotated relative to each other.

The thin colored lines I have drawn along the axes in Figure  are intended to make it clear that the following equations hold:

Although the figure is drawn for the easy case where all these quantities are positive, you should be able to convince yourself that
Eqs. ( ) hold also when one or more of the coordinates have negative values.

All these coordinates are also the components of the respective position vectors, shown in the figure and color-coded by reference
frame (so, for instance,  is the position vector of P in the frame A), so the equations ( ) can be written more compactly as
the single vector equation
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From all this you can see how to add vectors: algebraically, you just add their components separately, as in Eqs. ( );
graphically, you draw them so the tip of one vector coincides with the tail of the other (we call this “tip-to-tail”), and then draw the
sum vector from the tail of the first one to the tip of the other one.

Of course, I showed you already how to subtract vectors with Figure 1.2.3: again, algebraically, you just subtract the corresponding
coordinates, whereas graphically you draw them with a common origin, and then draw the vector from the tip of the vector you are
subtracting to the tip of the other one. If you read the previous paragraph again, you can see that Figure 1.2.3 can equally well be
used to show that , as to show that .

In a similar way, you can see graphically from Figure  (or algebraically from Equation ( )) that the position vector of P in
the frame B is given by . The last term in this expression can be written in a different way, as follows. If I follow
the convention I have introduced above, the quantity  (with the order of the subscripts reversed) would be the  coordinate of
the origin of frame A in frame B, and algebraically that would be equal to , and similarly . Hence the vector
equality  holds. Then,

This is, in a way, the “inverse” of Equation ( ): it tells us how to get the position of P in the frame B if we know its position in
the frame A.

Let's show next how all this extends to displacements and velocities. Suppose the point P indicates the position of a particle at the
time . Over a time interval , both the position of the particle and the relative position of the two reference frames may change.
We can add yet another subscript,  or , (for initial and final) to the coordinates, and write, for example,

Subtracting these equations gives us the corresponding displacements:

Dividing Equation ( ) by  we get the average velocities , and then taking the limit  we get the instantaneous
velocities. This applies in the same way to the  coordinates, and the result is the vector equation

We have rearranged the terms on the right-hand side to (hopefully) make it easier to visualize what’s going on. In words: the
velocity of the particle P relative to (or measured in) frame A is equal to the (vector) sum of the velocity of the particle as measured
in frame B, plus the velocity of frame B relative to frame A.

The result ( ) is just what we would have expected from the examples mentioned at the beginning of this section, like rowing
in a river or an airplane flying in the wind. For instance, for the airplane  could be its “airspeed” (only it has to be a vector, so it
would be more like its “airvelocity”: that is, its velocity relative to the air around it), and  would be the velocity of the air
relative to the earth (the wind velocity, at the location of the airplane). In other words, A represents the earth frame of reference and
B the air, or wind, frame of reference. Then,  would be the “true” velocity of the airplane relative to the earth. You can see how
it would be important to add these quantities as vectors, in general, by considering what happens when you fly in a cross wind, or
try to row across a river, as in Figure  below.

4.3.1

Δ = −r ⃗  r ⃗ f r ⃗ i = +Δr ⃗ f r ⃗ i r ⃗ 

4.3.1 4.3.2

= −r ⃗ BP r ⃗ AP r ⃗ AB

xBA x

−xAB = −yBA yAB

= −r ⃗ AB r ⃗ BA

= − = + .r ⃗ BP r ⃗ AP r ⃗ AB r ⃗ AP r ⃗ BA (4.3.3)
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Figure : Rowing across a river. If you head “straight across” the river (with velocity vector  in the moving frame of the
river, which is flowing with velocity  in the frame of the earth), your actual velocity relative to the shore will be the vector .
This is an instance of Equation ( ), with frame A being E (the earth), frame B being R (the river), and “b” (for “boat”) standing

for the point P we are tracking.

As you can see from this couple of examples, Equation ( ) is often useful as it is written, but sometimes the information we
have is given to us in a different way: for instance, we could be given the velocity of the object in frame A , and the velocity
of frame B as seen in frame A , and told to calculate the velocity of the object as seen in frame B. This can be easily
accomplished if we note that the vector  is equal to ; that is to say, the velocity of frame B as seen from frame A is just
the opposite of the velocity of frame A as seen from frame B. Hence, Equation ( ) can be rewritten as

For most of the next few chapters we are going to be considering only motion in one dimension, and so we will write Equation (
) (or ( )) without the vector symbols, and it will be understood that  refers to the component of the vector  along the

coordinate axis of interest.

A quantity that will be particularly important later on is the relative velocity of two objects, which we could label 1 and 2. The
velocity of object 2 relative to object 1 is, by definition, the velocity which an observer moving along with 1 would measure for
object 2. So it is just a simple frame change: let the earth frame be frame E and the frame moving with object 1 be frame 1, then the
velocity we want is  (“velocity of object 2 in frame 1”). If we make the change A  1, B  E, and P  2 in Equation ( ),
we get

In other words, the velocity of 2 relative to 1 is just the velocity of 2 minus the velocity of 1. This is again a familiar effect: if you
are driving down the highway at 50 miles per hour, and the car in front of you is driving at 55, then its velocity relative to you is 5
mph, which is the rate at which it is moving away from you (in the forward direction, assumed to be the positive one).

It is important to realize that all these velocities are real velocities, each in its own reference frame. Something may be said to be
truly moving at some velocity in one reference frame, and just as truly moving with a different velocity in a different reference
frame. I will have a lot more to say about this in the next chapter, but in the meantime you can reflect on the fact that, if a car
moving at 55 mph collides with another one moving at 50 mph in the same direction, the damage will be basically the same as if
the first car had been moving at 5 mph and the second one had been at rest. For practical purposes, where you are concerned,
another car’s velocity relative to yours is that car’s “real” velocity.

Resources
A good app for practicing how to add vectors (and how to break them up into components, magnitude and direction, etc.) may be
found here:https://phet.colorado.edu/en/simulation/vector-addition.

Perhaps the most dramatic demonstration of how Equation ( ) works in the real world is in this episode of Mythbusters:
https://www.youtube.com/watch?v=BLuI118nhzc. (If this link does not work, do a search for “Mythbusters cancel momentum.”)
They shoot a ball from the bed of a truck, with a velocity (relative to the truck) of 60 mph backwards, while the truck is moving
forward at 60 mph. I think the result is worth watching.

A very old, but also very good, educational video about different frames of reference is this one: https://www.youtube.com/watch?
v=sS17fCom0Ns. You should try to watch at least part of it. Many things will be relevant to later parts of the course, including
projectile motion.

 We have made a very natural assumption, that the time interval  is the same for observers tracking the particle’s motion in
frames A and B, respectively (where each observer is understood to be moving along with his or her frame). This, however, turns
out to be not true when any of the velocities involved is close to the speed of light, and so the simple addition of velocities formula
( ) does not hold in Einstein’s relativity theory.

This page titled 4.3: Reference Frame Changes and Relative Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts
platform.
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4.4: Examples

Two blocks, of mass  and , are compressed on either side of a spring and tied together with a rope. They are sitting at rest
on a frictionless surface, as shown in the figure.

1. The rope breaks and the larger block flies away from the smaller one at a speed of 2.00 m/s. If =0.450 kg, what is the
speed of the smaller block?

2. Now retie the rope and perform the experiment again, but slide the blocks along the surface with an initial speed of 3.5 m/s
to the right. The rope breaks and the spring acts in the same way on the blocks. What is the speed of the smaller block?

3. For both parts (a) and (b): What is the speed of the center of mass of the system both before and after the rope breaks? 

 

Using data from text appendix, determine how far the center of mass of the Earth-moon system is from the center of Earth.
Compare this distance to the radius of Earth, and comment on the result. Ignore the other objects in the solar system.

Strategy

We get the masses and separation distance of the Earth and moon, impose a coordinate system, and use Equation 4.3.1 with just
N = 2 objects. We use a subscript “e” to refer to Earth, and subscript “m” to refer to the moon.

Solution

Define the origin of the coordinate system as the center of Earth. Then, with just two objects, Equation 4.3.1 becomes

We can find the values of the distances and masses from the Internet,

We defined the center of Earth as the origin, so r  = 0 m. Inserting these into the equation for R gives

Significance

The radius of Earth is 6.37 x 10  m, so the center of mass of the Earth-moon system is (6.37 − 4.64) x 10  m = 1.73 x 10 m =
1730 km (roughly 1080 miles) below the surface of Earth. The location of the center of mass is shown (not to scale).

 Whiteboard Problem 4.4.1

m 3m

m

 Example : Center of Mass of the Earth-Moon System4.4.2

R = .
+mcrc mmrm

+mc mm

(4.4.1)

= 5.97 × kgmc 1024 (4.4.2)

= 7.36 × kgmm 1022 (4.4.3)

= 3.82 × m.rm 105 (4.4.4)

e

R =
(5.97 × kg)(0 m) +(7.36 × kg)(3.82 × m)1024 1022 108

(5.98 × kg) +(7.36 × kg)1024 1022

= 4.64 × m.106
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Suppose we included the sun in the system. Approximately where would the center of mass of the Earth-moon-sun system be
located? (Feel free to actually calculate it.)

Figure  shows a single crystal of sodium chloride—ordinary table salt. The sodium and chloride ions form a single unit,
NaCl. When multiple NaCl units group together, they form a cubic lattice. The smallest possible cube (called the unit cell)
consists of four sodium ions and four chloride ions, alternating. The length of one edge of this cube (i.e., the bond length) is
2.36 x 10  m. Find the location of the center of mass of the unit cell. Specify it either by its coordinates (r , r , r ),
or by r  and two angles.

Figure : A drawing of a sodium chloride (NaCl) crystal.

Strategy

We can look up all the ion masses. If we impose a coordinate system on the unit cell, this will give us the positions of the ions.
We can then apply Equation 4.3.1 in each direction (along with the Pythagorean theorem).

Solution

Define the origin to be at the location of the chloride ion at the bottom left of the unit cell. Figure  shows the coordinate
system.

Figure : A single unit cell of a NaCl crystal.

There are eight ions in this crystal, so N = 8:

The mass of each of the chloride ions is

so we have

 Exercise 4.4.3

 Example : Center of Mass of a Salt Crystal4.4.4

4.4.3

−10
CM,x CM,y CM,z

CM

4.4.3

4.4.4

4.4.4

= .r ⃗ CM

1

M
∑
j=1

8

mjr ⃗ j (4.4.5)

35.453u × = 5.885 × kg
1.660 × kg10−27

u
10−26 (4.4.6)
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For the sodium ions,

The total mass of the unit cell is therefore

From the geometry, the locations are

Substituting:

Similar calculations give r  = r  = 1.18 x 10  m (you could argue that this must be true, by symmetry, but it’s a good
idea to check).

Significance

As it turns out, it was not really necessary to convert the mass from atomic mass units (u) to kilograms, since the units divide
out when calculating r  anyway.

To express r  in terms of magnitude and direction, first apply the three-dimensional Pythagorean theorem to the vector
components:

Since this is a three-dimensional problem, it takes two angles to specify the direction of . Let  be the angle in the x,y-
plane, measured from the +x-axis, counterclockwise as viewed from above; then:

Let  be the angle in the y,z-plane, measured downward from the +z-axis; this is (not surprisingly):

= = = = 5.885 × kg.m1 m3 m6 m8 10−26 (4.4.7)

= = = = 3.816 × kg.m2 m4 m5 m7 10−26 (4.4.8)

M = (4)(5.885 × kg) +(4)(3.816 × kg) = 3.880 × kg.10−26 10−26 10−25 (4.4.9)
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Thus, the center of mass is at the geometric center of the unit cell. Again, you could argue this on the basis of symmetry

Suppose you have a macroscopic salt crystal (that is, a crystal that is large enough to be visible with your unaided eye). It is
made up of a huge number of unit cells. Is the center of mass of this crystal necessarily at the geometric center of the crystal?

Two crucial concepts come out of these examples:

1. 1. As with all problems, you must define your coordinate system and origin. For center-of-mass calculations, it often makes
sense to choose your origin to be located at one of the masses of your system. That choice automatically defines its distance in
Equation 4.3.1 to be zero. However, you must still include the mass of the object at your origin in your calculation of M, the
total mass Equation 4.3.1. In the Earth-moon system example, this means including the mass of Earth. If you hadn’t, you’d have
ended up with the center of mass of the system being at the center of the moon, which is clearly wrong.

2. In the second example (the salt crystal), notice that there is no mass at all at the location of the center of mass. This is an
example of what we stated above, that there does not have to be any actual mass at the center of mass of an object.

This page titled 4.4: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

9.9: Center of Mass (Part 1) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.

θ = ( ) = .tan−1 Rz

Ry

45o (4.4.11)
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4.E: Systems and the Center of Mass Exercises

Conceptual Questions
1. Suppose a fireworks shell explodes, breaking into three large pieces for which air resistance is negligible. How does the

explosion affect the motion of the center of mass? How would it be affected if the pieces experienced significantly more
air resistance than the intact shell?

2. It is possible for the velocity of a rocket to be greater than the exhaust velocity of the gases it ejects. When that is the
case, the gas velocity and gas momentum are in the same direction as that of the rocket. How is the rocket still able to
obtain thrust by ejecting the gases?

Problems
3. Three point masses are placed at the corners of a triangle as shown in the figure below. Find the center of mass of the

three-mass system.

4. Two particles of masses m  and m  separated by a horizontal distance D are released from the same height h at the same
time. Find the vertical position of the center of mass of these two particles at a time before the two particles strike the
ground. Assume no air resistance.

5. Two particles of masses m  and m  separated by a horizontal distance D are let go from the same height h at different
times. Particle 1 starts at t = 0 , and particle 2 is let go at t = T. Find the vertical position of the center of mass at a time
before the first particle strikes the ground. Assume no air resistance.

6. A cube of side a is cut out of another cube of side b as shown in the figure below. Find the location of the center of mass
of the structure. (Hint: Think of the missing part as a negative mass overlapping a positive mass.)

7. A 5.00-kg squid initially at rest ejects 0.250 kg of fluid with a velocity of 10.0 m/s. (a) What is the recoil velocity of the
squid if the ejection is done in 0.100 s and there is a 5.00-N frictional force opposing the squid’s movement? (b) How
much energy is lost to work done against friction?

8. A rocket takes off from Earth and reaches a speed of 100 m/s in 10.0 s. If the exhaust speed is 1500 m/s and the mass of
fuel burned is 100 kg, what was the initial mass of the rocket?

9. Repeat the preceding problem but for a rocket that takes off from a space station, where there is no gravity other than the
negligible gravity due to the space station. 8

10. How much fuel would be needed for a 1000-kg rocket (this is its mass with no fuel) to take off from Earth and reach 1000
m/s in 30 s? The exhaust speed is 1000 m/s.

11. What exhaust speed is required to accelerate a rocket in deep space from 800 m/s to 1000 m/s in 5.0 s if the total rocket
mass is 1200 kg and the rocket only has 50 kg of fuel left?

12. Unreasonable Results Squids have been reported to jump from the ocean and travel 30.0 m (measured horizontally)
before re-entering the water. (a) Calculate the initial speed of the squid if it leaves the water at an angle of 20.0°,
assuming negligible lift from the air and negligible air resistance. (b) The squid propels itself by squirting water. What
fraction of its mass would it have to eject in order to achieve the speed found in the previous part? The water is ejected at
12.0 m/s; gravitational force and friction are neglected. (c) What is unreasonable about the results? (d) Which premise is
unreasonable, or which premises are inconsistent?

1 2

1 2
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Additional Problems
13. If the entire population of Earth were transferred to the Moon, how far would the center of mass of the Earth-Moon-

population system move? Assume the population is 7 billion, the average human has a mass of 65 kg, and that the
population is evenly distributed over both the Earth and the Moon. The mass of the Earth is 5.97 x 10  kg and that of the
Moon is 7.34 x 10  kg. The radius of the Moon’s orbit is about 3.84 x 10 m.

14. Two friends are in small boats. The mass of the first boat plus the person is 300 kg; the mass fo the second boat plus the
person is 400 kg.  They have a rope between the two boats that is 30 feet long. If both friends pull slowly on the rope,
how far will the lighter person move?

15. You friend wonders how a rocket continues to climb into the sky once it is sufficiently high above the surface of Earth so
that its expelled gasses no longer push on the surface. How do you respond?

16. To increase the acceleration of a rocket, should you throw rocks out of the front window of the rocket or out of the back
window?
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CHAPTER OVERVIEW

5: C5) Conservation of Momentum
5.1: Conservation of Linear Momentum
5.2: The Problem Solving Framework
5.3: Examples
5.4: More Examples
5.E: Conservation of Momentum (Exercises)

In this chapter we are going to combine what we've done in Chapter 2 and Chapter 3, and bring us to the law of conservation of
momentum, which is the first real "rule" of nature that we are going to study in this book. In Chapter 2 we used this law in the
form "interactions transfer momentum". That is core concept, but it turns out that really implementing this is challenging without
some mathematical tools - primarily that of vectors. Now that we have a better understanding (and some practice) doing vector
analysis, we are ready to state the full law of conservation of momentum: the momentum of an isolated system does not change in
time. This is a seemingly simple statement, but it turns out to be extraordinarily powerful, because you can use it to make
predictions about the systems you are studying - the final velocity of an object in a collision, for instance.

Of course, to make quantitative predictions, we need cast this law into mathematics, which is the following:

(You should convince yourself that all three of those statements say exactly the same thing, using the definition of the delta and
basic algebra!)

We should take note that this is a vector equation, which means there are actually three parts to it: , , and 
. These three equations are independent, in the sense that they always both true at the same time, but aren't directly

related.

Let's also just briefly note how we should understand this mathematical statement in conjunction with our old "interactions transfer
momentum" concept. If a system is isolated, there are no interactions between the system and the outside world, so there is no
momentum transfer into or out of the system. That's exactly the same information contained in the equation above, since that says
the change in momentum of an isolated system is zero.

Let's try some examples. Say you have a hockey puck (mass 0.5 kg) sliding on ice at a speed of 10 m/s, and it collides head on into
another puck moving at 14 m/s. After the collision, the second puck moves away at 6 m/s, and we can use our laws to determine the
final speed of the first. The equation says "final equal initial", so let's try to calculate the initial. The first puck has a momentum of
5 kg m/s, the second has 7 kg m/s - but it's moving the opposite direction, so the initial momentum in the x-direction is 

. We can also try to calculate the final momentum - the second puck has 3 kg m/s, in
the positive direction, but we don't know the final speed of the first. However, using the equation above we can write

This equation can be solved for the unknown variable to get , which is negative because apparently the first puck
bounces off the second and moves backward after the collision.

That example was pretty simple, since the collision only took place in a single direction (we choose x). However, our conservation
of momentum law tells us that the vector (magnitude and direction) of the momentum must remain unchanged during a collision.
The figure below illustrates that for the collision of two objects of similar masses (note the grey arrows are just helping us to make
sure we add the vectors head to tail). The final momentum must be equal to the initial, and even though some of the collisions
below look totally reasonable, they are prohibited by the law of conservation of momentum.

 Conservation of Momentum

Δ = 0 ⇔ − = 0 ⇔ =p ⃗  p ⃗ f p ⃗ i p ⃗ f p ⃗ i (5.1)

Δ = 0px Δ = 0py

Δ = 0pz

= 5 kg m/s −7 kg m/s = −2 kg m/spi,x

−2kgm/s = (0.5 kg) +3 kg m/s.v1,f (5.2)

= −10 m/sv1,f

https://libretexts.org/
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/05%3A_C5)_Conservation_of_Momentum/5.01%3A_Conservation_of_Linear_Momentum
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/05%3A_C5)_Conservation_of_Momentum/5.02%3A_The_Problem_Solving_Framework
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/05%3A_C5)_Conservation_of_Momentum/5.03%3A_Examples
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/05%3A_C5)_Conservation_of_Momentum/5.04%3A_More_Examples
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/05%3A_C5)_Conservation_of_Momentum/5.E%3A_Conservation_of_Momentum_(Exercises)


2

5: C5) Conservation of Momentum is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College.

https://libretexts.org/
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/05%3A_C5)_Conservation_of_Momentum
https://creativecommons.org/licenses/by-sa/


5.1.1 https://phys.libretexts.org/@go/page/85781

5.1: Conservation of Linear Momentum

Explain the meaning of “conservation of momentum”
Correctly identify if a system is, or is not, closed
Define a system whose momentum is conserved
Mathematically express conservation of momentum for a given system
Calculate an unknown quantity using conservation of momentum

Recall what we learned about momentum transfer in Chapter 2: when objects interact with each other (like in a collision), they do
so by transferring momentum between each other. What's more, this momentum is conserved - in that chapter, we expressed this
conservation by noting the amount that one object lost was the same that the other object gained. Mathematically, we could write
this as

for two objects. If this collison happens over some time period , we can write this change as rate of change,

So now one object gains or looses momentum as the same rate that the other looses or gains it. Now performing some simple
manipulations on this expression:

Using the definition of , the top of this expression can be written as

Now looking at this expression, if we now define the total momentum of the system to be , we can see that what
we just wrote was

and combined with equation , we see this gives us

Or, in other words, the total momentum of the system does not change in time. This is the best statement of conservation of
momentum we have gotten so far, and is the best one to remember going forward. It does not matter "when" the initial and final
states happen, all that matters is the amount of momentum does not change between those initial and final states.

Since momentum is a vector, both the magnitude and direction of this momentum must be conserved, as shown in Figure , the
total momentum of the system before and after the collision remains the same, in both magnitude and direction. 
 

 Learning Objectives

Δ = −Δ ,p ⃗ 1 p ⃗ 2 (5.1.1)

Δt

= − .
Δp ⃗ 1
Δt

Δp ⃗ 2
Δt

(5.1.2)

= − → + = 0 → = 0.
Δp ⃗ 1
Δt

Δp ⃗ 2
Δt

Δp ⃗ 1
Δt

Δp ⃗ 2
Δt

Δ +Δp ⃗ 1 p ⃗ 2
Δt

(5.1.3)

Δ

Δ +Δ = ( − ) +( − ) = ( + ) −( + ).p ⃗ 1 p ⃗ 2 p ⃗ 1f p ⃗ 1i p ⃗ 2f p ⃗ 2i p ⃗ 1f p ⃗ 2f p ⃗ 1i p ⃗ 2i (5.1.4)

= +P ⃗ 
sys p ⃗ 1 p ⃗ 2

− ,P ⃗ 
sys,f P ⃗ 

sys,i (5.1.5)

5.1.3

− = 0 → Δ = 0.P ⃗ 
sys,f P ⃗ 

sys,i P ⃗ 
sys (5.1.6)
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Figure : Before the collision, the two billiard balls travel with momenta  and . The total momentum of the system is the
sum of these, as shown by the red vector labeled  on the left. After the collision, the two billiard balls travel with different
momenta  and . The total momentum, however, has not changed, as shown by the red vector arrow  on the right.

Generalizing this result to N objects, we obtain

Equation  is the definition of the total (or net) momentum of a system of N interacting objects, along with the statement that
the total momentum of a system of objects is constant in time—that is, momentum is conserved.

If the value of a physical quantity is constant in time, we say that the quantity is conserved.

Requirements for Momentum Conservation
There is a complication, however. A system must meet two requirements for its momentum to be conserved:

1. The mass of the system must remain constant during the interaction. As the objects interact (apply forces on each other),
they may transfer mass from one to another; but any mass one object gains is balanced by the loss of that mass from another.
The total mass of the system of objects, therefore, remains unchanged as time passes: 

2. The net external force on the system must be zero. As the objects collide, or explode, and move around, they exert forces on
each other. However, all of these forces are internal to the system, and thus each of these internal forces is balanced by another
internal force that is equal in magnitude and opposite in sign. As a result, the change in momentum caused by each internal
force is cancelled by another momentum change that is equal in magnitude and opposite in direction. Therefore, internal forces
cannot change the total momentum of a system because the changes sum to zero. However, if there is some external force that
acts on all of the objects (gravity, for example, or friction), then this force changes the momentum of the system as a whole; that
is to say, the momentum of the system is changed by the external force. Thus, for the momentum of the system to be conserved,
we must have 

A system of objects that meets these two requirements is said to be a closed system (also called an isolated system). Another way
to state equation  is

The total momentum of a closed system is conserved:

5.1.1 p ⃗ 1 p ⃗ 2
p ⃗ 
total

p ⃗ '1 p ⃗ '2 p ⃗ ′
total

+ + +⋯ +p ⃗ 1 p ⃗ 2 p ⃗ 3 p ⃗ N

∑
j=1

N

p ⃗ j

= constant

= constant.

(5.1.7)

(5.1.8)

5.1.8

 Conservation Laws

[ = 0.
dm

dt
]
system

(5.1.9)

= .F ⃗ 
ext 0⃗  (5.1.10)

5.1.6

 Law of Conservation of Momentum

= constant.∑
j=1

N

p ⃗ j (5.1.11)
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This statement is called the Law of Conservation of Momentum. Along with the conservation of energy, it is one of the
foundations upon which all of physics stands. All our experimental evidence supports this statement: from the motions of galactic
clusters to the quarks that make up the proton and the neutron, and at every scale in between. In a closed system, the total
momentum never changes.

Note that there absolutely can be external forces acting on the system; but for the system’s momentum to remain constant, these
external forces have to cancel, so that the net external force is zero. Billiard balls on a table all have a weight force acting on them,
but the weights are balanced (canceled) by the normal forces, so there is no net force.

The Meaning of ‘System’
A system (mechanical) is the collection of objects in whose motion (kinematics and dynamics) you are interested. If you are
analyzing the bounce of a ball on the ground, you are probably only interested in the motion of the ball, and not of Earth; thus, the
ball is your system. If you are analyzing a car crash, the two cars together compose your system (Figure ).

Figure : The two cars together form the system that is to be analyzed. It is important to remember that the contents (the mass)
of the system do not change before, during, or after the objects in the system interact.

This page titled 5.1: Conservation of Linear Momentum is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

9.5: Conservation of Linear Momentum (Part 1) by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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5.2: The Problem Solving Framework
Solving problems in physics can be daunting task. Some solutions appear to be insights from the great beyond, or algebraic tricks
that you'd never be able to reproduce on your own. However, the great thing about physics is that the only thing we have to work
with are the basic laws of the universe, and there are actually not many of those. For example, one could argue that in this textbook
the only laws of the universe we are actually dealing with are the following:

Conservation of Momentum
Conservation of Angular Momentum
Conservation of Energy

Such a short list of things to learn! If all of mechanics is covered by that list, why does physics appear to be so hard? Well, that's
because we are often applying these laws in situations which are new to us - if they weren't new, we could simply look up the
answer, and that doesn't demonstrate any understanding of the physical world. To this end, we'd like to present the problem solving
framework, which can tackle difficult (and easy!) problems we come across when trying to apply the physical laws we listed
above.

The problem-solving framework is a 4-step process to get you from a problem statement to a solution, and is as follows :

1. Translate: You might think about this step as "list the knowns and unknows": Take the words on the page and translate them
into symbols, as appropriate. For example, "A train of mass 45 kg is traveling at a speed of 67 m/s", means that you can call the
variable  the mass,  the speed, and they have particular values as part of the given information. This translation is necessary
both because the language of physics is mathematical, and also it will help us organize our solution. This step also includes
drawing the situation presented in the problem, and is a critical step that is often skipped by students. A drawing will always
help your thinking - this is maybe even more true for a bad drawing, because it will be a sign that you do not yet understand the
set up of the problem! Walk by the office of any physicist in the world and you will see sketches on a blackboard of whatever
they were last working on.

2. Model: Decide what physical law you want to use to solve the problem. Sometimes, this is simply picking an equation to use
("this problem is asking us to find the center of mass, so I'm going to use the center of mass formula..."), but more often this
step means picking one of the physical laws from the list above to use to solve the problem.

3. Solve: Solve! Perform whatever mathematical manipulations needs to be done to find the quantity that you can use to answer
the question. Note that in many cases, this can be the longest and most difficult step, but it also contains no physics! The
physics is done already in step 2, now we are just using math.

4. Check: It's critical to check your answer - at least to make sure it could be physically reasonable. Sometimes this is just "I
found that this car is traveling at 800 mph, is that reasonable?" (no, you did something wrong!) A better way to do this step
would be to pick an alternative solution to verify you get the same answer. The classic way to do this is to use Newton's laws if
you solved it first with a conservation law, or vice versa. But since this is physics, we are always calculating something about
the real world, and we should always be able to see if our calculations roughly match our expectations.

This framework was inspired by Unit C of Thomas Moore's textbook series Six Idea That Shaped Physics.

5.2: The Problem Solving Framework is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College.
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5.3: Examples

For each of the following sets of objects, define two systems each; one that is isolated and one that is not.

1. The Earth, Sun, and Moon.
2. A football flying through the air, during the time after it is thrown and before it is caught. (you may ignore air resistance

here)
3. Two colliding carts, ignoring friction and air resistance.
4. Two colliding carts, ignore air resistance but including the friction between the ground and the carts.

A soccer player receives a pass in the air from a teammate and immediately fires the
ball along the ground into the goal. The initial speed of the soccer ball is 15.0 m/s at an
angle of 40.0  below the horizontal. The mass of the ball is 435 g.

If this is David Beckham, he can get the shot moving with a speed of of 30.0 m/s,
moving straight along the ground. What impulse (magnitude and direction) did his foot
transfer to the soccer ball?

A baseball player is hitting a baseball as shown in the figure. The baseball has a mass of 145 g, and
is traveling at the batter at a speed of 35 m/s (that's an 80-mph fastball). The baseball player can
deliver an impulse of 5.5 kg m/s to the baseball when they hit it.

1. The baseball player hits the ball at an angle of 15 , as shown in the figure. How much impulse
does the baseball player give to the ball in the x- and y-directions?

2. What is the final speed of the ball?
3. How much impulse was transferred to the player (through the bat) when they hit the ball?

An 80-kg hockey player (call him player 1), moving at 3 m/s to the right, collides with a 90-kg player (player 2) who was
moving at 2 m/s to the left. For a brief moment, they are stuck sliding together as they grab at each other.

a. What is their joint velocity as they slide together?
b. What was the velocity of their center of mass before and after the collision?

Solution

(a) First we must determine whether the hockey players are isolated. We can consider them isolated from a couple of
standpoints.

First of all, they are functionally isolated. This is because if they are on ice, there is very little friction and the only external
forces on the hockey players are gravity and the normal force, which lead to a net zero force. (I assume this is why we are
using hockey players instead of football/soccer/rugby/etc. players.)

Secondly, they are temporarily isolated due to the collision. In the collision, the collision forces are (briefly) larger than all
other forces acting on the players. This is why we can do problems of football players, etc. as long as we care careful to look
only right before and right after the collision. In any case, they are isolated, so we can proceed.

Call the initial velocities  and , the joint final velocity . Also, call the "right" direction +x.

Then conservation of momentum reads:

 Whiteboard Problem : System Definitions5.3.1

 Whiteboard Problem : Impulsive Shooter5.3.2

∘

 Whiteboard Problem : Impulsive Batter5.3.3

∘

 Example : Collision, Center of Mass, and Recoil5.3.4 1
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Our  and  component equations simply tell us that those velocities are zero throughout:

As for our  component (the interesting one):

Solving for the final velocity, we get

Substituting the values given, we get

(b) According to Equation (3.3.3), the velocity of the center of mass, , is just the same as what we just calculated
(Equation ) above). This makes sense: after the collision, if the players are moving together, their system’s center of mass
has to be moving with them. Also, if the system is isolated, the center of mass velocity should be the same before and after the
collision. So the answer is  =  = 0.353 m/s.

For a variation of this problem that studies the relative velocity of this system with respect to another frame, check out Example
3.5.2 in University Physics 1 - Classical Mechanics, by Gea-Banacloche.

This page titled 5.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

3.5: Examples by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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5.4: More Examples

Using conservation of momentum requires four basic steps. The first step is crucial:

1. Identify a closed system (total mass is constant, no net external force acts on the system).
2. Write down an expression representing the total momentum of the system before the “event” (explosion or collision).
3. Write down an expression representing the total momentum of the system after the “event.”
4. Set these two expressions equal to each other, and solve this equation for the desired quantity

Two carts in a physics lab roll on a level track, with negligible friction. These carts have small magnets at their ends, so that
when they collide, they stick together (Figure ). The first cart has a mass of 675 grams and is rolling at 0.75 m/s to the
right; the second has a mass of 500 grams and is rolling at 1.33 m/s, also to the right. After the collision, what is the velocity of
the two joined carts?

Figure : Two lab carts collide and stick together after the collision.

Strategy

We have a collision. We’re given masses and initial velocities; we’re asked for the final velocity. This all suggests using
conservation of momentum as a method of solution. However, we can only use it if we have a closed system. So we need to be
sure that the system we choose has no net external force on it, and that its mass is not changed by the collision.

Defining the system to be the two carts meets the requirements for a closed system: The combined mass of the two carts
certainly doesn’t change, and while the carts definitely exert forces on each other, those forces are internal to the system, so
they do not change the momentum of the system as a whole. In the vertical direction, the weights of the carts are canceled by
the normal forces on the carts from the track.

Solution

Conservation of momentum is

Define the direction of their initial velocity vectors to be the +x-direction. The initial momentum is then

The final momentum of the now-linked carts is

Once again, our  and  equations are not interesting. We can concentrate on the  direction. Using the  equation:

Substituting the given numbers:

 Problem-Solving Strategy: Conservation of Momentum

 Example : Colliding Carts5.4.1

5.4.1

5.4.1

= .p ⃗ f p ⃗ i

= + .p ⃗ i m1

⎡

⎣
⎢

v1,x

0

0

⎤

⎦
⎥ m2

⎡

⎣
⎢

v2,x

0

0

⎤

⎦
⎥

= ( + ) .p ⃗ f m1 m2

⎡

⎣
⎢
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vf,y
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⎥

y z x x

( + )m1 m2 v ⃗ f,x
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Significance

The principles that apply here to two laboratory carts apply identically to all objects of whatever type or size. Even for photons,
the concepts of momentum and conservation of momentum are still crucially important even at that scale. (Since they are
massless, the momentum of a photon is defined very differently from the momentum of ordinary objects. You will learn about
this when you study quantum physics.)

Suppose the second, smaller cart had been initially moving to the left. What would the sign of the final velocity have been in
this case?

Two hockey pucks of identical mass are on a flat, horizontal ice hockey rink. The red puck is motionless; the blue puck is
moving at 2.5 m/s to the left (Figure ). It collides with the motionless red puck. The pucks have a mass of 15 g. After the
collision, the red puck is moving at 2.5 m/s, to the left. What is the final velocity of the blue puck?

Figure : Two identical hockey pucks colliding. The top diagram shows the pucks the instant before the collision, and the
bottom diagram show the pucks the instant after the collision. The net external force is zero.

Strategy

We’re told that we have two colliding objects, we’re told the masses and initial velocities, and one final velocity; we’re asked
for both final velocities. Conservation of momentum seems like a good strategy. Define the system to be the two pucks; there’s
no friction, so we have a closed system.

Before you look at the solution, what do you think the answer will be?

The blue puck final velocity will be:

a. zero
b. 2.5 m/s to the left
c. 2.5 m/s to the right
d. 1.25 m/s to the left
e. 1.25 m/s to the right
f. something else

Solution

Define the +x-direction to point to the right. Conservation of momentum then reads

v ⃗ f,x = [ ]
(0.675 kg)(0.75 m/s) +(0.5 kg)(1.33 m/s)

1.175 kg
î

= (0.997 m/s).

 Exercise5.4.2

 Example : Ice Hockey 15.4.3

5.4.3

5.4.3
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→

m +m

⎡

⎣

⎢⎢⎢
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⎦

⎥⎥

= pi
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= m −
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⎥
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As in the other examples, only the  direction is of interest. Before the collision, the momentum of the system is entirely and
only in the blue puck. Thus,

(Remember that the masses of the pucks are equal.) Substituting numbers:

Significance

Evidently, the two pucks simply exchanged momentum. The blue puck transferred all of its momentum to the red puck. In fact,
this is what happens in similar collision where m  = m .

Even if there were some friction on the ice, it is still possible to use conservation of momentum to solve this problem, but you
would need to impose an additional condition on the problem. What is that additional condition?

On November 12, 2014, the European Space Agency successfully landed a probe named Philae on Comet 67P/
Churyumov/Gerasimenko (Figure ). During the landing, however, the probe actually landed three times, because it
bounced twice. Let’s calculate how much the comet’s speed changed as a result of the first bounce.

Figure : An artist’s rendering of Philae landing on a comet. (credit: modification of work by “DLR German Aerospace
Center”/Flickr)

Let’s define upward to be the +y-direction, perpendicular to the surface of the comet, and y = 0 to be at the surface of the
comet. Here’s what we know:

The mass of Comet 67P: M  = 1.0 x 10  kg
The acceleration due to the comet’s gravity:  = −(5.0 x 10  m/s ) in  direction
Philae’s mass: M  = 96 kg
Initial touchdown speed:  = −(1.0 m/s) in  direction
Initial upward speed due to first bounce:  = (0.38 m/s) in  direction.
Landing impact time: t = 1.3 s

Strategy

We’re asked for how much the comet’s speed changed, but we don’t know much about the comet, beyond its mass and the
acceleration its gravity causes. However, we are told that the Philae lander collides with (lands on) the comet, and bounces off
of it. A collision suggests momentum as a strategy for solving this problem.

If we define a system that consists of both Philae and Comet 67/P, then there is no net external force on this system, and thus
the momentum of this system is conserved. (We’ll neglect the gravitational force of the sun.) Thus, if we calculate the change

x

m   +m = −m  vrf,x vbf,x vbi,x

+ = − .vrf,x
vbf,x

vbi,x

−(2.5 m/s) +vbf,x

vbf,x

= −(2.5 m/s)

= 0.

1 2

 Exercise 5.4.4

 Example : Philae5.4.5

5.4.4

5.4.4

c
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of momentum of the lander, we automatically have the change of momentum of the comet. Also, the comet’s change of
velocity is directly related to its change of momentum as a result of the lander “colliding” with it.

Solution

Let  be Philae’s momentum at the moment just before touchdown, and  be its momentum just after the first bounce. Then
its momentum just before landing was

and just after was

Therefore, the lander’s change of momentum during the first bounce is

Notice how important it is to include the negative sign of the initial momentum.

Now for the comet. Since momentum of the system must be conserved, the comet’s momentum changed by exactly the
negative of this:

Therefore, its change of velocity (entirely in the ) direction is

Significance

This is a very small change in velocity, about a thousandth of a billionth of a meter per second. Crucially, however, it is not
zero.

The changes of momentum for Philae and for Comet 67/P were equal (in magnitude). Were the impulses experienced by
Philae and the comet equal? How about the forces? How about the changes of kinetic energies?

This page titled 5.4: More Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.
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5.E: Conservation of Momentum (Exercises)

Conceptual Questions
1. Under what circumstances is momentum conserved?
2. Can momentum be conserved for a system if there are external forces acting on the system? If so, under what conditions?

If not, why not?
3. Explain in terms of momentum and Newton’s laws how a car’s air resistance is due in part to the fact that it pushes air in

its direction of motion.
4. Can objects in a system have momentum while the momentum of the system is zero? Explain your answer.
5. A sprinter accelerates out of the starting blocks. Can you consider him as a closed system? Explain.

Problems
6. A hockey puck of mass 150 g is sliding due east on a frictionless table with a speed of 10 m/s. Suddenly, a constant force

of magnitude 5 N and direction due north is applied to the puck for 1.5 s. Find the north and east components of the
momentum at the end of the 1.5-s interval.

7. A ball of mass 250 g is thrown with an initial velocity of 25 m/s at an angle of 30° with the horizontal direction. Ignore
air resistance. What is the momentum of the ball after 0.2 s? (Do this problem by finding the components of the
momentum first, and then constructing the magnitude and direction of the momentum vector from the components.)

8. Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one
another, the first having a mass of 1.50 x 10 kg and a velocity of (0.30 m/s) in the x-direction, and the second having a
mass of 1.10 x 10 kg and a velocity of −(0.12 m/s) in the x-direction. What is their final velocity?

9. The figure below shows a bullet of mass 200 g traveling horizontally towards the east with speed 400 m/s, which strikes a
block of mass 1.5 kg that is initially at rest on a frictionless table. After striking the block, the bullet is embedded in the
block and the block and the bullet move together as one unit. (a) What is the magnitude and direction of the velocity of
the block/bullet combination immediately after the impact? (b) What is the magnitude and direction of the impulse by the
block on the bullet? (c) What is the magnitude and direction of the impulse from the bullet on the block? (d) If it took 3
ms for the bullet to change the speed from 400 m/s to the final speed after impact, what is the average force between the
block and the bullet during this time?

5 
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10. Explain why a cannon recoils when it fires a shell.
11. Two figure skaters are coasting in the same direction, with the leading skater moving at 5.5 m/s and the trailing skating

moving at 6.2 m/s. When the trailing skater catches up with the leading skater, he picks her up without applying any
horizontal forces on his skates. If the trailing skater is 50% heavier than the 50-kg leading skater, what is their speed after
he picks her up?

12. A 2000-kg railway freight car coasts at 4.4 m/s underneath a grain terminal, which dumps grain directly down into the
freight car. If the speed of the loaded freight car must not go below 3.0 m/s, what is the maximum mass of grain that it
can accept?

13. A 90.0-kg ice hockey player hits a 0.150-kg puck, giving the puck a velocity of 45.0 m/s. If both are initially at rest and if
the ice is frictionless, how far does the player recoil in the time it takes the puck to reach the goal 15.0 m away?

14. A 100-g firecracker is launched vertically into the air and explodes into two pieces at the peak of its trajectory. If a 72-g
piece is projected horizontally to the left at 20 m/s, what is the speed and direction of the other piece?

15. You are standing on a very slippery icy surface and throw a 1-kg football horizontally at a speed of 6.7 m/ s. What is your
velocity when you release the football? Assume your mass is 65 kg.

16. A 35-kg child sleds down a hill and then coasts along the flat section at the bottom, where a second 35-kg child jumps on
the sled as it passes by her. If the speed of the sled is 3.5 m/s before the second child jumps on, what is its speed after she
jumps on?

17. Two hockey players approach each other head on, each traveling at the same speed v . They collide and get tangled
together, falling down and moving off at a speed . What is the ratio of their masses?

18. A load of gravel is dumped straight down into a 30 000-kg freight car coasting at 2.2 m/s on a straight section of a
railroad. If the freight car’s speed after receiving the gravel is 1.5 m/s, what mass of gravel did it receive?

19. Two carts on a straight track collide head on. The first cart was moving at 3.6 m/s in the positive x direction and the
second was moving at 2.4 m/s in the opposite direction. After the collision, the second car continues moving in its initial
direction of motion at 0.24 m/s. If the mass of the second car is 5.0 times that of the first, what is the final velocity of the
first car?

20. A 90-kg football player jumps vertically into the air to catch a 0.50-kg football that is thrown essentially horizontally at
him at 17 m/s. What is his horizontal speed after catching the ball?

21. Three skydivers are plummeting earthward. They are initially holding onto each other, but then push apart. Two skydivers
of mass 70 and 80 kg gain horizontal velocities of 1.2 m/s north and 1.4 m/s southeast, respectively. What is the
horizontal velocity of the third skydiver, whose mass is 55 kg?

22. A kitten (3.5 kg) is running 5.0 m/s to the east and tackles a puppy (6.0 kg) who is running 2.0 m/s to the south. The
kitten holds onto the puppy after the collision. Write down both the initial momentum of the kitten and the initial
momentum of the puppy in column vector form. What is the velocity (magnitude and direction) of the kitten and puppy
both travel after the collision?

23. A soccer ball (0.4 kg) is kicked with a speed of 20 m/s to the north. It hits a stationary basketball (0.6 kg) and bounces
back with a speed of 15 m/s to the south. The basketball moves to the north after the collision. Write down both the initial
momentum of the soccer ball and the initial momentum of the basketball in column vector form. What is the velocity
(magnitude and direction) of the basketball after the collision?

24. A snowball (0.2 kg) is thrown with a speed of 10 m/s to the west. It collides with another snowball (0.3 kg) that is moving
with a speed of 5 m/s to the north. The snowballs stick together after the collision and move as one mass. Write down
both the initial momentum of the first snowball and the initial momentum of the second snowball in column vector form.
What is the velocity (magnitude and direction) of the combined snowballs after the collision?

25. A baseball player (80 kg) is running with a speed of 6 m/s to the east to catch a fly ball. He collides with another player
(70 kg) who is running with a speed of 5 m/s to the north. They both catch the ball (0.15 kg) and hold onto it after the
collision. Write down both the initial momentum of the first player and the initial momentum of the second player in
column vector form. What is the velocity (magnitude and direction) of the players and the ball after the collision?
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CHAPTER OVERVIEW

6: C6) Conservation of Angular Momentum I
6.1: Angular Momentum
6.2: Angular Momentum and Torque
6.3: Examples
6.E: Angular Momentum (Exercises)

In this chapter we are going to move away from linear motion and start talking about angular motion. Fortunately, the physics here
is exactly the same - angular momentum is conserved in precisely the way that linear momentum is conserved. However, angular
momentum is often more confusing for students to deal with. This is actually very understandable, since it requires a few extra
notions, as well as being something that we don't experience quite as often in real life. So in this introduction we are going to focus
on some of the basic variables used to describe circular motion and momentum, and leave details about the conservation laws to
later in the chapter.

Just like we measured linear motion with a change in linear position , we'd like to describe rotational motion with a change in
angular position, . You should be familiar with how to measure an angle  (see the left picture below), but the units we use turn
out to be important. The physical (S.I.) unit that corresponds to an angle measure is the radian, and is defined (again, see the figure)
as

where  is the arclength and  is the radius of the circle in question. It's easy to see then how many radians are in an entire circle,
since that corresponds to an arclength of , so . Of course, there is no problem with saying "an object is
rotating at 3 revolutions per minute" - that's still a valid angular speed, it's just not in SI units. If we were going to calculate
something, we would want to convert that into radians per second; let's do that real quick as an example:

The conversion factors here are represented as factors that you multiply the initial value by - there are  radians in one revolution,
and 60 seconds in one minute.

So now that we know how to measure the angular position, how do we find the angular version of linear velocity, ?
That's simple, since we are now just measuring the displacements in angles, and we get angular velocity  . The
rotational speed  is defined the same way as the linear speed, as the magnitude of this vector quantity.

So that seems easy enough, but the challenge comes when we try to go back and forth between linear and rotational quantities.
Let's try to do this with the ferris wheel shown in the figure on the right. This is "The Great Ferris Wheel", built for the 1893
World's Fair, and is 140 feet (43 m) in radius. When we say "the wheel is moving at an angular speed of 1 rotation a minute", that
applies to the entire object - specifically, points A and B (which is halfway out to the edge) have the same angular speed (why?).
The same is not true of the linear speeds of different points on the wheel. For example, over one rotation, point A travels a distance 

, while point B travels . Therefore, the linear speed of A is greater then the linear speed
of B, because A is traveling a longer distance! We picked one rotation for convenience, but it would apply equally to any time
period you chose.

Δr ⃗ 

Δθ ⃗  θ

θ = ,
s

r
(6.1)

s r

s = 2πr θ = 2πr/r = 2π

( )( ) ≃ 0.314 rad/s.
3 rev

1 min

2π rad

1 rev

1 min

60 sec
(6.2)

2π

= Δ /Δtv ⃗  r ⃗ 
1 = Δ /Δtω⃗  θ ⃗ 

ω

2π(43 m) ∼ 270 m 2π(43/2 m) ∼ 135 m
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Notice that we haven't talked about how to assign a direction to this velocity - all velocities have directions! You do this with "the
right hand rule", which we will talk about later in this chapter.

6: C6) Conservation of Angular Momentum I is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College.
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6.1: Angular Momentum
Back in Chapter 2 we introduced the momentum of an object moving in one dimension as , and found that it had the
interesting property of being conserved in collisions between objects that made up an isolated system. Critical to that discussion
was the idea that objects are represented by points, so they have well-defined positions. Of course, in real life, objects are not made
up a single points, but are extended. We now want to move the discussion into studying these extended objects, that have real size,
and understand how they transfer momentum differently than simple points. The biggest difference between points and extended
objects it that extended objects can rotate, as well as move through space.

We want to define a quantity that measures this rotation, in the same way linear momentum measured something about how
particles translated in space. This quantity is going to be angular momentum , which we define as

The variables here are the rotational analogues of the linear quantities;  is angular velocity (like linear velocity ), and  is called
the moment of inertia, and is analogous to the mass . In this section we will build up an understanding of each of these quantities,
and how they can be used to solve problems dealing with the rotation of extended objects.

The angular velocity  is the exact analog to the linear velocity , although it deserves a little bit of attention. The unit for the
angular velocity is angular distance per unit time, and in SI units that's radians per second. What's interesting about this is that for a
single object, every point on the object will have the same angular velocity. It really has to be that way - if a hoop is spinning at two
revolutions per second, asking what angular speed the outside of the hoop is spinning at had better be the same as every other point.
Said another way, if any point on the object is spinning at a different rate (say, one revolution per second), that means the object is
tearing itself apart! Those kinds of objects are more complicated, so we will always assume our object are rigid, meaning the entire
object rotates at the same rate.

Now let's look at the newest aspect of this formula, the moment of inertia . Like the mass, this quantity encodes the inertia of an
object, but includes information about it's shape. Specifically, for an object made up of a bunch of masses  which are located at
distances  from an axis of rotation, the moment of inertia is

That looks like a simple formula, but if the shape is complicated, that sum might actually be very difficult or impossible to do .
Fortunately, there are simplier expressions for many of the shapes we often encounter in nature. Many of these shapes are shown in
the figure below, and many more can be found in Wikipedia.

p = mv

L⃗ 

= IL⃗  ω⃗  (6.1.1)

ω⃗  v ⃗  I

m

ω⃗  v ⃗ 

I

mi

ri

I = .∑
i

mir2
i (6.1.2)
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Table 

In nearly all of these examples (save those that have multiple different dimensions, like the annulus and the slab), the moment of
inertia can be written like

where  for a cylinder (or disk),  for a hoop, etc.

Just like with linear momentum, we have a conservation principle associated with angular momentum:

The total angular moment of a closed system is conserved:

In addition, we have all the conditions around using this law that we had for conservation of linear momentum; namely, that the
system must be isolated.

Adding Moments of Inertia

Just like the case of linear momentum, the total angular momentum of a system can be found by simply adding up the angular
momenta of the individual parts of a system. For example, if object 1 is a spinning hoop (of mass  and radius , spinning at ),
and object 2 is a spinning cylinder (of mass  and radius , spinning at ), then looking at the figure above we can write the total
angular momentum of that system as

6.1.1

I = αM ,R2 (6.1.3)

α = 1/2 α = 1

 Law of Conservation of Angular Momentum

= constant.∑
j

L⃗ 
j (6.1.4)

M R ω1

m r ω2

= + = M + m .Ltot L1 L2 R2ω1
1

2
r2ω2 (6.1.5)
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Here, we are assuming the two objects are not moving together at all. But, it often happens that we want to know the angular
momentum of a single object that is made up of shapes found in our figure. For example, see figure 6.3.3 in the examples section at
the end of this chapter, which is two disks rotating together. In that case the two disks have the same radius , but one has three
times the mass of the other (  and ). If those two disks are rotating at the same rate, their angular momentum would be

Notice this is the same result we would have gotten if we had simply added their moments of inertia together first:

The lesson here is when adding moments of inertia, do not add their masses or radii together alone - add their moments of inertia.

For another concrete example, consider finding the angular momentum of a rod with a mass on the edge (shown below).

The total moment of inertia of this object is tricky, because the objects are different shapes. The rod has a moment of inertia of 
, while the point mass had . It's temping to just add the masses together, , but what fraction do you

use out front,  or ? The answer is that you must add the moments of inertia themselves:

Angular Momentum Direction

Up until now, we have discussed the magnitude of the angular velocity , which is a scalar quantity—the change in angular
position with respect to time. The vector  is the vector associated with the angular velocity and points along the axis of rotation.
This is useful because when a rigid body is rotating, we want to know both the axis of rotation and the direction that the body is
rotating about the axis, clockwise or counterclockwise. The angular velocity  gives us this information. The angular velocity 
has a direction determined by what is called the right-hand rule. The right-hand rule is such that if the fingers of your right hand
wrap counterclockwise from the x-axis (the direction in which  increases) toward the y-axis, your thumb points in the direction of
the positive z-axis (Figure ). An angular velocity  that points along the positive z-axis therefore corresponds to a
counterclockwise rotation, whereas an angular velocity  that points along the negative z-axis corresponds to a clockwise rotation.

R

M 3M

= + = M ω+ 3M ω = (M +3M) ω.Ltot L1 L2
1

2
R2 1

2
R2 1

2
R2 (6.1.6)

= + = M + 3M = (M +3M) → = ω = (M +3M) ω.Itot I1 I2
1

2
R2 1

2
R2 1

2
R2 Ltot Itot

1

2
R2 (6.1.7)
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1
3

R2 = mIp R2 2 m+M
1
3

1

= + = M +m = ( M +m) .Itot Ir Ip
1

3
R2 R2 1

3
R2 (6.1.8)
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Figure   : For counterclockwise rotation in the coordinate system shown, the angular velocity points in the positive z-direction
by the right-hand-rule.

In most of our problems, we will only be looking at angular momentum along one axis (for instance, along the z-axis). But to
correctly add the angular momenta together, we will often need to determine the sign of that momentum. The right-hand-rule will
allow us to do this.

Angular Speed vs Linear Speed

When objects rotate at a particular angular speed (in say, revolutions per second), the entire object moves at the same angular
speed. This is because these objects are assumed to be rigid, so when one point on the objects goes around once, so does every
other point. However, that doesn't mean that each of these points moves at the same linear speed (in say, meters per second). In
fact, each point on the object moves at a different linear speed, depending on how far away it is from the center of rotation.

It's relatively easy to determine how these two quantities are related to each other, and this will turn out to be a very important
formula. First, let's think about how fast a point a distance  from the center of an rotating object moves. If it takes a time period 
for the object to rotate, such a point moves with speed

Now, let's calculate the angular speed of this point (keeping in mind this is actually the angular speed of the entire object!). Over
one rotation, it's angular speed will be

The  here is just the number of radians the point travels for each rotation. These two formula are valid, but not that interesting
because we don't know what the particular time period is here - so let's use the two of them to eliminate the time interval .
Solving the second gives , so let's plug that into the first:

This very simple formula will be very helpful later; for now, it can give us some insight into how these point move. For example, at
a particular angular speed , objects closer to the axis of rotation (smaller ) will move slower (have smaller ), while objects
farther from the axis of rotation (larger ) will move faster (have larger ). This seems counterintuitive, but can be understood by
seeing that objects far from the axis of rotation have further to travel then objects closer to the center, and have to do it over the
same period of time.

In your calculus class you will learn how to calculate this for a wide variety of shapes.

The moment of inertia of a point mass is not found in the table above, but it's easy to see the answer by looking at Equation ;
with only one point in the sum it becomes . This can also be seen by thinking about what a point mass actually looks like when
it's rotating - a hoop, which is in the table above.

6.1.2

r T

v= = .
distance traveled

time interval

2πr

T
(6.1.9)
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6.2: Angular Momentum and Torque
So far, we have seen that angular momentum is conserved in the same way that linear momentum is conserved. Specifically, in a
system which can be modeled as isolated, angular momentum is conserved,

in the same way that linear momentum was, . There is another similarity between these two cases - when the system was
not isolated, we could model the interactions between the system and the environment by a force  acting over a time period ,
so that

In other words, if the system is not isolated we can still work with , we just have to set it equal to the (net) force times the time
interval, rather than simply zero.

There is a similar expression for angular momentum - when a system experiences a change in angular momentum  over a time
period  due to an external interaction of some kind, we can model that interaction as delivering a torque  to the system, defined
as

From this equation, we can tell that the torque is in the same direction as the change in the angular momentum. In many cases, this
will simply be along the axis of rotation (see the example below). Later in this course, we will study the kinematics of both linear
and rotational motion to determine the time evolution of the position and velocity (both linear and angular) of objects that
experience either forces or torques - but for now, we can use these two expressions to determine the final velocities after specific
time periods.

As a very simple example, consider the bike wheel in the figure below, with a moment of inertia of 10 kg m  shown spinning
at a rate of 3 rev/s. It would appear this wheel is spinning freely, but of course we know that there is some kind of friction
between the axle and the wheel that is slowing it down. If we modeled this friction as torque, and said for example that the size
of this torque is 1.0 Nm, we could determine how long it would take for the wheel to stop using the equation above.

Solution
Following the problem solving framework from an earlier section of this textbook:

1. Translate: We will use the following variables: 

Δ = 0,L⃗  (6.2.1)

Δ = 0p ⃗ 

F ⃗  Δt

= → Δ = Δt.F ⃗  Δp ⃗ 

Δt
p ⃗  F ⃗  (6.2.2)

Δp ⃗ 

ΔL⃗ 

Δt τ ⃗ 

= .τ ⃗ 
ΔL⃗ 

Δt
(6.2.3)

 Example 6.2.1

2

= 3 rev/s  = 18.8 rad/s , = 0, Δt =?, I = 10 , τ = 1.0 Nm .ωi ωj  kg m2 (6.2.4)
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Notice a few things - first, we have converted the initial speed from revolutions per second to radians per second. Although
this is not always necessary, here it's important because the torque is in units of Newton-meters, which is SI. We've set the
final speed to be zero, specified our time as the unknown variable, and set our torque equal to the variable  (if you are
worried about the sign of that variable - good catch! We'll deal with that later...). Finally, we've indicated that the direction
of the torque is in the z-coordinate, and that it is negative. Choosing the z-coordinate along the axis of rotation is rather
arbitrary, but a common standard. We've included a negative sign to be clear we know it's slowing down relative to the
direction of the angular momentum, which is in the direction of  here, since .

2. Model: We are going to use conservation of angular momentum - specifically the equation from above, .
3. Solve: First, we specify the given equation into it's component form. Since the initial speed is just along the axis of rotation,

let's take that to be the z-direction and then we just need that component:: 

 
Now we plug in the variables above, and solve for the unknown: 

 
Notice in this step we have indicated that the torque (in the z-direction) should be negative - that's because we declared that
the angular velocity  was positive, so if the object is going to loose momentum, the torque has to be negative. That also
cancelled the negative sign on the other side of the equation.

4. Check: There is not a lot we can do to check this, but we can easily imagine a bike wheel spinning this fast might take ~3
minutes to slow down to a stop!

6.2: Angular Momentum and Torque is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College.
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6.3: Examples

The angular momentum of a system of particles around a point in a fixed inertial reference frame is conserved if there is no net
external torque around that point:

or

The crew of a spaceship has come across an abandoned circular probe, and they want to grab onto it with their tractor beam.
The problem is that the crew doesn't know what will happen to them if they do this, because the probe is spinning, at a rate of
once every 2 seconds. In this problem, model the spacecraft as being a point of mass 10,000 kg, and the probe as a hollow
sphere radius 10 m and a similar mass of 10,000 kg.

1. Assume that turning on the tractor beam to grab the probe has the same effect as attaching the two ships with a massless
rigid rod. Describe what would happen to the ships when the tractor beam is turned on.

2. If they are separated by a distance of 100 m when they do this, calculate the final linear speed of the spaceship.

 

I am standing on a frictionless platform holding a spinning bicycle wheel. I'm holding the bicycle wheel so that the axis of
rotation is vertical. 

1. As I turn the axis of rotation of the bicycle wheel, I start to spin on the platform. Why?
2. What is the moment of inertia of the wheel, relative to the axis passing through it's center? It has a mass of 4.1 kg and

radius 32 cm.
3. Estimate the moment of inertia of my body as I spin on the platform, relative to the vertical axis passing through the center

of the platform.
4. Notice that the wheel can spin around it's own axis and around the axis going through the center of the platform. What is

the moment of inertia of the center of mass of the wheel as it spins around the axis of the platform? (You will have to
estimate how far away from the center I am holding it).

5. Initially, the wheel spins 3 times a second and I am at rest on the platform. Then, I turn the wheel completely around, so my
left hand is where my right hand used to be. How fast am I spinning on the platform?

 Law of Conservation of Angular Momentum

= 0
dL⃗ 

dt
(6.3.1)

= + +⋯ + = constant.L⃗  l ⃗ 
1 l ⃗ 

2 l ⃗ 
N (6.3.2)

 Whiteboard Problem : Space Rescue6.3.1

 Whiteboard Problem : Spinning Platform6.3.2
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A ``pulsar'' is a celestial object which ``blinks'' on and off very quickly (in radio wavelengths). I propose that such objects are
formed when rotating stars collapse without losing any mass, and since they conserve angular momentum, they are left
spinning very quickly. I propose that the blinking is caused by a single hot spot on their surface, so it appears to blink as the
pulsar spins. (General Hint: This problem is easier if you use scientific notation for the large numbers, and/or use symbols for
as much of it as you can!)

1. What would the radius of a pulsar be if it's a solid sphere, blinking once a second, and formed from the collaspe of the Sun?
The Sun rotates at about 15 /day, and has a radius of 696,000 km.

2. The fastest pulsar (PSR J1748-2442ad, discovered in 2005) spins at 716 times a second. What is the radius of this object, if
it formed from a star with the mass of the Sun by my collapse theory?

3. What is the density of this object? Does this density sound reasonable? (maybe Google the density of some objects you
know...) You will need the mass of the Sun for this part, 1.99  kg.

 

A particular centrifuge has an angular speed that depends on time like 

 
where  and  are parameters that can be set by the user, and the constant  rad/s. The radius of this centrifuge is 15.5
cm.

1. If we want our centrifuge to start at  when  and travel at a maximum angular speed of 105 rad/s as , what
do the constants  and  have to be?

2. Draw a sketch of the function .
3. What is the torque as a function of time, , that the motor must act on this centrifuge with? Treat the centrifuge as a solid

disk of mass 200 g.
4. Draw a sketch of the function .

                                                                 

The figure shows a record being dropped onto a turntable. The turntable is initially spinning freely at 0.5 rev/s, and can be
modeled as a disk with radius 20 cm, mass 0.50 kg, and moment of inertia .

1. What is the angular speed of the turntable and the record together, after the record is dropped with zero initial angular
speed? The record is also a disk, with a radius of 18 cm and mass of 100 g. Note: turntables generally have a motor to keep
them spinning at the same rate, but this one is spinning freely and does not!

2. The turntable and record can be stopped by applying a brake to the turntable. This brake applies a small torque of 0.03 Nm.
How long does it take this brake to slow the turntable to a stop?

 Whiteboard Problem : MY FAVORITE PROBLEM6.3.3

∘

×1030

 Whiteboard Problem : Calcy Centrifuge6.3.4

ω(t) = −C + ,exp−(t− )t0 ω0 (6.3.3)

t0 ω0 C = 1.0

ω = 0 t = 0 t → ∞

t0 ω0

ω(t)

τ(t)

τ(t)

 Whiteboard Problem : Angular DJ6.3.5
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A figure skater is spinning at 2 rev/s with their arms held out from their body. The mass of this figure skater is 65 kg, and you
can assume their body has a moment of inertia of , where  is the length of their arms. Quick reality check: most
of this figure skater's mass is near the center of the rotational axis, so that's why their moment of inertia is less than that of a
disk!

1. If their arms are extended to a radius of 50 cm while they are spinning, how big is their moment of inertia?
2. Now they pull their arms in to a distance of 30 cm. How fast are they rotating now, assuming there is no friction between

their skates and the ice?
3. Now repeat part (b), assuming friction is acting on their skates with a torque 10.0 Nm. If it takes 3 seconds for them to pull

their arms in, how fast will they be rotating after they do so?

A flywheel rotates without friction at an angular velocity  = 600 rev/min on a frictionless, vertical shaft of negligible
rotational inertia. A second flywheel, which is at rest and has a moment of inertia three times that of the rotating flywheel, is
dropped onto it (Figure ). Because friction exists between the surfaces, the flywheels very quickly reach the same
rotational velocity, after which they spin together.

a. Use the law of conservation of angular momentum to determine the angular velocity  of the combination.
b. What fraction of the initial kinetic energy is lost in the coupling of the flywheels?

Figure : Two flywheels are coupled and rotate together.

Strategy

Part (a) is straightforward to solve for the angular velocity of the coupled system. We use the result of (a) to compare the initial
and final kinetic energies of the system in part (b).

Solution

a. No external torques act on the system. The force due to friction produces an internal torque, which does not affect the
angular momentum of the system. Therefore conservation of angular momentum gives

b. Before contact, only one flywheel is rotating. The rotational kinetic energy of this flywheel is the initial rotational kinetic
energy of the system, . The final kinetic energy is

Therefore, the ratio of the final kinetic energy to the initial kinetic energy is

Thus, 3/4 of the initial kinetic energy is lost to the coupling of the two flywheels.

Significance

 Whiteboard Problems : A Real Life Skater6.3.6
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4
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 Example : Coupled Flywheels6.3.7
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Since the rotational inertia of the system increased, the angular velocity decreased, as expected from the law of conservation of
angular momentum. In this example, we see that the final kinetic energy of the system has decreased, as energy is lost to the
coupling of the flywheels. Compare this to the example of the skater in Figure  doing work to bring her arms inward and
adding rotational kinetic energy.

A merry-go-round at a playground is rotating at 4.0 rev/min. Three children jump on and increase the moment of inertia of the
merry-go-round/children rotating system by 25%. What is the new rotation rate?

An 80.0-kg gymnast dismounts from a high bar. He starts the dismount at full extension, then tucks to complete a number of
revolutions before landing. His moment of inertia when fully extended can be approximated as a rod of length 1.8 m and when
in the tuck a rod of half that length. If his rotation rate at full extension is 1.0 rev/s and he enters the tuck when his center of
mass is at 3.0 m height moving horizontally to the floor, how many revolutions can he execute if he comes out of the tuck at
1.8 m height? See Figure .

Figure : A gymnast dismounts from a high bar and executes a number of revolutions in the tucked position before landing
upright.

Strategy

Using conservation of angular momentum, we can find his rotation rate when in the tuck. Using the equations of kinematics,
we can find the time interval from a height of 3.0 m to 1.8 m. Since he is moving horizontally with respect to the ground, the
equations of free fall simplify. This will allow the number of revolutions that can be executed to be calculated. Since we are
using a ratio, we can keep the units as rev/s and don’t need to convert to radians/s.

Solution

The moment of inertia at full extension is

The moment of inertia in the tuck is

Conservation of angular momentum:

Time interval in the tuck:

6.3.1

 Exercise 6.3.8

 Example : Dismount from a High Bar6.3.9

6.3.4
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In 0.5 s, he will be able to execute two revolutions at 4.0 rev/s.

Significance

Note that the number of revolutions he can complete will depend on how long he is in the air. In the problem, he is exiting the
high bar horizontally to the ground. He could also exit at an angle with respect to the ground, giving him more or less time in
the air depending on the angle, positive or negative, with respect to the ground. Gymnasts must take this into account when
they are executing their dismounts.

A bullet of mass m = 2.0 g is moving horizontally with a speed of 500.0 m/s. The bullet strikes and becomes embedded in the
edge of a solid disk of mass M = 3.2 kg and radius R = 0.5 m. The cylinder is free to rotate around its axis and is initially at rest
(Figure ). What is the angular velocity of the disk immediately after the bullet is embedded?

Figure : A bullet is fired horizontally and becomes embedded in the edge of a disk that is free to rotate about its vertical
axis.

Strategy

For the system of the bullet and the cylinder, no external torque acts along the vertical axis through the center of the disk. Thus,
the angular momentum along this axis is conserved. The initial angular momentum of the bullet is mvR, which is taken about
the rotational axis of the disk the moment before the collision. The initial angular momentum of the cylinder is zero. Thus, the
net angular momentum of the system is mvR. Since angular momentum is conserved, the initial angular momentum of the
system is equal to the angular momentum of the bullet embedded in the disk immediately after impact.

Solution

The initial angular momentum of the system is

The moment of inertia of the system with the bullet embedded in the disk is

The final angular momentum of the system is

Thus, by conservation of angular momentum, L  = L  and

Solving for ,

t = = = 0.5 s.
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Significance

The system is composed of both a point particle and a rigid body. Care must be taken when formulating the angular momentum
before and after the collision. Just before impact the angular momentum of the bullet is taken about the rotational axis of the
disk.

This page titled 6.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

11.4: Conservation of Angular Momentum by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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6.E: Angular Momentum (Exercises)

Conceptual Questions
1. A clock is mounted on the wall. As you look at it, what is the direction of the angular velocity vector of the second hand?
2. What is the value of the angular acceleration of the second hand of the clock on the wall?
3. The blades of a blender on a counter are rotating clockwise as you look into it from the top. If the blender is put to a

greater speed what direction is the angular acceleration of the blades?

5. If a rigid body has a constant angular acceleration, what is the functional form of the angular velocity in terms of the time
variable?

6. If a rigid body has a constant angular acceleration, what is the functional form of the angular position?
7. If the angular acceleration of a rigid body is zero, what is the functional form of the angular velocity?
8. A massless tether with a masses tied to both ends rotates about a fixed axis through the center. Can the total acceleration

of the tether/mass combination be zero if the angular velocity is constant?
9. If a child walks toward the center of a merry-go-round, does the moment of inertia increase or decrease?

10. A discus thrower rotates with a discus in his hand before letting it go. (a) How does his moment of inertia change after
releasing the discus? (b) What would be a good approximation to use in calculating the moment of inertia of the discus
thrower and discus?

11. The moment of inertia of a long rod spun around an axis through one end perpendicular to its length is . Why is this
moment of inertia greater than it would be if you spun a point mass m at the location of the center of mass of the rod (at 

) (that would be )
12. Why is the moment of inertia of a hoop that has a mass M and a radius R greater than the moment of inertia of a disk that

has the same mass and radius?
13. Can you assign an angular momentum to a particle without first defining a reference point?
14. What is the purpose of the small propeller at the back of a helicopter that rotates in the plane perpendicular to the large

propeller?
15. Suppose a child walks from the outer edge of a rotating merry-go-round to the inside. Does the angular velocity of the

merry-go-round increase, decrease, or remain the same? Explain your answer. Assume the merry-go-round is spinning
without friction.

16. As the rope of a tethered ball winds around a pole, what happens to the angular velocity of the ball?
17. Suppose the polar ice sheets broke free and floated toward Earth’s equator without melting. What would happen to

Earth’s angular velocity?
18. Explain why stars spin faster when they collapse.
19. Competitive divers pull their limbs in and curl up their bodies when they do flips. Just before entering the water, they

fully extend their limbs to enter straight down (see below). Explain the effect of both actions on their angular velocities.
Also explain the effect on their angular momentum.
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Problems
20. Calculate the angular velocity of Earth.
21. A track star runs a 400-m race on a 400-m circular track in 45 s. What is his angular velocity assuming a constant speed?
22. A wheel rotates at a constant rate of 2.0 x 10  rev/min. (a) What is its angular velocity in radians per second? (b) Through

what angle does it turn in 10 s? Express the solution in radians and degrees.
23. A particle moves 3.0 m along a circle of radius 1.5 m. (a) Through what angle does it rotate? (b) If the particle makes this

trip in 1.0 s at a constant speed, what is its angular velocity? (c) What is its acceleration?
24. A compact disc rotates at 500 rev/min. If the diameter of the disc is 120 mm, (a) what is the tangential speed of a point at

the edge of the disc? (b) At a point halfway to the center of the disc?
25. Unreasonable results. The propeller of an aircraft is spinning at 10 rev/s when the pilot shuts off the engine. The

propeller reduces its angular velocity at a constant 2.0 rad/s  for a time period of 40 s. What is the rotation rate of the
propeller in 40 s? Is this a reasonable situation?

26. A gyroscope slows from an initial rate of 32.0 rad/s at a rate of 0.700 rad/s . How long does it take to come to rest?
27. On takeoff, the propellers on a UAV (unmanned aerial vehicle) increase their angular velocity for 3.0 s from rest at a rate

of  = (25.0t) rad/s where t is measured in seconds. (a) What is the instantaneous angular velocity of the propellers at t =
2.0 s? (b) What is the angular acceleration?

28. The angular position of a rod varies as 20.0t  radians from time t = 0. The rod has two beads on it as shown in the
following figure, one at 10 cm from the rotation axis and the other at 20 cm from the rotation axis. (a) What is the
instantaneous angular velocity of the rod at t = 5 s? (b) What is the angular acceleration of the rod? (c) What are the
tangential speeds of the beads at t = 5 s? (d) What are the tangential accelerations of the beads at t = 5 s? (e) What are the
centripetal accelerations of the beads at t = 5 s?

29. A wheel has a constant angular acceleration of 5.0 rad/s . Starting from rest, it turns through 300 rad. (a) What is its final
angular velocity? (b) How much time elapses while it turns through the 300 radians?

30. During a 6.0-s time interval, a flywheel with a constant angular acceleration turns through 500 radians that acquire an
angular velocity of 100 rad/s. (a) What is the angular velocity at the beginning of the 6.0 s? (b) What is the angular
acceleration of the flywheel?

31. The angular velocity of a rotating rigid body increases from 500 to 1500 rev/min in 120 s. (a) What is the angular
acceleration of the body? (b) Through what angle does it turn in this 120 s?

32. A flywheel slows from 600 to 400 rev/min while rotating through 40 revolutions. (a) What is the angular acceleration of
the flywheel? (b) How much time elapses during the 40 revolutions?

33. A wheel 1.0 m in radius rotates with an angular acceleration of 4.0 rad/s . (a) If the wheel’s initial angular velocity is 2.0
rad/s, what is its angular velocity after 10 s? (b) Through what angle does it rotate in the 10-s interval? (c) What are the
tangential speed and acceleration of a point on the rim of the wheel at the end of the 10-s interval?

34. A vertical wheel with a diameter of 50 cm starts from rest and rotates with a constant angular acceleration of 5.0 rad/s
around a fixed axis through its center counterclockwise. (a) Where is the point that is initially at the bottom of the wheel
at t = 10 s? (b) What is the point’s linear acceleration at this instant?

35. A circular disk of radius 10 cm has a constant angular acceleration of 1.0 rad/s ; at t = 0 its angular velocity is 2.0 rad/s.
(a) Determine the disk’s angular velocity at t = 5.0 s . (b) What is the angle it has rotated through during this time? (c)
What is the tangential acceleration of a point on the disk at t = 5.0 s?

36. The angular velocity vs. time for a fan on a hovercraft is shown below. (a) What is the angle through which the fan blades
rotate in the first 8 seconds? (b) Verify your result using the kinematic equations.
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37. A rod of length 20 cm has two beads attached to its ends. The rod with beads starts rotating from rest. If the beads are to
have a tangential speed of 20 m/s in 7 s, what is the angular acceleration of the rod to achieve this?

38. A satellite is spinning at 6.0 rev/s. The satellite consists of a main body in the shape of a sphere of radius 2.0 m and mass
10,000 kg, and two antennas projecting out from the center of mass of the main body that can be approximated with rods
of length 3.0 m each and mass 10 kg. The antenna’s lie in the plane of rotation. What is the angular momentum of the
satellite?

39. A propeller consists of two blades each 3.0 m in length and mass 120 kg each. The propeller can be approximated by a
single rod rotating about its center of mass. The propeller starts from rest and rotates up to 1200 rpm in 30 seconds at a
constant rate. (a) What is the angular momentum of the propeller at t = 10 s; t = 20 s? (b) What is the change in angular
momentum of the propeller?

40. A pulsar is a rapidly rotating neutron star. The Crab nebula pulsar in the constellation Taurus has a period of 33.5 x 10
s, radius 10.0 km, and mass 2.8 x 10  kg. The pulsar’s rotational period will increase over time due to the release of
electromagnetic radiation, which doesn’t change its radius but reduces its rotational energy. (a) What is the angular
momentum of the pulsar? (b) Suppose the angular velocity decreases at a rate of 10  rad/s . What is the change in
angular momentum of the pulsar?

41. A bicycle wheel has a mass of 2 kg and a radius of 0.5 m. It is rotating with an angular speed of 10 rad/s when a brake is
applied that exerts a constant frictional torque of 0.5 N m on the wheel. How long does it take for the wheel to stop? How
many revolutions does the wheel make before stopping?

42. The blades of a wind turbine are 30 m in length and rotate at a maximum rotation rate of 20 rev/min. (a) If the blades are
6000 kg each and the rotor assembly has three blades, calculate the angular momentum of the turbine at this rotation rate.
(b) What is the change in angular momentum require to rotate the blades up to the maximum rotation rate?

43. A merry-go-round with 5 kids on it has a mass of 500 kg and a radius of 2 m. It is initially at rest when a child runs up
and starts pushing it. The child exerts a torque of 200 N*m on the merry-go-round for 3 seconds. What is the angular
speed of the merry-go-round after the child stops pushing it?

44. A disk of mass 2.0 kg and radius 60 cm with a small mass of 0.05 kg attached at the edge is rotating at 2.0 rev/s. The
small mass suddenly separates from the disk. What is the disk’s final rotation rate?

45. The Sun’s mass is 2.0 x 10  kg, its radius is 7.0 x 10  km, and it has a rotational period of approximately 28 days. If the
Sun should collapse into a white dwarf of radius 3.5 x 10  km, what would its period be if no mass were ejected and a
sphere of uniform density can model the Sun both before and after?

46. A cylinder with rotational inertia I  = 2.0 kg • m  rotates clockwise about a vertical axis through its center with angular
speed  = 5.0 rad/s. A second cylinder with rotational inertia I  = 1.0 kg • m  rotates counterclockwise about the same
axis with angular speed  = 8.0 rad/s. If the cylinders couple so they have the same rotational axis what is the angular
speed of the combination?

47. A diver off the high board imparts an initial rotation with his body fully extended before going into a tuck and executing
three back somersaults before hitting the water. If his moment of inertia before the tuck is 16.9 kg • m  and after the tuck
during the somersaults is 4.2 kg • m , what rotation rate must he impart to his body directly off the board and before the
tuck if he takes 1.4 s to execute the somersaults before hitting the water?

48. A bug of mass 0.020 kg is at rest on the edge of a solid cylindrical disk (M = 0.10 kg, R = 0.10 m) rotating in a horizontal
plane around the vertical axis through its center. The disk is rotating at 10.0 rad/s. The bug crawls to the center of the
disk. (a) What is the new angular velocity of the disk? (b) What is the change in the kinetic energy of the system? (c) If
the bug crawls back to the outer edge of the disk, what is the angular velocity of the disk then? (d) What is the new
kinetic energy of the system? (e) What is the cause of the increase and decrease of kinetic energy?

49. A uniform rod of mass 200 g and length 100 cm is free to rotate in a horizontal plane around a fixed vertical axis through
its center, perpendicular to its length. Two small beads, each of mass 20 g, are mounted in grooves along the rod. Initially,
the two beads are held by catches on opposite sides of the rod’s center, 10 cm from the axis of rotation. With the beads in
this position, the rod is rotating with an angular velocity of 10.0 rad/s. When the catches are released, the beads slide
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outward along the rod. (a) What is the rod’s angular velocity when the beads reach the ends of the rod? (b) What is the
rod’s angular velocity if the beads fly off the rod?

50. A merry-go-round has a radius of 2.0 m and a moment of inertia 300 kg • m . A boy of mass 50 kg runs tangent to the rim
at a speed of 4.0 m/s and jumps on. If the merry-go-round is initially at rest, what is the angular velocity after the boy
jumps on?

51. A playground merry-go-round has a mass of 120 kg and a radius of 1.80 m and it is rotating with an angular velocity of
0.500 rev/s. What is its angular velocity after a 22.0-kg child gets onto it by grabbing its outer edge? The child is initially
at rest.

52. Three children are riding on the edge of a merry-go-round that is 100 kg, has a 1.60-m radius, and is spinning at 20.0
rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the child who has a mass of 28.0 kg moves to the center of
the merry-go-round, what is the new angular velocity in rpm?

53. In 2015, in Warsaw, Poland, Olivia Oliver of Nova Scotia broke the world record for being the fastest spinner on ice
skates. She achieved a record 342 rev/min, beating the existing Guinness World Record by 34 rotations. If an ice skater
extends her arms at that rotation rate, what would be her new rotation rate? Assume she can be approximated by a 45-kg
rod that is 1.7 m tall with a radius of 15 cm in the record spin. With her arms stretched take the approximation of a rod of
length 130 cm with 10% of her body mass aligned perpendicular to the spin axis. Neglect frictional forces.

52. A gymnast does cartwheels along the floor and then launches herself into the air and executes several flips in a tuck while
she is airborne. If her moment of inertia when executing the cartwheels is 13.5 kg • m  and her spin rate is 0.5 rev/s, how
many revolutions does she do in the air if her moment of inertia in the tuck is 3.4 kg • m  and she has 2.0 s to do the flips
in the air?

53. The centrifuge at NASA Ames Research Center has a radius of 8.8 m and can produce forces on its payload of 20 gs or
20 times the force of gravity on Earth. (a) What is the angular momentum of a 20-kg payload that experiences 10 gs in
the centrifuge? (b) If the driver motor was turned off in (a) and the payload lost 10 kg, what would be its new spin rate,
taking into account there are no frictional forces present?

54. A ride at a carnival has four spokes to which pods are attached that can hold two people. The spokes are each 15 m long
and are attached to a central axis. Each spoke has mass 200.0 kg, and the pods each have mass 100.0 kg. If the ride spins
at 0.2 rev/s with each pod containing two 50.0-kg children, what is the new spin rate if all the children jump off the ride?

55. An ice skater is preparing for a jump with turns and has his arms extended. His moment of inertia is 1.8 kg • m  while his
arms are extended, and he is spinning at 0.5 rev/s. If he launches himself into the air at 9.0 m/s at an angle of 45° with
respect to the ice, how many revolutions can he execute while airborne if his moment of inertia in the air is 0.5 kg • m ?

56. A space station consists of a giant rotating hollow cylinder of mass 10 kg including people on the station and a radius of
100.00 m. It is rotating in space at 3.30 rev/min in order to produce artificial gravity. If 100 people of an average mass of
65.00 kg spacewalk to an awaiting spaceship, what is the new rotation rate when all the people are off the station?

57. Neptune has a mass of 1.0 x 10  kg and is 4.5 x 10 km from the Sun with an orbital period of 165 years. Planetesimals
in the outer primordial solar system 4.5 billion years ago coalesced into Neptune over hundreds of millions of years. If
the primordial disk that evolved into our present day solar system had a radius of 10  km and if the matter that made up
these planetesimals that later became Neptune was spread out evenly on the edges of it, what was the orbital period of the
outer edges of the primordial disk?

58. A proton is accelerated in a cyclotron to 5.0 x 10  m/s in 0.01 s. The proton follows a circular path. If the radius of the
cyclotron is 0.5 km, (a) What is the angular momentum of the proton about the center at its maximum speed? (b) What is
the change in angular momentum on the proton about the center as it accelerates to maximum speed?

59. A DVD is rotating at 500 rpm. What is the angular momentum of the DVD if has a radius of 6.0 cm and mass 20.0 g?
60. A potter’s disk spins from rest up to 10 rev/s in 15 s. The disk has a mass 3.0 kg and radius 30.0 cm. What is the angular

momentum of the disk at t = 10 s? What is the torque being applied? (Assuming the torque is constant.)
61. A solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at

600 rev/min. A second solid cylinder of the same mass is rotating clockwise around the same vertical axis at 900 rev/min.
If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?

62. A boy stands at the center of a platform that is rotating without friction at 1.0 rev/s. The boy holds weights as far from his
body as possible. At this position the total moment of inertia of the boy, platform, and weights is 5.0 kg • m . The boy
draws the weights in close to his body, thereby decreasing the total moment of inertia to 1.5 kg • m . (a) What is the final
angular velocity of the platform?
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63. Eight children, each of mass 40 kg, climb on a small merry-go-round. They position themselves evenly on the outer edge
and join hands. The merry-go-round has a radius of 4.0 m and a moment of inertia 1000.0 kg • m . After the merry-go-
round is given an angular velocity of 6.0 rev/min, the children walk inward and stop when they are 0.75 m from the axis
of rotation. What is the new angular velocity of the merry-go-round? Assume there is negligible frictional torque on the
structure.

64. A thin meter stick of mass 150 g rotates around an axis perpendicular to the stick’s long axis at an angular velocity of 240
rev/min. What is the angular momentum of the stick if the rotation axis (a) passes through the center of the stick? (b)
Passes through one end of the stick?

65. A satellite in the shape of a sphere of mass 20,000 kg and radius 5.0 m is spinning about an axis through its center of
mass. It has a rotation rate of 8.0 rev/s. Two antennas deploy in the plane of rotation extending from the center of mass of
the satellite. Each antenna can be approximated as a rod has mass 200.0 kg and length 7.0 m. What is the new rotation
rate of the satellite?
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CHAPTER OVERVIEW

7: C7) Conservation of Angular Momentum II
7.1: The Angular Momentum of a Point and The Cross Product
7.2: Torque
7.3: Examples
7.E: Angular Momentum (Exercises)

In the previous chapter, we dealt with objects having real size for the first time, and we learned how to calculate the angular
momentum for extended objects as . In this chapter, we have to acknowledge that if extended objects can have angular
momenta, singular points can also! This sounds very counter-intutiive, so let's first make sure we understand why that must be -
essentially, objects are made up of points, and we believe angular momentum should be additive (two objects with angular
momentum  and  have total angular momentum ...sounds like something we want, right?). If that's true, then when
you think about an extended object as a collection of points, each of those points should have individual angular momenta  so
that we can add them all to get the total .

Of course, those individual points themselves are not spinning, they are moving around the axis of the object (see the leftmost
figure). But how do we give these individual points angular momentum? The answer is to use a cross-product:

In this formula, the  is the position of the point and  is the momentum. We will go into this equation in some detail in the rest of
the chapter, but the important thing to notice now is that it is a vector, so it has magnitude and direction. The magnitude can be
found with the formula

where  is the angle between  and . The direction of any cross product  can be found with the right hand rule. The right
hand rule (see second figure to the right) says:

1. Point (the fingers on your right hand!) in the direction of the first vector in .
2. Curl your fingers into the second vector in  (you may need to flip you hand around...)
3. Your thumb is now pointing in the direction of .

"This" right hand rule is actually related to the "first" right hand rule we learned in the last chapter for the direction of , but
the one presented here works for any cross product, whereas the other one is just for the angular momentum of an object. The
figure below (three images on the right) illustrates a few examples of these directions - check that you can get the right answers!

(images from Open Stax!)

7: C7) Conservation of Angular Momentum II is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College.
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7.1: The Angular Momentum of a Point and The Cross Product
In the previous section we studied the rotation of extended, rigid objects, arguing that such objects rotate by transfering angular
momentum, in a similar way that point-like objects transfer linear momentum. In this section, we start by acknowledging that it's
not only extended rigid objects that have angular momentum! Since such objects are made up of individual points, it must be that
we can assign angular momentum to the individual points of extended objects. Put another way, it must be possible to determine
the angular momentum of a point moving along any path, as shown in the following figure.

So there must be some way to encode the angular momentum  of this particle as it moves - and in fact, however we define it, if
this system is isolate it also had better not change as it moves along this path! It turns out the correct way to do this the following:

In this expression  is the position of the point, and  is it's momentum. The product here is called the cross product, which we first
describe in pure mathematical terms before attempting to understand it physically.

The cross, or vector, product of two vectors  and  is denoted by . It is defined as a vector perpendicular to both  and 
(that is to say, to the plane that contains them both), with a magnitude given by

where  and  are the magnitudes of  and , respectively, and  is the angle between  and , when they are drawn either with
the same origin or tip-to-tail.

Since the result of  is a vector, we can also write this product in components. You might recognize this formula from your
calculus courses, where you can define it as a determinant (for more information on where this formula comes from, check out
Wikipedia). We will just copy the result down here:

Note that the magnitude of the formula we just wrote had better be equivalent to the version above, .

The specific direction of  depends on the relative orientation of the two vectors. Basically, if  is counterclockwise from ,
when looking down on the plane in which they lie, assuming they are drawn with a common origin, then  points upwards
from that plane; otherwise, it points downward (into the plane). One can also use the so-called right-hand rule, illustrated in Figure 

 to figure out the direction of . Note that, by this definition, the direction of  is the opposite of the direction of 
 (as also illustrated in Figure ). Hence, the cross-product is non-commutative: the order of the factors makes a

difference.

L⃗ 

= × .L⃗  r ⃗  p ⃗  (7.1.1)

r ⃗  p ⃗ 

A ⃗  B⃗  ×A ⃗  B⃗  A ⃗  B⃗ 

| × | = AB sinθA ⃗  B⃗  (7.1.2)

A B A ⃗  B⃗  θ A ⃗  B⃗ 

×A ⃗  B⃗ 

× = .A ⃗  B⃗ 
⎡

⎣
⎢

( − )AyBz AzBy

( − )AzBx AxBz

( − )AxBy AyBx

⎤

⎦
⎥ (7.1.3)

|A||B| sin(θ)

×A ⃗  B⃗  B⃗  A ⃗ 

×A ⃗  B⃗ 

7.1.1 ×A ⃗  B⃗  ×A ⃗  B⃗ 

×B⃗  A ⃗  7.1.1

× = − ×A ⃗  B⃗  B⃗  A ⃗  (7.1.4)
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Figure : The “right-hand rule” to determine the direction of the cross product. Line up the first vector with the fingers, and the
second vector with the flat of the hand, and the thumb will point in the correct direction. In the first drawing, we are looking at the
plane formed by  and  from above; in the second drawing, we are looking at the plane from below, and calculating .

It follows from Equation ( ) that the cross-product of any vector with itself must be zero. In fact, according to Equation ( ),
the cross product of any two vectors that are parallel to each other is zero, since in that case  = 0, and  = 0. In this respect, the
cross product is the opposite of the dot product that we introduced in Chapter 7: it is maximum when the vectors being multiplied
are orthogonal, and zero when they are parallel. (And, of course, the result of  is a vector, whereas  is a scalar.)

Besides not being commutative, the cross product also does not have the associative property of ordinary multiplication: 
 is different from . You can see this easily from the fact that, if , the second expression will be

zero, but the first one generally will be nonzero (since  is not parallel, but rather perpendicular to ).

Of course, now that we have another definition of the angular momentum, we had better check that it matches the previous one, 
. Since that one only applies to rigid objects, let's calculate it for a single particle, and demonstrate that we get the same

answer using the equation presented at the beginning of this section, ( ). Consider a particle moving in the  plane, shown
in the figure below. Finding the angular momentum of this particle as a rigid object is easy,

(Recall that the moment of inertia of a single point is the same as for a hoop). Now, let's use our new formula. In the magnitude
form ( ), this is

Here the  comes from the fact that the vector  and the vector  are perpendicular to each other. To make these expressions
match, first notice that . Then, recall the formula . If we put both of these into our last expression we find:

exactly as we expected. For our purposes, this provides enough evidence that we can use ( \) as the correct expression for the
angular momentum of single particles.

7.1.1

A ⃗  B⃗  ×B⃗  A ⃗ 

7.1.4 7.1.2

θ sin0

×A ⃗  B⃗  ⋅A ⃗  B⃗ 

×( × )A ⃗  B⃗  C ⃗  ( × ) ×A ⃗  B⃗  C ⃗  =A ⃗  B⃗ 

×A ⃗  C ⃗  A ⃗ 

= IL⃗  ω⃗ 

7.1.1 x−y

L = Iω = (m )ω.r2 (7.1.5)
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L = |r||p|sinθ = r(mv)sin( ).90∘ (7.1.6)
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Figure : A particle moving on a circle in the -  plane. For the direction of rotation shown, the vectors  and  lie
along the  axis, in the positive direction.

There are some other neat things we can do with  as defined above. Consider the cross product . Inspection of Figure 
and of Equation (8.4.12) shows that this is nothing other than the ordinary velocity vector, :

We can also take the derivative of  to obtain the angular acceleration vector , so that Equation (8.4.9) will hold as a vector
equation:

For the motion depicted in Figure , the vector  will point along the positive  axis if the vector  is growing (which means
the particle is speeding up), and along the negative  axis if  is decreasing.

One important property the cross product does have is the distributive property with respect to the sum:

This, it turns out, is all that’s necessary in order to be able to apply the product rule of differentiation to calculate the derivative of a
cross product; you just have to be careful not to change the order of the factors in doing so. We can then take the derivative of both
sides of Equation ( ) to get an expression for the acceleration vector:

The first term on the right-hand side, , lies in the -  plane, and is perpendicular to ; it is, therefore, tangential to the circle.
In fact, looking at its magnitude, it is clear that this is just the tangential acceleration vector, which I introduced (as a scalar) in
Equation (8.4.13).

As for the second term in ( ), , noting that  and  are always perpendicular, it is clear its magnitude is 
 (making use of Equation (8.4.12) again). This is just the magnitude of the centripetal acceleration we

studied in the previous chapter (section 8.4). Also, using the right-hand rule in Figure , you can see that  always points
inwards, towards the center of the circle; that is, along the direction of . Putting all of this together, we can write this vector as
just , and the whole acceleration vector as the sum of a tangential and a centripetal (radial) component, as follows:

To conclude this section, let me return to the angular momentum vector, and ask the question of whether, in general, the angular
momentum of a rotating system, defined as the sum of Equation 6.1.4 over all the particles that make up the system, will or not

7.1.2 x y = m ×L⃗  r ⃗  v ⃗  ω⃗ 
z

ω⃗  ×ω⃗  r ⃗  7.1.2

v ⃗ 

= × .v ⃗  ω⃗  r ⃗  (7.1.8)

ω⃗  α⃗ 

= = .α⃗  lim
Δt→0

(t+Δt) − (t)ω⃗  ω⃗ 

dt
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dt
(7.1.9)
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satisfy the vector equation . We have seen that this indeed works for a particle moving in a circle. It will, therefore, also
work for any object that is essentially flat, and rotating about an axis perpendicular to it, since in that case all its parts are just
moving in circles around a common center. This was the case for the thin rod we considered in connection with Figure 9.2.3 in the
previous subsection.

However, if the system is a three-dimensional object rotating about an arbitrary axis, the result  does not generally hold.
The reason is, mathematically, that the moment of inertia  is defined (Equation (9.1.3)) in terms of the distances of the particles to
an axis, whereas the angular momentum involves the particle’s distance to a point. For particles at different “heights” along the axis
of rotation, these quantities are different. It can be shown that, in the general case, all we can say is that , if we call  the
axis of rotation and calculate  relative to a point on that axis.

On the other hand, if the axis of rotation is an axis of symmetry of the object, then  has only a  component, and the result 
 holds as a vector equation. Most of the systems we will consider this semester will be covered under this clause, or under

the “essentially flat” clause mentioned above.

In what follows we will generally assume that  has only a  component, and we will drop the subscript  in the equation 
, so that  and  will not necessarily be the magnitudes of their respective vectors, but numbers that could be positive or

negative, depending on the direction of rotation (clockwise or counterclockwise). This is essentially the same convention we used
for vectors in one dimension, such as  or , in the early chapters; it is fine for all the cases in which the (direction of the) axis of
rotation does not change with time, which are the only situations we will consider this semester.

This page titled 7.1: The Angular Momentum of a Point and The Cross Product is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the
style and standards of the LibreTexts platform.

9.3: The Cross Product and Rotational Quantities by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source:
https://scholarworks.uark.edu/oer/3.
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7.2: Torque
We are finally in a position to answer the question, when is angular momentum conserved? To do this, we will simply take the
derivative of  with respect to time, and use Newton’s laws to find out under what circumstances it is equal to zero.

Let us start with a particle and calculate

The first term on the right-hand side goes as , which is zero. The second term can be rewritten as . But, according to
Newton’s second law, . So, we conclude that

So the angular momentum, like the ordinary momentum, will be conserved if the net force on the particle is zero, but also, and this
is an important difference, when the net force is parallel (or antiparallel) to the position vector.

The quantity  is called the torque of a force around a point (the origin from which  is calculated, typically a pivot point or
center of rotation). It is denoted with the Greek letter , “tau”:

For an extended object or system, the rate of change of the angular momentum vector would be given by the sum of the torques of
all the forces acting on all the particles. For each torque one needs to use the position vector of the particle on which the force is
acting.

The torque of a force around a point is basically a measure of how effective the force would be at causing a rotation around that
point. Since , you can see that it depends on three things: the magnitude of the force, the distance from the
center of rotation to the point where the force is applied, and the angle at which the force is applied. All of this can be understood
pretty well from Figure  below, especially if you have ever had to use a wrench to tighten or loosen a bolt:

Figure : The torque around the point O of each of the forces shown is a measure of how effective it is at causing the rod to
turn around that point.

Clearly, the force  will not cause a rotation at all, and accordingly its torque is zero (since it is parallel to ). On the other hand,
of all the forces shown, the most effective one is : it is applied the farthest away from O, for the greatest leverage (again, think
of your experiences with wrenches). It is also perpendicular to the rod, for maximum effect (  = 1). The force , by contrast,
although also applied at the point A is at a disadvantage because of the relatively small angle it makes with . If you imagine
breaking it up into components, parallel and perpendicular to the rod, only the perpendicular component (whose magnitude is 

) would be effective at causing a rotation; the other component, the one parallel to the rod, would be wasted, like .

In order to calculate torques, then, we basically need to find, for every force, the component that is perpendicular to the position
vector of its point of application. Clearly, for this purpose we can no longer represent an extended body as a mere dot, as we have
done previously. What we need is a more careful sketch of the object, just detailed enough that we can tell how far from the center
of rotation and at what angle each force is applied. That kind of diagram is called an extended free-body diagram.

Figure  could be an example of an extended free-body diagram, for an object being acted on by four forces. Typically, though,
instead of drawing the vectors  and  we would just indicate their lengths on the diagram (or maybe even leave them out
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altogether, if we do not want to overload the diagram with detail). I will show a couple of examples of extended free-body
diagrams in the next couple of sections.

Coming back to Equation ( ), the main message of this section (other, of course, than the definition of torque itself), is that the
rate of change of an object or system’s angular momentum is equal to the net torque due to the external forces. Two special results
follow from this one. First, if the net external torque is zero, angular momentum will be conserved. For example, consider the
collision of a particle and a rod pivoting around one end. The only external force is the force exerted on the rod, at the pivot point,
by the pivot itself, but the torque of that force around that point is obviously zero, since , so our assumption that the total
angular momentum around that point was conserved is legitimate.

Finally, note that situations where the moment of inertia of a system, , changes with time are relatively easy to arrange for any
deformable system. Especially interesting is the case when the external torque is zero, so  is constant, and a change in  therefore
brings about a change in : this is how, for instance, an ice-skater can make herself spin faster by bringing her arms closer
to the axis of rotation (reducing her ), and, conversely, slow down her spin by stretching out her arms. This can be done even in
the absence of a contact point with the ground: high-board divers, for instance, also spin up in this way when they curl their bodies
into a ball. Note that, throughout the dive, the diver’s angular momentum around its center of mass is constant, since the only force
acting on him (gravity, neglecting air resistance) has zero torque about that point.

Resources
Unfortunately, we will not really have enough time this semester to explore further the many interesting effects that follow from the
vector nature of Equation ( ), but you are at least subconsciously familiar with some of them if you have ever learned to ride a
bicycle! A few interesting Internet references (some of which could perhaps inspire a good Honors project!) are the following:

Walter Lewin’s lecture on gyroscopic motion (and rolling motion): 
https://www.youtube.com/watch?v=N92FYHHT1qM
A “Veritasium” video on “antigravity”: 
https://www.youtube.com/watch?v=GeyDf4ooPdo 
https://www.youtube.com/watch?v=tLMpdBjA2SU
And the old trick of putting a gyroscope (flywheel) in a suitcase: 
https://www.youtube.com/watch?v=zdN6zhZSJKw
If any of the above links are dead, try googling them. (You may want to let me know, too!)

The additional assumption is that the force between any two particles lies along the line connecting the two particles (which means
it is parallel or antiparallel to the vector ). In that case, . Most forces in
nature satisfy this condition.

Actually, friction forces and normal forces may be “spread out” over a whole surface, but, if the object has enough symmetry, it is
usually OK to have them “act” at the midpoint of that surface. This can be proved along the lines of the derivation for gravity that
follows.

This page titled 7.2: Torque is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

9.4: Torque by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
9.6: Rolling Motion by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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7.3: Examples

 

In soccer, a ``nutmeg'' is when you kick the ball through the legs of an opponent,
thouroughly humiliating them. In the figure, Ronaldo nutmegs Puyol by kicking the ball
(with a mass of 435 g and radius of 11.5 cm) at a velocity of 1.75 m/s.

 

1. If the ball is rolling along the ground without slipping, what is the angular momentum of
the ball about its center of mass?

2. When the ball passes through Puyol's legs, what is the angular momentum of the center of mass of the ball relative to his
head? Puyol is 5'10'' (1.78 m) tall.

3. Puyol spins around after the nutmeg and sees the ball a distance 1.15 m along the ground behind him, still rolling with the
same velocity. What is the angular momentum of the center of mass of the ball now?

 

 

 

Four forces are shown in Figure  at particular locations and orientations with respect to a given xy-coordinate system.
Find the torque due to each force about the origin, then use your results to find the net torque about the origin.

Figure : Four forces producing torques.

Strategy

This problem requires calculating torque. All known quantities––forces with directions and lever arms––are given in the figure.
The goal is to find each individual torque and the net torque by summing the individual torques. Be careful to assign the
correct sign to each torque by using the cross product of  and the force vector .

Solution
Use | | = r F = rFsin  to find the magnitude and  to determine the sign of the torque.

The torque from force 40 N in the first quadrant is given by (4)(40)sin 90° = 160 N • m.

The cross product of  and  is out of the page, positive.

The torque from force 20 N in the third quadrant is given by −(3)(20)sin 90° = − 60 N • m.

The cross product of  and  is into the page, so it is negative.

The torque from force 30 N in the third quadrant is given by (5)(30)sin 53° = 120 N • m.

The cross product of  and  is out of the page, positive.

 Whiteboard Problem : Nutmeg7.3.1

 Example : Calculating Torque7.3.2

7.3.4

7.3.4

r ⃗  F ⃗ 

τ ⃗  ⊥ θ = ×r ⃗  r ⃗  F ⃗ 

r ⃗  F ⃗ 

r ⃗  F ⃗ 

r ⃗  F ⃗ 
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The torque from force 20 N in the second quadrant is given by (1)(20)sin 30° = 10 N • m.

The cross product of  and  is out of the page.

The net torque is therefore  = 160 − 60 + 120 + 10 = 230 N • m.

Significance

Note that each force that acts in the counterclockwise direction has a positive torque, whereas each force that acts in the
clockwise direction has a negative torque. The torque is greater when the distance, force, or perpendicular components are
greater.

Figure  shows several forces acting at different locations and angles on a flywheel. We have  = 20 N,  = 30 N, 
 = 30 N, and r = 0.5 m. Find the net torque on the flywheel about an axis through the center.

Figure : Three forces acting on a flywheel.

Strategy

We calculate each torque individually, using the cross product, and determine the sign of the torque. Then we sum the torques
to find the net torque. Solution We start with . If we look at Figure , we see that  makes an angle of 90° + 60° with
the radius vector . Taking the cross product, we see that it is out of the page and so is positive. We also see this from
calculating its magnitude:

Next we look at . The angle between  and  is 90° and the cross product is into the page so the torque is negative. Its
value is

When we evaluate the torque due to , we see that the angle it makes with  is zero so  = 0. Therefore,  does not
produce any torque on the flywheel.

We evaluate the sum of the torques:

Significance

The axis of rotation is at the center of mass of the flywheel. Since the flywheel is on a fixed axis, it is not free to translate. If it
were on a frictionless surface and not fixed in place,  would cause the flywheel to translate, as well as . Its motion would
be a combination of translation and rotation.

r ⃗  F ⃗ 

= | |τnet ∑
i

τi

 Example : Calculating Torque on a rigid body7.3.3

7.3.5 | |F ⃗ 
1 | |F ⃗ 

2

| |F ⃗ 
3

7.3.5

F ⃗ 
1 7.3.5 F ⃗ 

1

r ⃗ 

| | = r sin = (0.5 m)(20 N)(0.5) = 5.0 N ⋅ m.τ ⃗ 1 F1 150o (7.3.1)

F ⃗ 
2 F ⃗ 

2 r ⃗ 

| | = −r sin = (−0.5 m)(30 N) = −15.0 N ⋅ m.τ ⃗ 2 F2 90o (7.3.2)

F ⃗ 
3 r ⃗  ×r ⃗  F ⃗ 

3 F ⃗ 
3

= | | = 5 −15 = −10 N ⋅ m.τnet ∑
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A large ocean-going ship runs aground near the coastline, similar to the fate of the Costa Concordia, and lies at an angle as
shown below. Salvage crews must apply a torque to right the ship in order to float the vessel for transport. A force of 5.0 x 10
N acting at point A must be applied to right the ship. What is the torque about the point of contact of the ship with the ground
(Figure )?

Figure : A ship runs aground and tilts, requiring torque to be applied to return the vessel to an upright position.

This page titled 7.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

9.8: Examples by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
10.7: Torque by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.

 Exercise : Ship Run Aground7.3.4
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7.E: Angular Momentum (Exercises)

Conceptual Questions
1. Can you assign an angular momentum to a particle without first defining a reference point?
2. For a particle traveling in a straight line, are there any points about which the angular momentum is zero? Assume the

line intersects the origin.
3. Under what conditions does a rigid body have angular momentum but not linear momentum?
4. If a particle is moving with respect to a chosen origin it has linear momentum. What conditions must exist for this

particle’s angular momentum to be zero about the chosen origin?
5. If you know the velocity of a particle, can you say anything about the particle’s angular momentum?

Problems
6. A 0.2-kg particle is travelling along the line y = 2.0 m with a velocity 5.0 m/s. What is the angular momentum of the

particle about the origin?
7. A bird flies overhead from where you stand at an altitude of 300.0 m and at a speed horizontal to the ground of 20.0 m/s.

The bird has a mass of 2.0 kg. The radius vector to the bird makes an angle  with respect to the ground. The radius
vector to the bird and its momentum vector lie in the xy-plane. What is the bird’s angular momentum about the point
where you are standing?

8. A Formula One race car with mass 750.0 kg is speeding through a course in Monaco and enters a circular turn at 220.0
km/h in the counterclockwise direction about the origin of the circle. At another part of the course, the car enters a second
circular turn at 180 km/h also in the counterclockwise direction. If the radius of curvature of the first turn is 130.0 m and
that of the second is 100.0 m, compare the angular momenta of the race car in each turn taken about the origin of the
circular turn.

9. A particle of mass 5.0 kg has position vector  at a particular instant of time when its velocity is 

 with respect to the origin. (a) What is the angular momentum of the particle? (b) If a force 

 acts on the particle at this instant, what is the torque about the origin?

10. Use the right-hand rule to determine the directions of the angular momenta about the origin of the particles as shown
below. The z-axis is out of the page.

11. Suppose the particles in the preceding problem have masses m  = 0.10 kg, m  = 0.20 kg, m  = 0.30 kg, m  = 0.40 kg. The

velocities of the particles are , , , . (a)

Calculate the angular momentum of each particle about the origin. (b) What is the total angular momentum of the four-
particle system about the origin?

12. Two particles of equal mass travel with the same speed in opposite directions along parallel lines separated by a distance
d. Show that the angular momentum of this two-particle system is the same no matter what point is used as the reference
for calculating the angular momentum.
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13. An airplane of mass 4.0 x 10  kg flies horizontally at an altitude of 10 km with a constant speed of 250 m/s relative to
Earth. (a) What is the magnitude of the airplane’s angular momentum relative to a ground observer directly below the
plane? (b) Does the angular momentum change as the airplane flies along its path?

14. At a particular instant, a 1.0-kg particle’s position is , its velocity is  , and the force

on it is . (a) What is the angular momentum of the particle about the origin? (b) What is the torque on the

particle about the origin? (c) What is the time rate of change of the particle’s angular momentum at this instant?
15. A particle of mass m is dropped at the point (−d, 0) and falls vertically in Earth’s gravitational field −g in the y-direction.

(a) What is the expression for the angular momentum of the particle around the z-axis, which points directly out of the
page as shown below? (b) Calculate the torque on the particle around the z-axis. (c) Is the torque equal to the time rate of
change of the angular momentum?

16. (a) Calculate the angular momentum of Earth in its orbit around the Sun. (b) Compare this angular momentum with the
angular momentum of Earth about its axis.

17. An Earth satellite has its apogee at 2500 km above the surface of Earth and perigee at 500 km above the surface of Earth.
At apogee its speed is 730 m/s. What is its speed at perigee? Earth’s radius is 6370 km (see below).

18. A Molniya orbit is a highly eccentric orbit of a communication satellite so as to provide continuous communications
coverage for Scandinavian countries and adjacent Russia. The orbit is positioned so that these countries have the satellite
in view for extended periods in time (see below). If a satellite in such an orbit has an apogee at 40,000.0 km as measured
from the center of Earth and a velocity of 3.0 km/s, what would be its velocity at perigee measured at 200.0 km altitude?
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19. Shown below is a small particle of mass 20 g that is moving at a speed of 10.0 m/s when it collides and sticks to the edge
of a uniform solid cylinder. The cylinder is free to rotate about its axis through its center and is perpendicular to the page.
The cylinder has a mass of 0.5 kg and a radius of 10 cm, and is initially at rest. (a) What is the angular velocity of the
system after the collision?

20. A merry-go-round has a radius of 2.0 m and a moment of inertia 300 kg • m . A boy of mass 50 kg runs tangent to the rim
at a speed of 4.0 m/s and jumps on. If the merry-go-round is initially at rest, what is the angular velocity after the boy
jumps on?

21. Twin skaters approach one another as shown below and lock hands. (a) Calculate their final angular velocity, given each
had an initial speed of 2.50 m/s relative to the ice. Each has a mass of 70.0 kg, and each has a center of mass located
0.800 m from their locked hands. You may approximate their moments of inertia to be that of point masses at this radius.

22. A baseball catcher extends his arm straight up to catch a fast ball with a speed of 40 m/s. The baseball is 0.145 kg and the
catcher’s arm length is 0.5 m and mass 4.0 kg. (a) What is the angular velocity of the arm immediately after catching the
ball as measured from the arm socket? (b) What is the torque applied if the catcher stops the rotation of his arm 0.3 s after
catching the ball?

23. A particle has mass 0.5 kg and is traveling along the line x = 5.0 m at 2.0 m/s in the positive y-direction. What is the
particle’s angular momentum about the origin?

24. A proton is accelerated in a cyclotron to 5.0 x 10  m/s in 0.01 s. The proton follows a circular path. If the radius of the
cyclotron is 0.5 km, (a) What is the angular momentum of the proton about the center at its maximum speed? (b) What is
the torque on the proton about the center as it accelerates to maximum speed?

25. A potter’s disk spins from rest up to 10 rev/s in 15 s. The disk has a mass 3.0 kg and radius 30.0 cm. What is the angular
momentum of the disk at t = 5 s, t = 10 s?

26. Suppose you start an antique car by exerting a force of 300 N on its crank for 0.250 s. What is the angular momentum
given to the engine if the handle of the crank is 0.300 m from the pivot and the force is exerted to create maximum torque
the entire time?

Contributors and Attributions
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8.9: Examples
8.E: Potential Energy and Conservation of Energy (Exercises)

Starting in this chapter we are going to move away from our first basic principle of physics (conservation of momentum), and onto
conservation of energy. As another conservation law, the essentials are the same - there is a quantity in the system that is not
changing, and by keeping track of that quantity, we can learn things about unknown aspects of the system. The things we are
looking for will be similar (final speeds, for example), but since the quantity we are keeping track of is different (energy instead of
momentum), the details will be different.

One major difference is that unlike momentum, energy takes many different forms. Momentum was only ever mass times velocity.
But energy can take several different forms, and most notably can be stored without motion - something momentum cannot do .
Here we will quickly outline two different forms that energy can take.

The first is kinetic energy, or energy of motion. This is the energy stored in a moving object, and all moving objects have it. The
nice thing about kinetic energy is that there is a simple formula to describe it (kind of like for momentum!):

Here  is the mass of the object, and  is the speed. Although this shares some of the same intuition as momentum ("more mass
and speed, more energy"), it's important to recognize one difference - unlike momentum, kinetic energy is a scalar and does not
have direction. So it doesn't matter what direction  is pointed in, what matters is the square of the magnitude, . 

The second form of energy we want to immediately introduce is potential energy, or energy of interaction. This new concept
describes how objects interact, and allows us to study interactions at a more fundamental level than momentum. Objects interact by
storing and moving energy around to different parts of the system. For example, when you stretch a spring, you are transferring
energy from your arms into the spring, wihich stays there until you let the spring return to it's original length. Every interaction has
a different way of storing energy, although sometimes we may not know how to easily describe it (friction is an example of this).

Our first example of potential energy will be gravitational potential energy near the surface of the Earth. You already know about
this - when you drop something it falls! The interaction of gravity allowed you (or someone else, whoever lifted the object in the
first place) to store energy in the system, and you can release it by dropping it. In this case, the energy turns into the kind we
discussed before, kinetic energy. The formula for gravitational potential energy near the Earth is

where  is the mass of the object,  is the acceleration due to gravity, and  is the height above the reference point
(often taken to be the ground).

We are going to spend a lot of time understanding these two kinds of energy, but let's start by considering the simple example of
dropping an object we just mentioned. Assuming the object is not moving before you drop it, the initial energy is completely made
up of . As the object falls, it converts the energy from  into , increasing the speed  while the height  decreases. That
allows us to construct the formula,

1
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2 (8.1)
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which tells us the speed of the object when it falls from a height . That's already a new result for us, but we should also point out
that the only thing that changes how fast the object is moving is how high it's dropped from; the mass doesn't matter, and also we
have no knowledge of the direction of motion (ok, yes we know in this case it's "downwards", but generally energy cannot tell us
that!). This is typical for equations in energy problems - they are often pretty simple, but we have to be careful to know exactly
what they can and can't tell us.

We have to be a little careful here - momentum can be stored in certain fields, like the electromagnetic and gravitational fields.
However, understanding how that works takes a greater knowledge of the fundamental interactions then we can give here!

8: C8) Conservation of Energy- Kinetic and Gravitational is shared under a CC BY-SA license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College.
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8.1: Kinetic Energy
For a long time in the development of classical mechanics, physicists were aware of the existence of two different quantities that
one could define for an object of inertia  and velocity . One was the momentum, , and the other was something proportional
to . Despite their obvious similarities, these two quantities exhibited different properties and seemed to be capturing different
aspects of motion.

When things got finally sorted out, in the second half of the 19th century, the quantity  came to be recognized as a form of
energy—itself perhaps the most important concept in all of physics. Kinetic energy, as this quantity is called, may be the most
obvious and intuitively understandable kind of energy, and so it is a good place to start our study of the subject.

We will use the letter  to denote kinetic energy, and, since it is a form of energy, we will express it in the units especially named
for this purpose, which is to say joules (J). 1 joule is 1 kg·m /s . In the definition

the letter  is meant to represent the magnitude of the velocity vector, that is to say, the speed of the particle. Hence, unlike
momentum, kinetic energy is not a vector, but a scalar : there is no sense of direction associated with it. In three dimensions, one
could write

There is, therefore, some amount of kinetic energy associated with each component of the velocity vector, but in the end they are
all added together in a lump sum.

For a system of particles, we will treat kinetic energy as an additive quantity, just like we did for momentum, so the total kinetic
energy of a system will just be the sum of the kinetic energies of all the particles making up the system. Note that, unlike
momentum, this is a scalar (not a vector) sum, and most importantly, that kinetic energy is, by definition, always positive, so there
can be no question of a “cancellation” of one particle’s kinetic energy by another, again unlike what happened with momentum.
Two objects of equal mass moving with equal speeds in opposite directions have a total momentum of zero, but their total kinetic
energy is definitely nonzero. Basically, the kinetic energy of a system can never be zero as long as there is any kind of motion
going on in the system.

Kinetic Energy in Collisions
To gain some further insights into the concept of kinetic energy, and the ways in which it is different from momentum, it is useful
to look at it in the same setting in which we “discovered” momentum, namely, one-dimensional collisions in an isolated system. If
we look again at the collision represented in Figure 2.1.1 of Chapter 2, reproduced below,

Figure 8.1.1

we can use the definition ( ) to calculate the initial and final values of  for each object, and for the system as a whole.
Remember we found that, for this particular system, , so we can just set = 1 kg and  = 2 kg, for simplicity. The
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initial and final velocities are  = 1 m/s,  = 0,  = −1/3 m/s,  = 2/3 m/s, and so the kinetic energies are

Note that 1/18 + 4/9 = 9/18 = 1/2, and so

In words, we find that, in this collision, the final value of the total kinetic energy is the same as its initial value, and so it looks like
we have “discovered” another conserved quantity (besides momentum) for this system.

This belief may be reinforced if we look next at the collision depicted in Figure 2.1.2, again reproduced below. In this collision, the
second object is now moving towards the first, which is stationary.

Figure 8.1.2.

The corresponding kinetic energies are, accordingly,  = 0,  = 1 J,  =  J,  =  J. These are all different from the
values we had in the previous example, but note that once again the total kinetic energy after the collision equals the total kinetic
energy before—namely, 1 J in this case.

Things are, however, very different when we consider the third collision example shown in Chapter 2, namely, the one where the
two objects are stuck together after the collision.

Figure 8.1.3

Their joint final velocity, consistent with conservation of momentum, is  =  = 1/3 m/s. Since the system starts as in Figure 
, its kinetic energy is initially  J, but after the collision we have only
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What this shows, however, is that unlike the total momentum of a system, which is completely unaffected by internal interactions,
the total kinetic energy does depend on the details of the interaction, and thus conveys some information about its nature. We can
then refine our study of collisions to distinguish two kinds: the ones where the initial kinetic energy is recovered after the collision,
which we will call elastic, and the ones where it is not, which we call inelastic. A special case of inelastic collision is the one
called totally inelastic, where the two objects end up stuck together, as in Figure . As we shall see later, the kinetic energy
“deficit” is largest in that case.

Since whatever ultimately happens depends on the details and the nature of the interaction, we will be led to distinguish between
“conservative” interactions, where kinetic energy is reversibly stored as some other form of energy somewhere, and “dissipative”
interactions, where the energy conversion is, at least in part, irreversible. Clearly, elastic collisions are associated with conservative
interactions and inelastic collisions are associated with dissipative interactions. This preliminary classification of interactions will
have to be reviewed a little more carefully, however, in the next chapter.
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8.2: Conservative Interactions
Let's summarize the physical concepts and principles we have encountered so far in our study of classical mechanics. We have
“discovered” one important quantity, the inertia or inertial mass of an object, and introduced two different quantities based on that
concept, the momentum  and the kinetic energy . We found that these quantities have different but equally intriguing
properties. The total momentum of a system is insensitive to the interactions between the parts that make up the system, and
therefore it stays constant in the absence of external influences (a more general statement of the law of inertia, the first important
principle we encountered). The total kinetic energy, on the other hand, changes while any sort of interaction is taking place, but in
some cases it may actually return to its original value afterwards. This chapter deals with interactions from an energy point of view,
whereas later chapters will deal with them from a force point of view.

In the previous chapter I suggested that what was going on in an elastic collision could be interpreted, or described (perhaps in a
figurative way) more or less as follows: as the objects come together, the total kinetic energy goes down, but it is as if it was being
temporarily stored away somewhere, and as the objects separate, that “stored energy” is fully recovered as kinetic energy. Whether
this does happen or not in any particular collision (that is, whether the collision is elastic or not) depends, as we have seen, on the
kind of interaction (“bouncy” or “sticky,” for instance) that takes place between the objects.

We are going to take the above description literally, and use the name conservative interaction for any interaction that can “store
and restore” kinetic energy in this way. The “stored energy” itself—which is not actually kinetic energy while it remains stored,
since it is not given by the value of  at that time—we are going to call potential energy. Thus, conservative interactions will
be those that have a “potential energy” associated with them, and vice-versa.

Potential Energy
Perhaps the simplest and clearest example of the storage and recovery of kinetic energy is what happens when you throw an object
straight upwards, as it rises and eventually falls back down. The object leaves your hand with some kinetic energy; as it rises it
slows down, so its kinetic energy goes down, down... all the way down to zero, eventually, as it momentarily stops at the top of its
rise. Then it comes down, and its kinetic energy starts to increase again, until eventually, as it comes back to your hand, it has very
nearly the same kinetic energy it started out with (exactly the same, actually, if you neglect air resistance).

The interaction responsible for this change in the object’s kinetic energy is, of course, the gravitational interaction between it and
the Earth, so we are going to say that the “missing” kinetic energy is temporarily stored as gravitational potential energy of the
system formed by the Earth and the object. This potential energy takes a simple mathematical form,

where  is the height of the object above the Earth. We have carefully called this height the coordinate  to emphasize that is can be
negative if  is negative. It turns out that with this definition of potential energy, the total energy in freefall is

This is a statement of conservation of energy under the gravitational interaction. For any interaction that has a potential energy
associated with it, the quantity  is called the (total) mechanical energy.

Figure  shows how the kinetic and potential energies of an object thrown straight up change with time (don't worry where this
plot comes from yet, you will learn about that when we study projectile motion in detail). I have arbitrarily assumed that the object
has a mass of 1 kg and an initial velocity of 2 m/s, and it is thrown from an initial height of 0.5 m above the ground. Note how the
change in potential energy exactly mirrors the change in kinetic energy (so , mathematically), and the total
mechanical energy remains equal to its initial value of 6.9 J throughout.
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Figure : Potential and kinetic energy as a function of time for a system consisting of the earth and a 1-kg object sent upwards
with  = 2 m/s from a height of 0.5 m.

There is something about potential energy that probably needs to be mentioned at this point. Because I have chosen to launch the
object from 0.5 m above the ground, and I have chosen to measure  from the ground, I started out with a potential energy of 
= 4.9 J. This makes sense, in a way: it tells you that if you simply dropped the object from this height, it would have picked up an
amount of kinetic energy equal to 4.9 J by the time it reached the ground. But, actually, where I choose the vertical origin of
coordinates is arbitrary. I could start measuring  from any height I wanted to—for instance, taking the initial height of my hand to
correspond to  = 0. This would shift the blue curve in Figure  down by 4.9 J, but it would not change any of the physics. The
only important thing I really want the potential energy for is to calculate the kinetic energy the object will lose or gain as it moves
from one height to another, and for that only changes in potential energy matter. I can always add or subtract any (constant) number
to or from , and it will still be true that .

Closed Systems
Today, physics is pretty much founded on the belief that the energy of a closed system (defined as one that does not exchange
energy with its surroundings—more on this in a minute) is always conserved: that is, internal processes and interactions will only
cause energy to be “converted” from one form into another, but the total, after all the forms of energy available to the system have
been carefully accounted for, will not change. This belief is based on countless experiments, on the one hand, and, on the other, on
the fact that all the fundamental interactions that we are aware of do conserve a system’s total energy.

Of course, recognizing whether a system is “closed” or not depends on having first a complete catalogue of all the ways in which
energy can be stored and exchanged—to make sure that there is, in fact, no exchange of energy going on with the surroundings.
Note, incidentally, that a “closed” system is not necessarily the same thing as an “isolated” system: the former relates to the total
energy, the latter to the total momentum. A parked car getting hotter in the sun is not a closed system (it is absorbing energy all the
time) but, as far as its total momentum is concerned, it is certainly fair to call it “isolated.” Hopefully all these concepts will be
further clarified when we introduce the additional auxiliary concepts of force, work, and heat.

For a closed system, we can state the principle of conservation of energy (somewhat symbolically) in the form

where  is the total, macroscopic, kinetic energy;  the sum of all the applicable potential energies associated with the system’s
internal interactions;  is any kind of internal energy (such as chemical energy) that is not described by a potential energy
function, but can increase the system’s mechanical energy; and  stands for the contents of the “dissipated energy reservoir”—
typically thermal energy. As with the potential energy , the absolute value of  and  does not (usually) really matter:
all we are interested in is how much they change in the course of the process under consideration.
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Figure : Energy bar diagrams for a system formed by the earth and a ball thrown downwards. (a) As the ball leaves the hand.
(b) Just before it hits the ground. (c) During the collision, at the time of maximum compression. (d) At the top of the first bounce.
The total number of energy “units” is the same in all the diagrams, as required by the principle of conservation of energy.

Figure  above is an example of this kind of “energy accounting” for a ball bouncing on the ground. If the ball is thrown down,
the system formed by the ball and the earth initially has both gravitational potential energy, and kinetic energy (diagram (a)). So all
the kinetic energy that we have is the kinetic energy of the ball. As the ball falls, gravitational potential energy is being converted
into kinetic energy, and the ball speeds up. As it is about to hit the ground (diagram (b)), the potential energy is zero and the kinetic
energy is maximum. During the collision with the ground, all the kinetic energy is temporarily converted into other forms of
energy, which are essentially elastic energy of deformation (like the energy in a spring) and some thermal energy (diagram (c)).
When it bounces back, its kinetic energy will only be a fraction  of what it had before the collision (where e is the coefficient of
restitution). This kinetic energy is all converted into gravitational potential energy as the ball reaches the top of its bounce (diagram
(d)). Note there is more dissipated energy in diagram (d) than in (c); this is because I have assumed that dissipation of energy takes
place both during the compression and the subsequent expansion of the ball.

Note that in this closed system, some energy was transferred to heat, but the total energy stayed the same, and was therefore
conserved. The real problem appears if you can't actually keep track of that energy that gets transferred to heat, then the system
would appear not to conserve energy. Mostly, we will assume no transfer to heat in our problems, but we should acknowledge this
is not a problem with physics, it is rather a problem with our ability to keep track of all the sources of energy in a system. As you
move through the field of physics, you will learn how we keep track of more of these sources of energy, and the problems you
solve will become better and better approximations to "the real world".
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8.3: The Inverse-Square Law
Up to this point, all we have said about gravity is that, near the surface of the Earth, the gravitational force exerted by the Earth on
an object of mass  is , which corresponds to a potential energy of interaction . This is, indeed, a pretty good
approximation, but it does not really tell you anything about what the gravitational force is where other objects or distances are
involved.

The first comprehensive theory of gravity, formulated by Isaac Newton in the late 17th century, postulates that any two “particles”
with masses  and  will exert an attractive force (a “pull”) on each other, whose magnitude is proportional to the product of
the masses, and inversely proportional to the square of the distance between them. Mathematically, we write

Here,  is just the magnitude of the position vector of particle 2 relative to particle 1 (so  is, indeed, the distance between the
two particles), and  is a constant, known as “Newton’s constant” or the gravitational constant, which at the time of Newton still
had not been determined experimentally. You can see from Equation ( ) that  is simply the magnitude, in newtons, of the
attractive force between two 1-kg masses a distance of 1 m apart. This turns out to have the ridiculously small value  =
6.674×10  N m /kg  (or, as is more commonly written, m kg s ). It was first measured by Henry Cavendish in 1798, in what
was, without a doubt, an experimental tour de force for that time. As you can see, gravity as a force between any two ordinary
objects is absolutely insignificant, and it takes the mass of a planet to make it into something you can feel.

There is a potential energy corresponding to this force, a la :

The variables are the same as in the force equation (notice the negative derivative of the potential gives you the force - that's a
universal rule, which we will explore later). These two equations together constitute what is often called Universal Gravity, because
it's the law of gravity that applies to any two objects in the universe. This should be contrasted with the more familiar 
and , which only apply near the surface of the Earth.

Since  should apply everywhere, it should be true that we can derive  from , so let's show how that is done. The situation
we want to understand is the gravitational interaction near the Earth - in fact, very near the Earth, so that we can write the height of
the object from the surface  is much smaller than the radius of the Earth, . Setting the two masses in equation ( ) to
the Earth  and the mass of the object in question , we can write

Notice in going to either side of the equation sign, I have simply pulled out  from the expression in the denominator, those two
expressions are exactly equal. But now we have that quantity , and we've already said , which means  is a
very small value. Recall from your calculus class that for a small value , you can write

(This is called a Taylor Expansion, and you can check our work on Wolfram Alpha.) We have to be careful to write this expression
as an approximation now, since it's not exact, but it should be a good approximation for things that actually are close to the surface
of the Earth - perhaps as high as Everest, for example.

Anyway, let's truncate the series after two terms (keep more if you want it to be more exact!) and write

Notice in this last expression, the first term  is a particular constant which stays the same for a particular planet
(Earth) and object of mass  - let's call that . The second term is similar, but depends linearly on the height  above the surface
of the Earth. In fact, if we define a new constant , we can write that second term as , and we have found the
relationship between the two different kinds of gravitational potential energy:
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That's quite satisfying, but what is going on with the constant? To understand that, we can go back to something we discussed last
chapter - for closed systems that do not dissipate energy, we can write . Notice here that's it's just the change in
energy that matters, and not the total value. For example, if I wanted to find the change in Universal Gravitational energy I could
write

In other words, if we consider the change in energy, the constant doesn't matter - in fact, we usually just set this constant to be 0 in
all of our problems. The conceptual understanding of that is essentially that it does not matter where we set our  point to be -
if we drop an object 10 m, we have to get the same answer for the final speed if we consider the  point to be either at the
bottom of the motion or the top.

It's important to keep in mind this approximation technique - it's a very powerful tool that is used all over the place in the physics.
Sometimes it's to make our work easier, while having essentially no impact on the outcome of calculations, like in this case. In
other cases, the exact answer is so difficult to calculate that we are forced to make approximations to get an answer at all. One
example of this which is just beyond what we will study is air drag, another example which is far beyond what we will study is the
use of Feynman diagrams in quantum field theory.

This page titled 8.3: The Inverse-Square Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts
platform.

10.1: The Inverse-Square Law by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.

≈ C + .UG Ug (8.3.6)

ΔK = −ΔU

Δ = − ≈ (C + ) −(C + ) = − = Δ .UG UG,f UG,i Ug,f Ug,i Ug,f Ug,i Ug (8.3.7)

h = 0

h = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85796?pdf
https://en.wikipedia.org/wiki/Drag_(physics)
https://en.wikipedia.org/wiki/Feynman_diagram
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/08%3A_C8)_Conservation_of_Energy-_Kinetic_and_Gravitational/8.03%3A_The_Inverse-Square_Law
https://creativecommons.org/licenses/by-sa/4.0
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://libraries.uark.edu/
https://scholarworks.uark.edu/oer/3
https://phys.libretexts.org/@go/page/22260
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://creativecommons.org/licenses/by-sa/4.0/
https://scholarworks.uark.edu/oer/3


8.4.1 https://phys.libretexts.org/@go/page/85797

8.4: Conservation of Energy
Today, physics is pretty much founded on the belief that the energy of a closed system (defined as one that does not exchange
energy with its surroundings—more on this in a minute) is always conserved: that is, internal processes and interactions will only
cause energy to be “converted” from one form into another, but the total, after all the forms of energy available to the system have
been carefully accounted for, will not change. This belief is based on countless experiments, on the one hand, and, on the other, on
the fact that all the fundamental interactions that we are aware of do conserve a system’s total energy.

Of course, recognizing whether a system is “closed” or not depends on having first a complete catalogue of all the ways in which
energy can be stored and exchanged—to make sure that there is, in fact, no exchange of energy going on with the surroundings.
Note, incidentally, that a “closed” system is not necessarily the same thing as an “isolated” system: the former relates to the total
energy, the latter to the total momentum. A parked car getting hotter in the sun is not a closed system (it is absorbing energy all the
time) but, as far as its total momentum is concerned, it is certainly fair to call it “isolated.” (And as you keep this in mind, make
sure you also do not mistake “isolated” for “insulated”!) Hopefully all these concepts will be further clarified when we introduce
the additional auxiliary concepts of force, work, and heat (although the latter will not come until the end of the semester).

For a closed system, we can state the principle of conservation of energy (somewhat symbolically) in the form

where  is the total, macroscopic, kinetic energy;  the sum of all the applicable potential energies associated with the system’s
internal interactions;  is any kind of internal energy (such as chemical energy) that is not described by a potential energy
function, but can increase the system’s mechanical energy; and  stands for the contents of the “dissipated energy reservoir”—
typically thermal energy. As with the potential energy , the absolute value of  and  does not (usually) really matter:
all we are interested in is how much they change in the course of the process under consideration.

Figure : Energy bar diagrams for a system formed by the earth and a ball thrown downwards. (a) As the ball leaves the hand.
(b) Just before it hits the ground. (c) During the collision, at the time of maximum compression. (d) At the top of the first bounce.
The total number of energy “units” is the same in all the diagrams, as required by the principle of conservation of energy. From the
diagrams you can tell that the coefficient of restitution .

Figure  above is an example of this kind of “energy accounting” for a ball bouncing on the ground. If the ball is thrown down,
the system formed by the ball and the earth initially has both gravitational potential energy, and kinetic energy (diagram (a)). Note
that we would normally need to worry about the Earth moving as well, but since the Earth is so massive, its movement is
essentially zero.

As the ball falls, gravitational potential energy is being converted into kinetic energy, and the ball speeds up. As it is about to hit the
ground (diagram (b)), the potential energy is zero and the kinetic energy is maximum. During the collision with the ground, all the
kinetic energy is temporarily converted into other forms of energy, which are essentially elastic energy of deformation (like the
energy in a spring) and some thermal energy (diagram (c)). When it bounces back, its kinetic energy will only be a fraction  of
what it had before the collision (where e is the coefficient of restitution). This kinetic energy is all converted into gravitational
potential energy as the ball reaches the top of its bounce (diagram (d)). Note there is more dissipated energy in diagram (d) than in
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(c); this is because I have assumed that dissipation of energy takes place both during the compression and the subsequent expansion
of the ball.
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8.5: "Convertible" and "Translational" Kinetic Energy
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8.6: Dissipation of Energy and Thermal Energy

Thermal Energy
From all the foregoing, it is clear that when an interaction can be completely described by a potential energy function we can define
a quantity, which we have called the total mechanical energy of the system, , that is constant throughout the
interaction. However, we already know from our study of collisions that this is rarely the case. Essential to the concept of potential
energy is the idea of “storage and retrieval” of the kinetic energy of the system during the interaction process. When kinetic energy
simply disappears from the system and does not come back, a full description of the process in terms of a potential energy is not
possible.

Processes in which some amount of mechanical energy disappears (that is, it cannot be found anywhere anymore as either
macroscopic kinetic or potential energy) are called dissipative. Mysterious as they may appear at first sight, there is actually a
simple, intuitive explanation for them. All macroscopic systems consist of a great number of small parts that enjoy, at the
microscopic level, some degree of independence from each other and from the body to which they belong. Macroscopic motion of
an object requires all these parts to move together as a whole, at least on average; however, a collision with another object may
very well “rattle” all these parts and leave them in a more or less disorganized state. If the total energy is conserved, then after the
collision the object’s atoms or molecules may be, on average, vibrating faster or banging against each other more often than before,
but they will do so in random directions, so this increased “agitation” will not be perceived as macroscopic motion of the object as
a whole.

This kind of random agitation at the microscopic level that I have just introduced is what we know today as thermal energy, and it
is by far the most common “sink” or reservoir where macroscopic mechanical energy is “dissipated.” In our example of an inelastic
collision, the energy the objects had is not gone from the universe, in fact it is still right there inside the objects themselves; it is
just in a disorganized or incoherent state from which, as you can imagine, it would be pretty much impossible to retrieve it, since
we would have to somehow get all the randomly-moving parts to get back to moving in the same direction again.

We will have a lot more to say about thermal energy in a later chapter, but for the moment you may want to think of it as essentially
noise: it is what is left (the residual motional or configurational energy, at the microscopic level) after you remove the average,
macroscopically-observable kinetic or potential energy. So, for example, for a solid object moving with a velocity , the kinetic
part of its thermal energy would be the sum of the kinetic energies of all its microscopic parts, calculated in its center of mass (or
zero-momentum) reference frame; that way you remove from every molecule’s velocity the quantity , which they all must have
in common—on average (since the body as a whole is moving with that velocity).

In order to establish conservation of energy as a fact (which was one of the greatest scientific triumphs of the 19th century) it was
clearly necessary to show experimentally that a certain amount of mechanical energy lost always resulted in the same predictable
increase in the system’s thermal energy. Thermal energy is largely “invisible” at the macroscopic level, but we detect it indirectly
through an object’s temperature. The crucial experiments to establish what at the time was called the “mechanical equivalent of
heat” were carried out by James Prescott Joule in the 1850’s, and required exceedingly precise measurements of temperature (in
fact, getting the experiments done was only half the struggle; the other half was getting the scientific establishment to believe that
he could measure changes in temperature so accurately!)

Fundamental Interactions
At the most fundamental (microscopic) level, physicists today believe that there are only four (or three, depending on your
perspective) basic interactions: gravity, electromagnetism, the strong nuclear interaction (responsible for holding atomic nuclei
together), and the weak nuclear interaction (responsible for certain nuclear processes, such as the transmutation of a proton into a
neutron  and vice-versa). In a technical sense, at the quantum level, electromagnetism and the weak nuclear interactions can be
regarded as separate manifestations of a single, consistent quantum field theory, so they are sometimes referred to as “the
electroweak interaction.”

All of these interactions are conservative, in the sense that for all of them one can define the equivalent of a “potential energy
function” (generalized, as necessary, to conform to the requirements of quantum mechanics and relativity), so that for a system of
elementary particles interacting via any one of these interactions the total kinetic plus potential energy is a constant of the motion.
For gravity (which we do not really know how to “quantize” anyway!), this function immediately carries over to the macroscopic
domain without any changes, as we shall see in a later chapter, and the gravitational potential energy function I introduced earlier in
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this chapter is an approximation to it valid near the surface of the earth (gravity is such a weak force that the gravitational
interaction between any two earth-bound objects is virtually negligible, so we only have to worry about gravitational energy when
one of the objects involved is the earth itself).

As for the strong and weak nuclear interactions, they are only appreciable over the scale of an atomic nucleus, so there is no
question of them directly affecting any macroscopic mechanical processes. They are responsible, however, for various nuclear
reactions in the course of which nuclear energy is, most commonly, transformed into electromagnetic energy (X- or gamma rays)
and thermal energy.

All the other forms of energy one encounters at the microscopic, and even the macroscopic, level have their origin in
electromagnetism. Some of them, like the electrostatic energy in a capacitor or the magnetic interaction between two permanent
magnets, are straightforward enough scale-ups of their microscopic counterparts, and may allow for a potential energy description
at the macroscopic level (and you will learn more about them next semester!). Many others, however, are more subtle and involve
quantum mechanical effects (such as the exclusion principle) in a fundamental way.

Among the most important of these is chemical energy, which is an extremely important source of energy for all kinds of
macroscopic processes: combustion (and explosions!), the production of electrical energy in batteries, and all the biochemical
processes that power our own bodies. However, the conversion of chemical energy into macroscopic mechanical energy is almost
always a dissipative process (that is, one in which some of the initial chemical energy ends up irreversibly converted into thermal
energy), so it is generally impossible to describe them using a (macroscopic) potential energy function (except, possibly, for
electrochemical processes, with which we will not be concerned here).

For instance, consider a chemical reaction in which some amount of chemical energy is converted into kinetic energy of the
molecules forming the reaction products. Even when care is taken to “channel” the motion of the reaction products in a particular
direction (for example, to push a cylinder in a combustion engine), a lot of the individual molecules will end up flying in the
“wrong” direction, striking the sides of the container, etc. In other words, we end up with a lot of the chemical energy being
converted into disorganized microscopic agitation—which is to say, thermal energy.

Electrostatic and quantum effects are also responsible for the elastic properties of materials, which can sometimes be described by
macroscopic potential energy functions, at least to a first approximation. They are also responsible for the adhesive forces between
surfaces that play an important role in friction, and various other kinds of what might be called “structural energies,” most of which
play only a relatively small part in the energy balance where macroscopic objects are involved.

Plus a positron and a neutrino
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8.7: Fundamental Interactions, and Other Forms of Energy
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8.8: Relative Velocity and the Coefficient of Restitution
An interesting property of elastic collisions can be disclosed from a careful study of figures  and . In both cases, as you
can see, the relative velocity of the two objects colliding has the same magnitude (but opposite sign) before and after the collision.
In other words: in an elastic collision, the objects end up moving apart at the same rate as they originally came together.

Recall that, in Chapter 4, we defined the velocity of object 2 relative to object 1 as the quantity

(compare Equation (4.3.8); and similarly the velocity of object 1 relative to object 2 is . With this definition you can
check that, indeed, the collisions shown in Figs. (8.1.1) and (8.1.2) satisfy the equality

(note that we could equally well have used  instead of ). For instance, in Figure (8.1.1),  = −1 m/s, whereas 
 = 2/3 − (−1/3) = 1 m/s. So the objects are initially moving towards each other at a rate of 1 m per second, and they end up

moving apart just as fast, at 1 m per second. Visually, you should notice that the distance between the red and blue curves is the
same before and after (but not during) the collision; the fact that they cross accounts for the difference in sign of the relative
velocity, which in turns means simply that before the collision they were coming together, and afterwards they are moving apart.

It takes only a little algebra to show that Equation ( ) follows from the joint conditions of conservation of momentum and
conservation of kinetic energy. The first one (  =  ) clearly has the form

whereas the second one (  =  ) can be written as

We can cancel out all the factors of 1/2 in Equation ( ) , then rearrange it so that quantities belonging to object 1 are on one
side, and quantities belonging to object 2 are on the other. We get

(using the fact that ). Note, however, that Equation ( ) can also be rewritten as

This immediately allows us to cancel out the corresponding factors in Eq ( ), so we are left with , which
can be rewritten as

and this is equivalent to ( )

So, in an elastic collision the speed at which the two objects move apart is the same as the speed at which they came together,
whereas, in what is clearly the opposite extreme, in a totally inelastic collision the final relative speed is zero—the objects do not
move apart at all after they collide. This suggests that we can quantify how inelastic a collision is by the ratio of the final to the
initial magnitude of the relative velocity. This ratio is denoted by  and is called the coefficient of restitution. Formally,

For an elastic collision,  = 1, as required by Equation ( ). For a totally inelastic collision, like the one depicted in Figure
(8.1.3),  = 0. For a collision that is inelastic, but not totally inelastic,  will have some value in between these two extremes. This
knowledge can be used to “design” inelastic collisions (for homework problems, for instance!): just pick a value for , between 0
and 1, in Equation ( ), and combine this equation with the conservation of momentum requirement ( ). The two equations
then allow you to calculate the final velocities for any values of , , and the initial velocities. Figure  below, for example,
shows what the collision in Figure  would have been like, if the coefficient of restitution had been 0.6 instead of 1. You can
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check, by solving ( ) and ( ) together, and using the initial velocities, that  = −1/15 m/s = −0.0667 m/s, and  = 8/15
m/s = 0.533 m/s.

Figure .

Although, as I just mentioned, for most “normal” collisions the coefficient of restitution will be a positive number between 1 and 0,
there can be exceptions to this. If one of the objects passes through the other (like a bullet through a target, for instance), the value
of  will be negative (although still between 0 and 1 in magnitude). And  can be greater than 1 for so-called “explosive
collisions,” where some amount of extra energy is released, and converted into kinetic energy, as the objects collide. (For instance,
two hockey players colliding on the rink and pushing each other away.) In this case, the objects may well fly apart faster than they
came together.

An extreme example of a situation with  > 0 is an explosive separation, which is when the two objects are initially moving
together and then fly apart. In that case, the denominator of Equation ( ) is zero, and so  is formally infinite. This suggests,
what is in fact the case, namely, that although explosive processes are certainly important, describing them through the coefficient
of restitution is rare, even when it would be formally possible. In practice, use of the coefficient of restitution is mostly limited to
the elastic-to-completely inelastic range, that is, 0 ≤  ≤ 1.

You may be wondering, just why do we define kinetic energy with a factor 1/2 in front, anyway? There is no good answer at this
point. Let’s just say it will make the definition of “potential energy” simpler later, particularly as regards its relationship to force.
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8.9: Examples

                                                                        

The figure shows a Half-Atwood machine, with a block of mass  = 6.0 kg sliding across a frictionless surface, attached to a
hanging mass  = 350 g by a string going over a pulley. 

1. What is the speed of the sliding block when the hanging mass falls 73 cm? Assume the system starts at rest.
2. Now assume that this system is not actually isolated, but is losing energy due to the contact interaction between the ramp

and the block. This energy loss depends on the mass of the block, the distance  that the block slides, and a proportionality
constant , like

If this constant is experimentally found to be  m/s , how fast is the block moving if it falls the same distance?

A mad scientist wants to destroy the Moon! He constructs a cannon that fires 1500 kg cannonballs, and needs to determine how
fast the cannon must be fired to hit the Moon.

1. For his first calculation, he uses the potential energy due to gravity as , and determines the minimum launch
speed of the cannonballs to reach the Moon, at a distance of  m. What speed does he calculate?

2. What will the initial kinetic energy of the cannonball be?
3. His assistant realizes that since the cannonball is going to be traveling far from the Earth, they must use 

 
for the potential energy due to gravity. When the assistant redoes the calculation, what speed do they get?

4. What will the initial kinetic energy of the cannonball actually have to be?

Example : Inelastic Collision in the middle of a swing
Tarzan swings on a vine to rescue a helpless explorer (as usual) from some attacking animal or another. He begins his swing
from a branch a height of 15 m above the ground, grabs the explorer at the bottom of his swing, and continues the swing,
upwards this time, until they both land safely on another branch. Suppose that Tarzan weighs 90 kg and the explorer weighs 70,
and that Tarzan doesn’t just drop from the branch, but pushes himself off so that he starts the swing with a speed of 5 m/s. How
high a branch can he and the explorer reach?

Solution

Let us break this down into parts. The first part of the swing involves the conversion of some amount of initial gravitational
potential energy into kinetic energy. Then comes the collision with the explorer, which is completely inelastic and we can
analyze using conservation of momentum (assuming Tarzan and the explorer form an isolated system for the brief time the
collision lasts). After that, the second half of their swing involves the complete conversion of their kinetic energy into
gravitational potential energy.
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m2

m1

d

γ

ΔE = −γmd (8.9.1)

γ = 0.35 2

 Whiteboard Problem : Destroy the Moon!8.9.2

= mghUg

= 3.84 ×dM 108

= −GUG

m1m2

r
(8.9.2)

8.9.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85802?pdf
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/08%3A_C8)_Conservation_of_Energy-_Kinetic_and_Gravitational/8.09%3A_Examples


8.9.2 https://phys.libretexts.org/@go/page/85802

Let  be Tarzan’s mass,  the explorer’s mass,  the initial height, and  the final height. We also have three velocities to
worry about (or, more properly in this case, speeds, since their direction is of no concern, as long as they all point the way they
are supposed to): Tarzan’s initial velocity at the beginning of the swing, which we may call ; his velocity at the bottom of
the swing, just before he grabs the explorer, which we may call , and his velocity just after he grabs the explorer, which we
may call . (If you find those subscripts confusing, I am sorry, they are the best I could do; please feel free to make up your
own.)

First part: the downswing. We apply conservation of energy, in the form Equation (8.2.2), to the first part of the swing. The
system we consider consists of Tarzan and the earth, and it has kinetic energy as well as gravitational potential energy. We
ignore the source energy and the dissipated energy terms, and consider the system closed despite the fact that Tarzan is
holding onto a vine (as we shall see in a couple of chapters, the vine does no “work” on Tarzan—meaning, it does not
change his energy, only his direction of motion—because the force it exerts on Tarzan is always perpendicular to his
displacement): 

 
In terms of the quantities I introduced above, this equation becomes: 

 
which can be solved to give 

 
Substituting, we get 

Second part: the completely inelastic collision. The explorer is initially at rest (we assume he has not seen the wild beast
ready to pounce yet, or he has seen it and he is paralyzed by fear!). After Tarzan grabs him they are moving together with a
speed . Conservation of momentum gives 

 
which we can solve to get 

Third part: the upswing. Here we use again conservation of energy in the form 

 
where the subscript f refers to the very end of the swing, when they both safely reach their new branch, and all their kinetic
energy has been converted to gravitational potential energy, so  = 0 (which means that is as high as they can go, unless
they start climbing the vine!). This equation can be rewritten as 

 
and solving for  we get 
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A superball of mass 0.25 kg is dropped from rest from a height of h = 1.50 m above the floor. It bounces with no loss of energy
and returns to its initial height (Figure ).

a. What is the superball’s change of momentum during its bounce on the floor?
b. What was Earth’s change of momentum due to the ball colliding with the floor?
c. What was Earth’s change of velocity as a result of this collision?

(This example shows that you have to be careful about defining your system.)

Figure : A superball is dropped to the floor ( ), hits the floor ( ), bounces ( ), and returns to its initial height ( ).

Strategy

Since we are asked only about the ball’s change of momentum, we define our system to be the ball. But this is clearly not a
closed system; gravity applies a downward force on the ball while it is falling, and the normal force from the floor applies a
force during the bounce. Thus, we cannot use conservation of momentum as a strategy. Instead, we simply determine the ball’s
momentum just before it collides with the floor and just after, and calculate the difference. We have the ball’s mass, so we need
its velocities.

Solution

a. Since this is a one-dimensional problem, we use the scalar form of the equations. Let:
p  = the magnitude of the ball’s momentum at time t , the moment it was released; since it was dropped from rest, this is
zero.
p  = the magnitude of the ball’s momentum at time t , the instant just before it hits the floor.
p  = the magnitude of the ball’s momentum at time t , just after it loses contact with the floor after the bounce.

The ball’s change of momentum is

Its velocity just before it hits the floor can be determined from either conservation of energy or kinematics. We use kinematics
here; you should re-solve it using conservation of energy and confirm you get the same result.

= = = 5.15 mhf
v2
bot2

2g

(10 m/s)2

2 ×9.8 m/s2
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We want the velocity just before it hits the ground (at time t ). We know its initial velocity v  = 0 (at time t ), the height it falls,
and its acceleration; we don’t know the fall time. We could calculate that, but instead we use

Thus the ball has a momentum of

We don’t have an easy way to calculate the momentum after the bounce. Instead, we reason from the symmetry of the
situation.

Before the bounce, the ball starts with zero velocity and falls 1.50 m under the influence of gravity, achieving some amount of
momentum just before it hits the ground. On the return trip (after the bounce), it starts with some amount of momentum, rises
the same 1.50 m it fell, and ends with zero velocity. Thus, the motion after the bounce was the mirror image of the motion
before the bounce. From this symmetry, it must be true that the ball’s momentum after the bounce must be equal and opposite
to its momentum before the bounce. (This is a subtle but crucial argument; make sure you understand it before you go on.)
Therefore,

Thus, the ball’s change of momentum during the bounce is

b. What was Earth’s change of momentum due to the ball colliding with the floor? Your instinctive response may well have
been either “zero; the Earth is just too massive for that tiny ball to have affected it” or possibly, “more than zero, but utterly
negligible.” But no—if we re-define our system to be the Superball + Earth, then this system is closed (neglecting the
gravitational pulls of the Sun, the Moon, and the other planets in the solar system), and therefore the total change of
momentum of this new system must be zero. Therefore, Earth’s change of momentum is exactly the same magnitude:
$\Delta \vec{p}_{Earth} = -2.8\; kg\; \cdotp m/s\; \hat{j} \ldotp$

c. What was Earth’s change of velocity as a result of this collision? This is where your instinctive feeling is probably correct:

This change of Earth’s velocity is utterly negligible

Significance

It is important to realize that the answer to part (c) is not a velocity; it is a change of velocity, which is a very different thing.
Nevertheless, to give you a feel for just how small that change of velocity is, suppose you were moving with a velocity of 4.7 x
10  m/s. At this speed, it would take you about 7 million years to travel a distance equal to the diameter of a hydrogen atom.

Would the ball’s change of momentum have been larger, smaller, or the same, if it had collided with the floor and stopped
(without bouncing)? Would the ball’s change of momentum have been larger, smaller, or the same, if it had collided with the
floor and stopped (without bouncing)?

 

1 0 0
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8.E: Potential Energy and Conservation of Energy (Exercises)

Conceptual Questions
1. The kinetic energy of a system must always be positive or zero. Explain whether this is true for the potential energy of a

system.
2. Describe the gravitational potential energy transfers and transformations for a javelin, starting from the point at which an

athlete picks up the javelin and ending when the javelin is stuck into the ground after being thrown.
3. A couple of soccer balls of equal mass are kicked off the ground at the same speed but at different angles. Soccer ball A is

kicked off at an angle slightly above the horizontal, whereas ball B is kicked slightly below the vertical. How do each of
the following compare for ball A and ball B? (a) The initial kinetic energy and (b) the change in gravitational potential
energy from the ground to the highest point? If the energy in part (a) differs from part (b), explain why there is a
difference between the two energies.

4. What is the dominant factor that affects the speed of an object that started from rest down a frictionless incline if the only
work done on the object is from gravitational forces?

5. What is the physical meaning of a non-conservative force?
6. A bottle rocket is shot straight up in the air with a speed 30 m/s. If the air resistance is ignored, the bottle would go up to

a height of approximately 46 m. However, the rocket goes up to only 35 m before returning to the ground. What
happened? Explain, giving only a qualitative response.

7. An external force acts on a particle during a trip from one point to another and back to that same point. This particle is
only effected by conservative forces. Does this particle’s kinetic energy and potential energy change as a result of this
trip?

8. A dropped ball bounces to one-half its original height. Discuss the energy transformations that take place.

9. In a common physics demonstration, a bowling ball is suspended from the ceiling by a rope. The professor pulls the ball
away from its equilibrium position and holds it adjacent to his nose, as shown below. He releases the ball so that it swings
directly away from him. Does he get struck by the ball on its return swing? What is he trying to show in this
demonstration?

10. A child jumps up and down on a bed, reaching a higher height after each bounce. Explain how the child can increase his
maximum gravitational potential energy with each bounce.

11. Neglecting air resistance, how much would I have to raise the vertical height if I wanted to double the impact speed of a
falling object?

Problems
12. A camera weighing 10 N falls from a small drone hovering 20 m overhead and enters free fall. What is the gravitational

potential energy change of the camera from the drone to the ground if you take a reference point of (a) the ground being
zero gravitational potential energy? (b) The drone being zero gravitational potential energy? What is the gravitational
potential energy of the camera (c) before it falls from the drone and (d) after the camera lands on the ground if the
reference point of zero gravitational potential energy is taken to be a second person looking out of a building 30 m from
the ground?

13. Someone drops a 50 − g pebble off of a docked cruise ship, 70.0 m from the water line. A person on a dock 3.0 m from
the water line holds out a net to catch the pebble. (a) What is the change in the gravitational potential energy during the
drop? If the gravitational potential energy is zero at the water line, what is the gravitational potential energy (b) when the
pebble is dropped? (c) When it reaches the net? What if the gravitational potential energy was 30.0 Joules at water level?
(d) Find the answers to the same questions in (b) and (c).

14. A cat’s crinkle ball toy of mass 15 g is thrown straight up with an initial speed of 3 m/s. Assume in this problem that air
drag is negligible. (a) What is the kinetic energy of the ball as it leaves the hand? (b) What is the change in the
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gravitational potential energy of the ball during the rise to its peak? (c) If the gravitational potential energy is taken to be
zero at the point where it leaves your hand, what is the gravitational potential energy when it reaches the maximum
height? (d) What if the gravitational potential energy is taken to be zero at the maximum height the ball reaches, what
would the gravitational potential energy be when it leaves the hand? (e) What is the maximum height the ball reaches?

15. A boy throws a ball of mass 0.25 kg straight upward with an initial speed of 20 m/s When the ball returns to the boy, its
speed is 17 m/s How much much work does air resistance do on the ball during its flight?

16. A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its
fall, how much work is done on the mouse by air resistance?

17. Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above
water with an initial speed of 15.0 m/s strikes the water with a speed of 24.8 m/s independent of the direction thrown.
(Hint: show that K  + U  = K  + U )

18. Ignoring details associated with friction, extra forces exerted by arm and leg muscles, and other factors, we can consider a
pole vault as the conversion of an athlete’s running kinetic energy to gravitational potential energy. If an athlete is to lift
his body 4.8 m during a vault, what speed must he have when he plants his pole?

19. Tarzan grabs a vine hanging vertically from a tall tree when he is running at 9.0 m/s. (a) How high can he swing upward?
(b) Does the length of the vine affect this height?

20. A baseball of mass 0.25 kg is hit at home plate with a speed of 40 m/s. When it lands in a seat in the left-field bleachers a
horizontal distance 120 m from home plate, it is moving at 30 m/s. If the ball lands 20 m above the spot where it was hit,
how much energy is lost to air resistance?

21. In the cartoon movie Pocahontas (https://openstaxcollege.org/l/21pocahontclip), Pocahontas runs to the edge of a cliff and
jumps off, showcasing the fun side of her personality. (a) If she is running at 3.0 m/s before jumping off the cliff and she
hits the water at the bottom of the cliff at 20.0 m/s, how high is the cliff? Assume negligible air drag in this cartoon. (b) If
she jumped off the same cliff from a standstill, how fast would she be falling right before she hit the water?

22. In the reality television show “Amazing Race” (https://openstaxcollege.org/l/21amazraceclip), a contestant is firing 12-kg
watermelons from a slingshot to hit targets down the field. The slingshot is pulled back 1.5 m and the watermelon is
considered to be at ground level. The launch point is 0.3 m from the ground and the targets are 10 m horizontally away.
Calculate the spring constant of the slingshot.

23. In the Hunger Games movie (https://openstaxcollege.org/l/21HungGamesclip), Katniss Everdeen fires a 0.0200-kg arrow
from ground level to pierce an apple up on a stage. The spring constant of the bow is 330 N/m and she pulls the arrow
back a distance of 0.55 m. The apple on the stage is 5.00 m higher than the launching point of the arrow. At what speed
does the arrow (a) leave the bow? (b) strike the apple?

24. (a) How high a hill can a car coast up (engines disengaged) if work done by friction is negligible and its initial speed is
110 km/h? (b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0
m above its starting point, how much thermal energy was generated by friction? (c) What is the average force of friction
if the hill has a slope of 2.5° above the horizontal?

25. A T-shirt cannon launches a shirt at 5.00 m/s from a platform height of 3.00 m from ground level. How fast will the shirt
be traveling if it is caught by someone whose hands are (a) 1.00 m from ground level? (b) 4.00 m from ground level?
Neglect air drag.

26. Shown below is a small ball of mass m attached to a string of length a. A small peg is located a distance h below the point
where the string is supported. If the ball is released when the string is horizontal, show that h must be greater than 3a/5 if
the ball is to swing completely around the peg.

27. A skier starts from rest and slides downhill. What will be the speed of the skier if he drops by 20 meters in vertical
height? Ignore any air resistance (which will, in reality, be quite a lot), and any friction between the skis and the snow.

28. Repeat the preceding problem, but this time, suppose that the work done by air resistance cannot be ignored. Let the work
done by the air resistance when the skier goes from A to B along the given hilly path be −2000 J. The work done by air
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resistance is negative since the air resistance acts in the opposite direction to the displacement. Supposing the mass of the
skier is 50 kg, what is the speed of the skier at point B?

29. In an amusement park, a car rolls in a track as shown below. Find the speed of the car at A, B, and C. Note that the work
done by the rolling friction is zero since the displacement of the point at which the rolling friction acts on the tires is
momentarily at rest and therefore has a zero displacement.

30. How much energy is lost to a dissipative drag force if a 60-kg person falls at a constant speed for 15 meters?
31. Consider a meteor entering the Earth's atmosphere. Let us assume that the meteor has "fallen" from infinitely far away

until it reaches the Earth's atmosphere which we will arbitrarily call 100 km from the surface of the Earth. How fast is the
meteor going when it reaches this point? (Hint: Make sure you remember to consider the diameter of the Earth.)
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CHAPTER OVERVIEW

9: C9) Potential Energy- Graphs and Springs
9.1: Potential Energy of a System
9.2: Potential Energy Functions
9.3: Potential Energy Graphs
9.4: Examples
9.E: Potential Energy and Conservation of Energy (Exercises)

This chapter is a continuation of our study of energy. Here we want to introduce another important source of energy - the potential
energy of a spring. Although it's "just for springs", it turns out that many systems in the world can be modeled with springs
(molecules, for instance, and nearly anything that exhibits oscillatory behavior). In fact, it will be the last of the three kinds of
potential energy we are going to study in this book (the other two being due to the gravitational interaction,  and .) So to
round out this chapter, we are also going to talk about graphs of more complicated potential energy functions, and how we can
extract information from them.

A spring is an example of something that interacts elastically, meaning that it stores energy if you either stretch it or compress it.
How much energy it stores depends on the spring, so each spring has "a spring constant" , that describes how much energy is
stored in it when you compress it a given distance. The actual formula is

where  is the amount the end of the spring is moved from it's equilibrium position - we will often write this as ,
where  is the equilibrium position of the spring. The fact that it is squared is what tells us that it doesn't matter what direction the
change in length is; both compression and stretching store energy.

To start talking about graphs, let's start with graphs of the three interactions we have seen in this book so far (below). Now think
about how objects in each of these interactions behaves. For example, consider two asteroids separated by a distance , using the
potential energy for gravity (middle graph). These two asteroids move towards each other right? What happens to the energy in the
graph as they do? The potential energy decreases, right? In fact, that's true for the other form of gravitational potential as well. For
the spring, something similar happens, but what direction the motion happens in depends on where you start - if you start on the
right side of the equilibrium, decreasing energy means moving to smaller positions (closer to the equilibrium). If you're on the left
side of the equilibrium, decreasing energy means increasing the x-coordinate (again, back to equilibrium).

What does all that mean? Well, it turns that nature wants to decrease the potential energy in a system! Unless something is actively
preventing the motion, the potential energy will decrease. This means moving to the origin for the gravitational interaction, and
towards the equilibrium point for the spring. We actually have special names for interactions that pull things together (attractive)
as compared to push things apart (repulsive). So, just based on their plots, we can see that gravity is an attractive interaction. The
elastic interaction (springs) is either attractive or repulsive, depending on which side of the equilibrium you are on.

Let's consider just one more interaction, one that's more complicated (last figure on the right). Playing the same game (nature wants
to lower the potential energy!), we can see that if you start inside of the dip, you experience a spring-like interaction, either
attractive or repulsive depending on where you start. If you start outside of the dip, the lowest potential energy is at higher and
higher x-coordinate, so that interaction is repulsive out there. We can actually describe the qualitative motion of this system without
ever looking at any equations, just with these simple considerations of "potential energy flow". This is only the first half of the
story about potential energy graphs, which we will take up in more detail in the second half of this chapter.
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9.1: Potential Energy of a System

Types of Potential Energy
For each type of interaction present in a system, you can label a corresponding type of potential energy. The total potential energy of the
system is the sum of the potential energies of all the types. Let's look at some particular examples of two important types of potential
energy.

Gravitational Potential Energy Near Earth's Surface

The system of interest consists of our planet, Earth, and one or more particles near its surface (or bodies small enough to be considered as
particles, compared to Earth). The gravitational force on each particle (or body) is just its weight mg near the surface of Earth, acting
vertically down. As the Earth pulls downward on the object, the object is also pulling upwards on the Earth (that's Newton's third law,
which we will cover in the second half of this text). However, this force of the object on the Earth is very small, so we will generally
ignore it. Therefore, we consider this system to be a group of single-particle systems, subject to the uniform gravitational force of Earth.

As we've seen in the previous chapter, the gravitational potential energy function, near Earth’s surface, is

A particularly important aspect of this formula is the choice of . This is a coordinate system choice, but it's more significant because
it means you can choose were the zero of gravitational potential energy is. We can see this is true by considering the following rewriting
of the conservation of energy formula:

That last expression tells us what we care about - the change of the kinetic energy only depends on the change in the potential, not the
absolute value. An object loosing 10 J of potential with always gain 10 J of kinetic, no matter if it started with 10 J and went to 0 J or
started with 1600 J and went to 1590 J. Since this is a choice you can make, usually it's possible to make an "easy" choice; this is often
when "the height of the object is zero", leading to the specific form of the expression .

The summit of Great Blue Hill in Milton, MA, is 147 m above its base and has an elevation above sea level of 195 m (Figure ).
(Its Native American name, Massachusett, was adopted by settlers for naming the Bay Colony and state near its location.) A 75-kg
hiker ascends from the base to the summit. What is the gravitational potential energy of the hiker-Earth system with respect to zero
gravitational potential energy at base height, when the hiker is (a) at the base of the hill, (b) at the summit, and (c) at sea level,
afterward?

Figure : Sketch of the profile of Great Blue Hill, Milton, MA. The altitudes of the three levels are indicated.

Strategy

First, we need to pick an origin for the y-axis and then determine the value of the constant that makes the potential energy zero at the
height of the base. Then, we can determine the potential energies from Equation , based on the relationship between the zero
potential energy height and the height at which the hiker is located.

Solution

a. Let’s choose the origin for the y-axis at base height, where we also want the zero of potential energy to be. This choice makes the
constant equal to zero and

b. At the summit, y = 147 m, so

c. At sea level, y = (147 - 195) m = -48 m, so

(y) = mgyUg (9.1.1)

y = 0

− = 0 → ( + ) −( + ) = 0 → ( − ) +( − ) = 0 → ΔK +ΔU = 0 → ΔK = −ΔU.Ef Ei Kf Uf Ki Ui Kf Ki Uf Ui (9.1.2)
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 Example : Gravitational PotentIAL Energy of a hiker9.1.2

9.1.2

9.1.2

9.1.1

U( base ) = U(0) = 0

U( summit ) = U(147 m) = mgh = (75 ×9.8 N)(147 m) = 108 kJ.
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Significance

Besides illustrating the use of Equation , the values of gravitational potential energy we found are reasonable. The gravitational
potential energy is higher at the summit than at the base, and lower at sea level than at the base. The numerical values of the potential
energies depend on the choice of zero of potential energy, but the physically meaningful differences of potential energy do not.

What are the values of the gravitational potential energy of the hiker at the base, summit, and sea level, with respect to a sea-level zero
of potential energy?

Elastic Potential Energy

The next form of potential energy we are going to look at is the energy stored in a spring, or the elastic potential energy. A spring is an
object which be compressed a distance  (from equilibrium) or stretched a distance  (again, from equilibrium). In either case, the
potential energy stored in such an object is

If the spring force is the only force acting, it is simplest to take the zero of potential energy at x = 0, when the spring is at its unstretched
length - this has actually been done in the previous expression.

A system contains a perfectly elastic spring, with an unstretched length of 20 cm and a spring constant of 4 N/cm. (a) How much
elastic potential energy does the spring contribute when its length is 23 cm? (b) How much more potential energy does it contribute if
its length increases to 26 cm?

Strategy

When the spring is at its unstretched length, it contributes nothing to the potential energy of the system, so we can use Equation 
with the constant equal to zero. The value of x is the length minus the unstretched length. When the spring is expanded, the spring’s
displacement or difference between its relaxed length and stretched length should be used for the x-value in calculating the potential
energy of the spring.

Solution

a. The displacement of the spring is x = 23 cm − 20 cm = 3 cm, so the contributed potential energy is U = kx = (4 N/cm)(3 cm)
= 0.18 J.

b. When the spring’s displacement is x = 26 cm − 20 cm = 6 cm, the potential energy is U = kx = (4 N/cm)(6 cm) = 0.72 J,
which is a 0.54-J increase over the amount in part (a).

Significance

Calculating the elastic potential energy and potential energy differences from Equation  involves solving for the potential
energies based on the given lengths of the spring. Since U depends on x , the potential energy for a compression (negative x) is the
same as for an extension of equal magnitude.

When the length of the spring in Example 8.2.3 changes from an initial value of 22.0 cm to a final value, the elastic potential energy it
contributes changes by −0.0800J. Find the final length.

Gravitational and Elastic Potential Energy

A simple system embodying both gravitational and elastic types of potential energy is a one-dimensional, vertical mass-spring system.
This consists of a massive particle (or block), hung from one end of a perfectly elastic, massless spring, the other end of which is fixed, as
illustrated in Figure .

U  (sea-level)  = (75 ×9.8N)(−48m) = −35.3kJ.
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Figure : A vertical mass-spring system, with the positive y-axis pointing upward. The mass is initially at an unstretched spring length,
point A. Then it is released, expanding past point B to point C, where it comes to a stop.

First, let's consider the potential energy of the system. We need to define the constant in the potential energy function of Equation .
Often, the ground is a suitable choice for when the gravitational potential energy is zero; however, in this case, the highest point or when y
= 0 is a convenient location for zero gravitational potential energy. Note that this choice is arbitrary, and the problem can be solved
correctly even if another choice is picked.

We must also define the elastic potential energy of the system and the corresponding constant, as detailed in Equation . This is where
the spring is unstretched, or at the y = 0 position.

If we consider that the total energy of the system is conserved, then the energy at point A equals point C. The block is placed just on the
spring so its initial kinetic energy is zero. By the setup of the problem discussed previously, both the gravitational potential energy and
elastic potential energy are equal to zero. Therefore, the initial energy of the system is zero. When the block arrives at point C, its kinetic
energy is zero. However, it now has both gravitational potential energy and elastic potential energy. Therefore, we can solve for the
distance y that the block travels before coming to a stop:

Figure : A bungee jumper transforms gravitational potential energy at the start of the jump into elastic potential energy at the bottom
of the jump.

A block weighing 1.2 N is hung from a spring with a spring constant of 6.0 N/m, as shown in Figure . (a) What is the maximum
expansion of the spring, as seen at point C? (b) What is the total potential energy at point B, halfway between A and C? (c) What is
the speed of the block at point B?
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Strategy

In part (a) we calculate the distance y  as discussed in the previous text. Then in part (b), we use half of the y value to calculate the
potential energy at point B using equations Equation  and Equation . This energy must be equal to the kinetic energy,
Equation 8.1.1, at point B since the initial energy of the system is zero. By calculating the kinetic energy at point B, we can now
calculate the speed of the block at point B.

Solution

a. Since the total energy of the system is zero at point A as discussed previously, the maximum expansion of the spring is calculated to
be:

b. The position of y  is half of the position at y  or -0.20 m. The total potential energy at point B would therefore be:

c. The mass of the block is the weight divided by gravity.

The kinetic energy at point B therefore is 0.12 J because the total energy is zero. Therefore, the speed of the block at point B is equal
to

Significance

Even though the potential energy due to gravity is relative to a chosen zero location, the solutions to this problem would be the same if
the zero energy points were chosen at different locations.

Suppose the mass in Equation  is doubled while keeping the all other conditions the same. Would the maximum expansion of the
spring increase, decrease, or remain the same? Would the speed at point B be larger, smaller, or the same compared to the original
mass?

View this simulation to learn about conservation of energy with a skater! Build tracks, ramps and jumps for the skater and view the
kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

A sample chart of a variety of energies is shown in Table  to give you an idea about typical energy values associated with certain
events. Some of these are calculated using kinetic energy, whereas others are calculated by using quantities found in a form of potential
energy that may not have been discussed at this point.

Table : Energy of Various Objects and Phenomena

Object/phenomenon Energy in joules

Big Bang 10

Annual world energy use 4.0 x 10

C
9.1.1 9.1.3
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Object/phenomenon Energy in joules

Large fusion bomb (9 megaton) 3.8 x 10

Hiroshima-size fission bomb (10 kiloton) 4.2 x 10

1 barrel crude oil 5.9 x 10

1 ton TNT 4.2 x 10

1 gallon of gasoline 1.2 x 10

Daily adult food intake (recommended) 1.2 x 10

1000-kg car at 90 km/h 3.1 x 10

Tennis ball at 100 km/h 22

Mosquito (10  g at 0.5 m/s) 1.3 x 10

Single electron in a TV tube beam 4.0 x 10

Energy to break one DNA strand 10

This page titled 9.1: Potential Energy of a System is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

8.2: Potential Energy of a System by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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9.2: Potential Energy Functions
It turns out that we can learn quite a lot about some pretty complicated interactions by looking at the functional form of their
potential energies. In this section we will look at this, staring with one of the potentials we introducted in the last section, the elastic
potential energy.

Imagine that we have two carts collide on an air track, and one of them, let us say cart 2, is fitted with a spring. As the carts come
together, they compress the spring, and some of their kinetic energy is “stored” in it as elastic potential energy. In physics, we use
the following expression for the potential energy stored in what we call an ideal spring :

where  is something called the spring constant;  is the “equilibrium length” of the spring (when it is neither compressed nor
stretched); and  its actual length, so  means the spring is stretched, and  means it is compressed. For the system of
the two carts colliding, we can take the potential energy to be given by Equation ( ) if the distance between the carts is less
than , and 0 (corresponding to a relaxed spring) otherwise. If we put cart 1 on the left and cart 2 on the right, then the distance
between them is , and so we can write, for the whole interaction

This is enough to solve for the motion of the two carts, given the initial conditions. To see how, look in the “Examples” section at
the end of this chapter. Here, I will just give you the result.

For the calculation, shown in Figure  below, I have chosen cart 1 to have a mass of 1 kg, an initial position (at  = 0) of  =
−5 cm and an initial velocity of 1 m/s, whereas cart 2 has a mass of 2 kg and starts at rest at  = 0. I have assumed the spring has
a length of  = 2 cm and a spring constant  = 1000 J/m  (which sounds like a lot but isn’t really). The collision begins at 

 = 0.03 s, which is the time it takes cart 1 to travel the 3 cm separating it from the end of the spring.
Prior to that point, the total kinetic energy  = 0.5 J, and the total potential energy  = 0.

As a result of the collision, the spring compresses and undergoes “half a cycle” of oscillation with an “angular frequency” 
 (where  is the “reduced mass” of the system, ). That is, the spring is compressed and then

pushes out until it gets back to its equilibrium length . This lasts from  until , during which time the potential
and kinetic energies of the system can be written as

(don’t worry, all this will make a lot more sense after we get to Chapter 11 on simple harmonic motion, I promise!). After 
, the interaction is over, and  and  go back to their initial values.

2
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Figure : Potential and kinetic energy as a function of time for a system of two carts colliding and compressing a spring in the
process.

If you compare Figure  with Figure 8.2.1 of Chapter 8, you’ll see some similarities. The total energy is always the same, but it
might be stored in different forms - motion, springs, or gravity.

An “ideal spring” is basically defined, mathematically, by this expression, or by the corresponding force equation (which goes by
the name of Hooke’s law); usually, we also require that the spring be “massless” (by which we mean that its mass should be
negligible compared to all the other masses involved in any given problem). Of course, for Equation ( ) to hold for , it
must be possible to compress the spring as well as stretch it, which is not always possible with some springs.

As noted earlier, we shall always assume our springs to be “massless,” that is, that their inertia is negligible. In turn, negligible
inertia means that the spring does not “keep going”: it stops stretching as soon as it is back to its original length.

Potential Energy Functions and "Energy Landscapes"
The potential energy function of a system, as illustrated in the above examples, serves to let us know how much energy can be
stored in, or extracted from, the system by changing its configuration, that is to say, the positions of its parts relative to each other.
We have seen this in the case of the gravitational force (the “configuration” in this case being the distance between the object and
the earth), and just now in the case of a spring (how stretched or compressed it is). In all these cases we should think of the
potential energy as being a property of the system as a whole, not any individual part; it is, very loosely speaking, something akin
to a “stress” in the system that can be turned into motion under the right conditions.

It is a consequence of the principle of conservation of momentum that, if the interaction between two particles can be described by
a potential energy function, this should be a function only of their relative position, that is, the quantity  (or ), and
not of the individual coordinates,  and , separately . The example of the spring in the previous section illustrates this, whereas
the gravitational potential energy example shows how this can be simplified in an important case: in Equation (9.1.1), the height 
of the object above the ground is really a measure of the distance between the object and the earth, something that we could write,
in full generality, as  (where  and  are the position vectors of the Earth and the object, respectively). However, since
we do not expect the Earth to move very much as a result of the interaction, we can take its position to be constant, and only
include the position of the object explicitly in our potential energy function, as we did above .

Generally speaking, then, we can identify a large class of problems where a “small” object or “particle” interacts with a much more
massive one, and it is a good approximation to write the potential energy of the whole system as a function of only the position of
the particle. In one dimension, then, we have a situation where, once the initial conditions (the particle’s initial position and
velocity) are known, the motion of the particle can be completely determined from the function , where  is the particle’s
position at any given time. This can be done using calculus (namely, let  and solve the resulting
differential equation); but it is also possible to get some pretty valuable insights into the particle’s motion without using any
calculus at all, through a mostly graphical approach that I would like to show you next.
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Figure : A hypothetical potential energy curve for a particle in one dimension. The horizontal red line shows the total
mechanical energy under the assumption that the particle starts out at  = −2 m with  = 8 J. The green line assumes the particle
starts instead from rest at  = 1 m.

In Figure  above I have assumed, as an example, that the potential energy of the system, as a function of the position of the
particle, is given by the function  (in joules, if  is given in meters). Consider then what
happens if the particle has a mass  = 4 kg and is found initially at  = −2 m, with a velocity  = 2 m/s. (This scenario goes with
the red lines in Figure , so please ignore the green lines for the time being.) Its kinetic energy will then be  = 8 J, whereas
the potential energy will be  = 11 J. The total mechanical energy is then  = 19 J, as indicated by the red horizontal line.

Now, as the particle moves, the total energy remains constant, so as it moves to the right, its potential energy goes down at first, and
consequently its kinetic energy goes up—that is, it accelerates. At some point, however (around  = −0.22 m) the potential energy
starts to go up, and so the particle starts to slow down, although it keeps going, because  is still nonzero. However,
when the particle eventually reaches the point  = 2 m, the potential energy  = 19 J, and the kinetic energy becomes zero.

At that point, the particle stops and turns around, just like an object thrown vertically upwards. As it moves “down the potential
energy hill,” it recovers the kinetic energy it used to have, so that when it again reaches the starting point  = −2 m, its speed is
again 2 m/s, but now it is moving in the opposite direction, so it just passes through and over the next “hill” (since it has enough
total energy to do so), and eventually moves outside the region shown in the figure.

As another example, consider what would have happened if the particle had been released at, say,  = 1 m, but with zero velocity.
(This is illustrated by the green lines in Figure .) Then the total energy would be just the potential energy  = 7.25 J. The
particle could not possibly move to the right, since that would require the total energy to go up. It can only move to the left, since in
that direction  decreases (initially, at first), and that means  can increase (recall  is always positive as long as the particle
is in motion). So the particle speeds up to the left until, past the point  = −0.22 m,  starts to increase again and  has to go
down. Eventually, as the figure shows, we reach a point (which we can calculate to be  = −1.548 m) where  is once again
equal to 7.25 J. This leaves no room for any kinetic energy, so the particle has to stop and turn back. The resulting motion consists
of the particle oscillating back and forth forever between  = −1.548 m and  = 1 m.

At this point, you may have noticed that the motion I have described as following from the  function in Figure 
resembles very much the motion of a car on a roller-coaster having the shape shown, or maybe a ball rolling up and down hills like
the ones shown in the picture. In fact, the correspondence can be made exact—if we substitute sliding for rolling, since rolling
motion has complications of its own. Given an arbitrary potential energy function  for a particle of mass , imagine that you
build a “landscape” of hills and valleys whose height  above the horizontal, for a given value of the horizontal coordinate , is
given by the function . (Note that  is just a constant scaling factor that does not change the shape of the
curve.) Then, for an object of mass  sliding without friction over that landscape, under the influence of gravity, the gravitational
potential energy at any point  would be , and therefore its speed at any point will be precisely the same as
that of the original particle, if it starts at the same point with the same velocity

This notion of an “energy landscape” can be extended to more than one dimension (although they are hard to visualize in three!), or
generalized to deal with configuration parameters other than a single particle’s position. It can be very useful in a number of
disciplines (not just physics), to predict the ways in which the configuration of a system may be likely to change.
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We will see why in the next chapter!

This will change in Chapter 13, when we get to study gravity over a planetary scale.

This page titled 9.2: Potential Energy Functions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.
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9.3: Potential Energy Graphs
Let's continue our discussion of potential energy graphs by introducing some new terms - turning points and equilibrium points. We
already saw turning points in the last section - these were the point in the motion at which the object stopped moving and turned
around to go the other direction. Equilibrium points are the points in the motion where the object could be at rest (note the object
does not have to actually be at rest at that point, but under some conditions could be).

To get a better understanding of these terms, we'll look at two specific examples. First, let’s look at an object, freely falling
vertically, near the surface of Earth, in the absence of air resistance. The mechanical energy of the object is conserved, E = K + U,
and the potential energy, with respect to zero at ground level, is U(y) = mgy, which is a straight line through the origin with slope
mg. In the graph shown in Figure , the x-axis is the height above the ground y and the y-axis is the object’s energy.

Figure : The potential energy graph for an object in vertical free fall, with various quantities indicated.

The line at energy E represents the constant mechanical energy of the object, whereas the kinetic and potential energies, K  and
U , are indicated at a particular height y . You can see how the total energy is divided between kinetic and potential energy as the
object’s height changes. First, let's note that the kinetic energy of an object can never be negative. This is true because there is
nothing negative in the formula ...nature says mass can never be negative, and mathematics says nothing squared can ever
be negative (no imaginary speeds allowed!).

Since kinetic energy can never be negative, there is a maximum potential energy and a maximum height, which an object with the
given total energy cannot exceed:

If we use the gravitational potential energy reference point of zero at y , we can rewrite the gravitational potential energy U as mgy.
Solving for y results in

We note in this expression that the quantity of the total energy divided by the weight (mg) is located at the maximum height of the
particle, or y . At the maximum height, the kinetic energy and the speed are zero, so if the object were initially traveling upward,
its velocity would go through zero there, and y  would be a turning point in the motion. At ground level, y  = 0, the potential
energy is zero, and the kinetic energy and the speed are maximum:

The maximum speed ±v  gives the initial velocity necessary to reach y , the maximum height, and −v  represents the final
velocity, after falling from y . You can read all this information, and more, from the potential energy diagram we have shown.
Notice that the turning point occured where the total energy and the potential energy intersected in the graph - that's the point with
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zero kinetic energy. This system does not have an equilibrium point, because there is nowhere the falling object could be at rest -
it's always going to be trying to move downwards under the gravitational interaction.

For a second examples, consider a mass-spring system on a frictionless, stationary, horizontal surface, so that gravity and the
normal contact force do no work and can be ignored (Figure ). This is like a one-dimensional system, whose mechanical
energy E is a constant and whose potential energy, with respect to zero energy at zero displacement from the spring’s unstretched
length, x = 0, is U(x) = kx .

Figure : (a) A glider between springs on an air track is an example of a horizontal mass-spring system. (b) The potential
energy diagram for this system, with various quantities indicated.

You can read off the same type of information from the potential energy diagram in this case, as in the case for the body in vertical
free fall, but since the spring potential energy describes a variable force, you can learn more from this graph. As for the object in
vertical free fall, you can deduce the physically allowable range of motion and the maximum values of distance and speed, from the
limits on the kinetic energy, 0 ≤ K ≤ E. Therefore, K = 0 and U = E at a turning point, of which there are two for the elastic spring
potential energy,

The glider’s motion is confined to the region between the turning points, −x  ≤ x ≤ x . This is true for any (positive) value of E
because the potential energy is unbounded with respect to x. For this reason, as well as the shape of the potential energy curve,
U(x) is called an infinite potential well. At the bottom of the potential well, x = 0, U = 0 and the kinetic energy is a maximum, K =

E, so v  = ± .

However, this potential has another special point, at . This is the equilibrium point, because if the object had zero kinetic
energy at that point, it would not move. Notice that an object bouncing back and forth between the two turning points doesn't stop
at this equilibrium, because it doesn't have  there. Note that on either side of the equilibrium point, the potential energy
increases - another way of defining the equilibrium point is "the point which is a (local) minimum of potential energy". No matter
where an object starts, it will be driven towards the equilibrium point.

Finally, we should add that the description we just gave ("local minimum of potential") is actually for a stable equilibrium point -
there are also unstable equilibrium points. For example, consider turning the spring potential upside-down (alternatively, look at the
"bumps" in Figure 9.2.3). We could then place an object with  right at that point, and it would technically not move since
there is no slope in the potential energy function. However, the moment we give it any kind of bump one way or the other, it will
immediately go in that direction. In other words, an unstable equilibrium is a local maximum of potential energy, where an object
placed there will move away from it if displaced.

This page titled 9.3: Potential Energy Graphs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

8.5: Potential Energy Diagrams and Stability by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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9.4: Examples

I have a spring with a spring constant 1750 N/m and a mass 13.5 kg attached to the end. They are oriented horizontally so the
mass is sliding across a frictionless surface.

1. I pull the spring a distance 5.4 cm from equilibrium. How much energy did I add on the system?
2. I let the mass go; what velocity is it traveling with when it crosses the equilibrium point?
3. The mass travels through the equilibrium point and stops at the maximum compression point of the spring. How far is the

mass from the equilibrium point? 
4. How much energy did the mass transfer to the spring as it moved from equilibrium to the maximum compression point?

                                              

The figure above shows the gravitational potential energy interaction between two massive planets orbiting around each other.
At x = , this potential is zero.

1. Indicate the sign of the force associated to this potential for each of the three regions in the following table.

  Between 0 and A Between A and B Between B and 

F positive or Negative?      

 

2. If the two planets are initially separated by a large distance, but are moving towards each other with a kinetic energy
of 1.0 MJ, about how close will they get to each 
other?

 

You are designing a back-up safety system for an elevator, that will catch the elevator on a spring if the cable breaks. The mass
of the elevator is 750 kg, and the system needs to be able to stop an elevator that dropped a distance 10 m before hitting the
spring, but only compressing a distance 2 m.

 Whiteboard Problem : Trippy Springy9.4.1

 Whiteboard Problem : Planetary Energy Graph9.4.2
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  What does the spring constant have to be for this safety system to work as designed?

                       

A ballistic pendulum can be used to determine the muzzle speed of a gun. The bullet is fired into a hanging pendulum, and by
measuring how far into the air the pendulum swings you can figure out how fast the bullet was traveling.

1. First determine the mass of the pendulum: I fire a bullet of mass 70 g straight into the pendulum block (left figure), at a
speed of 500 m/s, and I measure that the block rises 62 cm into the air.

2. Now I take another gun which fires the same size bullet, and find the pendulum rises a height of 75 cm. How fast did the
second gun fire the bullet?

3. What if I wasn't very careful when I aimed the bullet? If I fired at a 7.5  angle with respect to the horizontal (right figure),
what was the true muzzle speed of the gun?

The potential energy for a particle undergoing one-dimensional motion along the x-axis is U(x) = 2(x  − x ), where U is in
joules and x is in meters. The particle is not subject to any non-conservative forces and its mechanical energy is constant at E =
−0.25 J. (a) Is the motion of the particle confined to any regions on the x-axis, and if so, what are they? (b) Are there any
equilibrium points, and if so, where are they and are they stable or unstable?

Strategy

First, we need to graph the potential energy as a function of x. The function is zero at the origin, becomes negative as x
increases in the positive or negative directions (x  is larger than x  for x < 1), and then becomes positive at sufficiently large
|x|. Your graph should look like a double potential well, with the zeros determined by solving the equation U(x) = 0, and the
extremes determined by examining the first and second derivatives of U(x), as shown in Figure .

Figure : The potential energy graph for a one-dimensional, quartic and quadratic potential energy, with various quantities
indicated.

You can find the values of (a) the allowed regions along the x-axis, for the given value of the mechanical energy, from the
condition that the kinetic energy can’t be negative, and (b) the equilibrium points and their stability from the properties of the
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force (stable for a relative minimum and unstable for a relative maximum of potential energy). You can just eyeball the graph
to reach qualitative answers to the questions in this example. That, after all, is the value of potential energy diagrams.

You can see that there are two allowed regions for the motion (E > U) and three equilibrium points (slope  = 0), of which

the central one is unstable , and the other two are stable .

Solution

a. To find the allowed regions for x, we use the condition . If we complete the square

in x 2 , this condition simplifies to , which we can solve to obtain .This

represents two allowed regions, x  ≤ x ≤ x  and −x  ≤ x ≤ − x , where x  = 0.38 and x  = 0.92 (in meters).
b. To find the equilibrium points, we solve the equation and find x = 0 and x = ±x , where x  =  =

0.707 (meters). The second derivative is negative at x = 0, so that position is a relative maximum and the
equilibrium there is unstable. The second derivative is positive at x = ±x , so these positions are relative minima and
represent stable equilibria.

Significance

The particle in this example can oscillate in the allowed region about either of the two stable equilibrium points we found, but
it does not have enough energy to escape from whichever potential well it happens to initially be in. The conservation of
mechanical energy and the relations between kinetic energy and speed, and potential energy and force, enable you to deduce
much information about the qualitative behavior of the motion of a particle, as well as some quantitative information, from a
graph of its potential energy.

Repeat Example 9.5.1 when the particle’s mechanical energy is +0.25 J.

 

A block of mass  is sliding on a frictionless, horizontal surface, with a velocity . It hits an ideal spring, of spring constant 
, which is attached to the wall. The spring compresses until the block momentarily stops, and then starts expanding again, so

the block ultimately bounces off.

a. In the absence of dissipation, what is the block’s final speed?
b. By how much is the spring compressed?

Solution

This is a simpler version of the problem considered in Section 5.1, and in the next example. The problem involves the
conversion of kinetic energy into elastic potential energy, and back. In the absence of dissipation, Equation (5.4.1), specialized
to this system (the spring and the block) reads:

For part (a), we consider the whole process where the spring starts relaxed and ends relaxed, so  = 0. Therefore,
we must also have , which means the block’s final speed is the same as its initial speed. As explained in the chapter,
this is characteristic of a conservative interaction.

For part (b), we take the final state to be the instant where the spring is maximally compressed and the block is momentarily at
rest, so all the energy in the system is spring (which is to say, elastic) potential energy. If the spring is compressed a distance 
(that is,  in Equation (5.1.5)), this potential energy is , so setting that equal to the system’s initial energy we
get:
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or

which can be solved to get

 

 

This page titled 9.4: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.
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9.E: Potential Energy and Conservation of Energy (Exercises)

Conceptual Questions
1. The force exerted by a diving board is conservative, provided the internal friction is negligible. Assuming friction is

negligible, describe changes in the potential energy of a diving board as a swimmer drives from it, starting just before the
swimmer steps on the board until just after his feet leave it.

2. Describe the gravitational potential energy transfers and transformations for a javelin, starting from the point at which an
athlete picks up the javelin and ending when the javelin is stuck into the ground after being thrown.

3. Consider the following scenario. A car for which friction is not negligible accelerates from rest down a hill, running out
of gasoline after a short distance (see below). The driver lets the car coast farther down the hill, then up and over a small
crest. He then coasts down that hill into a gas station, where he brakes to a stop and fills the tank with gasoline. Identify
the forms of energy the car has, and how they are changed and transferred in this series of events.

4. A box is dropped onto a spring at its equilibrium position. The spring compresses with the box attached and comes to
rest. Since the spring is in the vertical position, does the change in the gravitational potential energy of the box while the
spring is compressing need to be considered in this problem?

Problems
5. A force F(x) = (3.0/x) N acts on a particle as it moves along the positive x-axis. (a) How much work does the force do on

the particle as it moves from x = 2.0 m to x = 5.0 m? (b) Picking a convenient reference point of the potential energy to
be zero at x = , find the potential energy for this force.

6. A force F(x) = (−5.0x  + 7.0x) N acts on a particle. (a) How much work does the force do on the particle as it moves from
x = 2.0 m to x = 5.0 m? (b) Picking a convenient reference point of the potential energy to be zero at x = , find the
potential energy for this force.

7. Find the force corresponding to the potential energy U(x) = .
8. The potential energy function for either one of the two atoms in a diatomic molecule is often approximated by U(x) = 

 where x is the distance between the atoms. (a) At what distance of separation does the potential energy have a
local minimum (not at x = )? (b) What is the force on an atom at this separation? (c) How does the force vary with the
separation distance?

9. A particle of mass 2.0 kg moves under the influence of the force F(x) =  N. If its speed at x = 2.0 m is v = 6.0

m/s, what is its speed at x = 7.0 m?
10. A particle of mass 2.0 kg moves under the influence of the force F(x) = (−5x  + 7x) N. If its speed at x = −4.0 m is v =

20.0 m/s, what is its speed at x = 4.0 m?
11. A crate on rollers is being pushed without frictional loss of energy across the floor of a freight car (see the following

figure). The car is moving to the right with a constant speed v0 . If the crate starts at rest relative to the freight car, then
from the work-energy theorem, Fd = , where d, the distance the crate moves, and v, the speed of the crate, are both
measured relative to the freight car. (a) To an observer at rest beside the tracks, what distance d′ is the crate pushed when
it moves the distance d in the car? (b) What are the crate’s initial and final speeds v ′ and v′ as measured by the observer

beside the tracks? (c) Show that Fd′ =  and, consequently, that work is equal to the change in kinetic
energy in both reference systems.
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12. Assume that the force of a bow on an arrow behaves like the spring force. In aiming the arrow, an archer pulls the bow
back 50 cm and holds it in position with a force of 150 N. What is the spring constant of the bow? If the mass of the
arrow is 50 g and the “spring” is massless, what is the speed of the arrow immediately after it leaves the bow?

13. The massless spring of a spring gun has a force constant k = 12 N/cm. When the gun is aimed vertically, a 15-g projectile
is shot to a height of 5.0 m above the end of the expanded spring. (See below.) How much was the spring compressed
initially?

14. A mysterious constant force of 10 N acts horizontally on everything. The direction of the force is found to be always
pointed toward a wall in a big hall. Find the potential energy of a particle due to this force when it is at a distance x from
the wall, assuming the potential energy at the wall to be zero.

15. A single force F(x) = −4.0x (in newtons) acts on a 1.0-kg body. When x = 3.5 m, the speed of the body is 4.0 m/s. What is
its speed at x = 2.0 m?

16. A particle of mass 4.0 kg is constrained to move along the x-axis under a single force F(x) = −cx , where c = 8.0 N/m .
The particle’s speed at A, where x  = 1.0 m, is 6.0 m/s. What is its speed at B, where x  = −2.0 m?

17. The force on a particle of mass 2.0 kg varies with position according to F(x) = −3.0x  (x in meters, F(x) in newtons). The
particle’s velocity at x = 2.0 m is 5.0 m/s. Calculate the mechanical energy of the particle using (a) the origin as the
reference point and (b) x = 4.0 m as the reference point. (c) Find the particle’s velocity at x = 1.0 m. Do this part of the
problem for each reference point.

18. A 4.0-kg particle moving along the x-axis is acted upon by the force whose functional form appears below. The velocity
of the particle at x = 0 is v = 6.0 m/s. Find the particle’s speed at x = (a) 2.0 m, (b) 4.0 m, (c) 10.0 m, (d) Does the particle
turn around at some point and head back toward the origin? (e) Repeat part (d) if v = 2.0 m/s at x = 0.

19. A particle of mass 0.50 kg moves along the x-axis with a potential energy whose dependence on x is shown below. (a)
What is the force on the particle at x = 2.0, 5.0, 8.0, and 12 m? (b) If the total mechanical energy E of the particle is −6.0
J, what are the minimum and maximum positions of the particle? (c) What are these positions if E = 2.0 J? (d) If E = 16 J,
what are the speeds of the particle at the positions listed in part (a)?
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20. (a) Sketch a graph of the potential energy function U(x) = , where k, A, and  are constants. (b) What is
the force corresponding to this potential energy? (c) Suppose a particle of mass m moving with this potential energy has a

velocity v  when its position is x = a. Show that the particle does not pass through the origin unless .

21. In the Back to the Future movies (https://openstaxcollege.org/l/21bactofutclip), a DeLorean car of mass 1230 kg travels at
88 miles per hour to venture back to the future. (a) What is the kinetic energy of the DeLorian? (b) What spring constant
would be needed to stop this DeLorean in a distance of 0.1m?

22. In a Coyote/Road Runner cartoon clip (https://openstaxcollege.org/l/21coyroadcarcl), a spring expands quickly and sends
the coyote into a rock. If the spring extended 5 m and sent the coyote of mass 20 kg to a speed of 15 m/s, (a) what is the
spring constant of this spring? (b) If the coyote were sent vertically into the air with the energy given to him by the
spring, how high could he go if there were no non-conservative forces?

23. In the movie Monty Python and the Holy Grail (https://openstaxcollege.org/l/21monpytmovcl) a cow is catapulted from
the top of a castle wall over to the people down below. The gravitational potential energy is set to zero at ground level.
The cow is launched from a spring of spring constant 1.1 × 10  N/m that is expanded 0.5 m from equilibrium. If the castle
is 9.1 m tall and the mass of the cow is 110 kg, (a) what is the gravitational potential energy of the cow at the top of the
castle? (b) What is the elastic spring energy of the cow before the catapult is released? (c) What is the speed of the cow
right before it lands on the ground?

24. A 5.00 × 10 -kg subway train is brought to a stop from a speed of 0.500 m/s in 0.400 m by a large spring bumper at the
end of its track. What is the spring constant k of the spring?

25. A pogo stick has a spring with a spring constant of 2.5 × 10  N/m, which can be compressed 12.0 cm. To what maximum
height from the uncompressed spring can a child jump on the stick using only the energy in the spring, if the child and
stick have a total mass of 40 kg?

26. A block of mass 500 g is attached to a spring of spring constant 80 N/m (see the following figure). The other end of the
spring is attached to a support while the mass rests on a rough surface with a coefficient of friction of 0.20 that is inclined
at angle of 30°. The block is pushed along the surface till the spring compresses by 10 cm and is then released from rest.
(a) How much potential energy was stored in the block-spring-support system when the block was just released? (b)
Determine the speed of the block when it crosses the point when the spring is neither compressed nor stretched. (c)
Determine the position of the block where it just comes to rest on its way up the incline.

27. A block of mass 200 g is attached at the end of a massless spring at equilibrium length of spring constant 50 N/m. The
other end of the spring is attached to the ceiling and the mass is released at a height considered to be where the
gravitational potential energy is zero. (a) What is the net potential energy of the block at the instant the block is at the
lowest point? (b) What is the net potential energy of the block at the midpoint of its descent? (c) What is the speed of the
block at the midpoint of its descent?

28. A child (32 kg) jumps up and down on a trampoline. The trampoline exerts a spring restoring force on the child with a
constant of 5000 N/m. At the highest point of the bounce, the child is 1.0 m above the level surface of the trampoline.
What is the compression distance of the trampoline? Neglect the bending of the legs or any transfer of energy of the child
into the trampoline while jumping.
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29. A massless spring with force constant k = 200 N/m hangs from the ceiling. A 2.0-kg block is attached to the free end of
the spring and released. If the block falls 17 cm before starting back upwards, how much work is done by friction during
its descent?

30. An object of mass 10 kg is released at point A, slides to the bottom of the 30° incline, then collides with a horizontal
massless spring, compressing it a maximum distance of 0.75 m. (See below.) The spring constant is 500 M/m, the height
of the incline is 2.0 m, and the horizontal surface is frictionless. (a) What is the speed of the object at the bottom of the
incline? (b) What is the work of friction on the object while it is on the incline? (c) The spring recoils and sends the
object back toward the incline. What is the speed of the object when it reaches the base of the incline? (d) What vertical
distance does it move back up the incline?

31. A block of mass m, after sliding down a frictionless incline, strikes another block of mass M that is attached to a spring of
spring constant k (see below). The blocks stick together upon impact and travel together. (a) Find the compression of the
spring in terms of m, M, h, g, and k when the combination comes to rest. (b) The loss of kinetic energy as a result of the
bonding of the two masses upon impact is stored in the so-called binding energy of the two masses. Calculate the binding
energy.

32. A block of mass 300 g is attached to a spring of spring constant 100 N/m. The other end of the spring is attached to a
support while the block rests on a smooth horizontal table and can slide freely without any friction. The block is pushed
horizontally till the spring compresses by 12 cm, and then the block is released from rest. (a) How much potential energy
was stored in the block-spring support system when the block was just released? (b) Determine the speed of the block
when it crosses the point when the spring is neither compressed nor stretched. (c) Determine the speed of the block when
it has traveled a distance of 20 cm from where it was released.

33. Consider a block of mass 0.200 kg attached to a spring of spring constant 100 N/m. The block is placed on a frictionless
table, and the other end of the spring is attached to the wall so that the spring is level with the table. The block is then
pushed in so that the spring is compressed by 10.0 cm. Find the speed of the block as it crosses (a) the point when the
spring is not stretched, (b) 5.00 cm to the left of point in (a), and (c) 5.00 cm to the right of point in (a).
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In the previous chapters, we have been considering the phenomena of conservation of energy, which is the idea that the total energy
of a closed system does not change in time. We utilized this idea for solving problems by identifying all the interactions in the
system, associating them with sources of energy, and setting the initial energy equal to the final energy. This idea is very powerful,
but it certainly requires you to know how to associate a potential energy to a particular interaction. So far, we've only done this with
two interactions - the force of gravity near the Earth ( ) and springs ( ). So what happens when you have
an interaction whose potential you don't know - or even worse, that doesn't even exist? (That's called a nonconservative force, we
will cover those in Chapter N8).

We certainly know that forces can be used to store energy, since that's what both the gravitational force and the spring force do. But
what about some other force - say, a force pushing a box along the floor? Does this store energy? It's pretty easy to see that it does,
because that box might go from moving to not moving, demonstrating that it now has kinetic energy, which it clearly got from your
pushing. It turns out to be pretty easy to describe how much energy is transferred into the system from this force - that quantity is
called work.

For a constant force, the work is a simple formula,

where  is the force and  is the change in position of the center of mass of the object. But notice the mathematical operation
being performed here - it's a dot product between two vectors. For any two vectors  and , the dot
product can be written in two different ways:

We have to be very careful with that first formula - the angle  must be the angle
between the vectors  and  when they are arranged tail to tail (see the figure).
Generally, if we have a picture, this first formula is the one we want to use. However,
sometimes we might just have the components, and then it's much easier to use the
second formula. In either case, notice carefully that the result is a scalar - in fact, the
result is the projection of the second vector onto the first. We won't need that fact
much in this class, but it's true geometrically.

So let's consider a few simple examples, focusing on the first of the two formula
above. Let's act on our block with a force of 10 N.

1. If we push the block horizontally, a distance 10 m, we get  (Notice the energy units!) The
angle was zero here because we are pushing in the same direction as the motion of the block.

2. Let's push against the motion of the block - so it's moving forwards 10 m, but we are pushing the other way. Then we get 
. Notice how the angle changed - the force vector  was  from the

displacement vector , and the work done was negative.
3. Finally, let's push straight downwards on the block as it moves the same 10 m. The work is now 

. The work done is zero here, because if you push straight downwards (and there is no
friction), you can't change the energy of the block!

10: C10) Work is shared under a CC BY-SA license and was authored, remixed, and/or curated by LibreTexts.
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10.1: Introduction- Work and Impulse
In physics, “work” (or “doing work”) is what we call the process through which a force changes the energy of an object it acts on
(or the energy of a system to which the object belongs). It is, therefore, a very technical term with a very specific meaning that may
seem counterintuitive at times.

For instance, as it turns out, in order to change the energy of an object on which it acts, the force needs to be at least partly in line
with the displacement of the object during the time it is acting. A force that is perpendicular to the displacement does no work—it
does not change the object’s energy.

Imagine a satellite in a circular orbit around the earth. The earth is constantly pulling on it with a force (gravity) directed towards
the center of the orbit at any given time. This force is always perpendicular to the displacement, which is along the orbit, and so it
does no work: the satellite moves always at the same speed, so its kinetic energy does not change.

This can be contrasted with what is going on with forces and momentum - the gravitational force bends the satellite's trajectory,
changing the direction (although not the magnitude) of the momentum vector. Of course, it is obvious that a force must change an
object’s momentum, because that is pretty much how we defined force anyway. Recall Equation (2.3.1) for the average force on an
object: . We can rearrange this to read

For a constant force, the product of the force and the time over which it is acting is called the impulse, usually denoted as 

Clearly, the impulse given by a force to an object is equal to the change in the object’s momentum (by Equation ( )), as long
as it is the only force (or, alternatively, the net force) acting on it. If the force is not constant, we break up the time interval  into
smaller subintervals and add all the pieces. Formally this results in an integral:

Graphically, the  component of the impulse is equal to the area under the curve of  versus time, and similarly for the other
components. We will see this basic effect as we study work as well, although the complications associated with the direction of
force as compared to the direction of motion must be taken account of.

There is not a whole lot more to be said about impulse. The main lesson to be learned from Equation ( ) is that one can get a
desired change in momentum—bring an object to a stop, for instance—either by using a large force over a short time, or a smaller
force over a longer time. It is easy to see how different circumstances may call for different strategies: sometimes you may want to
make the force as small as possible, if the object on which you are acting is particularly fragile; other times you may just need to
make the time as short as possible instead.

Of course, to bring something to a stop you not only need to remove its momentum, but also its (kinetic) energy. If the former task
takes time, the latter, it turns out, takes distance. Work is a much richer subject than impulse, not only because, as indicated above,
the actual work done depends on the relative orientation of the force and displacement vectors, but also because there is only one
kind of momentum, but many different kinds of energy, and one of the things that typically happens when work is done is the
conversion of one type of energy into another.

So there is a lot of ground to cover, but we’ll start small, in the next section, with the simplest kind of system, and the simplest kind
of energy.

This page titled 10.1: Introduction- Work and Impulse is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio
Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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10.2: Work on a Single Particle
Consider a particle that undergoes a displacement  while a constant force  acts on it. In one dimension, the work done by the
force on the particle is defined by

and it is positive if the force and the displacement have the same sign (that is, if they point in the same direction), and negative
otherwise.

In three dimensions, the force will be a vector  with components ( ), and the displacement, likewise, will be a vector 
 with components ( ). The work will be defined then as

This expression is an instance of what is known as the dot product (or inner product, or scalar product) of two vectors. Given two
vectors  and , their dot product is defined, in terms of their components,

This can also be expressed in terms of the vectors’ magnitudes, | | and | |, and the angle they make, in the following form:

Figure : Illustrating the angle  to be used when calculating the dot product of two vectors by the formula ( ). One way
to think of this formula is that you take the projection of vector  onto vector  (indicated here by the blue lines), which is equal
to , then multiply that by the length of  (or vice-versa, of course).

Figure  shows what we mean by the angle  in this expression. The equality of the two definitions, Eqs. ( ) and (
), is pretty easy to see; consider a coordinate system in which the vector  is completely along the x-axis. Then our vectors

can be written

And now if we perform the dot product as shown in Equation ( ),

which is exactly what Equation ( ) says! As a sidenote, this is an important demonstration of a basic principle in the study of
physics - if you can prove something in one coordinate system, it must be true in all others. This is not just a calculational trick, but
a fundamental truth we would hope our theory can conform with - the coordinate system is a choice humans make to perform a
calculation, but can't have any real physics meaning. In fact, the advantage of Equation ( ) is that it is independent of the
choice of a system of coordinates.

Using the dot product notation, the work done by a constant force can be written as

Equation ( ) then shows that, as I mentioned in the introduction, when the force is perpendicular to the displacement (
) the work it does is zero. You can also see this directly from Equation ( ), by choosing the  axis to point in the

Δx F

W = FΔx (constant force) (10.2.1)
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direction of the force (so  =  = 0), and the displacement to point along any of the other two axes (so  = 0): the result is  =
0.

If the force is not constant, again we follow the standard procedure of breaking up the total displacement into pieces that are short
enough that the force may be taken to be constant over each of them, calculating all those (possibly very small) “pieces of work,”
and adding them all together. In one dimension, the final result can be expressed as the integral

So the work is given by the “area” under the -vs-  curve. In more dimensions, we have to write a kind of multivariable integral
known as a line integral. That is advanced calculus, so we will not go there this semester.

Work Done by the Net Force, and the Work-Energy Theorem
So much for the math and the definitions. Where does the energy come in? Let us suppose that  is either the only force or the net
force on the particle—the sum of all the forces acting on the particle. Again, for simplicity we will assume that it is constant (does
not change) while the particle undergoes the displacement . We started this chapter with the understanding that the work done
on the system changes the energy of the system (we will prove that mathematically in a later chapter). If we now consider a system
in which all of the interactions can be described by forces doing work, from the principle of conservation of energy we can write

In words, the work done by the net force acting on a particle as it moves equals the change in the particle’s kinetic energy in the
course of its displacement. This result is often referred to as the Work-Energy Theorem.

As you may have guessed from our calling it a “theorem,” the result ( ) is very general. It holds in three dimensions, and it
holds also when the force isn’t constant throughout the displacement— you just have to use the correct equation to calculate the
work in those cases. It would apply to the work done by the net force on an extended object, also, provided it is OK to treat the
extended object as a particle—so basically, a rigid object that is moving as a whole and not doing anything fancy such as spinning
while doing so.

Another possible direction in which to generalize ( ) might be as follows. By definition, a “particle” has no other kind of
energy, besides (translational) kinetic energy. Also, and for the same reason (namely, the absence of internal structure), it has no
“internal” forces—all the forces acting on it are external. So—for this very simple system—we could rephrase the result ( )
by saying that the work done by the net external force acting on the system (the particle in this case) is equal to the change in its
total energy. It is in fact in this form that we will ultimately generalize ( ) to deal with arbitrary systems.

Before we go there, however, I would like to take a little detour to explore another “reasonable” extension of the result ( ), as
well as its limitations.

This page titled 10.2: Work on a Single Particle is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
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10.3: The "Center of Mass Work"
We should be a little bit careful when using work in the form of Equation (10.2.1). It works perfectly fine if the particle is either
pointlike or rigid. In those two cases, following the principle of "the motion of the object is the same as the motion of the center of
mass" from Section 4.3, we can consider the entire formula to apply to the center of mass, like:

where , the translational kinetic energy, is, as usual, , and  is the displacement of the center of mass. We
are also assuming the force is constant in this case. The result ( ) holds for an arbitrary system, as long as  is constant,
and can be generalized by means of an integral (as in Equation (10.2.6)) when it is variable.

So it seems that we could define the left-hand side of Equation ( ) as “the work done on the center of mass,” and take that as
the natural generalization to a system of the result (10.2.8) for a particle. In fact, it's a bit more subtle than that, so we want to
discuss that subtly in this section.

First, it seems that it is essential to the notion of work that one should multiply the force by the displacement of the object on which
it is acting. More precisely, in the definition (10.2.1), we want the displacement of the point of application of the force . But there
are many examples of systems where there is nothing at the precise location of the center of mass, and certainly no force acting
precisely there.

This is not necessarily a problem in the case of a rigid object which is not doing anything funny, just moving as a whole so that
every part has the same displacement, because then the displacement of the center of mass would simply stand for the displacement
of any point at which an external force might actually be applied. But for many deformable systems, this would not be case. In fact,
for such systems one can usually show that  is actually not the work done on the system by the net external force. A
simple example of such a system is shown below, in Figure .

Figure : A system of two blocks connected by a spring. A constant external force, , is applied to the block on the right.
Initially the spring is relaxed, but as soon as block 2 starts to move it stretches, pulling back on block 2 and pulling forward on
block 1. Because of the stretching of the spring, the displacements ,  and  are all different, and the work done by the
external force, , is different from the “center of mass work” .

In this figure, the two blocks are connected by a spring, and the external force is applied to the block on the right (block 2). If the
blocks have the same mass, the center of mass of the system is a point exactly halfway between them. If the spring starts in its
relaxed state, it will stretch at first, so that the center of mass will lag behind block 2, and , which is the quantity that we
should properly call the “work done by the net external force” will not be equal to .

The best way to understand what's happening here is to think about all the sources of energy in the system - if you pull on that
block-spring system, you are certainly going to add energy to it, but think about what happens if you follow this picture for a while.
Eventually, you will have both blocks moving together, but the spring will be oscillating in some kind of consistent manner,
therefore storing energy in the form of . So while Equation ( ) might not be literally true, it's reasonable to think we
could write a variation of it that looks like

In fact, we will study conservation of energy in these cases in Chapter N8. For the moment, if we just assume our systems are rigid,
with no internal energy, we can freely use Equation ( ).

Δ = ΔFext,net xcm Kcm (10.3.1)
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Work done by external forces = Change of internal energy of the system. (10.3.2)
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As the name implies, this is the precise point at which the force is applied. For contact forces (other than friction; see later), this is
easily identified. For gravity, a sum over all the forces exerted on all the particles that make up the object may be shown to be
equivalent to a single resultant force acting at a point called the center of gravity, which, for our purposes (objects in uniform or
near-uniform gravitational fields) will be the same as the center of mass.
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10.4: Examples

                                                                  

I am dragging a box full of 9 Emperor penguins along the ground as shown in the figure. Each of the penguins has a mass of
33.0 kg, and you can assume the box has zero mass. The rope which I am pulling the box with is making an angle of  with
respect to the ground, and I pull the penguins a total distance of 15 m.

1. If the tension in the rope is 50 N, how much work did I do on the box during this process?
2. If the force due to friction between the box and ground is 25 N, how much work did friction do on the box during this

process?
3. How much work did gravity do on the penguins in the box during this process?
4. Assuming the box of penguins starts from rest, how fast is the box moving after I pull it 15 m?

 

Suppose you are riding your bicycle and hit the brakes to come to a stop. Assuming no slippage between the tire and the road:

a. Which force is responsible for removing your momentum? (By “you” I mean throughout “you and the bicycle.”)
b. Which force is responsible for removing your kinetic energy?

Solution

(a) According to what we saw in previous chapters, for example, Equation (2.3.1)

the total momentum of the system can only be changed by the action of an external force, and the only available external force
is the force of friction between the tire and the road. So it is this force that removes the forward momentum from the system.
The stopping distance, , and the force, can be related using Equation (10.3.1):

(b) Now, here is an interesting fact: the force of friction, although fully responsible for stopping your center of mass motion
does no work in this case. That is because the point where it is applied—the point of the tire that is momentarily in contact with
the road—is also momentarily at rest relative to the road: it is, precisely, not slipping (This in fact means the kind of friction
here is static friction), so  in the equation  is zero. By the time that bit of the tire has moved on, so you actually
have a nonzero , you no longer have an : the force of static friction is no longer acting on that bit of the tire, it is acting on
a different bit—on which it will, again, do no work, for the same reason.

So, as you bring your bicycle to a halt the work  = 0, and it follows that the total energy of your system is, in fact,
conserved: all your initial kinetic energy is converted to thermal energy by the brake pad rubbing on the wheel.

This page titled 10.4: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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10.E: Work and Kinetic Energy (Exercises)

Conceptual Questions
1. Give an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it

does no work.
2. Describe a situation in which a force is exerted for a long time but does no work. Explain.
3. A body moves in a circle at constant speed. Does the centripetal force that accelerates the body do any work? Explain.
4. Suppose you throw a ball upward and catch it when it returns at the same height. How much work does the gravitational

force do on the ball over its entire trip?
5. Work done on a system puts energy into it. Work done by a system removes energy from it. Give an example for each

statement.
6. Two marbles of masses m and 2m are dropped from a height h. Compare their kinetic energies when they reach the

ground.
7. Compare the work required to accelerate a car of mass 2000 kg from 30.0 to 40.0 km/h with that required for an

acceleration from 50.0 to 60.0 km/h.
8. Two forces act to double the speed of a particle, initially moving with kinetic energy of 1 J. One of the forces does 4 J of

work. How much work does the other force do?

Problems
9. Given two column vectors = [2, -1, 3] and  = [-4, 5, 1], what is the dot product of  and ? What is the angle between

the vectors?
10. Given two column vectors   = [0, -3, 6] and  = [2, 1, 4], what is the dot product of   and  ? What is the angle between

the two vectors?
11. How much work does a supermarket checkout attendant do on a can of soup he pushes 0.600 m horizontally with a force

of 5.00 N?
12. A 75.0-kg person climbs stairs, gaining 2.50 m in height. Find the work done to accomplish this task.
13. (a) Calculate the work done on a 1500-kg elevator car by its cable to lift it 40.0 m at constant speed, assuming friction

averages 100 N. (b) What is the work done on the lift by the gravitational force in this process? (c) What is the total work
done on the lift?

14. Suppose a car travels 108 km at a speed of 30.0 m/s, and uses 2.0 gal of gasoline. Only 30% of the gasoline goes into
useful work by the force that keeps the car moving at constant speed despite friction. (The energy content of gasoline is
about 140 MJ/gal.) (a) What is the magnitude of the force exerted to keep the car moving at constant speed? (b) If the
required force is directly proportional to speed, how many gallons will be used to drive 108 km at a speed of 28.0 m/s?

15. Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0° with
the horizontal (see below). He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be
certain to include the work he does on the crate and on his body to get up the ramp.

16. How much work is done by the boy pulling his sister 30.0 m in a wagon as shown below? Assume no friction acts on the
wagon.

u⃗  v ⃗  u⃗  v ⃗ 

u⃗  v ⃗  u⃗  v ⃗ 
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17. A shopper pushes a grocery cart 20.0 m at constant speed on level ground, against a 35.0 N frictional force. He pushes in
a direction 25.0° below the horizontal. (a) What is the work done on the cart by friction? (b) What is the work done on the
cart by the gravitational force? (c) What is the work done on the cart by the shopper? (d) Find the force the shopper
exerts, using energy considerations. (e) What is the total work done on the cart?

18. Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant
speed, as shown below. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by
friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c)
What is the work done by the gravitational force on the sled? (d) What is the total work done?

19. A constant 20-N force pushes a small ball in the direction of the force over a distance of 5.0 m. What is the work done by
the force?

20. A toy cart is pulled a distance of 6.0 m in a straight line across the floor. The force pulling the cart has a magnitude of 20
N and is directed at 37° above the horizontal. What is the work done by this force?

21. A 5.0-kg box rests on a horizontal surface. The coefficient of kinetic friction between the box and surface is  = 0.50. A
horizontal force pulls the box at constant velocity for 10 cm. Find the work done by (a) the applied horizontal force, (b)
the frictional force, and (c) the net force.

22. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (µk = 0.20) at constant velocity by a force
directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total
work.

23. Suppose that the sled plus passenger of the preceding problem is pushed 20 m across the snow at constant velocity by a
force directed 30° below the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the
total work.

24. How much work is done against the gravitational force on a 5.0-kg briefcase when it is carried from the ground floor to
the roof of the Empire State Building, a vertical climb of 380 m?

25. It takes 500 J of work to compress a spring 10 cm. What is the force constant of the spring?
26. A bungee cord is essentially a very long rubber band that can stretch up to four times its unstretched length. However, its

spring constant varies over its stretch [see Menz, P.G. “The Physics of Bungee Jumping.” The Physics Teacher
(November 1993) 31: 483-487]. Take the length of the cord to be along the x-direction and define the stretch x as the
length of the cord l minus its un-stretched length l0 ; that is, x = l − l  (see below). Suppose a particular bungee cord has a
spring constant, for 0 ≤ x ≤ 4.88 m, of k  = 204 N/m and for 4.88 m ≤ x, of k  = 111 N/m. (Recall that the spring constant
is the slope of the force F(x) versus its stretch x.) (a) What is the tension in the cord when the stretch is 16.7 m (the

μK

0

1 2
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maximum desired for a given jump)? (b) How much work must be done against the elastic force of the bungee cord to
stretch it 16.7 m?

Figure 7.16 - (credit: Graeme Churchard)

27. (a) Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly
typical distance for a non-panic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to
a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).

28. A car’s bumper is designed to withstand a 4.0-km/h (1.1-m/s) collision with an immovable object without damage to the
body of the car. The bumper cushions the shock by absorbing the force over a distance. Calculate the magnitude of the
average force on a bumper that collapses 0.200 m while bringing a 900-kg car to rest from an initial speed of 1.1 m/s.

29. Boxing gloves are padded to lessen the force of a blow. (a) Calculate the force exerted by a boxing glove on an
opponent’s face, if the glove and face compress 7.50 cm during a blow in which the 7.00-kg arm and glove are brought to
rest from an initial speed of 10.0 m/s. (b) Calculate the force exerted by an identical blow in the days when no gloves
were used, and the knuckles and face would compress only 2.00 cm. Assume the change in mass by removing the glove
is negligible. (c) Discuss the magnitude of the force with glove on. Does it seem high enough to cause damage even
though it is lower than the force with no glove?

30. Using energy considerations, calculate the average force a 60.0-kg sprinter exerts backward on the track to accelerate
from 2.00 to 8.00 m/s in a distance of 25.0 m, if he encounters a headwind that exerts an average force of 30.0 N against
him.

31. A 5.0-kg box has an acceleration of 2.0 m/s  when it is pulled by a horizontal force across a surface with  = 0.50. Find
the work done over a distance of 10 cm by (a) the horizontal force, (b) the frictional force, and (c) the net force. (d) What
is the change in kinetic energy of the box?

32. A constant 10-N horizontal force is applied to a 20-kg cart at rest on a level floor. If friction is negligible, what is the
speed of the cart when it has been pushed 8.0 m?

33. In the preceding problem, the 10-N force is applied at an angle of 45° below the horizontal. What is the speed of the cart
when it has been pushed 8.0 m?

34. Compare the work required to stop a 100-kg crate sliding at 1.0 m/s and an 8.0-g bullet traveling at 500 m/s.
35. A wagon with its passenger sits at the top of a hill. The wagon is given a slight push and rolls 100 m down a 10° incline

to the bottom of the hill. What is the wagon’s speed when it reaches the end of the incline. Assume that the retarding
force of friction is negligible.

36. An 8.0-g bullet with a speed of 800 m/s is shot into a wooden block and penetrates 20 cm before stopping. What is the
average force of the wood on the bullet? Assume the block does not move.

37. A 2.0-kg block starts with a speed of 10 m/s at the bottom of a plane inclined at 37° to the horizontal. The coefficient of
sliding friction between the block and plane is  = 0.30. (a) Use the work-energy principle to determine how far the
block slides along the plane before momentarily coming to rest. (b) After stopping, the block slides back down the plane.
What is its speed when it reaches the bottom? (Hint: For the round trip, only the force of friction does work on the
block.)

38. When a 3.0-kg block is pushed against a massless spring of force constant 4.5 x 10  N/m, the spring is compressed 8.0
cm. The block is released, and it slides 2.0 m (from the point at which it is released) across a horizontal surface before
friction stops it. What is the coefficient of kinetic friction between the block and the surface?

2 μK

muk
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39. A small block of mass 200 g starts at rest at A, slides to B where its speed is v  = 8.0 m/s, then slides along the horizontal
surface a distance 10 m before coming to rest at C. (See below.) (a) What is the work of friction along the curved surface?
(b) What is the coefficient of kinetic friction along the horizontal surface?

40. A small object is placed at the top of an incline that is essentially frictionless. The object slides down the incline onto a
rough horizontal surface, where it stops in 5.0 s after traveling 60 m. (a) What is the speed of the object at the bottom of
the incline and its acceleration along the horizontal surface? (b) What is the height of the incline?

41. When released, a 100-g block slides down the path shown below, reaching the bottom with a speed of 4.0 m/s. How much
work does the force of friction do?

42. A 0.22LR-caliber bullet like that mentioned in Example 7.10 is fired into a door made of a single thickness of 1-inch pine
boards. How fast would the bullet be traveling after it penetrated through the door?

43. A sled starts from rest at the top of a snow-covered incline that makes a 22° angle with the horizontal. After sliding 75 m
down the slope, its speed is 14 m/s. Use the work-energy theorem to calculate the coefficient of kinetic friction between
the runners of the sled and the snowy surface.

44. A cart is pulled a distance D on a flat, horizontal surface by a constant force F that acts at an angle  with the horizontal
direction. The other forces on the object during this time are gravity (F ), normal forces (F ) and (F ), and rolling
frictions F  and F , as shown below. What is the work done by each force?

45. A boy pulls a 5-kg cart with a 20-N force at an angle of 30° above the horizontal for a length of time. Over this time
frame, the cart moves a distance of 12 m on the horizontal floor. (a) Find the work done on the cart by the boy. (b) What
will be the work done by the boy if he pulled with the same force horizontally instead of at an angle of 30° above the
horizontal over the same distance?

46. A horizontal force of 20 N is required to keep a 5.0 kg box traveling at a constant speed up a frictionless incline for a
vertical height change of 3.0 m. (a) What is the work done by gravity during this change in height? (b) What is the work
done by the normal force? (c) What is the work done by the horizontal force?

47. A 7.0-kg box slides along a horizontal frictionless floor at 1.7 m/s and collides with a relatively massless spring that
compresses 23 cm before the box comes to a stop. (a) How much kinetic energy does the box have before it collides with
the spring? (b) Calculate the work done by the spring. (c) Determine the spring constant of the spring.

48. A crate is being pushed across a rough floor surface. If no force is applied on the crate, the crate will slow down and
come to a stop. If the crate of mass 50 kg moving at speed 8 m/s comes to rest in 10 seconds, what is the rate at which the
frictional force on the crate takes energy away from the crate?

49. Grains from a hopper falls at a rate of 10 kg/s vertically onto a conveyor belt that is moving horizontally at a constant
speed of 2 m/s. (a) What force is needed to keep the conveyor belt moving at the constant velocity? (b) What is the
minimum power of the motor driving the conveyor belt?

50. Ignoring details associated with friction, extra forces exerted by arm and leg muscles, and other factors, we can consider a
pole vault as the conversion of an athlete’s running kinetic energy to gravitational potential energy. If an athlete is to lift
his body 4.8 m during a vault, what speed must he have when he plants his pole?
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51. Tarzan grabs a vine hanging vertically from a tall tree when he is running at 9.0 m/s. (a) How high can he swing upward?
(b) Does the length of the vine affect this height?
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CHAPTER OVERVIEW

11: C11) Rotational Energy
11.1: Rotational Kinetic Energy, and Moment of Inertia
11.2: Rolling Motion
11.3: Examples
11.E: Fixed-Axis Rotation Introduction (Exercises)

In this chapter we are going to continue our study of conservation laws by moving into a new kind of energy conservation -
rotational energy. Just like we first studied conservation of linear momentum ( ) before moving onto rotational momentum (

), we are going to learn how to include rotational energy into our energy conservation law, . It turns out this is
going to be easy, because rotational motion is just another kind of kinetic motion, so rotational energy is just another kind of kinetic
energy.

First we should quickly recall what we already know about rotational motion (Chapter 6 and Chapter 7). A rotating object has an
angular velocity , and the "rotational inertia" of the object is the moment of inertia, . Moments of inertia are different for each
object, but generally look like , where  is 1 for a point or a hollow cylinder, 1/2 for a disk, etc. We might not easily
remember this coefficient, but we can always get a sense of the moment of inertia by going back to the original definition of 

, which tells us that "the more masses  that are closer to the axis, the smaller the moment of inertia will be".

So how do we use this for rotational energy? Using the correspondance principle between linear and rotational quantities
(remember, that's how we got from  to ), we get from linear ("center-of-mass") kinetic energy  to
rotational kinetic energy,

Note that this equation satisfies a lot of the same conceptual framework that  does - the larger moment of inertia or angular
speed, the more rotational energy is being stored in the system. It's also worthwhile here to note what kinds of objects have large
and small moments of inertia - objects with lots of mass near the axis of rotation are easy to rotate, and therefore have small
moments of inertia, and objects with lots of mass far away from the axis of rotation are hard to rotate, and have large moments of
inertia. So while you could store the same amount of energy in two different objects, the object with the smaller  will be spinning
faster (have larger ), to keep  constant.

We are going to use this in the exact same way that we use other sources of energy - but unlike linear vs rotational momentum,
which are separately conserved, we only have one conservation of energy law. So, if our system has rotational energy, we are just
going to write:

(Naturally, we can have more than one source of potential energy  and  as well.)

11: C11) Rotational Energy is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack
College.
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11.1: Rotational Kinetic Energy, and Moment of Inertia
If a particle of mass  is moving on a circle of radius , with instantaneous speed , then its kinetic energy is

using , Equation (6.1.11). Note that, at this stage, there is no real reason for the subscript “rot”: equation ( ) is all
of the particle’s kinetic energy. The distinction will only become important later in the chapter, when we consider extended objects
whose motion is a combination of translation (of the center of mass) and rotation (around the center of mass).

Now, consider the kinetic energy of an extended object that is rotating around some axis. We may treat the object as being made up
of many “particles” (small parts) of masses , .... If the object is rigid, all the particles move together, in the sense that they all
rotate through the same angle in the same time, which means they all have the same angular velocity. However, the particles that
are farther away from the axis of rotation are actually moving faster—they have a larger , according to Equation (6.1.11). So the
expression for the total kinetic energy in terms of all the particles’ speeds is complicated, but in terms of the (common) angular
velocity is simple:

where , ,... represent the distance of the 1st, 2nd... particle to the axis of rotation, and on the last line I have introduced the
quantity

which is usually called the moment of inertia of the object about the axis considered (we have seen this quantity already in Chapter
C6.1). In general, the expression ( ) is evaluated as an integral, which can be written symbolically as ; the “mass
element”  can be expressed in terms of the local density as , where  is a volume element. The integral is a
multidimensional integral that may require somewhat sophisticated calculus skills, so we will not be calculating any of these this
semester; rather, we will rely on the tabulated values for  for objects of different, simple, shapes. For instance, for a homogeneous
cylinder of total mass  and radius , rotating around its central axis, ; for a hollow sphere rotating through an axis
through its center, , and so on (see Table 6.1.1 for a list of these moments of inertia).

As you can see, the expression ( ) for the kinetic energy of a rotating body, , parallels the expression  for a
moving particle, with the replacement of  by , and  by . This suggests that  is some sort of measure of a solid object’s
rotational inertia, by which we mean the resistance it offers to being set into rotation about the axis being considered. When we
study the rotational version of Newton's Second Law later (in Chapter N9), we will see clearly that this interpretation is correct.

It should be stressed that the moment of inertia depends, in general, not just on the shape and mass distribution of the object, but
also on the axis of rotation (again, see Table 6.1.1). In general, the formula ( ) shows that, the more mass you put farther away
from the axis of rotation, the larger  will be. Thus, for instance, a thin rod of length  has a moment of inertia  when
rotating around a perpendicular axis through its midpoint, whereas it has the larger  when rotating around a
perpendicular axis through one of its endpoints.

This page titled 11.1: Rotational Kinetic Energy, and Moment of Inertia is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.

9.1: Rotational Kinetic Energy, and Moment of Inertia by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source:
https://scholarworks.uark.edu/oer/3.
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11.2: Rolling Motion
When considering objects that can move both translationally (up, down, left, right, in, out!) and rotationally, we are immediately
confronted with a problem: these two motions can be either completely independent, completely related to each other, or something
even in-between. Take for example a baseball thrown by a pitcher. It follows a particular path from the mound to the plate (its
translational motion), but it might also have some spin (it's rotational motion). Those seem pretty independent, but in fact spinning
balls like that can swerve back in forth because of something called The Magnus Effect (check it out on Wikipedia). Of course,
that's why pitchers make the ball do that, is that motion makes it more complicated for the batter to hit the ball. The problem is that
coupling between the air and the ball is weak in some sense - most of the energy of the ball is used for it's forward motion, only a
small amount is used to make the ball move back and forth through the air.

Naturally, we would like to understand those kinds of interesting situations, but they end up being rather complicated. We would
like to start with something simpler - motion in which the translation and rotation are either completely independent, and can be
solved completely separately, or they are easily related to each other. If they are independent, you can solve them based on what
you know already! However, there is a case in which the motions are completely related to each other, and is very common, called
rolling without slipping. In this case, the translational motion and the rotational motion are coupled, and the relevant velocities are
related to each other:

Here  is the radius of the entire object. Notice how this expression relates to Equation (6.1.1) from a previous section - they look
very similar, but they are actually saying two somewhat different things. Equation (6.1.1) told us the relationship between the
angular and linear speed of a particular point on an object, while the expression above tells us how to related the angular and linear
speed of the entire object (remember that the center of mass is the location at which the object is, if the object was a single point).

The origin of the condition ( ) is fairly straightforward. You can imagine an object that is rolling without slipping as
“measuring the surface” as it rolls (or vice-versa, the surface measuring the circumference of the object as its different points are
pressed against it in succession). So, after it has completed exactly one revolution (  radians), it should have literally “covered” a
distance on the surface equal to , that is, advanced a distance . But the same has to be true, proportionately, for any
rotation angle  other that : since the length of the corresponding arc is , in a rotation over an angle  the center
of mass of the object must have advanced a distance . Dividing by  as  then yields Equation (

).

Figure : Left: illustrating the rolling without slipping condition. The cyan line on the surface has the same length as the cyan-
colored arc, and will be the distance traveled by the disk when it has turned through an angle . Right: velocities for four points on
the edge of the disk. The pink arrows are the velocities in the center of mass frame. In the Earth reference frame, the velocity of the
center of mass, , in green, has to be added to each of them. The resultant is shown in blue for two of them.

 
Considering a single rolling objects, the total kinetic energy can now be written as two terms,

combining this with the condition of rolling without slipping ( ), we see that the ratio of the translational to the rotational
kinetic energy is

| | = R|ω|.v ⃗ cm (11.2.1)
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The amount of energy available to interact with the object is whatever potential energy is running around the system, and that has
to be split between translational and rotational in the proportion ( ). An object with a proportionately larger  is one that, for a
given angular velocity, needs more rotational kinetic energy, because more of its mass is away from the rotation axis. This leaves
less energy available for its translational motion.

This page titled 11.2: Rolling Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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11.3: Examples
As you work through these examples, make sure to refer to the list of moments of inertia for different shaped objects, Table 6.1.1.

                                                                                                    

I am dragging a box full of 9 Emperor penguins along the ground as shown in the figure. Each of the penguins has a mass of
33.0 kg, and you can assume the box has zero mass. The rope which I am pulling the box with is making an angle of  with
respect to the ground, and I pull the penguins a total distance of 15 m.

1. If the tension in the rope is 50 N, how much work did I do on the box during this process?
2. If the force due to friction between the box and ground is 25 N, how much work did friction do on the box during this

process?
3. How much work did gravity do on the penguins in the box during this process?
4. Assuming the box of penguins starts from rest, how fast is the box moving after I pull it 15 m?

Six small washers are spaced 10 cm apart on a rod of negligible mass and 0.5 m in length. The mass of each washer is 20 g.
The rod rotates about an axis located at 25 cm, as shown in Figure . (a) What is the moment of inertia of the system? (b)
If the two washers closest to the axis are removed, what is the moment of inertia of the remaining four washers? (c) If the
system with six washers rotates at 5 rev/s, what is its rotational kinetic energy?

Figure : Six washers are spaced 10 cm apart on a rod of negligible mass and rotating about a vertical axis.

Strategy

a. We use the definition for moment of inertia for a system of particles and perform the summation to evaluate this quantity.
The masses are all the same so we can pull that quantity in front of the summation symbol.

b. We do a similar calculation.
c. We insert the result from (a) into the expression for rotational kinetic energy.

Solution

a. 
b. 
c. 

Significance

We can see the individual contributions to the moment of inertia. The masses close to the axis of rotation have a very small
contribution. When we removed them, it had a very small effect on the moment of inertia.
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Applying Rotational Kinetic Energy
Now let’s apply the ideas of rotational kinetic energy and the moment of inertia table to get a feeling for the energy associated with
a few rotating objects. The following examples will also help get you comfortable using these equations. First, let’s look at a
general problem-solving strategy for rotational energy.

1. Determine that energy or work is involved in the rotation.
2. Determine the system of interest. A sketch usually helps.
3. Analyze the situation to determine the types of work and energy involved.
4. If there are no losses of energy due to friction and other nonconservative forces, mechanical energy is conserved, that is, 

.
5. If nonconservative forces are present, mechanical energy is not conserved, and other forms of energy, such as heat and

light, may enter or leave the system. Determine what they are and calculate them as necessary.
6. Eliminate terms wherever possible to simplify the algebra.
7. Evaluate the numerical solution to see if it makes sense in the physical situation presented in the wording of the problem.

A typical small rescue helicopter has four blades: Each is 4.00 m long and has a mass of 50.0 kg (Figure ). The blades
can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total
loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the
translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades.

Figure : (a) Sketch of a four-blade helicopter. (b) A water rescue operation featuring a helicopter from the Auckland
Westpac Rescue Helicopter Service. (credit b: modification of work by “111 Emergency”/Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The wording of the problem gives all the
necessary constants to evaluate the expressions for the rotational and translational kinetic energies.

Solution

a. The rotational kinetic energy is

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find . The
angular velocity  is

 PROBLEM-SOLVING STRATEGY: ROTATIONAL ENERGY
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The moment of inertia of one blade is that of a thin rod rotated about its end, listed in Figure . The total  is four times
this moment of inertia because there are four blades. Thus,

Entering  and  into the expression for rotational kinetic energy gives

b. Entering the given values into the equation for translational kinetic energy, we obtain

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Significance

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of
the helicopter is in its spinning blades.

A person hurls a boomerang into the air with a velocity of 30.0 m/s at an angle of 40.0° with respect to the horizontal (Figure 
). It has a mass of 1.0 kg and is rotating at 10.0 rev/s. The moment of inertia of the boomerang is given as 

where  = 0.7 m. (a) What is the total energy of the boomerang when it leaves the hand? (b) How high does the boomerang go
from the elevation of the hand, neglecting air resistance?

Figure : A boomerang is hurled into the air at an initial angle of 40°.

Strategy

We use the definitions of rotational and linear kinetic energy to find the total energy of the system. The problem states to
neglect air resistance, so we don’t have to worry about energy loss. In part (b), we use conservation of mechanical energy to
find the maximum height of the boomerang.

Solution

a. Moment of inertia: 

Angular Velocity: 

The rotational kinetic energy is therefore
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The translational kinetic energy is

Thus, the total energy in the boomerang is

b. We use conservation of mechanical energy. Since the boomerang is launched at an angle, we need to write the total energies
of the system in terms of its linear kinetic energies using the velocity in the x- and y-directions. The total energy when the
boomerang leaves the hand is

The total energy at maximum height is

By conservation of mechanical energy,  so we have, after canceling like terms,

Since  = 30.0 m/s ( ) = 19.28 m/s, we find

Significance

In part (b), the solution demonstrates how energy conservation is an alternative method to solve a problem that normally would
be solved using kinematics. In the absence of air resistance, the rotational kinetic energy was not a factor in the solution for the
maximum height.

A nuclear submarine propeller has a moment of inertia of 800.0 kg • m . If the submerged propeller has a rotation rate of 4.0
rev/s when the engine is cut, what is the rotation rate of the propeller after 5.0 s when water resistance has taken 50,000 J out of
the system?

This page titled 11.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.
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11.E: Fixed-Axis Rotation Introduction (Exercises)

Conceptual Questions
1. A baseball bat is swung. Do all points on the bat have the same angular velocity? The same tangential speed?
2. What if another planet the same size as Earth were put into orbit around the Sun along with Earth. Would the moment of

inertia of the system increase, decrease, or stay the same?
3. A solid sphere is rotating about an axis through its center at a constant rotation rate. Another hollow sphere of the same

mass and radius is rotating about its axis through the center at the same rotation rate. Which sphere has a greater
rotational kinetic energy?

4. What three factors affect the torque created by a force relative to a specific pivot point?
5. Give an example in which a small force exerts a large torque. Give another example in which a large force exerts a small

torque.
6. When reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires and wheel

rims. Why does this allow a racer to achieve greater accelerations than would an identical reduction in the mass of the
bicycle’s frame?

7. Can a single force produce a zero torque?
8. Can a set of forces have a net torque that is zero and a net force that is not zero?
9. Can a set of forces have a net force that is zero and a net torque that is not zero?

10. In the expression  can  ever be less than the lever arm? Can it be equal to the lever arm?

Problems
11. At its peak, a tornado is 60.0 m in diameter and carries 500 km/h winds. What is its angular velocity in revolutions per

second?
12. A man stands on a merry-go-round that is rotating at 2.5 rad/s. If the coefficient of static friction between the man’s shoes

and the merry-go-round is S = 0.5, how far from the axis of rotation can he stand without sliding?
13. An ultracentrifuge accelerates from rest to 100,000 rpm in 2.00 min. (a) What is the average angular acceleration in

rad/s ? (b) What is the tangential acceleration of a point 9.50 cm from the axis of rotation? (c) What is the centripetal
acceleration in m/s  and multiples of g of this point at full rpm? (d) What is the total distance traveled by a point 9.5 cm
from the axis of rotation of the ultracentrifuge?

14. A wind turbine is rotating counterclockwise at 0.5 rev/s and slows to a stop in 10 s. Its blades are 20 m in length. (a)
What is the angular acceleration of the turbine? (b) What is the centripetal acceleration of the tip of the blades at t = 0 s?
(c) What is the magnitude and direction of the total linear acceleration of the tip of the blades at t = 0 s?

15. What is (a) the angular speed and (b) the linear speed of a point on Earth’s surface at latitude 30° N. Take the radius of
the Earth to be 6309 km. (c) At what latitude would your linear speed be 10 m/s?

16. A child with mass 30 kg sits on the edge of a merrygo-round at a distance of 3.0 m from its axis of rotation. The merry-
go-round accelerates from rest up to 0.4 rev/s in 10 s. If the coefficient of static friction between the child and the surface
of the merry-go-round is 0.6, does the child fall off before 5 s?

17. A bicycle wheel with radius 0.3m rotates from rest to 3 rev/s in 5 s. What is the magnitude and direction of the total
acceleration vector at the edge of the wheel at 1.0 s?

18. The angular velocity of a flywheel with radius 1.0 m varies according to (t) = 2.0t. Plot a (t) and a (t) from t = 0 to 3.0 s
for r = 1.0 m. Analyze these results to explain when a  >> a  and when a  << a  for a point on the flywheel at a radius of
1.0 m.

19. A system of point particles is shown in the following figure. Each particle has mass 0.3 kg and they all lie in the same
plane. (a) What is the moment of inertia of the system about the given axis? (b) If the system rotates at 5 rev/s, what is its
rotational kinetic energy?
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20. (a) Calculate the rotational kinetic energy of Earth on its axis. (b) What is the rotational kinetic energy of Earth in its orbit
around the Sun? (We will assume that Earth is a uniform sphere, which isn't quite right.)

21. A tire (15-kg) with a 0.3m radius comes off of a car traveling at 30 m/s and is rolling down the road straight at you. What
is the magnitude and direction of the angular velocity? What is the tire's rotational kinetic energy? What is the tire's total
kinetic energy (rotational and translational)? (Treat the tire as a disk.)

22. Calculate the rotational kinetic energy of a 12-kg motorcycle wheel if its angular velocity is 120 rad/s and its inner radius
is 0.280 m and outer radius 0.330 m.

23. A baseball pitcher throws the ball in a motion where there is rotation of the forearm about the elbow joint as well as other
movements. If the linear velocity of the ball relative to the elbow joint is 20.0 m/s at a distance of 0.480 m from the joint
and the moment of inertia of the forearm is 0.500 kg-m , what is the rotational kinetic energy of the forearm?

24. A diver goes into a somersault during a dive by tucking her limbs. If her rotational kinetic energy is 100 J and her
moment of inertia in the tuck is 9.0 kg • m , what is her rotational rate during the somersault?

25. An aircraft is coming in for a landing at 300 meters height when the propeller falls off. The aircraft is flying at 40.0 m/s
horizontally. The propeller has a rotation rate of 20 rev/s, a moment of inertia of 70.0 kg • m , and a mass of 200 kg.
Neglect air resistance. (a) With what translational velocity does the propeller hit the ground? (b) What is the rotation rate
of the propeller at impact?

26. A 30kg snowman rolls down an 11m high hill. (Assume snowman starts from rest at the top of the hill.) How fast is the
snowman going at the bottom? Assume the snowman is a cylinder with radius 0.5m

27. How fast does a 300g, r=4cm yo-yo need to be spinning so that it can make it back up to your hand if the string is 1.0m
long?

28. If air resistance is present in the preceding problem and reduces the propeller’s rotational kinetic energy at impact by
30%, what is the propeller’s rotation rate at impact?

29. A neutron star of mass 2 x 10  kg and radius 10 km rotates with a period of 0.02 seconds. What is its rotational kinetic
energy?

30. An electric sander consisting of a rotating disk of mass 0.7 kg and radius 10 cm rotates at 15 rev/s. When applied to a
rough wooden wall the rotation rate decreases by 20%. (a) What is the final rotational kinetic energy of the rotating disk?
(b) How much has its rotational kinetic energy decreased?

31. A system consists of a disk of mass 2.0 kg and radius 50 cm upon which is mounted an annular cylinder of mass 1.0 kg
with inner radius 20 cm and outer radius 30 cm (see below). The system rotates about an axis through the center of the
disk and annular cylinder at 10 rev/s. (a) What is the moment of inertia of the system? (b) What is its rotational kinetic
energy?
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12: C12) Thermal Energy
12.1: "Lost" Energy and the Discovery of Conservation of Energy
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12.3: Thermometers and Temperature Scales
12.4: Heat Transfer, Specific Heat, and Calorimetry
12.5: Thermal Energy (Exercises)

In this chapter, we will finally find where all of the energy goes that we have considered "lost" in previous chapters. We will find
an equivalence between thermal energy and other energies we have studied. Finally, we will learn how to solve simple problems
that involve thermal energy and changes of temperature of objects.

12: C12) Thermal Energy is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

https://libretexts.org/
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/12%3A_C12)_Thermal_Energy/12.01%3A_Lost_Energy_and_the_Discovery_of_Conservation_of_Energy
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/12%3A_C12)_Thermal_Energy/12.02%3A_Prelude_to_Temperature_and_Heat
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/12%3A_C12)_Thermal_Energy/12.03%3A_Thermometers_and_Temperature_Scales
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/12%3A_C12)_Thermal_Energy/12.04%3A__Heat_Transfer_Specific_Heat_and_Calorimetry
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/12%3A_C12)_Thermal_Energy/12.05%3A_Thermal_Energy_(Exercises)
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/12%3A_C12)_Thermal_Energy
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/12%3A_C12)_Thermal_Energy?no-cache


12.1.1 https://phys.libretexts.org/@go/page/88817

12.1: "Lost" Energy and the Discovery of Conservation of Energy
In the previous few chapters, we have taken for granted that conservation of energy is true. However, it actually took quite a while
for people to understand and accept conservation of energy. In fact, it was not until the middle of the 19  century that the law of
conservation of energy as we currently understand it was stated. The issue, as it has been since at least the time of Aristotle, was
friction.

Imagine a simple experiment to try to test conservation of energy: rolling a marble inside of a metal bowl. If you release the marble
from a certain height on the side of the bowl, it will roll down to the bottom of the bowl as it converts potential energy to kinetic
energy. As it rolls back up the other side of the bowl, it will slow as it converts the kinetic energy back to potential energy. As it
slows the marble will go up and up until...it almost reaches the same height that you released it from. As this process continues,
every pass of the marble will find the height lowering and lowering until the marble eventually stops at the bottom. It is hard to
create a theory of conservation of energy when energy (at least the types of energy that you know of) is not being conserved.

Some scientists noticed something, however. When you put a drill into a piece of wood, the wood slows down the motion (i.e. the
rotational kinetic energy) of the drill bit. If you touch the drill bit afterwards, though, you will notice something: The drill bit is hot.
(In fact, don't actually do this with a modern drill. You will burn yourself.) This gave some of our 19  century scientists the idea
that perhaps this motion energy was being turned into some sort of "heat" energy.

While many scientists worked on this problem, the most famous was James Joule. He
constructed an apparatus that increased the temperature of water by dropping a large
weight. Using this device, Joule found the amount of heat energy (which at that time
was measured in calories) that was equivalent to an amount of mechanical energy
(which was measured by Joule in "foot-pounds" but which, today, we measure in Joules.
(One guess where the name came from.) Essentially, it was found that 1 calorie  was
equal to 4.18 Joules.

Enough history! What does this mean for us today? Well, it means that we no longer
need to ignore friction. We can now start to express where our "lost" energy is going
and use this to solve equations that involve heat and mechanical energy. We will begin to develop this theory in the next section.

 

12.1: "Lost" Energy and the Discovery of Conservation of Energy is shared under a CC BY-SA license and was authored, remixed, and/or curated
by Kurt Andresen, Gettysburg College.

th

th

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/88817?pdf
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/12%3A_C12)_Thermal_Energy/12.01%3A_Lost_Energy_and_the_Discovery_of_Conservation_of_Energy
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/12%3A_C12)_Thermal_Energy/12.01%3A_Lost_Energy_and_the_Discovery_of_Conservation_of_Energy
https://creativecommons.org/licenses/by-sa/


12.2.1 https://phys.libretexts.org/@go/page/88943

12.2: Prelude to Temperature and Heat
Heat and temperature are important concepts for each of us, every day. How we dress in the morning depends on whether the day is
hot or cold, and most of what we do requires energy that ultimately comes from the Sun. The study of heat and temperature is part
of an area of physics known as thermodynamics. The laws of thermodynamics govern the flow of energy throughout the universe.
They are studied in all areas of science and engineering, from chemistry to biology to environmental science.

Figure : These snowshoers on Mount Hood in Oregon are enjoying the heat flow and light caused by high temperature. All
three mechanisms of heat transfer are relevant to this picture. The heat flowing out of the fire also turns the solid snow to liquid
water and vapor. (credit: “Mt. Hood Territory”/Flickr)

In this chapter, we explore heat and temperature. It is not always easy to distinguish these terms. Heat is the flow of energy from
one object to another. This flow of energy is caused by a difference in temperature. The transfer of heat can change temperature, as
can work, another kind of energy transfer that is central to thermodynamics. We return to these basic ideas several times throughout
the next four chapters, and you will see that they affect everything from the behavior of atoms and molecules to cooking to our
weather on Earth to the life cycles of stars.

This page titled 12.2: Prelude to Temperature and Heat is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

1.1: Prelude to Temperature and Heat by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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12.3: Thermometers and Temperature Scales

By the end of this section, you will be able to:

Describe several different types of thermometers
Convert temperatures between the Celsius, Fahrenheit, and Kelvin scales

Any physical property that depends consistently and reproducibly on temperature can be used as the basis of a thermometer. For
example, volume increases with temperature for most substances. This property is the basis for the common alcohol thermometer
and the original mercury thermometers. Other properties used to measure temperature include electrical resistance, color, and the
emission of infrared radiation (Figure ).

Figure : Because many physical properties depend on temperature, the variety of thermometers is remarkable. (a) In this
common type of thermometer, the alcohol, containing a red dye, expands more rapidly than the glass encasing it. When the
thermometer’s temperature increases, the liquid from the bulb is forced into the narrow tube, producing a large change in the length
of the column for a small change in temperature. (b) Each of the six squares on this plastic (liquid crystal) thermometer contains a
film of a different heat-sensitive liquid crystal material. Below , all six squares are black. When the plastic thermometer is
exposed to a temperature of , the first liquid crystal square changes color. When the temperature reaches above , the
second liquid crystal square also changes color, and so forth. (c) A firefighter uses a pyrometer to check the temperature of an
aircraft carrier’s ventilation system. The pyrometer measures infrared radiation (whose emission varies with temperature) from the
vent and quickly produces a temperature readout. Infrared thermometers are also frequently used to measure body temperature by
gently placing them in the ear canal. Such thermometers are more accurate than the alcohol thermometers placed under the tongue
or in the armpit. (credit b: modification of work by Tess Watson; credit c: modification of work by Lamel J. Hinton)

Thermometers measure temperature according to well-defined scales of measurement. The three most common temperature scales
are Fahrenheit, Celsius, and Kelvin. Temperature scales are created by identifying two reproducible temperatures. The freezing and
boiling temperatures of water at standard atmospheric pressure are commonly used.

On the Celsius scale, the freezing point of water is  and the boiling point is . The unit of temperature on this scale is the
degree Celsius ( ). The Fahrenheit scale (still the most frequently used for common purposes in the United States) has the
freezing point of water at  and the boiling point a.  Its unit is the degree Fahrenheit ( ). You can see that 100
Celsius degrees span the same range as 180 Fahrenheit degrees. Thus, a temperature difference of one degree on the Celsius scale
is 1.8 times as large as a difference of one degree on the Fahrenheit scale, or
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The definition of temperature in terms of molecular motion suggests that there should be a lowest possible temperature, where the
average kinetic energy of molecules is zero (or the minimum allowed by quantum mechanics). Experiments confirm the existence
of such a temperature, called absolute zero. An absolute temperature scale is one whose zero point is absolute zero. Such scales
are convenient in science because several physical quantities, such as the volume of an ideal gas, are directly related to absolute
temperature.

The Kelvin scale is the absolute temperature scale that is commonly used in science. The SI temperature unit is the kelvin, which
is abbreviated K (not accompanied by a degree sign). Thus 0 K is absolute zero. The freezing and boiling points of water are
273.15 K and 373.15 K, respectively. Therefore, temperature differences are the same in units of kelvins and degrees Celsius, or 

.

Figure : Relationships between the Fahrenheit, Celsius, and Kelvin temperature scales are shown. The relative sizes of the
scales are also shown.

The relationships between the three common temperature scales are shown in Figure . Temperatures on these scales can be
converted using the equations in Table .

Table 

To convert from… Use this equation…

Celsius to Fahrenheit

Fahrenheit to Celsius

Celsius to Kelvin

Kelvin to Celsius

Fahrenheit to Kelvin

Kelvin to Fahrenheit

To convert between Fahrenheit and Kelvin, convert to Celsius as an intermediate step.

“Room temperature” is generally defined in physics to be . (a) What is room temperature in ? (b) What is it in K?

Strategy To answer these questions, all we need to do is choose the correct conversion equations and substitute the known
values.

Solution
To convert from  to , use the equation
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Substitute the known value into the equation and solve:

Similarly, we find that .

The Kelvin scale is part of the SI system of units, so its actual definition is more complicated than the one given above. First, it is
not defined in terms of the freezing and boiling points of water, but in terms of the triple point. The triple point is the unique
combination of temperature and pressure at which ice, liquid water, and water vapor can coexist stably. As will be discussed in the
section on phase changes, the coexistence is achieved by lowering the pressure and consequently the boiling point to reach the
freezing point. The triple-point temperature is defined as 273.16 K. This definition has the advantage that although the freezing
temperature and boiling temperature of water depend on pressure, there is only one triple-point temperature.

Second, even with two points on the scale defined, different thermometers give somewhat different results for other temperatures.
Therefore, a standard thermometer is required. Metrologists (experts in the science of measurement) have chosen the constant-
volume gas thermometer for this purpose. A vessel of constant volume filled with gas is subjected to temperature changes, and
the measured temperature is proportional to the change in pressure. Using “TP” to represent the triple point,

The results depend somewhat on the choice of gas, but the less dense the gas in the bulb, the better the results for different gases
agree. If the results are extrapolated to zero density, the results agree quite well, with zero pressure corresponding to a temperature
of absolute zero.

Constant-volume gas thermometers are big and come to equilibrium slowly, so they are used mostly as standards to calibrate other
thermometers.

This page titled 12.3: Thermometers and Temperature Scales is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

1.3: Thermometers and Temperature Scales by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
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12.4: Heat Transfer, Specific Heat, and Calorimetry

By the end of this section, you will be able to:

Explain phenomena involving heat as a form of energy transfer
Solve problems involving heat transfer

We have seen in previous chapters that energy is one of the fundamental concepts of physics. Heat is a type of energy transfer that
is caused by a temperature difference, and it can change the temperature of an object. As we learned earlier in this chapter, heat
transfer is the movement of energy from one place or material to another as a result of a difference in temperature. Heat transfer is
fundamental to such everyday activities as home heating and cooking, as well as many industrial processes. It also forms a basis for
the topics in the remainder of this chapter.

We also introduce the concept of internal energy, which can be increased or decreased by heat transfer. We discuss another way to
change the internal energy of a system, namely doing work on it. Thus, we are beginning the study of the relationship of heat and
work, which is the basis of engines and refrigerators and the central topic (and origin of the name) of thermodynamics.

Internal Energy and Heat

A thermal system has internal energy (also called thermal energy), which is the sum of the mechanical energies of its molecules.
A system’s internal energy is proportional to its temperature. As we saw earlier in this chapter, if two objects at different
temperatures are brought into contact with each other, energy is transferred from the hotter to the colder object until the bodies
reach thermal equilibrium (that is, they are at the same temperature). No work is done by either object because no force acts
through a distance (as we discussed in Work and Kinetic Energy). These observations reveal that heat is energy transferred
spontaneously due to a temperature difference. Figure  shows an example of heat transfer.

Figure : (a) Here, the soft drink has a higher temperature than the ice, so they are not in thermal equilibrium. (b) When the
soft drink and ice are allowed to interact, heat is transferred from the drink to the ice due to the difference in temperatures until they
reach the same temperature, , achieving equilibrium. In fact, since the soft drink and ice are both in contact with the surrounding
air and the bench, the ultimate equilibrium temperature will be the same as that of the surroundings.

The meaning of “heat” in physics is different from its ordinary meaning. For example, in conversation, we may say “the heat was
unbearable,” but in physics, we would say that the temperature was high. Heat is a form of energy flow, whereas temperature is not.
Incidentally, humans are sensitive to heat flow rather than to temperature.

Since heat is a form of energy, its SI unit is the joule (J). Another common unit of energy often used for heat is the calorie (cal),
defined as the energy needed to change the temperature of 1.00 g of water by —specifically, between  and 
since there is a slight temperature dependence. Also commonly used is the kilocalorie (kcal), which is the energy needed to change
the temperature of 1.00 kg of water by . Since mass is most often specified in kilograms, the kilocalorie is convenient.
Confusingly, food calories (sometimes called “big calories,” abbreviated Cal) are actually kilocalories, a fact not easily determined
from package labeling.
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Mechanical Equivalent of Heat
It is also possible to change the temperature of a substance by doing work, which transfers energy into or out of a system. This
realization helped establish that heat is a form of energy. James Prescott Joule (1818–1889) performed many experiments to
establish the mechanical equivalent of heat—the work needed to produce the same effects as heat transfer. In the units used
for these two quantities, the value for this equivalence is

We consider this equation to represent the conversion between two units of energy. (Other numbers that you may see refer to
calories defined for temperature ranges other than  to .)

Figure  shows one of Joule’s most famous experimental setups for demonstrating that work and heat can produce the same
effects and measuring the mechanical equivalent of heat. It helped establish the principle of conservation of energy. Gravitational
potential energy (U) was converted into kinetic energy (K), and then randomized by viscosity and turbulence into increased
average kinetic energy of atoms and molecules in the system, producing a temperature increase. Joule’s contributions to
thermodynamics were so significant that the SI unit of energy was named after him.

Figure : Joule’s experiment established the equivalence of heat and work. As the masses descended, they caused the paddles
to do work, , on the water. The result was a temperature increase, , measured by the thermometer. Joule found that 

 was proportional to W and thus determined the mechanical equivalent of heat.

Increasing internal energy by heat transfer gives the same result as increasing it by doing work. Therefore, although a system has a
well-defined internal energy, we cannot say that it has a certain “heat content” or “work content.” A well-defined quantity that
depends only on the current state of the system, rather than on the history of that system, is known as a state variable. Temperature
and internal energy are state variables. To sum up this paragraph, heat and work are not state variables.

Incidentally, increasing the internal energy of a system does not necessarily increase its temperature. As we’ll see in the next
section, the temperature does not change when a substance changes from one phase to another. An example is the melting of ice,
which can be accomplished by adding heat or by doing frictional work, as when an ice cube is rubbed against a rough surface.

Temperature Change and Heat Capacity

We have noted that heat transfer often causes temperature change. Experiments show that with no phase change and no work done
on or by the system, the transferred heat is typically directly proportional to the change in temperature and to the mass of the
system, to a good approximation. (Below we show how to handle situations where the approximation is not valid.) The constant of
proportionality depends on the substance and its phase, which may be gas, liquid, or solid. We omit discussion of the fourth phase,
plasma, because although it is the most common phase in the universe, it is rare and short-lived on Earth.

1.000 kcal = 4186 J.

C14.5o C15.5o

12.4.2

12.4.2
W = mgh ΔT

ΔT
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We can understand the experimental facts by noting that the transferred heat is the change in the internal energy, which is the total
energy of the molecules. Under typical conditions, the total kinetic energy of the molecules  is a constant fraction of the
internal energy (for reasons and with exceptions that we’ll see in the next chapter). The average kinetic energy of a molecule 
is proportional to the absolute temperature. Therefore, the change in internal energy of a system is typically proportional to the
change in temperature and to the number of molecules, N. Mathematically, . The dependence
on the substance results in large part from the different masses of atoms and molecules. We are considering its heat capacity in
terms of its mass, but as we will see in the next chapter, in some cases, heat capacities per molecule are similar for different
substances. The dependence on substance and phase also results from differences in the potential energy associated with
interactions between atoms and molecules.

A practical approximation for the relationship between heat transfer and temperature change is:

where  is the symbol for heat transfer (“quantity of heat”), m is the mass of the substance, and  is the change in
temperature. The symbol c stands for the specific heat (also called “specific heat capacity”) and depends on the material and
phase. The specific heat is numerically equal to the amount of heat necessary to change the temperature of  of mass by 

. The SI unit for specific heat is  or . (Recall that the temperature change  is the same in
units of kelvin and degrees Celsius.)

Values of specific heat must generally be measured, because there is no simple way to calculate them precisely. Table  lists
representative values of specific heat for various substances. We see from this table that the specific heat of water is five times that
of glass and 10 times that of iron, which means that it takes five times as much heat to raise the temperature of water a given
amount as for glass, and 10 times as much as for iron. In fact, water has one of the largest specific heats of any material, which is
important for sustaining life on Earth.

The specific heats of gases depend on what is maintained constant during the heating—typically either the volume or the pressure.
In the table, the first specific heat value for each gas is measured at constant volume, and the second (in parentheses) is measured at
constant pressure. We will return to this topic in the chapter on the kinetic theory of gases.

Table : Specific Heats of Various Substances

Substance Specific Heat (c) Specific Heat (c) 

Solids

Aluminum 900 0.215

Asbestos 800 0.19

Concrete, granite (average) 840 0.20

Copper 387 0.0924

Glass 840 0.20

Gold 129 0.0308

Human body (average at ) 3500 0.83

Ice (average  to ) 2090 0.50

Iron, steel 452 0.108

Lead 128 0.0305

Silver 235 0.0562

Wood 1700 0.40

Liquids

Ktotal

Kave

ΔU ∝ Δ = N ∝ NΔTKtotal Kave

 Heat Transfer and Temperature Change

Q = mcΔT ,

Q ΔT

1.00 kg

C1.00o J/(kg×K) J/(kg C)×o ΔT

12.4.1

12.4.1

J/kg C⋅o kcal/kg ⋅o C |2|

C37o
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Substance Specific Heat (c) Specific Heat (c) 

Benzene 1740 0.415

Ethanol 2450 0.586

Glycerin 2410 0.576

Mercury 139 0.0333

Water ( ) 4186 1.000

Gases

Air (dry) 721 (1015) 0.172 (0.242)

Ammonia 1670 (2190) 0.399 (0.523)

Carbon dioxide 638 (833) 0.152 (0.199)

Nitrogen 739 (1040) 0.177 (0.248)

Oxygen 651 (913) 0.156 (0.218)

Steam 1520 (2020) 0.363 (0.482)

The values for solids and liquids are at constant volume and , except as noted. These values are identical in units of .
 Specific heats at constant volume and at  except as noted, and at 1.00 atm pressure. Values in parentheses are specific heats at

a constant pressure of 1.00 atm.

In general, specific heat also depends on temperature. Thus, a precise definition of c for a substance must be given in terms of an
infinitesimal change in temperature. To do this, we note that  and replace  with d:

Except for gases, the temperature and volume dependence of the specific heat of most substances is weak at normal temperatures.
Therefore, we will generally take specific heats to be constant at the values given in the table.

A 0.500-kg aluminum pan on a stove and 0.250 L of water in it are heated from  to . (a) How much heat is
required? What percentage of the heat is used to raise the temperature of (b) the pan and (c) the water?

Strategy
We can assume that the pan and the water are always at the same temperature. When you put the pan on the stove, the
temperature of the water and that of the pan are increased by the same amount. We use the equation for the heat transfer for the
given temperature change and mass of water and aluminum. The specific heat values for water and aluminum are given in
Table .

Solution
1. Calculate the temperature difference:

2. Calculate the mass of water. Because the density of water is , 1 L of water has a mass of 1 kg, and the mass of
0.250 L of water is 

3. Calculate the heat transferred to the water. Use the specific heat of water in Table :

4. Calculate the heat transferred to the aluminum. Use the specific heat for aluminum in Table :

J/kg C⋅o kcal/kg ⋅o C |2|

C15.0o

[3]

12.4.1

( C)100o

C25o [2] cal/g ⋅ Co

[3] 20.0 Co

c = 1
m

ΔQ

ΔT
Δ

c = .
1

m

dQ

dT

 Example : Calculating the Required Heat12.4.1

C20.0o C80.0o

12.4.1
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= 0.250 kg.mw

12.4.1

= ΔT = (0.250 kg)(4186 J/k C)( C) = 62.8 kJ.Qw mwcw go 60.0o
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5. Find the total transferred heat:

Significance
In this example, the heat transferred to the container is a significant fraction of the total transferred heat. Although the mass of
the pan is twice that of the water, the specific heat of water is over four times that of aluminum. Therefore, it takes a bit more
than twice as much heat to achieve the given temperature change for the water as for the aluminum pan.

Example  illustrates a temperature rise caused by doing work. (The result is the same as if the same amount of energy had
been added with a blowtorch instead of mechanically.)

Truck brakes used to control speed on a downhill run do work, converting gravitational potential energy into increased internal
energy (higher temperature) of the brake material (Figure ). This conversion prevents the gravitational potential energy
from being converted into kinetic energy of the truck. Since the mass of the truck is much greater than that of the brake
material absorbing the energy, the temperature increase may occur too fast for sufficient heat to transfer from the brakes to the
environment; in other words, the brakes may overheat.

Figure : The smoking brakes on a braking truck are visible evidence of the mechanical equivalent of heat.

Calculate the temperature increase of 10 kg of brake material with an average specific heat of  if the material
retains 10% of the energy from a 10,000-kg truck descending 75.0 m (in vertical displacement) at a constant speed.

Strategy
We calculate the gravitational potential energy (Mgh) that the entire truck loses in its descent, equate it to the increase in the
brakes’ internal energy, and then find the temperature increase produced in the brake material alone.

Solution
First we calculate the change in gravitational potential energy as the truck goes downhill:

Because the kinetic energy of the truck does not change, conservation of energy tells us the lost potential energy is dissipated,
and we assume that 10% of it is transferred to internal energy of the brakes, so take . Then we calculate the
temperature change from the heat transferred, using

Significance
If the truck had been traveling for some time, then just before the descent, the brake temperature would probably be higher
than the ambient temperature. The temperature increase in the descent would likely raise the temperature of the brake material

= + = 89.8 kJ.QTotal QW QA1

12.4.2

 Calculating the Temperature Increase from the Work Done on a Substance.

12.4.3

12.4.3

800 J/kg⋅C

Mgh = (10, 000 kg)(9.80 m/ )(75.0 m) = 7.35 × J.s2 106

Q = Mgh/10

ΔT = = C.
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very high, so this technique is not practical. Instead, the truck would use the technique of engine braking. A different idea
underlies the recent technology of hybrid and electric cars, where mechanical energy (kinetic and gravitational potential
energy) is converted by the brakes into electrical energy in the battery, a process called regenerative braking.

In a common kind of problem, objects at different temperatures are placed in contact with each other but isolated from everything
else, and they are allowed to come into equilibrium. A container that prevents heat transfer in or out is called a calorimeter, and
the use of a calorimeter to make measurements (typically of heat or specific heat capacity) is called calorimetry.

We will use the term “calorimetry problem” to refer to any problem in which the objects concerned are thermally isolated from
their surroundings. An important idea in solving calorimetry problems is that during a heat transfer between objects isolated from
their surroundings, the heat gained by the colder object must equal the heat lost by the hotter object, due to conservation of energy:

We express this idea by writing that the sum of the heats equals zero because the heat gained is usually considered positive; the heat
lost, negative.

Suppose you pour 0.250 kg of  water (about a cup) into a 0.500-kg aluminum pan off the stove with a temperature of 
. Assume no heat transfer takes place to anything else: The pan is placed on an insulated pad, and heat transfer to the air

is neglected in the short time needed to reach equilibrium. Thus, this is a calorimetry problem, even though no isolating
container is specified. Also assume that a negligible amount of water boils off. What is the temperature when the water and pan
reach thermal equilibrium?

Strategy

Originally, the pan and water are not in thermal equilibrium: The pan is at a higher temperature than the water. Heat transfer
restores thermal equilibrium once the water and pan are in contact; it stops once thermal equilibrium between the pan and the
water is achieved. The heat lost by the pan is equal to the heat gained by the water—that is the basic principle of calorimetry.

Solution
1. Use the equation for heat transfer  to express the heat lost by the aluminum pan in terms of the mass of the pan,

the specific heat of aluminum, the initial temperature of the pan, and the final temperature:

2. Express the heat gained by the water in terms of the mass of the water, the specific heat of water, the initial temperature of
the water, and the final temperature:

3. Note that  and  and that as stated above, they must sum to zero:

4. This a linear equation for the unknown final temperature, . Solving for ,

and insert the numerical values:

Significance Why is the final temperature so much closer to  than to ? The reason is that water has a greater
specific heat than most common substances and thus undergoes a smaller temperature change for a given heat transfer. A large

+ = 0.Qcold Qhot

 Calculating the Final Temperature in Calorimetry

C20.0o

C150o
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body of water, such as a lake, requires a large amount of heat to increase its temperature appreciably. This explains why the
temperature of a lake stays relatively constant during the day even when the temperature change of the air is large. However,
the water temperature does change over longer times (e.g., summer to winter).

If 25 kJ is necessary to raise the temperature of a rock from  to , how much heat is necessary to heat the rock from 
 to ?

Answer

To a good approximation, the heat transfer depends only on the temperature difference. Since the temperature differences
are the same in both cases, the same 25 kJ is necessary in the second case. (As we will see in the next section, the answer
would have been different if the object had been made of some substance that changes phase anywhere between  and 

.)

At low temperatures, the specific heats of solids are typically proportional to . The first understanding of this behavior was
due to the Dutch physicist Peter Debye, who in 1912, treated atomic oscillations with the quantum theory that Max Planck had
recently used for radiation. For instance, a good approximation for the specific heat of salt, NaCl, is 

. The constant 321 K is called the Debye temperature of NaCl,  and the formula works well
when . Using this formula, how much heat is required to raise the temperature of 24.0 g of NaCl from 5 K to 15
K?

Solution
Because the heat capacity depends on the temperature, we need to use the equation

We solve this equation for Q by integrating both sides: .

Then we substitute the given values in and evaluate the integral:

Significance If we had used the equation  and the room-temperature specific heat of salt, , we would
have gotten a very different value.

This page titled 12.4: Heat Transfer, Specific Heat, and Calorimetry is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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12.5: Thermal Energy (Exercises)

Conceptual Questions
1. How is heat transfer related to temperature?

2. Describe a situation in which heat transfer occurs.

3. When heat transfers into a system, is the energy stored as heat? Explain briefly.

4. The brakes in a car increase in temperature by ΔT when bringing the car to rest from a speed . How much greater would
ΔT be if the car initially had twice the speed? You may assume the car stops fast enough that no heat transfers out of the
brakes.

Problems
5. (A bit U.S.-centric. Sorry.) While traveling outside the United States, you feel sick. A companion gets you a thermometer,
which says your temperature is 39. What scale is that on? What is your Fahrenheit temperature? Should you seek medical
help?

6. What are the following temperatures on the Kelvin scale?

(a) 68.0°F, an indoor temperature sometimes recommended for energy conservation in winter

(b) 134°F, one of the highest atmospheric temperatures ever recorded on Earth (Death Valley, California, 1913)

(c) 9890°F, the temperature of the surface of the Sun

6.  (a) Suppose a cold front blows into your locale and drops the temperature by 40.0 Fahrenheit degrees. How many
degrees Celsius does the temperature decrease when it decreases by 40.0°F? (b) Show that any change in temperature in
Fahrenheit degrees is nine-fifths the change in Celsius degrees

7.  An Associated Press article on climate change said, “Some of the ice shelf’s disappearance was probably during times
when the planet was 36 degrees Fahrenheit (2 degrees Celsius) to 37 degrees Fahrenheit (3 degrees Celsius) warmer than
it is today.” What mistake did the reporter make?

8.  (a) At what temperature do the Fahrenheit and Celsius scales have the same numerical value? (b) At what temperature do
the Fahrenheit and Kelvin scales have the same numerical value?

9.  A person taking a reading of the temperature in a freezer in Celsius makes two mistakes: first omitting the negative sign
and then thinking the temperature is Fahrenheit. That is, the person reads –x°C as x°F. Oddly enough, the result is the
correct Fahrenheit temperature. What is the original Celsius reading? Round your answer to three significant figures.

10. On a hot day, the temperature of an 80,000-L swimming pool increases by 1.50°C. What is the net heat transfer during
this heating? Ignore any complications, such as loss of water by evaporation.

11. To sterilize a 50.0-g glass baby bottle, we must raise its temperature from 22.0°C to 95.0°C. How much heat transfer is
required?

12. The same heat transfer into identical masses of different substances produces different temperature changes. Calculate the
final temperature when 1.00 kcal of heat transfers into 1.00 kg of the following, originally at 20.0°C:

(a) water;

(b) concrete;

(c) steel; and

(d) mercury.

13. Rubbing your hands together warms them by converting work into thermal energy. If a woman rubs her hands back and
forth for a total of 20 rubs, at a distance of 7.50 cm per rub, and with an average frictional force of 40.0 N, what is the
temperature increase? The mass of tissues warmed is only 0.100 kg, mostly in the palms and fingers.

14. A 0.250-kg block of a pure material is heated from 20.0°C to 65.0°C by the addition of 4.35 kJ of energy. Calculate its
specific heat and identify the substance of which it is most likely composed.

15. Suppose identical amounts of heat transfer into different masses of copper and water, causing identical changes in
temperature. What is the ratio of the mass of copper to water?

v
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16. (a) The number of kilocalories in food is determined by calorimetry techniques in which the food is burned and the
amount of heat transfer is measured. How many kilocalories per gram are there in a 5.00-g peanut if the energy from
burning it is transferred to 0.500 kg of water held in a 0.100-kg aluminum cup, causing a 54.9-°C temperature increase?
Assume the process takes place in an ideal calorimeter, in other words a perfectly insulated container.

17. (b) Compare your answer to the following labeling information found on a package of dry roasted peanuts: a
serving of 33 g contains 200 calories. Comment on whether the values are consistent.

18. Following vigorous exercise, the body temperature of an 80.0 kg person is 40.0°C. At what rate in watts must the person
transfer thermal energy to reduce the body temperature to 37.0°C in 30.0 min, assuming the body continues to produce
energy at the rate of 150 W? (1watt=1joule/secondor1W=1J/s)

19. In a study of healthy young , doing 20 push-ups in 1 minute burned an amount of energy per kg that for a 70.0-kg
man corresponds to 8.06 calories (kcal). How much would a 70.0-kg man’s temperature rise if he did not lose any heat
during that time?

20. A 1.28-kg sample of water at 10.0°C is in a calorimeter. You drop a piece of steel with a mass of 0.385 kg at 215°C into
it. After the sizzling subsides, what is the final equilibrium temperature? (Make the reasonable assumptions that any
steam produced condenses into liquid water during the process of equilibration and that the evaporation and condensation
don’t affect the outcome, as we’ll see in the next section.)

21. Repeat the preceding problem, assuming the water is in a glass beaker with a mass of 0.200 kg, which in turn is in a
calorimeter. The beaker is initially at the same temperature as the water. Before doing the problem, should the answer be
higher or lower than the preceding answer? Comparing the mass and specific heat of the beaker to those of the water, do
you think the beaker will make much difference?

22.  Even when shut down after a period of normal use, a large commercial nuclear reactor transfers thermal energy at the
rate of 150 MW by the radioactive decay of fission products. This heat transfer causes a rapid increase in temperature if
the cooling system fails (1watt=1joule/second or 1W=1J/s and 1MW=1megawatt).

(a) Calculate the rate of temperature increase in degrees Celsius per second (°C/s) if the mass of the reactor core is 
and it has an average specific heat of 0.3349kJ/kg⋅°C.

(b) How long would it take to obtain a temperature increase of 2000°C, which could cause some metals holding the
radioactive materials to melt? (The initial rate of temperature increase would be greater than that calculated here
because the heat transfer is concentrated in a smaller mass. Later, however, the temperature increase would slow down
because the 500,000-kg steel containment vessel would also begin to heat up.)

23. You leave a pastry in the refrigerator on a plate and ask your roommate to take it out before you get home so you can eat
it at room temperature, the way you like it. Instead, your roommate plays video games for hours. When you return, you
notice that the pastry is still cold, but the game console has become hot. Annoyed, and knowing that the pastry will not be
good if it is microwaved, you warm up the pastry by unplugging the console and putting it in a clean trash bag (which
acts as a perfect calorimeter) with the pastry on the plate. After a while, you find that the equilibrium temperature is a
nice, warm 38.3°C. You know that the game console has a mass of 2.1 kg. Approximate it as having a uniform initial
temperature of 45°C. The pastry has a mass of 0.16 kg and a specific heat of 3.0kJ/(kg⋅ºC), and is at a uniform initial
temperature of 4.0°C. The plate is at the same temperature and has a mass of 0.24 kg and a specific heat of 0.90J/(kg⋅ºC).
What is the specific heat of the console?

24. Two solid spheres, A and B, made of the same material, are at temperatures of 0°C and 100°C, respectively. The spheres
are placed in thermal contact in an ideal calorimeter, and they reach an equilibrium temperature of 20°C. Which is the
bigger sphere? What is the ratio of their diameters?

25. In some countries, liquid nitrogen is used on dairy trucks instead of mechanical refrigerators. A 3.00-hour delivery trip
requires 200 L of liquid nitrogen, which has a density of .

(a) Calculate the heat transfer necessary to evaporate this amount of liquid nitrogen and raise its temperature to
3.00°C. (Use  and assume it is constant over the temperature range.) This value is the amount of cooling the liquid
nitrogen supplies.

(b) What is this heat transfer rate in kilowatt-hours?

(c) Compare the amount of cooling obtained from melting an identical mass of 0-°C ice with that from evaporating the
liquid nitrogen.

men1

1.60 × kg105

808kg/ .m3
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26. Some gun fanciers make their own bullets, which involves melting lead and casting it into lead slugs. How much heat
transfer is needed to raise the temperature and melt 0.500 kg of lead, starting from 25.0°C?
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13.1: Phase Changes

By the end of this section, you will be able to:

Describe phase transitions and equilibrium between phases
Solve problems involving latent heat
Solve calorimetry problems involving phase changes

Phase transitions play an important theoretical and practical role in the study of heat flow. In melting (or “fusion”), a solid turns
into a liquid; the opposite process is freezing. In evaporation, a liquid turns into a gas; the opposite process is condensation.

A substance melts or freezes at a temperature called its melting point, and boils (evaporates rapidly) or condenses at its boiling
point. These temperatures depend on pressure. High pressure favors the denser form, so typically, high pressure raises the melting
point and boiling point, and low pressure lowers them. For example, the boiling point of water is  at 1.00 atm. At higher
pressure, the boiling point is higher, and at lower pressure, it is lower. The main exception is the melting and freezing of water,
discussed in the next section.

Phase Diagrams
The phase of a given substance depends on the pressure and temperature. Thus, plots of pressure versus temperature showing the
phase in each region provide considerable insight into thermal properties of substances. Such a pT graph is called a phase
diagram.

Figure  shows the phase diagram for water. Using the graph, if you know the pressure and temperature, you can determine
the phase of water. The solid curves—boundaries between phases—indicate phase transitions, that is, temperatures and pressures at
which the phases coexist. For example, the boiling point of water is  at 1.00 atm. As the pressure increases, the boiling
temperature rises gradually to  at a pressure of 218 atm. A pressure cooker (or even a covered pot) cooks food faster than an
open pot, because the water can exist as a liquid at temperatures greater than  without all boiling away. (As we’ll see in the
next section, liquid water conducts heat better than steam or hot air.) The boiling point curve ends at a certain point called the
critical point—that is, a critical temperature, above which the liquid and gas phases cannot be distinguished; the substance is
called a supercritical fluid. At sufficiently high pressure above the critical point, the gas has the density of a liquid but does not
condense. Carbon dioxide, for example, is supercritical at all temperatures above . Critical pressure is the pressure of the
critical point.

Figure : The phase diagram (pT graph) for water shows solid (s), liquid (l), and vapor (v) phases. At temperatures and
pressure above those of the critical point, there is no distinction between liquid and vapor. Note that the axes are nonlinear and the
graph is not to scale. This graph is simplified—it omits several exotic phases of ice at higher pressures. The phase diagram of water
is unusual because the melting-point curve has a negative slope, showing that you can melt ice by increasing the pressure.
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Similarly, the curve between the solid and liquid regions in Figure  gives the melting temperature at various pressures. For
example, the melting point is  at 1.00 atm, as expected. Water has the unusual property that ice is less dense than liquid water
at the melting point, so at a fixed temperature, you can change the phase from solid (ice) to liquid (water) by increasing the
pressure. That is, the melting temperature of ice falls with increased pressure, as the phase diagram shows. For example, when a car
is driven over snow, the increased pressure from the tires melts the snowflakes; afterwards, the water refreezes and forms an ice
layer.

As you learned in the earlier section on thermometers and temperature scales, the triple point is the combination of temperature
and pressure at which ice, liquid water, and water vapor can coexist stably—that is, all three phases exist in equilibrium. For water,
the triple point occurs at  and 611.2 Pa; that is a more accurate calibration temperature than the melting point of
water at 1.00 atm, or .

View this video to see a substance at its triple point.

At pressures below that of the triple point, there is no liquid phase; the substance can exist as either gas or solid. For water, there is
no liquid phase at pressures below 0.00600 atm. The phase change from solid to gas is called sublimation. You may have noticed
that snow can disappear into thin air without a trace of liquid water, or that ice cubes can disappear in a freezer. Both are examples
of sublimation. The reverse also happens: Frost can form on very cold windows without going through the liquid stage. Figure 

 shows the result, as well as showing a familiar example of sublimation. Carbon dioxide has no liquid phase at atmospheric
pressure. Solid  is known as dry ice because instead of melting, it sublimes. Its sublimation temperature at atmospheric
pressure is . Certain air fresheners use the sublimation of a solid to spread a perfume around a room. Some solids, such as
osmium tetroxide, are so toxic that they must be kept in sealed containers to prevent human exposure to their sublimation-produced
vapors.

Figure : Direct transitions between solid and vapor are common, sometimes useful, and even beautiful. (a) Dry ice sublimes
directly to carbon dioxide gas. The visible “smoke” consists of water droplets that condensed in the air cooled by the dry ice. (b)
Frost forms patterns on a very cold window, an example of a solid formed directly from a vapor. (credit a: modification of work by
Windell Oskay; credit b: modification of work by Liz West)

Equilibrium
At the melting temperature, the solid and liquid phases are in equilibrium. If heat is added, some of the solid will melt, and if heat
is removed, some of the liquid will freeze. The situation is somewhat more complex for liquid-gas equilibrium. Generally, liquid
and gas are in equilibrium at any temperature. We call the gas phase a vapor when it exists at a temperature below the boiling
temperature, as it does for water at . Liquid in a closed container at a fixed temperature evaporates until the pressure of the
gas reaches a certain value, called the vapor pressure, which depends on the gas and the temperature. At this equilibrium, if heat is
added, some of the liquid will evaporate, and if heat is removed, some of the gas will condense; molecules either join the liquid or
form suspended droplets. If there is not enough liquid for the gas to reach the vapor pressure in the container, all the liquid
eventually evaporates.

13.1.1

C0o

273.16 K ( C)0.01o

273.15 K ( C)0.0o

 Note

13.1.2

CO2

− C78o

13.1.2

C20.0o

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/88987?pdf
https://openstaxcollege.org/l/21triplepoint


13.1.3 https://phys.libretexts.org/@go/page/88987

If the vapor pressure of the liquid is greater than the total ambient pressure, including that of any air (or other gas), the liquid
evaporates rapidly; in other words, it boils. Thus, the boiling point of a liquid at a given pressure is the temperature at which its
vapor pressure equals the ambient pressure. Liquid and gas phases are in equilibrium at the boiling temperature (Figure ). If
a substance is in a closed container at the boiling point, then the liquid is boiling and the gas is condensing at the same rate without
net change in their amounts.

Figure : Equilibrium between liquid and gas at two different boiling points inside a closed container. (a) The rates of boiling
and condensation are equal at this combination of temperature and pressure, so the liquid and gas phases are in equilibrium. (b) At
a higher temperature, the boiling rate is faster, that is, the rate at which molecules leave the liquid and enter the gas is faster. This
increases the number of molecules in the gas, which increases the gas pressure, which in turn increases the rate at which gas
molecules condense and enter the liquid. The pressure stops increasing when it reaches the point where the boiling rate and the
condensation rate are equal. The gas and liquid are in equilibrium again at this higher temperature and pressure.

For water,  is the boiling point at 1.00 atm, so water and steam should exist in equilibrium under these conditions. Why does
an open pot of water at  boil completely away? The gas surrounding an open pot is not pure water: it is mixed with air. If
pure water and steam are in a closed container at  and 1.00 atm, they will coexist—but with air over the pot, there are fewer
water molecules to condense, and water boils away. Another way to see this is that at the boiling point, the vapor pressure equals
the ambient pressure. However, part of the ambient pressure is due to air, so the pressure of the steam is less than the vapor pressure
at that temperature, and evaporation continues. Incidentally, the equilibrium vapor pressure of solids is not zero, a fact that accounts
for sublimation.

Explain why a cup of water (or soda) with ice cubes stays at  even on a hot summer day.

Answer

The ice and liquid water are in thermal equilibrium, so that the temperature stays at the freezing temperature as long as ice
remains in the liquid. (Once all of the ice melts, the water temperature will start to rise.)

Phase Change and Latent Heat
So far, we have discussed heat transfers that cause temperature change. However, in a phase transition, heat transfer does not cause
any temperature change.

For an example of phase changes, consider the addition of heat to a sample of ice at  (Figure ) and atmospheric
pressure. The temperature of the ice rises linearly, absorbing heat at a constant rate of  until it reaches . Once at
this temperature, the ice begins to melt and continues until it has all melted, absorbing 333 kJ/kg of heat. The temperature remains
constant at  during this phase change. Once all the ice has melted, the temperature of the liquid water rises, absorbing heat at a
new constant rate of . At  the water begins to boil. The temperature again remains constant during this phase
change while the water absorbs 2256 kJ/kg of heat and turns into steam. When all the liquid has become steam, the temperature
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rises again, absorbing heat at a rate of . If we started with steam and cooled it to make it condense into liquid water
and freeze into ice, the process would exactly reverse, with the temperature again constant during each phase transition.

Figure : Temperature versus heat. The system is constructed so that no vapor evaporates while ice warms to become liquid
water, and so that, when vaporization occurs, the vapor remains in the system. The long stretches of constant temperatures at 
and  reflect the large amounts of heat needed to cause melting and vaporization, respectively.

Where does the heat added during melting or boiling go, considering that the temperature does not change until the transition is
complete? Energy is required to melt a solid, because the attractive forces between the molecules in the solid must be broken apart,
so that in the liquid, the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature. Energy is
needed to vaporize a liquid for similar reasons. Conversely, work is done by attractive forces when molecules are brought together
during freezing and condensation. That energy must be transferred out of the system, usually in the form of heat, to allow the
molecules to stay together (Figure ). Thus, condensation occurs in association with cold objects—the glass in Figure ,
for example.

Figure : Condensation forms on this glass of iced tea because the temperature of the nearby air is reduced. The air cannot
hold as much water as it did at room temperature, so water condenses. Energy is released when the water condenses, speeding the
melting of the ice in the glass. (credit: Jenny Downing)

The energy released when a liquid freezes is used by orange growers when the temperature approaches . Growers spray water
on the trees so that the water freezes and heat is released to the growing oranges. This prevents the temperature inside the orange
from dropping below freezing, which would damage the fruit (Figure ).
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Figure : The ice on these trees released large amounts of energy when it froze, helping to prevent the temperature of the trees
from dropping below . Water is intentionally sprayed on orchards to help prevent hard frosts. (credit: Hermann Hammer)

The energy involved in a phase change depends on the number of bonds or force pairs and their strength. The number of bonds is
proportional to the number of molecules and thus to the mass of the sample. The energy per unit mass required to change a
substance from the solid phase to the liquid phase, or released when the substance changes from liquid to solid, is known as the
heat of fusion. The energy per unit mass required to change a substance from the liquid phase to the vapor phase is known as the
heat of vaporization. The strength of the forces depends on the type of molecules. The heat Q absorbed or released in a phase
change in a sample of mass m is given by

where the latent heat of fusion  and latent heat of vaporization  are material constants that are determined experimentally.
(Latent heats are also called latent heat coefficients and heats of transformation.) These constants are “latent,” or hidden, because
in phase changes, energy enters or leaves a system without causing a temperature change in the system, so in effect, the energy is
hidden.

Figure : (a) Energy is required to partially overcome the attractive forces (modeled as springs) between molecules in a solid
to form a liquid. That same energy must be removed from the liquid for freezing to take place. (b) Molecules become separated by
large distances when going from liquid to vapor, requiring significant energy to completely overcome molecular attraction. The
same energy must be removed from the vapor for condensation to take place.

Table  lists representative values of  and  in kJ/kg, together with melting and boiling points. Note that in general, 
. The table shows that the amounts of energy involved in phase changes can easily be comparable to or greater than those

involved in temperature changes, as Figure  and the accompanying discussion also showed.

Figure : Heats of Fusion and Vaporization

Substance
Melting Point (

)
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)
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Helium 5.23 1.25 20.9 4.99

Hydrogen 58.6 14.0 452 108

Nitrogen 25.5 6.09 201 48.0

Oxygen 13.8 3.30 213 50.9

Ethanol –114 104 24.9 78.3 854 204

Ammonia –75 332 79.3 –33.4 1370 327

Mercury –38.9 11.8 2.82 357 272 65.0

Water 0.00 334 79.8 100.0 2256 539

Sulfur 119 38.1 9.10 444.6 326 77.9

Lead 327 24.5 5.85 1750 871 208

Antimony 631 165 39.4 1440 561 134

Aluminum 660 380 90 2450 11400 2720

Silver 961 88.3 21.1 2193 2336 558

Gold 1063 64.5 15.4 2660 1578 377

Copper 1083 134 32.0 2595 5069 1211

Uranium 1133 84 20 3900 1900 454

Tungsten 3410 184 44 5900 4810 1150

Values quoted at the normal melting and boiling temperatures at standard atmospheric pressure ( ). Helium has no solid phase at
atmospheric pressure. The melting point given is at a pressure of 2.5 MPa. At  (body temperature), the heat of vaporization 
for water is 2430 kJ/kg or 580 kcal/kg. At  (body temperature), the heat of vaporization,  for water is 2430 kJ/kg or 580
kcal/kg.

Phase changes can have a strong stabilizing effect on temperatures that are not near the melting and boiling points, since
evaporation and condensation occur even at temperatures below the boiling point. For example, air temperatures in humid climates
rarely go above approximately  because most heat transfer goes into evaporating water into the air. Similarly, temperatures
in humid weather rarely fall below the dew point—the temperature where condensation occurs given the concentration of water
vapor in the air—because so much heat is released when water vapor condenses.

More energy is required to evaporate water below the boiling point than at the boiling point, because the kinetic energy of water
molecules at temperatures below  is less than that at , so less energy is available from random thermal motions. For
example, at body temperature, evaporation of sweat from the skin requires a heat input of 2428 kJ/kg, which is about 10% higher
than the latent heat of vaporization at . This heat comes from the skin, and this evaporative cooling effect of sweating helps
reduce the body temperature in hot weather. However, high humidity inhibits evaporation, so that body temperature might rise,
while unevaporated sweat might be left on your brow.

Three ice cubes are used to chill a soda at  with mass . The ice is at  and each ice cube has a mass of
6.0 g. Assume that the soda is kept in a foam container so that heat loss can be ignored and that the soda has the same specific
heat as water. Find the final temperature when all ice has melted.

Strategy
The ice cubes are at the melting temperature of . Heat is transferred from the soda to the ice for melting. Melting yields
water at , so more heat is transferred from the soda to this water until the water plus soda system reaches thermal
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equilibrium.

The heat transferred to the ice is

The heat given off by the soda is

Since no heat is lost, , as in Example 1.5.3, so that

Solve for the unknown quantity

Solution
First we identify the known quantities. The mass of ice is  and the mass of soda is 

. Then we calculate the final temperature:

Significance This example illustrates the large energies involved during a phase change. The mass of ice is about 7% of the
mass of the soda but leads to a noticeable change in the temperature of the soda. Although we assumed that the ice was at the
freezing temperature, this is unrealistic for ice straight out of a freezer: The typical temperature is . However, this
correction makes no significant change from the result we found. Can you explain why?

Like solid-liquid and liquid-vapor transitions, direct solid-vapor transitions or sublimations involve heat. The energy transferred is
given by the equation , where  is the heat of sublimation, analogous to  and . The heat of sublimation at a given
temperature is equal to the heat of fusion plus the heat of vaporization at that temperature.

We can now calculate any number of effects related to temperature and phase change. In each case, it is necessary to identify which
temperature and phase changes are taking place. Keep in mind that heat transfer and work can cause both temperature and phase
changes.

1. Examine the situation to determine that there is a change in the temperature or phase. Is there heat transfer into or out of the
system? When it is not obvious whether a phase change occurs or not, you may wish to first solve the problem as if there
were no phase changes, and examine the temperature change obtained. If it is sufficient to take you past a boiling or
melting point, you should then go back and do the problem in steps—temperature change, phase change, subsequent
temperature change, and so on.

2. Identify and list all objects that change temperature or phase.
3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
4. Make a list of what is given or what can be inferred from the problem as stated (identify the knowns). If there is a

temperature change, the transferred heat depends on the specific heat of the substance (Heat Transfer, Specific Heat, and
Calorimetry), and if there is a phase change, the transferred heat depends on the latent heat of the substance (Table ).

5. Solve the appropriate equation for the quantity to be determined (the unknown).
6. Substitute the knowns along with their units into the appropriate equation and obtain numerical solutions complete with

units. You may need to do this in steps if there is more than one state to the process, such as a temperature change followed
by a phase change. However, in a calorimetry problem, each step corresponds to a term in the single equation 

.
7. Check the answer to see if it is reasonable. Does it make sense? As an example, be certain that any temperature change does

not also cause a phase change that you have not taken into account.
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Why does snow often remain even when daytime temperatures are higher than the freezing temperature?

Snow is formed from ice crystals and thus is the solid phase of water. Because enormous heat is necessary for phase changes, it
takes a certain amount of time for this heat to be transferred from the air, even if the air is above 

This page titled 13.1: Phase Changes is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

1.6: Phase Changes by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.
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13.2: Mechanisms of Heat Transfer

By the end of this section, you will be able to:

Explain some phenomena that involve conductive, convective, and radiative heat transfer
Solve problems on the relationships between heat transfer, time, and rate of heat transfer
Solve problems using the formulas for conduction and radiation

Just as interesting as the effects of heat transfer on a system are the methods by which it occurs. Whenever there is a temperature
difference, heat transfer occurs. It may occur rapidly, as through a cooking pan, or slowly, as through the walls of a picnic ice chest.
So many processes involve heat transfer that it is hard to imagine a situation where no heat transfer occurs. Yet every heat transfer
takes place by only three methods:

1. Conduction is heat transfer through stationary matter by physical contact. (The matter is stationary on a macroscopic scale—
we know that thermal motion of the atoms and molecules occurs at any temperature above absolute zero.) Heat transferred from
the burner of a stove through the bottom of a pan to food in the pan is transferred by conduction.

2. Convection is the heat transfer by the macroscopic movement of a fluid. This type of transfer takes place in a forced-air furnace
and in weather systems, for example.

3. Heat transfer by radiation occurs when microwaves, infrared radiation, visible light, or another form of electromagnetic
radiation is emitted or absorbed. An obvious example is the warming of Earth by the Sun. A less obvious example is thermal
radiation from the human body.

In the illustration at the beginning of this chapter, the fire warms the snowshoers’ faces largely by radiation. Convection carries
some heat to them, but most of the air flow from the fire is upward (creating the familiar shape of flames), carrying heat to the food
being cooked and into the sky. The snowshoers wear clothes designed with low conductivity to prevent heat flow out of their
bodies.

In this section, we examine these methods in some detail. Each method has unique and interesting characteristics, but all three have
two things in common: They transfer heat solely because of a temperature difference, and the greater the temperature difference,
the faster the heat transfer (Figure ).

Figure : In a fireplace, heat transfer occurs by all three methods: conduction, convection, and radiation. Radiation is
responsible for most of the heat transferred into the room. Heat transfer also occurs through conduction into the room, but much
slower. Heat transfer by convection also occurs through cold air entering the room around windows and hot air leaving the room by
rising up the chimney.
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Name an example from daily life (different from the text) for each mechanism of heat transfer.

Solution

Conduction: Heat transfers into your hands as you hold a hot cup of coffee. Convection: Heat transfers as the barista “steams” cold
milk to make hot cocoa. Radiation: Heat transfers from the Sun to a jar of water with tea leaves in it to make “Sun tea.” A great
many other answers are possible.

Conduction
As you walk barefoot across the living room carpet in a cold house and then step onto the kitchen tile floor, your feet feel colder on
the tile. This result is intriguing, since the carpet and tile floor are both at the same temperature. The different sensation is
explained by the different rates of heat transfer: The heat loss is faster for skin in contact with the tiles than with the carpet, so the
sensation of cold is more intense.

Some materials conduct thermal energy faster than others. Figure  shows a material that conducts heat slowly—it is a good
thermal insulator, or poor heat conductor—used to reduce heat flow into and out of a house.

Figure : Insulation is used to limit the conduction of heat from the inside to the outside (in winter) and from the outside to
the inside (in summer). (credit: Giles Douglas)

A molecular picture of heat conduction will help justify the equation that describes it. Figure  shows molecules in two bodies
at different temperatures,  and  for “hot” and “cold.” The average kinetic energy of a molecule in the hot body is higher than
in the colder body. If two molecules collide, energy transfers from the high-energy to the low-energy molecule. In a metal, the
picture would also include free valence electrons colliding with each other and with atoms, likewise transferring energy. The
cumulative effect of all collisions is a net flux of heat from the hotter body to the colder body. Thus, the rate of heat transfer
increases with increasing temperature difference . If the temperatures are the same, the net heat transfer rate is zero.
Because the number of collisions increases with increasing area, heat conduction is proportional to the cross-sectional area—a
second factor in the equation.
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Figure : Molecules in two bodies at different temperatures have different average kinetic energies. Collisions occurring at the
contact surface tend to transfer energy from high-temperature regions to low-temperature regions. In this illustration, a molecule in
the lower-temperature region (right side) has low energy before collision, but its energy increases after colliding with a high-energy
molecule at the contact surface. In contrast, a molecule in the higher-temperature region (left side) has high energy before collision,
but its energy decreases after colliding with a low-energy molecule at the contact surface.

A third quantity that affects the conduction rate is the thickness of the material through which heat transfers. Figure  shows a
slab of material with a higher temperature on the left than on the right. Heat transfers from the left to the right by a series of
molecular collisions. The greater the distance between hot and cold, the more time the material takes to transfer the same amount of
heat.

Figure :       Heat conduction occurs through any material, represented here by a rectangular bar, whether window glass or walrus
blubber.

All four of these quantities appear in a simple equation deduced from and confirmed by experiments. The rate of conductive heat
transfer through a slab of material, such as the one in Figure , is given by

where P is the power or rate of heat transfer in watts or in kilocalories per second, A and d are its surface area and thickness, as
shown in Figure ,  is the temperature difference across the slab, and k is the thermal conductivity of the material.
Table  gives representative values of thermal conductivity.

More generally, we can write

where x is the coordinate in the direction of heat flow. Since in Figure , the power and area are constant, dT/dx is constant,
and the temperature decreases linearly from  to .

Table : Thermal Conductivities of Common Substances Values are given for temperatures near .

Substance Thermal Conductivity 
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Substance Thermal Conductivity 

Diamond 2000

Silver 420

Copper 390

Gold 318

Aluminum 220

Steel iron 80

Steel (stainless) 14

Ice 2.2

Glass (average) 0.84

Concrete brick 0.84

Water 0.6

Fatty tissue (without blood) 0.2

Asbestos 0.16

Plasterboard 0.16

Wood 0.08–0.16

Snow (dry) 0.10

Cork 0.042

Glass wool 0.042

Wool 0.04

Down feathers 0.025

Air 0.023

Polystyrene foam 0.010

A polystyrene foam icebox has a total area of  and walls with an average thickness of 2.50 cm. The box contains ice,
water, and canned beverages at . The inside of the box is kept cold by melting ice. How much ice melts in one day if the
icebox is kept in the trunk of a car at ?

Strategy
This question involves both heat for a phase change (melting of ice) and the transfer of heat by conduction. To find the amount
of ice melted, we must find the net heat transferred. This value can be obtained by calculating the rate of heat transfer by
conduction and multiplying by time.

Solution
First we identify the knowns.

 for polystyrene foam; ; ; ; ; 
.

Then we identify the unknowns. We need to solve for the mass of the ice, m. We also need to solve for the net heat transferred
to melt the ice, Q. The rate of heat transfer by conduction is given by

k(W/ C)mo

 Example : Calculating Heat Transfer through Conduction13.2.1

0.950 m2

C0o

C35.0o

k = 0.010 W/m ⋅ Co A = 0.950 m2 d = 2.50 cm = 0.0250 m = CTc 0o = CTh 35.0o

t = 1 day = 24 hour = 86, 400 s
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The heat used to melt the ice is . We insert the known values:

Multiplying the rate of heat transfer by the time we obtain

We set this equal to the heat transferred to melt the ice,  and solve for the mass m:

Significance
The result of 3.44 kg, or about 7.6 lb, seems about right, based on experience. You might expect to use about a 4 kg (7–10 lb)
bag of ice per day. A little extra ice is required if you add any warm food or beverages.

Table  shows that polystyrene foam is a very poor conductor and thus a good insulator. Other good insulators include
fiberglass, wool, and goosedown feathers. Like polystyrene foam, these all contain many small pockets of air, taking advantage
of air’s poor thermal conductivity.

In developing insulation, the smaller the conductivity k and the larger the thickness d, the better. Thus, the ratio d/k, called the R
factor, is large for a good insulator. The rate of conductive heat transfer is inversely proportional to R. R factors are most
commonly quoted for household insulation, refrigerators, and the like. Unfortunately, in the United States, R is still in non-metric
units of , although the unit usually goes unstated [1 British thermal unit (Btu) is the amount of energy needed to
change the temperature of 1.0 lb of water by  which is 1055.1 J]. A couple of representative values are an R factor of 11 for
3.5-inch-thick fiberglass batts (pieces) of insulation and an R factor of 19 for 6.5-inch-thick fiberglass batts (Figure ). In the
US, walls are usually insulated with 3.5-inch batts, whereas ceilings are usually insulated with 6.5-inch batts. In cold climates,
thicker batts may be used.

Figure : The fiberglass batt is used for insulation of walls and ceilings to prevent heat transfer between the inside of the
building and the outside environment. (credit: Tracey Nicholls)

P = = .
dQ

dT

kA( − )Th Tc

d

Q = mLf

P = = 13.3 W .
(0.010 W/m C)(0.950 )( C − C)⋅o m2 35.0o 0o

0.0250 m

Q = Pt = (13.3 W )(86, 400 s) = 1.15 × J.106

Q = mLf

m = = = 3.44 kg.
Q

Lf
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Note that in Table , most of the best thermal conductors—silver, copper, gold, and aluminum—are also the best electrical
conductors, because they contain many free electrons that can transport thermal energy. (Diamond, an electrical insulator, conducts
heat by atomic vibrations.) Cooking utensils are typically made from good conductors, but the handles of those used on the stove
are made from good insulators (bad conductors).

A steel rod and an aluminum rod, each of diameter 1.00 cm and length 25.0 cm, are welded end to end. One end of the steel
rod is placed in a large tank of boiling water at , while the far end of the aluminum rod is placed in a large tank of water
at . The rods are insulated so that no heat escapes from their surfaces. What is the temperature at the joint, and what is the
rate of heat conduction through this composite rod?

Strategy

The heat that enters the steel rod from the boiling water has no place to go but through the steel rod, then through the
aluminum rod, to the cold water. Therefore, we can equate the rate of conduction through the steel to the rate of conduction
through the aluminum.

We repeat the calculation with a second method, in which we use the thermal resistance R of the rod, since it simply adds when
two rods are joined end to end. (We will use a similar method in the chapter on direct-current circuits.)

Solution
1. Identify the knowns and convert them to SI units. The length of each rod is , the cross-sectional

area of each rod is , the thermal conductivity of aluminum is , the
thermal conductivity of steel is  the temperature at the hot end is  and the temperature at
the cold end is .

2. Calculate the heat-conduction rate through the steel rod and the heat-conduction rate through the aluminum rod in terms of
the unknown temperature T at the joint:

3. Set the two rates equal and solve for the unknown temperature:

4. Calculate either rate:

5. If desired, check your answer by calculating the other rate.

Solution
1. Recall that . Now , or .
2. We know that . We also know that , and we denote that rate of

heat flow by P. Combine the equations:

13.2.1

 Two Conductors End to End

C100o

C20o

= = 0.25 mLA1 Lsteel

= = 7.85 ×AA1 Asteel 10−5m2 = 220 W/m CkA1 ⋅o

= 80 W/m Cksteel ⋅o T = C100o

T = C20o

Psteel =
ΔksteelAsteel Tsteel

Lsteel

=
(80 W/m C)(7.85 × )(100 C −T )⋅o 10−5m2 o

0.25

= (0.0251 W C)( C −T );/
o

100o

PA1 =
ΔkA1AA1 TA1

LA1

=
(220 W/m C)(7.85 × )(T − C)⋅o 10−5m2 20o

0.25 m

= (0.0691 W C)(T − C)./o 20o

(0.0691 W C)(T − C) = (0.0251 W C)( C −T )/o 20o /o 100o

T = C.41.3o

= (0.0251 W C)( C − C) = 1.47 W .Psteel /o 100o 41.3o

R = L/k P = AΔT/R ΔT = PR/A

Δ +Δ = C − C = CTsteel TA1 100o 20o 80o =Psteel PA1
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Thus, we can simply add R factors. Now, 

3. Find the  from the known quantities:

and

4. Substitute these values in to find  as before.
5. Determine  for the aluminum rod (or for the steel rod) and use it to find T at the joint.

so , as in Solution 1.
6. If desired, check by determining  for the other rod.

Significance
In practice, adding R values is common, as in calculating the R value of an insulated wall. In the analogous situation in
electronics, the resistance corresponds to AR in this problem and is additive even when the areas are unequal, as is common in
electronics. Our equation for heat conduction can be used only when the areas are equal; otherwise, we would have a problem
in three-dimensional heat flow, which is beyond our scope.

How does the rate of heat transfer by conduction change when all spatial dimensions are doubled?

Answer

Because area is the product of two spatial dimensions, it increases by a factor of four when each dimension is doubled 
. The distance, however, simply doubles. Because the temperature difference and the

coefficient of thermal conductivity are independent of the spatial dimensions, the rate of heat transfer by conduction increases
by a factor of four divided by two, or two:

Conduction is caused by the random motion of atoms and molecules. As such, it is an ineffective mechanism for heat transport over
macroscopic distances and short times. For example, the temperature on Earth would be unbearably cold during the night and
extremely hot during the day if heat transport in the atmosphere were only through conduction. Also, car engines would overheat
unless there was a more efficient way to remove excess heat from the pistons. The next module discusses the important heat-
transfer mechanism in such situations.

Convection
In convection, thermal energy is carried by the large-scale flow of matter. It can be divided into two types. In forced convection,
the flow is driven by fans, pumps, and the like. A simple example is a fan that blows air past you in hot surroundings and cools you
by replacing the air heated by your body with cooler air. A more complicated example is the cooling system of a typical car, in
which a pump moves coolant through the radiator and engine to cool the engine and a fan blows air to cool the radiator.

In free or natural convection, the flow is driven by buoyant forces: hot fluid rises and cold fluid sinks because density decreases
as temperature increases. The house in Figure  is kept warm by natural convection, as is the pot of water on the stove in
Figure . Ocean currents and large-scale atmospheric circulation, which result from the buoyancy of warm air and water,
transfer hot air from the tropics toward the poles and cold air from the poles toward the tropics. (Earth’s rotation interacts with
those flows, causing the observed eastward flow of air in the temperate zones.)

+ = C.
PRsteel

A

PRA1

A
80o

P = .C80o

A( + )Rsteel RA1

Rs

= 3.13 × ⋅ C/WRsteel 10−3m2 o

= 1.14 × ⋅ C/W .RA1 10−3m2 o

P = 1.47 W

ΔT

Δ = = = C,TA1

PRA1

A

(1.47 W )(1.14 × ⋅ C/W )10−3m2 o

7.85 ×10−5m2
21.3o

T = C + C = C20o 21.3o 41.3o

ΔT

 Exercise 13.2.2

( = (2d = 4 = 4 )Afinal )2 d2 Ainitial

= = = 2 = 2 .Pfinal

k ( − )Afinal Th Tc

dfinal

k(4 ( − ))Afinal Th Tc

2dinitial

k ( − )Afinal Th Tc

dinitial
Pinitial

13.2.6

13.2.7

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/88988?pdf


13.2.8 https://phys.libretexts.org/@go/page/88988

Figure : Air heated by a so-called gravity furnace expands and rises, forming a convective loop that transfers energy to other
parts of the room. As the air is cooled at the ceiling and outside walls, it contracts, eventually becoming denser than room air and
sinking to the floor. A properly designed heating system using natural convection, like this one, can heat a home quite efficiently.

Figure : Natural convection plays an important role in heat transfer inside this pot of water. Once conducted to the inside,
heat transfer to other parts of the pot is mostly by convection. The hotter water expands, decreases in density, and rises to transfer
heat to other regions of the water, while colder water sinks to the bottom. This process keeps repeating.

Natural convection like that of Figures  and , but acting on rock in Earth’s mantle, drives plate tectonics that are
the motions that have shaped Earth’s surface.

Convection is usually more complicated than conduction. Beyond noting that the convection rate is often approximately
proportional to the temperature difference, we will not do any quantitative work comparable to the formula for conduction.
However, we can describe convection qualitatively and relate convection rates to heat and time. However, air is a poor conductor.
Therefore, convection dominates heat transfer by air, and the amount of available space for airflow determines whether air transfers
heat rapidly or slowly. There is little heat transfer in a space filled with air with a small amount of other material that prevents flow.
The space between the inside and outside walls of a typical American house, for example, is about 9 cm (3.5 in.)—large enough for
convection to work effectively. The addition of wall insulation prevents airflow, so heat loss (or gain) is decreased. On the other
hand, the gap between the two panes of a double-paned window is about 1 cm, which largely prevents convection and takes
advantage of air’s low conductivity reduce heat loss. Fur, cloth, and fiberglass also take advantage of the low conductivity of air by
trapping it in spaces too small to support convection (Figure ).
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Figure : Fur is filled with air, breaking it up into many small pockets. Convection is very slow here, because the loops are so
small. The low conductivity of air makes fur a very good lightweight insulator.

Some interesting phenomena happen when convection is accompanied by a phase change. The combination allows us to cool off by
sweating even if the temperature of the surrounding air exceeds body temperature. Heat from the skin is required for sweat to
evaporate from the skin, but without air flow, the air becomes saturated and evaporation stops. Air flow caused by convection
replaces the saturated air by dry air and evaporation continues.

The average person produces heat at the rate of about 120 W when at rest. At what rate must water evaporate from the body to
get rid of all this energy? (For simplicity, we assume this evaporation occurs when a person is sitting in the shade and
surrounding temperatures are the same as skin temperature, eliminating heat transfer by other methods.)

Strategy
Energy is needed for this phase change ( ). Thus, the energy loss per unit time is

We divide both sides of the equation by  to find that the mass evaporated per unit time is

Solution
Insert the value of the latent heat from [link], . This yields

Significance
Evaporating about 3 g/min seems reasonable. This would be about 180 g (about 7 oz.) per hour. If the air is very dry, the sweat
may evaporate without even being noticed. A significant amount of evaporation also takes place in the lungs and breathing
passages.

Another important example of the combination of phase change and convection occurs when water evaporates from the oceans.
Heat is removed from the ocean when water evaporates. If the water vapor condenses in liquid droplets as clouds form, possibly far
from the ocean, heat is released in the atmosphere. Thus, there is an overall transfer of heat from the ocean to the atmosphere. This
process is the driving power behind thunderheads, those great cumulus clouds that rise as much as 20.0 km into the stratosphere
(Figure ). Water vapor carried in by convection condenses, releasing tremendous amounts of energy. This energy causes the
air to expand and rise to colder altitudes. More condensation occurs in these regions, which in turn drives the cloud even higher.

13.2.8

 Example : Calculating the Flow of Mass during Convection13.2.3

Q = mLv

= = 120 W = 120 J/s.
Q

t

mLv

t

Lv

= .
m

t

120 J/s

Lv

= 2430 kJ/kg = 2430 J/gLv

= = 0.0494 g/s = 2.96 g/min.
m

t

120 J/s

2430 J/g
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This mechanism is an example of positive feedback, since the process reinforces and accelerates itself. It sometimes produces
violent storms, with lightning and hail. The same mechanism drives hurricanes.

This time-lapse video shows convection currents in a thunderstorm, including “rolling” motion similar to that of boiling water.

Figure : Cumulus clouds are caused by water vapor that rises because of convection. The rise of clouds is driven by a
positive feedback mechanism. (credit: “Amada44”/Wikimedia Commons)

Explain why using a fan in the summer feels refreshing.

Answer

Using a fan increases the flow of air: Warm air near your body is replaced by cooler air from elsewhere. Convection
increases the rate of heat transfer so that moving air “feels” cooler than still air.

Radiation
You can feel the heat transfer from the Sun. The space between Earth and the Sun is largely empty, so the Sun warms us without
any possibility of heat transfer by convection or conduction. Similarly, you can sometimes tell that the oven is hot without touching
its door or looking inside—it may just warm you as you walk by. In these examples, heat is transferred by radiation (Figure 

). That is, the hot body emits electromagnetic waves that are absorbed by the skin. No medium is required for
electromagnetic waves to propagate. Different names are used for electromagnetic waves of different wavelengths: radio waves,
microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays.

Figure : Most of the heat transfer from this fire to the observers occurs through infrared radiation. The visible light,
although dramatic, transfers relatively little thermal energy. Convection transfers energy away from the observers as hot air rises,
while conduction is negligibly slow here. Skin is very sensitive to infrared radiation, so you can sense the presence of a fire without
looking at it directly. (credit: Daniel O’Neil)
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The energy of electromagnetic radiation varies over a wide range, depending on the wavelength: A shorter wavelength (or higher
frequency) corresponds to a higher energy. Because more heat is radiated at higher temperatures, higher temperatures produce more
intensity at every wavelength but especially at shorter wavelengths. In visible light, wavelength determines color—red has the
longest wavelength and violet the shortest—so a temperature change is accompanied by a color change. For example, an electric
heating element on a stove glows from red to orange, while the higher-temperature steel in a blast furnace glows from yellow to
white. Infrared radiation is the predominant form radiated by objects cooler than the electric element and the steel. The radiated
energy as a function of wavelength depends on its intensity, which is represented in Figure  by the height of the distribution.
(Electromagnetic Waves explains more about the electromagnetic spectrum, and Photons and Matter Waves discusses why the
decrease in wavelength corresponds to an increase in energy.)

Figure : (a) A graph of the spectrum of electromagnetic waves emitted from an ideal radiator at three different
temperatures. The intensity or rate of radiation emission increases dramatically with temperature, and the spectrum shifts down in
wavelength toward the visible and ultraviolet parts of the spectrum. The shaded portion denotes the visible part of the spectrum. It
is apparent that the shift toward the ultraviolet with temperature makes the visible appearance shift from red to white to blue as
temperature increases. (b) Note the variations in color corresponding to variations in flame temperature.

The rate of heat transfer by radiation also depends on the object’s color. Black is the most effective, and white is the least effective.
On a clear summer day, black asphalt in a parking lot is hotter than adjacent gray sidewalk, because black absorbs better than gray
(Figure ). The reverse is also true—black radiates better than gray. Thus, on a clear summer night, the asphalt is colder than
the gray sidewalk, because black radiates the energy more rapidly than gray. A perfectly black object would be an ideal radiator
and an ideal absorber, as it would capture all the radiation that falls on it. In contrast, a perfectly white object or a perfect mirror
would reflect all radiation, and a perfectly transparent object would transmit it all (Figure ). Such objects would not emit
any radiation. Mathematically, the color is represented by the emissivity e. A “blackbody” radiator would have an , whereas a
perfect reflector or transmitter would have . For real examples, tungsten light bulb filaments have an e of about 0.5, and
carbon black (a material used in printer toner) has an emissivity of about 0.95.
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Figure : The darker pavement is hotter than the lighter pavement (much more of the ice on the right has melted), although
both have been in the sunlight for the same time. The thermal conductivities of the pavements are the same.

Figure : A black object is a good absorber and a good radiator, whereas a white, clear, or silver object is a poor absorber
and a poor radiator.

To see that, consider a silver object and a black object that can exchange heat by radiation and are in thermal equilibrium. We know
from experience that they will stay in equilibrium (the result of a principle that will be discussed at length in Second Law of
Thermodynamics). For the black object’s temperature to stay constant, it must emit as much radiation as it absorbs, so it must be as
good at radiating as absorbing. Similar considerations show that the silver object must radiate as little as it absorbs. Thus, one
property, emissivity, controls both radiation and absorption.

Finally, the radiated heat is proportional to the object’s surface area, since every part of the surface radiates. If you knock apart the
coals of a fire, the radiation increases noticeably due to an increase in radiating surface area.

The rate of heat transfer by emitted radiation is described by the Stefan-Boltzmann law of radiation:

where  is the Stefan-Boltzmann constant, a combination of fundamental constants of nature; A is
the surface area of the object; and T is its temperature in kelvins.

The proportionality to the fourth power of the absolute temperature is a remarkably strong temperature dependence. It allows the
detection of even small temperature variations. Images called thermographs can be used medically to detect regions of abnormally
high temperature in the body, perhaps indicative of disease. Similar techniques can be used to detect heat leaks in homes (Figure 

), optimize performance of blast furnaces, improve comfort levels in work environments, and even remotely map Earth’s
temperature profile.
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13.2.14

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/88988?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/04%3A_The_Second_Law_of_Thermodynamics


13.2.13 https://phys.libretexts.org/@go/page/88988

Figure : A thermograph of part of a building shows temperature variations, indicating where heat transfer to the outside is
most severe. Windows are a major region of heat transfer to the outside of homes. (credit: US Army)

The Stefan-Boltzmann equation needs only slight refinement to deal with a simple case of an object’s absorption of radiation from
its surroundings. Assuming that an object with a temperature  is surrounded by an environment with uniform temperature , the
net rate of heat transfer by radiation is

where e is the emissivity of the object alone. In other words, it does not matter whether the surroundings are white, gray, or black:
The balance of radiation into and out of the object depends on how well it emits and absorbs radiation. When , the quantity

 is positive, that is, the net heat transfer is from hot to cold.

Before doing an example, we have a complication to discuss: different emissivities at different wavelengths. If the fraction of
incident radiation an object reflects is the same at all visible wavelengths, the object is gray; if the fraction depends on the
wavelength, the object has some other color. For instance, a red or reddish object reflects red light more strongly than other visible
wavelengths. Because it absorbs less red, it radiates less red when hot. Differential reflection and absorption of wavelengths outside
the visible range have no effect on what we see, but they may have physically important effects. Skin is a very good absorber and
emitter of infrared radiation, having an emissivity of 0.97 in the infrared spectrum. Thus, in spite of the obvious variations in skin
color, we are all nearly black in the infrared. This high infrared emissivity is why we can so easily feel radiation on our skin. It is
also the basis for the effectiveness of night-vision scopes used by law enforcement and the military to detect human beings.

What is the rate of heat transfer by radiation of an unclothed person standing in a dark room whose ambient temperature is 
? The person has a normal skin temperature of  and a surface area of . The emissivity of skin is 0.97 in

the infrared, the part of the spectrum where the radiation takes place.

Strategy
We can solve this by using the equation for the rate of radiative heat transfer.

Solution
Insert the temperature values  and , so that

Significance
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= (5.67 × J/s ⋅ ⋅ )(0.97)(1.50 )[(295 K −(306 K ]10−8 m2 K4 m2 )4 )4

= −99 J/s = −99 W .
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This value is a significant rate of heat transfer to the environment (note the minus sign), considering that a person at rest may
produce energy at the rate of 125 W and that conduction and convection are also transferring energy to the environment.
Indeed, we would probably expect this person to feel cold. Clothing significantly reduces heat transfer to the environment by
all mechanisms, because clothing slows down both conduction and convection, and has a lower emissivity (especially if it is
light-colored) than skin.

The average temperature of Earth is the subject of much current discussion. Earth is in radiative contact with both the Sun and dark
space, so we cannot use the equation for an environment at a uniform temperature. Earth receives almost all its energy from
radiation of the Sun and reflects some of it back into outer space. Conversely, dark space is very cold, about 3 K, so that Earth
radiates energy into the dark sky. The rate of heat transfer from soil and grasses can be so rapid that frost may occur on clear
summer evenings, even in warm latitudes.

The average temperature of Earth is determined by its energy balance. To a first approximation, it is the temperature at which Earth
radiates heat to space as fast as it receives energy from the Sun.

An important parameter in calculating the temperature of Earth is its emissivity (e). On average, it is about 0.65, but calculation of
this value is complicated by the great day-to-day variation in the highly reflective cloud coverage. Because clouds have lower
emissivity than either oceans or land masses, they reflect some of the radiation back to the surface, greatly reducing heat transfer
into dark space, just as they greatly reduce heat transfer into the atmosphere during the day. There is negative feedback (in which a
change produces an effect that opposes that change) between clouds and heat transfer; higher temperatures evaporate more water to
form more clouds, which reflect more radiation back into space, reducing the temperature.

The often-mentioned greenhouse effect is directly related to the variation of Earth’s emissivity with wavelength (Figure ).
The greenhouse effect is a natural phenomenon responsible for providing temperatures suitable for life on Earth and for making
Venus unsuitable for human life. Most of the infrared radiation emitted from Earth is absorbed by carbon dioxide ( ) and water
( ) in the atmosphere and then re-radiated into outer space or back to Earth. Re-radiation back to Earth maintains its surface
temperature about  higher than it would be if there were no atmosphere. (The glass walls and roof of a greenhouse increase
the temperature inside by blocking convective heat losses, not radiative losses.)

Figure : The greenhouse effect is the name given to the increase of Earth’s temperature due to absorption of radiation in the
atmosphere. The atmosphere is transparent to incoming visible radiation and most of the Sun’s infrared. The Earth absorbs that
energy and re-emits it. Since Earth’s temperature is much lower than the Sun’s, it re-emits the energy at much longer wavelengths,
in the infrared. The atmosphere absorbs much of that infrared radiation and radiates about half of the energy back down, keeping
Earth warmer than it would otherwise be. The amount of trapping depends on concentrations of trace gases such as carbon dioxide,
and an increase in the concentration of these gases increases Earth’s surface temperature.
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The greenhouse effect is central to the discussion of global warming due to emission of carbon dioxide and methane (and other
greenhouse gases) into Earth’s atmosphere from industry, transportation, and farming. Changes in global climate could lead to more
intense storms, precipitation changes (affecting agriculture), reduction in rain forest biodiversity, and rising sea levels.

You can explore a simulation of the greenhouse effect that takes the point of view that the atmosphere scatters (redirects)
infrared radiation rather than absorbing it and reradiating it. You may want to run the simulation first with no greenhouse gases
in the atmosphere and then look at how adding greenhouse gases affects the infrared radiation from the Earth and the Earth’s
temperature.

1. Examine the situation to determine what type of heat transfer is involved.
2. Identify the type(s) of heat transfer—conduction, convection, or radiation.
3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
4. Make a list of what is given or what can be inferred from the problem as stated (identify the knowns).
5. Solve the appropriate equation for the quantity to be determined (the unknown).
6. For conduction, use the equation . Table  lists thermal conductivities. For convection, determine the

amount of matter moved and the equation , along with  or  if a substance changes phase.
For radiation, the equation  gives the net heat transfer rate.

7. Substitute the knowns along with their units into the appropriate equation and obtain numerical solutions complete with
units.

8. Check the answer to see if it is reasonable. Does it make sense?

How much greater is the rate of heat radiation when a body is at the temperature  than when it is at the temperature 
?

[Hide solution]

The radiated heat is proportional to the fourth power of the absolute temperature. Because  and , the
rate of heat transfer increases by about 30% of the original rate.

This page titled 13.2: Mechanisms of Heat Transfer is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

1.7: Mechanisms of Heat Transfer by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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13.3: Temperature and Heat (Exercises)

Conceptual Questions

 
1. Heat transfer can cause temperature and phase changes. What else can cause these changes?
2. How does the latent heat of fusion of water help slow the decrease of air temperatures, perhaps preventing temperatures

from falling significantly below 0°C, in the vicinity of large bodies of water?
3. What is the temperature of ice right after it is formed by freezing water?
4. If you place 0°C ice into 0°C water in an insulated container, what will the net result be? Will there be less ice and more

liquid water, or more ice and less liquid water, or will the amounts stay the same?
5. What effect does condensation on a glass of ice water have on the rate at which the ice melts? Will the condensation

speed up the melting process or slow it down?
6. In Miami, Florida, which has a very humid climate and numerous bodies of water nearby, it is unusual for temperatures to

rise above about 38°C (100°F). In the desert climate of Phoenix, Arizona, however, temperatures rise above that almost
every day in July and August. Explain how the evaporation of water helps limit high temperatures in humid climates.

7. In winter, it is often warmer in San Francisco than in Sacramento, 150 km inland. In summer, it is nearly always hotter in
Sacramento. Explain how the bodies of water surrounding San Francisco moderate its extreme temperatures.

8. Shown below is a cut-away drawing of a thermos bottle (also known as a Dewar flask), which is a device designed
specifically to slow down all forms of heat transfer. Explain the functions of the various parts, such as the vacuum, the
silvering of the walls, the thin-walled long glass neck, the rubber support, the air layer, and the

9. 

Loose-fitting white clothing covering most of the body, shown below, is ideal for desert dwellers, both in the hot Sun and
during cold evenings. Explain how such clothing is advantageous during both day and night.
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10. Your house will be empty for a while in cold weather, and you want to save energy and money. Should you turn the
thermostat down to the lowest level that will protect the house from damage such as freezing pipes, or leave it at
the normal temperature? (If you don’t like coming back to a cold house, imagine that a timer controls the heating
system so the house will be warm when you get back.) Explain your answer.

11. You pour coffee into an unlidded cup, intending to drink it 5 minutes later. You can add cream when you pour the
cup or right before you drink it. (The cream is at the same temperature either way. Assume that the cream and
coffee come into thermal equilibrium with each other very quickly.) Which way will give you hotter coffee? What
feature of this question is different from the previous one?

12. On a cold winter morning, why does the metal of a bike feel colder than the wood of a porch?

Problems
13. How much heat transfer (in kilocalories) is required to thaw a 0.450-kg package of frozen vegetables originally at 0°C if

their heat of fusion is the same as that of water?
14. A bag containing 0°C ice is much more effective in absorbing energy than one containing the same amount of 0°C water.

(a) How much heat transfer is necessary to raise the temperature of 0.800 kg of water from 0°C to 30.0°C?

(b) How much heat transfer is required to first melt 0.800 kg of 0°C ice and then raise its temperature?

(c) Explain how your answer supports the contention that the ice is more effective.

15.  (a) How much heat transfer is required to raise the temperature of a 0.750-kg aluminum pot containing 2.50 kg of water
from 30.0°C to the boiling point and then boil away 0.750 kg of water?

(b) How long does this take if the rate of heat transfer is 500 W?

16. On a trip, you notice that a 3.50-kg bag of ice lasts an average of one day in your cooler. What is the average power in
watts entering the ice if it starts at 0°C and completely melts to 0°C water in exactly one day?

17. On a certain dry sunny day, a swimming pool’s temperature would rise by 1.50°C if not for evaporation. What fraction of
the water must evaporate to carry away precisely enough energy to keep the temperature constant?

18. (a) How much heat transfer is necessary to raise the temperature of a 0.200-kg piece of ice from −20.0°C to130.0°C,
including the energy needed for phase changes?

(b) How much time is required for each stage, assuming a constant 20.0 kJ/s rate of heat transfer? (c) Make a graph of
temperature versus time for this process.
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19. In 1986, an enormous iceberg broke away from the Ross Ice Shelf in Antarctica. It was an approximately rectangular
prism 160 km long, 40.0 km wide, and 250 m thick.

(a) What is the mass of this iceberg, given that the density of ice is ?

(b) How much heat transfer (in joules) is needed to melt it?

(c) How many years would it take sunlight alone to melt ice this thick, if the ice absorbs an average of ,
12.00 h per day?

20. How many grams of coffee must evaporate from 350 g of coffee in a 100-g glass cup to cool the coffee and the cup from
95.0°C to 45.0°C? Assume the coffee has the same thermal properties as water and that the average heat of vaporization
is 2340 kJ/kg (560 kcal/g). Neglect heat losses through processes other than evaporation, as well as the change in mass of
the coffee as it cools. Do the latter two assumptions cause your answer to be higher or lower than the true answer?

21. To help prevent frost damage, 4.00 kg of water at 0°Cis sprayed onto a fruit tree.

(a) How much heat transfer occurs as the water freezes?

(b) How much would the temperature of the 200-kg tree decrease if this amount of heat transferred from the tree? Take
the specific heat to be 3.35kJ/kg⋅°C, and assume that no phase change occurs in the tree.

22. A 0.250-kg aluminum bowl holding 0.800kg of soup at 25.0°C is placed in a freezer. What is the final temperature if 388
kJ of energy is transferred from the bowl and soup, assuming the soup’s thermal properties are the same as that of water?

23. A 0.0500-kg ice cube at −30.0°C is placed in 0.400 kg of 35.0-°C water in a very well-insulated container. What is the
final temperature?

24. If you pour 0.0100 kg of 20.0°C water onto a 1.20-kg block of ice (which is initially at −15.0°C), what is the final
temperature? You may assume that the water cools so rapidly that effects of the surroundings are negligible.

25. (a) Calculate the rate of heat conduction through house walls that are 13.0 cm thick and have an average thermal
conductivity twice that of glass wool. Assume there are no windows or doors. The walls’ surface area is  and their
inside surface is at 18.0°C, while their outside surface is at 5.00°C.(b) How many 1-kW room heaters would be needed to
balance the heat transfer due to conduction?

26. The rate of heat conduction out of a window on a winter day is rapid enough to chill the air next to it. To see just how
rapidly the windows transfer heat by conduction, calculate the rate of conduction in watts through a window
that is 0.634 cm thick (1/4 in.) if the temperatures of the inner and outer surfaces are 5.00°C and −10.0°C−, respectively.
(This rapid rate will not be maintained—the inner surface will cool, even to the point of frost formation.)

27. Calculate the rate of heat conduction out of the human body, assuming that the core internal temperature is 37.0°C, the
skin temperature is 34.0°C, the thickness of the fatty tissues between the core and the skin averages 1.00 cm, and the
surface area is .

28. Suppose you stand with one foot on ceramic flooring and one foot on a wool carpet, making contact over an area of 
 with each foot. Both the ceramic and the carpet are 2.00 cm thick and are 10.0°C on their bottom sides. At what

rate must heat transfer occur from each foot to keep the top of the ceramic and carpet at 33.0°C?
29. A man consumes 3000 kcal of food in one day, converting most of it to thermal energy to maintain body temperature. If

he loses half this energy by evaporating water (through breathing and sweating), how many kilograms of water
evaporate?

30. A firewalker runs across a bed of hot coals without sustaining burns. Calculate the heat transferred by conduction into the
sole of one foot of a firewalker given that the bottom of the foot is a 3.00-mm-thick callus with a conductivity at the low
end of the range for wood and its density is . The area of contact is , the temperature of the coals is
700°C, and the time in contact is 1.00 s. Ignore the evaporative cooling of sweat.

31. Suppose a person is covered head to foot by wool clothing with average thickness of 2.00 cm and is transferring energy
by conduction through the clothing at the rate of 50.0 W. What is the temperature difference across the clothing, given the
surface area is ?

32. A 0.800-kg iron cylinder at a temperature of  is dropped into an insulated chest of 1.00 kg of ice at its
melting point. What is the final temperature, and how much ice has melted?

33. Repeat the preceding problem with 2.00 kg of ice instead of 1.00 kg.
34. Repeat the preceding problem with 0.500 kg of ice, assuming that the ice is initially in a copper container of mass 1.50 kg

in equilibrium with the ice.

917kg/m3

100W /m2

120m2

3.00 −m2

1.40m2

80.0cm2

300kg/m3 25.0cm2

1.40m2

1.00 × °C103
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35. A 30.0-g ice cube at its melting point is dropped into an aluminum calorimeter of mass 100.0 g in equilibrium at 24.0°C
with 300.0 g of an unknown liquid. The final temperature is 4.0°C. What is the heat capacity of the liquid?
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CHAPTER OVERVIEW

14: C14) Collisions
14.1: Types of Collisions
14.2: Examples
14.E: Collisions (Exercises)

In this chapter we are going to drill down a bit more carefully on the topic of collisions. We've already studied collisions in some
detail when we first introduced momentum transfer (Chapter 2) as well as "full" conservation of momentum (Chapter 5), but now
we are going to make the process of collisions more realistic by looking at conditions under which both momentum and energy are
conserved.

The very first thing we want to do is to clarify what we mean when we say things like "energy is not being conserved in this
interaction". If we consider our entire Universe as the system, energy and momentum are both conserved in every single
interaction in that system. So when we state that a particular interaction is "not conserving energy", we are basically admitting
that we didn't pick the system "correctly". Sometimes we don't have the knowledge to do so, or sometimes it's actually simpler to
consider a system that doesn't conserve energy, but we should be aware it's a problem with the choice of system, not about the
interaction or phenomena itself. An immediate example of this is friction - we often say "energy is not conserved in systems that
contain friction", but that's incorrect - the energy in friction is being converted from motion to heat, and we don't always keep track
of that because it's often too difficult, particularly when our focus is on mechanics.

With that clarification, we can start to classify collisions depending on if they conserve energy or momentum - one, both, or neither.
The first thing to say outright is that momentum is conserved in all the collisions we are going to consider. The reason is actually
pretty simple - we've only studied two possible sources of momentum, either motion ( ) or impulse ( ). We can
remove impulse by saying "we are only going to consider collisions in which there is no external forces acting on the system". So
since we've gotten rid of impulse, there can only be momentum in the form of motion - we can't "hide" momentum anywhere
except in all the s running around the system. Since momentum is only in the form of s, we can always track it, and thus
insure that it is conserved.

The situation is different for energy (which is why we talked about it in the friction example). Energy comes in many different
forms - kinetic (linear and rotational), potential (gravity, springs, and a myriad of other interactions we haven't talked about), and
work ( ). If we are throwing out external forces (like we did above), we can throw out work, but energy can be stored
in many other places. Thermal (heat) energy is typically the best example of something we can't track in mechanics, but the world
of physics is full of other interactions that store energy without needing motion , and any of those interactions could be a source of
the missing energy.

It turns out that the situation in the preceding paragraph is the most common situation - it's typically hard / impossible to track all
the sources of energy in our systems, so all we have to go on is conservation of momentum; these kinds of collisions are called
inelastic. However, there are some very special kinds of collisions in which we actually can track all the energy (in the form of
motion, ), and so energy actually is conserved, and these are called elastic collisions. Examples of elastic collisions are
bouncing superballs, collisions of billard balls, or collisions involving springs.

On one hand, you are going to have to memorize the names of these two collisions. On the other hand, we can get a good physical
picture for each of them - for example, a car crash is a good example of an inelastic collision. There's "no bouncing", and energy is
clearly being "lost" in the form of sound and mechanical deformation. On the other hand, if a cart runs into a spring and shoots
backwards, it's "very bouncy", and not at all clear where lost energy could be stored - the kinetic energy went into the spring, and
then back into the cart! So you need to keep these two kinds of collisions separate in your head, but it's also important to remember
that most collisions are inelastic, only very special collisions are elastic.

In physics 2, you will study electromagnetism, and learn about energy storage in electric and magnetic fields. That covers a lot of
interactions in the world, but there are still nuclear interactions (the strong and weak force) that can store energy and evade our
considerations.
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14.1: Types of Collisions
Although momentum is conserved in all interactions, not all interactions (collisions or explosions) are the same. The possibilities
include:

A single object can explode into multiple objects (explosions).
Multiple objects can collide and stick together, forming a single object (inelastic).
Multiple objects can collide and bounce off of each other, remaining as multiple objects (elastic). If they do bounce off each
other, then they may recoil at the same speeds with which they approached each other before the collision, or they may move
off more slowly.

It’s useful, therefore, to categorize different types of interactions, according to how the interacting objects move before and after
the interaction.

Explosions

The first possibility is that a single object may break apart into two or more pieces. An example of this is a firecracker, or a bow
and arrow, or a rocket rising through the air toward space. These can be difficult to analyze if the number of fragments after the
collision is more than about three or four; but nevertheless, the total momentum of the system before and after the explosion is
identical.

Note that if the object is initially motionless, then the system (which is just the object) has no momentum and no kinetic energy.
After the explosion, the net momentum of all the pieces of the object must sum to zero (since the momentum of this closed system
cannot change). However, the system will have a great deal of kinetic energy after the explosion, although it had none before. Thus,
we see that, although the momentum of the system is conserved in an explosion, the kinetic energy of the system most definitely is
not; it increases. This interaction—one object becoming many, with an increase of kinetic energy of the system—is called an
explosion.

Where does the energy come from? Does conservation of energy still hold? Yes; some form of potential energy is converted to
kinetic energy. In the case of gunpowder burning and pushing out a bullet, chemical potential energy is converted to kinetic energy
of the bullet, and of the recoiling gun. For a bow and arrow, it is elastic potential energy in the bowstring.

Inelastic
The second possibility is the reverse: that two or more objects collide with each other and stick together, thus (after the collision)
forming one single composite object. The total mass of this composite object is the sum of the masses of the original objects, and
the new single object moves with a velocity dictated by the conservation of momentum. However, it turns out again that, although
the total momentum of the system of objects remains constant, the kinetic energy doesn’t; but this time, the kinetic energy
decreases. This type of collision is called inelastic.

Any collision where the objects stick together will result in the maximum loss of kinetic energy (i.e., K  will be a minimum). Such
a collision is said to be perfectly inelastic. In the extreme case, multiple objects collide, stick together, and remain motionless after
the collision. Since the objects are all motionless after the collision, the final kinetic energy is also zero; therefore, the loss of
kinetic energy is a maximum.

If 0 < K  < K , the collision is inelastic.
If K  is the lowest energy, or the energy lost by both objects is the most, the collision is perfectly inelastic (objects stick
together).
If K  = K , the collision is elastic.

Elastic
The extreme case on the other end is if two or more objects approach each other, collide, and bounce off each other, moving away
from each other at the same relative speed at which they approached each other. In this case, the total kinetic energy of the system
is conserved. Such an interaction is called elastic.

In any interaction of a closed system of objects, the total momentum of the system is conserved (  = ) but the kinetic energy
may not be:

If 0 < K  < K , the collision is inelastic.

f

f i

f

f i

p ⃗ f p ⃗ i

f i

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85819?pdf
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/14%3A_C14)_Collisions/14.01%3A_Types_of_Collisions


14.1.2 https://phys.libretexts.org/@go/page/85819

If K  = 0 , the collision is perfectly inelastic.
If K  = K , the collision is elastic.
If K  > K , the interaction is an explosion.

The point of all this is that, in analyzing a collision or explosion, you can use both momentum and kinetic energy.

Dimensions and Equation Counting

It's worth pointing out how many equations and unknown variables we are dealing with when it comes to collision problems,
because it is quite predictable and can give us some insight into how hard a particular problem might be before we get started on it.
As discussed above, momentum is conserved in every collision, so

Since this is a vector equation, it actually contains a number of linear independent equations equal to the dimension of the problem
(typically 1 or 2 for us, but generally 3). Since these linear equations can only be solved if there are an equal number of unknown
variables and equations, we can only solve problems that have the same number of unknowns as dimensions (for example, a 1D
problem can only ask one question - "what is the final velocity?" or "what was the mass of the first object?" - never "what was the
final velocity AND the mass of the first object?"). This is the complete story for inelastic collisions - the number of unknowns has
to match the dimension.

For elastic collisions, we have one more relationship, conservation of energy:

This is a scalar equation, and represents one further constraint on our system. However, that extra relationship means we can leave
one further quantity unspecified - it is no longer free to be set, but must satisfy the extra equation from conservation of energy. This
makes elastic collisions generally more complicated than inelastic problems, because we have an extra equation and unknown to
deal with. To take the example from above, in 1D we have now two equations that govern our collision:

So we can have two unknowns - the question "what was the final velocity AND the mass of the first object?" actually is well-posed
and can be answered. We do this in the next example:

We want this example to be as simple as possible - a cart of mass  moving with an initial speed  towards a cart of mass 
, which is initially stationary. They collide, and we want to consider two possible situations:

1. If the collision was inelastic, what was the final speed of the first cart? Here, we will assume the second cart moves off with
a speed of .

2. If the collision was elastic, what was the final speeds of both carts?

Solution
1. In the inelastic case, just momentum is conserved, so we have a fairly simple conservation of momentum problem:

The first step to solving this is recognizing that there is an  in every term, so we can divide by that. Physically, that means the
mass does not contribute to the physics at all - the solution will be the same no matter what the mass is. Solving this for the
final velocity gets us

So, the first cart moves at one quarter the speed, no matter what it's initial mass is. (Note that although the mass does not
matter, the relative sizes of the masses do matter. If their ratio was anything besides , we would get a different
answer here. The same goes for the speeds - if we picked a final speed of something besides , we would get a different
final answer.)

f

f i

f i

Δ = − = 0.p ⃗  p ⃗ f p ⃗ i (14.1.1)

ΔE = − = 0.Ef Ei (14.1.2)

− = 0, − = 0.pf,x pi,x Ef Ei (14.1.3)

 Example : Inelastic vs Elastic collision in 1D14.1.1

m v0

3m

/4v0

Δ = − = 0 → (m +3m ) −(m ) = 0.px px,f px,i v1,f
v0

4
v0 (14.1.4)

m

= .v1,f
v0

4
(14.1.5)

/ = 3m2 m1
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2. For the elastic case, we have the exact same conservation of momentum equation (now with the speed of the second cart not
yet known!)

Further, we have the following conservation of energy equation,

These two expressions must be solving simultaneously, since we do not know what  is! The first step is to eliminate the 1/2
and the  from the conservation of energy equation, and the mass from the momentum equation:

We can proceed in several different ways - probably the easiest is to solve the momentum equation for the first speed:

and plug it into the energy equation:

Here we notice that we can divide by 6, as well as , and find . The final speed is different, but notice we have
less freedom to pick the initial conditions - we can't choose how fast the second cart moves after the collision, it's always .

We still need to solve for the first cart - we can do that by going back to the solution for it's speed and plugging in our solution
for the second:

So in this case, the first cart bounced backwards, and moved at half the original speed.

A proton (mass 1.67 x 10  kg) collides with a neutron (with essentially the same mass as the proton) to form a particle called
a deuteron. What is the velocity of the deuteron if it is formed from a proton moving with velocity 7.0 x 10  m/s to the left and
a neutron moving with velocity 4.0 x 10  m/s to the right?

Strategy

Define the system to be the two particles. This is a collision, so we should first identify what kind. Since we are told the two
particles form a single particle after the collision, this means that the collision is perfectly inelastic. Thus, kinetic energy is not
conserved, but momentum is. Thus, we use conservation of momentum to determine the final velocity of the system.

Solution
Treat the two particles as having identical masses M. Use the subscripts p, n, and d for proton, neutron, and deuteron,
respectively. This is a one-dimensional problem, so we have

The masses divide out:

Δ = − = 0 → (m +3m ) −(m ) = 0.px px,f px,i v1,f v2,f v0 (14.1.6)

ΔE = − = 0 →( m + (3m) )− m = 0.Ef Ei

1

2
v2

1,f

1

2
v2

2,f

1

2
v2

0 (14.1.7)

v2,f

m

+3 − = 0 ( +3 ) − = 0v2
1,f

v2
2,f

v2
0 v1,f v2,f v0 (14.1.8)

= −3 ,v1,f v0 v2,f (14.1.9)

( −3 +3 − = 0 → −6 +9 +3 − = 0 → 12 −6 = 0.v0 v2,f)2 v2
2,f

v2
0 v2

0 v0v2,f v2
2,f

v2
2,f

v2
0 v2

2,f
v0v2,f (14.1.10)

v2,f = /2v2,f v0

/2v0

= −3 = − .v1,f v0
v0

2

v0

2
(14.1.11)

 Example : Formation of a deuteron14.1.2

−27
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6

M −M = 2M .vp vn vd (14.1.12)
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vd

= 2vd

= 2vd

= 1.5 × m/s.106

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85819?pdf


14.1.4 https://phys.libretexts.org/@go/page/85819

The velocity is thus .

Significance

This is essentially how particle colliders like the Large Hadron Collider work: They accelerate particles up to very high speeds
(large momenta), but in opposite directions. This maximizes the creation of so-called “daughter particles.”

(This is a variation of an earlier example.)

Two ice hockey pucks of different masses are on a flat, horizontal hockey rink. The red puck has a mass of 15 grams, and is
motionless; the blue puck has a mass of 12 grams, and is moving at 2.5 m/s to the left. It collides with the motionless red puck
(Figure ). If the collision is perfectly elastic, what are the final velocities of the two pucks?

Figure : Two different hockey pucks colliding. The top diagram shows the pucks the instant before the collision, and the
bottom diagram show the pucks the instant after the collision. The net external force is zero.

Strategy

We’re told that we have two colliding objects, and we’re told their masses and initial velocities, and one final velocity; we’re
asked for both final velocities. Conservation of momentum seems like a good strategy; define the system to be the two pucks.
There is no friction, so we have a closed system. We have two unknowns (the two final velocities), but only one equation. The
comment about the collision being perfectly elastic is the clue; it suggests that kinetic energy is also conserved in this collision.
That gives us our second equation.

The initial momentum and initial kinetic energy of the system resides entirely and only in the second puck (the blue one); the
collision transfers some of this momentum and energy to the first puck.

Solution
Conservation of momentum, in this case, reads

Conservation of kinetic energy reads

There are our two equations in two unknowns. The algebra is tedious but not terribly difficult; you definitely should work it
through. The solution is

Substituting the given numbers, we obtain

= (1.5 × m/s)v ⃗ d 106 î

 Example : Ice hockey 214.1.3

14.1.1

14.1.1
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m2v2,i

= pf

= + .m1v1,f m2v2,f
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2
m2v2

2,i

= Kf

= + .
1
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1,f

1

2
m2v2

2,f

=v1,f

( − ) +2m1 m2 v1,i m2v2,i
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(14.1.13)

=v2,f

( − ) +2m2 m1 v2,i m1v1,i

+m1 m2
(14.1.14)

= 2.22 m/sv1,f (14.1.15)
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Significance

Notice that after the collision, the blue puck is moving to the right; its direction of motion was reversed. The red puck is now
moving to the left.

There is a second solution to the system of equations solved in this example (because the energy equation is quadratic): v  =
−2.5 m/s, v = 0. This solution is unacceptable on physical grounds; what’s wrong with it?

The 2012 movie “The Avengers” has a scene where Iron Man and Thor fight. At the beginning of the fight, Thor throws his
hammer at Iron Man, hitting him and throwing him slightly up into the air and against a small tree, which breaks. From the
video, Iron Man is standing still when the hammer hits him. The distance between Thor and Iron Man is approximately 10 m,
and the hammer takes about 1 s to reach Iron Man after Thor releases it. The tree is about 2 m behind Iron Man, which he hits
in about 0.75 s. Also from the video, Iron Man’s trajectory to the tree is very close to horizontal. Assuming Iron Man’s total
mass is 200 kg:

a. Estimate the mass of Thor’s hammer
b. Estimate how much kinetic energy was lost in this collision

Strategy

After the collision, Thor’s hammer is in contact with Iron Man for the entire time, so this is a perfectly inelastic collision. Thus,
with the correct choice of a closed system, we expect momentum is conserved, but not kinetic energy. We use the given
numbers to estimate the initial momentum, the initial kinetic energy, and the final kinetic energy. Because this is a one-
dimensional problem, we can go directly to the scalar form of the equations.

Solution
a. First, we posit conservation of momentum. For that, we need a closed system. The choice here is the system (hammer +

Iron Man), from the time of collision to the moment just before Iron Man and the hammer hit the tree. Let:
M  = mass of the hammer
M  = mass of Iron Man
v  = velocity of the hammer before hitting Iron Man
v = combined velocity of Iron Man + hammer after the collision

Again, Iron Man’s initial velocity was zero. Conservation of momentum here reads:

We are asked to find the mass of the hammer, so we have

Considering the uncertainties in our estimates, this should be expressed with just one significant figure; thus, M  = 7 x 10  kg.

b. The initial kinetic energy of the system, like the initial momentum, is all in the hammer: $

 Exercise 14.1.4

1,f

2,f 

 Example : Thor vs. iron man14.1.5

H

I

H

= ( + )v.MHvH MH MI (14.1.17)
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$After the collision, $

$Thus, there was a loss of 3500 J − 960 J = 2540 J.

Significance

From other scenes in the movie, Thor apparently can control the hammer’s velocity with his mind. It is possible, therefore, that
he mentally causes the hammer to maintain its initial velocity of 10 m/s while Iron Man is being driven backward toward the
tree. If so, this would represent an external force on our system, so it would not be closed. Thor’s mental control of his hammer
is beyond the scope of this book, however.

 

Suppose there had been no friction (the collision happened on ice); that would make  zero, and thus ,
which is obviously wrong. What is the mistake in this conclusion?

 

Subatomic Collisions and Momentum
Conservation of momentum is crucial to our understanding of atomic and subatomic particles because much of what we know
about these particles comes from collision experiments.

At the beginning of the twentieth century, there was considerable interest in, and debate about, the structure of the atom. It was
known that atoms contain two types of electrically charged particles: negatively charged electrons and positively charged protons.
(The existence of an electrically neutral particle was suspected, but would not be confirmed until 1932.) The question was, how
were these particles arranged in the atom? Were they distributed uniformly throughout the volume of the atom (as J.J. Thomson
proposed), or arranged at the corners of regular polygons (which was Gilbert Lewis’ model), or rings of negative charge that
surround the positively charged nucleus—rather like the planetary rings surrounding Saturn (as suggested by Hantaro Nagaoka), or
something else?

The New Zealand physicist Ernest Rutherford (along with the German physicist Hans Geiger and the British physicist Ernest
Marsden) performed the crucial experiment in 1909. They bombarded a thin sheet of gold foil with a beam of high energy (that is,
high-speed) alpha-particles (the nucleus of a helium atom). The alpha-particles collided with the gold atoms, and their subsequent
velocities were detected and analyzed, using conservation of momentum and conservation of energy.

If the charges of the gold atoms were distributed uniformly (per Thomson), then the alpha-particles should collide with them and
nearly all would be deflected through many angles, all small; the Nagaoka model would produce a similar result. If the atoms were
arranged as regular polygons (Lewis), the alpha-particles would deflect at a relatively small number of angles.

What actually happened is that nearly none of the alpha-particles were deflected. Those that were, were deflected at large angles,
some close to 180° —those alpha-particles reversed direction completely (Figure ). None of the existing atomic models
could explain this. Eventually, Rutherford developed a model of the atom that was much closer to what we now have—again, using
conservation of momentum and energy as his starting point.

Ki =
1

2
MHv

2
H

= (70 kg)(10 m/s
1

2
)2

= 3500 J.

Kf = ( + )
1

2
MH MI v2

= (70 kg+200 kg)(2.67 m/s
1

2
)2

= 960 J.
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Figure : The Thomson and Rutherford models of the atom. The Thomson model predicted that nearly all of the incident
alpha-particles would be scattered and at small angles. Rutherford and Geiger found that nearly none of the alpha particles were
scattered, but those few that were deflected did so through very large angles. The results of Rutherford’s experiments were
inconsistent with the Thomson model. Rutherford used conservation of momentum and energy to develop a new, and better model
of the atom—the nuclear model.

This page titled 14.1: Types of Collisions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
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14.2: Examples

                                  

A Croquet player hits a wooden croquet ball, of mass  kg,  at a speed of  m/s, which collides, off-center,
with a stationary ball of the same mass. After the collision, the first ball moves off with a speed of  m/s at an angle of 

 with respect to the x-axis, as shown in the figure. You may assume that this collision is inelastic.

1. At what angle, , relative to the x-axis does the second ball move away from the collision at?
2. What is the final speed of the second ball, ?
3. What was the change in energy of this collision? Can you explain your answer?

 

A billiard ball moving at 3.06 m/s strikes a second billiard ball, of the same mass (150 g) and initially at rest, in a perfectly
elastic collision. After the collision, the first ball moves away with a speed 2.65 m/s. 

1. What is the initial kinetic energy of the system?
2. What is the final speed of the second ball?
3. If the first ball leaves the collision at an angle of 30  with respect to the original direction of motion, what angle does the

second ball leave the collision at?

 

I am responsibly driving my 1360-kg Subaru Impreza through an intersection. I am traveling west, my light is green, so I
proceed through at 45 mph. An irresponsible driver in a brand new Audi R8 (of mass 1678 kg) with Florida plates blows
through the red light going north. He smashes into me, and our cars stick together after the collision, traveling at an angle of 65
 north of west. 

1. Determine both (which can be done in either order),

1. How fast was he traveling before he hit me?
2. How fast are the two cars moving together after the collision?

2. What fraction of the total energy of the system was lost during this collision?

 

You are flying through empty space in your rocket, at 2000 m/s, far away from any stars, planets, or other massive bodies.
However, you aren't paying very careful attention so you don't notice that there is a giant cube of ``Space-goo'' on a collision
course with you! It is moving at a speed of 500 m/s in a direction perpendicular to your own, and has a mass of 3000 kg.

 Whiteboard Problem : Croquet Collision14.2.1

m = 0.450 = 3.5v0

= 3.0v1

=θ1 10∘

θ2

v2

 Whiteboard Problem : Pool Shark14.2.2

∘

 Whiteboard Problem : Red Light!14.2.3

∘

 Whiteboard Problem : The Space Goo:14.2.4
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Assuming the total mass of you and your personal rocket is 1500 kg, and you get stuck in the space-goo when you collide,
what is the magnitude and direction of your final velocity after the collision?

Example : Collision Graph revisited
Look again at the collision graph from Example 2.4.1 from the point of view of the kinetic energy of the two carts.

a. What is the initial kinetic energy of the system?
b. How much of this is in the center of mass motion, and how much of is convertible?
c. Does the convertible kinetic energy go to zero at some point during the collision? If so, when? Is it fully recovered after the

collision is over?
d. What kind of collision is this? (Elastic, inelastic, etc.) What is the coefficient of restitution?

Solution

(a) From the solution to Example 3.5.1 we know that

and  = 1 kg and  = 2 kg. So the initial kinetic energy is

(b) To calculate , we need , which in this case is equal to

so  = 0, which means all the kinetic energy is convertible. We can also calculate that directly:

(c) If we look at figure 2.4.1, we can see that the carts do not pass through each other, so their relative velocity must be zero at
some point, and with that, the convertible energy. In fact, the figure makes it quite clear that both  and  are zero at  = 5 s,
so at that point also  = 0, and the convertible energy  = 0. (And so is the total  = 0 at that time, since  = 0
throughout.)

On the other hand, it is also clear that  is fully recovered after the collision is over, since the relative velocity just changes
sign:

Therefore

(d) Since the total kinetic energy (which in this case is only convertible energy) is fully recovered when the collision is over,
the collision is elastic. Using equation ( ), we can see that the coefficient of restitution is

as it should be.

This page titled 14.2: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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14.E: Collisions (Exercises)

Conceptual Questions
1. Describe examples of a completely elastic collision, a mostly elastic collision, a mostly inelastic collision, and a

completely inelastic collision. Which one of these four is most common?
2. Two objects of equal mass are moving with equal and opposite velocities when they collide. Can all the kinetic energy be

lost in the collision?
3. Describe a system for which momentum is conserved but mechanical energy is not. Now the reverse: Describe a system

for which kinetic energy is conserved but momentum is not.

Problems
3. Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one

another, the first having a mass of 1.50 x 10 kg and a velocity of (0.30 m/s) , and the second having a mass of 1.10 x
10 kg and a velocity of −(0.12 m/s) . What is their final velocity?

4. Two identical pucks collide elastically on an air hockey table. Puck 1 was originally at rest; puck 2 has an incoming speed
of 6.00 m/s to the left. What is the velocity (magnitude and direction) of puck 1 after the collision?

5. The figure below shows a bullet of mass 200 g traveling horizontally towards the east with speed 400 m/s, which strikes a
block of mass 1.5 kg that is initially at rest on a frictionless table. After striking the block, the bullet is embedded in the
block and the block and the bullet move together as one unit. (a) What is the magnitude and direction of the velocity of
the block/bullet combination immediately after the impact? (b) What is the magnitude and direction of the impulse by the
block on the bullet? (c) What is the magnitude and direction of the impulse from the bullet on the block? (d) If it took 3
ms for the bullet to change the speed from 400 m/s to the final speed after impact, what is the average force between the
block and the bullet during this time?

6. A 5.50-kg bowling ball moving at 9.00 m/s collides with a 0.850-kg bowling pin, which is scattered at an angle of 15.8°
to the initial direction of the bowling ball and with a speed of 15.0 m/s. (a) Calculate the final velocity (magnitude and
direction) of the bowling ball. (b) Is the collision elastic?

7. Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in Chemistry) demonstrated that nuclei were
very small and dense by scattering helium-4 nuclei from gold-197 nuclei. The energy of the incoming helium nucleus was
8.00 x 10  J, and the masses of the helium and gold nuclei were 6.68 x 10  kg and 3.29 x 10  kg, respectively (note
that their mass ratio is 4 to 197). (a) If a helium nucleus scatters to an angle of 120° during an elastic collision with a gold
nucleus, calculate the helium nucleus’s final speed and the final velocity (magnitude and direction) of the gold nucleus.
(b) What is the final kinetic energy of the helium nucleus?
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8. A 90.0-kg ice hockey player hits a 0.150-kg puck, giving the puck a velocity of 45.0 m/s. If both are initially at rest and if
the ice is frictionless, how far does the player recoil in the time it takes the puck to reach the goal 15.0 m away?

9. In an elastic collision, a 400-kg bumper car collides directly from behind with a second, identical bumper car that is
traveling in the same direction. The initial speed of the leading bumper car is 5.60 m/s and that of the trailing car is 6.00
m/s. Assuming that the mass of the drivers is much, much less than that of the bumper cars, what are their final speeds?

10. Repeat the preceding problem if the mass of the leading bumper car is 30.0% greater than that of the trailing bumper car.
11. An alpha particle ( He) undergoes an elastic collision with a stationary uranium nucleus ( U). What percent of the

kinetic energy of the alpha particle is transferred to the uranium nucleus? Assume the collision is one-dimensional.
12. A boy sleds down a hill and onto a frictionless ice-covered lake at 10.0 m/s. In the middle of the lake is a 1000-kg

boulder. When the sled crashes into the boulder, he is propelled over the boulder and continues sliding over the ice. If the
boy’s mass is 40.0 kg and the sled’s mass is 2.50 kg, what is the speed of the sled and the boulder after the collision?

13. A 0.90-kg falcon is diving at 28.0 m/s at a downward angle of 35°. It catches a 0.325-kg pigeon from behind in midair.
What is their combined velocity after impact if the pigeon’s initial velocity was 7.00 m/s directed horizontally? Note that 

 is a unit vector pointing in the direction in which the falcon is initially flying.

Figure  - (credit “hawk”: modification of work by “USFWS Mountain-Prairie”/Flickr; credit “dove”: modification of work
by Jacob Spinks)

14. A billiard ball, labeled 1, moving horizontally strikes another billiard ball, labeled 2, at rest. Before impact, ball 1 was
moving at a speed of 3.00 m/s, and after impact it is moving at 0.50 m/s at 50° from the original direction. If the two balls
have equal masses of 300 g, what is the velocity of the ball 2 after the impact?

15. A projectile of mass 2.0 kg is fired in the air at an angle of 40.0 ° to the horizon at a speed of 50.0 m/s. At the highest
point in its flight, the projectile breaks into three parts of mass 1.0 kg, 0.7 kg, and 0.3 kg. The 1.0-kg part falls straight
down after breakup with an initial speed of 10.0 m/s, the 0.7-kg part moves in the original forward direction, and the 0.3-
kg part goes straight up. (a) Find the speeds of the 0.3-kg and 0.7-kg pieces immediately after the break-up. (b) How high
from the break-up point does the 0.3-kg piece go before coming to rest? (c) Where does the 0.7-kg piece land relative to
where it was fired from?

16. Two asteroids collide and stick together. The first asteroid has mass of 15 x 10  kg and is initially moving at 770 m/s. The
second asteroid has mass of 20 x 10  kg and is moving at 1020 m/s. Their initial velocities made an angle of 20° with
respect to each other. What is the final speed and direction with respect to the velocity of the first asteroid?
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17. A 200-kg rocket in deep space moves with a velocity of (121 m/s)  + (38.0 m/s) . Suddenly, it explodes into three
pieces, with the first (78 kg) moving at −(321 m/s)  + (228 m/s)  and the second (56 kg) moving at (16.0 m/s)  − (88.0
m/s) . Find the velocity of the third piece.

18. A proton traveling at 3.0 x 10  m/s scatters elastically from an initially stationary alpha particle and is deflected at an
angle of 85° with respect to its initial velocity. Given that the alpha particle has four times the mass of the proton, what
percent of its initial kinetic energy does the proton retain after the collision?

19. Three 70-kg deer are standing on a flat 200-kg rock that is on an ice-covered pond. A gunshot goes off and the deer
scatter, with deer A running at (15 m/s)  + (5.0 m/s) , deer B running at (−12 m/s)  + (8.0 m/s) , and deer C running
at (1.2 m/s)  − (18.0 m/s) . What is the velocity of the rock on which they were standing?

20. A family is skating. The father (75 kg) skates at 8.2 m/s and collides and sticks to the mother (50 kg), who was initially
moving at 3.3 m/s and at 45° with respect to the father’s velocity. The pair then collides with their daughter (30 kg), who
was stationary, and the three slide off together. What is their final velocity?

21. An oxygen atom (mass 16 u) moving at 733 m/s at 15.0° with respect to the  direction collides and sticks to an oxygen
molecule (mass 32 u) moving at 528 m/s at 128° with respect to the  direction. The two stick together to form ozone.
What is the final velocity of the ozone molecule?

22. Two cars approach an extremely icy four-way perpendicular intersection. Car A travels northward at 30 m/s and car B is
travelling eastward. They collide and stick together, traveling at 28° north of east. What was the initial velocity of car B?

23. Two carts on a straight track collide head on. The first cart was moving at 3.6 m/s in the positive x direction and the
second was moving at 2.4 m/s in the opposite direction. After the collision, the second car continues moving in its initial
direction of motion at 0.24 m/s. If the mass of the second car is 5.0 times that of the first, what is the final velocity of the
first car?

24. Derive the equations giving the final speeds for two objects that collide elastically, with the mass of the objects being m
and m  and the initial speeds being v  and v  = 0 (i.e., second object is initially stationary).

25. Repeat the preceding problem for the case when the initial speed of the second object is nonzero.
26. Two billiard balls are at rest and touching each other on a pool table. The cue ball travels at 3.8 m/s along the line of

symmetry between these balls and strikes them simultaneously. If the collision is elastic, what is the velocity of the three
balls after the collision?

27. A billiard ball traveling at (2.2 m/s)  − (0.4 m/s)  collides with a wall that is aligned in the  direction. Assuming the
collision is elastic, what is the final velocity of the ball?

28. Two identical billiard balls collide. The first one is initially traveling at (2.2 m/s)  − (0.4 m/s)  and the second one at
−(1.4 m/s)  + (2.4 m/s) . Suppose they collide when the center of ball 1 is at the origin and the center of ball 2 is at the
point (2R, 0) where R is the radius of the balls. What is the final velocity of each ball?

29. Repeat the preceding problem if the balls collide when the center of ball 1 is at the origin and the center of ball 2 is at the
point (0, 2R).

30. Repeat the preceding problem if the balls collide when the center of ball 1 is at the origin and the center of ball 2 is at the

point .
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î ĵ

î ĵ
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15.1: Forces and Newton's Three Laws

Newton's Laws
Up to this point in the semester, we've been studying the interaction between objects by modeling the interactions with energy and
momentum. The transfer and conservation of these quantities allowed us to determine their motion. Now, we would like to describe
the interactions between objects using forces. In some ways, this description of the physical world is more intuitive; forces push
and pull on objects, much like how we interaction with objects in our everyday lives. Of course, momentum and energy is still
being transferred around, but the force description gives us a different perspective, and intuition about the motion is often more
direct. On the other hand, since forces are vectors, it requires more mathematical sophistication and care then when dealing with
energy.

Forces Are Vectors

When you push or pull on an object, it matters what direction you are pushing or pulling it. This is very natural; if you push in one
direction and your friend pushes just as hard in the opposite direction, the object will not move. But what happens if you push in
one direction and your friend pushes just as hard, but not quite in the opposite direction? The object might move in some other
direction, and that's what we want to know about. All these various direction-and-magnitude complexities can be easily dealt with

by modeling all forces as vectors. They must be written as  in the coordinate system you specify in order to get any

answers right!

Newton's First Law

Newton's first law can be summarized as "an object in motion tends to stay in motion unless acted on by a net external force''. The
converse is also true; "an object at rest tends to stay at rest unless acted on by a net external force''. An important word here is net,
which means sum of all. A hockey puck sliding across the ice will continue to slide forever if there is no friction, but it does have
external forces acting on it (gravity and the normal force, in this case). But these forces balance out, so there is no net force on the
hockey puck. Newton's first law does not really help us solve problems, but rather it helps with our modeling process. It tells us
when we should expect objects to exhibit motion.

Newton's Second Law

Newton's second law is the primary tool we will use to determine the motion of an object given some forces acting on it. We
usually remember it as 

 
where the  symbol means "add up all the forces''. This is an important thing to remember - an object can have several forces
acting on it, but a single object only ever has one acceleration . A very common mistake is to think "each force makes an
acceleration , and I will add them all up to get the acceleration of the object'', but that is incorrect. A single object has only a
single path in space, and therefore only has a single acceleration.

We can actually derive Newton's second law from the definition of force and momentum we have already encountered, namely

(Recall that "net" means "sum of all", which is mathematically the same thing as the symbol .)To do this, we just use the
definition of momentum, , and assume the mass is constant in time (as it often is). Then we get:

I typically write Newton's second law in a slightly different way, 
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which mathematically identical, but reads more like "the acceleration is the sum of the forces divided by the mass'', which is more
like how we use Newton's second law.

Finally, since this is a vector equation, it actually contains several independent equations inside it, one for each direction. You will
actually have components in each direction, which in column vector form looks like

or if we separate it into components, we get

 

. Either way you will have to solve all three equations for the components independently.

Newton's Third Law

Newton's third law is "for every action there is an equal and opposite reaction''. In this case, our "actions'' are forces. The typical
example of this is "I push on the wall with a force , so the wall pushes on me with a force ''. Mathematically, if we have a
force  acting from object A to object B, Newton's third law tells us that we know there must be a force  acting from
object B to object A. The magnitudes of these forces are equal, and their directions are opposite: 

Notice the way we've notated this - each force corresponds with a pair of objects, one that creates the force and one that
experiences it. All forces have both - you push on a wall (you and wall are the objects), the force of the floor pushing up on you,
etc. In the case of the forces above, we're writing  to mean "the force created by A, acting on B", or "the force from A to B".
The order of these subscripts is not always that important (since Newton's third law tells us that ), but we will try to
be careful when we are writing them.

15.1: Forces and Newton's Three Laws is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College.
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15.2: Details on Newton's First Law
Experience suggests that an object at rest remains at rest if left alone and that an object in motion tends to slow down and stop
unless some effort is made to keep it moving. However, Newton’s first law gives a deeper explanation of this observation.

A body at rest remains at rest or, if in motion, remains in motion at constant velocity unless acted on by a net external force.

Note the repeated use of the verb “remains.” We can think of this law as preserving the status quo of motion. Also note the
expression “constant velocity;” this means that the object maintains a path along a straight line, since neither the magnitude nor the
direction of the velocity vector changes. We can use Figure  to consider the two parts of Newton’s first law.

Figure : (a) A hockey puck is shown at rest; it remains at rest until an outside force such as a hockey stick changes its state of
rest; (b) a hockey puck is shown in motion; it continues in motion in a straight line until an outside force causes it to change its
state of motion. Although it is slick, an ice surface provides some friction that slows the puck.

Rather than contradicting our experience, Newton’s first law says that there must be a cause for any change in velocity (a change in
either magnitude or direction) to occur. This cause is a net external force, which we defined earlier in the chapter. An object sliding
across a table or floor slows down due to the net force of friction acting on the object. If friction disappears, will the object still
slow down?

The idea of cause and effect is crucial in accurately describing what happens in various situations. For example, consider what
happens to an object sliding along a rough horizontal surface. The object quickly grinds to a halt. If we spray the surface with
talcum powder to make the surface smoother, the object slides farther. If we make the surface even smoother by rubbing lubricating
oil on it, the object slides farther yet. Extrapolating to a frictionless surface and ignoring air resistance, we can imagine the object
sliding in a straight line indefinitely. Friction is thus the cause of slowing (consistent with Newton’s first law). The object would
not slow down if friction were eliminated.

Consider an air hockey table (Figure ). When the air is turned off, the puck slides only a short distance before friction slows
it to a stop. However, when the air is turned on, it creates a nearly frictionless surface, and the puck glides long distances without
slowing down. Additionally, if we know enough about the friction, we can accurately predict how quickly the object slows down.

Figure : An air hockey table is useful in illustrating Newton’s laws. When the air is off, friction quickly slows the puck; but
when the air is on, it minimizes contact between the puck and the hockey table, and the puck glides far down the table.

Newton’s first law is general and can be applied to anything from an object sliding on a table to a satellite in orbit to blood pumped
from the heart. Experiments have verified that any change in velocity (speed or direction) must be caused by an external force. The
idea of generally applicable or universal laws is important—it is a basic feature of all laws of physics. Identifying these laws is
like recognizing patterns in nature from which further patterns can be discovered. The genius of Galileo, who first developed the
idea for the first law of motion, and Newton, who clarified it, was to ask the fundamental question: “What is the cause?” Thinking
in terms of cause and effect is fundamentally different from the typical ancient Greek approach, when questions such as “Why does
a tiger have stripes?” would have been answered in Aristotelian fashion, such as “That is the nature of the beast.” The ability to
think in terms of cause and effect is the ability to make a connection between an observed behavior and the surrounding world.

 Newton’s First Law of Motion

15.2.1

15.2.1

15.2.2

15.2.2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85828?pdf
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/15%3A_N1)_Newton's_Laws/15.02%3A_Details_on_Newton's_First_Law


15.2.2 https://phys.libretexts.org/@go/page/85828

Gravitation and Inertia
Regardless of the scale of an object, whether a molecule or a subatomic particle, two properties remain valid and thus of interest to
physics: gravitation and inertia. Both are connected to mass. Roughly speaking, mass is a measure of the amount of matter in
something. Gravitation is the attraction of one mass to another, such as the attraction between yourself and Earth that holds your
feet to the floor. The magnitude of this attraction is your weight, and it is a force.

Mass is also related to inertia, the ability of an object to resist changes in its motion—in other words, to resist acceleration.
Newton’s first law is often called the law of inertia. As we know from experience, some objects have more inertia than others. It is
more difficult to change the motion of a large boulder than that of a basketball, for example, because the boulder has more mass
than the basketball. In other words, the inertia of an object is measured by its mass. The relationship between mass and weight is
explored later in this chapter.

Inertial Reference Frames
Earlier, we stated Newton’s first law as “A body at rest remains at rest or, if in motion, remains in motion at constant velocity
unless acted on by a net external force.” It can also be stated as “Every body remains in its state of uniform motion in a straight line
unless it is compelled to change that state by forces acting on it.” To Newton, “uniform motion in a straight line” meant constant
velocity, which includes the case of zero velocity, or rest. Therefore, the first law says that the velocity of an object remains
constant if the net force on it is zero.

Newton’s first law is usually considered to be a statement about reference frames. It provides a method for identifying a special
type of reference frame: the inertial reference frame. In principle, we can make the net force on a body zero. If its velocity
relative to a given frame is constant, then that frame is said to be inertial. So by definition, an inertial reference frame is a reference
frame in which Newton’s first law is valid. Newton’s first law applies to objects with constant velocity. From this fact, we can infer
the following statement.

A reference frame moving at constant velocity relative to an inertial frame is also inertial. A reference frame accelerating
relative to an inertial frame is not inertial.

Are inertial frames common in nature? It turns out that well within experimental error, a reference frame at rest relative to the most
distant, or “fixed,” stars is inertial. All frames moving uniformly with respect to this fixed-star frame are also inertial. For example,
a nonrotating reference frame attached to the Sun is, for all practical purposes, inertial, because its velocity relative to the fixed
stars does not vary by more than one part in 10 . Earth accelerates relative to the fixed stars because it rotates on its axis and
revolves around the Sun; hence, a reference frame attached to its surface is not inertial. For most problems, however, such a frame
serves as a sufficiently accurate approximation to an inertial frame, because the acceleration of a point on Earth’s surface relative to
the fixed stars is rather small (< 3.4 x 10 m/s ). Thus, unless indicated otherwise, we consider reference frames fixed on Earth to
be inertial.

Finally, no particular inertial frame is more special than any other. As far as the laws of nature are concerned, all inertial frames are
equivalent. In analyzing a problem, we choose one inertial frame over another simply on the basis of convenience.

Newton’s First Law and Equilibrium
Newton’s first law tells us about the equilibrium of a system, which is the state in which the forces on the system are balanced.
Consider an object with two forces acting on it,  and , which combine to form a resultant force, or the net external force: 
=  =  + . To create equilibrium, we require a balancing force that will produce a net force of zero. This force must be
equal in magnitude but opposite in direction to , which means the vector must be .

Newton’s first law is deceptively simple. If a car is at rest, the only forces acting on the car are weight and the contact force of the
pavement pushing up on the car (Figure ). It is easy to understand that a nonzero net force is required to change the state of
motion of the car. However, if the car is in motion with constant velocity, a common misconception is that the engine force
propelling the car forward is larger in magnitude than the friction force that opposes forward motion. In fact, the two forces have
identical magnitude.

 Inertial Reference Frame
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Figure : A car is shown (a) parked and (b) moving at constant velocity. How do Newton’s laws apply to the parked car?
What does the knowledge that the car is moving at constant velocity tell us about the net horizontal force on the car?

Newton’s laws can be applied to all physical processes involving force and motion, including something as mundane as driving
a car.

a. Your car is parked outside your house. Does Newton’s first law apply in this situation? Why or why not?
b. Your car moves at constant velocity down the street. Does Newton’s first law apply in this situation? Why or why not?

Strategy

In (a), we are considering the first part of Newton’s first law, dealing with a body at rest; in (b), we look at the second part of
Newton’s first law for a body in motion.

Solution
a. When your car is parked, all forces on the car must be balanced; the vector sum is 0 N. Thus, the net force is zero, and

Newton’s first law applies. The acceleration of the car is zero, and in this case, the velocity is also zero.
b. When your car is moving at constant velocity down the street, the net force must also be zero according to Newton’s first

law. The car’s engine produces a forward force; friction, a force between the road and the tires of the car that opposes
forward motion, has exactly the same magnitude as the engine force, producing the net force of zero. The body continues in
its state of constant velocity until the net force becomes nonzero. Realize that a net force of zero means that an object is
either at rest or moving with constant velocity, that is, it is not accelerating. What do you suppose happens when the
car accelerates? We explore this idea in the next section.

Significance

As this example shows, there are two kinds of equilibrium. In (a), the car is at rest; we say it is in static equilibrium. In (b),
the forces on the car are balanced, but the car is moving; we say that it is in dynamic equilibrium. (We examine this idea in
more detail in Static Equilibrium and Springs.) Again, it is possible for two (or more) forces to act on an object yet for the
object to move. In addition, a net force of zero cannot produce acceleration.

A skydiver opens his parachute, and shortly thereafter, he is moving at constant velocity. (a) What forces are acting on him? (b)
Which force is bigger?

Engage in this simulation to predict, qualitatively, how an external force will affect the speed and direction of an object’s
motion. Explain the effects with the help of a free-body diagram. Use free-body diagrams to draw position, velocity,
acceleration, and force graphs, and vice versa. Explain how the graphs relate to one another. Given a scenario or a graph,
sketch all four graphs.

This page titled 15.2: Details on Newton's First Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

5.3: Newton's First Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-
1.
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15.3: Details on Newton's Second Law
Newton’s second law is closely related to his first law. It mathematically gives the cause-and-effect relationship between force and
changes in motion. Newton’s second law is quantitative and is used extensively to calculate what happens in situations involving a
force. Before we can write down Newton’s second law as a simple equation that gives the exact relationship of force, mass, and
acceleration, we need to sharpen some ideas we mentioned earlier.

Force and Acceleration
First, what do we mean by a change in motion? The answer is that a change in motion is equivalent to a change in velocity. A
change in velocity means, by definition, that there is acceleration. Newton’s first law says that a net external force causes a change
in motion; thus, we see that a net external force causes nonzero acceleration.

We defined external force as force acting on an object or system that originates outside of the object or system. Let’s consider this
concept further. An intuitive notion of external is correct—it is outside the system of interest. For example, in Figure , the
system of interest is the car plus the person within it. The two forces exerted by the two students are external forces. In contrast, an
internal force acts between elements of the system. Thus, the force the person in the car exerts to hang on to the steering wheel is
an internal force between elements of the system of interest. Only external forces affect the motion of a system, according to
Newton’s first law. (The internal forces cancel each other out, as explained in the next section.) Therefore, we must define the
boundaries of the system before we can determine which forces are external. Sometimes, the system is obvious, whereas at other
times, identifying the boundaries of a system is more subtle. The concept of a system is fundamental to many areas of physics, as is
the correct application of Newton’s laws. This concept is revisited many times in the study of physics.

Figure : Different forces exerted on the same mass produce different accelerations. (a) Two students push a stalled car. All
external forces acting on the car are shown. (b) The forces acting on the car are transferred to a coordinate plane (free-body
diagram) for simpler analysis. (c) The tow truck can produce greater external force on the same mass, and thus greater acceleration.

From this example, you can see that different forces exerted on the same mass produce different accelerations. In Figure ,
the two students push a car with a driver in it. Arrows representing all external forces are shown. The system of interest is the car
and its driver. The weight  of the system and the support of the ground  are also shown for completeness and are assumed to
cancel (because there was no vertical motion and no imbalance of forces in the vertical direction to create a change in motion). The
vector  represents the friction acting on the car, and it acts to the left, opposing the motion of the car. (We discuss friction in more
detail in the next chapter.) In Figure , all external forces acting on the system add together to produce the net force .
The free-body diagram shows all of the forces acting on the system of interest. The dot represents the center of mass of the system.
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Each force vector extends from this dot. Because there are two forces acting to the right, the vectors are shown collinearly. Finally,
in Figure , a larger net external force produces a larger acceleration ( ) when the tow truck pulls the car.

It seems reasonable that acceleration would be directly proportional to and in the same direction as the net external force acting on
a system. This assumption has been verified experimentally and is illustrated in Figure . To obtain an equation for Newton’s
second law, we first write the relationship of acceleration  and net external force  as the proportionality

where the symbol  means “proportional to.” (Recall from the first section of this chapter that the net external force is the vector
sum of all external forces and is sometimes indicated as .) This proportionality shows what we have said in words—
acceleration is directly proportional to net external force. Once the system of interest is chosen, identify the external forces and
ignore the internal ones. It is a tremendous simplification to disregard the numerous internal forces acting between objects within
the system, such as muscular forces within the students’ bodies, let alone the myriad forces between the atoms in the objects. Still,
this simplification helps us solve some complex problems.

It also seems reasonable that acceleration should be inversely proportional to the mass of the system. In other words, the larger the
mass (the inertia), the smaller the acceleration produced by a given force. As illustrated in Figure , the same net external
force applied to a basketball produces a much smaller acceleration when it is applied to an SUV. The proportionality is written as

where m is the mass of the system and a is the magnitude of the acceleration. Experiments have shown that acceleration is exactly
inversely proportional to mass, just as it is directly proportional to net external force.

Figure : The same force exerted on systems of different masses produces different accelerations. (a) A basketball player
pushes on a basketball to make a pass. (Ignore the effect of gravity on the ball.) (b) The same player exerts an identical force on a
stalled SUV and produces far less acceleration. (c) The free-body diagrams are identical, permitting direct comparison of the two
situations. A series of patterns for free-body diagrams will emerge as you do more problems and learn how to draw them in
Drawing Free-Body Diagrams.

It has been found that the acceleration of an object depends only on the net external force and the mass of the object. Combining
the two proportionalities just given yields Newton’s second law.

The acceleration of a system is directly proportional to and in the same direction as the net external force acting on the system
and is inversely proportion to its mass. In equation form, Newton’s second law is

where  is the acceleration,  is the net force, and m is the mass. This is often written in the more familiar form

but the first equation gives more insight into what Newton’s second law means.
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The law is a cause-and-effect relationship among three quantities that is not simply based on their definitions. The validity of the
second law is based on experimental verification. The free-body diagram, which you will learn to draw in Drawing Free-Body
Diagrams, is the basis for writing Newton’s second law.

Suppose that the net external force (push minus friction) exerted on a lawn mower is 51 N (about 11 lb.) parallel to the ground
(Figure ). The mass of the mower is 24 kg. What is its acceleration?

Figure : (a) The net force on a lawn mower is 51 N to the right. At what rate does the lawn mower accelerate to the
right? (b) The free-body diagram for this problem is shown.

Strategy

This problem involves only motion in the horizontal direction; we are also given the net force, indicated by the single vector,
but we can suppress the vector nature and concentrate on applying Newton’s second law. Since F  and m are given, the
acceleration can be calculated directly from Newton’s second law as F  = ma.

Solution
The magnitude of the acceleration a is a = . Entering known values gives

Substituting the unit of kilograms times meters per square second for newtons yields

Significance

The direction of the acceleration is the same direction as that of the net force, which is parallel to the ground. This is a result of
the vector relationship expressed in Newton’s second law, that is, the vector representing net force is the scalar multiple of the
acceleration vector. There is no information given in this example about the individual external forces acting on the system, but
we can say something about their relative magnitudes. For example, the force exerted by the person pushing the mower must
be greater than the friction opposing the motion (since we know the mower moved forward), and the vertical forces must
cancel because no acceleration occurs in the vertical direction (the mower is moving only horizontally). The acceleration found
is small enough to be reasonable for a person pushing a mower. Such an effort would not last too long, because the person’s top
speed would soon be reached.

At the time of its launch, the HMS Titanic was the most massive mobile object ever built, with a mass of 6.0 x 10  kg. If a
force of 6 MN (6 x 10  N) was applied to the ship, what acceleration would it experience?

In the preceding example, we dealt with net force only for simplicity. However, several forces act on the lawn mower. The weight 
 (discussed in detail in Mass and Weight) pulls down on the mower, toward the center of Earth; this produces a contact force on

the ground. The ground must exert an upward force on the lawn mower, known as the normal force , which we define in Motion
from Forces. These forces are balanced and therefore do not produce vertical acceleration. In the next example, we show both of
these forces. As you continue to solve problems using Newton’s second law, be sure to show multiple forces.

 Example 5.2: What Acceleration Can a Person Produce When Pushing a Lawn Mower?

15.3.3

15.3.3
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net

Fnet
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a = .
51 N

24 kg
(15.3.5)

a = = 2.1 m/ .
51 kg⋅ m/s2
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s2 (15.3.6)
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a. The car shown in Figure  is moving at a constant speed. Which force is bigger,  or ? Explain.
b. The same car is now accelerating to the right. Which force is bigger,  or ? Explain.

Figure : A car is shown (a) moving at constant speed and (b) accelerating. How do the forces acting on the car compare
in each case? (a) What does the knowledge that the car is moving at constant velocity tell us about the net horizontal force on
the car compared to the friction force? (b) What does the knowledge that the car is accelerating tell us about the horizontal
force on the car compared to the friction force?

Strategy

We must consider Newton’s first and second laws to analyze the situation. We need to decide which law applies; this, in turn,
will tell us about the relationship between the forces.

Solution
a. The forces are equal. According to Newton’s first law, if the net force is zero, the velocity is constant.
b. In this case,  must be larger than . According to Newton’s second law, a net force is required to cause

acceleration.

Significance

These questions may seem trivial, but they are commonly answered incorrectly. For a car or any other object to move, it must
be accelerated from rest to the desired speed; this requires that the engine force be greater than the friction force. Once the car
is moving at constant velocity, the net force must be zero; otherwise, the car will accelerate (gain speed). To solve problems
involving Newton’s laws, we must understand whether to apply Newton’s first law (where  = ) or Newton’s second law
(where  is not zero). This will be apparent as you see more examples and attempt to solve problems on your own.

Before manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human
subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets.

Calculate the magnitude of force exerted by each rocket, called its thrust T, for the four-rocket propulsion system shown in
Figure . The sled’s initial acceleration is 49 m/s , the mass of the system is 2100 kg, and the force of friction opposing
the motion is 650 N.

 Example 5.3: Which Force Is Bigger?

15.3.4 F ⃗ 
engine F ⃗ 

friction

F ⃗ 
engine F ⃗ 

friction

15.3.4

F ⃗ 
engine F ⃗ 

friction

∑F ⃗  0⃗ 

∑F ⃗ 

 Example 5.4: What Rocket Thrust Accelerates This Sled?
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Figure : A sled experiences a rocket thrust that accelerates it to the right. Each rocket creates an identical thrust T. The
system here is the sled, its rockets, and its rider, so none of the forces between these objects are considered. The arrow
representing friction ( ) is drawn larger than scale.

Strategy

Although forces are acting both vertically and horizontally, we assume the vertical forces cancel because there is no vertical
acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with
plus or minus signs, with right taken as the positive direction. See the free-body diagram in Figure .

Solution
Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the
thrust of the engines. We have defined the direction of the force and acceleration as acting “to the right,” so we need to
consider only the magnitudes of these quantities in the calculations. Hence we begin with

where F  is the net force along the horizontal direction. We can see from the figure that the engine thrusts add, whereas
friction opposes the thrust. In equation form, the net external force is

Substituting this into Newton’s second law gives us

Using a little algebra, we solve for the total thrust 4T:

Substituting known values yields

Therefore, the total thrust is

Significance

The numbers are quite large, so the result might surprise you. Experiments such as this were performed in the early 1960s to
test the limits of human endurance, and the setup was designed to protect human subjects in jet fighter emergency ejections.
Speeds of 1000 km/h were obtained, with accelerations of 45 g’s. (Recall that g, acceleration due to gravity, is 9.80 m/s . When
we say that acceleration is 45 g’s, it is 45 x 9.8 m/s , which is approximately 440 m/s .) Although living subjects are not used
anymore, land speeds of 10,000 km/h have been obtained with a rocket sled.

In this example, as in the preceding one, the system of interest is obvious. We see in later examples that choosing the system of
interest is crucial—and the choice is not always obvious.
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Newton’s second law is more than a definition; it is a relationship among acceleration, force, and mass. It can help us make
predictions. Each of those physical quantities can be defined independently, so the second law tells us something basic and
universal about nature.

A 550-kg sports car collides with a 2200-kg truck, and during the collision, the net force on each vehicle is the force exerted by
the other. If the magnitude of the truck’s acceleration is 10 m/s , what is the magnitude of the sports car’s acceleration?

Component Form of Newton’s Second Law
We have developed Newton’s second law and presented it as a vector equation in Equation . This vector equation can be
written as three component equations:

The second law is a description of how a body responds mechanically to its environment. The influence of the environment is the
net force , the body’s response is the acceleration , and the strength of the response is inversely proportional to the mass m.
The larger the mass of an object, the smaller its response (its acceleration) to the influence of the environment (a given net force).
Therefore, a body’s mass is a measure of its inertia, as we explained in Newton’s First Law.

A 0.400-kg soccer ball is kicked across the field by a player; it undergoes acceleration given by

.

Find (a) the resultant force acting on the ball and (b) the magnitude and direction of the resultant force.

Strategy

There are values in the  and  rows of the columnt vector, so we apply Newton’s second law in vector form.

Solution

a. We apply Newton’s second law: 

b. . Magnitude and direction are found using the components of : 

Significance

We must remember that Newton’s second law is a vector equation. In (a), we are multiplying a vector by a scalar to determine
the net force in vector form. While the vector form gives a compact representation of the force vector, it does not tell us how
“big” it is, or where it goes, in intuitive terms. In (b), we are determining the actual size (magnitude) of this force and the
direction in which it travels.

Find the mass of a car if a net force of  produces an acceleration of .

 Exercise 5.4
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 Example 5.5: Force on a Soccer Ball
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 Example 5.6: Mass of a Car
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Strategy

Vector division is not defined, so  cannot be performed. However, mass m is a scalar, so we can use the scalar form

of Newton’s second law, .

Solution
We use m =  and substitute the magnitudes of the two vectors: F  = 600.0 N and a = 0.2 m/s . Therefore,

Significance

Force and acceleration were given in column vector format, but the answer, mass m, is a scalar and thus is not given in column
vector form.

This page titled 15.3: Details on Newton's Second Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

5.4: Newton's Second Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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15.4: Details on Newton’s Third Law
We have thus far considered force as a push or a pull; however, if you think about it, you realize that no push or pull ever occurs by
itself. When you push on a wall, the wall pushes back on you. This brings us to Newton’s third law.

Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite
in direction to the force that it exerts. Mathematically, if a body A exerts a force  on body B, then B simultaneously exerts a
force  on A, or in vector equation form,

Newton’s third law represents a certain symmetry in nature: Forces always occur in pairs, and one body cannot exert a force on
another without experiencing a force itself. We sometimes refer to this law loosely as “action-reaction,” where the force exerted is
the action and the force experienced as a consequence is the reaction. Newton’s third law has practical uses in analyzing the origin
of forces and understanding which forces are external to a system.

We can readily see Newton’s third law at work by taking a look at how people move about. Consider a swimmer pushing off the
side of a pool (Figure ). She pushes against the wall of the pool with her feet and accelerates in the direction opposite that of
her push. The wall has exerted an equal and opposite force on the swimmer. You might think that two equal and opposite forces
would cancel, but they do not because they act on different systems. In this case, there are two systems that we could investigate:
the swimmer and the wall. If we select the swimmer to be the system of interest, as in the figure, then F  is an external
force on this system and affects its motion. The swimmer moves in the direction of this force. In contrast, the force F   acts
on the wall, not on our system of interest. Thus, F does not directly affect the motion of the system and does not cancel
F . The swimmer pushes in the direction opposite that in which she wishes to move. The reaction to her push is thus in the
desired direction. In a free-body diagram, such as the one shown in Figure , we never include both forces of an action-
reaction pair; in this case, we only use F , not F .

Figure : When the swimmer exerts a force on the wall, she accelerates in the opposite direction; in other words, the net
external force on her is in the direction opposite of F . This opposition occurs because, in accordance with Newton’s third
law, the wall exerts a force F  on the swimmer that is equal in magnitude but in the direction opposite to the one she exerts
on it. The line around the swimmer indicates the system of interest. Thus, the free-body diagram shows only F , w (the
gravitational force), and BF, which is the buoyant force of the water supporting the swimmer’s weight. The vertical forces w and
BF cancel because there is no vertical acceleration.

Other examples of Newton’s third law are easy to find:

As a professor paces in front of a whiteboard, he exerts a force backward on the floor. The floor exerts a reaction force forward
on the professor that causes him to accelerate forward.
A car accelerates forward because the ground pushes forward on the drive wheels, in reaction to the drive wheels pushing
backward on the ground. You can see evidence of the wheels pushing backward when tires spin on a gravel road and throw the
rocks backward.
Rockets move forward by expelling gas backward at high velocity. This means the rocket exerts a large backward force on the
gas in the rocket combustion chamber; therefore, the gas exerts a large reaction force forward on the rocket. This reaction force,
which pushes a body forward in response to a backward force, is called thrust. It is a common misconception that rockets
propel themselves by pushing on the ground or on the air behind them. They actually work better in a vacuum, where they can
more readily expel the exhaust gases.
Helicopters create lift by pushing air down, thereby experiencing an upward reaction force.

 Newton’s Third Law of Motion

F ⃗ 

−F ⃗ 

= − .F ⃗ 
AB F ⃗ 

BA (15.4.1)
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Birds and airplanes also fly by exerting force on the air in a direction opposite that of whatever force they need. For example,
the wings of a bird force air downward and backward to get lift and move forward.
An octopus propels itself in the water by ejecting water through a funnel from its body, similar to a jet ski.
When a person pulls down on a vertical rope, the rope pulls up on the person (Figure ).

Figure : When the mountain climber pulls down on the rope, the rope pulls up on the mountain climber.

There are two important features of Newton’s third law. First, the forces exerted (the action and reaction) are always equal in
magnitude but opposite in direction. Second, these forces are acting on different bodies or systems: A’s force acts on B and B’s
force acts on A. In other words, the two forces are distinct forces that do not act on the same body. Thus, they do not cancel each
other.

A person who is walking or running applies Newton’s third law instinctively. For example, the runner in Figure  pushes
backward on the ground so that it pushes him forward.

Figure : The runner experiences Newton’s third law. (a) A force is exerted by the runner on the ground. (b) The reaction
force of the ground on the runner pushes him forward.

The package in Figure  is sitting on a scale. The forces on the package are , which is due to the scale, and , which is
due to Earth’s gravitational field. The reaction forces that the package exerts are  on the scale and  on Earth. Because the
package is not accelerating, application of the second law yields

so

Thus, the scale reading gives the magnitude of the package’s weight. However, the scale does not measure the weight of the
package; it measures the force  on its surface. If the system is accelerating,  and  would not be equal, as explained in
Applications of Newton’s Laws.

15.4.2

15.4.2

15.4.3

15.4.3

 Example 5.9: Forces on a Stationary Object

15.4.4 S ⃗  −w⃗ 

−S ⃗  w⃗ 

− = m = ,S ⃗  w⃗  a⃗  0⃗  (15.4.2)

= .S ⃗  w⃗  (15.4.3)
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Figure : (a) The forces on a package sitting on a scale, along with their reaction forces. The force  is the weight of the
package (the force due to Earth’s gravity) and  is the force of the scale on the package. (b) Isolation of the package-scale
system and the package-Earth system makes the action and reaction pairs clear.

A physics professor pushes a cart of demonstration equipment to a lecture hall (Figure ). Her mass is 65.0 kg, the cart’s
mass is 12.0 kg, and the equipment’s mass is 7.0 kg. Calculate the acceleration produced when the professor exerts a backward
force of 150 N on the floor. All forces opposing the motion, such as friction on the cart’s wheels and air resistance, total 24.0
N.

Figure : A professor pushes the cart with her demonstration equipment. The lengths of the arrows are proportional to the
magnitudes of the forces (except for , because it is too small to drawn to scale). System 1 is appropriate for this example,
because it asks for the acceleration of the entire group of objects. Only  and  are external forces acting on System 1
along the line of motion. All other forces either cancel or act on the outside world. System 2 is chosen for the next example so
that  is an external force and enters into Newton’s second law. The free-body diagrams, which serve as the basis for
Newton’s second law, vary with the system chosen.

Strategy

Since they accelerate as a unit, we define the system to be the professor, cart, and equipment. This is System 1 in Figure 
. The professor pushes backward with a force F of 150 N. According to Newton’s third law, the floor exerts a forward

reaction force F  of 150 N on System 1. Because all motion is horizontal, we can assume there is no net force in the vertical
direction. Therefore, the problem is one-dimensional along the horizontal direction. As noted, friction f opposes the motion and
is thus in the opposite direction of F . We do not include the forces F  or F  because these are internal forces, and we do
not include F  because it acts on the floor, not on the system. There are no other significant forces acting on System 1. If the
net external force can be found from all this information, we can use Newton’s second law to find the acceleration as
requested. See the free-body diagram in the figure.

Solution

15.4.4 w⃗ 

S ⃗ 

 Example 5.10: Getting Up to Speed: Choosing the Correct System
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Newton’s second law is given by

The net external force on System 1 is deduced from Figure  and the preceding discussion to be

The mass of System 1 is

These values of F and m produce an acceleration of

Significance

None of the forces between components of System 1, such as between the professor’s hands and the cart, contribute to the net
external force because they are internal to System 1. Another way to look at this is that forces between components of a system
cancel because they are equal in magnitude and opposite in direction. For example, the force exerted by the professor on the
cart results in an equal and opposite force back on the professor. In this case, both forces act on the same system and therefore
cancel. Thus, internal forces (between components of a system) cancel. Choosing System 1 was crucial to solving this problem.

Calculate the force the professor exerts on the cart in Figure , using data from the previous example if needed.

Strategy

If we define the system of interest as the cart plus the equipment (System 2 in Figure ), then the net external force on
System 2 is the force the professor exerts on the cart minus friction. The force she exerts on the cart, F , is an external force
acting on System 2. F was internal to System 1, but it is external to System 2 and thus enters Newton’s second law for this
system.

Solution
Newton’s second law can be used to find F . We start with

The magnitude of the net external force on System 2 is

We solve for F , the desired quantity:

The value of f is given, so we must calculate net F . That can be done because both the acceleration and the mass of System 2
are known. Using Newton’s second law, we see that

where the mass of System 2 is 19.0 kg (m = 12.0 kg + 7.0 kg) and its acceleration was found to be a = 1.5 m/s  in the previous
example. Thus,

Now we can find the desired force:

a = .
Fnet

m
(15.4.4)

15.4.5

= −f = 150 N −24.0 N = 126 N .Fnet Ffloor (15.4.5)

m = (65.0 +12.0 +7.0) kg = 84 kg. (15.4.6)

net 

a = = = 1.5 m/ .
Fnet

m

126 N

84 kg
s2 (15.4.7)

 Example 5.11: Force on the Cart: Choosing a New System
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= +f .Fprof Fnet (15.4.10)
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= ma,Fnet (15.4.11)

2

= ma = (19.0 kg)(1.5 m/ ) = 29 N .Fnet s2 (15.4.12)

= +f = 29 N +24.0 N = 53 N .Fprof Fnet (15.4.13)
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Significance

This force is significantly less than the 150-N force the professor exerted backward on the floor. Not all of that 150-N force is
transmitted to the cart; some of it accelerates the professor. The choice of a system is an important analytical step both in
solving problems and in thoroughly understanding the physics of the situation (which are not necessarily the same things).

Two blocks are at rest and in contact on a frictionless surface as shown below, with m  = 2.0 kg, m  = 6.0 kg, and applied force
24 N. (a) Find the acceleration of the system of blocks. (b) Suppose that the blocks are later separated. What force will give the
second block, with the mass of 6.0 kg, the same acceleration as the system of blocks?

View this video to watch examples of action and reaction. View this video to watch examples of Newton’s laws and internal
and external forces.

This page titled 15.4: Details on Newton’s Third Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

5.6: Newton’s Third Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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15.5: Free-Body Diagrams
Trying to draw every single force acting on every single object can very quickly become pretty messy. And anyway, this is not
usually what we need: what we need is to separate cleanly all the forces acting on any given object, one object at a time, so we can
apply Newton’s second law, , to each object individually.

In order to accomplish this, we use what are known as free-body diagrams. In a free-body diagram, a potentially very complicated
object is replaced symbolically by a dot or a small circle, and all the forces acting on the object are drawn (approximately to scale
and properly labeled) as acting on the dot. Regardless of whether a force is a pulling or pushing force, the convention is to always
draw it as a vector that originates at the dot. If the system is accelerating, it is also a good idea to indicate the acceleration’s
direction also somewhere on the diagram.

The figure below shows, as an example, a free-body diagram for a block, in the presence of both a nonzero acceleration and a
friction force. The diagram includes all the forces, even gravity and the normal force.

Figure , with the friction force adjusted so as to be compatible with a nonzero acceleration to the right.

Note that I have drawn  and the force of gravity  as having the same magnitude, since there is no vertical acceleration for
that block. If I know the value of the friction force, I should also try to draw  approximately to scale with the other two forces.
Then, since I know that there is an acceleration to the right, I need to draw  greater than , since the net force on the block
must be to the right as well.

This page titled 15.5: Free-Body Diagrams is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-
Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

6.4: Free-Body Diagrams by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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15.6: Motion on a Circle (Or Part of a Circle)
The last example of motion in two dimensions that I will consider in this chapter is motion on a circle. There are many examples of
circular (or near-circular) motion in nature, particularly in astronomy (as we shall see in a later chapter, the orbits of most planets
and many satellites are very nearly circular). There are also many devices that we use all the time that involve rotating or spinning
objects (wheels, gears, turntables, turbines...). All of these can be mathematically described as collections of particles moving in
circles.

In this section, I will first introduce the concept of centripetal force, which is the force needed to bend an object’s trajectory into a
circle (or an arc of a circle), and then I will also introduce a number of quantities that are useful for the description of circular
motion in general, such as angular velocity and angular acceleration. The dynamics of rotational motion (questions having to do
with rotational energy, and a new important quantity, angular momentum) will be the subject of Chapter 23.

Centripetal Acceleration and Centripetal Force
As you know by now, the law of inertia states that, in the absence of external forces, an object will move with constant speed on a
straight line. A circle is not a straight line, so an object will not naturally follow a circular path unless there is a force acting on it.

Another way to see this is to go back to the definition of acceleration. If an object has a velocity vector  at the time , and a
different velocity vector  at the later time , then its average acceleration over the time interval  is the quantity 

. This is nonzero even if the speed does not change (that is, even if the two velocity vectors have the
same magnitude), as long as they have different directions, as you can see from Figure  below. Thus, motion on a circle (or
an arc of a circle), even at constant speed, is accelerated motion, and, by Newton’s second law, accelerated motion requires a force
to make it happen.

Figure : A particle moving along an arc of a circle of radius . The positions and velocities at the times  and  are
shown. The diagram on the right shows the velocity difference, .

We can find out how large this acceleration, and the associated force, have to be, by applying a little geometry and trigonometry to
the situation depicted in Figure . Here a particle is moving along an arc of a circle of radius , so that at the time  it is at
point P and at the later time  it is at point Q. The length of the arc between P and Q (the distance it has traveled) is ,
where the angle  is understood to be in radians. I have assumed the speed to be constant, so the magnitude of the velocity vector, 

, is just equal to the ratio of the distance traveled (along the circle), to the time elapsed: . Combining these two
expressions, we have a relationship for the angle in the figure:

Now, consider the second picture in the figure above. It shows the change of the velocity vector from  to , and it
should be pretty easy to convince yourself that the angle  between these two vectors is the same as in the left figure. Now, unlike
the "definition of the angle"  relationship we used above, this is a real triangle (  is a straight line), but we can say
approximately the same thing is true,

(t)v ⃗  t

(t+Δt)v ⃗  t+Δt Δt

= ( (t+Δt) − (t))/Δtv ⃗ av v ⃗  v ⃗ 

15.6.1

15.6.1 R t t+ Δt
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Since these two are relationships for the angle (which should be the same), we can set them equal to each other:

In the last step we have solved for the change in velocity over the change in time, which is simply the acceleration,

This acceleration is called the centripetal acceleration, which is why I have denoted it by the symbol . The reason for that name
is that it is always pointing towards the center of the circle. You can kind of see this from Figure : if you take the vector 
shown there, and move it (without changing its direction, so it stays ‘parallel to itself”) to the midpoint of the arc, halfway between
points P and Q, you will see that it does point almost straight to the center of the circle. (A more mathematically rigorous proof of
this fact, using calculus, will be presented later in this section.)

The force  needed to provide this acceleration is called the centripetal force, and by Newton’s second law it has to satisfy 
. Thus, the centripetal force has magnitude

and, like the acceleration , is always directed towards the center of the circle.

Physically, the centripetal force , as given by Equation ( ), is what it takes to bend the trajectory so as to keep it precisely
on an arc of a circle of radius  and with constant speed . Note that, since  is always perpendicular to the displacement (which,
over any short time interval, is essentially tangent to the circle), it does no work on the object, and therefore (by Equation (10.2.7))
its kinetic energy does not change, so  does indeed stay constant when the centripetal force equals the net force. Note also that
“centripetal” is just a job description: it is not a new type of force. In any given situation, the role of the centripetal force will be
played by one of the forces we are already familiar with, such as the tension on a rope (or an appropriate component thereof) when
you are swinging an object in a horizontal circle, or gravity in the case of the moon or any other satellite.

At this point, if you have never heard about the centripetal force before, you may be feeling a little confused, since you almost
certainly have heard, instead, about a so-called centrifugal force that tends to push spinning things away from the center of rotation.
In fact, however, this “centrifugal force” does not really exist: the “force” that you may feel pushing you towards the outside of a
curve when you ride in a vehicle that makes a sharp turn is really nothing but your own inertia—your body “wants” to keep moving
on a straight line, but the car, by bending its trajectory, is preventing it from doing so. The impression that you get that you would
fly radially out, as opposed to along a tangent, is also entirely due to the fact that the reference frame you are in (the car) is
continuously changing its direction of motion. Example 20.2.3 illustrates this in some detail.

On the other hand, getting a car to safely negotiate a turn is actually an important example of a situation that requires a definite
centripetal force. On a flat surface (see the next section for a treatment of a banked curve!), you rely entirely on the force of static
friction to keep you on the track, which can typically be modeled as an arc of a circle with some radius . So, if you are traveling
at a speed , you need . Recalling that the force of static friction cannot exceed , and that on a flat surface you
would just have , you see you need to keep  smaller than ; or, canceling the mass,

This is the condition that has to hold in order to be able to make the turn safely. The maximum speed is then ,
which, as you can see, will depend on the state of the road (for instance, if the road is wet the coefficient  will be smaller). The
posted, recommended speed will typically take this into consideration and will be as low as it has to be to keep you safe. Notice
that the left-hand side of Equation ( ) increases as the square of the speed, so doubling your speed makes that term four times
larger! Do not even think of taking a turn at 60 mph if the recommended speed is 30, and do not exceed the recommended speed at
all if the road is wet or your tires are worn.
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Kinematic Angular Variables
Consider a particle moving on a circle, as in Figure  below. Of course, we can just use the regular, cartesian coordinates, 
and , to describe its motion. But, in a way, this is carrying around more information than we typically need, and it is also not very
transparent: a value of  and  does not immediately tell us how far the object has traveled along the circle itself.

Instead, the most convenient way to describe the motion of the particle, if we know the radius of the circle, is to give the angle 
that the position vector makes with some reference axis at any given time, as shown in Figure . If we choose the  axis as the
reference, then the conversion from a description based on the radius  and the angle  to a description in terms of  and  is
simply

so knowing the function  we can immediately get  and , if we need them. (Note: in this section we are using an
uppercase  for the magnitude of the position vector, to emphasize that it is a constant, equal to the radius of the circle.)

Figure : A particle moving on a circle. The position vector has length , so the  and  coordinates are  and ,
respectively. The conventional positive direction of motion is indicated. The velocity vector is always, as usual, tangent to the

trajectory.

Although the angle  itself is not a vector quantity, nor a component of a vector, it is convenient to allow for the possibility that it
might be negative. The standard convention is that  grows in the counterclockwise direction from the reference axis, and
decreases in the clockwise direction. Of course, you can always get to any angle by coming from either direction, so the angle by
itself does not tell you how the particle got there. Information on the direction of motion at any given time is best captured by the
concept of the angular velocity, which we represent by the symbol  and define in a manner analogous to the way we defined the
ordinary velocity: if  is the angular displacement over a time , then

The standard convention is also to use radians as an angle measure in this context, so that the units of  will be radians per second,
or rad/s. Note that the radian is a dimensionless unit, so it “disappears” from a calculation when the final result does not call for it
(as in Equation ( ) below).

For motion with constant angular velocity, we clearly will have
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where  is positive for counterclockwise motion, and negative for clockwise. (Recall that the direction of the vector  can be
specified with the right hand rule, from section 7.1)

When  changes with time, we can introduce an angular acceleration , defined, again, in the obvious way:

Then for motion with constant angular acceleration we have the formulas

Equation ( ) completely parallel the corresponding equations for motion in one dimension that we saw in Chapter 1. In fact,
of course, a circle is just a line that has been bent in a uniform way, so the distance traveled along the circle itself is simply
proportional to the angle swept by the position vector . As already pointed out in connection with Figure , if we expressed 
in radians then the length of the arc corresponding to an angular displacement  would be

so multiplying Eqs. ( ) or ( ) by  directly gives the distance traveled along the circle in each case.

Figure : A small angular displacement. The distance traveled along the circle, , is almost identical to the straight-
line distance  between the initial and final positions; the two quantities become the same in the limit .

Figure  shows that, for very small angular displacements, it does not matter whether the distance traveled is measured along
the circle itself or on a straight line; that is, . Dividing by , using Equation ( ) and taking the  limit we
get the following useful relationship between the angular velocity and the instantaneous speed  (defined in the ordinary way as the
distance traveled per unit time, or the magnitude of the velocity vector):

As we shall see later, the product  is also a useful quantity. It is not, however, equal to the magnitude of the acceleration vector,
but only one of its two components, the tangential acceleration:

The sign convention here is that a positive  represents a vector that is tangent to the circle and points in the direction of
increasing  (that is, counterclockwise); the full acceleration vector is equal to the sum of this vector and the centripetal
acceleration vector, introduced in the previous subsection, which always points towards the center of the circle and has magnitude

(making use of Eqs. ( ) and ( )). These results will be formally established Chapter 22, after we introduce the vector
product, although you could also verify them right now—if you are familiar enough with derivatives at this point—by using the
chain rule to take the derivatives with respect to time of the components of the position vector, as given in Equation ( ) (with 

, an arbitrary function of time).

θ(t) = +ω (t− )  or  Δθ = ωΔt  (constant ω)θi ti (15.6.9)

ω ω⃗ 

ω α

α = = .lim
Δt→0

Δω

Δt

dω

dt
(15.6.10)

ω(t) = +α (t− )  or  Δω = αΔt ( constant α)ωi ti

θ(t) = + (t− ) + α  or  Δθ = Δt+ α(Δt  (constant α).θi ωi ti
1

2
(t− )ti

2 ωi

1

2
)2 (15.6.11)

15.6.11

r ⃗  15.6.1 θ

Δθ

s = R|Δθ| (15.6.12)
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15.6.3 s = RΔθ
|Δ |r ⃗  Δt → 0

15.6.3

s ≃ |Δ |r ⃗  Δt 15.6.12 Δt → 0

v

| | = R|ω|.v ⃗  (15.6.13)

Rα

= Rα.at (15.6.14)
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The main thing to remember about the radial and tangential components of the acceleration is that the radial component (the
centripetal acceleration) is always there for circular motion, whether the angular velocity is constant or not, whereas the tangential
acceleration is only nonzero if the angular velocity is changing, that is to say, if the particle is slowing down or speeding up as it
turns.
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LibreTexts platform.
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15.7: Newton's Laws of Motion (Exercises)

Conceptual Questions
1. What properties do forces have that allow us to classify them as vectors?
2. Taking a frame attached to Earth as inertial, which of the following objects cannot have inertial frames attached to them,

and which are inertial reference frames?
a. A car moving at constant velocity
b. A car that is accelerating
c. An elevator in free fall
d. A space capsule orbiting Earth
e. An elevator descending uniformly

3. A woman was transporting an open box of cupcakes to a school party. The car in front of her stopped suddenly; she
applied her brakes immediately. She was wearing her seat belt and suffered no physical harm (just a great deal of
embarrassment), but the cupcakes flew into the dashboard and became “smushcakes.” Explain what happened.

4. Why can we neglect forces such as those holding a body together when we apply Newton’s second law?
5. A rock is thrown straight up. At the top of the trajectory, the velocity is momentarily zero. Does this imply that the force

acting on the object is zero? Explain your answer.
6. Identify the action and reaction forces in the following situations:

a. Earth attracts the Moon,
b. a boy kicks a football,
c. a rocket accelerates upward,
d. a car accelerates forward,
e. a high jumper leaps, and
f. a bullet is shot from a gun.

7. Suppose that you are holding a cup of coffee in your hand. Identify all forces on the cup and the reaction to each force.
8. (a) Why does an ordinary rifle recoil (kick backward) when fired? (b) The barrel of a recoilless rifle is open at both ends.

Describe how Newton’s third law applies when one is fired. (c) Can you safely stand close behind one when it is fired?

Problems

9. Two ropes are attached to a tree, and forces of  = 2.0  + 4.0  N and  = 3.0  + 6.0  N are applied. The forces are
coplanar (in the same plane). (a) What is the resultant (net force) of these two force vectors? (b) Find the magnitude and
direction of this net force.

10. A telephone pole has three cables pulling as shown from above, with  = (300.0  + 500.0 ),  = −200.0 , and  =
−800.0 . (a) Find the net force on the telephone pole in component form. (b) Find the magnitude and direction of this net
force.

11. Two teenagers are pulling on ropes attached to a tree. The angle between the ropes is 30.0°. David pulls with a force of
400.0 N and Stephanie pulls with a force of 300.0 N. (a) Find the component form of the net force. (b) Find the
magnitude of the resultant (net) force on the tree and the angle it makes with David’s rope.

12. Two forces of  = 75.0 2 (  − ) N and  =  N act on an object. Find the third force  that is needed to

balance the first two forces.

F ⃗ 
1 î ĵ F ⃗ 

2 î ĵ

F ⃗ 
1 î ĵ F ⃗ 

2 î F ⃗ 
3

ĵ

F ⃗ 
1 î ĵ F ⃗ 

2 ( − )150.0
2√

î ĵ F ⃗ 
3
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13. While sliding a couch across a floor, Andrea and Jennifer exert forces  and  on the couch. Andrea’s force is due
north with a magnitude of 130.0 N and Jennifer’s force is 32° east of north with a magnitude of 180.0 N. (a) Find the net
force in component form. (b) Find the magnitude and direction of the net force. (c) If Andrea and Jennifer’s housemates,
David and Stephanie, disagree with the move and want to prevent its relocation, with what combined force  should
they push so that the couch does not move?

14. Andrea, a 63.0-kg sprinter, starts a race with an acceleration of 4.200 m/s . What is the net external force on her?
15. A cleaner pushes a 4.50-kg laundry cart in such a way that the net external force on it is 60.0 N. Calculate the magnitude

of his cart’s acceleration.
16. Astronauts in orbit are apparently weightless. This means that a clever method of measuring the mass of astronauts is

needed to monitor their mass gains or losses, and adjust their diet. One way to do this is to exert a known force on an
astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted, and an astronaut’s
acceleration is measured to be 0.893 m/s . (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in
which she orbits experiences an equal and opposite force. Use this knowledge to find an equation for the acceleration of
the system (astronaut and spaceship) that would be measured by a nearby observer. (c) Discuss how this would affect the
measurement of the astronaut’s acceleration. Propose a method by which recoil of the vehicle is avoided.

17. In Figure 5.4.3, the net external force on the 24-kg mower is given as 51 N. If the force of friction opposing the motion is
24 N, what force F (in newtons) is the person exerting on the mower? Suppose the mower is moving at 1.5 m/s when the
force F is removed. How far will the mower go before stopping?

18. The rocket sled shown below decelerates at a rate of 196 m/s . What force is necessary to produce this deceleration?
Assume that the rockets are off. The mass of the system is 2.10 x 10  kg.

19. If the rocket sled shown in the previous problem starts with only one rocket burning, what is the magnitude of this
acceleration? Assume that the mass of the system is 2.10 x 10  kg, the thrust T is 2.40 x 10  N, and the force of friction
opposing the motion is 650.0 N. (b) Why is the acceleration not one-fourth of what it is with all rockets burning?

20. What is the deceleration of the rocket sled if it comes to rest in 1.10 s from a speed of 1000.0 km/h? (Such deceleration
caused one test subject to black out and have temporary blindness.)

21. Suppose two children push horizontally, but in exactly opposite directions, on a third child in a wagon. The first child
exerts a force of 75.0 N, the second exerts a force of 90.0 N, friction is 12.0 N, and the mass of the third child plus wagon
is 23.0 kg. (a) What is the system of interest if the acceleration of the child in the wagon is to be calculated? (See the free-
body diagram.) (b) Calculate the acceleration. (c) What would the acceleration be if friction were 15.0 N?

22. A powerful motorcycle can produce an acceleration of 3.50 m/s while traveling at 90.0 km/h. At that speed, the forces
resisting motion, including friction and air resistance, total 400.0 N. (Air resistance is analogous to air friction. It always
opposes the motion of an object.) What is the magnitude of the force that motorcycle exerts backward on the ground to
produce its acceleration if the mass of the motorcycle with rider is 245 kg?

23. A car with a mass of 1000.0 kg accelerates from 0 to 90.0 km/h in 10.0 s. (a) What is its acceleration? (b) What is the net
force on the car?

24. The driver in the previous problem applies the brakes when the car is moving at 90.0 km/h, and the car comes to rest after
traveling 40.0 m. What is the net force on the car during its deceleration?

25. An 80.0-kg passenger in an SUV traveling at 1.00 x 10  km/h is wearing a seat belt. The driver slams on the brakes and
the SUV stops in 45.0 m. Find the force of the seat belt on the passenger.
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26. A particle of mass 2.0 kg is acted on by a single force  = 18  N. (a) What is the particle’s acceleration? (b) If the
particle starts at rest, how far does it travel in the first 5.0 s?

27. Suppose that the particle of the previous problem also experiences forces  = −15  N and  = 6.0  N. What is its
acceleration in this case?

28. Find the acceleration of the body of mass 5.0 kg shown below. Use column vectors to express your answer.

29. In the following figure, the horizontal surface on which this block slides is frictionless. If the two forces acting on it each
have magnitude F = 30.0 N and M = 10.0 kg , what is the magnitude of the resulting acceleration of the block?

 
30. (a) What net external force is exerted on a 1100.0-kg artillery shell fired from a battleship if the shell is accelerated at

2.40 x 10  m/s ? (b) What is the magnitude of the force exerted on the ship by the artillery shell, and why?
31. A brave but inadequate rugby player is being pushed backward by an opposing player who is exerting a force of 800.0 N

on him. The mass of the losing player plus equipment is 90.0 kg, and he is accelerating backward at 1.20 m/s . (a) What
is the force of friction between the losing player’s feet and the grass? (b) What force does the winning player exert on the
ground to move forward if his mass plus equipment is 110.0 kg?

32. A history book is lying on top of a physics book on a desk, as shown below; a free-body diagram is also shown. The
history and physics books weigh 14 N and 18 N, respectively. Identify each force on each book with a double subscript
notation (for instance, the contact force of the history book pressing against physics book can be described as ), and
determine the value of each of these forces, explaining the process used.

33. A truck collides with a car, and during the collision, the net force on each vehicle is essentially the force exerted by the
other. Suppose the mass of the car is 550 kg, the mass of the truck is 2200 kg, and the magnitude of the truck’s
acceleration is 10 m/s . Find the magnitude of the car’s acceleration.

34. A ball of mass m hangs at rest, suspended by a string. Draw the free-body diagram for the ball.
35. A car moves along a horizontal road. Draw a free-body diagram; be sure to include the friction of the road that opposes

the forward motion of the car.
36. A Formula One race car is traveling at 89.0 m/s along a straight track enters a turn on the race track with radius of

curvature of 200.0 m. What centripetal acceleration must the car have to stay on the track?
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37. A particle travels in a circular orbit of radius 10 m. Its speed is changing at a rate of 15.0 m/s  at an instant when its speed
is 40.0 m/s. What is the magnitude of the acceleration of the particle?

38. The driver of a car moving at 90.0 km/h presses down on the brake as the car enters a circular curve of radius 150.0 m. If
the speed of the car is decreasing at a rate of 9.0 km/h each second, what is the magnitude of the acceleration of the car at
the instant its speed is 60.0 km/h?

39. A race car entering the curved part of the track at the Daytona 500 drops its speed from 85.0 m/s to 80.0 m/s in 2.0 s. If
the radius of the curved part of the track is 316.0 m, calculate the total acceleration of the race car at the beginning and
ending of reduction of speed.
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16.1: Vector Calculus
As we have seen, the study of physics is all about creating a mathematical abstraction of the world, and what kinds of mathematics
are required depends on what we want to describe about the world. A basic feature of how the Universe works is "smoothly" -
objects move gradually from one point to the next, without stopping. (The alternative to this might be some kind of pixilated
version of the universe, in which objects can only exist on a grid, and they move by jumping from point to point. Like a video game
or something?) That means that the mathematics we use to describe the universe must similarly be "smooth" - and the mathematics
of gradual change mathematics is calculus. In addition to gradual change, we've also seen that some quantities in physics can be
vectors - that is, have both magnitudes and directions. So, clearly, we are going to have to combine these two ideas if we are going
to more fully understand how to describe the physical world, into a field of mathematics called vector calculus.

In truth, vector calculus can be enormously complicated (as well as enourmously rich and interesting!), but fortunately for
mechanics we only need to know the basics of how calculus and vectors interact with each other. We will simply need to know how
to take derivatives and integrals of vectors, e.g.

(The two specific examples here are the acceleration as a derivative of velocity, and the velocity as an integral of positive.) At first
glance, it might not be obvious how to proceed, but with a little reflection we can see the answer: rewrite the vectors using unit
vectors,

Now, if we just replace these two quantities in the expressions above, we can use the additive nature of integrals and derivatives to
rewrite them in expressions we understand from usual calculus:

Notice the important thing that happened - the unit vector is constant (in time, in this case). In more detail, the derivative could be
written as a chain rule,

but since  is constant this second term is just zero. So, the derivatives and integrals just pass right through the vector onto the
components individually, and we can do all our usual calculus operations on them without changing what anything means.

There is one slight complication that is probably worth mentioning - what happens to vector products, like dot products and cross
products? For example, the definition of work is

The basic trick to understanding this expression is the same - use unit vectors. In cartesian coordinates, the force will simply be

while the infinitesimal element will be

(this expression looks a little strange, but it's simply  in the x-direction and  in the y-direction). Now we can take the dot
product and follow the additive rules for integrals that we followed above:

(t) = (t), (t) = ∫ ( )d .a⃗ 
d

dt
v ⃗  v ⃗  r ⃗ t′

t
′ (16.1.1)

(t) = (t) + (t) , (t) = x(t) +y(t) .v ⃗  vx x̂ vy ŷ r ⃗  x̂ ŷ (16.1.2)
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( (t) ) = + (t) ,
d

dt
vx x̂

d (t)vx

dt
x̂ vx

dx̂

dt
(16.1.5)

x̂

W = ∫ ( ) ⋅ d .F ⃗ r ⃗  r ⃗  (16.1.6)

= ( ) + ( ) ,F ⃗  Fx r ⃗  x̂ Fy r ⃗  ŷ (16.1.7)

d = dx +dyr ⃗  x̂ ŷ (16.1.8)

dx dy

∫ ( ) ⋅ d = ∫ ( ( )dx+ ( )dy) = ∫ ( )dx+∫ ( )dy.F ⃗ r ⃗  r ⃗  Fx r ⃗  Fy r ⃗  Fx r ⃗  Fy r ⃗  (16.1.9)
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Thus, the integrals break into an integral of  and an integral of , which you can perform as you normally would. Now we are
still not quite done - the force could be some complicated function of either the vector itself, like , or the coordinates
like . In this case we would have to have a relationship between x and y to perform the integrals (this is
generally called a line integral, and you can find more information about those at Wikipedia or Khan Academy). We will have to
treat these particular cases with a little bit of care!

16.1: Vector Calculus is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack College.
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16.2: Position, Displacement, Velocity
Kinematics is the part of mechanics that deals with the mathematical description of motion, leaving aside the question of what
causes an object to move in a certain way. Kinematics, therefore, does not include such things as forces or energy, which fall
instead under the heading of dynamics. It may be said, then, that kinematics by itself is not true physics, but only applied
mathematics; yet it is still an essential part of classical mechanics, and its most natural starting point. This chapter (and parts of the
next one) will introduce the basic concepts and methods of kinematics in one dimension.

Position
As stated in the previous section, we are initially interested only in describing the motion of a “particle,” which can be thought of
as a mathematical point in space.   A point in three dimensions can be located by giving three numbers, known as its Cartesian
coordinates (or, more simply, its coordinates). In two dimensions, this works as shown in Figure  below. As you can see, the
coordinates of a point just tell us how to find it by first moving a certain distance , from a previously-agreed origin, along a
horizontal (or ) axis, and then a certain distance  along a vertical (or ) axis. (Or, of course, you could equally well first move
vertically and then horizontally.)

Figure : The position vector, , of a point, and its  and  components (the point's coordinates).

The quantities  and  are taken to be positive or negative depending on what side of the origin the point is on. Typically, we will
always start by choosing a positive direction for each axis, as the direction along which the algebraic value of the corresponding
coordinate increases. This is often chosen to be to the right for the horizontal axis, and upwards for the vertical axis, but there is
nothing that says we cannot choose a different convention if it turns out to be more convenient. In Figure , the arrows on the
axes denote the positive direction for each. Going by the grid, the coordinates of the point shown are  = 4 units,  = 3 units.

In two or three dimensions (and even, in a sense, in one dimension), the coordinates of a point can be interpreted as the components
of a vector that we call the point’s position vector, and denote by  (sometimes boldface letters are used for vectors, instead of an
arrow on top; in that case, the position vector would be denoted by r). A vector is a mathematical object, with specific geometric
and algebraic properties, that physicists use to represent a quantity that has both a magnitude and a direction. The magnitude of the
position vector in Figure  is just the length of the arrow, which is to say, 5 length units (by the Pythagorean theorem, the
length of , which we will often write using absolute value bars as , is equal to ); this is just the straight-line distance
of the point to the origin. The direction of , on the other hand, can be specified in a number of ways; a common convention is to
give the value of the angle that it makes with the positive  axis, which I have denoted in the figure as  (in this case, you can
verify that ). In three dimensions, two angles would be needed to completely specify the direction of .

As you can see, giving the magnitude and direction of  is a way to locate the point that is completely equivalent to giving its
coordinates  and . By the same token, the coordinates  and  are a way to specify the vector  that is completely equivalent to
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giving its magnitude and direction. As I stated above, we call x and y the components (or sometimes, to be more specific, the
Cartesian components) of the vector . All vectors can be described this way, so once you know how to deal with one vector, you
can deal with them all.

For the first few chapters in this topic, we are going to be primarily concerned with motion in one dimension (that is to say, along a
straight line, backwards or forwards), in which case all we need to locate a point is one number, its  (or , or ) coordinate; we do
not then need to worry particularly about vector algebra. Alternatively, we can simply say that a vector in one dimension is
essentially the same as its only component, which is just a positive or negative number (the magnitude of the number being the
magnitude of the vector, and its sign indicating its direction), and has the algebraic properties that follow naturally from that.

The description of the motion that we are aiming for is to find a function of time, which we denote by , that gives us the point’s
position (that is to say, the value of ) for any value of the time parameter, . (Look ahead to Equation ( ), for an example.)
Remember that  stands for a number that can be positive or negative (depending on the side of the origin the point is on), and has
dimensions of length, so when giving a numerical value for it you must always include the appropriate units (meters, centimeters,
miles...). Similarly,  stands for the time elapsed since some more or less arbitrary “origin of time,” or time zero. Normally  should
always be positive, but in special cases it may make sense to consider negative times ("10 min before " would be 
min!\). Anyway,  also is a number with dimensions, and must be reported with its appropriate units: seconds, minutes, hours, etc.

Figure : A possible position vs. time graph for an object moving in one dimension

We will be often interested in plotting the position of an object as a function of time—that is to say, the graph of the function .
This may, in principle, have any shape, as you can see in Figure  above. In the lab, you will have a chance to use a position
sensor that will automatically generate graphs like that for you on the computer, for any moving object that you aim the position
sensor at. It is, therefore, important that you learn how to “read” such graphs. For example, Figure  shows an object that
starts, at the time  = 0, a distance 0.2 m away and to the right of the origin (so  = 0.2 m), then moves in the negative direction
to  = −0.15 m, which it reaches at  = 0.5 s; then turns back and moves in the opposite direction until it reaches the point  = 0.1
m, turns again, and so on. Physically, this could be tracking the oscillations of a system such as an object attached to a spring and
sliding over a surface that exerts a friction force on it.

Displacement
In one dimension, the displacement of an object over a given time interval is a quantity that we denote as , and equals the
difference between the object’s initial and final positions (in one dimension, we will often call the “position coordinate” simply the
“position,” for short):

Here the subscript  denotes the object’s position at the beginning of the time interval considered, and the subscript  its position at
the end of the interval. As we have previously discussed, the symbol  will consistently be used throughout this book to denote a
change in the quantity following the symbol, meaning the difference between its initial value and its final value. The time interval
itself will be written as ∆t and can be expressed as
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where again  and  are the initial and final values of the time parameter (imagine, for instance, that you are reading time in
seconds on a digital clock, and you are interested in the change in the object’s position between second 130 and second 132: then 
= 130 s,  = 132 s, and  = 2 s).

You can practice reading off displacements from Figure . The displacement between  = 0.5 s and  = 1 s, for instance, is
0.25 m (  = −0.15 m,  = 0.1 m). On the other hand, between  = 1 s and  = 1.3 s, the displacement is  = 0 − 0.1 = −0.1 m

Notice two important things about the displacement. First, it can be positive or negative. Positive means the object moved, overall,
in the positive direction; negative means it moved, overall, in the negative direction. Second, even when it is positive, the
displacement does not always equal the distance traveled by the object (distance, of course, is always defined as a positive
quantity), because if the object “doubles back” on its tracks for some distance, that distance does not count towards the overall
displacement. For instance, looking again at Figure , in between the times  = 0.5 s and  = 1.5 s the object moved first
0.25 m in the positive direction, and then 0.15 m in the negative direction, for a total distance traveled of 0.4 m; however, the total
displacement was just 0.1 m.

In spite of these quirks, the total displacement is, mathematically, a useful quantity, because often we will have a way (that is to say,
an equation) to calculate  for a given interval, and then we can rewrite Equation ( ) so that it reads

That is to say, if we know where the object started, and we have a way to calculate , we can easily figure out where it ended up.
You will see examples of this sort of calculation in the examples later on.

Extension to Two Dimensions

In two dimensions, we write the displacement as the vector

The components of this vector are just the differences in the position coordinates of the two points involved; that is,  (a
subscript , , etc., is a standard way to represent the , . . . component of a vector) is equal to , and similarly 

.

Figure : The displacement vector for a particle that was initially at a point with position vector  and ended up at a point
with position vector  is the difference of the position vectors.

Figure  shows how this makes sense. The  component of  in the figure is  = 3 − 7 = −4 m; the  component is  =
8 − 4 = 4 m. This basically shows you how to subtract (and, by extension, add, since  ) vectors: you just subtract (or
add) the corresponding components. Note how, by the Pythagorean theorem, the length (or magnitude) of the displacement vector, 

, equals the straight-line distance between the initial point and the final point, just as in one
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dimension; of course, the particle could have actually followed a very different path from the initial to the final point, and therefore
traveled a different distance.

Velocity

Average Velocity

If you drive from Fayetteville to Fort Smith in 50 minutes, your average speed for the trip is calculated by dividing the distance of
59.2 mi by the time interval:

The way we define average velocity is similar to average speed, but with one important difference: we use the displacement,
instead of the distance. So, the average velocity  of an object, moving along a straight line, over a time interval  is

This definition has all the advantages and the quirks of the displacement itself. On the one hand, it automatically comes with a sign
(the same sign as the displacement, since  will always be positive), which tells us in what direction we have been traveling. On
the other hand, it may not be an accurate estimate of our average speed, if we doubled back at all. In the most extreme case, for a
roundtrip (leave Fayetteville and return to Fayetteville), the average velocity would be zero, since  and therefore  = 0.

It is clear that this concept is not going to be very useful in general, if the object we are tracking has a chance to double back in the
time interval . A way to prevent this from happening, and also getting a more meaningful estimate of the object’s speed at any
instant, is to make the time interval very small. This leads to a new concept, that of instantaneous velocity.

Instantaneous Velocity

We define the instantaneous velocity of an object (a “particle”), at the time , as the mathematical limit

The meaning of this is the following. Suppose we compute the ratio  over successively smaller time intervals  (all of
them starting at the same time ). For instance, we can start by making , then try , then 

, and so on. Naturally, as the time interval becomes smaller, the corresponding displacement will also become
smaller—the particle has less and less time to move away from its initial position, . The hope is that the successive ratios 
will converge to a definite value: that is to say, that at some point we will start getting very similar values, and that beyond a certain
point making  any smaller will not change any of the significant digits of the result that we care about. This limit value is the
instantaneous velocity of the object at the time .

When you think about it, there is something almost a bit self-contradictory about the concept of instantaneous velocity. You cannot
(in practice) determine the velocity of an object if all you are given is a literal instant. You cannot even tell if the object is moving,
if all you have is one instant! Motion requires more than one instant, the passage of time. In fact, all the “instantaneous” velocities
that we can measure, with any instrument, are always really average velocities, only the average is taken over very short time
intervals. Nevertheless, the fact is that for any reasonably well-behaved position function , the limit in Equation ( ) is
mathematically well-defined, and it equals what we call, in calculus, the derivative of the function :
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Figure : The slope of the green segment is the average velocity for the time interval  shown. As  becomes smaller, this
approaches the slope of the tangent at the point 

In fact, there is a nice geometric interpretation for this quantity: namely, it is the slope of a line tangent to the -vs-  curve at the
point , . As Figure  shows, the average velocity  is the slope (rise over run) of a line segment drawn from the
point  to the point  (the green line in the figure). As we make the time interval smaller, by bringing  closer to 
(and hence, also,  closer to ), the slope of this segment will approach the slope of the tangent line at  (the blue line), and
this will be, by the definition ( ), the instantaneous velocity at that point.

This geometric interpretation makes it easy to get a qualitative feeling, from the position-vs-time graph, for when the particle is
moving more or less fast. A large slope means a steep rise or fall, and that is when the velocity will be largest—in magnitude. A
steep rise means a large positive velocity, whereas a steep drop means a large negative velocity, by which I mean a velocity that is
given by a negative number which is large in absolute value. In the future, to simplify sentences like this one, I will just use the
word “speed” to refer to the magnitude (that is to say, the absolute value) of the instantaneous velocity. Thus, speed (like distance)
is always a positive number, by definition, whereas velocity can be positive or negative; and a steep slope (positive or negative)
means the speed is large there.

Conversely, looking at the sample -vs-  graphs in this chapter, you may notice that there are times when the tangent is horizontal,
meaning it has zero slope, and so the instantaneous velocity at those times is zero (for instance, at the time  = 1.0 s in Figure 

). This makes sense when you think of what the particle is actually doing at those special times: it is just changing direction,
so its velocity is going, for instance, from positive to negative. The way this happens is, it slows down, down... the velocity gets
smaller and smaller, and then, for just an instant (literally, a mathematical point in time), it becomes zero before, the next instant,
going negative.

We will be coming back to this “reading of graphs” in the lab and the homework, as well as in the next section, when we introduce
the concept of acceleration.

Motion With Constant Velocity

If the instantaneous velocity of an object never changes, it means that it is always moving in the same direction with the same
speed. In that case, the instantaneous velocity and the average velocity coincide, and that means we can write  (where
the size of the interval  could now be anything), and rewrite this equation in the form

which is the same as

Now suppose we keep  constant (that is, we fix the initial instant) but allow the time  to change, so we will just write  for an
arbitrary value of , and  for the corresponding value of . We end up with the equation
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which we can also write as

after some rearranging, and where the notation  has been introduced to emphasize that we want to think of  as a function of .
This is, not surprisingly, the equation of a straight line—a “curve” which is its own tangent and always has the same slope.

Please make sure that you are not confused by the notation in Equation ( ). The parentheses around the  on the left-
hand side mean that we are considering the position  as a function of . On the other hand, the parentheses around the
quantity  on the right-hand side mean that we are multiplying this quantity by , which is a constant here. This distinction
will be particularly important when we introduce the function  next.

Either one of equations ( ) or ( ) can be used to solve problems involving motion with constant velocity.

Motion With Changing Velocity

If the velocity changes with time, obtaining an expression for the position of the object as a function of time may be a nontrivial
task. In the next chapter we will study an important special case, namely, when the velocity changes at a constant rate (constant
acceleration).

For the most general case, a graphical method that is sometimes useful is the following. Suppose that we know the function ,
and we graph it, as in Figure  below. Then the area under the curve in between any two instants, say  and , is equal to the
total displacement of the object over that time interval.

Figure : How to get the displacement from the area under the -vs-  curve.

The idea involved is known in calculus as integration, and it goes as follows. Suppose that I break down the interval from  to 
into equally spaced subintervals, beginning at the time  (which I am, equivalently, going to call , that is, , so I have now 

, , ,...  ). Now suppose I treat the object’s motion over each subinterval as if it were motion with constant velocity, the
velocity being that at the beginning of the subinterval. This, of course, is only an approximation, since the velocity is constantly
changing; but, if you look at Figure , you can convince yourself that it will become a better and better approximation as I
increase the number of intermediate points and the rectangles shown in the figure become narrower and narrower. In this
approximation, the displacement during the first subinterval would be

where ; similarly, , and so on.
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However, Equation ( ) is just the area of the first rectangle shown under the curve in Figure  (the base of the rectangle
has “length” , and its height is ). Similarly for the second rectangle, and so on. So the sum  is both an
approximation to the area under the -vs-  curve, and an approximation to the total displacement . As the subdivision becomes
finer and finer, and the rectangles narrower and narrower (and more numerous), both approximations become more and more
accurate. In the limit of “infinitely many,” infinitely narrow rectangles, you get both the total displacement and the area under the
curve exactly, and they are both equal to each other. Mathematically, we would write

where the stylized “S” (for “sum”) on the right-hand side is the symbol of the operation known as integration in calculus. This is
essentially the inverse of the process know as differentiation, by which we got the velocity function from the position function,
back in Equation ( ).

This graphical method to obtain the displacement from the velocity function is sometimes useful, if you can estimate the area under
the -vs-  graph reliably. An important point to keep in mind is that rectangles under the horizontal axis (corresponding to negative
velocities) have to be added as having negative area (since the corresponding displacement is negative); see example 15.5.4 at the
end of this chapter.

Extension to Two Dimensions

In two (or more) dimensions, you define the average velocity vector as a vector  whose components are , 
, and so on (where , ,... are the corresponding components of the displacement vector ). This can be

written equivalently as the single vector equation

This tells you how to multiply (or divide) a vector by an ordinary number: you just multiply (or divide) each component by that
number. Note that, if the number in question is positive, this operation does not change the direction of the vector at all, it just
scales it up or down (which is why ordinary numbers, in this context, are called scalars). If the scalar is negative, the vector’s
direction is flipped as a result of the multiplication. Since  in the definition of velocity is always positive, it follows that the
average velocity vector always points in the same direction as the displacement, which makes sense.

To get the instantaneous velocity, you just take the limit of the expression ( ) as , for each component separately.
The resulting vector  has components , etc., which can also be written as , . . ..

All the results derived above hold for each spatial dimension and its corresponding velocity component. For instance, the graphical
method shown in Figure  can always be used to get  if the function  is known, or equivalently to get  if you know

, and so on.

Introducing the velocity vector at this point does cause a little bit of a notational difficulty. For quantities like  and , it is pretty
obvious that they are the  components of the vectors  and  respectively; however, the quantity that we have so far been calling
simply  should more properly be denoted as  (or  if the motion is along the  axis). In fact, there is a convention that if you
use the symbol for a vector without the arrow on top or any , , . . . subscripts, you must mean the magnitude of the vector. In this
book, however, I have decided not to follow that convention, at least not until we get to Chapter 8 (and even then I will use it only
for forces). This is because we will spend most of our time dealing with motion in only one dimension, and it makes the notation
unnecessarily cumbersome to keep having to write the  or  subscripts on every component of every vector, when you really only
have one dimension to worry about in the first place. So  will, throughout, refer to the relevant component of the velocity vector,
to be inferred from the context, until we get to Chapter 8 and actually need to deal with both a  and a  explicitly.

Finally, notice that the magnitude of the velocity vector, , is equal to the instantaneous speed, since, as 

, the magnitude of the displacement vector, , becomes the actual distance traveled by the object in the time interval
.

This page titled 16.2: Position, Displacement, Velocity is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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16.3: Acceleration

Average and Instantaneous Acceleration
Just as we defined average velocity in the previous chapter, using the concept of displacement (or change in position) over a time
interval , we define average acceleration over the time  using the change in velocity:

Here,  and  are the initial and final velocities, respectively, that is to say, the velocities at the beginning and the end of the time
interval . As was the case with the average velocity, though, the average acceleration is a concept of somewhat limited
usefulness, so we might as well proceed straight away to the definition of the instantaneous acceleration (or just “the” acceleration,
without modifiers), through the same sort of limiting process by which we defined the instantaneous velocity:

Everything that we said in the previous chapter about the relationship between velocity and position can now be said about the
relationship between acceleration and velocity. For instance (if you know calculus), the acceleration as a function of time is the
derivative of the velocity as a function of time, which makes it the second derivative of the position function:

Similarly, we can “read off” the instantaneous acceleration from a velocity versus time graph, by looking at the slope of the line
tangent to the curve at any point. However, if what we are given is a position versus time graph, the connection to the acceleration
is more indirect. Figure  provides you with such an example. See if you can guess at what points along this curve the
acceleration is positive, negative, or zero.

The way to do this “from scratch,” as it were, is to try to figure out what the velocity is doing, first, and infer the acceleration from
that. Here is how that would go:

Starting at  = 0, and keeping an eye on the slope of the -vs-  curve, we can see that the velocity starts at zero or near zero and
increases steadily for a while, until  is a little bit more than 2 s (let us say,  = 2.2 s for definiteness). That would correspond to a
period of positive acceleration, since  would be positive for every  in that range.

Figure : A possible position vs. time graph for an object whose acceleration changes with time.

Between  = 2.2 s and  = 2.5 s, as the object moves from  = 2 m to  = 4 m, the velocity does not appear to change very much,
and the acceleration would correspondingly be zero or near zero. Then, around  = 2.5 s, the velocity starts to decrease noticeably,
becoming (instantaneously) zero at  =3 s (  = 6 m). That would correspond to a negative acceleration. Note, however, that the
velocity afterwards continues to decrease, becoming more and more negative until around  = 4 s. This also corresponds to a

Δt Δt

= = .aav
Δv

Δt

−vf vi

−tf ti
(16.3.1)

vi vf
Δt

a = .lim
Δt→0

Δv

Δt
(16.3.2)

a = =
dv

dt

xd2

dt2
(16.3.3)

16.3.1

t x t

t t

Δv Δt

16.3.1

t t x x

t

t x

t

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85836?pdf
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/16%3A_N2)_1_Dimensional_Kinematics/16.03%3A_Acceleration


16.3.2 https://phys.libretexts.org/@go/page/85836

negative acceleration: even though the object is speeding up, it is speeding up in the negative direction, so , and hence , is
negative for every time interval there. We conclude that  for all times between  = 2.5 s and  = 4 s.

Next, as we just look past  = 4 s, something else interesting happens: the object is still going in the negative direction (negative
velocity), but now it is slowing down. Mathematically, that corresponds to a positive acceleration, since the algebraic value of the
velocity is in fact increasing (a number like −3 is larger than a number like −5). Another way to think about it is that, if we have
less and less of a negative thing, our overall trend is positive. So the acceleration is positive all the way from  = 4 s through  = 5 s
(where the velocity is instantaneously zero as the object’s direction of motion reverses), and beyond, until about  = 6 s, since
between  = 5 s and  = 6 s the velocity is positive and growing.

You can probably figure out on your own now what happens after  = 6 s, reasoning as I did above, but you may also have noticed
a pattern that makes this kind of analysis a lot easier. The acceleration, being proportional to the second derivative of the function 

 with respect to , is directly related to the curvature of the -vs-  graph. As figure  below shows, if the graph is concave
(sometimes called “concave upwards”), the acceleration is positive, whereas it is negative whenever the graph is convex (or
“concave downwards”). It is (instantly) zero at those points where the curvature changes (which you may know as inflection
points), as well as over stretches of time when the -vs-  graph is a straight line (motion with constant velocity).

Figure : What the -vs-  curves look like for the different possible signs of the acceleration.

Figure  shows position, velocity, and acceleration versus time for a hypothetical motion case. Please study it carefully until
every feature of every graph makes sense, relative to the other two! You will see many other examples of this in the homework and
the lab.
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Figure : Sample position, velocity and acceleration vs. time graphs for motion with piecewise-constant acceleration.

Notice that, in all these figures, the sign of  or  at any given time has nothing to do with the sign of  at that same time. It is true
that, for instance, a negative , if sustained for a sufficiently long time, will eventually result in a negative  (as happens, for
instance, in Figure  over the interval from  = 1 to  = 4 s) but this may take a long time, depending on the size of  and the
initial value of . The graphical clues to follow, instead, are: the acceleration is given by the slope of the tangent to the -vs-
curve, or the curvature of the -vs-  curve, as explained in Figure ; and the velocity is given by the slope of the tangent to
the -vs-  curve.

(Note: To make the interpretation of Figure  simpler, I have chosen the acceleration to be “piecewise constant,” that is to say,
constant over extended time intervals and changing in value discontinuously from one interval to the next. This is physically
unrealistic: in any real-life situation, the acceleration would be expected to change more or less smoothly from instant to instant.
We will see examples of that later on, when we start looking at realistic models of collisions.)

Motion With Constant Acceleration
A particular kind of motion that is both relatively simple and very important in practice is motion with constant acceleration (see
Figure  again for examples). If  is constant, it means that the velocity changes with time at a constant rate, by a fixed
number of m/s each second. (These are, incidentally, the units of acceleration: meters per second per second, or m/s .) The change
in velocity over a time interval  is then given by

which can also be written

Equation ( ) is the form of the velocity function (  as a function of ) for motion with constant acceleration. This, in turn, has
to be the derivative with respect to time of the corresponding position function. If you know simple derivatives, then, you can
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verify that the appropriate form of the position function must be

or in terms of intervals,

Sometimes Equation ( ) is written with the implicit assumption that the initial value of t is zero:

This is simpler, but not as general as Equation ( ). Always make sure that you know what conditions apply for any equation
you decide to use!

As you can see from Equation ( ), for intervals during which the acceleration is constant, the velocity vs. time curve should
be a straight line. Figure  illustrates this. Equation ( ), on the other hand, shows that for those same intervals the
position vs. time curve should be a (portion of a) parabola, and again this can be seen in Figure  (sometimes, if the
acceleration is small, the curvature of the graph may be hard to see; this happens in Figure  for the interval between  = 4 s
and  = 5 s).

The observation that -vs-  is a straight line when the acceleration is constant provides us with a simple way to derive Equation (
), when combined with the result (from the end of the previous chapter) that the displacement over a time interval  equals

the area under the -vs-  curve for that time interval. Indeed, consider the situation shown in Figure . The total area under
the segment shown is equal to the area of a rectangle of base  and height , plus the area of a triangle of base  and height 

. Since , simple geometry immediately yields Equation ( ), or its equivalent ( ).

Figure : Graphical way to find the displacement for motion with constant acceleration.

Lastly, consider what happens if we solve Equation ( ) for  and substitute the result in ( ). We get

Letting , a little algebra yields

This is a handy little result that can also be seen to follow, more directly, from the work-energy theorems to be introduced in
Chapter 7 .

In fact, equation ( ) turns out to be so handy that you will probably find yourself using it over and over this semester, and
you may even be tempted to use it for problems involving motion in two dimensions. However, unless you really know what you
are doing, you should resist the temptation, since it is very easy to use Equation ( ) incorrectly when the acceleration and the
displacement do not lie along the same line. You should use the appropriate form of a work-energy theorem instead.
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Acceleration as a Vector
In two (or more) dimensions we introduce the average acceleration vector

whose components are , etc.. The instantaneous acceleration is then the vector given by the limit of Equation (
) as , and its components are, therefore, , . . .

Note that, since  and  in Equation ( ) are vectors, and have to be subtracted as such, the acceleration vector will be
nonzero whenever  and  are different, even if, for instance, their magnitudes (which are equal to the object’s speed) are the
same. In other words, you have accelerated motion whenever the direction of motion changes, even if the speed does not.

As long as we are working in one dimension, I will follow the same convention for the acceleration as the one I introduced for the
velocity in Chapter 1: namely, I will use the symbol , without a subscript, to refer to the relevant component of the acceleration (

), and not to the magnitude of the vector .

Acceleration in Different Reference Frames
In Chapter 1 you saw that the following relation holds between the velocities of a particle P measured in two different reference
frames, A and B:

What about the acceleration? An equation like ( ) will hold for the initial and final velocities, and subtracting them we will
get

Now suppose that reference frame B moves with constant velocity relative to frame A. In that case, , so  = 0,
and then, dividing Equation ( ) by , and taking the limit , we get

So, if two reference frames are moving at constant velocity relative to each other, observers in both frames measure the same
acceleration for any object they might both be tracking.

The result Equation ( ) means, in particular, that if we have an inertial frame then any frame moving at constant velocity
relative to it will be inertial too, since the respective observers’ measurements will agree that an object’s velocity does not change
(otherwise put, its acceleration is zero) when no forces act on it. Conversely, an accelerated frame will not be an inertial frame,
because Equation ( ) will not hold. This is consistent with the examples I mentioned in Section 2.1 (the bouncing plane, the
car coming to a stop). Another example of a non-inertial frame would be a car going around a curve, even if it is going at constant
speed, since, as I just pointed out above, this is also an accelerated system. This is confirmed by the fact that objects in such a car
tend to move—relative to the car—towards the outside of the curve, even though no actual force is acting on them.

This page titled 16.3: Acceleration is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-Banacloche
(University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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16.4: Free Fall
An important example of motion with (approximately) constant acceleration is provided by free fall near the surface of the Earth.
We say that an object is in “free fall” when the only force acting on it is the force of gravity (the word “fall” here may be a bit
misleading, since the object could actually be moving upwards some of the time, if it has been thrown straight up, for instance).
The space station is in free fall, but because it is nowhere near the surface of the earth its direction of motion (and hence its
acceleration, regarded as a two-dimensional vector) is constantly changing. Right next to the surface of the earth, on the other hand,
the planet’s curvature is pretty much negligible and gravity provides an approximately constant, vertical acceleration, which, in the
absence of other forces, turns out to be the same for every object, regardless of its size, shape, or weight.

The above result—that, in the absence of other forces, all objects should fall to the earth at the same rate, regardless of how big or
heavy they are—is so contrary to our common experience that it took many centuries to discover it. The key, of course, as with the
law of inertia, is to realize that, under normal circumstances, frictional forces are, in fact, acting all the time, so an object falling
through the atmosphere is never really in “free” fall: there is always, at a minimum, and in addition to the force of gravity, an air
drag force that opposes its motion. The magnitude of this force does depend on the object’s size and shape (basically, on how
“aerodynamic” the object is); and thus a golf ball, for instance, falls much faster than a flat sheet of paper. Yet, if you crumple up
the sheet of paper till it has the same size and shape as the golf ball, you can see for yourself that they do fall at approximately the
same rate! The equality can never be exact, however, unless you get rid completely of air drag, either by doing the experiment in an
evacuated tube, or (in a somewhat extreme way), by doing it on the surface of the moon, as the Apollo 15 astronauts did with a
hammer and a feather back in 1971 .

This still leaves us with something of a mystery, however: the force of gravity is the only force known to have the property that it
imparts all objects the same acceleration, regardless of their mass or constitution. A way to put this technically is that the force of
gravity on an object is proportional to that object’s inertial mass, a quantity that we will introduce properly in the next chapter. For
the time being, we will simply record here that this acceleration, near the surface of the earth, has a magnitude of approximately 9.8
m/s , a quantity that is denoted by the symbol . Thus, if we take the upwards direction as positive (as is usually done), we get for
the acceleration of an object in free fall , and the equations of motion become

where I have used  instead of  for the position coordinate, since that is a more common choice for a vertical axis. Note that we
could as well have chosen the downward direction as positive, and that may be a more natural choice in some problems.
Regardless, the quantity  is always defined to be positive:  = 9.8 m/s . The acceleration, then, is  or , depending on which
direction we take to be positive

In practice, the value of  changes a little from place to place around the earth, for various reasons (it is somewhat sensitive to the
density of the ground below you, and it decreases as you climb higher away from the center of the earth). In a later chapter we will
see how to calculate the value of  from the mass and radius of the earth, and also how to calculate the equivalent quantity for other
planets.

In the meantime, we can use equations like ( ) and ( ) to answer a number of interesting questions about objects thrown
or dropped straight up or down (always, of course, assuming that air drag is negligible). For instance, back at the beginning of this
chapter I mentioned that if I dropped an object it might take about half a second to hit the ground. If you use Equation ( ) with

 = 0 (since I am dropping the object, not throwing it down, its initial velocity is zero), and substitute  = 0.5 s, you get  =
1.23 m (about 4 feet). This is a reasonable height from which to drop something.

On the other hand, you may note that half a second is not a very long time in which to make accurate observations (especially if
you do not have modern electronic equipment), and as a result of that there was considerable confusion for many centuries as to the
precise way in which objects fell. Some people believed that the speed did increase in some way as the object fell, while others
appear to have believed that an object dropped would “instantaneously” (that is, at soon as it left your hand) acquire some speed
and keep that unchanged all the way down. In reality, in the presence of air drag, what happens is a combination of both: initially
the speed increases at an approximately constant rate (free, or nearly free fall), but the drag force increases with the speed as well,
until eventually it balances out the force of gravity, and from that point on the speed does not increase anymore: we say that the
object has reached “terminal velocity.” Some objects reach terminal velocity almost instantly, whereas others (the more
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“aerodynamic” ones) may take a long time to do so. This accounts for the confusion that prevailed before Galileo’s experiments in
the early 1600’s.

The video of this is available online: https://www.youtube.com/watch?v=oYEgdZ3iEKA. It is, however, pretty low resolution and
hard to see. A very impressive modern-day demonstration involving feathers and a bowling ball in a completely evacuated (airless)
room is available here: https://www.youtube.com/watch?v=E43-CfukEgs.

This page titled 16.4: Free Fall is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-Banacloche
(University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

2.3: Free Fall by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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16.5: The Connection Between Displacement, Velocity, and Acceleration

Derive the kinematic equations for constant acceleration using integral calculus.
Use the integral formulation of the kinematic equations in analyzing motion.
Find the functional form of velocity versus time given the acceleration function.
Find the functional form of position versus time given the velocity function.

This section assumes you have enough background in calculus to be familiar with integration. In Instantaneous Velocity and Speed
and Average and Instantaneous Acceleration we introduced the kinematic functions of velocity and acceleration using the
derivative. By taking the derivative of the position function we found the velocity function, and likewise by taking the derivative of
the velocity function we found the acceleration function. Using integral calculus, we can work backward and calculate the velocity
function from the acceleration function, and the position function from the velocity function.

Kinematic Equations from Integral Calculus
Let’s begin with a particle with an acceleration a(t) is a known function of time. Since the time derivative of the velocity function is
acceleration,

we can take the indefinite integral of both sides, finding

where C  is a constant of integration. Since , the velocity is given by

Similarly, the time derivative of the position function is the velocity function,

Thus, we can use the same mathematical manipulations we just used and find

where C  is a second constant of integration.

We can derive the kinematic equations for a constant acceleration using these integrals. With a(t) = a, a constant, and doing the
integration in Equation , we find

If the initial velocity is v(0) = v , then

Then, C  = v  and

which is Equation 3.5.12. Substituting this expression into Equation  gives
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Doing the integration, we find

If x(0) = x , we have

so, C  = x . Substituting back into the equation for x(t), we finally have

which is Equation 3.5.17.

A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to decelerate to arrive at the dock. Its acceleration is
a(t) =  t m/s . (a) What is the velocity function of the motorboat? (b) At what time does the velocity reach zero? (c) What is
the position function of the motorboat? (d) What is the displacement of the motorboat from the time it begins to decelerate to
when the velocity is zero? (e) Graph the velocity and position functions.

Strategy

(a) To get the velocity function we must integrate and use initial conditions to find the constant of integration. (b) We set the
velocity function equal to zero and solve for t. (c) Similarly, we must integrate to find the position function and use initial
conditions to find the constant of integration. (d) Since the initial position is taken to be zero, we only have to evaluate the
position function at t = 0 .

Solution
We take t = 0 to be the time when the boat starts to decelerate.

a. From the functional form of the acceleration we can solve Equation  to get v(t):

At t = 0 we have v(0) = 5.0 m/s = 0 + C , so C  = 5.0 m/s or v(t) = 5.0 m/s −  t .
b. v(t) = 0 = 5.0 m/s −  t (\Rightarrow\) t = 6.3 s
c. Solve Equation :

At t = 0, we set x(0) = 0 = x , since we are only interested in the displacement from when the boat starts to decelerate. We
have

Therefore, the equation for the position is

d. Since the initial position is taken to be zero, we only have to evaluate x(t) when the velocity is zero. This occurs at t = 6.3 s.
Therefore, the displacement is

x(t) = t+ a + .v0
1

2
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2
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Figure : (a) Velocity of the motorboat as a function of time. The motorboat decreases its velocity to zero in 6.3 s. At
times greater than this, velocity becomes negative—meaning, the boat is reversing direction. (b) Position of the motorboat as a
function of time. At t = 6.3 s, the velocity is zero and the boat has stopped. At times greater than this, the velocity becomes
negative—meaning, if the boat continues to move with the same acceleration, it reverses direction and heads back toward
where it originated.

Significance
The acceleration function is linear in time so the integration involves simple polynomials. In Figure , we see that if we
extend the solution beyond the point when the velocity is zero, the velocity becomes negative and the boat reverses direction.
This tells us that solutions can give us information outside our immediate interest and we should be careful when interpreting
them.

A particle starts from rest and has an acceleration function . (a) What is the velocity function? (b)
What is the position function? (c) When is the velocity zero?

This page titled 16.5: The Connection Between Displacement, Velocity, and Acceleration is shared under a CC BY-SA 4.0 license and was
authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

3.8: Finding Velocity and Displacement from Acceleration by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.

16.5.1

16.5.1

 Exercise 3.8

a(t) = (5 −(10 ) t)1
s

m

s2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85838?pdf
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/16%3A_N2)_1_Dimensional_Kinematics/16.05%3A_The_Connection_Between_Displacement_Velocity_and_Acceleration
https://creativecommons.org/licenses/by-sa/4.0
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-1
https://phys.libretexts.org/@go/page/3983
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-1


16.6.1 https://phys.libretexts.org/@go/page/85839

16.6: Examples
 

Consider the ski jumper in the above figure. The mass of the skiier is 75 kg, and the slope down which he is traveling is 37
with respect to the horizontal (which is a typical ``in-run'' to an olympic ski jump).

1. What is the normal force on this skiier, while they are traveling down the slope as shown in the figure?
2. Assuming the snow is perfectly frictionless, what is the acceleration of the skier?
3. How long will it take the skiier to go from the top of the slope to the bottom, if the slope is 115 m long? You may assume

they started from rest.
4. How fast will the skiier be moving at the end of this slope?

Consider the graph of position vs time in the figure.

1. Find the average velocity during the time intervals 0 s to 2 s, 2 s to 5 s, and 5 s to 7 s.
2. Find the instantaneous velocity at 1 s, 4.5 s, and 7.5 s.

 

The tortoise demands a rematch! They decide on the same distance (  = 1.0 km), and the tortoise starts off at his same speed (
 = 0.20 m/s). This time, the hare is so convinced he will win that he waits at the start for the tortoise to get to  = 0.80 km

before he starts to run (hop?), starting from rest at a constant acceleration.

 Whiteboard Problem : Ski Jump!16.6.1

∘

 Whiteboard Problem : Average and Instantaneous Velocity16.6.2

 Whiteboard Problem : The Tortoise and the Hare, Redux!16.6.3
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1. What acceleration will the hare need to have to finish the race at the same time as the tortoise?
2. The tortoise expects this kind of grandstanding from the hare, so he begins to accelerate at 0.01 m/s  when he sees the hare

start the race. What acceleration must the hare have to still beat the tortoise?

Example : Motion with piecewise constant acceleration
Construct the position vs. time, velocity vs. time, and acceleration vs. time graphs for the motion described below. For each of
the intervals (a)–(d) you’ll need to figure out the position (height) and velocity of the rocket at the beginning and the end of the
interval, and the acceleration for the interval. In addition, for interval (b) you need to figure out the maximum height reached
by the rocket and the time at which it occurs. For interval (d) you need to figure out its duration, that is to say, the time at
which the rocket hits the ground.

a. A rocket is shot upwards, accelerating from rest to a final velocity of 20 m/s in 1 s as it burns its fuel. (Treat the
acceleration as constant during this interval.)

b. From  = 1 s to  = 4 s, with the fuel exhausted, the rocket flies under the influence of gravity alone. At some point during
this time interval (you need to figure out when!) it stops climbing and starts falling.

c. At  = 4 s a parachute opens, suddenly causing an upwards acceleration (again, treat it as constant) lasting 1 s; at the end of
this interval, the rocket’s velocity is 5 m/s downwards.

d. The last part of the motion, with the parachute deployed, is with constant velocity of 5 m/s downwards until the rocket hits
the ground.

Solution

(a) For this first interval (for which I will use a subscript “1” throughout) we have

using Equation (15.2.7) for motion with constant acceleration with zero initial velocity (I am using the variable , instead of ,
for the vertical coordinate; this is more or less customary, but, of course, I could have used  just as well).

Since the acceleration is constant, it is equal to its average value:

Substituting this into ( ) we get the height at  = 1 s is 10 m. The velocity at that time, of course, is  = 20 m/s, as we
were told in the statement of the problem.

(b) This part is free fall with initial velocity  = 20 m/s. To find how high the rocket climbs, use Equation (15.3.1) in the form
, with  (as the rocket climbs, its velocity decreases, and it stops climbing when its velocity

is zero). This gives us  = 3.04 s as the time at which the rocket reaches the top of its trajectory, and then starts coming
down. The corresponding displacement is, by Equation (15.3.2),

so the maximum height it reaches is 30.4 m.

At the end of the full 3-second interval, the rocket’s displacement is

(so its height is 25.9 m above the ground), and the final velocity is

(c) The acceleration for this part is  = (−5 + 9.43)/1=4.43 m/s . Note the positive sign. The displacement is
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so the final height is 25.9 − 7.21 = 18.7 m.

(d) This is just motion with constant speed to cover 18.7 m at 5 m/s. The time it takes is 3.74 s. The graphs for this motion are
shown earlier in the chapter, in Figure 15.2.3.

This page titled 16.6: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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16.E: Motion Along a Straight Line (Exercises)

Conceptual Questions
1. Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of

displacement. Identify each quantity in your example specifically.
2. Under what circumstances does distance traveled equal magnitude of displacement? What is the only case in which

magnitude of displacement and displacement are exactly the same?
3. There is a distinction between average speed and the magnitude of average velocity. Give an example that illustrates the

difference between these two quantities.
4. When analyzing the motion of a single object, what is the required number of known physical variables that are needed to

solve for the unknown quantities using the kinematic equations?
5. State two scenarios of the kinematics of single object where three known quantities require two kinematic equations to

solve for the unknowns.
6. When given the acceleration function, what additional information is needed to find the velocity function and position

function?

Problems
7. The position of a particle moving along the x-axis is given by x(t) = 4.0 − 2.0t m. (a) At what time does the particle cross

the origin? (b) What is the displacement of the particle between t = 3.0 s and t = 6.0 s?
8. A cyclist rides 8.0 km east for 20 minutes, then he turns and heads west for 8 minutes and 3.2 km. Finally, he rides east

for 16 km, which takes 40 minutes. (a) What is the final displacement of the cyclist? (b) What is his average velocity?
9. Sketch the velocity-versus-time graph from the following position-versus-time graph.

10. Sketch the velocity-versus-time graph from the following position-versus-time graph.

11. Given the following velocity-versus-time graph, sketch the position-versus-time graph.
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12. An object has a position function x(t) = 5t m. (a) What is the velocity as a function of time? (b) Graph the position
function and the velocity function.

13. A particle moves along the x-axis according to x(t) = 10t − 2t  m. (a) What is the instantaneous velocity at t = 2 s and t =
3 s? (b) What is the instantaneous speed at these times? (c) What is the average velocity between t = 2 s and t = 3 s?

14. Unreasonable results. A particle moves along the x-axis according to x(t) = 3t  + 5t . At what time is the velocity of the
particle equal to zero? Is this reasonable?

15. Sketch the acceleration-versus-time graph from the following velocity-versus-time graph.

18. A commuter backs her car out of her garage with an acceleration of 1.40 m/s . (a) How long does it take her to reach a
speed of 2.00 m/s? (b) If she then brakes to a stop in 0.800 s, what is her acceleration?

19. Assume an intercontinental ballistic missile goes from rest to a suborbital speed of 6.50 km/s in 60.0 s (the actual speed
and time are classified). What is its average acceleration in meters per second and in multiples of g (9.80 m/s )?

20. An airplane, starting from rest, moves down the runway at constant acceleration for 18 s and then takes off at a speed of
60 m/s. What is the average acceleration of the plane?

21. A particle moves in a straight line at a constant velocity of 30 m/s. What is its displacement between t = 0 and t = 5.0 s?
22. A particle moves in a straight line with an initial velocity of 0 m/s and a constant acceleration of 30 m/s . If x = 0 at t = 0,

what is the particle’s position at t = 5 s?
23. A particle moves in a straight line with an initial velocity of 30 m/s and constant acceleration 30 m/s . (a) What is its

displacement at t = 5 s? (b) What is its velocity at this same time?
24. (a) Sketch a graph of velocity versus time corresponding to the graph of displacement versus time given in the following

figure. (b) Identify the time or times (t , t , t , etc.) at which the instantaneous velocity has the greatest positive value. (c)
At which times is it zero? (d) At which times is it negative?

25. (a) Sketch a graph of acceleration versus time corresponding to the graph of velocity versus time given in the following
figure. (b) Identify the time or times (ta , tb, tc , etc.) at which the acceleration has the greatest positive value. (c) At
which times is it zero? (d) At which times is it negative?
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26. A particle has a constant acceleration of 6.0 m/s . (a) If its initial velocity is 2.0 m/s, at what time is its displacement 5.0
m? (b) What is its velocity at that time?

27. At t = 10 s, a particle is moving from left to right with a speed of 5.0 m/s. At t = 20 s, the particle is moving right to left
with a speed of 8.0 m/s. Assuming the particle’s acceleration is constant, determine (a) its acceleration, (b) its initial
velocity, and (c) the instant when its velocity is zero.

28. A well-thrown ball is caught in a well-padded mitt. If the acceleration of the ball is 2.10 x 10  m/s , and 1.85 ms (1 ms =
10  s) elapses from the time the ball first touches the mitt until it stops, what is the initial velocity of the ball?

29. A bullet in a gun is accelerated from the firing chamber to the end of the barrel at an average rate of 6.20 x 10  m/s  for
8.10 x 10  s. What is its muzzle velocity (that is, its final velocity)?

30. (a) A light-rail commuter train accelerates at a rate of 1.35 m/s . How long does it take to reach its top speed of 80.0
km/h, starting from rest? (b) The same train ordinarily decelerates at a rate of 1.65 m/s . How long does it take to come to
a stop from its top speed? (c) In emergencies, the train can decelerate more rapidly, coming to rest from 80.0 km/h in 8.30
s. What is its emergency acceleration in meters per second squared?

31. While entering a freeway, a car accelerates from rest at a rate of 2.04 m/s  for 12.0 s. (a) Draw a sketch of the situation.
(b) List the knowns in this problem. (c) How far does the car travel in those 12.0 s? To solve this part, first identify the
unknown, then indicate how you chose the appropriate equation to solve for it. After choosing the equation, show your
steps in solving for the unknown, check your units, and discuss whether the answer is reasonable. (d) What is the car’s
final velocity? Solve for this unknown in the same manner as in (c), showing all steps explicitly.

32. Unreasonable results At the end of a race, a runner decelerates from a velocity of 9.00 m/s at a rate of 2.00 m/s . (a)
How far does she travel in the next 5.00 s? (b) What is her final velocity? (c) Evaluate the result. Does it make sense?

33. Blood is accelerated from rest to 30.0 cm/s in a distance of 1.80 cm by the left ventricle of the heart. (a) Make a sketch of
the situation. (b) List the knowns in this problem. (c) How long does the acceleration take? To solve this part, first
identify the unknown, then discuss how you chose the appropriate equation to solve for it. After choosing the equation,
show your steps in solving for the unknown, checking your units. (d) Is the answer reasonable when compared with the
time for a heartbeat?

34. During a slap shot, a hockey player accelerates the puck from a velocity of 8.00 m/s to 40.0 m/s in the same direction. If
this shot takes 3.33 x 10  s , what is the distance over which the puck accelerates?

35. A powerful motorcycle can accelerate from rest to 26.8 m/s (100 km/h) in only 3.90 s. (a) What is its average
acceleration? (b) Assuming constant acceleration, how far does it travel in that time?

36. Freight trains can produce only relatively small accelerations. (a) What is the final velocity of a freight train that
accelerates at a rate of 0.0500 m/s  for 8.00 min, starting with an initial velocity of 4.00 m/s? (b) If the train can slow
down at a rate of 0.550 m/s , how long will it take to come to a stop from this velocity? (c) How far will it travel in each
case?

37. A fireworks shell is accelerated from rest to a velocity of 65.0 m/s over a distance of 0.250 m. (a) Calculate the
acceleration. (b) How long did the acceleration last?

38. A swan on a lake gets airborne by flapping its wings and running on top of the water. (a) If the swan must reach a
velocity of 6.00 m/s to take off and it accelerates from rest at an average rate of 0.35 m/s , how far will it travel before
becoming airborne? (b) How long does this take?

39. A woodpecker’s brain is specially protected from large accelerations by tendon-like attachments inside the skull. While
pecking on a tree, the woodpecker’s head comes to a stop from an initial velocity of 0.600 m/s in a distance of only 2.00
mm. (a) Find the acceleration in meters per second squared and in multiples of g, where g = 9.80 m/s . (b) Calculate the
stopping time. (c) The tendons cradling the brain stretch, making its stopping distance 4.50 mm (greater than the head
and, hence, less acceleration of the brain). What is the brain’s acceleration, expressed in multiples of g?

40. An unwary football player collides with a padded goalpost while running at a velocity of 7.50 m/s and comes to a full
stop after compressing the padding and his body 0.350 m. (a) What is his acceleration? (b) How long does the collision
last?

41. A care package is dropped out of a cargo plane and lands in the forest. If we assume the care package speed on impact is
54 m/s (123 mph), then what is its acceleration? Assume the trees and snow stops it over a distance of 3.0 m.

42. An express train passes through a station. It enters with an initial velocity of 22.0 m/s and decelerates at a rate of 0.150
m/s  as it goes through. The station is 210.0 m long. (a) How fast is it going when the nose leaves the station? (b) How
long is the nose of the train in the station? (c) If the train is 130 m long, what is the velocity of the end of the train as it
leaves? (d) When does the end of the train leave the station?
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43. Unreasonable results Dragsters can actually reach a top speed of 145.0 m/s in only 4.45 s. (a) Calculate the average
acceleration for such a dragster. (b) Find the final velocity of this dragster starting from rest and accelerating at the rate
found in (a) for 402.0 m (a quarter mile) without using any information on time. (c) Why is the final velocity greater than
that used to find the average acceleration? (Hint: Consider whether the assumption of constant acceleration is valid for a
dragster. If not, discuss whether the acceleration would be greater at the beginning or end of the run and what effect that
would have on the final velocity.)

44. Calculate the displacement and velocity at times of (a) 0.500 s, (b) 1.00 s, (c) 1.50 s, and (d) 2.00 s for a ball thrown
straight up with an initial velocity of 15.0 m/s. Take the point of release to be y  = 0.

45. Calculate the displacement and velocity at times of (a) 0.500 s, (b) 1.00 s, (c) 1.50 s, (d) 2.00 s, and (e) 2.50 s for a rock
thrown straight down with an initial velocity of 14.0 m/s from the Verrazano Narrows Bridge in New York City. The
roadway of this bridge is 70.0 m above the water.

46. A basketball referee tosses the ball straight up for the starting tip-off. At what velocity must a basketball player leave the
ground to rise 1.25 m above the floor in an attempt to get the ball?

47. A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight
down to the victim with an initial velocity of 1.40 m/s and observes that it takes 1.8 s to reach the water. (a) List the
knowns in this problem. (b) How high above the water was the preserver released? Note that the downdraft of the
helicopter reduces the effects of air resistance on the falling life preserver, so that an acceleration equal to that of gravity
is reasonable.

48. Unreasonable results A dolphin in an aquatic show jumps straight up out of the water at a velocity of 15.0 m/s. (a) List
the knowns in this problem. (b) How high does his body rise above the water? To solve this part, first note that the final
velocity is now a known, and identify its value. Then, identify the unknown and discuss how you chose the appropriate
equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking units, and
discuss whether the answer is reasonable. (c) How long a time is the dolphin in the air? Neglect any effects resulting from
his size or orientation.

49. A diver bounces straight up from a diving board, avoiding the diving board on the way down, and falls feet first into a
pool. She starts with a velocity of 4.00 m/s and her takeoff point is 1.80 m above the pool. (a) What is her highest point
above the board? (b) How long a time are her feet in the air? (c) What is her velocity when her feet hit the water?

50. (a) Calculate the height of a cliff if it takes 2.35 s for a rock to hit the ground when it is thrown straight up from the cliff
with an initial velocity of 8.00 m/s. (b) How long a time would it take to reach the ground if it is thrown straight down
with the same speed?

51. A very strong, but inept, shot putter puts the shot straight up vertically with an initial velocity of 11.0 m/s. How long a
time does he have to get out of the way if the shot was released at a height of 2.20 m and he is 1.80 m tall?

52. You throw a ball straight up with an initial velocity of 15.0 m/s. It passes a tree branch on the way up at a height of 7.0 m.
How much additional time elapses before the ball passes the tree branch on the way back down?

53. A kangaroo can jump over an object 2.50 m high. (a) Considering just its vertical motion, calculate its vertical speed
when it leaves the ground. (b) How long a time is it in the air?

54. Standing at the base of one of the cliffs of Mt. Arapiles in Victoria, Australia, a hiker hears a rock break loose from a
height of 105.0 m. He can’t see the rock right away, but then does, 1.50 s later. (a) How far above the hiker is the rock
when he can see it? (b) How much time does he have to move before the rock hits his head?

55. There is a 250-m-high cliff at Half Dome in Yosemite National Park in California. Suppose a boulder breaks loose from
the top of this cliff. (a) How fast will it be going when it strikes the ground? (b) Assuming a reaction time of 0.300 s, how
long a time will a tourist at the bottom have to get out of the way after hearing the sound of the rock breaking loose
(neglecting the height of the tourist, which would become negligible anyway if hit)? The speed of sound is 335.0 m/s on
this day.

56. The acceleration of a particle varies with time according to the equation a(t) = pt  − qt . Initially, the velocity and position
are zero. (a) What is the velocity as a function of time? (b) What is the position as a function of time?

57. Between t = 0 and t = t , a rocket moves straight upward with an acceleration given by a(t) = A − Bt , where A and B
are constants. (a) If x is in meters and t is in seconds, what are the units of A and B? (b) If the rocket starts from rest, how
does the velocity vary between t = 0 and t = t ? (c) If its initial position is zero, what is the rocket’s position as a function
of time during this same time interval?

58. The velocity of a particle moving along the x-axis varies with time according to v(t) = A + Bt , where A = 2 m/s, B =
0.25 m, and 1.0 s ≤ t ≤ 8.0 s. Determine the acceleration and position of the particle at t = 2.0 s and t = 5.0 s. Assume that
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x(t = 1 s) = 0.
59. A particle at rest leaves the origin with its velocity increasing with time according to v(t) = 3.2t m/s. At 5.0 s, the

particle’s velocity starts decreasing according to [16.0 – 1.5(t – 5.0)] m/s. This decrease continues until t = 11.0 s, after
which the particle’s velocity remains constant at 7.0 m/s. (a) What is the acceleration of the particle as a function of time?
(b) What is the position of the particle at t = 2.0 s, t = 7.0 s, and t = 12.0 s?

60. Professional baseball player Nolan Ryan could pitch a baseball at approximately 160.0 km/h. At that average velocity,
how long did it take a ball thrown by Ryan to reach home plate, which is 18.4 m from the pitcher’s mound? Compare this
with the average reaction time of a human to a visual stimulus, which is 0.25 s.

61. An airplane leaves Chicago and makes the 3000-km trip to Los Angeles in 5.0 h. A second plane leaves Chicago one-half
hour later and arrives in Los Angeles at the same time. Compare the average velocities of the two planes. Ignore the
curvature of Earth and the difference in altitude between the two cities.

62. Unreasonable Results A cyclist rides 16.0 km east, then 8.0 km west, then 8.0 km east, then 32.0 km west, and finally
11.2 km east. If his average velocity is 24 km/ h, how long did it take him to complete the trip? Is this a reasonable time?

63. An object has an acceleration of +1.2 cm/s . At t = 4.0 s , its velocity is −3.4 cm/s. Determine the object’s velocities at t =
1.0 s and t = 6.0 s.

64. A particle moves along the x-axis according to the equation x(t) = 2.0 − 4.0t  m. What are the velocity and acceleration at
t = 2.0 s and t = 5.0 s?

65. A particle moving at constant acceleration has velocities of 2.0 m/s at t = 2.0 s and −7.6 m/s at t = 5.2 s. What is the
acceleration of the particle?

66. Compare the time in the air of a basketball player who jumps 1.0 m vertically off the floor with that of a player who
jumps 0.3 m vertically.

67. Suppose that a person takes 0.5 s to react and move his hand to catch an object he has dropped. (a) How far does the
object fall on Earth, where g = 9.8 m/s ? (b) How far does the object fall on the Moon, where the acceleration due to
gravity is 1/6 of that on Earth?

68. A hot-air balloon rises from ground level at a constant velocity of 3.0 m/s. One minute after liftoff, a sandbag is dropped
accidentally from the balloon. Calculate (a) the time it takes for the sandbag to reach the ground and (b) the velocity of
the sandbag when it hits the ground.

69. (a) A world record was set for the men’s 100-m dash in the 2008 Olympic Games in Beijing by Usain Bolt of Jamaica.
Bolt “coasted” across the finish line with a time of 9.69 s. If we assume that Bolt accelerated for 3.00 s to reach his
maximum speed, and maintained that speed for the rest of the race, calculate his maximum speed and his acceleration. (b)
During the same Olympics, Bolt also set the world record in the 200-m dash with a time of 19.30 s. Using the same
assumptions as for the 100-m dash, what was his maximum speed for this race?

70. An object is dropped from a height of 75.0 m above ground level. (a) Determine the distance traveled during the first
second. (b) Determine the final velocity at which the object hits the ground. (c) Determine the distance traveled during
the last second of motion before hitting the ground.

71. A cyclist sprints at the end of a race to clinch a victory. She has an initial velocity of 11.5 m/s and accelerates at a rate of
0.500 m/s  for 7.00 s. (a) What is her final velocity? (b) The cyclist continues at this velocity to the finish line. If she is
300 m from the finish line when she starts to accelerate, how much time did she save? (c) The second-place winner was
5.00 m ahead when the winner started to accelerate, but he was unable to accelerate, and traveled at 11.8 m/s until the
finish line. What was the difference in finish time in seconds between the winner and runner-up? How far back was the
runner-up when the winner crossed the finish line?

72. In 1967, New Zealander Burt Munro set the world record for an Indian motorcycle, on the Bonneville Salt Flats in Utah,
of 295.38 km/h. The one-way course was 8.00 km long. Acceleration rates are often described by the time it takes to
reach 96.0 km/h from rest. If this time was 4.00 s and Burt accelerated at this rate until he reached his maximum speed,
how long did it take Burt to complete the course?

This page titled 16.E: Motion Along a Straight Line (Exercises) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

17: N3) 2 Dimensional Kinematics and Projectile Motion
17.1: Dealing with Forces in Two Dimensions
17.2: Motion in Two Dimensions and Projectile Motion
17.3: Inclined Planes
17.4: Examples
17.E: Projectile Motion (Exercises)

In this chapter we are going to extend our work on kinematics in 1-dimension to include 2-dimensional motion. It turns out that the
short answer is "2D is just like two copies of 1D", and we don't need to work to hard to see that. In this course, there is really one
key example of 2D motion, and that is projectile motion.

Projectile motion is the motion of an object that is launched into the air and moves under the influence of gravity alone. During the
entire motion, the object is subject to a constant acceleration of 9.8l meters per second squared, directed downwards (which we
often take to be the negative direction). The path of the object is called a trajectory, and it can be predicted using a few basic
principles.

The horizontal and vertical motions of the object are independent of each other. This means that the object will continue moving
forward at a constant speed unless acted upon by external forces, while at the same time, it will be pulled downwards by gravity.
The initial velocity and launch angle of the object determine its trajectory. The initial velocity is the speed at which the object is
launched, while the launch angle is the angle at which it is launched relative to the horizontal. Together, these two factors determine
the initial velocity vector, which can be broken down into its horizontal and vertical components.

The motion of the object can be analyzed using basic kinematic equations that describe the motion of an object under constant
acceleration, which we presented in the last chapter. By using these equations, you can predict the maximum height reached by the
object, the time it takes to reach the maximum height, the total time of flight, the range of the object, and the final velocity of the
object when it hits the ground.

It is important to note that air resistance can affect the motion of a projectile, especially at high velocities or long distances.
However, in many cases, air resistance can be neglected, and the motion of the object can be described using the basic principles of
projectile motion. During our work in this course, we will nearly always be ignoring air resistance, which we will generally refer to
as freely falling motion.

Overall, understanding projectile motion is essential for a wide range of applications, from sports to engineering to astronomy. By
mastering the basic principles of projectile motion, you can make accurate predictions about the motion of objects in the real world
and develop more sophisticated models and simulations.

17: N3) 2 Dimensional Kinematics and Projectile Motion is shared under a CC BY-SA license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College & ChatGPT.
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17.1: Dealing with Forces in Two Dimensions
We have been able to get a lot of physics from our study of (mostly) one-dimensional motion only, but it goes without saying that
the real world is a lot richer than that, and there are a number of new and interesting phenomena that appear when one considers
motion in two or three dimensions. The purpose of this chapter is to introduce you to some of the simplest two-dimensional
situations of physical interest.

A common feature to all these problems is that the forces acting on the objects under consideration will typically not line up with
the displacements. This means, in practice, that we need to pay more attention to the vector nature of these quantities than we have
done so far. This section will present a brief reminder of some basic properties of vectors, and introduce a couple of simple
principles for the analysis of the systems that will follow.

To begin with, recall that a vector is a quantity that has both a magnitude and a direction. The magnitude of the vector just tells us
how big it is: the magnitude of the velocity vector, for instance, is the speed, that is, just how fast something is moving. When
working with vectors in one dimension, we have typically assumed that the entire vector (whether it was a velocity, an acceleration
or a force) lay along the line of motion of the system, and all we had to do to indicate the direction was to give the vector’s
magnitude an appropriate sign. For the problems that follow, however, it will become essential to break up the vectors into their
components along an appropriate set of axes. This involves very simple geometry, and follows the example of the position vector ,
whose components are just the Cartesian coordinates of the point it locates in space (as shown in Figure 1.2.1). For a generic
vector, for instance, a force, like the one shown in Figure  below, the components  and  may be obtained from a right
triangle, as indicated there:

Figure : : The components of a vector that makes an angle  with the positive  axis. Two examples are shown, for 
(in which case > 0) and for  (in which case  < 0). In both cases,  > 0.

The triangle will always have the vector’s magnitude (  in this case) as the hypothenuse. The two other sides should be parallel
to the coordinate axes. Their lengths are the corresponding components, except for a sign that depends on the orientation of the
vector. If we happen to know the angle  that the vector makes with the positive  axis, the following relations will always hold:

Note, however, that in general this angle  may not be one of the interior angles of the triangle (as shown on the right diagram in
Figure ), and that in that case it may just be simpler to calculate the magnitude of the components using trigonometry and an
interior angle (such as 180  in the example), and give them the appropriate signs “by hand.” In the example on the right, the
length of the horizontal side of the triangle is equal to , which is a positive quantity; the correct value for ,
however, is the negative number .

In any case, it is important not to get fixated on the notion that “the  component will always be proportional to the cosine of .”
The symbol  is just a convenient one to use for a generic angle. There are four sections in this chapter, and in every one there is a 

 used with a different meaning. When in doubt, just draw the appropriate right triangle and remember from your trigonometry
classes which side goes with the sine, and which with the cosine.
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For the problems that we are going to study in this chapter, the idea is to break up all the forces involved into components along
properly-chosen coordinate axes, then add all the components along any given direction, and apply  along that
direction: that is to say, we will write (and eventually solve) the equations

We can show that Eqs. ( ) must hold for any choice of orthogonal  and  axes, based on the fact that we know 
holds along one particular direction, namely, the direction common to  and , and the fact that we have defined the projection
procedure to be the same for any kind of vector. Figure  shows how this works. Along the dashed line you just have the
situation that is by now familiar to us from one-dimensional problems, where  lies along  (assumed here to be the net force), and

. However, in the figure I have chosen the axes to make an angle  with this direction. Then, if you look at the
projections of  and  along the  axis, you will find

and similarly, . In words, each component of the force vector is responsible for only the corresponding component of the
acceleration. A force in the  direction does not cause any acceleration in the  direction, and vice-versa.

Figure : If you take the familiar, one-dimensional (see the black dashed line) form of , and project it onto
orthogonal, rotated axes, you get the general two-dimensional case, showing that each orthogonal component of the acceleration is
proportional, via the mass , to only the corresponding component of the force (Eqs. ( )).

This is why we have been paying so much attention to using column vectors. They allow us to write all of this in a convenient way
that captures these aspects:

In the rest of the chapter we shall see how to use Eqs. (  and ) in a number of examples. One thing I can anticipate is
that, in general, we will try to choose our axes (unlike in Figure  above) so that one of them does coincide with the direction
of the acceleration, so the motion along the other direction is either nonexistent (  = 0) or trivial (constant velocity).

This page titled 17.1: Dealing with Forces in Two Dimensions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts
platform.
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https://scholarworks.uark.edu/oer/3.
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17.2: Motion in Two Dimensions and Projectile Motion

Motion in Two Dimensions and Projectile Motion
So far, we have studied motion under constant acceleration in one-dimension only. In this case, an object is restricted to move in a
line (i.e. only along the x or y-directions), and the kinematic equations describe how the object moves. In this section, we will start
looking at objects moving in two dimensions. A primary application of this topic is the study of objects moving in the gravitational
field, which is called projectile motion.

Motion in Two Dimensions

How do we know when an object is moving in one dimension or two dimensions? The first answer to this is that it might depend on
the coordinate system we choose. For instance, consider a car traveling at a constant speed in the north-west direction (should there
be a figure for this?). In the coordinate system with x along east and y along north, the car is moving in two dimensions. However,
if we pick a coordinate system which is tilted 45  with respect to the earth-north one, we can describe this car as only moving in
one dimension.

However, we don't always have this choice. A better answer is to consider the vectors which describe the object's motion, , 
, and . If an object has either velocity or acceleration in more then one direction, then the object will move in more than

one direction. Notice we have to consider both velocity and acceleration. For example, if we have an object with initial velocity in
the x-direction, but acceleration in the y: 

 
then although the motion is initially just along the x-axis, the object will start to accelerate along the y-axis almost immediately. At
some point later, the velocity will be 

 
where  is the velocity after undergoing the acceleration  for some time interval.

Constant Acceleration in Two Directions

If you recall, in order to derive the kinematic equations in one-dimension, we started with the basic definition 

 
and integrated twice with respect to time (review those equations now if you don't remember them!). That required us to add in the
initial values  for the position and  for the velocity. We didn't include anything about the y-direction because we assumed the
acceleration in the y-direction was zero. But if that's not true, we would simply have 

 
and we could repeat the same analysis that we performed in the y-direction. In the end, we would end up with two copies of the
kinematic equations, one in the x-direction and one in the y-direction, 

A key feature here is that the two directions are connected by the time and nothing else. Each direction has its own set of initial and
final position, velocity, and acceleration, but they are parametrized by time. This means that finding the time interval under
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consideration is often the best way to solve any particular problem.

 
Projectile Motion

A particular case of two-dimensional motion under constant acceleration is projectile motion. In this case, we want to study the
motion of an object which has only a single force acting on it, that of gravity. Often, this is an object which we throw, or propel into
the air in some way. Since we usually don't know anything how how it is thrown (by hand? by canon? by gun?), we start our
analysis right after it is in motion, when only gravity is acting on it.

If gravity is the only force acting on the object, we can say right away what the magnitude of the acceleration is,  m/s
. It is also most convienient to set the coordinate system so that the y-direction is upwards, so that 

 
In other words, the acceleration in the x-direction is zero, . This will greatly simplify the kinematic equations, but we have
to be a little careful - just because there is no acceleration in the x-direction does not mean there is no motion in the x-direction. If
you throw an object into the air at an arbitrary angle, it will move in both the x- and y-directions, even though it will only
accelerate downwards.

17.2: Motion in Two Dimensions and Projectile Motion is shared under a CC BY-SA license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College.
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17.3: Inclined Planes
Another simple example of 2D motion is a block sliding down a plane. Now in this case, the block is not actually moving in 2D
motion, since it's just moving in a straight line down the plane, but the forces are acting in 2 dimensions, which is what we have to
understand to understand the motion. So here we will consider an inclined plane making an angle  with the horizontal was .
This problem is going to introduce two kinds of friction as well, kinetic friction , which you get when an object is in motion,
and static friction , which you get when an object is stuck in place. We will study friction more in Chapter 18 - for now just use
your intuition about friction "slowing objects down", and "preventing them from moving".

Figure : A block sliding down an inclined plane. The corresponding free-body diagram is shown on the right.

Figure  above shows, on the left, a block sliding down an inclined plane and all the forces acting on it. These are more

clearly seen on the free-body diagram on the right. I have labeled all the forces using the  convention introduced back in 14.1

(so, for instance,  is the force of kinetic friction exerted by the surface on the block); however, later on, for algebraic
manipulations, and especially where  and  components need to be taken, I will drop the “by, on” subscripts, and just let the
“type” superscript identify the force in question.

The diagrams also show the coordinate axes I have chosen: the  axis is along the plane, and the  is perpendicular to it. The
advantage of this choice is obvious: the motion is entirely along one of the axes, and two of the forces (the normal force and the
friction) already lie along the axes. The only force that does not is the block’s weight (that is, the force of gravity), so we need to
decompose it into its  and  components. For this, we can make use of the fact, which follows from basic geometry, that the angle
of the incline, , is also the angle between the vector  and the negative  axis. This means we have

Equations ( ) also show another convention I will adopt from now, namely, that whenever the symbol for a vector is shown
without an arrow on top or an  or  subscript, it will be understood to refer to the magnitude of the vector, which is always a
positive number by definition.

Newton’s second law, as given by equations (16.1.2) applied to this system, then reads:

for the motion along the plane, and

for the direction perpendicular to the plane. Of course, since there is no motion in this direction,  is zero. This gives us
immediately the value of the normal force:

since . Now including our force of kinetic friction , along with  in Equation ( ), we get

We can eliminate the mass to obtain finally
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which is the desired result. In the absence of friction (  = 0) this gives , a result you might have seen already.

Of course, we know from experience that what happens when  is very small is that the block does not slide: it is held in place by
the force of static friction. The diagram for such a situation looks the same as Figure , except that  = 0, the force of friction
is  instead of , and of course its magnitude must match that of the  component of gravity. Equation ( ) then becomes

It turns out that the force of static friction  does not have a fixed value - it just has a maximum value, over which the object starts
to move. In this case we can find this maximum value by looking at the previous equation; as long as the static friction obeys

the block will remain stationary. Again, we will look at this result more carefully in Chapter 18.

What if we send the block sliding up the plane instead? The acceleration would still be pointing down (since the object would be
slowing down all the while), but now the force of kinetic friction would point in the direction opposite that indicated in Figure 

, since it always must oppose the motion. If you go through the same analysis I carried out above, you will get that 
 in that case, since now friction and gravity are working together to slow the motion down.

This page titled 17.3: Inclined Planes is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-
Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

8.3: Inclined Planes by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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17.4: Examples

The range of a projectile which starts and ends at the same altitude can be found with 

 
where  is the initial speed and  is the launch angle.

1. Derive this formula from the kinematic equations for projectile motion.
2. Find the angle at which this range will be maximized. Hint: Use the trig identify

During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0° above the horizontal,
as illustrated in Figure . The fuse is timed to ignite the shell just as it reaches its highest point above the ground. (a)
Calculate the height at which the shell explodes. (b) How much time passes between the launch of the shell and the explosion?
(c) What is the horizontal displacement of the shell when it explodes? (d) What is the total displacement from the point of
launch to the highest point?

Figure : The trajectory of a fireworks shell. The fuse is set to explode the shell at the highest point in its trajectory, which
is found to be at a height of 233 m and 125 m away horizontally.

Strategy

The motion can be broken into horizontal and vertical motions in which a  = 0 and a  = −g. We can then define x  and y  to be
zero and solve for the desired quantities.

Solution

a. By “height” we mean the altitude or vertical position y above the starting point. The highest point in any trajectory, called
the apex, is reached when v  = 0. Since we know the initial and final velocities, as well as the initial position, we use the
following equation to find y: Because y  and v  are both zero, the equation simplifies to 

Solving for y gives Now we must find v , the component of the initial velocity in the y direction.
It is given by v  = v  sin , where v  is the initial velocity of 70.0 m/s and  = 75° is the initial angle. Thus 

and y is Thus, we have Note that because

up is positive, the initial vertical velocity is positive, as is the maximum height, but the acceleration resulting from gravity
is negative. Note also that the maximum height depends only on the vertical component of the initial velocity, so that any
projectile with a 67.6-m/s initial vertical component of velocity reaches a maximum height of 233 m (neglecting air
resistance). The numbers in this example are reasonable for large fireworks displays, the shells of which do reach such
heights before exploding. In practice, air resistance is not completely negligible, so the initial velocity would have to be
somewhat larger than that given to reach the same height.

 Whiteboard Problem : The Range Formula17.4.1
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b. As in many physics problems, there is more than one way to solve for the time the projectile reaches its highest point. In
this case, the easiest method is to use v  = v  − gt. Because v  = 0 at the apex, this equation reduces or 

This time is also reasonable for large fireworks. If you are able to see the launch of

fireworks, notice that several seconds pass before the shell explodes. Another way of finding the time is by using y = y  + 
(v  + v )t. This is left for you as an exercise to complete.

c. Because air resistance is negligible, a  = 0 and the horizontal velocity is constant, as discussed earlier. The horizontal
displacement is the horizontal velocity multiplied by time as given by x = x  + v t, where x  is equal to zero. Thus, 

where v  is the x-component of the velocity, which is given by 
Time t for both motions is the same, so x is 

Horizontal motion is a constant velocity in the absence of air resistance. The horizontal
displacement found here could be useful in keeping the fireworks fragments from falling on spectators. When the shell
explodes, air resistance has a major effect, and many fragments land directly below.

d. The horizontal and vertical components of the displacement were just calculated, so all that is needed here is to find the
magnitude and direction of the displacement at the highest point: 

Note that the angle for the displacement vector is less than the initial angle of launch. To see

why this is, review Figure , which shows the curvature of the trajectory toward the ground level. When solving
Example 4.7(a), the expression we found for y is valid for any projectile motion when air resistance is negligible. Call the

maximum height y = h. Then, This equation defines the maximum height of a projectile above its launch
position and it depends only on the vertical component of the initial velocity.

A rock is thrown horizontally off a cliff 100.0 m high with a velocity of 15.0 m/s. (a) Define the origin of the coordinate
system. (b) Which equation describes the horizontal motion? (c) Which equations describe the vertical motion? (d) What is the
rock’s velocity at the point of impact?

A tennis player wins a match at Arthur Ashe stadium and hits a ball into the stands at 30 m/s and at an angle 45° above the
horizontal (Figure ). On its way down, the ball is caught by a spectator 10 m above the point where the ball was hit. (a)
Calculate the time it takes the tennis ball to reach the spectator. (b) What are the magnitude and direction of the ball’s velocity
at impact?

Figure : The trajectory of a tennis ball hit into the stands.

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions allows us to solve for the desired
quantities. The time a projectile is in the air is governed by its vertical motion alone. Thus, we solve for t first. While the ball is
rising and falling vertically, the horizontal motion continues at a constant velocity. This example asks for the final velocity.
Thus, we recombine the vertical and horizontal results to obtain  at final time t, determined in the first part of the example.

Solution

y 0y y 0 = −gtv0y

t = = = 6.90 s.
v0y

g
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0
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2 0y y
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a. While the ball is in the air, it rises and then falls to a final position 10.0 m higher than its starting altitude. We can find the
time for this by using the third equation in 16.2.5: If we take the initial position y  to be zero, then
the final position is y = 10 m. The initial vertical velocity is the vertical component of the initial velocity: 

. Substituting into our kinematic equation for y gives us 
Rearranging terms gives a quadratic equation in t: 

Use of the quadratic formula yields t = 3.79 s and t = 0.54 s. Since the ball
is at a height of 10 m at two times during its trajectory—once on the way up and once on the way down—we take the
longer solution for the time it takes the ball to reach the spectator: The time for projectile motion is determined
completely by the vertical motion. Thus, any projectile that has an initial vertical velocity of 21.2 m/s and lands 10.0 m
above its starting altitude spends 3.79 s in the air.

b. We can find the final horizontal and vertical velocities v  and v  with the use of the result from (a). Then, we can combine
them to find the magnitude of the total velocity vector  and the angle  it makes with the horizontal. Since v  is constant,
we can solve for it at any horizontal location. We choose the starting point because we know both the initial velocity and
the initial angle. Therefore, . The final vertical velocity is given by the
last equation in 16.2.5: Since  was found in part (a) to be 21.2 m/s, we have 

The magnitude of the final velocity  is 

The direction  is found using the inverse tangent: 

Significance

a. As mentioned earlier, the time for projectile motion is determined completely by the vertical motion. Thus, any projectile
that has an initial vertical velocity of 21.2 m/s and lands 10.0 m above its starting altitude spends 3.79 s in the air.

b. The negative angle means the velocity is 53.1° below the horizontal at the point of impact. This result is consistent with the
fact that the ball is impacting at a point on the other side of the apex of the trajectory and therefore has a negative y
component of the velocity. The magnitude of the velocity is less than the magnitude of the initial velocity we expect since it
is impacting 10.0 m above the launch elevation.

A golfer finds himself in two different situations on different holes. On the second hole he is 120 m from the green and wants
to hit the ball 90 m and let it run onto the green. He angles the shot low to the ground at 30° to the horizontal to let the ball roll
after impact. On the fourth hole he is 90 m from the green and wants to let the ball drop with a minimum amount of rolling
after impact. Here, he angles the shot at 70° to the horizontal to minimize rolling after impact. Both shots are hit and impacted
on a level surface. (a) What is the initial speed of the ball at the second hole? (b) What is the initial speed of the ball at the
fourth hole? (c) Write the trajectory equation for both cases. (d) Graph the trajectories.

Strategy

We see that the range equation (see example problem ) has the initial speed and angle, so we can solve for the initial
speed for both (a) and (b). When we have the initial speed, we can use this value to write the trajectory equation.

Solution

a. 

b. 

c. Second hole: Fourth hole: 

d. Using a graphing utility, we can compare the two trajectories, which are shown in Figure .
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Figure : Two trajectories of a golf ball with a range of 90 m. The impact points of both are at the same level as the
launch point.

Significance

The initial speed for the shot at 70° is greater than the initial speed of the shot at 30°. Note from Figure  that two
projectiles launched at the same speed but at different angles have the same range if the launch angles add to 90°. The launch
angles in this example add to give a number greater than 90°. Thus, the shot at 70° has to have a greater launch speed to reach
90 m, otherwise it would land at a shorter distance.

If the two golf shots in Example 4.9 were launched at the same speed, which shot would have the greatest range?

At PhET Explorations: Projectile Motion, learn about projectile motion in terms of the launch angle and initial velocity.

This page titled 17.4: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.
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17.E: Projectile Motion (Exercises)

Conceptual Questions
1. Give an example of a trajectory in two or three dimensions caused by independent perpendicular motions.
2. If the instantaneous velocity is zero, what can be said about the slope of the position function?
3. If the position function of a particle is a linear function of time, what can be said about its acceleration?
4. If an object has a constant x-component of the velocity and suddenly experiences an acceleration in the y direction, does

the x-component of its velocity change?
5. If an object has a constant x-component of velocity and suddenly experiences an acceleration at an angle of 70° in the x

direction, does the x-component of velocity change?
6. Answer the following questions for projectile motion on level ground assuming negligible air resistance, with the initial

angle being neither 0° nor 90° : (a) Is the velocity ever zero? (b) When is the velocity a minimum? A maximum? (c) Can
the velocity ever be the same as the initial velocity at a time other than at t = 0? (d) Can the speed ever be the same as the
initial speed at a time other than at t = 0?

7. Answer the following questions for projectile motion on level ground assuming negligible air resistance, with the initial
angle being neither 0° nor 90° : (a) Is the acceleration ever zero? (b) Is the vector  ever parallel or antiparallel to the
vector ? (c) Is the vector  ever perpendicular to the vector ? If so, where is this located?

Problems
8. A bullet is shot horizontally from shoulder height (1.5 m) with and initial speed 200 m/s. (a) How much time elapses

before the bullet hits the ground? (b) How far does the bullet travel horizontally?
9. A marble rolls off a tabletop 1.0 m high and hits the floor at a point 3.0 m away from the table’s edge in the horizontal

direction. (a) How long is the marble in the air? (b) What is the speed of the marble when it leaves the table’s edge? (c)
What is its speed when it hits the floor?

10. An airplane flying horizontally with a speed of 500 km/h at a height of 800 m drops a crate of supplies (see the following
figure). If the parachute fails to open, how far in front of the release point does the crate hit the ground?

12. Suppose the airplane in the preceding problem fires a projectile horizontally in its direction of motion at a speed of 300
m/s relative to the plane. (a) How far in front of the release point does the projectile hit the ground? (b) What is its speed
when it hits the ground?

13. A fastball pitcher can throw a baseball at a speed of 40 m/s (90 mi/h). (a) Assuming the pitcher can release the ball 16.7
m from home plate so the ball is moving horizontally, how long does it take the ball to reach home plate? (b) How far
does the ball drop between the pitcher’s hand and home plate?

14. A projectile is launched at an angle of 30° and lands 20 s later at the same height as it was launched. (a) What is the initial
speed of the projectile? (b) What is the maximum altitude? (c) What is the range? (d) Calculate the displacement from the
point of launch to the position on its trajectory at 15 s.

15. A basketball player shoots toward a basket 6.1 m away and 3.0 m above the floor. If the ball is released 1.8 m above the
floor at an angle of 60° above the horizontal, what must the initial speed be if it were to go through the basket?

16. At a particular instant, a hot air balloon is 100 m in the air and descending at a constant speed of 2.0 m/s. At this exact
instant, a girl throws a ball horizontally, relative to herself, with an initial speed of 20 m/s. When she lands, where will
she find the ball? Ignore air resistance.

17. A man on a motorcycle traveling at a uniform speed of 10 m/s throws an empty can straight upward relative to himself
with an initial speed of 3.0 m/s. Find the equation of the trajectory as seen by a police officer on the side of the road.
Assume the initial position of the can is the point where it is thrown. Ignore air resistance.

v ⃗ 

a⃗  v ⃗  a⃗ 
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18. An athlete can jump a distance of 8.0 m in the broad jump. What is the maximum distance the athlete can jump on the
Moon, where the gravitational acceleration is onesixth that of Earth?

19. The maximum horizontal distance a boy can throw a ball is 50 m. Assume he can throw with the same initial speed at all
angles. How high does he throw the ball when he throws it straight upward?

20. A rock is thrown off a cliff at an angle of 53° with respect to the horizontal. The cliff is 100 m high. The initial speed of
the rock is 30 m/s. (a) How high above the edge of the cliff does the rock rise? (b) How far has it moved horizontally
when it is at maximum altitude? (c) How long after the release does it hit the ground? (d) What is the range of the rock?
(e) What are the horizontal and vertical positions of the rock relative to the edge of the cliff at t = 2.0 s, t = 4.0 s, and t =
6.0 s?

21. Trying to escape his pursuers, a secret agent skis off a slope inclined at 30° below the horizontal at 60 km/h. To survive
and land on the snow 100 m below, he must clear a gorge 60 m wide. Does he make it? Ignore air resistance.

22. A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits
the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?

23. A projectile is shot at a hill, the base of which is 300 m away. The projectile is shot at 60° above the horizontal with an
initial speed of 75 m/s. The hill can be approximated by a plane sloped at 20° to the horizontal. Relative to the coordinate
system shown in the following figure, the equation of this straight line is y = (tan 20°)x − 109. Where on the hill does the
projectile land?

24. An astronaut on Mars kicks a soccer ball at an angle of 45° with an initial velocity of 15 m/s. If the acceleration of gravity
on Mars is 3.7 m/s, (a) what is the range of the soccer kick on a flat surface? (b) What would be the range of the same
kick on the Moon, where gravity is one-sixth that of Earth?

25. Mike Powell holds the record for the long jump of 8.95 m, established in 1991. If he left the ground at an angle of 15°,
what was his initial speed?

26. MIT’s robot cheetah can jump over obstacles 46 cm high and has speed of 12.0 km/h. (a) If the robot launches itself at an
angle of 60° at this speed, what is its maximum height? (b) What would the launch angle have to be to reach a height of
46 cm?

27. Mt. Asama, Japan, is an active volcano. In 2009, an eruption threw solid volcanic rocks that landed 1 km horizontally
from the crater. If the volcanic rocks were launched at an angle of 40° with respect to the horizontal and landed 900 m
below the crater, (a) what would be their initial velocity and (b) what is their time of flight?

28. Drew Brees of the New Orleans Saints can throw a football 23.0 m/s (50 mph). If he angles the throw at 10° from the
horizontal, what distance does it go if it is to be caught at the same elevation as it was thrown?

29. The Lunar Roving Vehicle used in NASA’s late Apollo missions reached an unofficial lunar land speed of 5.0 m/s by
astronaut Eugene Cernan. If the rover was moving at this speed on a flat lunar surface and hit a small bump that projected
it off the surface at an angle of 20°, how long would it be “airborne” on the Moon?

30. A soccer goal is 2.44 m high. A player kicks the ball at a distance 10 m from the goal at an angle of 25°. What is the
initial speed of the soccer ball?
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31. Olympus Mons on Mars is the largest volcano in the solar system, at a height of 25 km and with a radius of 312 km. If
you are standing on the summit, with what initial velocity would you have to fire a projectile from a cannon horizontally
to clear the volcano and land on the surface of Mars? Note that Mars has an acceleration of gravity of 3.7 m/s .

32. In 1999, Robbie Knievel was the first to jump the Grand Canyon on a motorcycle. At a narrow part of the canyon (69.0 m
wide) and traveling 35.8 m/s off the takeoff ramp, he reached the other side. What was his launch angle?

33. You throw a baseball at an initial speed of 15.0 m/s at an angle of 30° with respect to the horizontal. What would the
ball’s initial speed have to be at 30° on a planet that has twice the acceleration of gravity as Earth to achieve the same
range? Consider launch and impact on a horizontal surface.

34. Aaron Rogers throws a football at 20.0 m/s to his wide receiver, who is running straight down the field at 9.4 m/s. If
Aaron throws the football when the wide receiver is 10.0 m in front of him, what angle does Aaron have to launch the
ball at so the receiver catches it 20.0 m in front of Aaron?

35. A crossbow is aimed horizontally at a target 40 m away. The arrow hits 30 cm below the spot at which it was aimed.
What is the initial velocity of the arrow?

36. A long jumper can jump a distance of 8.0 m when he takes off at an angle of 45° with respect to the horizontal. Assuming
he can jump with the same initial speed at all angles, how much distance does he lose by taking off at 30°?

37. On planet Arcon, the maximum horizontal range of a projectile launched at 10 m/s is 20 m. What is the acceleration of
gravity on this planet?

38. A mountain biker encounters a jump on a race course that sends him into the air at 60° to the horizontal. If he lands at a
horizontal distance of 45.0 m and 20 m below his launch point, what is his initial speed?

Challenge Problems
99. World’s Longest Par 3. The tee of the world’s longest par 3 sits atop South Africa’s Hanglip Mountain at 400.0 m above

the green and can only be reached by helicopter. The horizontal distance to the green is 359.0 m. Neglect air resistance
and answer the following questions. (a) If a golfer launches a shot that is 40° with respect to the horizontal, what initial
velocity must she give the ball? (b) What is the time to reach the green?

100. When a field goal kicker kicks a football as hard as he can at 45° to the horizontal, the ball just clears the 3-m-high
crossbar of the goalposts 45.7 m away. (a) What is the maximum speed the kicker can impart to the football? (b) In
addition to clearing the crossbar, the football must be high enough in the air early during its flight to clear the reach of the
onrushing defensive lineman. If the lineman is 4.6 m away and has a vertical reach of 2.5 m, can he block the 45.7-m
field goal attempt? (c) What if the lineman is 1.0 m away?

101. A truck is traveling east at 80 km/h. At an intersection 32 km ahead, a car is traveling north at 50 km/h. (a) How long
after this moment will the vehicles be closest to each other? (b) How far apart will they be at that point?
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18.1: Solving Problems with Newton's Laws (Part 1)
Success in problem solving is necessary to understand and apply physical principles. We developed a pattern of analyzing and
setting up the solutions to problems involving Newton’s laws in Newton’s Laws of Motion; in this chapter, we continue to discuss
these strategies and apply a step-by-step process.

Problem-Solving Strategies
We follow here the basics of problem solving presented earlier in this text, but we emphasize specific strategies that are useful in
applying Newton’s laws of motion. Once you identify the physical principles involved in the problem and determine that they
include Newton’s laws of motion, you can apply these steps to find a solution. These techniques also reinforce concepts that are
useful in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, so the
following techniques should reinforce skills you have already begun to develop.

1. Identify the physical principles involved by listing the givens and the quantities to be calculated.
2. Sketch the situation, using arrows to represent all forces.
3. Determine the system of interest, and draw a free body diagram.
4. Apply Newton’s second law to solve the problem. If necessary, apply appropriate kinematic equations from the chapter on

motion along a straight line.
5. Check the solution to see whether it is reasonable.

Let’s apply this problem-solving strategy to the challenge of lifting a grand piano into a second-story apartment. Once we have
determined that Newton’s laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful
sketch of the situation. Such a sketch is shown in Figure . Then, as in Figure , we can represent all forces with
arrows. Whenever sufficient information exists, it is best to label these arrows carefully and make the length and direction of each
correspond to the represented force.

Figure : (a) A grand piano is being lifted to a second-story apartment. (b) Arrows are used to represent all forces: 
is the tension in the rope above the piano,  is the force that the piano exerts on the rope, and  is the weight of the piano.
All other forces, such as the nudge of a breeze, are assumed to be negligible. (c) Suppose we are given the piano’s mass and
asked to find the tension in the rope. We then define the system of interest as shown and draw a free-body diagram. Now 

 is no longer shown, because it is not a force acting on the system of interest; rather,  acts on the outside world. (d)
Showing only the arrows, the head-to-tail method of addition is used. It is apparent that if the piano is stationary,  = .

As with most problems, we next need to identify what needs to be determined and what is known or can be inferred from the
problem as stated, that is, make a list of knowns and unknowns. It is particularly crucial to identify the system of interest, since
Newton’s second law involves only external forces. We can then determine which forces are external and which are internal, a
necessary step to employ Newton’s second law. (See Figure .) Newton’s third law may be used to identify whether forces
are exerted between components of a system (internal) or between the system and something outside (external). As illustrated in
Newton’s Laws of Motion, the system of interest depends on the question we need to answer. Only forces are shown in free-body

 Problem-Solving Strategy: Applying Newton’s Laws of Motion
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diagrams, not acceleration or velocity. We have drawn several free-body diagrams in previous worked examples. Figure 
shows a free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Once a free-body diagram is drawn, we apply Newton’s second law. This is done in Figure  for a particular situation. In
general, once external forces are clearly identified in free-body diagrams, it should be a straightforward task to put them into
equation form and solve for the unknown, as done in all previous examples. If the problem is one-dimensional—that is, if all forces
are parallel—then the forces can be handled algebraically. If the problem is two-dimensional, then it must be broken down into a
pair of one-dimensional problems. We do this by projecting the force vectors onto a set of axes chosen for convenience. As seen in
previous examples, the choice of axes can simplify the problem. For example, when an incline is involved, a set of axes with one
axis parallel to the incline and one perpendicular to it is most convenient. It is almost always convenient to make one axis parallel
to the direction of motion, if this is known. Generally, just write Newton’s second law in components along the different directions.
Then, you have the following equations:

(If, for example, the system is accelerating horizontally, then you can then set ay = 0.) We need this information to determine
unknown forces acting on a system.

As always, we must check the solution. In some cases, it is easy to tell whether the solution is reasonable. For example, it is
reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice,
intuition develops gradually through problem solving; with experience, it becomes progressively easier to judge whether an answer
is reasonable. Another way to check a solution is to check the units. If we are solving for force and end up with units of millimeters
per second, then we have made a mistake.

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These serve
also to illustrate some further subtleties of physics and to help build problem-solving skills. We look first at problems involving
particle equilibrium, which make use of Newton’s first law, and then consider particle acceleration, which involves Newton’s
second law.

Particle Equilibrium
Recall that a particle in equilibrium is one for which the external forces are balanced. Static equilibrium involves objects at rest,
and dynamic equilibrium involves objects in motion without acceleration, but it is important to remember that these conditions are
relative. For example, an object may be at rest when viewed from our frame of reference, but the same object would appear to be in
motion when viewed by someone moving at a constant velocity. We now make use of the knowledge attained in Newton’s Laws of
Motion, regarding the different types of forces and the use of free-body diagrams, to solve additional problems in particle
equilibrium.

Consider the traffic light (mass of 15.0 kg) suspended from two wires as shown in Figure . Find the tension in each wire,
neglecting the masses of the wires.

18.1.1c

18.1.1d

∑ = m , ∑ = m .Fx ax Fy ay (18.1.1)

 Example : Different Tensions at Different Angles18.1.1

18.1.2
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Figure : A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on
the system are shown here. The free-body diagram for the traffic light is also shown. (d) The forces projected onto

vertical (y) and horizontal (x) axes. The horizontal components of the tensions must cancel, and the sum of the vertical
components of the tensions must equal the weight of the traffic light. (e) The free-body diagram shows the vertical and

horizontal forces acting on the traffic light.

Strategy

The system of interest is the traffic light, and its free-body diagram is shown in Figure . The three forces involved are
not parallel, and so they must be projected onto a coordinate system. The most convenient coordinate system has one axis
vertical and one horizontal, and the vector projections on it are shown in Figure . There are two unknowns in this
problem (T  and T ), so two equations are needed to find them. These two equations come from applying Newton’s second law
along the vertical and horizontal axes, noting that the net external force is zero along each axis because acceleration is zero.

Solution
First consider the horizontal or x-axis:

Thus, as you might expect,

This give us the following relationship:

Thus,

Note that T  and T  are not equal in this case because the angles on either side are not equal. It is reasonable that T  ends up
being greater than T  because it is exerted more vertically than T .

Now consider the force components along the vertical or y-axis:

This implies

Substituting the expressions for the vertical components gives

18.1.2

18.1.2c

18.1.2d

1 2

= − = 0.Fnetx T2x T1x (18.1.2)

= .T1x T2x (18.1.3)

cos = cos .T1 30o T2 45o (18.1.4)

= 1.225 .T2 T1 (18.1.5)

1 2 2

1 1

= + −w = 0.Fnety T1y T1x (18.1.6)

+ = w.T1y T2y (18.1.7)

sin + sin = w.T1 30o T2 45o (18.1.8)
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There are two unknowns in this equation, but substituting the expression for T  in terms of T  reduces this to one equation with
one unknown:

which yields

Solving this last equation gives the magnitude of T  to be

Finally, we find the magnitude of T  by using the relationship between them, T  = 1.225 T , found above. Thus we obtain

Significance

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on either side
are the same (as they were in the earlier example of a tightrope walker in Newton’s Laws of Motion.)

Two tugboats push on a barge at different angles (Figure ). The first tugboat exerts a force of 2.7 x 10 N in the x-
direction, and the second tugboat exerts a force of 3.6 x 10  N in the y-direction. The mass of the barge is 5.0 × 10  kg and its
acceleration is observed to be 7.5 x 10  m/s  in the direction shown. What is the drag force of the water on the barge resisting
the motion? (Note: Drag force is a frictional force exerted by fluids, such as air or water. The drag force opposes the motion of
the object. Since the barge is flat bottomed, we can assume that the drag force is in the direction opposite of motion of the
barge.)

Figure : (a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship
contains only forces acting in the plane of the water. It omits the two vertical forces—the weight of the barge and the

buoyant force of the water supporting it cancel and are not shown. Note that  is the total applied force of the
tugboats.

Strategy

The directions and magnitudes of acceleration and the applied forces are given in Figure . We define the total force of
the tugboats on the barge as  so that

The drag of the water  is in the direction opposite to the direction of motion of the boat; this force thus works against ,
as shown in the free-body diagram in Figure . The system of interest here is the barge, since the forces on it are given as
well as its acceleration. Because the applied forces are perpendicular, the x- and y-axes are in the same direction as  and .
The problem quickly becomes a one-dimensional problem along the direction of , since friction is in the direction opposite
to . Our strategy is to find the magnitude and direction of the net applied force  and then apply Newton’s second law
to solve for the drag force .

2 1

(0.500) +(1.225 )(0.707) = w = mg,T1 T1 (18.1.9)

1.366 = (15.0 kg)(9.80 m/ ).T1 s2 (18.1.10)

1

= 108 N .T1 (18.1.11)

2 2 1

= 132 N .T2 (18.1.12)

 Example : Drag Force on a Barge18.1.2
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Solution
Since F  and F  are perpendicular, we can find the magnitude and direction of  directly. First, the resultant magnitude is
given by the Pythagorean theorem:

The angle is given by

From Newton’s first law, we know this is the same direction as the acceleration. We also know that  is in the opposite
direction of , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as ,
but its magnitude is slightly less than . The problem is now one-dimensional. From the free-body diagram, we can see that

However, Newton's second law states that

Thus,

This can be solved for the magnitude of the drag force of the water F  in terms of known quantities:

Substituting known values gives

The direction of  has already been determined to be in the direction opposite to , or at an angle of 53° south of west.

Significance

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger
accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively small
for a well-designed hull at low speeds, consistent with the answer to this example, where F  is less than 1/600th of the weight
of the ship.

In Newton’s Laws of Motion, we discussed the normal force, which is a contact force that acts normal to the surface so that an
object does not have an acceleration perpendicular to the surface. The bathroom scale is an excellent example of a normal force
acting on a body. It provides a quantitative reading of how much it must push upward to support the weight of an object. But can
you predict what you would see on the dial of a bathroom scale if you stood on it during an elevator ride?

Will you see a value greater than your weight when the elevator starts up? What about when the elevator moves upward at a
constant speed? Take a guess before reading the next example.

Figure  shows a 75.0-kg man (weight of about 165 lb.) standing on a bathroom scale in an elevator. Calculate the scale
reading: (a) if the elevator accelerates upward at a rate of 1.20 m/s , and (b) if the elevator moves upward at a constant speed of
1 m/s.

x y F ⃗ 
app

= = = 4.5 × N .F ⃗ 
app +F 2

1 F 2
2

− −−−−−−
√ (2.7 × N +(3.6 × N105 )2 105 )2

− −−−−−−−−−−−−−−−−−−−−−−−−
√ 105 (18.1.14)

θ = ( ) = ( ) = .tan−1 F2

F1
tan−1 3.6 × N105

2.7 × N105
53.1o (18.1.15)
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= − .Fnet Fapp FD (18.1.16)

= ma.Fnet (18.1.17)

− = ma.Fapp FD (18.1.18)

D

= −ma.FD Fapp (18.1.19)

= (4.5 × N) −(5.0 × kg)(7.5 × m/ ) = 7.5 × N .FD 105 106 10−2 s2 104 (18.1.20)
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Figure : (a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are
approximately correct for when the elevator is accelerating upward—broken arrows represent forces too large to be

drawn to scale.  is the tension in the supporting cable,  is the weight of the person,  is the weight of the scale, 
is the weight of the elevator,  is the force of the scale on the person,  is the force of the person on the scale,  is
the force of the scale on the floor of the elevator, and  is the force of the floor upward on the scale. (b) The free-body
diagram shows only the external forces acting on the designated system of interest—the person—and is the diagram we

use for the solution of the problem.

Strategy

If the scale at rest is accurate, its reading equals , the magnitude of the force the person exerts downward on it. Figure 
 shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look

much more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn, as in Figure 
. Analysis of the free-body diagram using Newton’s laws can produce answers to both Figure  and (b) of this

example, as well as some other questions that might arise. The only forces acting on the person are his weight  and the
upward force of the scale . According to Newton’s third law,  and  are equal in magnitude and opposite in direction,
so that we need to find F  in order to find what the scale reads. We can do this, as usual, by applying Newton’s second law,

From the free-body diagram, we see that , so we have

Solving for F  gives us an equation with only one unknown:

or, because w = mg, simply

No assumptions were made about the acceleration, so this solution should be valid for a variety of accelerations in addition to
those in this situation. (Note: We are considering the case when the elevator is accelerating upward. If the elevator is
accelerating downward, Newton’s second law becomes F  − w = −ma.)

Solution
a. We have a = 1.20 m/s , so that $F_{s} = (75.0\; kg)(9.80\; m/s^{2}) + (75.0\; kg)(1.20\; m/s^{2})$yielding $F_{s} = 825\;

N \ldotp$
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b. Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight?
For any constant velocity—up, down, or stationary—acceleration is zero because  and . Thus, $F_{s} = ma
+ mg = 0 + mg$or $F_{s} = (75.0\; kg)(9.80\; m/s^{2}),$which gives $F_{s} = 735\; N \ldotp$

Significance

The scale reading in Figure  is about 185 lb. What would the scale have read if he were stationary? Since his
acceleration would be zero, the force of the scale would be equal to his weight:

Thus, the scale reading in the elevator is greater than his 735-N (165-lb.) weight. This means that the scale is pushing up on the
person with a force greater than his weight, as it must in order to accelerate him upward.

Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly
accelerating versus slowly accelerating elevators. In Figure , the scale reading is 735 N, which equals the person’s
weight. This is the case whenever the elevator has a constant velocity—moving up, moving down, or stationary.

Now calculate the scale reading when the elevator accelerates downward at a rate of 1.20 m/s .

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator
accelerates downward, a is negative, and the scale reading is less than the weight of the person. If a constant downward velocity is
reached, the scale reading again becomes equal to the person’s weight. If the elevator is in free fall and accelerating downward at g,
then the scale reading is zero and the person appears to be weightless.

Figure  shows a block of mass m  on a frictionless, horizontal surface. It is pulled by a light string that passes over a
frictionless and massless pulley. The other end of the string is connected to a block of mass m . Find the acceleration of the
blocks and the tension in the string in terms of m , m , and g.

Figure : (a) Block 1 is connected by a light string to block 2. (b) The free-body diagrams of the blocks.

Strategy

We draw a free-body diagram for each mass separately, as shown in Figure . Then we analyze each one to find the
required unknowns. The forces on block 1 are the gravitational force, the contact force of the surface, and the tension in the
string. Block 2 is subjected to the gravitational force and the string tension. Newton’s second law applies to each, so we write
two vector equations:

For block 1: 

a = Δv

Δt
Δv= 0

18.1.4a

= ma = 0 = −wFnet Fs (18.1.25)

= w = mgFs (18.1.26)

= (75.0 kg)(9.80 m/ ) = 735 N .Fs s2 (18.1.27)

18.1.4b

 Exercise 18.1.4

2

 Example : Two Attached Blocks18.1.5
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For block 2: .

Notice that  is the same for both blocks. Since the string and the pulley have negligible mass, and since there is no friction in
the pulley, the tension is the same throughout the string. We can now write component equations for each block. All forces are
either horizontal or vertical, so we can use the same horizontal/vertical coordinate system for both objects.

Solution
The component equations follow from the vector equations above. We see that block 1 has the vertical forces balanced, so we
ignore them and write an equation relating the x-components. There are no horizontal forces on block 2, so only the y-equation
is written. We obtain these results:

Block 1 Block 2

When block 1 moves to the right, block 2 travels an equal distance downward; thus, a  = −a . Writing the common
acceleration of the blocks as a = a  = −a , we now have

and

From these two equations, we can express a and T in terms of the masses m  and m , and g:

and

Significance

Notice that the tension in the string is less than the weight of the block hanging from the end of it. A common error in problems
like this is to set T = m g. You can see from the free-body diagram of block 2 that cannot be correct if the block is accelerating.

Calculate the acceleration of the system, and the tension in the string, when the masses are m  = 5.00 kg and m  = 3.00 kg.

A classic problem in physics, similar to the one we just solved, is that of the Atwood machine, which consists of a rope running
over a pulley, with two objects of different mass attached. It is particularly useful in understanding the connection between
force and motion. In Figure , m  = 2.00 kg and m  = 4.00 kg. Consider the pulley to be frictionless. (a) If m  is released,
what will its acceleration be? (b) What is the tension in the string?

+ =T ⃗  w⃗ 2 m2a⃗ 2

T ⃗ 

∑ = mFx ax (18.1.28)

=Tx m1a1x (18.1.29)

∑ = mFy ay (18.1.30)

− g =Ty m2 m2a2y (18.1.31)

1x 2y

1x 2y

T = am1 (18.1.32)

T − g = − a.m2 m2 (18.1.33)

1 2

a = g
m2

+m1 m2
(18.1.34)

T = g.
m1m2

+m1 m2
(18.1.35)

2

 Check Your Understanding 18.1.6

1 2

 Example : Atwood Machine18.1.7
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Figure : An Atwood machine and free-body diagrams for each of the two blocks.

Strategy

We draw a free-body diagram for each mass separately, as shown in the figure. Then we analyze each diagram to find the
required unknowns. This may involve the solution of simultaneous equations. It is also important to note the similarity with the
previous example. As block 2 accelerates with acceleration a  in the downward direction, block 1 accelerates upward with
acceleration a . Thus, a = a  = −a .

Solution
a. We have $For\; m_{1}, \sum F_{y} = T − m_{1}g = m_{1}a \ldotp \quad For\; m_{2}, \sum F_{y} = T − m_{2}g =

−m_{2}a \ldotp$(The negative sign in front of m  a indicates that m  accelerates downward; both blocks accelerate at the
same rate, but in opposite directions.) Solve the two equations simultaneously (subtract them) and the result is $(m_{2} -
m_{1})g = (m_{1} + m_{2})a \ldotp$Solving for a: $a = \frac{m_{2} - m_{1}}{m_{1} + m_{2}}g = \frac{4\; kg - 2\; kg}
{4\; kg + 2\; kg} (9.8\; m/s^{2}) = 3.27\; m/s^{2} \ldotp$

b. Observing the first block, we see that $T − m_{1}g = m_{1}a$ $T = m_{1}(g + a) = (2\; kg)(9.8\; m/s^{2} + 3.27\;
m/s^{2}) = 26.1\; N \ldotp$

Significance

The result for the acceleration given in the solution can be interpreted as the ratio of the unbalanced force on the system, (m  −
m )g, to the total mass of the system, m  + m . We can also use the Atwood machine to measure local gravitational field
strength.

Determine a general formula in terms of m , m  and g for calculating the tension in the string for the Atwood machine shown
above.
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18.2: Solving Problems with Newton's Laws (Part 2)

Newton’s Laws of Motion and Kinematics
Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical
principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to
solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier
chapters.

When approaching problems that involve various types of forces, acceleration, velocity, and/or position, listing the givens and the
quantities to be calculated will allow you to identify the principles involved. Then, you can refer to the chapters that deal with a
particular topic and solve the problem using strategies outlined in the text. The following worked example illustrates how the
problem-solving strategy given earlier in this chapter, as well as strategies presented in other chapters, is applied to an integrated
concept problem.

A soccer player starts at rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What is her average
acceleration? (b) What average force does the ground exert forward on the runner so that she achieves this acceleration? The
player’s mass is 70.0 kg, and air resistance is negligible.

Strategy

To find the answers to this problem, we use the problem-solving strategy given earlier in this chapter. The solutions to each
part of the example illustrate how to apply specific problem-solving steps. In this case, we do not need to use all of the steps.
We simply identify the physical principles, and thus the knowns and unknowns; apply Newton’s second law; and check to see
whether the answer is reasonable.

Solution
a. We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is v = 8.00 m/s . We

are given the elapsed time, so t = 2.50 s. The unknown is acceleration, which can be found from its definition: $a =
\frac{\Delta v}{\Delta t} \ldotp$Substituting the known values yields $a = \frac{8.00\; m/s}{2.50\; s} = 3.20\; m/s^{2}
\ldotp$

b. Here we are asked to find the average force the ground exerts on the runner to produce this acceleration. (Remember that
we are dealing with the force or forces acting on the object of interest.) This is the reaction force to that exerted by the
player backward against the ground, by Newton’s third law. Neglecting air resistance, this would be equal in magnitude to
the net external force on the player, since this force causes her acceleration. Since we now know the player’s acceleration
and are given her mass, we can use Newton’s second law to find the force exerted. That is, $F_{net} = ma
\ldotp$Substituting the known values of m and a gives $F_{net} = (70.0\; kg)(3.20\; m/s^{2}) = 224\; N \ldotp$

This is a reasonable result: The acceleration is attainable for an athlete in good condition. The force is about 50 pounds, a
reasonable average force.

Significance

This example illustrates how to apply problem-solving strategies to situations that include topics from different chapters. The
first step is to identify the physical principles, the knowns, and the unknowns involved in the problem. The second step is to
solve for the unknown, in this case using Newton’s second law. Finally, we check our answer to ensure it is reasonable. These
techniques for integrated concept problems will be useful in applications of physics outside of a physics course, such as in your
profession, in other science disciplines, and in everyday life.

The soccer player stops after completing the play described above, but now notices that the ball is in position to be stolen. If
she now experiences a force of 126 N to attempt to steal the ball, which is 2.00 m away from her, how long will it take her to
get to the ball?

 Example : What Force Must a Soccer Player Exert to Reach Top Speed?18.2.1
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A 1.50-kg model helicopter has a velocity of 5.00  m/s at t = 0. It is accelerated at a constant rate for two seconds (2.00 s)
after which it has a velocity of (6.00  + 12.00 ) m/s. What is the magnitude of the resultant force acting on the helicopter
during this time interval?

Strategy

We can easily set up a coordinate system in which the x-axis (  direction) is horizontal, and the y-axis (  direction) is vertical.
We know that t = 2.00s and v = (6.00  + 12.00  m/s) − (5.00  m/s). From this, we can calculate the acceleration by the
definition; we can then apply Newton’s second law.

Solution
We have

The magnitude of the force is now easily found:

Significance

The original problem was stated in terms of  −  vector components, so we used vector methods. Compare this example with
the previous example.

Find the direction of the resultant for the 1.50-kg model helicopter.

Figure (a) shows a baggage tractor pulling luggage carts from an airplane. The tractor has mass 650.0 kg, while cart A
has mass 250.0 kg and cart B has mass 150.0 kg. The driving force acting for a brief period of time accelerates the system from
rest and acts for 3.00 s. (a) If this driving force is given by F = (820.0t) N, find the speed after 3.00 seconds. (b) What is the
horizontal force acting on the connecting cable between the tractor and cart A at this instant?

Figure : (a) A free-body diagram is shown, which indicates all the external forces on the system consisting of the tractor
and baggage carts for carrying airline luggage. (b) A free-body diagram of the tractor only is shown isolated in order to
calculate the tension in the cable to the carts.

Strategy

A free-body diagram shows the driving force of the tractor, which gives the system its acceleration. We only need to consider
motion in the horizontal direction. The vertical forces balance each other and it is not necessary to consider them. For part b,
we make use of a free-body diagram of the tractor alone to determine the force between it and cart A. This exposes the
coupling force , which is our objective.

Solution

 Example : What Force Acts on a Model Helicopter?18.2.3

ĵ

î ĵ

î ĵ

Δ Δ î ĵ ĵ

a = = = 3.00 +3.50 m/ $$∑ = m
Δv

Δt

(6.00 +12.00 m/s) −(5.00 m/s)î ĵ ĵ

2.00 s
î ĵ s2 F ⃗  a⃗ 

= (1.50 kg)(3.00 +3.50 m/ ) = 4.50 +5.25 N .î ĵ s2 î ĵ

(18.2.1)

F = = 6.91 N .(4.50 N +(5.25 N)2 )2
− −−−−−−−−−−−−−−−−

√ (18.2.2)

î ĵ
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a. $\sum F_{x} = m_{system} a_{x}\; and\; \sum F_{x} = 820.0t,$so $820.0t = (650.0 + 250.0 + 150.0)a$ $a = 0.7809t
\ldotp$Since acceleration is a function of time, we can determine the velocity of the tractor by using a =  with the initial
condition that v  = 0 at t = 0. We integrate from t = 0 to t = 3: $

$
b. Refer to the free-body diagram in Figure (b) $

$

Significance

Since the force varies with time, we must use calculus to solve this problem. Notice how the total mass of the system was
important in solving Figure (a), whereas only the mass of the truck (since it supplied the force) was of use in Figure 

(b).

Recall that v =  and a = . If acceleration is a function of time, we can use the calculus forms developed in 1 Dimension
Kinematics, as shown in this example. However, sometimes acceleration is a function of displacement. In this case, we can derive
an important result from these calculus relations. Solving for dt in each, we have dt =  and dt = . Now, equating these
expressions, we have  = . We can rearrange this to obtain a ds = v dv.

A 10.0-kg mortar shell is fired vertically upward from the ground, with an initial velocity of 50.0 m/s (see Figure ).
Determine the maximum height it will travel if atmospheric resistance is measured as F  = (0.0100 v ) N, where v is the speed
at any instant.

Figure : (a) The mortar fires a shell straight up; we consider the friction force provided by the air. (b) A free-body
diagram is shown which indicates all the forces on the mortar shell.

Strategy

The known force on the mortar shell can be related to its acceleration using the equations of motion. Kinematics can then be
used to relate the mortar shell’s acceleration to its position.

Solution

dv

dt

0

dv

dv∫
3

0

v

= adt

= adt = 0.7809tdt∫
3.00

0

∫
3.00

0

= 0.3905 = 3.51 m/s.t
2]

3.00

0

18.2.7

∑Fx

820.0t−T

(820.0)(3.00) −T

T

= mtractorax

= (0.7805)tmtractor

= (650.0)(0.7805)(3.00)

= 938 N .
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18.2.7

ds

dt

dv

dt

ds
v

dv
a

ds
v

dv
a
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Initially, y  = 0 and v  = 50.0 m/s. At the maximum height y = h, v = 0. The free-body diagram shows F  to act downward,
because it slows the upward motion of the mortar shell. Thus, we can write

The acceleration depends on v and is therefore variable. Since a = f(v), we can relate a to v using the rearrangement described
above,

We replace ds with dy because we are dealing with the vertical direction,

We now separate the variables (v’s and dv’s on one side; dy on the other):

Thus, h = 114 m.

Significance

Notice the need to apply calculus since the force is not constant, which also means that acceleration is not constant. To make
matters worse, the force depends on v (not t), and so we must use the trick explained prior to the example. The answer for the
height indicates a lower elevation if there were air resistance.

If atmospheric resistance is neglected, find the maximum height for the mortar shell. Is calculus required for this solution?

Explore the forces at work in this simulation when you try to push a filing cabinet. Create an applied force and see the resulting
frictional force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View
a free-body diagram of all the forces (including gravitational and normal forces).

This page titled 18.2: Solving Problems with Newton's Laws (Part 2) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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18.3: Examples

A bartender slides a bottle down his bar to a customer. Unfortunately, he pushes it too hard and the bottle flies off the end of
the bar!

1. The force of friction between the bar and the bottle is 0.150 N, and the bottle has a mass of 0.520 kg. What is the
acceleration of the bottle as it travels down the bar?

2. If it started with a speed of 2.97 m/s, what is the speed of the bottle as it leaves the bar, 2.80 m away from where the
bartender pushed it?

3. Black Hat from the webcomic XKCD is standing nearby, a distance 1.25 m from the end of the bar (which is 1.15 m tall).
Does the bottle hit him after it slides off the end of the bar?

Consider two blocks which are in contact with each other on a horizontal frictionless surface. The masses of the blocks are 5
kg and 10 kg. The 5 kg block is being pushed with an unknown force , which then pushes on the 10 kg block, making them
both accelerate to the right at 2.00 m/s .

1. How big is the force pushing on the 10 kg block from the 5 kg block?
2. What is the magnitude of the pushing force ?

Consider three blocks which are in contact with each other on a horizontal frictionless surface. From left to right, the masses of
the blocks are 5 kg, 10 kg, and 25 kg. The leftmost block is being pushed to the right with an unknown force , and the
blocks are accelerating to the right at 2.00 m/s .

1. What is the magnitude and direction of the forces the blocks are exerting on each other?
2. What is the magnitude of the pushing force ?

A 40.0 kg crate is sitting on top of a 60.0 kg crate on the floor of an elevator. The elevator floor is exerting an upwards force of
1050 N to the 60.0 kg crate.

1. Determine the magnitude and direction of the acceleration of the crates in the elevator.
2. Determine the magnitude and direction of the contact force that the 40.0 kg crate exerts on the 60.0 kg crate.
3. Determine the magnitude and direction of the contact force that the 60.0 kg crate exerts on the 40.0 kg crate.

(Short version) Suppose you drop a 5-kg object on a spring scale from a height of 1 m. If the spring constant is  = 20, 000
N/m, what will the scale read?

 Whiteboard Problem : A Projectile Pint18.3.1

 Whiteboard Problem : Blocks in a Row18.3.2
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(Long version) OK, let’s break that up into parts. Suppose that a spring scale is just a platform (of negligible mass) sitting on
top of a spring. If you put an object of mass  on top of it, the spring compresses so that (in equilibrium) it exerts an upwards
force that matches that of gravity.

a. If the spring constant is  and the object’s mass is  and the whole system is at rest, what distance is the spring
compressed?

b. If you drop the object from a height , what is the (instantaneous) maximum compression of the spring as the object is
brought to a momentary rest? (This part is an energy problem! Assume that  is much greater than the actual compression
of the spring, so you can neglect that when calculating the change in gravitational potential energy.)

c. What mass would give you that same compression, if you were to place it gently on the scale, and wait until all the
oscillations died down?

d. OK, now answer the question at the top!

Solution

(a) The forces acting on the object sitting at rest on the platform are the force of gravity, , and the normal force
due to the platform, . This last force is equal, in magnitude, to the force exerted on the platform by the spring (it has to be,
because the platform itself is being pushed down by a force , and this has to be balanced by the spring force).
This means we can, for practical purposes, pretend the platform is not there and just set the upwards force on the object equal
to the spring force, . All of the forces are in the same direction (we'll call this , so we can simply look at
the forces along this direct. Newton’s second law gives

For a compressed spring,  is negative, and we can just let  be the distance the spring is compressed. Then
Equation ( ) gives

so

when you just set an object on the scale and let it come to rest.

(b) This part, as the problem says, is a conservation of energy situation. The system formed by the spring, the object and the
earth starts out with some gravitational potential energy, and ends up, with the object momentarily at rest, with only spring
potential energy:

where I have used the subscript “max” on the compression distance to distinguish it from what I calculated in part (a) (this kind
of makes sense also because the scale is going to swing up and down, and we want only the maximum compression, which will
give us the largest reading). The problem said to ignore the compression when calculating the change in , meaning that, if
we measure height from the top of the scale,  and . Then, solving Equation ( ) for , we get

(c) For this part, let us rewrite Equation ( ) as , where  is the “equivalent” mass that you would have
to place on the scale (gently) to get the same reading as in part (b). Using then Equation ( ),

(d) Now we can substitute the values given:  = 5 kg,  = 1 m,  = 20, 000 N/m. The result is  = 143 kg.

(Note: if you found the purely algebraic treatment above confusing, try substituting numerical values in Eqs. ( ) and (
). The first equation tells you that if you just place the 5-kg mass on the scale it will compress a distance  = 2.45 mm.
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The second tells you that if you drop it it will compress the spring a distance  = 70 mm, about 28.6 times more, which
corresponds to an “equivalent mass” 28.6 times greater than 5 kg, which is to say, 143 kg. Note also that 143 kg is an
equivalent weight of 309 pounds, so if you want to try this on a bathroom scale I’d advise you to use smaller weights and drop
them from a much smaller height!)

a. A 1400-kg car, starting from rest, accelerates to a speed of 30 mph in 10 s. What is the force on the car (assumed constant)
over this period of time?

b. Where does this force comes from? That is, what is the (external) object that exerts this force on the car, and what is the
nature of this force?

c. Draw a free-body diagram for the car. Indicate the direction of motion, and the direction of the acceleration.
d. Now assume that the driver, traveling at 30 mph, sees a red light ahead and pushes on the brake pedal. Assume that the

coefficient of static friction between the tires and the road is  = 0.7, and that the wheels don’t “lock”: that is to say, they
continue rolling without slipping on the road as they slow down. What is the car’s minimum stopping distance?

e. Draw a free-body diagram of the car for the situation in (d). Again indicate the direction of motion, and the direction of the
acceleration.

f. Now assume that the driver again wants to stop as in part (c), but he presses on the brakes too hard, so the wheels lock, and,
moreover, the road is wet, and the coefficient of kinetic friction is only  = 0.2. What is the distance the car travels now
before coming to a stop?

Solution (NEEDS TO BE REWRITTEN IN COLUMN VECTOR FORM)

(a) First, let us convert 30 mph to meters per second. There are 1, 609 meters to a mile, and 3, 600 seconds to an hour, so 30
mph = 10 × 1609/3600 m/s = 13.4 m/s.

Next, for constant acceleration, we can use Equation (2.2.4). We will call the direction of motion the  direction. 
. Solving for ,

Since , we have

(b) The force must be provided by the road, which is the only thing external to the car that is in contact with it. The force is, in
fact, the force of static friction between the car and the tires. As explained in the chapter, this is a reaction force (the tires push
on the road, and the road pushes back). It is static friction because the tires are not slipping relative to the road. In fact, we will
see in Chapter 9 that the point of the tire in contact with the road has an instantaneous velocity of zero (see Figure 9.6.1).

(c) This is the free-body diagram. Note the force of static friction pointing forward, in the direction of the acceleration. The
forces have been drawn to scale.
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(d) This is the opposite of part (a): the driver now relies on the force of static friction to slow down the car. The shortest
stopping distance will correspond to the largest (in magnitude) acceleration, as per our old friend, Equation (2.2.10):

In turn, the largest acceleration will correspond to the largest force. As explained in the chapter, the static friction force cannot
exceed  (Equation (6.3.8)). So, we have

since, in this case, we expect the normal force to be equal to the force of gravity. Then

We can substitute this into Equation ( ) with a negative sign, since the acceleration acts in the opposite direction to the
motion (and we are implicitly taking the direction of motion to be positive). Also note that the final velocity we want is zero, 

 = 0. We get

From here, we can solve for :

(e) Here is the free-body diagram. The interesting feature is that the force of static friction has reversed direction relative to
parts (a)–(c). It is also much larger than before. (The forces are again to scale.)

(f) The math for this part is basically identical to that in part (d). The difference, physically, is that now you are dealing with
the force of kinetic (or “sliding”) friction, and that is always given by  (this is not an upper limit, it’s just what 
is). So we have , and, just as before (but with  replacing ),

This is a huge distance, close to half a football field! If these numbers are accurate, you can see that locking your brakes in the
rain can have some pretty bad consequences.

This page titled 18.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-Banacloche
(University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

6.6: Examples by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.

− = 2aΔx.v2
f v2

i (18.3.6)

μsF
n

= = mgF s
x,max μsF

n μs

| | = = = g.amax
F s

max

m

mgμs

m
μs

18.3.6

vf

− = 2aΔx = −2 gΔx.v2
i μs

Δx

Δx = = = 13.1 m.
v2
i

2 gμs

(13.4 m/s)2

2 ×0.7 ×9.81 m/s2

=F k μkF n F k

a = − /m = −m gF k uk μk μs

Δx = = = 45.8 m.
v2
i

2 gμk

(13.4 m/s)2

2 ×0.2 ×9.81 m/s2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85848?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_I_-_Classical_Mechanics_(Gea-Banacloche)/02%3A_Acceleration/2.02%3A_Acceleration#Equation+2.2.10
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_I_-_Classical_Mechanics_(Gea-Banacloche)/06%3A_Interactions_II_-_Forces/6.03%3A_Forces_Not_Derived_From_a_Potential_Energy#Equation+6.3.8
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/18%3A_N4)_Motion_from_Forces/18.03%3A_Examples
https://creativecommons.org/licenses/by-sa/4.0
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://libraries.uark.edu/
https://scholarworks.uark.edu/oer/3
https://phys.libretexts.org/@go/page/22237
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://creativecommons.org/licenses/by-sa/4.0/
https://scholarworks.uark.edu/oer/3


18.E.1 https://phys.libretexts.org/@go/page/86187

18.E: Newton's Laws of Motion (Exercises)

Conceptual Questions
1. A table is placed on a rug. Then a book is placed on the table. What does the floor exert a normal force on?
2. A particle is moving to the right. (a) Can the force on it to be acting to the left? If yes, what would happen? (b) Can that

force be acting downward? If yes, why?
3. In completing the solution for a problem involving forces, what do we do after constructing the free-body diagram? That

is, what do we apply?
4. If a book is located on a table, how many forces should be shown in a free-body diagram of the book? Describe them.
5. If the book in the previous question is in free fall, how many forces should be shown in a free-body diagram of the book?

Describe them.

Problems
7.  
8. A team of nine members on a tall building tug on a string attached to a large boulder on an icy surface. The boulder has a

mass of 200 kg and is tugged with a force of 2350 N. (a) What is magnitude of the acceleration? (b) What force would be
required to produce a constant velocity?

9. What force does a trampoline have to apply to Jennifer, a 45.0-kg gymnast, to accelerate her straight up at 7.50 m/s ? The
answer is independent of the velocity of the gymnast—she can be moving up or down or can be instantly stationary.

10. (a) Calculate the tension in a vertical strand of spider web if a spider of mass 2.00 x 10  kg hangs motionless on it. (b)
Calculate the tension in a horizontal strand of spider web if the same spider sits motionless in the middle of it much like
the tightrope walker in Figure 5.26. The strand sags at an angle of 12° below the horizontal. Compare this with the
tension in the vertical strand (find their ratio).

11. Suppose Kevin, a 60.0-kg gymnast, climbs a rope. (a) What is the tension in the rope if he climbs at a constant speed? (b)
What is the tension in the rope if he accelerates upward at a rate of 1.50 m/s ?

12. Show that, as explained in the text, a force F  exerted on a flexible medium at its center and perpendicular to its length
(such as on the tightrope wire in Figure 5.26) gives rise to a tension of magnitude .

13. Consider Figure 5.28. The driver attempts to get the car out of the mud by exerting a perpendicular force of 610.0 N, and
the distance she pushes in the middle of the rope is 1.00 m while she stands 6.00 m away from the car on the left and 6.00
m away from the tree on the right. What is the tension T in the rope, and how do you find the answer?

14. A bird has a mass of 26 g and perches in the middle of a stretched telephone line. (a) Show that the tension in the line can
be calculated using the equation . Determine the tension when (b)  = 5° and (c)  = 0.5°. Assume that each
half of the line is straight.

64. One end of a 30-m rope is tied to a tree; the other end is tied to a car stuck in the mud. The motorist pulls sideways on the
midpoint of the rope, displacing it a distance of 2 m. If he exerts a force of 80 N under these conditions, determine the
force exerted on the car.

65. Consider the baby being weighed in the following figure. (a) What is the mass of the infant and basket if a scale reading
of 55 N is observed? (b) What is tension T  in the cord attaching the baby to the scale? (c) What is tension T  in the cord
attaching the scale to the ceiling, if the scale has a mass of 0.500 kg? (d) Sketch the situation, indicating the system of
interest used to solve each part. The masses of the cords are negligible.
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66. What force must be applied to a 100.0-kg crate on a frictionless plane inclined at 30° to cause an acceleration of 2.0 m/s
up the plane?

67. A 2.0-kg block is on a perfectly smooth ramp that makes an angle of 30° with the horizontal. (a) What is the block’s
acceleration down the ramp and the force of the ramp on the block? (b) What force applied upward along and parallel to
the ramp would allow the block to move with constant velocity?

68. A runner pushes against the track, as shown. (a) Provide a free-body diagram showing all the forces on the runner. (Hint:
Place all forces at the center of his body, and include his weight.) (b) Give a revised diagram showing the xy-component
form.

71. The traffic light hangs from the cables as shown. Draw a free-body diagram on a coordinate plane for this situation.
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72. Two forces of 25 and 45 N act on an object. Their directions differ by 70°. The resulting acceleration has magnitude of

10.0 m/s . What is the mass of the body?
73. A force of 1600 N acts parallel to a ramp to push a 300-kg piano into a moving van. The ramp is inclined at 20°. (a) What

is the acceleration of the piano up the ramp? (b) What is the velocity of the piano when it reaches the top if the ramp is
4.0 m long and the piano starts from rest?

74. Draw a free-body diagram of a diver who has entered the water, moved downward, and is acted on by an upward force
due to the water which balances the weight (that is, the diver is suspended).

75. For a swimmer who has just jumped off a diving board, assume air resistance is negligible. The swimmer has a mass of
80.0 kg and jumps off a board 10.0 m above the water. Three seconds after entering the water, her downward motion is
stopped. What average upward force did the water exert on her?

76. (a) Find an equation to determine the magnitude of the net force required to stop a car of mass m, given that the initial
speed of the car is v  and the stopping distance is x. (b) Find the magnitude of the net force if the mass of the car is 1050
kg, the initial speed is 40.0 km/h, and the stopping distance is 25.0 m.

77. A sailboat has a mass of 1.50 x 10  kg and is acted on by a force of 2.00 x 10  N toward the east, while the wind acts
behind the sails with a force of 3.00 x 10  N in a direction 45° north of east. Find the magnitude and direction of the
resulting acceleration.

78. Find the acceleration of the body of mass 10.0 kg shown below.

80. A body of mass 2.0 kg is moving along the x-axis with a speed of 3.0 m/s at the instant represented below. (a) What is the
acceleration of the body? (b) What is the body’s velocity 10.0 s later? (c) What is its displacement after 10.0 s?

81. Force  has twice the magnitude of force . Find the direction in which the particle accelerates in this figure.
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82. Shown below is a body of mass 1.0 kg under the influence of the forces , , and m . If the body accelerates to the
left at 20 m/s , what are  and ?

83. A force acts on a car of mass m so that the speed v of the car increases with position x as v = kx , where k is constant and
all quantities are in SI units. Find the force acting on the car as a function of position.

84. A 7.0-N force parallel to an incline is applied to a 1.0-kg crate. The ramp is tilted at 20° and is frictionless. (a) What is the
acceleration of the crate? (b) If all other conditions are the same but the ramp has a friction force of 1.9 N, what is the
acceleration?

85. Two boxes, A and B, are at rest. Box A is on level ground, while box B rests on an inclined plane tilted at angle  with
the horizontal. (a) Write expressions for the normal force acting on each block. (b) Compare the two forces; that is, tell
which one is larger or whether they are equal in magnitude. (c) If the angle of incline is 10°, which force is greater?

86. A mass of 250.0 g is suspended from a spring hanging vertically. The spring stretches 6.00 cm. How much will the spring
stretch if the suspended mass is 530.0 g?

87. As shown below, two identical springs, each with the spring constant 20 N/m, support a 15.0-N weight. (a) What is the
tension in spring A? (b) What is the amount of stretch of spring A from the rest position?

88. Shown below is a 30.0-kg block resting on a frictionless ramp inclined at 60° to the horizontal. The block is held by a
spring that is stretched 5.0 cm. What is the force constant of the spring?
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89. In building a house, carpenters use nails from a large box. The box is suspended from a spring twice during the day to
measure the usage of nails. At the beginning of the day, the spring stretches 50 cm. At the end of the day, the spring
stretches 30 cm. What fraction or percentage of the nails have been used?

90. A force is applied to a block to move it up a 30° incline. The incline is frictionless. If F = 65.0 N and M = 5.00 kg, what is
the magnitude of the acceleration of the block?

91. Two forces are applied to a 5.0-kg object, and it accelerates at a rate of 2.0 m/s  in the positive y-direction. If one of the
forces acts in the positive x-direction with magnitude 12.0 N, find the magnitude of the other force.

92. The block on the right shown below has more mass than the block on the left (m  > m ). Draw free-body diagrams for
each block.

Challenge Problems
93. If two tugboats pull on a disabled vessel, as shown here in an overhead view, the disabled vessel will be pulled along the

direction indicated by the result of the exerted forces. (a) Draw a free-body diagram for the vessel. Assume no friction or
drag forces affect the vessel. (b) Did you include all forces in the overhead view in your free-body diagram? Why or why
not?

94. A 10.0-kg object is initially moving east at 15.0 m/s. Then a force acts on it for 2.00 s, after which it moves northwest,
also at 15.0 m/s. What are the magnitude and direction of the average force that acted on the object over the 2.00-s
interval?

95. On June 25, 1983, shot-putter Udo Beyer of East Germany threw the 7.26-kg shot 22.22 m, which at that time was a
world record. (a) If the shot was released at a height of 2.20 m with a projection angle of 45.0°, what was its initial
velocity? (b) If while in Beyer’s hand the shot was accelerated uniformly over a distance of 1.20 m, what was the net
force on it?

96. A body of mass m moves in a horizontal direction such that at time t its position is given by x(t) = at  + bt  + ct, where a,
b, and c are constants. (a) What is the acceleration of the body? (b) What is the time-dependent force acting on the body?

97. A body of mass m has initial velocity v  in the positive x-direction. It is acted on by a constant force F for time t until the
velocity becomes zero; the force continues to act on the body until its velocity becomes −v  in the same amount of time.
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Write an expression for the total distance the body travels in terms of the variables indicated.
98. The velocities of a 3.0-kg object at t = 6.0 s and t = 8.0 s are (3.0  − 6.0  + 4.0 ) m/s and (−2.0  + 4.0 ) m/s,

respectively. If the object is moving at constant acceleration, what is the force acting on it?
99. A 120-kg astronaut is riding in a rocket sled that is sliding along an inclined plane. The sled has a horizontal component

of acceleration of 5.0 m/s  and a downward component of 3.8 m/s . Calculate the magnitude of the force on the rider by
the sled. (Hint: Remember that gravitational acceleration must be considered.)

100. Two forces are acting on a 5.0-kg object that moves with acceleration 2.0 m/s  in the positive y-direction. If one of the
forces acts in the positive x-direction and has magnitude of 12 N, what is the magnitude of the other force?

101. Suppose that you are viewing a soccer game from a helicopter above the playing field. Two soccer players simultaneously
kick a stationary soccer ball on the flat field; the soccer ball has mass 0.420 kg. The first player kicks with force 162 N at
9.0° north of west. At the same instant, the second player kicks with force 215 N at 15° east of south. Find the
acceleration of the ball in  and  form.

102. A 10.0-kg mass hangs from a spring that has the spring constant 535 N/m. Find the position of the end of the spring away
from its rest position. (Use g = 9.80 m/s .)

103. A 0.0502-kg pair of fuzzy dice is attached to the rearview mirror of a car by a short string. The car accelerates at constant
rate, and the dice hang at an angle of 3.20° from the vertical because of the car’s acceleration. What is the magnitude of
the acceleration of the car?

104. In a particle accelerator, a proton has mass 1.67 x 10  kg and an initial speed of 2.00 x 10  m/s. It moves in a straight
line, and its speed increases to 9.00 x 10  m/s in a distance of 10.0 cm. Assume that the acceleration is constant. Find the
magnitude of the force exerted on the proton.

106. A drone is being directed across a frictionless ice-covered lake. The mass of the drone is 1.50 kg, and its velocity is 3.00 
 m/s. After 10.0 s, the velocity is 9.00  + 4.00  m/s. If a constant force in the horizontal direction is causing this

change in motion, find (a) the components of the force and (b) the magnitude of the force.
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19.1: Friction (Part 1)

Describe the general characteristics of friction
List the various types of friction
Calculate the magnitude of static and kinetic friction, and use these in problems involving Newton’s laws of motion

When a body is in motion, it has resistance because the body interacts with its surroundings. This resistance is a force of friction.
Friction opposes relative motion between systems in contact but also allows us to move, a concept that becomes obvious if you try
to walk on ice. Friction is a common yet complex force, and its behavior still not completely understood. Still, it is possible to
understand the circumstances in which it behaves.

Static and Kinetic Friction
The basic definition of friction is relatively simple to state.

Friction is a force that opposes relative motion between systems in contact.

There are several forms of friction. One of the simpler characteristics of sliding friction is that it is parallel to the contact surfaces
between systems and is always in a direction that opposes motion or attempted motion of the systems relative to each other. If two
systems are in contact and moving relative to one another, then the friction between them is called kinetic friction. For example,
friction slows a hockey puck sliding on ice. When objects are stationary, static friction can act between them; the static friction is
usually greater than the kinetic friction between two objects.

If two systems are in contact and stationary relative to one another, then the friction between them is called static friction. If
two systems are in contact and moving relative to one another, then the friction between them is called kinetic friction.

Imagine, for example, trying to slide a heavy crate across a concrete floor—you might push very hard on the crate and not move it
at all. This means that the static friction responds to what you do—it increases to be equal to and in the opposite direction of your
push. If you finally push hard enough, the crate seems to slip suddenly and starts to move. Now static friction gives way to kinetic
friction. Once in motion, it is easier to keep it in motion than it was to get it started, indicating that the kinetic frictional force is less
than the static frictional force. If you add mass to the crate, say by placing a box on top of it, you need to push even harder to get it
started and also to keep it moving. Furthermore, if you oiled the concrete you would find it easier to get the crate started and keep it
going (as you might expect).

Figure  is a crude pictorial representation of how friction occurs at the interface between two objects. Close-up inspection of
these surfaces shows them to be rough. Thus, when you push to get an object moving (in this case, a crate), you must raise the
object until it can skip along with just the tips of the surface hitting, breaking off the points, or both. A considerable force can be
resisted by friction with no apparent motion. The harder the surfaces are pushed together (such as if another box is placed on the
crate), the more force is needed to move them. Part of the friction is due to adhesive forces between the surface molecules of the
two objects, which explains the dependence of friction on the nature of the substances. For example, rubber-soled shoes slip less
than those with leather soles. Adhesion varies with substances in contact and is a complicated aspect of surface physics. Once an
object is moving, there are fewer points of contact (fewer molecules adhering), so less force is required to keep the object moving.
At small but nonzero speeds, friction is nearly independent of speed.
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Figure : Frictional forces, such as , always oppose motion or attempted motion between objects in contact. Friction arises
in part because of the roughness of the surfaces in contact, as seen in the expanded view. For the object to move, it must rise to
where the peaks of the top surface can skip along the bottom surface. Thus, a force is required just to set the object in motion. Some
of the peaks will be broken off, also requiring a force to maintain motion. Much of the friction is actually due to attractive forces
between molecules making up the two objects, so that even perfectly smooth surfaces are not friction-free. (In fact, perfectly
smooth, clean surfaces of similar materials would adhere, forming a bond called a “cold weld.”)

The magnitude of the frictional force has two forms: one for static situations (static friction), the other for situations involving
motion (kinetic friction). What follows is an approximate empirical (experimentally determined) model only. These equations for
static and kinetic friction are not vector equations.

The magnitude of static friction f  is

where  is the coefficient of static friction and N is the magnitude of the normal force.

The symbol ≤ means less than or equal to, implying that static friction can have a maximum value of N. Static friction is a
responsive force that increases to be equal and opposite to whatever force is exerted, up to its maximum limit. Once the applied
force exceeds f  (max), the object moves. Thus,

The magnitude of kinetic friction f  is given by

where  is the coefficient of kinetic friction.

Unlike the static friction, kinetic friction only ever takes on a single value, the coefficient of kinetic friction times the normal force.
It is worth noting that since these laws are experimentally determined, they are only approximate instead of universally true laws of
the Universe (like Newton's laws or Universal Gravity). For more information on this, the Wikipedia article on friction gives some
good information.The transition from static friction to kinetic friction is illustrated in Figure 

Figure : (a) The force of friction  between the block and the rough surface opposes the direction of the applied force .
The magnitude of the static friction balances that of the applied force. This is shown in the left side of the graph in (c). (b) At some
point, the magnitude of the applied force is greater than the force of kinetic friction, and the block moves to the right. This is shown
in the right side of the graph. (c) The graph of the frictional force versus the applied force; note that fs (max) > f . This means that 

 > 
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As you can see in Table 6.1, the coefficients of kinetic friction are less than their static counterparts. The approximate values of 
are stated to only one or two digits to indicate the approximate description of friction given by the preceding two equations.

Table 6.1 - Approximate Coefficients of Static and Kinetic Friction

System Static Friction Kinetic Friction 

Rubber on dry concrete 1.0 0.7

Rubber on wet concrete 0.5-0.7 0.3-0.5

Wood on wood 0.5 0.3

Waxed wood on wet snow 0.14 0.1

Metal on wood 0.5 0.3

Steel on steel (dry) 0.6 0.3

Steel on steel (oiled) 0.05 0.03

Teflon on steel 0.04 0.04

Bone lubricated by synovial fluid 0.016 0.015

Shoes on wood 0.9 0.7

Shoes on ice 0.1 0.05

Ice on ice 0.1 0.03

Steel on ice 0.4 0.02

Equation  and Equation  include the dependence of friction on materials and the normal force. The direction of friction
is always opposite that of motion, parallel to the surface between objects, and perpendicular to the normal force. For example, if the
crate you try to push (with a force parallel to the floor) has a mass of 100 kg, then the normal force is equal to its weight,

perpendicular to the floor. If the coefficient of static friction is 0.45, you would have to exert a force parallel to the floor greater
than

to move the crate. Once there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so that a force of only

keeps it moving at a constant speed. If the floor is lubricated, both coefficients are considerably less than they would be without
lubrication. Coefficient of friction is a unitless quantity with a magnitude usually between 0 and 1.0. The actual value depends on
the two surfaces that are in contact.

Many people have experienced the slipperiness of walking on ice. However, many parts of the body, especially the joints, have
much smaller coefficients of friction—often three or four times less than ice. A joint is formed by the ends of two bones, which are
connected by thick tissues. The knee joint is formed by the lower leg bone (the tibia) and the thighbone (the femur). The hip is a
ball (at the end of the femur) and socket (part of the pelvis) joint. The ends of the bones in the joint are covered by cartilage, which
provides a smooth, almost-glassy surface. The joints also produce a fluid (synovial fluid) that reduces friction and wear. A damaged
or arthritic joint can be replaced by an artificial joint (Figure ). These replacements can be made of metals (stainless steel or
titanium) or plastic (polyethylene), also with very small coefficients of friction.

μ

μs μk

19.1.1 19.1.3

w = mg = (100 kg)(9.80 m/ ) = 980 N ,s2 (19.1.4)

(max) = N = (0.45)(980 N) = 440 Nfs μs (19.1.5)

= N = (0.30)(980 N) = 290 Nfk μk (19.1.6)
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Figure : Artificial knee replacement is a procedure that has been performed for more than 20 years. These post-operative X-
rays show a right knee joint replacement. (credit: Mike Baird)

Natural lubricants include saliva produced in our mouths to aid in the swallowing process, and the slippery mucus found between
organs in the body, allowing them to move freely past each other during heartbeats, during breathing, and when a person moves.
Hospitals and doctor’s clinics commonly use artificial lubricants, such as gels, to reduce friction.

The equations given for static and kinetic friction are empirical laws that describe the behavior of the forces of friction. While these
formulas are very useful for practical purposes, they do not have the status of mathematical statements that represent general
principles (e.g., Newton’s second law). In fact, there are cases for which these equations are not even good approximations. For
instance, neither formula is accurate for lubricated surfaces or for two surfaces siding across each other at high speeds. Unless
specified, we will not be concerned with these exceptions.

A 20.0-kg crate is at rest on a floor as shown in Figure . The coefficient of static friction between the crate and floor is
0.700 and the coefficient of kinetic friction is 0.600. A horizontal force  is applied to the crate. Find the force of friction if (a)

 = 20.0 N, (b)  = 30.0 N, (c)  = 120.0 N, and (d)  = 180.0 N.

Figure : (a) A crate on a horizontal surface is pushed with a force . (b) The forces on the crate. Here,  may represent
either the static or the kinetic frictional force.

Strategy

The free-body diagram of the crate is shown in Figure . We apply Newton’s second law in the horizontal and vertical
directions, including the friction force in opposition to the direction of motion of the box.

Solution
Newton’s second law gives:

Here we are using the symbol f to represent the frictional force since we have not yet determined whether the crate is subject to
station friction or kinetic friction. We do this whenever we are unsure what type of friction is acting. I have also used the fact
that we know that there is only acceleration in the horizontal, , direction. In the  direction, this gives us:

19.1.3

 Example 6.10: Static and Kinetic Friction
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And we already know that the weight is:

The maximum force of static friction is therefore  = 137 N. As long as  is less than 137 N, the force
of static friction keeps the crate stationary and f  =  (and the acceleration is zero). Thus, (a) f  = 20.0 N, (b) f  = 30.0 N, and
(c) f  = 120.0 N. (d) If  = 180.0 N, the applied force is greater than the maximum force of static friction (137 N), so the crate
can no longer remain at rest. Once the crate is in motion, kinetic friction acts. Then

and the acceleration is

Significance

This example illustrates how we consider friction in a dynamics problem. Notice that static friction has a value that matches
the applied force, until we reach the maximum value of static friction. Also, no motion can occur until the applied force equals
the force of static friction, but the force of kinetic friction will then become smaller.

A block of mass 1.0 kg rests on a horizontal surface. The frictional coefficients for the block and surface are  = 0.50 and 
= 0.40. (a) What is the minimum horizontal force required to move the block? (b) What is the block’s acceleration when this
force is applied?

This page titled 19.1: Friction (Part 1) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

6.4: Friction (Part 1) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.

w = (20.0 kg)(9.80 m/ ) = 196 N , = Ns2 (19.1.10)
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s P ⃗ 
s s

s P ⃗ 

= N = (0.600)(196 N) = 118 N ,fk μk (19.1.11)

= = = 3.10 m/ .ax

−P ⃗  fk

m

180.0 N −118 N

20.0 kg
s2 (19.1.12)

 Exercise 6.7

μs μk

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85850?pdf
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/19%3A_N5)_Friction/19.01%3A_Friction_(Part_1)
https://creativecommons.org/licenses/by-sa/4.0
https://openstax.org/
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-1
https://phys.libretexts.org/@go/page/4000
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-1


19.2.1 https://phys.libretexts.org/@go/page/85851

19.2: Friction (Part 2)

Friction and the Inclined Plane
One situation where friction plays an obvious role is that of an object on a slope. It might be a crate being pushed up a ramp to a
loading dock or a skateboarder coasting down a mountain, but the basic physics is the same. We usually generalize the sloping
surface and call it an inclined plane but then pretend that the surface is flat. Let’s look at an example of analyzing motion on an
inclined plane with friction.

A skier with a mass of 62 kg is sliding down a snowy slope with an angle of  with respect to the horizontal at a constant
velocity. Find the coefficient of kinetic friction for the skier if friction is known to be 45.0 N.

Strategy

The first thing we need to do is draw a free-body diagram. We see this in the figure below. Next, we should set up our
coordinate system. As in most inclined plane problems, the acceleration (if there is any) will be parallel to the surface of the
plane. We should always set up our coordinate system so that one of the axes is in the same direction as the acceleration. As
usual, we will set the x-axis parallel to this surface. (Because the problem says that we are moving at constant velocity, there is
actually no acceleration in any direction, but this is still a good way to set up this problem.)

The magnitude of kinetic friction is given as 45.0 N. Kinetic friction is related to the normal force N by f  = N; thus, we can
find the coefficient of kinetic friction if we can find the normal force on the skier. (See Figure , which repeats a figure
from the chapter on Newton’s laws of motion.)

Figure : The motion of the skier and friction are parallel to the slope, so it is most convenient to project all forces onto a
coordinate system where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). The
normal force  is perpendicular to the slope, and friction  is parallel to the slope, but the skier’s weight  has components
along both axes, namely  and . The normal force  is equal in magnitude to , so there is no motion perpendicular to
the slope.  is equal to  in magnitude, so there is also no acceleration down the slope (along the x-axis).

Now that we have our axes set up, we can write Newton's law using column vectors:

where I have used the fact that thre is no acceleration. I have also explicitly indicated the direction of forces using minus signs.

From our  equation, we get . Knowing this and that  we get:

Substituting this into our expression for kinetic friction, we obtain

which can now be solved for the coefficient of kinetic friction .

 Example : Downhill Skier19.2.1
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Solution
Solving for  gives

Substituting known values on the right-hand side of the equation,

Significance

This result is a little smaller than the coefficient listed in Table 6.1 for waxed wood on snow, but it is still reasonable since
values of the coefficients of friction can vary greatly. In situations like this, where an object of mass m slides down a slope that
makes an angle  with the horizontal, friction is given by f  =  mg cos . All objects slide down a slope with constant
acceleration under these circumstances.

We have discussed that when an object rests on a horizontal surface, the normal force supporting it is equal in magnitude to its
weight. Furthermore, simple friction is always proportional to the normal force. When an object is not on a horizontal surface, as
with the inclined plane, we must find the force acting on the object that is directed perpendicular to the surface; it is a component of
the weight.

We now derive a useful relationship for calculating coefficient of friction on an inclined plane. Notice that the result applies only
for situations in which the object slides at constant speed down the ramp.

An object slides down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to measure
the coefficient of kinetic friction between two objects. As shown in Example , the kinetic friction on a slope is f  =  mg
cos . The component of the weight down the slope is equal to mg sin  (see the free-body diagram in Figure ). These forces
act in opposite directions, so when they have equal magnitude, the acceleration is zero. Writing these out,

Solving for , we find that

Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap the book lightly to
get the coin to move. Measure the angle of tilt relative to the horizontal and find . Note that the coin does not start to slide at all
until an angle greater than  is attained, since the coefficient of static friction is larger than the coefficient of kinetic friction. Think
about how this may affect the value for  and its uncertainty.

Atomic-Scale Explanations of Friction
The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides have been made in
the atomic-scale explanation of friction during the past several decades. Researchers are finding that the atomic nature of friction
seems to have several fundamental characteristics. These characteristics not only explain some of the simpler aspects of friction—
they also hold the potential for the development of nearly friction-free environments that could save hundreds of billions of dollars
in energy which is currently being converted (unnecessarily) into heat.

Figure  illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale) research. We have
noted that friction is proportional to the normal force, but not to the amount of area in contact, a somewhat counterintuitive notion.
When two rough surfaces are in contact, the actual contact area is a tiny fraction of the total area because only high spots touch.
When a greater normal force is exerted, the actual contact area increases, and we find that the friction is proportional to this area.
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Figure : Two rough surfaces in contact have a much smaller area of actual contact than their total area. When the normal
force is larger as a result of a larger applied force, the area of actual contact increases, as does friction.

However, the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how heat is
generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially, atoms are linked with
one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic lattices to vibrate—essentially creating
sound waves that penetrate the material. The sound waves diminish with distance, and their energy is converted into heat. Chemical
reactions that are related to frictional wear can also occur between atoms and molecules on the surfaces. Figure  shows how
the tip of a probe drawn across another material is deformed by atomic-scale friction. The force needed to drag the tip can be
measured and is found to be related to shear stress, which is discussed in Static Equilibrium and Elasticity. The variation in shear
stress is remarkable (more than a factor of 1012 ) and difficult to predict theoretically, but shear stress is yielding a fundamental
understanding of a large-scale phenomenon known since ancient times—friction.

Figure : The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements
of how the force varies for different materials are yielding fundamental insights into the atomic nature of friction.

Describe a model for friction on a molecular level. Describe matter in terms of molecular motion. The description should
include diagrams to support the description; how the temperature affects the image; what are the differences and similarities
between solid, liquid, and gas particle motion; and how the size and speed of gas molecules relate to everyday objects.

A 50.0-kg crate rests on the bed of a truck as shown in Figure . The coefficients of friction between the surfaces are  =
0.300 and  = 0.400. Find the frictional force on the crate when the truck is accelerating forward relative to the ground at (a)
2.00 m/s , and (b) 5.00 m/s .

Figure : (a) A crate rests on the bed of the truck that is accelerating forward. (b) The free-body diagram of the crate.

Strategy

The forces on the crate are its weight and the normal and frictional forces due to contact with the truck bed. We start by
assuming that the crate is not slipping. In this case, the static frictional force  acts on the crate. Furthermore, the accelerations
of the crate and the truck are equal.

19.2.2

19.2.3

19.2.3
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 Example : A Crate on an Accelerating Truck19.2.2
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Solution
a. Application of Newton’s second law to the crate, using the reference frame attached to the ground, yields

Which gives:

in the  direction and

in the .

We can now check the validity of our no-slip assumption. The maximum value of the force of static friction is $\mu_{s} N =
(0.400)(4.90 \times 10^{2}\; N) = 196\; N,$whereas the actual force of static friction that acts when the truck accelerates
forward at 2.00 m/s  is only 1.00 x 10  N. Thus, the assumption of no slipping is valid.

b. If the crate is to move with the truck when it accelerates at 5.0 m/s , the force of static friction must be

Since this exceeds the maximum of 196 N, the crate must slip. The frictional force is therefore kinetic and is

The horizontal acceleration of the crate relative to the ground is now found from

Significance

Relative to the ground, the truck is accelerating forward at 5.0 m/s  and the crate is accelerating forward at 2.94 m/s . Hence
the crate is sliding backward relative to the bed of the truck with an acceleration 2.94 m/s  − 5.00 m/s = −2.06 m/s .

Earlier, we analyzed the situation of a downhill skier moving at constant velocity to determine the coefficient of kinetic
friction. Now let’s do a similar analysis to determine acceleration. The snowboarder of Figure  glides down a slope that
is inclined at  = 13° to the horizontal. The coefficient of kinetic friction between the board and the snow is  = 0.20. What is
the acceleration of the snowboarder?
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Figure : (a) A snowboarder glides down a slope inclined at 13° to the horizontal. (b) The free-body diagram of the
snowboarder.

Strategy

The forces acting on the snowboarder are her weight and the contact force of the slope, which has a component normal to the
incline and a component along the incline (force of kinetic friction). Because she moves along the slope, the most convenient
reference frame for analyzing her motion is one with the x-axis along and the y-axis perpendicular to the incline. In this frame,
both the normal and the frictional forces lie along coordinate axes, the components of the weight are  along the slope
and  at right angles into the slope , and the only acceleration is along the x-axis (\(a = 0\)). We will choose the
positive x-axis as pointing up the hill.

Solution
We can now apply Newton’s second law to the snowboarder:

From the second equation, . Upon substituting this into the first equation, we find

Significance

Where the acceleration is negative because it is pointing down the hill (the negative x direction). Notice from this equation that
if  is small enough or  is large enough, a  is positive (up the hill), that is, the snowboarder slows down.

The snowboarder is now moving down a hill with incline 10.0°. What is the skier’s acceleration?

This page titled 19.2: Friction (Part 2) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

6.5: Friction (Part 2) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.

19.2.6

mg sinθ

mg cos θ y 

∑F ⃗ 

+ +N ⃗  w⃗  f ⃗ 
k

+ +
⎡

⎣
⎢

0

N

0

⎤

⎦
⎥

⎡

⎣
⎢

−wx

−wy

0

⎤

⎦
⎥

⎡

⎣
⎢

fk

0

0

⎤

⎦
⎥

⎡

⎣
⎢

−mg sinθ + Nμk

N −mg cos θ

0

⎤

⎦
⎥

= ma⃗ 

= ma⃗ 

= m
⎡

⎣
⎢

ax

0

0

⎤

⎦
⎥

= m
⎡

⎣
⎢

ax

0

0

⎤

⎦
⎥

N = mg cos θ

ax = −g(sinθ − cos θ)μk

= −g(sin −0.520 cos ) = −0.29 m/ .13o 13o s2

θ μk x

 Exercise 19.2.4

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85851?pdf
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/19%3A_N5)_Friction/19.02%3A_Friction_(Part_2)
https://creativecommons.org/licenses/by-sa/4.0
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-1
https://phys.libretexts.org/@go/page/5889
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-1


19.3.1 https://phys.libretexts.org/@go/page/85852

19.3: More Examples
 

Consider a penguin sitting on a ramp, as shown in the figure on the left. The ramp makes an angle of 15  with respect to the
floor, the mass of the penguin is 45 kg, and the coefficient of static friction between the penguin and the ramp is 0.20.

1. In the figure on the left, will the penguin slide down the ramp or not?
2. Now I tie a rope to the penguin, as shown in the figure on the right. This rope goes over a frictionless, massless pulley. How

hard must I pull on the rope before the penguin just starts to move?

 

Two children are going to race their sleds across a frozen pond. They run towards the pond and jump onto the sleds, and race
for a point 10 m away from their starting point. The first child has a mass of 40 kg, and his sled has a coefficient of friction of
0.023. The second child is less massive (35 kg), but her sled has a larger coefficient of friction, 0.035.

1. Which child will win the race, assuming the only forces acting on them are gravity and the contact force between the ice
and sleds?

2. When whoever wins reaches the finish line, how far behind them is the other?
3. What is each of their speeds at the end of the race?

a. A 1400-kg car, starting from rest, accelerates to a speed of 30 mph in 10 s. What is the force on the car (assumed constant)
over this period of time?

b. Where does this force comes from? That is, what is the (external) object that exerts this force on the car, and what is the
nature of this force?

c. Draw a free-body diagram for the car. Indicate the direction of motion, and the direction of the acceleration.
d. Now assume that the driver, traveling at 30 mph, sees a red light ahead and pushes on the brake pedal. Assume that the

coefficient of static friction between the tires and the road is  = 0.7, and that the wheels don’t “lock”: that is to say, they
continue rolling without slipping on the road as they slow down. What is the car’s minimum stopping distance?

e. Draw a free-body diagram of the car for the situation in (d). Again indicate the direction of motion, and the direction of the
acceleration.

f. Now assume that the driver again wants to stop as in part (c), but he presses on the brakes too hard, so the wheels lock, and,
moreover, the road is wet, and the coefficient of kinetic friction is only  = 0.2. What is the distance the car travels now
before coming to a stop?

Solution

(a) First, let us convert 30 mph to meters per second. There are 1, 609 meters to a mile, and 3, 600 seconds to an hour, so 30
mph = 10 × 1609/3600 m/s = 13.4 m/s.

Next, for constant acceleration, we can use Equation (2.2.4): . Solving for ,
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Finally, since , we have

(b) The force must be provided by the road, which is the only thing external to the car that is in contact with it. The force is, in
fact, the force of static friction between the car and the tires. As explained in the chapter, this is a reaction force (the tires push
on the road, and the road pushes back). It is static friction because the tires are not slipping relative to the road. In fact, we will
see in Chapter 9 that the point of the tire in contact with the road has an instantaneous velocity of zero (see Figure 9.6.1).

(c) This is the free-body diagram. Note the force of static friction pointing forward, in the direction of the acceleration. The
forces have been drawn to scale.

(d) This is the opposite of part (a): the driver now relies on the force of static friction to slow down the car. The shortest
stopping distance will correspond to the largest (in magnitude) acceleration, as per our old friend, Equation (2.2.10):

In turn, the largest acceleration will correspond to the largest force. As explained in the chapter, the static friction force cannot
exceed  (Equation (6.3.8)). So, we have

since, in this case, we expect the normal force to be equal to the force of gravity. Then

We can substitute this into Equation ( ) with a negative sign, since the acceleration acts in the opposite direction to the
motion (and we are implicitly taking the direction of motion to be positive). Also note that the final velocity we want is zero, 

 = 0. We get

From here, we can solve for :

(e) Here is the free-body diagram. The interesting feature is that the force of static friction has reversed direction relative to
parts (a)–(c). It is also much larger than before. (The forces are again to scale.)
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(f) The math for this part is basically identical to that in part (d). The difference, physically, is that now you are dealing with
the force of kinetic (or “sliding”) friction, and that is always given by  (this is not an upper limit, it’s just what 
is). So we have , and, just as before (but with  replacing ),

This is a huge distance, close to half a football field! If these numbers are accurate, you can see that locking your brakes in the
rain can have some pretty bad consequences.

19.3: More Examples is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack College.
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19.E: Friction (Exercises)

Conceptual Questions

1. The glue on a piece of tape can exert forces. Can these forces be a type of simple friction? Explain, considering especially that
tape can stick to vertical walls and even to ceilings.

2. When you learn to drive, you discover that you need to let up slightly on the brake pedal as you come to a stop or the car will
stop with a jerk. Explain this in terms of the relationship between static and kinetic friction.

3. When you push a piece of chalk across a chalkboard, it sometimes screeches because it rapidly alternates between slipping and
sticking to the board. Describe this process in more detail, in particular, explaining how it is related to the fact that kinetic
friction is less than static friction. (The same slip-grab process occurs when tires screech on pavement.)

4. A physics major is cooking breakfast when she notices that the frictional force between her steel spatula and Teflon frying pan
is only 0.200 N. Knowing the coefficient of kinetic friction between the two materials, she quickly calculates the normal force.
What is it?

 

Problems
5. (a) When rebuilding his car’s engine, a physics major must exert 3.00 x 10  N of force to insert a dry steel piston into a

steel cylinder. What is the normal force between the piston and cylinder? (b) What force would he have to exert if the
steel parts were oiled?

6. (a) What is the maximum frictional force in the knee joint of a person who supports 66.0 kg of her mass on that knee? (b)
During strenuous exercise, it is possible to exert forces to the joints that are easily 10 times greater than the weight being
supported. What is the maximum force of friction under such conditions? The frictional forces in joints are relatively
small in all circumstances except when the joints deteriorate, such as from injury or arthritis. Increased frictional forces
can cause further damage and pain.

7. Suppose you have a 120-kg wooden crate resting on a wood floor, with coefficient of static friction 0.500 between these
wood surfaces. (a) What maximum force can you exert horizontally on the crate without moving it? (b) If you continue to
exert this force once the crate starts to slip, what will its acceleration then be? The coefficient of sliding friction is known
to be 0.300 for this situation.

8. (a) If half of the weight of a small 1.00 x 10 -kg utility truck is supported by its two drive wheels, what is the maximum
acceleration it can achieve on dry concrete? (b) Will a metal cabinet lying on the wooden bed of the truck slip if it
accelerates at this rate? (c) Solve both problems assuming the truck has four-wheel drive.

9. A team of eight dogs pulls a sled with waxed wood runners on wet snow (mush!). The dogs have average masses of 19.0
kg, and the loaded sled with its rider has a mass of 210 kg. (a) Calculate the acceleration of the dogs starting from rest if
each dog exerts an average force of 185 N backward on the snow. (b) Calculate the force in the coupling between the
dogs and the sled.

10. Consider the 65.0-kg ice skater being pushed by two others shown below. (a) Find the direction and magnitude of F , the
total force exerted on her by the others, given that the magnitudes F  and F  are 26.4 N and 18.6 N, respectively. (b) What
is her initial acceleration if she is initially stationary and wearing steel-bladed skates that point in the direction of F ? (c)
What is her acceleration assuming she is already moving in the direction of F ? (Remember that friction always acts in
the direction opposite that of motion or attempted motion between surfaces in contact.)
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11. Show that the acceleration of any object down a frictionless incline that makes an angle  with the horizontal is a = g sin 
. (Note that this acceleration is independent of mass.)

12. Show that the acceleration of any object down an incline where friction behaves simply (that is, where f  = N) is a =
g(sin  −  cos ). Note that the acceleration is independent of mass and reduces to the expression found in the previous
problem when friction becomes negligibly small (  = 0).

13. Calculate the deceleration of a snow boarder going up a 5.00° slope, assuming the coefficient of friction for waxed wood
on wet snow. The result of the preceding problem may be useful, but be careful to consider the fact that the snow boarder
is going uphill.

14. A machine at a post office sends packages out a chute and down a ramp to be loaded into delivery vehicles. (a) Calculate
the acceleration of a box heading down a 10.0° slope, assuming the coefficient of friction for a parcel on waxed wood is
0.100. (b) Find the angle of the slope down which this box could move at a constant velocity. You can neglect air
resistance in both parts.

15. If an object is to rest on an incline without slipping, then friction must equal the component of the weight of the object
parallel to the incline. This requires greater and greater friction for steeper slopes. Show that the maximum angle of an
incline above the horizontal for which an object will not slide down is  = tan  . You may use the result of the
previous problem. Assume that a = 0 and that static friction has reached its maximum value.

16. Calculate the maximum acceleration of a car that is heading down a 6.00° slope (one that makes an angle of 6.00° with
the horizontal) under the following road conditions. You may assume that the weight of the car is evenly distributed on all

θ
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θ μk θ

μk

θ −1 μs
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four tires and that the coefficient of static friction is involved—that is, the tires are not allowed to slip during the
deceleration. (Ignore rolling.) Calculate for a car: (a) On dry concrete. (b) On wet concrete. (c) On ice, assuming that  =
0.100, the same as for shoes on ice.

17. Calculate the maximum acceleration of a car that is heading up a 4.00° slope (one that makes an angle of 4.00° with the
horizontal) under the following road conditions. Assume that only half the weight of the car is supported by the two drive
wheels and that the coefficient of static friction is involved—that is, the tires are not allowed to slip during the
acceleration. (Ignore rolling.) (a) On dry concrete. (b) On wet concrete. (c) On ice, assuming that  = 0.100, the same as
for shoes on ice.

18. Repeat the preceding problem for a car with four-wheel drive.
19. A freight train consists of two 8.00 x 10 -kg engines and 45 cars with average masses of 5.50 x 10  kg. (a) What force

must each engine exert backward on the track to accelerate the train at a rate of 5.00 x 10 m/s  if the force of friction is
7.50 x 10  N, assuming the engines exert identical forces? This is not a large frictional force for such a massive system.
Rolling friction for trains is small, and consequently, trains are very energy-efficient transportation systems. (b) What is
the force in the coupling between the 37th and 38th cars (this is the force each exerts on the other), assuming all cars have
the same mass and that friction is evenly distributed among all of the cars and engines?

20. Consider the 52.0-kg mountain climber shown below. (a) Find the tension in the rope and the force that the mountain
climber must exert with her feet on the vertical rock face to remain stationary. Assume that the force is exerted parallel to
her legs. Also, assume negligible force exerted by her arms. (b) What is the minimum coefficient of friction between her
shoes and the cliff?

21. A contestant in a winter sporting event pushes a 45.0-kg block of ice across a frozen lake as shown below. (a) Calculate
the minimum force F he must exert to get the block moving. (b) What is its acceleration once it starts to move, if that
force is maintained?

22. The contestant now pulls the block of ice with a rope over his shoulder at the same angle above the horizontal as shown
below. Calculate the minimum force F he must exert to get the block moving. (b) What is its acceleration once it starts to
move, if that force is maintained?

23. At a post office, a parcel that is a 20.0-kg box slides down a ramp inclined at 30.0° with the horizontal. The coefficient of
kinetic friction between the box and plane is 0.0300. (a) Find the acceleration of the box. (b) Find the velocity of the box
as it reaches the end of the plane, if the length of the plane is 2 m and the box starts at rest.
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24. A child has mass 16.0 kg and slides down a 35° incline with constant speed under the action of a 34-N force acting up
and parallel to the incline. What is the coefficient of kinetic friction between the child and the surface of the incline?

25. Shown below is a 10.0-kg block being pushed by a horizontal force  of magnitude 200.0 N. The coefficient of kinetic
friction between the two surfaces is 0.50. Find the acceleration of the block.

26. As shown below, the mass of block 1 is m = 4.0 kg, while the mass of block 2 is m  = 8.0 kg. The coefficient of friction
between m  and the inclined surface is  = 0.40. What is the acceleration of the system?

27. A student is attempting to move a 30-kg mini-fridge into her dorm room. During a moment of inattention, the mini-fridge
slides down a 35 degree incline at constant speed when she applies a force of 25 N acting up and parallel to the incline.
What is the coefficient of kinetic friction between the fridge and the surface of the incline?

28. A crate of mass 100.0 kg rests on a rough surface inclined at an angle of 37.0° with the horizontal. A massless rope to
which a force can be applied parallel to the surface is attached to the crate and leads to the top of the incline. In its present
state, the crate is just ready to slip and start to move down the plane. The coefficient of friction is 80% of that for the
static case. (a) What is the coefficient of static friction? (b) What is the maximum force that can be applied upward along
the plane on the rope and not move the block? (c) With a slightly greater applied force, the block will slide up the plane.
Once it begins to move, what is its acceleration and what reduced force is necessary to keep it moving upward at constant
speed? (d) If the block is given a slight nudge to get it started down the plane, what will be its acceleration in that
direction? (e) Once the block begins to slide downward, what upward force on the rope is required to keep the block from
accelerating downward?

29. A car is moving at high speed along a highway when the driver makes an emergency braking. The wheels become locked
(stop rolling), and the resulting skid marks are 32.0 meters long. If the coefficient of kinetic friction between tires and
road is 0.550, and the acceleration was constant during braking, how fast was the car going when the wheels became
locked?

30. A crate having mass 50.0 kg falls horizontally off the back of the flatbed truck, which is traveling at 100 km/h. Find the
value of the coefficient of kinetic friction between the road and crate if the crate slides 50 m on the road in coming to rest.
The initial speed of the crate is the same as the truck, 100 km/h.

31. A 15-kg sled is pulled across a horizontal, snow-covered surface by a force applied to a rope at 30 degrees with the
horizontal. The coefficient of kinetic friction between the sled and the snow is 0.20. (a) If the force is 33 N, what is the
horizontal acceleration of the sled? (b) What must the force be in order to pull the sled at constant velocity?

32. As shown below, the coefficient of kinetic friction between the surface and the larger block is 0.20, and the coefficient of
kinetic friction between the surface and the smaller block is 0.30. If F = 10 N and M = 1.0 kg, what is the tension in the
connecting string?
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33. In the figure, the coefficient of kinetic friction between the surface and the blocks is . If M = 1.0 kg, find an expression
for the magnitude of the acceleration of either block (in terms of F, , and g).

34. Two blocks are stacked as shown below, and rest on a frictionless surface. There is friction between the two blocks
(coefficient of friction ). An external force is applied to the top block at an angle  with the horizontal. What is the
maximum force F that can be applied for the two blocks to move together?

35. A box rests on the (horizontal) back of a truck. The coefficient of static friction between the box and the surface on which
it rests is 0.24. What maximum distance can the truck travel (starting from rest and moving horizontally with constant
acceleration) in 3.0 s without having the box slide?

36. A double-incline plane is shown below. The coefficient of friction on the left surface is 0.30, and on the right surface
0.16. Calculate the acceleration of the system.
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20.1: Conditions for Static Equilibrium

Identify the physical conditions of static equilibrium.
Draw a free-body diagram for a rigid body acted on by forces.
Explain how the conditions for equilibrium allow us to solve statics problems.

We say that a rigid body is in equilibrium when both its linear and angular acceleration are zero relative to an inertial frame of
reference. This means that a body in equilibrium can be moving, but if so, its linear and angular velocities must be constant. We say
that a rigid body is in static equilibrium when it is at rest in our selected frame of reference. Notice that the distinction between
the state of rest and a state of uniform motion is artificial—that is, an object may be at rest in our selected frame of reference, yet to
an observer moving at constant velocity relative to our frame, the same object appears to be in uniform motion with constant
velocity. Because the motion is relative, what is in static equilibrium to us is in dynamic equilibrium to the moving observer, and
vice versa. Since the laws of physics are identical for all inertial reference frames, in an inertial frame of reference, there is no
distinction between static equilibrium and equilibrium.

According to Newton’s second law of motion, the linear acceleration of a rigid body is caused by a net force acting on it, or

Here, the sum is of all external forces acting on the body, where m is its mass and  is the linear acceleration of its center of
mass (a concept we discussed in Linear Momentum and Collisions on linear momentum and collisions). In equilibrium, the linear
acceleration is zero. If we set the acceleration to zero in Equation , we obtain the following equation:

The first equilibrium condition for the static equilibrium of a rigid body expresses translational equilibrium:

The first equilibrium condition, Equation , is the equilibrium condition for forces, which we encountered when studying
applications of Newton’s laws.

This vector equation (as usual) can be written in terms of column vectors. It is actually 3 separate equations:

Analogously to Equation , we can state that the rotational acceleration  of a rigid body about a fixed axis of rotation is
caused by the net torque acting on the body, or

Here I is the rotational inertia of the body in rotation about this axis and the summation is over all torques  of external forces in
Equation . In equilibrium, the rotational acceleration is zero. By setting to zero the right-hand side of Equation , we
obtain the second equilibrium condition:

The second equilibrium condition for the static equilibrium of a rigid body expresses rotational equilibrium:
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The second equilibrium condition, Equation , is the equilibrium condition for torques that we encountered when we studied
rotational dynamics. It is worth noting that this equation for equilibrium is generally valid for rotational equilibrium about any axis
of rotation (fixed or otherwise). Again, this vector equation is equivalent to three scalar equations for the vector components of the
net torque:

The second equilibrium condition means that in equilibrium, there is no net external torque to cause rotation about any axis. The
first and second equilibrium conditions are stated in a particular reference frame. The first condition involves only forces and is
therefore independent of the origin of the reference frame. However, the second condition involves torque, which is defined as a
cross product, , where the position vector  with respect to the axis of rotation of the point where the force is
applied enters the equation. Therefore, torque depends on the location of the axis in the reference frame. However, when rotational
and translational equilibrium conditions hold simultaneously in one frame of reference, then they also hold in any other inertial
frame of reference, so that the net torque about any axis of rotation is still zero. The explanation for this is fairly straightforward.

Suppose vector  is the position of the origin of a new inertial frame of reference S′ in the old inertial frame of reference S. From
our study of relative motion, we know that in the new frame of reference S′, the position vector  of the point where the force 
is applied is related to  via the equation

Now, we can sum all torques  of all external forces in a new reference frame, S':

In the final step in this chain of reasoning, we used the fact that in equilibrium in the old frame of reference, S, the first term
vanishes because of Equation  and the second term vanishes because of Equation . Hence, we see that the net torque in
any inertial frame of reference S′ is zero, provided that both conditions for equilibrium hold in an inertial frame of reference .

The practical implication of this is that when applying equilibrium conditions for a rigid body, we are free to choose any point as
the origin of the reference frame. Our choice of reference frame is dictated by the physical specifics of the problem we are solving.
In one frame of reference, the mathematical form of the equilibrium conditions may be quite complicated, whereas in another
frame, the same conditions may have a simpler mathematical form that is easy to solve. The origin of a selected frame of reference
is called the pivot point.

In the most general case, equilibrium conditions are expressed by the six scalar equations (Equations  and ). For planar
equilibrium problems with rotation about a fixed axis, which we consider in this chapter, we can reduce the number of equations to
three. The standard procedure is to adopt a frame of reference where the z-axis is the axis of rotation. With this choice of axis, the
net torque has only a z-component, all forces that have non-zero torques lie in the xy-plane, and therefore contributions to the net
torque come from only the x- and y-components of external forces. Thus, for planar problems with the axis of rotation
perpendicular to the xy-plane, we have the following two equilibrium conditions for forces and torques:

where the summation is over all N external forces acting on the body and over their torques. In Equation , the magnitude of
the z-component of torque  from the force  is

where r  is the length of the lever arm of the force and F  is the magnitude of the force (as you saw in Fixed-Axis Rotation). The
angle  is the angle between vectors  and , measuring from vector  to vector  in the counterclockwise direction (Figure

). When using Equation , we often compute the magnitude of torque and assign its sense as either positive (+) or
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negative (−), depending on the direction of rotation caused by this torque alone. In Equation , net torque is the sum of
terms, with each term computed from Equation , and each term must have the correct sense. Similarly, in Equation ,
we assign the + sign to force components in the + x-direction and the − sign to components in the − x-direction. The same rule
must be consistently followed in Equation , when computing force components along the y-axis.

Figure : Torque of a force: (a) When the torque of a force causes counterclockwise rotation about the axis of rotation, we say
that its sense is positive, which means the torque vector is parallel to the axis of rotation. (b) When torque of a force causes
clockwise rotation about the axis, we say that its sense is negative, which means the torque vector is antiparallel to the axis of
rotation.

View this demonstration to see two forces act on a rigid square in two dimensions. At all times, the static equilibrium
conditions given by Equation  through Equation  are satisfied. You can vary magnitudes of the forces and their
lever arms and observe the effect these changes have on the square.

In many equilibrium situations, one of the forces acting on the body is its weight. In free-body diagrams, the weight vector is
attached to the center of gravity of the body. For all practical purposes, the center of gravity is identical to the center of mass, as
you learned in Linear Momentum and Collisions on linear momentum and collisions. Only in situations where a body has a large
spatial extension so that the gravitational field is nonuniform throughout its volume, are the center of gravity and the center of mass
located at different points. In practical situations, however, even objects as large as buildings or cruise ships are located in a
uniform gravitational field on Earth’s surface, where the acceleration due to gravity has a constant magnitude of g = 9.8 m/s . In
these situations, the center of gravity is identical to the center of mass. Therefore, throughout this chapter, we use the center of
mass (CM) as the point where the weight vector is attached. Recall that the CM has a special physical meaning: When an external
force is applied to a body at exactly its CM, the body as a whole undergoes translational motion and such a force does not cause
rotation.

When the CM is located off the axis of rotation, a net gravitational torque occurs on an object. Gravitational torque is the torque
caused by weight. This gravitational torque may rotate the object if there is no support present to balance it. The magnitude of the
gravitational torque depends on how far away from the pivot the CM is located. For example, in the case of a tipping truck (Figure 

), the pivot is located on the line where the tires make contact with the road’s surface. If the CM is located high above the
road’s surface, the gravitational torque may be large enough to turn the truck over. Passenger cars with a low-lying CM, close to the
pavement, are more resistant to tipping over than are trucks.
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Figure : The distribution of mass affects the position of the center of mass (CM), where the weight vector  is attached. If
the center of gravity is within the area of support, the truck returns to its initial position after tipping [see the left panel in (b)]. But
if the center of gravity lies outside the area of support, the truck turns over [see the right panel in (b)]. Both vehicles in (b) are out
of equilibrium. Notice that the car in (a) is in equilibrium: The low location of its center of gravity makes it hard to tip over.

If you tilt a box so that one edge remains in contact with the table beneath it, then one edge of the base of support becomes a
pivot. As long as the center of gravity of the box remains over the base of support, gravitational torque rotates the box back
toward its original position of stable equilibrium. When the center of gravity moves outside of the base of support,
gravitational torque rotates the box in the opposite direction, and the box rolls over. View this demonstration to experiment
with stable and unstable positions of a box.

A passenger car with a 2.5-m wheelbase has 52% of its weight on the front wheels on level ground, as illustrated in Figure
12.4. Where is the CM of this car located with respect to the rear axle?

Figure : The weight distribution between the axles of a car. Where is the center of gravity located?

Strategy

We do not know the weight w of the car. All we know is that when the car rests on a level surface, 0.52w pushes down on the
surface at contact points of the front wheels and 0.48w pushes down on the surface at contact points of the rear wheels. Also,
the contact points are separated from each other by the distance d = 2.5 m. At these contact points, the car experiences normal
reaction forces with magnitudes F  = 0.52w and F  = 0.48w on the front and rear axles, respectively. We also know that the car
is an example of a rigid body in equilibrium whose entire weight w acts at its CM. The CM is located somewhere between the
points where the normal reaction forces act, somewhere at a distance x from the point where F  acts. Our task is to find x.
Thus, we identify three forces acting on the body (the car), and we can draw a free-body diagram for the extended rigid body,
as shown in Figure .

Figure : The free-body diagram for the car clearly indicates force vectors acting on the car and distances to the center of
mass (CM). When CM is selected as the pivot point, these distances are lever arms of normal reaction forces. Notice that
vector magnitudes and lever arms do not need to be drawn to scale, but all quantities of relevance must be clearly labeled.
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We are almost ready to write down equilibrium conditions Equation  through Equation  for the car, but first we
must decide on the reference frame. Suppose we choose the x-axis along the length of the car, the yaxis vertical, and the z-axis
perpendicular to this xy-plane. With this choice we only need to write the z-component of the torque equation. Now we need to
decide on the location of the pivot point. We can choose any point as the location of the axis of rotation (z-axis). Suppose we
place the axis of rotation at CM, as indicated in the free-body diagram for the car. At this point, we are ready to write the
equilibrium conditions for the car.

Solution
Each equilibrium condition contains only three terms because there are N = 3 forces acting on the car. The first equilibrium
condition, Equation , reads

This condition is trivially satisfied because when we substitute the data, Equation  becomes +0.52w − w + 0.48w = 0.
The second equilibrium condition, Equation , reads

where  is the torque of force F ,  is the gravitational torque of force w, and  is the torque of force F . When the pivot is
located at CM, the gravitational torque is identically zero because the lever arm of the weight with respect to an axis that
passes through CM is zero. The lines of action of both normal reaction forces are perpendicular to their lever arms, so in
Equation , we have |sin | = 1 for both forces. From the free-body diagram, we read that torque  causes clockwise
rotation about the pivot at CM, so its sense is negative; and torque  causes counterclockwise rotation about the pivot at CM,
so its sense is positive. With this information, we write the second equilibrium condition as

With the help of the free-body diagram, we identify the force magnitudes F  = 0.48w and F  = 0.52w, and their corresponding
lever arms r  = x and r  = d − x. We can now write the second equilibrium condition, Equation , explicitly in terms of
the unknown distance x:

Here the weight w cancels and we can solve the equation for the unknown position x of the CM. The answer is x = 0.52d =
0.52(2.5 m) = 1.3 m. Solution Choosing the pivot at the position of the front axle does not change the result. The free-body
diagram for this pivot location is presented in Figure 12.6. For this choice of pivot point, the second equilibrium condition is

When we substitute the quantities indicated in the diagram, we obtain

The answer obtained by solving Equation  is, again, x = 0.52d = 1.3 m.

Figure : The equivalent free-body diagram for the car; the pivot is clearly indicated.

Significance

This example shows that when solving static equilibrium problems, we are free to choose the pivot location. For different
choices of the pivot point we have different sets of equilibrium conditions to solve. However, all choices lead to the same
solution to the problem.
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Solve Example 12.1 by choosing the pivot at the location of the rear axle.

Explain which one of the following situations satisfies both equilibrium conditions: (a) a tennis ball that does not spin as it
travels in the air; (b) a pelican that is gliding in the air at a constant velocity at one altitude; or (c) a crankshaft in the engine of
a parked car.

A special case of static equilibrium occurs when all external forces on an object act at or along the axis of rotation or when the
spatial extension of the object can be disregarded. In such a case, the object can be effectively treated like a point mass. In this
special case, we need not worry about the second equilibrium condition, Equation , because all torques are identically zero
and the first equilibrium condition (for forces) is the only condition to be satisfied. The free-body diagram and problem-solving
strategy for this special case were outlined in Newton’s Laws of Motion and Applications of Newton’s Laws. You will see a typical
equilibrium situation involving only the first equilibrium condition in the next example.

View this demonstration to see three weights that are connected by strings over pulleys and tied together in a knot. You can
experiment with the weights to see how they affect the equilibrium position of the knot and, at the same time, see the vector-
diagram representation of the first equilibrium condition at work.

A small pan of mass 42.0 g is supported by two strings, as shown in Figure 12.7. The maximum tension that the string can
support is 2.80 N. Mass is added gradually to the pan until one of the strings snaps. Which string is it? How much mass must
be added for this to occur?

Figure : Mass is added gradually to the pan until one of the strings snaps.

Strategy

This mechanical system consisting of strings, masses, and the pan is in static equilibrium. Specifically, the knot that ties the
strings to the pan is in static equilibrium. The knot can be treated as a point; therefore, we need only the first equilibrium
condition. The three forces pulling at the knot are the tension  in the 5.0-cm string, the tension  in the 10.0-cm string, and
the weight  of the pan holding the masses. We adopt a rectangular coordinate system with the y-axis pointing opposite to the
direction of gravity and draw the free-body diagram for the knot (see Figure 12.8). To find the tension components, we must
identify the direction angles  and  that the strings make with the horizontal direction that is the x-axis. As you can see in
Figure 12.7, the strings make two sides of a right triangle. We can use the Pythagorean theorem to solve this triangle, shown in
Figure 12.8, and find the sine and cosine of the angles  and . Then we can resolve the tensions into their rectangular
components, substitute in the first condition for equilibrium (Equation ), and solve for the tensions in the strings. The
string with a greater tension will break first.
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Figure : Free-body diagram for the knot in Example 12.2.

Solution
The weight w pulling on the knot is due to the mass M of the pan and mass m added to the pan, or w = (M + m)g. With the
help of the free-body diagram in Figure 12.8, we can set up the equilibrium conditions for the knot:

From the free-body diagram, the magnitudes of components in these equations are

We substitute these components into the equilibrium conditions and simplify. We then obtain two equilibrium equations for the
tensions:

in x-direction,

in y-direction,

The equilibrium equation for the x-direction tells us that the tension T  in the 5.0-cm string is twice the tension T  in the 10.0-
cm string. Therefore, the shorter string will snap. When we use the first equation to eliminate T  from the second equation, we
obtain the relation between the mass m on the pan and the tension T  in the shorter string:

The string breaks when the tension reaches the critical value of T  = 2.80 N. The preceding equation can be solved for the
critical mass m that breaks the string:
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Suppose that the mechanical system considered in this example is attached to a ceiling inside an elevator going up. As long as
the elevator moves up at a constant speed, the result stays the same because the weight w does not change. If the elevator
moves up with acceleration, the critical mass is smaller because the weight of M + m becomes larger by an apparent weight
due to the acceleration of the elevator. Still, in all cases the shorter string breaks first.

This page titled 20.1: Conditions for Static Equilibrium is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

12.2: Conditions for Static Equilibrium by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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20.2: Springs
From Wikipedia: A spring is an elastic object that stores mechanical energy. Although real springs can be rather complicated, in
physics we normally deal with idealized springs, which can be modeled relatively easily. In addition, this model is widely
applicable for many other physical interactions, like between molecules or other fundamental particles. In fact, nearly every
interaction in the universe looks like a spring if you consider just small displacements from equilibrium positions. In this section
we will carefully outline how to model the interaction of a spring using forces - the chapter on potential energy has already
discussed modeling the spring as an energy storage device.

A spring has an equilibrium position (see the figure above), at which it will stay until forces are applied to it. If we use a coordinate
system with the origin at the fixed end of the spring, we will call this equilbrium position . When the end of the spring is moved
to a different location , the response force from the spring is linear in the displacement , with a constant of proportionality 

 (the spring constant). This constant of proportionality is different for every spring, but remains constant during all interactions.
The basic observation of linear proportionality is the content of Hooke's Law.

There are several equivalent ways of representing the force mathematically. Using the quantities defined above, we can write the
magnitude as simply

Of course, this doesn't take into account the direction of the force, only the size. Since the direction of the force is opposite of the
displacement (compressed springs push against the compression, whereas stretched springs pull back - this is why the spring force
is often called a restoring force), we need to be a little careful to get that right. One way to do this is to write the component of the
force along the displacement as

Notice the signs of the various quantities (the overall negative sign in particular) in comparison to the figure above. When the
spring is stretched, we have  so  is positive, and the overall force is in the negative-x direction, as expected. When
the spring is compressed,  so  is negative, but the overall negative sign ensures the force is now in the positive
direction, as expected.

Generally, this is the most useful way to write the spring force. However, it is sometimes advantageous to set the equilibrium
position of the spring as the origin of the coordinate system, . In this case, the spring force is simply

You can check yourself that the signs work out the same way as they did in the other expression.
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It's also possible to write this force as a vector, but we have to be a bit more careful. In cases where the idealized spring model is
expected to be valid, one can write

where  is the equilibrium position of the end of the spring, and  is the current position. However, this might start falling apart
when considering various aspects of "real" springs. For example, if the end of the spring is allowed to rotate, the spring could find
other equilbrium positions at distances  from the origin, but at a different location than the original position. These can all be
dealt with, so long as we understand how to apply the basic model of Hooke's law.

20.2: Springs is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack College.
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20.3: Examples

Consider the see-saw in the above figure - two masses attached to a massless board, balanced on a point between them.

1. If  = 37.5 cm,  = 113 cm, and  = 15 kg, what should  be so that this board is balanced?
2. How much force is the balance point acting on the board with?

Consider the steel beam shown in the figure, with a mass of 2450 kg, being held in place by a crane. The angle between the
horizontal and the beam is 15 , and the angle between the axis of the beam and the cable is 63 .

1. What is the tension in the cable, if the length of the beam is 6.5 m?
2. How much force, and in which direction, is the ground acting on the beam with?

Consider a penguin sitting on a ramp, as shown in the figure on the left. The ramp makes an angle of 15  with respect to the floor,
the mass of the penguin is 45 kg, and the coefficient of static friction between the penguin and the ramp is 0.30.

1. If the penguin is not moving, how large is the frictional force acting on it?
2. Now I tie a rope to the penguin, as shown in the figure on the right. This rope goes over a frictionless, massless pulley. How

hard must I pull on the rope before the penguin just starts to move?

 Whiteboard Problem : Seesaw20.3.1
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Consider a penguin sitting on a ramp as shown in the lefthand figure for Whiteboard Problem  (without the rope). This is an
Emperor Penguin, so naturally it has a mass of 45 kg.

1. If the coefficient of static friction between the ramp and the penguin is 0.40, what is the maximum angle the ramp can have if
the penguin is going to remain stationary?

2. If I increase the angle a little bit from part (a) then penguin will start to slide. Say I increase this angle by 10\%, and the
coefficient of kinetic friction between the penguin and the ramp is 0.30, what will the acceleration of the penguin be?

A weightlifter is holding a 50.0-lb weight (equivalent to 222.4 N) with his forearm, as shown in the Figure. His forearm is
positioned at  with respect to his upper arm, and supported by the biceps muscle, which causes a torque around the elbow
(labeled ``E''). You can assume the tension $T$ on the bicep muscle is directed straight up, opposite the direction of gravity, and
you can ignore the weight of the arm.

1. What tension force is in the bicep muscle? (That is, ``find ''!)
2. What is the magnitude of the force at the elbow joint?
3. In what direction (describe or find an angle!) is the force at the elbow joint acting?

Note: this problem came from the Open Stax textbook University Physics Volume 1, and they solve it there using the
following free body diagram. You are welcome to do that as well - but do you think that coordinate system is the best
choice?

Identify and analyze static equilibrium situations
Set up a free-body diagram for an extended object in static equilibrium
Set up and solve static equilibrium conditions for objects in equilibrium in various physical situations

All examples in this chapter are planar problems. Accordingly, we use equilibrium conditions in the component form of Equation
12.2.9 to Equation 12.2.11. We introduced a problem-solving strategy in Example 12.1 to illustrate the physical meaning of the
equilibrium conditions. Now we generalize this strategy in a list of steps to follow when solving static equilibrium problems for
extended rigid bodies. We proceed in five practical steps.

 Whiteboard Problem : Sliding Penguin Reduex20.3.4

20.3.3

 Whiteboard Problem : Curling for Torque!20.3.5

θ= 60∘
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1. Identify the object to be analyzed. For some systems in equilibrium, it may be necessary to consider more than one object.
Identify all forces acting on the object. Identify the questions you need to answer. Identify the information given in the
problem. In realistic problems, some key information may be implicit in the situation rather than provided explicitly.

2. Set up a free-body diagram for the object. (a) Choose the xy-reference frame for the problem. Draw a free-body diagram for
the object, including only the forces that act on it. When suitable, represent the forces in terms of their components in the
chosen reference frame. As you do this for each force, cross out the original force so that you do not erroneously include the
same force twice in equations. Label all forces—you will need this for correct computations of net forces in the x- and y-
directions. For an unknown force, the direction must be assigned arbitrarily; think of it as a ‘working direction’ or ‘suspected
direction.’ The correct direction is determined by the sign that you obtain in the final solution. A plus sign (+) means that the
working direction is the actual direction. A minus sign (−) means that the actual direction is opposite to the assumed working
direction. (b) Choose the location of the rotation axis; in other words, choose the pivot point with respect to which you will
compute torques of acting forces. On the free-body diagram, indicate the location of the pivot and the lever arms of acting
forces—you will need this for correct computations of torques. In the selection of the pivot, keep in mind that the pivot can be
placed anywhere you wish, but the guiding principle is that the best choice will simplify as much as possible the calculation of
the net torque along the rotation axis.

3. Set up the equations of equilibrium for the object. (a) Use the free-body diagram to write a correct equilibrium condition
Equation 12.2.9 for force components in the x-direction. (b) Use the free-body diagram to write a correct equilibrium condition
Equation 12.2.13 for force components in the y-direction. (c) Use the free-body diagram to write a correct equilibrium
condition Equation 12.2.11 for torques along the axis of rotation. Use Equation 12.2.12 to evaluate torque magnitudes and
senses.

4. Simplify and solve the system of equations for equilibrium to obtain unknown quantities. At this point, your work involves
algebra only. Keep in mind that the number of equations must be the same as the number of unknowns. If the number of
unknowns is larger than the number of equations, the problem cannot be solved.

5. Evaluate the expressions for the unknown quantities that you obtained in your solution. Your final answers should have correct
numerical values and correct physical units. If they do not, then use the previous steps to track back a mistake to its origin and
correct it. Also, you may independently check for your numerical answers by shifting the pivot to a different location and
solving the problem again, which is what we did in Example 12.1.

Note that setting up a free-body diagram for a rigid-body equilibrium problem is the most important component in the solution
process. Without the correct setup and a correct diagram, you will not be able to write down correct conditions for equilibrium. Also
note that a free-body diagram for an extended rigid body that may undergo rotational motion is different from a free-body diagram for
a body that experiences only translational motion (as you saw in the chapters on Newton’s laws of motion). In translational dynamics,
a body is represented as its CM, where all forces on the body are attached and no torques appear. This does not hold true in rotational
dynamics, where an extended rigid body cannot be represented by one point alone. The reason for this is that in analyzing rotation, we
must identify torques acting on the body, and torque depends both on the acting force and on its lever arm. Here, the free-body
diagram for an extended rigid body helps us identify external torques.

Three masses are attached to a uniform meter stick, as shown in Figure . The mass of the meter stick is 150.0 g and the
masses to the left of the fulcrum are m  = 50.0 g and m  = 75.0 g. Find the mass m3 that balances the system when it is attached at
the right end of the stick, and the normal reaction force at the fulcrum when the system is balanced.

Figure : In a torque balance, a horizontal beam is supported at a fulcrum (indicated by S) and masses are attached to both
sides of the fulcrum. The system is in static equilibrium when the beam does not rotate. It is balanced when the beam remains
level.

Strategy

 Problem-Solving Strategy: Static Equilibrium

 Example : The Torque Balance20.3.6

20.3.1

1 2
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For the arrangement shown in the figure, we identify the following five forces acting on the meter stick:

1. w  = m g is the weight of mass m ;
2. w  = m g is the weight of mass m ;
3. w = mg is the weight of the entire meter stick;
4. w  = m g is the weight of unknown mass m ;
5. F  is the normal reaction force at the support point S.

We choose a frame of reference where the direction of the y-axis is the direction of gravity, the direction of the xaxis is along the
meter stick, and the axis of rotation (the z-axis) is perpendicular to the x-axis and passes through the support point S. In other
words, we choose the pivot at the point where the meter stick touches the support. This is a natural choice for the pivot because
this point does not move as the stick rotates. Now we are ready to set up the free-body diagram for the meter stick. We indicate the
pivot and attach five vectors representing the five forces along the line representing the meter stick, locating the forces with
respect to the pivot Figure . At this stage, we can identify the lever arms of the five forces given the information provided in
the problem. For the three hanging masses, the problem is explicit about their locations along the stick, but the information about
the location of the weight w is given implicitly. The key word here is “uniform.” We know from our previous studies that the CM
of a uniform stick is located at its midpoint, so this is where we attach the weight w, at the 50-cm mark.

Figure : Free-body diagram for the meter stick. The pivot is chosen at the support point S.

Solution

With Figure  and Figure  for reference, we begin by finding the lever arms of the five forces acting on the stick:

Now we can find the five torques with respect to the chosen pivot:

The second equilibrium condition (equation for the torques) for the meter stick is

When substituting torque values into this equation, we can omit the torques giving zero contributions. In this way the second
equilibrium condition is

Selecting the +y-direction to be parallel to , the first equilibrium condition for the stick is

Substituting the forces, the first equilibrium condition becomes

1 1 1

2 2 2

3 3 3

S

20.3.2

20.3.2

20.3.1 20.3.2

r1
r2

r

rS

r3

= 30.0 cm+40.0 cm = 70.0 cm

= 40.0 cm

= 50.0 cm−30.0 cm = 20.0 cm

= 0.0 cm (because is attached at the pivot)FS

= 30.0 cm.

τ1

τ2

τ

τS

τ3

=+ sin =+ g (counterclockwise rotation, positive sense)r1w1 90o r1m1

=+ sin =+ g (counterclockwise rotation, positive sense)r2w2 90o r2m2

=+rw sin =+rmg (gravitational torque)90o

= sin = 0 (because = 0 cm)rSFS θS rS

=− sin =− g (counterclockwise rotation, negative sense)r3w3 90o r3m3

+ +τ + + = 0.τ1 τ2 τS τ3 (20.3.1)

+ g+ g+rmg− g= 0.r1m1 r2m2 r3m3 (20.3.2)

F ⃗ 
S

− − −w+ − = 0.w1 w2 FS w3 (20.3.3)

− g− g−mg+ − g= 0.m1 m2 FS m3 (20.3.4)
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We solve these equations simultaneously for the unknown values m  and F . In Equation , we cancel the g factor and
rearrange the terms to obtain

To obtain m  we divide both sides by r , so we have

To find the normal reaction force, we rearrange the terms in Equation , converting grams to kilograms:

Significance

Notice that Equation  is independent of the value of g. The torque balance may therefore be used to measure mass, since
variations in g-values on Earth’s surface do not affect these measurements. This is not the case for a spring balance because it
measures the force.

Repeat Example 12.3 using the left end of the meter stick to calculate the torques; that is, by placing the pivot at the left end of the
meter stick.

In the next example, we show how to use the first equilibrium condition (equation for forces) in the vector form given by Equation
12.2.9 and Equation 12.2.10. We present this solution to illustrate the importance of a suitable choice of reference frame. Although all
inertial reference frames are equivalent and numerical solutions obtained in one frame are the same as in any other, an unsuitable
choice of reference frame can make the solution quite lengthy and convoluted, whereas a wise choice of reference frame makes the
solution straightforward. We show this in the equivalent solution to the same problem. This particular example illustrates an
application of static equilibrium to biomechanics.

Repeat Example 12.4 assuming that the forearm is an object of uniform density that weighs 8.896 N.

Solve the problem in Example 12.6 by taking the pivot position at the center of mass.

A 50-kg person stands 1.5 m away from one end of a uniform 6.0-m-long scaffold of mass 70.0 kg. Find the tensions in the two
vertical ropes supporting the scaffold.

3 S 20.3.2

= + +rm.r3m3 r1m1 r2m2 (20.3.5)

3 3

m3 = + + m
r1

r3
m1

r2

r3
m2

r

r3

= (50.0 g)+ (75.0 g)+ (150.0 g) = 315.0( ) g≃ 317 g.
70

30

40

30

20

30

2

3

20.3.4

FS = ( + +m+ )gm1 m2 m3

= (50.0+75.0+150.0+316.7)×( kg)×(9.8 m/ ) = 5.8 N .10−3 s2

20.3.2

 Exercise 20.3.7

 Exercise 20.3.8

 Exercise 20.3.10

 Exercise 20.3.11

 Exercise 20.3.12
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A 400.0-N sign hangs from the end of a uniform strut. The strut is 4.0 m long and weighs 600.0 N. The strut is supported by a
hinge at the wall and by a cable whose other end is tied to the wall at a point 3.0 m above the left end of the strut. Find the tension
in the supporting cable and the force of the hinge on the strut.

Consider a spring of unknown spring constant. You first want to find out what the spring constant actually is, and then use the
spring to determine the mass of an unknown object. To do this, first you measure the equilibrium length of the spring to be 10 cm.
Then, you put a mass of 5 kg on the end, hang it vertically, and observe that the spring stretches to a total length of 12 cm. What is
the spring constant?

Now that you know the spring constant, you put the unknown mass on the spring and notice that it stretches to a length of 17 cm.
What is the mass of this object?

Solution
1. Translate: We will use the following variables: 

 
Notice that we are not specifying the coordinate system quite yet - since the spring is hanging vertically, the y-coordinate
might end up being negative. These are just the lengths of the various quantities we measured.

2. Model: Since the only thing we know about this system are lengths and masses, we are clearly going to have to use Hooke's
law,  (in the y-direction). Since this spring is hanging vertically, it makes sense to use Newton's 2nd law to
model the equilbrium situation.

3. Solve: First, we write the condition for equilbrium when the known mass is hung on the spring. Here, we are going to take the
vertical direction to be the y-coordinate, with positive upwards. 

 
Notice carefully what we did with the coordinates - we made all of them negative, with the top of the spring being the origin.
Also take care that you do the conversions from centimeters to meters in the final calculation! 
Now that we have the spring constant, we can do the same thing for the unknown mass. This equation is going to look very
similar, but switching around our known and unknown variables: 

 
Again, take careful note of what happens algebraically with the signs.

4. Check: This is consistent with our intuition - the spring stretched more for a heavier mass. Since the amount of stretching was
5 cm as compared to 2 cm, we would expect that the mass is also more then twice as big, which it is!

 Exercise 20.3.13

 Example : A Simple Spring Problem20.3.14

= 10 cm, = 12 cm, = 17 cm, = 5 kg, =?.y0 y1 y2 m1 m2 (20.3.6)

=−k(y− )Fsp,y y0

Σ = 0 → + = 0 →−k((− )−(− ))+ g(− ) = 0 → k= ≃ 294 NmFy Fsp,y Fg,y y1 y0 m1 y1
gm1 y1

−y1 y0
(20.3.7)

Σ = 0 → + = 0 →−k((− )−(− ))+ g(− ) = 0 → = ≃ 12.4kg.Fy Fsp,y Fg,y y2 y0 m2 y2 m2
k( − )y2 y0

gy2
(20.3.8)
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Notice that although the stretching length was exactly 3.5 times bigger (7 cm / 2 cm = 3.5), the unknown mass was not 3.5 times
bigger: 3.5*5 kg = 17.5 kg. We can see why this happens by using the last formula we wrote down, but plugging in the equation
for the spring constant we found in the first part:

So, the ratio between  and  is not simply the ratio of the displacements , but is also scaled by the ratio
of the stretch, .

This page titled 20.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

12.3: Examples of Static Equilibrium by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.

= =( )( ) =( )( ) .m2
k( − )y2 y0

gy2

gm1 y1

−y1 y0

( − )y2 y0

gy2

y1

y2

−y2 y0

−y1 y0
m1 (20.3.9)

m1 m2 ( − )/( − )y2 y0 y1 y0
/y1 y2
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20.E: Static Equilibrium and Elasticity (Exercises)

Conceptual Questions
1. Under what conditions can a rotating body be in equilibrium? Give an example.
2. What three factors affect the torque created by a force relative to a specific pivot point?
3. Mechanics sometimes put a length of pipe over the handle of a wrench when trying to remove a very tight bolt. How does

this help? For the next four problems, evaluate the statement as either true or false and explain your answer.
4. If there is only one external force (or torque) acting on an object, it cannot be in equilibrium.
5. If an object is in equilibrium there must be an even number of forces acting on it.
6. If an odd number of forces act on an object, the object cannot be in equilibrium.
7. A body moving in a circle with a constant speed is in rotational equilibrium.
8. What purpose is served by a long and flexible pole carried by wire-walkers?

10. Is it possible to rest a ladder against a rough wall when the floor is frictionless?
11. Show how a spring scale and a simple fulcrum can be used to weigh an object whose weight is larger than the maximum

reading on the scale.
12. A painter climbs a ladder. Is the ladder more likely to slip when the painter is near the bottom or near the top?

Problems
13. When tightening a bolt, you push perpendicularly on a wrench with a force of 165 N at a distance of 0.140 m from the

center of the bolt. How much torque are you exerting relative to the center of the bolt?
14. When opening a door, you push on it perpendicularly with a force of 55.0 N at a distance of 0.850 m from the hinges.

What torque are you exerting relative to the hinges?
15. Find the magnitude of the tension in each supporting cable shown below. In each case, the weight of the suspended body

is 100.0 N and the masses of the cables are negligible.
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16. What force must be applied at point P to keep the structure shown in equilibrium? The weight of the structure is
negligible.

17. Is it possible to apply a force at P to keep in equilibrium the structure shown? The weight of the structure is negligible.

18. Two children push on opposite sides of a door during play. Both push horizontally and perpendicular to the door. One
child pushes with a force of 17.5 N at a distance of 0.600 m from the hinges, and the second child pushes at a distance of
0.450 m. What force must the second child exert to keep the door from moving? Assume friction is negligible.

19. A small 1000-kg SUV has a wheel base of 3.0 m. If 60% if its weight rests on the front wheels, how far behind the front
wheels is the wagon’s center of mass?

20. The uniform seesaw is balanced at its center of mass, as seen below. The smaller boy on the right has a mass of 40.0 kg.
What is the mass of his friend?
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21. A uniform plank rests on a level surface as shown below. The plank has a mass of 30 kg and is 6.0 m long. How much
mass can be placed at its right end before it tips? (Hint: When the board is about to tip over, it makes contact with the
surface only along the edge that becomes a momentary axis of rotation.)

22. The uniform seesaw shown below is balanced on a fulcrum located 3.0 m from the left end. The smaller boy on the right
has a mass of 40 kg and the bigger boy on the left has a mass 80 kg. What is the mass of the board?

23. In order to get his car out of the mud, a man ties one end of a rope to the front bumper and the other end to a tree 15 m
away, as shown below. He then pulls on the center of the rope with a force of 400 N, which causes its center to be
displaced 0.30 m, as shown. What is the force of the rope on the car?

24. A uniform 40.0-kg scaffold of length 6.0 m is supported by two light cables, as shown below. An 80.0-kg painter stands
1.0 m from the left end of the scaffold, and his painting equipment is 1.5 m from the right end. If the tension in the left
cable is twice that in the right cable, find the tensions in the cables and the mass of the equipment.

25. When the structure shown below is supported at point P, it is in equilibrium. Find the magnitude of force F and the force
applied at P. The weight of the structure is negligible.

26. To get up on the roof, a person (mass 70.0 kg) places a 6.00-m aluminum ladder (mass 10.0 kg) against the house on a
concrete pad with the base of the ladder 2.00 m from the house. The ladder rests against a plastic rain gutter, which we
can assume to be frictionless. The center of mass of the ladder is 2.00 m from the bottom. The person is standing 3.00 m
from the bottom. Find the normal reaction and friction forces on the ladder at its base.

27. A uniform horizontal strut weighs 400.0 N. One end of the strut is attached to a hinged support at the wall, and the other
end of the strut is attached to a sign that weighs 200.0 N. The strut is also supported by a cable attached between the end

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/86189?pdf


20.E.4 https://phys.libretexts.org/@go/page/86189

of the strut and the wall. Assuming that the entire weight of the sign is attached at the very end of the strut, find the
tension in the cable and the force at the hinge of the strut.

28. The forearm shown below is positioned at an angle  with respect to the upper arm, and a 5.0-kg mass is held in the hand.
The total mass of the forearm and hand is 3.0 kg, and their center of mass is 15.0 cm from the elbow. (a) What is the
magnitude of the force that the biceps muscle exerts on the forearm for  = 60°? (b) What is the magnitude of the force
on the elbow joint for the same angle? (c) How do these forces depend on the angle ?

29. The uniform boom shown below weighs 3000 N. It is supported by the horizontal guy wire and by the hinged support at
point A. What are the forces on the boom due to the wire and due to the support at A? Does the force at A act along the
boom?

30. The uniform boom shown below weighs 700 N, and the object hanging from its right end weighs 400 N. The boom is
supported by a light cable and by a hinge at the wall. Calculate the tension in the cable and the force on the hinge on the
boom. Does the force on the hinge act along the boom?

θ

θ

θ
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31. A 12.0-m boom, AB, of a crane lifting a 3000-kg load is shown below. The center of mass of the boom is at its geometric
center, and the mass of the boom is 1000 kg. For the position shown, calculate tension T in the cable and the force at the
axle A.

32. A uniform trapdoor shown below is 1.0 m by 1.5 m and weighs 300 N. It is supported by a single hinge (H), and by a
light rope tied between the middle of the door and the floor. The door is held at the position shown, where its slab makes
a 30° angle with the horizontal floor and the rope makes a 20° angle with the floor. Find the tension in the rope and the
force at the hinge.

33. A 90-kg man walks on a sawhorse, as shown below. The sawhorse is 2.0 m long and 1.0 m high, and its mass is 25.0 kg.
Calculate the normal reaction force on each leg at the contact point with the floor when the man is 0.5 m from the far end
of the sawhorse. (Hint: At each end, find the total reaction force first. This reaction force is the vector sum of two
reaction forces, each acting along one leg. The normal reaction force at the contact point with the floor is the normal
(with respect to the floor) component of this force.)

34. The coefficient of static friction between the rubber eraser of the pencil and the tabletop is  = 0.80. If the force  is
applied along the axis of the pencil, as shown below, what is the minimum angle at which the pencil can stand without
slipping? Ignore the weight of the pencil.

μs F ⃗ 
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35. A pencil rests against a corner, as shown below. The sharpened end of the pencil touches a smooth vertical surface and
the eraser end touches a rough horizontal floor. The coefficient of static friction between the eraser and the floor is  =
0.80. The center of mass of the pencil is located 9.0 cm from the tip of the eraser and 11.0 cm from the tip of the pencil
lead. Find the minimum angle θ for which the pencil does not slip.

36. A uniform 4.0-m plank weighing 200.0 N rests against the corner of a wall, as shown below. There is no friction at the
point where the plank meets the corner. (a) Find the forces that the corner and the floor exert on the plank. (b) What is the
minimum coefficient of static friction between the floor and the plank to prevent the plank from slipping?

37. A 40-kg boy jumps from a height of 3.0 m, lands on one foot and comes to rest in 0.10 s after he hits the ground. Assume
that he comes to rest with a constant deceleration. If the total cross-sectional area of the bones in his legs just above his
ankles is 3.0 cm , what is the compression stress in these bones? Leg bones can be fractured when they are subjected to
stress greater than 1.7 x 10  Pa. Is the boy in danger of breaking his leg?

38. Two thin rods, one made of steel and the other of aluminum, are joined end to end. Each rod is 2.0 m long and has cross-
sectional area 9.1 mm . If a 10,000-N tensile force is applied at each end of the combination, find: (a) stress in each rod;
(b) strain in each rod; and, (c) elongation of each rod.

39. Two rods, one made of copper and the other of steel, have the same dimensions. If the copper rod stretches by 0.15 mm
under some stress, how much does the steel rod stretch under the same stress?

Challenge Problems
 

39. In order to lift a shovelful of dirt, a gardener pushes downward on the end of the shovel and pulls upward at distance l
from the end, as shown below. The weight of the shovel is m  and acts at the point of application of . Calculate the
magnitudes of the forces  and  as functions of l , l , mg, and the weight W of the load. Why do your answers not
depend on the angle  that the shovel makes with the horizontal?

μs

2

8

2

2

g ⃗  F ⃗ 
2

F ⃗ 
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40. The pole shown below is at a 90.0° bend in a power line and is therefore subjected to more shear force than poles in
straight parts of the line. The tension in each line is 4.00 x 10  N, at the angles shown. The pole is 15.0 m tall, has an 18.0
cm diameter, and can be considered to have half the strength of hardwood. (a) Calculate the compression of the pole. (b)
Find how much it bends and in what direction. (c) Find the tension in a guy wire used to keep the pole straight if it is
attached to the top of the pole at an angle of 30.0° with the vertical. The guy wire is in the opposite direction of the bend.
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21.1: Banking

Roadway engineers often bank a curve, especially if it is a very tight turn, so the cars will not have to rely on friction alone to
provide the required centripetal force. The picture shows a car going around such a curve, which we can model as an arc of a
circle of radius . In terms of , the bank angle , and the coefficient of static friction, find the maximum safe speed around the
curve.

Figure : A car going around a banked curve (sketch and free-body diagram). The center of the circle is towards the right.

The figure shows the appropriate choice of axes for this problem. The criterion is, again, to choose the axes so that one of them
will coincide with the direction of the acceleration. In this case, the acceleration is all centripetal, that is to say, pointing,
horizontally, towards the center of the circle on which the car is traveling.

It may seem strange to see the force of static friction pointing down the slope, but recall that for a car turning on a flat surface it
would have been pointing inwards (towards the center of the circle), so this is the natural extension of that. In general, you
should always try to imagine which way the object would slide if friction disappeared altogether:  must point in the
direction opposite that. Thus, for a car traveling at a reasonable speed, the direction in which it would skid is up the slope, and
that means  must point down the slope. But, for a car just sitting still on the tilted road,  must point upwards, and we shall
see in a moment that in general there is a minimum velocity required for the force of static friction to point in the direction we
have chosen.

Apart from this, the main difference with the flat surface case is that now the normal force has a component along the direction
of the acceleration, so it helps to keep the car moving in a circle. On the other hand, note that we now lose (for centripetal
purposes) a little bit of the friction force, since it is pointing slightly downwards. This, however, is more than compensated for
by the fact that the normal force is greater now than it would be for a flat surface, since the car is now, so to speak, “driving
into” the road somewhat.

The dashed blue lines in the free-body diagram are meant to indicate that the angle  of the bank is also the angle between the
normal force and the positive  axis, as well as the angle that  makes below the positive  axis. It follows that the
components of these two forces along the axes shown are:

and

Our force equation in column vector form is:

where I have already substituted the value of the centripetal acceleration for  and 0 for  and .

 Example : Going around a banked curve21.1.1
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This shows that  is indeed greater than just  for this problem, and must increase as the angle 
 increases (since  decreases with increasing ).

The first and second lines of Equation ( ) form a system that needs to be solved for the two unknowns  and . The
result is:

Note that the second equation would have  becoming negative if . This means that below that speed, the force
of static friction must actually point up the slope, as discussed above. We can call this particular speed, for which  becomes
zero, :

What this means is that it is possible to arrange the banking angle so that a car going at a specific speed would not have to rely
on friction at all in order to make the curve: the normal force would be just right to provide the required centripetal
acceleration. A car going at that speed would not feel either pulled down or pushed up the slope. However, a car going faster
than that would tend to “fly off”, and the static friction force would be required to pull it in and keep it on the curve, whereas a
car moving more slowly would tend to slide down and would have to be pushed up by the friction force. Friction, therefore,
provides a range of safe speeds to drive in this case, just as it did in the flat surface case.

We can calculate the maximum safe speed as we did before, recalling that we must always have . Substituting Eqs.
( ) in this expression, and solving for , we get the condition

This reproduces our result (8.4.5) for  = 0 (a flat road), as it should.

To put some numbers into this, suppose the curve has a radius of 20 m, and the coefficient of static friction between the tires
and the road is  = 0.7. Then, for a flat surface, we get  = 11.7 m/s, or about 26 mph, whereas for a bank angle of  = 10
 (the angle chosen for the figure above) we get  = 14 m/s, or about 31 mph.

Equation ( ) actually indicates that the maximum velocity would “become infinite” for a finite bank angle, namely, if 
, or  (if  = 0.7, this corresponds to  = 55 ). This is mathematically correct, but of course we

cannot take it literally: it assumes that there is no limit to how large a normal force the roadway may exert without sustaining
damage, and also that  can become arbitrarily large as long as it stays below the bound . Neither of these
assumptions would hold in real life for very large speeds. Also, the angle  is much too steep: recall that,
according to Equation (8.3.11), the force of friction will only be able to keep an object (initially at rest) from sliding down the
slope if , which for  = 0.7 means . So, with a bank angle of 55  you might drive on the curve, provided
you were going fast enough, but you could not park on it—the car would slide down! Bottom line, use Equation ( ) only
for moderate values of ... and do not exceed  if you want a car to be able to drive around the curve slowly
without sliding down into the ditch.

Imagine you are inside a rotating cylindrical room of radius . There is a metal puck on the floor, a distance  from the axis of
rotation, held in place with an electromagnet. At some time you switch off the electromagnet and the puck is free to slide
without friction. Find where the puck strikes the wall, and show that, if it was not too far away from the wall to begin with, it
appears as if it had moved straight for the wall as soon as it was released.

Solution

The picture looks as shown below, to an observer in an inertial frame, looking down. The puck starts at point A, with
instantaneous velocity  pointing straight to the left at the moment it is released, so it just moves straight (in the inertial
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 Example : Rotating frames of reference- centrifugal force and coriolis force21.1.3
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frame) until it hits the wall at point B. From the cyan-colored triangle shown, we can see that it travels a distance ,
which takes a time

In this time, the room rotates counterclockwise through an angle :

Figure : The motion of the puck (cyan) and the wall (magenta) as seen by an inertial observer.

This is the angle shown in magenta in the figure. As a result of this rotation, the point A  that was initially on the wall straight
across from the puck has moved (following the magenta dashed line) to the position B , so to an observer in the rotating room,
looking at things from the point O, the puck appears to head for the wall and drift a little to the right while doing so.

The cyan angle in the picture, which we could call , has tangent equal to , so we have

This tells us the two angles are going to be pretty close if they are small enough, which is what happens if the puck starts close
enough to the wall in the first place. The picture shows, for clarity, the case when , which gives  = 1.02 rad,
and  = 0.8 rad. For , on the other hand, one finds  = 0.48 rad, and 

(0.48) = 0.45 rad.

In terms of pseudoforces (forces that do not, physically, exist, but may be introduced to describe mathematically the motion of
objects in non-inertial frames of reference), the non-inertial observer would say that the puck heads towards the wall because
of a centrifugal force (that is, a force pointing away from the center of rotation), and while doing so it drifts to the right
because of the so-called Coriolis force.

This page titled 21.1: Banking is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

8.7: Advanced Topics by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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21.2: Examples

Consider a rollarcoaster with a loop, shown in the figure above. The car starts at rest a height of  m above the loop, flies
down the track and around the loop, which has a radius of  m. The car has a mass of 550 kg.

1. (energy review!) What speed is the car traveling at the top of the loop, if the track is completely frictionless?
2. What is the acceleration of the car at the top of the loop?
3. What is the normal force on the car at the top of the loop?

 

Consider the rollarcoaster loop in the figure, which has a teardrop shape. The cars ride on the inside of the loop and travel fast
enough to ensure that the car stays on the track. The largest of these loops is 40 m high (*but not a circle!*) and the cars travel
at a speed of 13 m/s at the top of the loop. At the top, the riders experience a centripetal acceleration of 2 .

1. What is the radius of the arc of the track at the top?
2. If the mass of the car plus the riders is 1150 kg, what force does the track exert on the car at the top of the track?
3. If the designers had made this a circular loop of radius 20 m (so the same total height as the teardrop), what would the

centripetal acceleration of the riders at the top be, assuming the car had the same speed as in the teardrop shape?
4. Which is more fun, a teardrop or a loop?

 

 

 Whiteboard Problem : Loop the Loop!21.2.1

h = 35
R = 7

 Whiteboard Problem : This is better than a class trip, part 121.2.2
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Example : The penny on the turntable
Suppose that you have a penny sitting on a turntable, a distance  = 10 cm from the axis of rotation. Assume the turntable
starts moving, steadily spinning up from rest, in such a way that after 1.3 seconds it has reached its final rotation rate of 33.3
rpm (revolutions per minute). Answer the following questions:

a. What was the turntable’s angular acceleration over the time interval from  = 0 to  = 1.3 s?
b. How many turns (complete and fractional) did the turntable make before reaching its final velocity?
c. Assuming the penny has not slipped, what is its centripetal acceleration once the turntable reaches its final velocity?
d. How large does the static friction coefficient between the penny and the turntable have to be for the penny not to slip

throughout this process?

Solution

(a) We are told that the turntable spins up “steadily” from  = 0 to  = 1.3 s. The word “steadily” here is a keyword that means
the (angular) acceleration is constant (that is, the angular velocity increases at a constant rate).

What is this rate? For constant , we have, from Equation (20.1.10), . Here, the time interval  = 1.3 , so we
just need to find . By definition, , and since we start from rest,  = 0. So we just need . We are told that
“the final rotation rate” is 33.3 rpm (revolutions per minute). What does this tell us about the angular velocity?

The angular velocity is the number of radians an object moving in a circle (such as the penny in this example) travels per
second. A complete turn around the circle, or revolution, corresponds to 180 , or equivalently 2  radians. So, 33.3 revolutions,
or turns, per minute means  radians per 60 s, that is,

The angular acceleration, therefore, is

(b) The way to answer this question is to find out the total angular displacement, , of the penny over the time interval
considered (from  = 0 to  = 1.3 s), and then convert this to a number of turns, using the relationship 2  rad = 1 turn. To get 

, we should use the equation (20.1.11) for motion with constant angular acceleration:

We start from rest, so  = 0, We know  = 1.3 s, and we just calculated  = 2.68 rad/s , so we have

This is less than 2  radians, so it takes the turntable less than one complete revolution to reach its final angular velocity. To be
precise, since 2  radians is one turn, 2.26 rad will be 2.26/(2 ) turns, which is to say, 0.36 turns—a little more than 1/3 of a
turn.

(c) For the questions above, the penny just served as a marker to keep track of the revolutions of the turntable. Now, we turn to
the dynamics of the motion of the penny itself. First, to get its angular acceleration, we can just use Equation (20.1.15), in the
form

noticing that , the radius of the circle on which the penny moves, is just the distance  to the axis of rotation that we were
given at the beginning of the problem, and , its angular velocity, is just the final angular velocity of the turntable (assuming,
as we are told, that the penny has not slipped relative to the turntable).

(d) Finally, how about the force needed to keep the penny from slipping—that is to say, to keep it moving with the turntable?
This is just the centripetal force needed “bend” the trajectory of the penny into a circle of radius , so , where  is
the mass of the penny and  is the centripetal acceleration we just calculated. Physically, we know that this force has to be

21.2.3
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provided by the static (as long as the penny does not slip!) friction force between the penny and the turntable. We know that 
, and we have for the normal force, in this simple situation, just . Therefore, setting  we

have:

This is equivalent to the single inequality , where we can cancel out the mass of the penny to conclude that we
must have , and therefore

Imagine you are inside a rotating cylindrical room of radius . There is a metal puck on the floor, a distance  from the axis of
rotation, held in place with an electromagnet. At some time you switch off the electromagnet and the puck is free to slide
without friction. Find where the puck strikes the wall, and show that, if it was not too far away from the wall to begin with, it
appears as if it had moved straight for the wall as soon as it was released.

Solution

The picture looks as shown below, to an observer in an inertial frame, looking down. The puck starts at point A, with
instantaneous velocity  pointing straight to the left at the moment it is released, so it just moves straight (in the inertial
frame) until it hits the wall at point B. From the cyan-colored triangle shown, we can see that it travels a distance ,
which takes a time

In this time, the room rotates counterclockwise through an angle :

Figure : The motion of the puck (cyan) and the wall (magenta) as seen by an inertial observer.

This is the angle shown in magenta in the figure. As a result of this rotation, the point A  that was initially on the wall straight
across from the puck has moved (following the magenta dashed line) to the position B , so to an observer in the rotating room,
looking at things from the point O, the puck appears to head for the wall and drift a little to the right while doing so.

The cyan angle in the picture, which we could call , has tangent equal to , so we have

This tells us the two angles are going to be pretty close if they are small enough, which is what happens if the puck starts close
enough to the wall in the first place. The picture shows, for clarity, the case when , which gives  = 1.02 rad,
and  = 0.8 rad. For , on the other hand, one finds  = 0.48 rad, and 

(0.48) = 0.45 rad.

≤F s μsF
n = mgF n = mF s ac

m = ≤ = mg.ac F s μsF
n μs (21.2.6)

m ≤ mgac μs

≤ gac μs

≥ = = 0.124μs

ac

g

1.22 m/s2

9.8 m/s2
(21.2.7)

Example : Rotating frames of reference- centrifugal force and coriolis force21.2.4
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− −−−−−
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√

r
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21.2.3
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√
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In terms of pseudoforces (forces that do not, physically, exist, but may be introduced to describe mathematically the motion of
objects in non-inertial frames of reference), the non-inertial observer would say that the puck heads towards the wall because
of a centrifugal force (that is, a force pointing away from the center of rotation), and while doing so it drifts to the right
because of the so-called Coriolis force.
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21.E: Applications of Newton's Laws (Exercises)

Conceptual Questions
1. If you wish to reduce the stress (which is related to centripetal force) on high-speed tires, would you use large- or small-

diameter tires? Explain.
2. Define centripetal force. Can any type of force (for example, tension, gravitational force, friction, and so on) be a

centripetal force? Can any combination of forces be a centripetal force?
3. If centripetal force is directed toward the center, why do you feel that you are ‘thrown’ away from the center as a car goes

around a curve? Explain.
4. Race car drivers routinely cut corners, as shown below (Path 2). Explain how this allows the curve to be taken at the

greatest speed.

5. Many amusement parks have rides that make vertical loops like the one shown below. For safety, the cars are attached to
the rails in such a way that they cannot fall off. If the car goes over the top at just the right speed, gravity alone will
supply the centripetal force. What other force acts and what is its direction if:
a. The car goes over the top at faster than this speed?
b. The car goes over the top at slower than this speed?

6. What causes water to be removed from clothes in a spin-dryer?
7. As a skater forms a circle, what force is responsible for making his turn? Use a free-body diagram in your answer.
8. Suppose a child is riding on a merry-go-round at a distance about halfway between its center and edge. She has a lunch

box resting on wax paper, so that there is very little friction between it and the merry-go-round. Which path shown below
will the lunch box take when she lets go? The lunch box leaves a trail in the dust on the merry-go-round. Is that trail
straight, curved to the left, or curved to the right? Explain your answer.
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9. Do you feel yourself thrown to either side when you negotiate a curve that is ideally banked for your car’s speed? What is
the direction of the force exerted on you by the car seat?

10. Suppose a mass is moving in a circular path on a frictionless table as shown below. In Earth’s frame of reference, there is
no centrifugal force pulling the mass away from the center of rotation, yet there is a force stretching the string attaching
the mass to the nail. Using concepts related to centripetal force and Newton’s third law, explain what force stretches the
string, identifying its physical origin.

11. When a toilet is flushed or a sink is drained, the water (and other material) begins to rotate about the drain on the way
down. Assuming no initial rotation and a flow initially directly straight toward the drain, explain what causes the rotation
and which direction it has in the Northern Hemisphere. (Note that this is a small effect and in most toilets the rotation is
caused by directional water jets.) Would the direction of rotation reverse if water were forced up the drain?

12. A car rounds a curve and encounters a patch of ice with a very low coefficient of kinetic fiction. The car slides off the
road. Describe the path of the car as it leaves the road.

13. In one amusement park ride, riders enter a large vertical barrel and stand against the wall on its horizontal floor. The
barrel is spun up and the floor drops away. Riders feel as if they are pinned to the wall by a force something like the
gravitational force. This is an inertial force sensed and used by the riders to explain events in the rotating frame of
reference of the barrel. Explain in an inertial frame of reference (Earth is nearly one) what pins the riders to the wall, and
identify all forces acting on them.

14. Two friends are having a conversation. Anna says a satellite in orbit is in free fall because the satellite keeps falling
toward Earth. Tom says a satellite in orbit is not in free fall because the acceleration due to gravity is not 9.80 m/s . Who
do you agree with and why?

15. A nonrotating frame of reference placed at the center of the Sun is very nearly an inertial one. Why is it not exactly an
inertial frame?

Problems
16. (a) A 22.0-kg child is riding a playground merry-go-round that is rotating at 40.0 rev/min. What centripetal force is

exerted if he is 1.25 m from its center? (b) What centripetal force is exerted if the merry-go-round rotates at 3.00 rev/min
and he is 8.00 m from its center? (c) Compare each force with his weight.

17. Calculate the centripetal force on the end of a 100-m (radius) wind turbine blade that is rotating at 0.5 rev/s. Assume the
mass is 4 kg.

2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/89910?pdf


21.E.3 https://phys.libretexts.org/@go/page/89910

18. What is the ideal banking angle for a gentle turn of 1.20-km radius on a highway with a 10  km/h speed limit (about 65
mi/h), assuming everyone travels at the limit?

19. What is the ideal speed to take a 100.0-m-radius curve banked at a 20.0° angle?
20. (a) What is the radius of a bobsled turn banked at 75.0° and taken at 30.0 m/s, assuming it is ideally banked? (b)

Calculate the centripetal acceleration. (c) Does this acceleration seem large to you?
21. Part of riding a bicycle involves leaning at the correct angle when making a turn, as seen below. To be stable, the force

exerted by the ground must be on a line going through the center of gravity. The force on the bicycle wheel can be
resolved into two perpendicular components—friction parallel to the road (this must supply the centripetal force) and the
vertical normal force (which must equal the system’s weight). (a) Show that  (as defined as shown) is related to the

speed v and radius of curvature r of the turn in the same way as for an ideally banked roadway—that is,  = tan  .

(b) Calculate  for a 12.0-m/s turn of radius 30.0 m (as in a race).

22. If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the
curve (a problem on icy mountain roads). (a) Calculate the ideal speed to take a 100.0 m radius curve banked at 15.0°. (b)
What is the minimum coefficient of friction needed for a frightened driver to take the same curve at 20.0 km/h?

23. Modern roller coasters have vertical loops like the one shown here. The radius of curvature is smaller at the top than on
the sides so that the downward centripetal acceleration at the top will be greater than the acceleration due to gravity,
keeping the passengers pressed firmly into their seats. What is the speed of the roller coaster at the top of the loop if the
radius of curvature there is 15.0 m and the downward acceleration of the car is 1.50 g?

24. A child of mass 40.0 kg is in a roller coaster car that travels in a loop of radius 7.00 m. At point A the speed of the car is
10.0 m/s, and at point B, the speed is 10.5 m/s. Assume the child is not holding on and does not wear a seat belt. (a) What
is the force of the car seat on the child at point A? (b) What is the force of the car seat on the child at point B? (c) What
minimum speed is required to keep the child in his seat at point A?
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25. In the simple Bohr model of the ground state of the hydrogen atom, the electron travels in a circular orbit around a fixed
proton. The radius of the orbit is 5.28 x 10  m, and the speed of the electron is 2.18 x 10  m/s. The mass of an electron
is 9.11 x 10  kg. What is the force on the electron?

26. Railroad tracks follow a circular curve of radius 500.0 m and are banked at an angle of 5.0°. For trains of what speed are
these tracks designed?

27. The CERN particle accelerator is circular with a circumference of 7.0 km. (a) What is the acceleration of the protons (m =
1.67 x 10  kg) that move around the accelerator at 5% of the speed of light? (The speed of light is v = 3.00 x 10  m/s.)
(b) What is the force on the protons?

28. A car rounds an unbanked curve of radius 65 m. If the coefficient of static friction between the road and car is 0.70, what
is the maximum speed at which the car traverse the curve without slipping?

29. A banked highway is designed for traffic moving at 90.0 km/h. The radius of the curve is 310 m. What is the angle of
banking of the highway?

30. A stunt cyclist rides on the interior of a cylinder 12 m in radius. (They are riding on the side of the cylinder.) The
coefficient of static friction between the tires and the wall is 0.68. Find the value of the minimum speed for the cyclist to
perform the stunt.

31. A plumb bob hangs from the roof of a railroad car. The car rounds a circular track of radius 300.0 m at a speed of 90.0
km/h. At what angle relative to the vertical does the plumb bob hang?

32. A large centrifuge, like the one shown below, is used to expose aspiring astronauts to accelerations similar to those
experienced in rocket launches and atmospheric reentries. (a) At what angular velocity is the centripetal acceleration 10g
if the rider is 15.0 m from the center of rotation? (b) The rider’s cage hangs on a pivot at the end of the arm, allowing it to
swing outward during rotation as shown in the bottom accompanying figure. At what angle  below the horizontal will
the cage hang when the centripetal acceleration is 10g? (Hint: The arm supplies centripetal force and supports the weight
of the cage. Draw a free-body diagram of the forces to see what the angle  should be.)

33. An airplane flying at 200.0 m/s makes a turn that takes 4.0 min. What bank angle is required? What is the percentage
increase in the perceived weight of the passengers?
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22.1: Forces and Potential Energy
Consider the special case of two interacting objects, in which a lighter object is interacting with a much more massive one, so that
the massive one essentially does not move at all as a result of the interaction. Note that this does not contradict Newton’s 3rd law,
Equation (6.1.5): the forces the two objects exert on each other are the same in magnitude, but the acceleration of each object is
inversely proportional to its mass, so  implies

and so if, for instance, , we get . In words, the more massive object is less responsive than
the less massive one to a force of the same magnitude. This is just how we came up with the concept of inertial mass in the first
place!

Anyway, in this situation we could just write the potential energy function of the whole system as a function of only the lighter
object’s coordinate, . Let's use this simplified setup to demonstrate a very interesting relationship between potential energies
and forces. Suppose this is a closed system in which no dissipation of energy is taking place. Then the total mechanical energy is a
constant:

(Here,  is the mass of the lighter object, and  its velocity; the more massive object does not contribute to the total kinetic energy,
since it does not move!)

As the lighter object moves, both  and  in Equation ( ) change with time. So I can take the derivative of Equation ( )
with respect to time, using the chain rule, and noting that, since the whole thing is a constant, the total value of the derivative must
be zero:

But note that  is just the same as . So I can cancel that on both terms, and then I am left with

But  is just the acceleration , and . So this tells me that

and this is how you can always get the force from a potential energy function.

Let us check it right away for the force of gravity: we know that , so

Is this right? It seems to be! Recall all objects fall with the same acceleration, −  (assuming the upwards direction to be positive),
so if , we must have . So the gravitational force exerted by the earth on any object (which I would denote in
full by ) is proportional to the inertial mass of the object—in fact, it is what we call the object’s weight—but since to get the
acceleration you have to divide the force by the inertial mass, that cancels out, and  ends up being the same for all objects,
regardless of how heavy they are.

Now that we have this result under our belt, we can move on to the slightly more challenging case of two objects of comparable
masses interacting through a potential energy function that must be, a function of just the relative coordinate .

I claim that in that case you can again get the force on object 1, , by taking the derivative of  with respect to 
(leaving  alone), and reciprocally, you get  by taking the derivative of  with respect to . Here is how it works,
again using the chain rule:

= −F12 F21

= −m2a2 m1a1 (22.1.1)
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and you can see that this automatically ensures that . In fact, it was in order to ensure this that I required that  should
depend only on the difference of  and , rather than on each one separately. Since we got the condition  originally
from conservation of momentum, you can see now how the two things are related .

The only example we have seen so far of this kind of potential energy function was in Chapter 9, for two carts interacting through
an “ideal” spring. I told you there that the potential energy of the system could be written as , where  was the
“spring constant” and  the relaxed length of the spring. If you apply Eqs. ( ) to this function, you will find that the force
exerted (through the spring) by cart 2 on cart 1 is

Note that this force will be negative under the assumptions we made last chapter, namely, that cart 2 is on the right, cart 1 on the
left, and the spring is compressed, so that . Similarly,

and this one, as it should, is positive.

The results ( ) and ( ) basically tell you what we mean by an “ideal spring” in physics: it is a spring that pulls (if
stretched) or pushes (if compressed) with a force that is proportional to the change from its equilibrium length. Thus, if you fasten
one end of the spring at  = 0, and stretch it or compress it so that the other end is at , the spring will respond by exerting a force

As you can see, this is negative if  (spring stretched, pulling force) and positive if  (spring compressed, pushing
force). In fact, the spring exerts an equal (in magnitude) and opposite (in direction) force at the other end (the one attached to the
wall), so Equation ( ) only gives the correct sign of the force at the end that is denoted by the coordinate value . Equations (

) and ( ) are a bit clearer in this respect: Equation ( ) gives the correct sign of the force at point , and Equation (
) the correct sign at point .

Figure  shows, in black, all the forces exerted by a spring with one fixed end, according as to whether it is relaxed,
compressed, or stretched. I have assumed that it is pushed or pulled by a hand (not shown) at the “free” end, hence the subscript “

”, whereas the subscript “ ” stands for “wall.” Note that the wall and the hand, in turn, exert equal and opposite forces on the
spring, shown in red in the figure.

Figure : Forces (in black) exerted by a spring with one end attached to a wall and the other pushed or pulled by a hand (not
shown). In every case the force is proportional to the change in the length of the spring from its equilibrium, or relaxed, value,
shown here as . For this figure I have set the proportionality constant  = 1. The forces exerted on the spring, by the wall and by
the hand, are shown in red.

Equation ( ) is generally referred to as Hooke’s law, after the British scientist Robert Hooke (a contemporary of Newton). Of
course, it is not a “law” at all, merely a useful approximation to the way most springs behave as long as you do not stretch them or
compress them too much .
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A note on the way the forces have been labeled in Figure . I have used the generic symbol “ ”, which stands for “contact,” to
indicate the type of force exerted by the wall and the hand on the spring. In fact, since each pair of forces (by the hand on the spring
and by the spring on the hand, for instance), at the point of contact, arises from one and the same interaction, I should have used the
same “type” notation for both, but it is widespread practice to use a superscript like “spr” to denote a force whose origin is,
ultimately, a spring’s elasticity. This does not change the fact that the spring force, at the point where it is applied, is indeed a
contact force.

So, next, a word on “contact” forces. Basically, what we mean by that is forces that arise where objects “touch,” and we mean this
by opposition to what are called instead “field” forces (such as gravity, or magnetic or electrostatic forces) which “act at a
distance.” The distinction is actually only meaningful at the macroscopic level, since at the microscopic level objects never really
touch, and all forces are field forces, it is just that some are “long range” and some are “short range.” For our purposes, really, the
word “contact” will just be a convenient, catch-all sort of moniker that we will use to label the force vectors when nothing more
specific will do.

The result ( ) generalizes to more dimensions, but to do it properly you need vectors and partial derivative notation, and I’m
already bending the notational rules a little bit here..

Assuming that you can compress them! Some springs, such as slinkies, actually cannot be compressed because their coils are
already in contact when they are relaxed. Nevertheless, Equation ( ) will still apply approximately to such a spring when it is
stretched, that is, when .

This page titled 22.1: Forces and Potential Energy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio
Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

6.2: Forces and Potential Energy by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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22.2: Work Done on a System By All the External Forces
Consider the most general possible system, one that might contain any number of particles, with possibly many forces, both
internal and external, acting on each of them. We will again, for simplicity, start by considering what happens over a time interval
so short that all the forces are approximately constant (the final result will hold for arbitrarily long time intervals, just by adding, or
integrating, over many such short intervals). We will also work explicitly only the one-dimensional case, although again that turns
out to not be a real restriction.

Let then  be the work done on particle 1 by all the forces acting on it,  the work done on particle 2, and so on. The total
work is the sum . However, by the results of Chapter 10, we have  (the change in
kinetic energy of particle 1), , and so on, so adding all these up we get

where  is the change in kinetic energy of the whole system.

So far, of course, this is nothing new. To learn something else we need to look next at the work done by the internal forces. It is
helpful here to start by considering the “no-dissipation case” in which all the internal forces can be derived from a potential
energy . We will consider the case where dissipative processes happen inside the system after we have gained a full understanding
of the result we will obtain for this simpler case.

Or else they do no work at all: the magnetic force between moving charges is an example of the latter.

The No-Dissipation Case
The internal forces are, by definition, forces that arise from the interactions between pairs of particles that are both inside the
system. Because of Newton’s 3rd law, the force  (we will omit the “type” superscript for now) exerted by particle 1 on particle 2
must be the negative of , the force exerted by particle 2 on particle 1. Hence, the work associated with this interaction for this
pair of particles can be written

Notice that  can be rewritten as , where  is the
relative position coordinate of the two particles. Therefore,

Now, if the interaction in question is associated with a potential energy, as I showed in section 21.1, . Assume
the displacement  is so small that we can replace the derivative by just the ratio  (which is consistent with our
assumption that the force is approximately constant over the time interval considered); the result will then be

Adding up very many such “infinitesimal” displacements will lead to the same final result, where  will be the change in the
potential energy over the whole process. This can also be proved using calculus, without any approximations:

We can apply this to every pair of particles and every internal interaction, and then add up all the results. On one side, we will get
the total work done on the system by all the internal forces; on the other side, we will get the negative of the change in the system’s
total internal energy:

In words, the work done by all the (conservative) internal forces is equal to the change in the system’s potential energy.

Let us now put Eqs. ( ) and ( ) together: the difference between the work done by all the forces and the work done by
the internal forces is, of course, the work done by the external forces, but according to Eqs. ( ) and ( ), this is equal to

Wall,1 Wall,2

= + +⋯Wall,sys Wall,1 Wall,2 = ΔWall,1 K1

= ΔWall,2 K2

= ΔWall,sys Ksys (22.2.1)
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which is the change in the total mechanical (kinetic plus potential) energy of the system. If we further assume that the system, in
the absence of the external forces, is closed, then there are no other processes (such as the absorption of heat) by which the total
energy of the system might change, and we get the simple result that the work done by the external forces equals the change in the
system’s total energy:

 

As a first application of the result ( ), Imagine you throw a ball of mass  upwards (see Figure ), and it reaches a
maximum height  above the point where your hand started to move. Let us define the system to be the ball and the earth, so the
force exerted by your hand is an external force. Then you do work on the system during the throw, which in the figure is the
interval, from A to B, during which your hand is on contact with the ball. The bar diagram on the side shows that some of this work
goes into increasing the system’s (gravitational) potential energy (because the ball goes up a little while in contact with your hand),
and the rest, which is typically most of it, goes into increasing the system’s kinetic energy (in this case, just the ball’s; the earth’s
kinetic energy does not change in any measurable way!).

Figure : Tossing a ball into the air. We consider the system formed by the ball and the earth. The force exerted by the hand
(which is in contact with the ball from point A to point B) is therefore an external force. The diagrams show the system’s energy
balance over three different intervals.

So how much work did you actually do? If we knew the distance from A to B, and the magnitude of the force you exerted, and if
we could assume that your force was constant throughout, we could calculate  from the definition (10.2.5). But in this case, and

= − = Δ +ΔWext,sys Wall,sys Wint,sys Ksys Usys (22.2.7)

 Theorem : Generalized Work-Energy Theorem22.2.1

= Δ .Wext,sys Esys (22.2.8)
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many others like it, it is actually easier to find out how much total energy the system gained and just use Equation ( ). To find 
 in practice, all we have to do is see how high the ball rises. At the ball’s maximum height (point C), as the second diagram

shows, all the energy in the system is gravitational potential energy, and (as long as the system stays closed), all that energy is still
equal to the work you did initially, so if the distance from A to C is  you must have done an amount of work

The third diagram in Figure  shows the work-energy balance for another time interval, during which the ball falls from C to
B. Over this time, no external forces act on the ball (recall we have taken the system to be the ball and the earth, so gravity is an
internal force). Then, the work done by the external forces is zero, and the change in the total energy of the system is also zero. The
diagram just shows an increase in kinetic energy at the expense of an equal decrease in potential energy.

What about the work done by the internal forces? Equation ( ) tells us that this work is equal to the negative of the change in
potential energy. In this case, the internal force is gravity, and the corresponding energy is gravitational potential energy. This
change in potential energy is clearly visible in all the diagrams; however, when you add to it the change in kinetic energy, the result
is always equal to the work done by the external force only. Put otherwise, the internal forces do not change the system’s total
energy, they just “redistribute” it among different kinds—as in, for instance, the last diagram in Figure , where you can
clearly see that gravity is causing the kinetic energy of the system to increase at the expense of the potential energy.

We will use diagrams like the ones in Figure  to look at the work-energy balance for different systems. The idea is that the
sum of all the columns on the left (the change in the system’s total energy) has to equal the result on the far-right column (the work
done by the net external force): that is the content of the theorem ( ). Note that, unlike the energy diagrams we used in
Chapter 5, these columns represent changes in the energy, so they could be positive or negative.

Just as for the earlier energy diagrams, the picture we get will be different, even for the same physical situation, depending on the
choice of system. This is illustrated in Figure  below, where I have taken the same throw shown in Figure , but now
the system I’m looking at is the ball only. This means gravity is now an external force, as is the force of the hand, and the ball only
has kinetic energy. Normally one would show the sum of the work done by the two external forces on a single column, but here I
have chosen to break it up into two columns for clarity.

As you can see, during the throw the hand does positive work, whereas gravity does a comparatively small amount of negative
work, and the change in kinetic energy is the sum of the two. For the longer interval from A to C (second diagram), gravity
continues to do negative work until all the kinetic energy of the ball is gone. For the interval from C to B, the only external force is
gravity, which now does positive work, equal to the increase in the ball’s kinetic energy.

Figure : Work-energy balance diagrams for the same toss illustrated in Figure , but now the system is taken to be the
ball only.

Of course, the numerical value of the actual work done by any particular force does not depend on our choice of system: in each
case, gravity does the same amount of work in the processes illustrated in Figure  as in those illustrated in Figure . The
difference, however, is that for the system in Figure , gravity is an external force, and now the work it does actually changes
the system’s total energy, because the gravitational potential energy is now not included in that total.

Formally, it works like this: in the case shown in Figure , where the system is the ball and the earth, we have 
. By the result ( ), however, we have , and so this equation can be rearranged to read 
, which is just the result ( ) when the system is the ball alone.
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Ultimately, the reason we emphasize the importance of the choice of system is to prevent double counting: if you want to count the
work done by gravity as contributing to the change in the system’s total energy, it means that you are, implicitly, treating gravity as
an external force, and therefore your system must be something that does not have, by itself, gravitational potential energy (the case
of the ball in Figure ); conversely, if you insist on counting gravitational potential energy as contributing to the system’s total
energy, then you must treat gravity as an internal force, and leave it out of the calculation of the work done on the system by the
external forces, which are the only ones that can change the system’s total energy.

The General Case- Systems With Dissipation
We are now ready to consider what happens when some of the internal interactions in a system are not conservative. There are two
key observations to keep in mind: first, of course, that energy will always be conserved in a closed system, regardless of whether
the internal forces are “conservative” or not: if they are not, it merely means that they will convert some of the “organized,”
mechanical energy, into disorganized (primarily thermal) energy.

The second observation is that the work done by an external force on a system does not depend on where the force comes from—
that is to say, what physical arrangement we use to produce the force. Only the value of the force at each step and the displacement
of the point of application are involved in the definition (10.2.5). This means, in particular, that we can use a conservative
interaction to do the work for us. It turns out, then, that the generalization of the result ( ) to apply to all sorts of interactions
becomes straightforward.

To see the idea, consider, for example, the situation in Figure  below. Here I have broken it up into two systems. System A,
outlined in blue, consists of block 1 and the surface on which it slides, and includes a dissipative interaction—namely, kinetic

friction—between the block and the surface. The force doing work on this system is the tension force from the rope, .

Figure : Block sliding on a surface, with friction, being pulled by a rope attached to a block falling under the action of
gravity. The motion of this system was solved for in Section 6.3.

Because the rope is assumed to have negligible mass, this force is the same in magnitude as the force  that is doing negative
work on system B. System B, outlined in magenta, consists of block 2 and the earth and thus it includes only one internal
interaction, namely gravity, which is conservative. This means that we can immediately apply the theorem ( ) to it, and

conclude that the work done on B by  is equal to the change in system B’s total energy:

22.2.2

22.2.8

22.2.3

F ⃗ t
r,1

22.2.3

F ⃗ t
r,2

22.2.8

F ⃗ t
r,2

= Δ .Wr,B EB (22.2.10)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85863?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/10%3A_C10)_Work/10.02%3A_Work_on_a_Single_Particle#eq:WorkDef
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_I_-_Classical_Mechanics_(Gea-Banacloche)/06%3A_Interactions_II_-_Forces/6.03%3A_Forces_Not_Derived_From_a_Potential_Energy


22.2.5 https://phys.libretexts.org/@go/page/85863

However, since the rope is inextensible, the two blocks move the same distance in the same time, and the force exerted on each by
the rope is the same in magnitude, so the work done by the rope on system A is equal in magnitude but opposite in sign to the work
it does on system B:

Now consider the total system formed by A+B. Assuming it is a closed system, its total energy must be constant, and so any
change in the total energy of B must be equal and opposite the corresponding change in the total energy of A: .
Therefore,

So we conclude that the work done by the external force on system A must be equal to the total change in system A’s energy. In
other words, Equation ( ) applies to system A as well, as it does to system B, even though the interaction between the parts
that make up system A is dissipative.

Although I have shown this to be true just for one specific example, the argument is quite general: if I use a conservative system B
to do some work on another system A, two things happen: first, by virtue of ( ), the work done by B comes at the expense of
its total energy, so . Second, if A and B together form a closed system, the change in A’s energy must be equal
and opposite the change in B’s energy, so . So the result ( ) holds for A, regardless of whether its
internal interactions are conservative or not.

What is essential in the above reasoning is that A and B together should form a closed system, that is, one that does not exchange
energy with its environment. It is very important, therefore, if we want to apply the theorem ( ) to a general system—that is,
one that includes dissipative interactions—that we draw the boundary of the system in such a way as to ensure that no dissipation is
happening at the boundary. For example, in the situation illustrated in Figure , if we want the result ( ) to apply we
must take system A to include both block 1 and the surface on which it slides. The reason for this is that the energy “dissipated” by
kinetic friction when two objects rub together goes into both objects. So, as the block slides, kinetic friction is converting some of
its kinetic energy into thermal energy, but not all this thermal energy stays inside block 1. Put otherwise, in the presence of friction,
block 1 by itself is not a closed system: it is “leaking” energy to the surface. On the other hand, when you include (enough of) the
surface in the system, you can be sure to have “caught” all the dissipated energy, and the result ( ) applies.

Energy Dissipated by Kinetic Friction
In the situation illustrated in Figure , we might calculate the energy dissipated by kinetic friction by indirect means. For
instance, we can use the fact that the energy of system A is of two kinds, kinetic and “dissipated,” and therefore, by theorem (

), we have

Back in section 6.3, we used Newton’s laws to solve for the acceleration of this system and the tension in the rope; using those
results, we can calculate the displacement  over any time interval, and the corresponding change in , and then we can solve
Equation ( ) for .

If we do this, we will find out that, in fact, the following result holds,

where  is the force of kinetic friction exerted by the surface on block 1, and must be understood to be negative in this equation
(so that  will come out positive, as it must be).

It is tempting to think of the product  as the work done by the force of kinetic friction on the block, and most of the time
there is nothing wrong with that, but it is important to realize that the “point of application” of the friction force is not a single
point: rather, the force is “distributed,” that is to say, spread over the whole contact area between the block and the surface. As a
consequence of this, a more general expression for the energy dissipated by kinetic friction between an object  and a surface 
should be

= − = −Δ .Wr,A Wr,B EB (22.2.11)
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where we are using the subscript notation  to refer to “the position of B in the frame of A” (or “relative to A”); in other words, 
 is the change in the position of the object relative to the surface or, more simply, the distance that the object and the surface

slip past each other (while rubbing against each other, and hence dissipating energy). If the surfaces is at rest (relative to the Earth),
 reduces to , the displacement of the object in the Earth reference frame, and we can remove the subscript , as we

typically do, for simplicity; however, in the rare cases when both the surface and the objet are moving what matters is how far they
move relative to each other. In that case we have  (with both  and  measured in the Earth
reference frame).

This page titled 22.2: Work Done on a System By All the External Forces is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.
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22.3: Forces Not Derived From a Potential Energy
As we have seen in the previous section, for interactions that are associated with a potential energy, we are always able to
determine the forces from the potential energy by simple differentiation. This means that we do not have to rely exclusively on an
equation of the type , to infer the value of a force from the observed acceleration; rather, we can work in reverse, and
predict the value of the acceleration (and from it all the subsequent motion) from our knowledge of the force.

I have said before that, on a microscopic level, all the interactions can be derived from potential energies, yet at the macroscopic
level this is not generally true: we have many kinds of interactions for which the associated “stored” or converted energy cannot, in
general, be written as a function of the macroscopic position variables for the objects making up the system (by which I mean,
typically, the positions of their centers of mass). So what do we do in those cases?

The forces of this type with which we shall deal this semester actually fall into two different categories: the ones that do not
dissipate energy, and that we could, in fact, associate with a potential energy if we wanted to , and the ones that definitely dissipate
energy and need special handling. The former category includes the normal force, tension, and the static friction force; the second
category includes the force of kinetic (or sliding) friction, and air resistance. A brief description of all these forces, and the methods
to deal with them, follows.

If we wanted to complicate our life, that is...

Tensions
Tension is the force exerted by a stretched spring, and, similarly, by objects such as cables, ropes, and strings in response to a
stretching force (or load) applied to them. It is ultimately an elastic force, so, as I said above, we could in principle describe it by a
potential energy, but in practice cables, strings and the like are so stiff that it is often all right to neglect their change in length
altogether and assume that no potential energy is, in fact, stored in them. The price we pay for this simplification (and it is a
simplification) is that we are left without an independent way to determine the value of the tension in any specific case; we just
have to infer it from the acceleration of the object on which it acts (since it is a reaction force, it can assume any value as required
to adjust to any circumstance—up to the point where the rope snaps, anyway).

Thus, for instance, in the picture below, which shows two blocks connected by a rope over a pulley, the tension force exerted by the
rope on block 1 must equal , where  is the acceleration of that block, provided there are no other horizontal forces (such as
friction) acting on it. For the hanging block, on the other hand, the net force is the sum of the tension on the other end of the rope
(pulling up) and gravity, pulling down. If we choose the upward direction as positive, we can write Newton’s second law for the
second block as

Two things need to be realized now. First, if the rope is inextensible, both blocks travel the same distance in the same time, so their
speeds are always the same, and hence the magnitude of their accelerations will always be the same as well; only the sign may be
different depending on which direction we choose as positive. If we take to the right to be positive for the horizontal motion, we
will have . I’m just going to call , so then .

F = ma
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Figure : Two blocks joined by a massless, inextensible strength threaded over a massless pulley. An optional friction force
(in red, where  could be either  or ) is shown for use later, in the discussion below in subsection "Static and Kinetic Friction
Forces." In this subsection, however, it is assumed to be zero.

The second thing to note is that, if the rope’s mass is negligible, it will, like an ideal spring, pull with a force with the same
magnitude on both ends. With our specific choices (up and to the right is positive), we then have , and I’m just going to
call this quantity  . All this yields, then, the following two equations:

The system ( ) can be easily solved to get

Normal Forces
Normal force is the reaction force with which a surface pushes back when it is being pushed on. Again, this works very much like
an extremely stiff spring, this time under compression instead of tension. And, again, we will eschew the potential energy treatment
by assuming that the surface’s actual displacement is entirely negligible, and we will just calculate the value of  as whatever is
needed in order to make Newton’s second law work. Note that this force will always be perpendicular to the surface, by definition
(the word “normal” means “perpendicular” here); the task of dealing with a sideways push on the surface will be delegated to the
static friction force, to be covered next.

If I am just standing on the floor and not falling through it, the net vertical force acting on me must be zero. The force of gravity on
me is  downwards, and so the upwards normal force must match this value, so for this situation . But don’t get too
attached to the notion that the normal force must always be equal to , since this will often not be the case. Imagine, for instance,
a person standing inside an elevator at the time it is accelerating upwards. With the upwards direction as positive, Newton’s second
law for the person reads

and therefore for this situation

If you were weighing yourself on a bathroom scale in the elevator, this is the upwards force that the bathroom scale would have to
exert on you, and it would do that by compressing a spring inside, and it would record the “extra” compression (beyond that
required by your actual weight, ) as extra weight. Conversely, if the elevator were accelerating downward, the scale would
record you as being lighter. In the extreme case in which the cable of the elevator broke and you, the elevator and the scale ended
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up (briefly, before the emergency brake caught on) in free fall, you would all be falling with the same acceleration, you would not
be pushing down on the scale at all, and its normal force as well as your recorded weight would be zero. This is ultimately the
reason for the apparent weightlessness experienced by the astronauts in the space station, where the force of gravity is, in fact, not
very much smaller than on the surface of the earth. (We will return to this effect after we have a good grip on two-dimensional, and
in particular circular, motion.)

Static and Kinetic Friction Forces
The static friction force is a force that prevents two surfaces in contact from slipping relative to each other. It is an extremely useful
force, since we would not be able to drive a car, or ride a bicycle, or even walk, without it—as we know from experience, if we
have ever tried to do any of those things on a low-friction surface (such as a sheet of ice).

The science behind friction (known technically as tribology) is actually not very simple at all, and it is of great current interest for
many reasons—whether the ultimate goal is to develop ways to reduce friction or to increase it. On an elementary level, we are all
aware of the fact that even a surface that looks smooth on a macroscopic scale will actually exhibit irregularities, such as ridges and
valleys, under a microscope. It makes sense, then, that when two such surfaces are pressed together, the bumps on one of them will
hit, and be held in place by, the bumps on the other one, and that will prevent sliding until and unless a sufficient force is applied to
temporarily “flatten” the bumps enough to allow the thing to move .

As long as this does not happen, that is, as long as the surfaces do not slide relative to each other, we say we are dealing with the
static friction force, which is, at least approximately, an elastic force that does not dissipate energy: the small distortion of the
“bumps” on the surfaces that takes place when you push on them typically happens slowly enough, and is small enough, to be
reversible, so that when you stop pushing the two surfaces just go back to their initial state. This is no longer the case once the
surfaces start sliding relative to each other. At that point the character of the friction force changes, and we have to deal with the
sliding, or kinetic friction force, as I will explain below.

The static friction force is also, like tension and the normal force, a reaction force that will adjust itself, within limits, to take any
value required to prevent slippage in a given circumstance. Hence, its actual value in a particular situation cannot really be
ascertained until the other relevant forces— the other forces pushing or pulling on the object—are known.

For instance, for the system in Figure , imagine there is a force of static friction between block 1 and the surface on which it
rests, sufficiently large to keep it from sliding altogether. How large does this have to be? If there is no acceleration (a = 0), the
equivalent of system ( ) will be

where  is the force of static friction exerted by the surface on block 1, and we are going to let the math tell us what sign it is
supposed to have. Solving the system ( ) we just get the condition

so this is how large  has to be in order to keep the whole system from moving in this case.

There is an empirical formula that tells us approximately how large the force of static friction can get in a given situation. The idea
behind it is that, microscopically, the surfaces are in contact only near the top of their respective ridges. If you press them together
harder, some of the ridges get flattened and the effective contact area increases; this in turn makes the surfaces more resistant to
slippage. A direct measure of how strongly the two surfaces press against each other is, actually, just the normal force they exert on
each other. So, in general, we expect the maximum force that static friction will be able to exert to be proportional to the normal
force between the surfaces:

where  and  just mean “surface 1” and “surface 2,” respectively, and the number  is known as the coefficient of static
friction: it is a tabulated quantity that is determined experimentally, by testing the slippage of different surfaces against each other
under different loads.

In our example, the normal force exerted by the surface on block 1 has to be equal to , since there is no vertical acceleration
for that block, and so the maximum value that  may have in this case is , whatever  might happen to be. In fact, this
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setup would give us a way to determine  for these two surfaces: start with a small value of , and gradually increase it until the
system starts moving. At that point we will know that  has just exceeded the maximum possible value of , namely, 

, and so , where  is the largest mass we can hang before the system starts moving.

By contrast with all of the above, the kinetic friction force, which always acts so as to oppose the relative motion of the two
surfaces when they are actually slipping, is not elastic, it is definitely dissipative, and, most interestingly, it is also not much of a
reactive force, meaning that its value can be approximately predicted for any given circumstance, and does not depend much on
things such as how fast the surfaces are actually moving relative to each other. It does depend on how hard the surfaces are pressing
against each other, as quantified by the normal force, and on another tabulated quantity known as the coefficient of kinetic friction:

Note that, unlike for static friction, this is not the maximum possible value of | |, but its actual value; so if we know  (and )
we know  without having to solve any other equations (its sign does depend on the direction of motion, of course). The
coefficient  is typically a little smaller than , reflecting the fact that once you get something you have been pushing on to
move, keeping it in motion with constant velocity usually does not require the same amount of force.

To finish off with our example in Figure , suppose the system is moving, and there is a kinetic friction force  between
block 1 and the surface. The equations ( ) then have to be changed to

and the solution now is

You may ask, why does kinetic friction dissipate energy? A qualitative answer is that, as the surfaces slide past each other, their
small (sometimes microscopic) ridges are constantly “bumping” into each other; so you have lots of microscopic collisions
happening all the time, and they cannot all be perfectly elastic. So mechanical energy is being “lost.” In fact, it is primarily being
converted to thermal energy, as you can verify experimentally: this is why you rub your hands together to get warm, for instance.
More dramatically, this is how some people (those who really know what they are doing!) can actually start a fire by rubbing sticks
together.

This picture based, essentially, on classical physics, leaves out an atomic-scale effect that may be important in some cases, which
is the formation of weak bonds between the atoms of both surfaces, resulting in an actual “adhesive” force. This is, for instance,
how geckos can run up vertical walls. For our purposes, however, the classical picture (of small ridges and valleys bumping into
each other) will suffice to qualitatively understand all the examples we will cover this semester.

Air Resistance
Air resistance is an instance of fluid resistance or drag, a force that opposes the motion of an object through a fluid.
Microscopically, you can think of it as being due to the constant collisions of the object with the air molecules, as it cleaves its way
through the air. As a result of these collisions, some of its momentum is transferred to the air, as well as some of its kinetic energy,
which ends up as thermal energy (as in the case of kinetic friction discussed above). The very high temperatures that air resistance
can generate can be seen, in a particularly dramatic way, on the re-entry of spacecraft into the atmosphere.

Unlike kinetic friction between solid surfaces, the fluid drag force does depend on the velocity of the object (relative to the fluid),
as well as on a number of other factors having to do with the object’s shape and the fluid’s density and viscosity. Very roughly
speaking, for low velocities the drag force is proportional to the object’s speed, whereas for high velocities it is proportional to the
square of the speed.

In principle, one can use the appropriate drag formula together with Newton’s second law to calculate the effect of air resistance on
a simple object thrown or dropped; in practice, this requires a somewhat more advanced math than we will be using this course, and
the formulas themselves are complicated, so I will not introduce them here.

μs m2

gm2 | |F s
12

gμsm1 = ( /μs m2)max m1 (m2)max

=∣∣F
k

s1,s2
∣∣ μk

∣∣F
n

s1,s2
∣∣ (22.3.9)

F k F n μk

F k

μk μs

22.3.1 F k
s,1

22.3.2

− gF t μkm1

− gF t m2

= am1

= − am2 (22.3.10)

a

F t

= g
−m2 μkm1

+m1 m2

= g
(1 + )m1m2 μk

+m1 m2
(22.3.11)

4

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85864?pdf


22.3.5 https://phys.libretexts.org/@go/page/85864

One aspect of air resistance that deserves to be mentioned is what is known as “terminal velocity”. Since air resistance increases
with speed, if you drop an object from a sufficiently great height, the upwards drag force on it will increase as it accelerates, until at
some point it will become as large as the downward force of gravity. At that point, the net force on the object is zero, so it stops
accelerating, and from that point on it continues to fall with constant velocity. When the Greek philosopher Aristotle was trying to
figure out the motion of falling bodies, he reasoned that, since air was just another fluid, he could slow down the fall (in order to
study it better) without changing the physics by dropping objects in liquids instead of air. The problem with this approach, though,
is that terminal velocity is reached much faster in a liquid than in air, so Aristotle missed entirely the early stage of approximately
constant acceleration, and concluded (wrongly) that the natural way all objects fell was with constant velocity. It took almost two
thousand years until Galileo disproved that notion by coming up with a better method to slow down the falling motion—namely, by
using inclined planes.

This page titled 22.3: Forces Not Derived From a Potential Energy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts
platform.

6.3: Forces Not Derived From a Potential Energy by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source:
https://scholarworks.uark.edu/oer/3.
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22.4: Examples

1. Draw a free-body diagram for each force on the object.
2. Determine whether or not each force does work over the displacement in the diagram. Be sure to keep any positive or

negative signs in the work done.
3. Add up the total amount of work done by each force.
4. Set this total work equal to the change in kinetic energy and solve for any unknown parameter.
5. Check your answers. If the object is traveling at a constant speed or zero acceleration, the total work done should be zero

and match the change in kinetic energy. If the total work is positive, the object must have sped up or increased kinetic
energy. If the total work is negative, the object must have slowed down or decreased kinetic energy

 

Consider moving an object, of mass  = 8.75 kg, from the origin to point  m, along three different paths
as shown in the figure.

1. First assume the only force acting on the object is gravity, which is directed downwards (so ). Find the work done
by the gravitational force on the object for each of the three paths in the figure on the left. 

2. Now consider dragging this object around the surface of a table, as shown in the figure on the right. If the coefficient of
friction between the table and the particle is 0.15, find the work done by friction for each path.

 

 Problem-Solving Strategy: Work-Energy Theorem

 Whiteboard Problem : Conservative vs Nonconservative22.4.1

m ( , ) = (7.2, 3.5)x0 y0

= −gg ⃗  ŷ

 Whiteboard Problem : Terror on an Elevator22.4.2
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You have been tasked with designing a ``worst-case scenario'' safety system for an elevator. If this 2000-kg elevator's cables
break at the top of it's tower, it will be moving with a speed of 25 m/s when it reaches the bottom. Your job is to determine the
parameters required if this elevator will be stopped by brakes or a safety spring, over a distance of 3.00 m.

1. Using brakes that apply a constant force, how much force would the brakes have to apply to stop the elevator?
2. Using a spring, what would the spring constant need to be to stop this elevator?
3. What if you used both? If the brakes apply a force of 17 kN, what would the spring constant need to be? 

 

The frictionless track for a toy car includes a loop-the-loop of radius . How high, measured from the bottom of the loop, must
the car be placed to start from rest on the approaching section of track and go all the way around the loop?

Figure : A frictionless track for a toy car has a loop-the-loop in it. How high must the car start so that it can go around
the loop without falling off?

Strategy

The free-body diagram at the final position of the object is drawn in Figure . The gravitational work is the only work
done over the displacement that is not zero. Since the weight points in the same direction as the net vertical displacement, the
total work done by the gravitational force is positive. From the work-energy theorem, the starting height determines the speed
of the car at the top of the loop,

where the notation is shown in the accompanying figure. At the top of the loop, the normal force and gravity are both down
and the acceleration is centripetal, so

 Example : Loop-the-Loop22.4.3
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The condition for maintaining contact with the track is that there must be some normal force, however slight; that is, .
Substituting for  and , we can find the condition for .

Solution

Implement the steps in the strategy to arrive at the desired result:

Significance

On the surface of the loop, the normal component of gravity and the normal contact force must provide the centripetal
acceleration of the car going around the loop. The tangential component of gravity slows down or speeds up the car. A child
would find out how high to start the car by trial and error, but now that you know the work-energy theorem, you can predict the
minimum height (as well as other more useful results) from physical principles. By using the work-energy theorem, you did
not have to solve a differential equation to determine the height.

Suppose the radius of the loop-the-loop in Example  is 15 cm and the toy car starts from rest at a height of 45 cm above
the bottom. What is its speed at the top of the loop?

In situations where the motion of an object is known, but the values of one or more of the forces acting on it are not known, you
may be able to use the work-energy theorem to get some information about the forces. Work depends on the force and the distance
over which it acts, so the information is provided via their product.

A bullet has a mass of 40 grains (2.60 g) and a muzzle velocity of 1100 ft./s (335 m/s). It can penetrate eight 1-inch pine
boards, each with thickness 0.75 inches. What is the average stopping force exerted by the wood, as shown in Figure ?

Figure : The boards exert a force to stop the bullet. As a result, the boards do work and the bullet loses kinetic energy

Strategy

We can assume that under the general conditions stated, the bullet loses all its kinetic energy penetrating the boards, so the
work-energy theorem says its initial kinetic energy is equal to the average stopping force times the distance penetrated. The
change in the bullet’s kinetic energy and the net work done stopping it are both negative, so when you write out the work-
energy theorem, with the net work equal to the average force times the stopping distance, that’s what you get. The total
thickness of eight 1-inch pine boards that the bullet penetrates is 8 x  in. = 6 in. = 15.2 cm.

Solution

Applying the work-energy theorem, we get

so

Significance
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We could have used Newton’s second law and kinematics in this example, but the work-energy theorem also supplies an
answer to less simple situations. The penetration of a bullet, fired vertically upward into a block of wood, is discussed in one
section of Asif Shakur’s recent article [“Bullet-Block Science Video Puzzle.” The Physics Teacher (January 2015) 53(1): 15-
16]. If the bullet is fired dead center into the block, it loses all its kinetic energy and penetrates slightly farther than if fired off-
center. The reason is that if the bullet hits off-center, it has a little kinetic energy after it stops penetrating, because the block
rotates. The work-energy theorem implies that a smaller change in kinetic energy results in a smaller penetration.

Learn more about work and energy in this PhET simulation (https://phet.colorado.edu/en/simulation/the-ramp) called “the
ramp.” Try changing the force pushing the box and the frictional force along the incline. The work and energy plots can be
examined to note the total work done and change in kinetic energy of the box.

Example : Work, energy and the choice of system- dissipative case
Consider again the situation shown in Figure 21.3.1. Let  = 1 kg,  = 2 kg, and  = 0.3. Use the solutions provided in
section 21.3 to calculate the work done by all the forces, and the changes in all energies, when the system undergoes a
displacement of 0.5 m, and represent the changes graphically using bar diagrams like the ones in Figure 21.2.2 (for system A
and B separately)

Solution

From Equation (21.3.11), we have

We can use the acceleration to calculate the change in kinetic energy, since we have Equation (15.2.10) for motion with
constant acceleration:

so the change in kinetic energy of the two blocks is

We can also use the tension to calculate the work done by the external force on each system:

Lastly, we need the change in the gravitational potential energy of system B:

and the increase in dissipated energy in system A, which we can get from Equation (21.2.16):

We can now put all this together to show that Equation (21.2.8) indeed holds:

To plot all this as energy bars, if you do not have access to a very precise drawing program, you typically have to make some
approximations. In this case, we see that  (exactly), whereas , so we can use one box to
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represent , two boxes for , three for , four for , and so on. The result is shown in green in the picture
below; the blue bars have been drawn more exactly to scale, and are shown for your information only.

Example : Work, energy and the choice of system- non-dissipative case
Suppose you hang a spring from the ceiling, then attach a block to the end of the spring and let go. The block starts swinging
up and down on the spring. Consider the initial time just before you let go, and the final time when the block momentarily
stops at the bottom of the swing. For each of the choices of a system listed below, find the net energy change of the system in
this process, and relate it explicitly to the work done on the system by an external force (or forces)

a. System is the block and the spring.
b. System is the block alone.
c. System is the block and the earth.

Solution

(a) The block alone has kinetic energy, and the spring alone has (elastic) potential energy, so the total energy of this system is
the sum of these two. For the interval considered, the change in kinetic energy is zero, because the block starts and ends
(momentarily) at rest, so only the spring energy changes. This has to be equal to the work done by gravity, which is the only
external force.

So, if the spring stretches a distance d, its potential energy goes from zero to , and the block falls the same distance, so
gravity does an amount of work equal to , and we have

(b) If the system is the block alone, the only energy it has is kinetic energy, which, as stated above, does not see a net change in
this process. This means the net work done on the block by the external forces must be zero. The external forces in this case are
the spring force and gravity, so we have

We have calculated  above, so from this we get that the work done by the spring on the block, as it stretches, is ,
or (by Equation ( )) . Note that the force exerted by the spring is not constant as it stretches (or compresses) so we
cannot just use Equation (9.2.1) to calculate it; rather, we need to calculate it as an integral, as in Equation (21.2.5), or derive it
in some indirect way as we have just done here.

(c) If the system is the block and the earth, it has kinetic energy and gravitational potential energy. The force exerted by the
spring is an external force now, so we have:

so we end up again with the result that . Note that both the work done by the spring and the work
done by gravity are equal to the negative of the changes in their respective potential energies, as they should be.

Ediss ΔK1 Wext,A ΔK2

22.4.7

k1
2

d2

mgd

= mgd = Δ = ΔK+Δ = 0 + k .Wgrav Esys U spr 1

2
d2 (22.4.8)

+ = ΔK = 0.Wspr Wgrav (22.4.9)

Wgrav −mgd

22.4.8 − k1
2

d2

= Δ = ΔK+Δ = 0 −mgdWspr Esys UG (22.4.10)

= −mgd = − kWspr
1
2

d2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85865?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/09%3A_C9)_Potential_Energy-_Graphs_and_Springs/9.02%3A_Potential_Energy_Functions#Equation+5.1.5
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/21%3A_N8)_Forces_Energy_and_Work/21.02%3A_Work_Done_on_a_System_By_All_the_External_Forces#eq:WorkIntDef


22.4.6 https://phys.libretexts.org/@go/page/85865

 

For a standing jump, you start standing straight (A) so your body’s center of mass is at a height  above the ground. You then
bend your knees so your center of mass is now at a (lower) height  (B). Finally, you straighten your legs, pushing hard on the
ground, and take off, so your center of mass ends up achieving a maximum height, , above the ground (C). Answer the
following questions in as much detail as you can.

a. Consider the system to be your body only. In going from (A) to (B), which external forces are acting on it? How do their
magnitudes compare, as a function of time?

b. In going from (A) to (B), does any of the forces you identified in part (a) do work on your body? If so, which one, and by
how much? Does your body’s energy increase or decrease as a result of this? Into what kind of energy do you think this
work is primarily converted?

c. In going from (B) to (C), which external forces are acting on you? (Not all of them need to be acting all the time.) How do
their magnitudes compare, as a function of time?

d. In going from (B) to (C), does any of the forces you identified do work on your body? If so, which one, and by how much?
Does your body’s kinetic energy see a net change from (B) to (C)? What other energy change needs to take place in order
for Equation (21.2.8) (always with your body as the system) to be valid for this process?

Solution

(a) The external forces on your body are gravity, pointing down, and the normal force from the floor, pointing up. Initially, as
you start lowering your center of mass, the normal force has to be slightly smaller than gravity, since your center of mass
acquires a small downward acceleration. However, eventually  would have to exceed  in order to stop the downward
motion.

(b) The normal force does no work, because its point of application (the soles of your feet) does not move, so  in the
expression  (Equation (9.2.1)) is zero.

Gravity, on the other hand, does positive work, since you may always treat the center of mass as the point of application of
gravity. We have , and , so

Since this is the net work done by all the external forces on my body, and it is positive, the total energy in my body must have
increased (by the theorem ((21.2.8)): ). In this case, it is clear that the main change has to be an increase in
my body’s elastic potential energy, as my muscles tense for the jump. (An increase in thermal energy is always possible too.)

(c) During the jump, the external forces acting on me are again gravity and the normal force, which together determine the
acceleration of my center of mass. At the beginning of the jump, the normal force has to be much stronger than gravity, to give
me a large upwards acceleration. Since the normal force is a reaction force, I accomplish this by pushing very hard with my
feet on the ground, as I extend my leg’s muscles: by Newton’s third law, the ground responds with an equal and opposite force
upwards.

As my legs continue to stretch, and move upwards, the force they exert on the ground decreases, and so does , which
eventually becomes less than . At that point (probably even before my feet leave the ground) the acceleration of my center
of mass becomes negative (that is, pointing down). This ultimately causes my upwards motion to stop, and my body to come
down.

(d) The only force that does work on my body during the process described in (c) is gravity, since, again, the point of
application of  is the point of contact between my feet and the ground, and that point does not move up or down—it is
always level with the ground. So , which in this case is actually negative: .

In going from (B) to (C), there is no change in your kinetic energy, since you start at rest and end (momentarily) with zero
velocity at the top of the jump. So the fact that there is a net negative work done on you means that the energy inside your body
must have gone down. Clearly, some of this is just a decrease in elastic potential energy. However, since  (the final height of
your center of mass) is greater than  (its initial height at (A), before crouching), there is a net loss of energy in your body as
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a result of the whole process. The most obvious place to look for this loss is in chemical energy: you “burned” some calories in
the process, primarily when pushing hard against the ground.

At a stoplight, a large truck (3000 kg) collides with a motionless small car (1200 kg). The truck comes to an instantaneous
stop; the car slides straight ahead, coming to a stop after sliding 10 meters. The measured coefficient of friction between the
car’s tires and the road was 0.62. How fast was the truck moving at the moment of impact?

Strategy

At first it may seem we don’t have enough information to solve this problem. Although we know the initial speed of the car,
we don’t know the speed of the truck (indeed, that’s what we’re asked to find), so we don’t know the initial momentum of the
system. Similarly, we know the final speed of the truck, but not the speed of the car immediately after impact. The fact that the
car eventually slid to a speed of zero doesn’t help with the final momentum, since an external friction force caused that. Nor
can we calculate an impulse, since we don’t know the collision time, or the amount of time the car slid before stopping. A
useful strategy is to impose a restriction on the analysis.

Suppose we define a system consisting of just the truck and the car. The momentum of this system isn’t conserved, because of
the friction between the car and the road. But if we could find the speed of the car the instant after impact—before friction had
any measurable effect on the car—then we could consider the momentum of the system to be conserved, with that restriction.

Can we find the final speed of the car? Yes; we invoke the work-kinetic energy theorem.

Solution
First, define some variables. Let:

M  and M  be the masses of the car and truck, respectively
v  and v  be the velocities of the truck before and after the collision, respectively
v  and v  be the velocities of the car before and after the collision, respectively
K  and K  be the kinetic energies of the car immediately after the collision, and after the car has stopped sliding (so K  = 0).
d be the distance the car slides after the collision before eventually coming to a stop.

Since we actually want the initial speed of the truck, and since the truck is not part of the work-energy calculation, let’s start
with conservation of momentum. For the car + truck system, conservation of momentum reads

Since the car’s initial velocity was zero, as was the truck’s final velocity, this simplifies to

So now we need the car’s speed immediately after impact. Recall that

where

Also,

The work is done over the distance the car slides, which we’ve called d. Equating:
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Friction is the force on the car that does the work to stop the sliding. With a level road, the friction force is

Since the angle between the directions of the friction force vector and the displacement d is 180°, and cos(180°) = –1, we have

(Notice that the car’s mass divides out; evidently the mass of the car doesn’t matter.)

Solving for the car’s speed immediately after the collision gives

Substituting the given numbers:

Now we can calculate the initial speed of the truck:

Significance

This is an example of the type of analysis done by investigators of major car accidents. A great deal of legal and financial
consequences depend on an accurate analysis and calculation of momentum and energy.
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22.E: Work and Kinetic Energy (Exercises)

Conceptual Questions

7.1 Work
1. Give an example of something we think of as work in everyday circumstances that is not work in the scientific sense. Is

energy transferred or changed in form in your example? If so, explain how this is accomplished without doing work.
2. Give an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it

does no work.
3. Describe a situation in which a force is exerted for a long time but does no work. Explain.
4. A body moves in a circle at constant speed. Does the centripetal force that accelerates the body do any work? Explain.
5. Suppose you throw a ball upward and catch it when it returns at the same height. How much work does the gravitational

force do on the ball over its entire trip?
6. Why is it more difficult to do sit-ups while on a slant board than on a horizontal surface? (See below.)

7. As a young man, Tarzan climbed up a vine to reach his tree house. As he got older, he decided to build and use a staircase
instead. Since the work of the gravitational force mg is path independent, what did the King of the Apes gain in using
stairs?

7.2 Kinetic Energy

8. A particle of m has a velocity of v   + v   + v  . Is its kinetic energy given by m(v   + v   + v  )/2? If not, what
is the correct expression?

9. One particle has mass m and a second particle has mass 2m. The second particle is moving with speed v and the first with
speed 2v. How do their kinetic energies compare?

10. A person drops a pebble of mass m  from a height h, and it hits the floor with kinetic energy K. The person drops another
pebble of mass m  from a height of 2h, and it hits the floor with the same kinetic energy K. How do the masses of the
pebbles compare?

7.3 Work-Energy Theorem

11. Under what conditions would it lose energy?

12. Work done on a system puts energy into it. Work done by a system removes energy from it. Give an example for each
statement.
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13. Two marbles of masses m and 2m are dropped from a height h. Compare their kinetic energies when they reach the
ground.

14. Compare the work required to accelerate a car of mass 2000 kg from 30.0 to 40.0 km/h with that required for an
acceleration from 50.0 to 60.0 km/h.

15. Suppose you are jogging at constant velocity. Are you doing any work on the environment and vice versa?
16. Two forces act to double the speed of a particle, initially moving with kinetic energy of 1 J. One of the forces does 4 J of

work. How much work does the other force do?

7.4 Power
17. Most electrical appliances are rated in watts. Does this rating depend on how long the appliance is on? (When off, it is a

zero-watt device.) Explain in terms of the definition of power.
18. Explain, in terms of the definition of power, why energy consumption is sometimes listed in kilowatt-hours rather than

joules. What is the relationship between these two energy units?
19. A spark of static electricity, such as that you might receive from a doorknob on a cold dry day, may carry a few hundred

watts of power. Explain why you are not injured by such a spark.
20. Does the work done in lifting an object depend on how fast it is lifted? Does the power expended depend on how fast it is

lifted?
21. Can the power expended by a force be negative?
22. How can a 50-W light bulb use more energy than a 1000-W oven?

Problems

7.1 Work
23. How much work does a supermarket checkout attendant do on a can of soup he pushes 0.600 m horizontally with a force

of 5.00 N?
24. A 75.0-kg person climbs stairs, gaining 2.50 m in height. Find the work done to accomplish this task.
25. (a) Calculate the work done on a 1500-kg elevator car by its cable to lift it 40.0 m at constant speed, assuming friction

averages 100 N. (b) What is the work done on the lift by the gravitational force in this process? (c) What is the total work
done on the lift?

26. Suppose a car travels 108 km at a speed of 30.0 m/s, and uses 2.0 gal of gasoline. Only 30% of the gasoline goes into
useful work by the force that keeps the car moving at constant speed despite friction. (The energy content of gasoline is
about 140 MJ/gal.) (a) What is the magnitude of the force exerted to keep the car moving at constant speed? (b) If the
required force is directly proportional to speed, how many gallons will be used to drive 108 km at a speed of 28.0 m/s?

27. Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0° with
the horizontal (see below). He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be
certain to include the work he does on the crate and on his body to get up the ramp.

28. How much work is done by the boy pulling his sister 30.0 m in a wagon as shown below? Assume no friction acts on the
wagon.
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29. A shopper pushes a grocery cart 20.0 m at constant speed on level ground, against a 35.0 N frictional force. He pushes in
a direction 25.0° below the horizontal. (a) What is the work done on the cart by friction? (b) What is the work done on the
cart by the gravitational force? (c) What is the work done on the cart by the shopper? (d) Find the force the shopper
exerts, using energy considerations. (e) What is the total work done on the cart?

30. Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant
speed, as shown below. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by
friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c)
What is the work done by the gravitational force on the sled? (d) What is the total work done?

31. A constant 20-N force pushes a small ball in the direction of the force over a distance of 5.0 m. What is the work done by
the force?

32. A toy cart is pulled a distance of 6.0 m in a straight line across the floor. The force pulling the cart has a magnitude of 20
N and is directed at 37° above the horizontal. What is the work done by this force?

33. A 5.0-kg box rests on a horizontal surface. The coefficient of kinetic friction between the box and surface is  = 0.50. A
horizontal force pulls the box at constant velocity for 10 cm. Find the work done by (a) the applied horizontal force, (b)
the frictional force, and (c) the net force.

34. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (µk = 0.20) at constant velocity by a force
directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total
work.

35. Suppose that the sled plus passenger of the preceding problem is pushed 20 m across the snow at constant velocity by a
force directed 30° below the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the
total work.

36. How much work does the force F(x) = (−2.0/x) N do on a particle as it moves from x = 2.0 m to x = 5.0 m?
37. How much work is done against the gravitational force on a 5.0-kg briefcase when it is carried from the ground floor to

the roof of the Empire State Building, a vertical climb of 380 m?
38. It takes 500 J of work to compress a spring 10 cm. What is the force constant of the spring?
39. A bungee cord is essentially a very long rubber band that can stretch up to four times its unstretched length. However, its

spring constant varies over its stretch [see Menz, P.G. “The Physics of Bungee Jumping.” The Physics Teacher
(November 1993) 31: 483-487]. Take the length of the cord to be along the x-direction and define the stretch x as the
length of the cord l minus its un-stretched length l0 ; that is, x = l − l  (see below). Suppose a particular bungee cord has a
spring constant, for 0 ≤ x ≤ 4.88 m, of k  = 204 N/m and for 4.88 m ≤ x, of k  = 111 N/m. (Recall that the spring constant
is the slope of the force F(x) versus its stretch x.) (a) What is the tension in the cord when the stretch is 16.7 m (the
maximum desired for a given jump)? (b) How much work must be done against the elastic force of the bungee cord to
stretch it 16.7 m?
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Figure 7.16 - (credit: Graeme Churchard)

40. A bungee cord exerts a nonlinear elastic force of magnitude F(x) = k x + k x , where x is the distance the cord is
stretched, k  = 204 N/m and k  = −0.233 N/m . How much work must be done on the cord to stretch it 16.7 m?

41. Engineers desire to model the magnitude of the elastic force of a bungee cord using the equation \[F(x) = a \Bigg[\frac{x
+ 9\; m}{9\; m} − \left(\dfrac{9\; m}{x + 9\; m}\right)^{2} \Bigg],$$where x is the stretch of the cord along its length
and a is a constant. If it takes 22.0 kJ of work to stretch the cord by 16.7 m, determine the value of the constant a.

42. A particle moving in the xy-plane is subject to a force

where x and y are in meters. Calculate the work done on the particle by this force, as it moves in a straight line from the
point (3 m, 4 m) to the point (8 m, 6 m).

43. A particle moves along a curved path y(x) = (10 m){1 + cos[(0.1 m )x]}, from x = 0 to x = 10  m, subject to a tangential
force of variable magnitude F(x) = (10 N)sin[(0.1 m )x]. How much work does the force do? (Hint: Consult a table of
integrals or use a numerical integration program.)

7.2 Kinetic Energy
44. Compare the kinetic energy of a 20,000-kg truck moving at 110 km/h with that of an 80.0-kg astronaut in orbit moving at

27,500 km/h.
45. (a) How fast must a 3000-kg elephant move to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/s? (b)

Discuss how the larger energies needed for the movement of larger animals would relate to metabolic rates.
46. Estimate the kinetic energy of a 90,000-ton aircraft carrier moving at a speed of at 30 knots. You will need to look up the

definition of a nautical mile to use in converting the unit for speed, where 1 knot equals 1 nautical mile per hour.
47. Calculate the kinetic energies of (a) a 2000.0-kg automobile moving at 100.0 km/h; (b) an 80.-kg runner sprinting at 10.

m/s; and (c) a 9.1 x 10 -kg electron moving at 2.0 x 10  m/s.
48. A 5.0-kg body has three times the kinetic energy of an 8.0-kg body. Calculate the ratio of the speeds of these bodies.
49. An 8.0-g bullet has a speed of 800 m/s. (a) What is its kinetic energy? (b) What is its kinetic energy if the speed is

halved?

7.3 Work-Energy Theorem
50. (a) Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly

typical distance for a non-panic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to
a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).

51. A car’s bumper is designed to withstand a 4.0-km/h (1.1-m/s) collision with an immovable object without damage to the
body of the car. The bumper cushions the shock by absorbing the force over a distance. Calculate the magnitude of the
average force on a bumper that collapses 0.200 m while bringing a 900-kg car to rest from an initial speed of 1.1 m/s.

52. Boxing gloves are padded to lessen the force of a blow. (a) Calculate the force exerted by a boxing glove on an
opponent’s face, if the glove and face compress 7.50 cm during a blow in which the 7.00-kg arm and glove are brought to
rest from an initial speed of 10.0 m/s. (b) Calculate the force exerted by an identical blow in the days when no gloves
were used, and the knuckles and face would compress only 2.00 cm. Assume the change in mass by removing the glove
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is negligible. (c) Discuss the magnitude of the force with glove on. Does it seem high enough to cause damage even
though it is lower than the force with no glove?

53. Using energy considerations, calculate the average force a 60.0-kg sprinter exerts backward on the track to accelerate
from 2.00 to 8.00 m/s in a distance of 25.0 m, if he encounters a headwind that exerts an average force of 30.0 N against
him.

54. A 5.0-kg box has an acceleration of 2.0 m/s  when it is pulled by a horizontal force across a surface with  = 0.50. Find
the work done over a distance of 10 cm by (a) the horizontal force, (b) the frictional force, and (c) the net force. (d) What
is the change in kinetic energy of the box?

55. A constant 10-N horizontal force is applied to a 20-kg cart at rest on a level floor. If friction is negligible, what is the
speed of the cart when it has been pushed 8.0 m?

56. In the preceding problem, the 10-N force is applied at an angle of 45° below the horizontal. What is the speed of the cart
when it has been pushed 8.0 m?

57. Compare the work required to stop a 100-kg crate sliding at 1.0 m/s and an 8.0-g bullet traveling at 500 m/s.
58. A wagon with its passenger sits at the top of a hill. The wagon is given a slight push and rolls 100 m down a 10° incline

to the bottom of the hill. What is the wagon’s speed when it reaches the end of the incline. Assume that the retarding
force of friction is negligible.

59. An 8.0-g bullet with a speed of 800 m/s is shot into a wooden block and penetrates 20 cm before stopping. What is the
average force of the wood on the bullet? Assume the block does not move.

60. A 2.0-kg block starts with a speed of 10 m/s at the bottom of a plane inclined at 37° to the horizontal. The coefficient of
sliding friction between the block and plane is  = 0.30. (a) Use the work-energy principle to determine how far the
block slides along the plane before momentarily coming to rest. (b) After stopping, the block slides back down the plane.
What is its speed when it reaches the bottom? (Hint: For the round trip, only the force of friction does work on the
block.)

61. When a 3.0-kg block is pushed against a massless spring of force constant 4.5 x 10  N/m, the spring is compressed 8.0
cm. The block is released, and it slides 2.0 m (from the point at which it is released) across a horizontal surface before
friction stops it. What is the coefficient of kinetic friction between the block and the surface?

62. A small block of mass 200 g starts at rest at A, slides to B where its speed is v  = 8.0 m/s, then slides along the horizontal
surface a distance 10 m before coming to rest at C. (See below.) (a) What is the work of friction along the curved surface?
(b) What is the coefficient of kinetic friction along the horizontal surface?

63. A small object is placed at the top of an incline that is essentially frictionless. The object slides down the incline onto a
rough horizontal surface, where it stops in 5.0 s after traveling 60 m. (a) What is the speed of the object at the bottom of
the incline and its acceleration along the horizontal surface? (b) What is the height of the incline?

64. When released, a 100-g block slides down the path shown below, reaching the bottom with a speed of 4.0 m/s. How much
work does the force of friction do?

65. A 0.22LR-caliber bullet like that mentioned in Example 7.10 is fired into a door made of a single thickness of 1-inch pine
boards. How fast would the bullet be traveling after it penetrated through the door?

66. A sled starts from rest at the top of a snow-covered incline that makes a 22° angle with the horizontal. After sliding 75 m
down the slope, its speed is 14 m/s. Use the work-energy theorem to calculate the coefficient of kinetic friction between
the runners of the sled and the snowy surface.
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7.4 Power
67. A person in good physical condition can put out 100 W of useful power for several hours at a stretch, perhaps by pedaling

a mechanism that drives an electric generator. Neglecting any problems of generator efficiency and practical
considerations such as resting time: (a) How many people would it take to run a 4.00-kW electric clothes dryer? (b) How
many people would it take to replace a large electric power plant that generates 800 MW?

68. What is the cost of operating a 3.00-W electric clock for a year if the cost of electricity is $0.0900 per kW • h?
69. A large household air conditioner may consume 15.0 kW of power. What is the cost of operating this air conditioner 3.00

h per day for 30.0 d if the cost of electricity is $0.110 per kW • h?
70. (a) What is the average power consumption in watts of an appliance that uses 5.00 kW • h of energy per day? (b) How

many joules of energy does this appliance consume in a year?
71. (a) What is the average useful power output of a person who does 6.00 x 10  J of useful work in 8.00 h? (b) Working at

this rate, how long will it take this person to lift 2000 kg of bricks 1.50 m to a platform? (Work done to lift his body can
be omitted because it is not considered useful output here.)

72. A 500-kg dragster accelerates from rest to a final speed of 110 m/s in 400 m (about a quarter of a mile) and encounters an
average frictional force of 1200 N. What is its average power output in watts and horsepower if this takes 7.30 s?

73. (a) How long will it take an 850-kg car with a useful power output of 40.0 hp (1 hp equals 746 W) to reach a speed of
15.0 m/s, neglecting friction? (b) How long will this acceleration take if the car also climbs a 3.00-m high hill in the
process?

74. (a) Find the useful power output of an elevator motor that lifts a 2500-kg load a height of 35.0 m in 12.0 s, if it also
increases the speed from rest to 4.00 m/s. Note that the total mass of the counterbalanced system is 10,000 kg—so that
only 2500 kg is raised in height, but the full 10,000 kg is accelerated. (b) What does it cost, if electricity is $0.0900 per
kW • h ?

75. (a) How long would it take a 1.50 x 10 -kg airplane with engines that produce 100 MW of power to reach a speed of 250
m/s and an altitude of 12.0 km if air resistance were negligible? (b) If it actually takes 900 s, what is the power? (c) Given
this power, what is the average force of air resistance if the airplane takes 1200 s? (Hint: You must find the distance the
plane travels in 1200 s assuming constant acceleration.)

76. Calculate the power output needed for a 950-kg car to climb a 2.00° slope at a constant 30.0 m/s while encountering wind
resistance and friction totaling 600 N.

77. A man of mass 80 kg runs up a flight of stairs 20 m high in 10 s. (a) how much power is used to lift the man? (b) If the
man’s body is 25% efficient, how much power does he expend?

78. The man of the preceding problem consumes approximately 1.05 x 10  J (2500 food calories) of energy per day in
maintaining a constant weight. What is the average power he produces over a day? Compare this with his power
production when he runs up the stairs.

79. An electron in a television tube is accelerated uniformly from rest to a speed of 8.4 x 10  m/s over a distance of 2.5 cm.
What is the power delivered to the electron at the instant that its displacement is 1.0 cm?

80. Coal is lifted out of a mine a vertical distance of 50 m by an engine that supplies 500 W to a conveyer belt. How much
coal per minute can be brought to the surface? Ignore the effects of friction.

81. A girl pulls her 15-kg wagon along a flat sidewalk by applying a 10-N force at 37° to the horizontal. Assume that friction
is negligible and that the wagon starts from rest. (a) How much work does the girl do on the wagon in the first 2.0 s. (b)
How much instantaneous power does she exert at t = 2.0 s ?

82. A typical automobile engine has an efficiency of 25%. Suppose that the engine of a 1000-kg automobile has a maximum
power output of 140 hp. What is the maximum grade that the automobile can climb at 50 km/h if the frictional retarding
force on it is 300 N?

83. When jogging at 13 km/h on a level surface, a 70-kg man uses energy at a rate of approximately 850 W. Using the facts
that the “human engine” is approximately 25% efficient, determine the rate at which this man uses energy when jogging
up a 5.0° slope at this same speed. Assume that the frictional retarding force is the same in both cases.

Additional Problems
84. A cart is pulled a distance D on a flat, horizontal surface by a constant force F that acts at an angle  with the horizontal

direction. The other forces on the object during this time are gravity (F ), normal forces (F ) and (F ), and rolling
frictions F  and F , as shown below. What is the work done by each force?
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85. Consider a particle on which several forces act, one of which is known to be constant in time:  = (3 N)  + (4 N) . As
a result, the particle moves along the x-axis from x = 0 to x = 5 m in some time interval. What is the work done by ?

86. Consider a particle on which several forces act, one of which is known to be constant in time:  = (3 N)  + (4 N) . As
a result, the particle moves first along the x-axis from x = 0 to x = 5 m and then parallel to the y-axis from y = 0 to y = 6
m. What is the work done by ?

87. Consider a particle on which several forces act, one of which is known to be constant in time:  = (3 N)  + (4 N) . As
a result, the particle moves along a straight path from a Cartesian coordinate of (0 m, 0 m) to (5 m, 6 m). What is the
work done by ?

88. Consider a particle on which a force acts that depends on the position of the particle. This force is given by  = (2y)  +
(3x) . Find the work done by this force when the particle moves from the origin to a point 5 meters to the right on the x-
axis.

89. A boy pulls a 5-kg cart with a 20-N force at an angle of 30° above the horizontal for a length of time. Over this time
frame, the cart moves a distance of 12 m on the horizontal floor. (a) Find the work done on the cart by the boy. (b) What
will be the work done by the boy if he pulled with the same force horizontally instead of at an angle of 30° above the
horizontal over the same distance?

90. A crate of mass 200 kg is to be brought from a site on the ground floor to a third floor apartment. The workers know that
they can either use the elevator first, then slide it along the third floor to the apartment, or first slide the crate to another
location marked C below, and then take the elevator to the third floor and slide it on the third floor a shorter distance. The
trouble is that the third floor is very rough compared to the ground floor. Given that the coefficient of kinetic friction
between the crate and the ground floor is 0.100 and between the crate and the third floor surface is 0.300, find the work
needed by the workers for each path shown from A to E. Assume that the force the workers need to do is just enough to
slide the crate at constant velocity (zero acceleration). Note: The work by the elevator against the force of gravity is not
done by the workers.

91. A hockey puck of mass 0.17 kg is shot across a rough floor with the roughness different at different places, which can be
described by a position-dependent coefficient of kinetic friction. For a puck moving along the x-axis, the coefficient of
kinetic friction is the following function of x, where x is in m: (x) = 0.1 + 0.05x. Find the work done by the kinetic
frictional force on the hockey puck when it has moved (a) from x = 0 to x = 2 m, and (b) from x = 2 m to x = 4 m.

92. A horizontal force of 20 N is required to keep a 5.0 kg box traveling at a constant speed up a frictionless incline for a
vertical height change of 3.0 m. (a) What is the work done by gravity during this change in height? (b) What is the work
done by the normal force? (c) What is the work done by the horizontal force?

93. A 7.0-kg box slides along a horizontal frictionless floor at 1.7 m/s and collides with a relatively massless spring that
compresses 23 cm before the box comes to a stop. (a) How much kinetic energy does the box have before it collides with
the spring? (b) Calculate the work done by the spring. (c) Determine the spring constant of the spring.

94. You are driving your car on a straight road with a coefficient of friction between the tires and the road of 0.55. A large
piece of debris falls in front of your view and you immediate slam on the brakes, leaving a skid mark of 30.5 m (100-feet)
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long before coming to a stop. A policeman sees your car stopped on the road, looks at the skid mark, and gives you a
ticket for traveling over the 13.4 m/s (30 mph) speed limit. Should you fight the speeding ticket in court?

95. A crate is being pushed across a rough floor surface. If no force is applied on the crate, the crate will slow down and
come to a stop. If the crate of mass 50 kg moving at speed 8 m/s comes to rest in 10 seconds, what is the rate at which the
frictional force on the crate takes energy away from the crate?

96. Suppose a horizontal force of 20 N is required to maintain a speed of 8 m/s of a 50 kg crate. (a) What is the power of this
force? (b) Note that the acceleration of the crate is zero despite the fact that 20 N force acts on the crate horizontally.
What happens to the energy given to the crate as a result of the work done by this 20 N force?

97. Grains from a hopper falls at a rate of 10 kg/s vertically onto a conveyor belt that is moving horizontally at a constant
speed of 2 m/s. (a) What force is needed to keep the conveyor belt moving at the constant velocity? (b) What is the
minimum power of the motor driving the conveyor belt?

98. A cyclist in a race must climb a 5° hill at a speed of 8 m/s. If the mass of the bike and the biker together is 80 kg, what
must be the power output of the biker to achieve the goal?

Challenge Problems
99. Shown below is a 40-kg crate that is pushed at constant velocity a distance 8.0 m along a 30° incline by the horizontal

force . The coefficient of kinetic friction between the crate and the incline is  = 0.40. Calculate the work done by (a)
the applied force, (b) the frictional force, (c) the gravitational force, and (d) the net force.

100. The surface of the preceding problem is modified so that the coefficient of kinetic friction is decreased. The same
horizontal force is applied to the crate, and after being pushed 8.0 m, its speed is 5.0 m/s. How much work is now done
by the force of friction? Assume that the crate starts at rest.

101. The force F(x) varies with position, as shown below. Find the work done by this force on a particle as it moves from x =
1.0 m to x = 5.0 m.

102. Find the work done by the same force in Example 7.4, between the same points, A = (0, 0) and B = (2 m, 2 m) , over a
circular arc of radius 2 m, centered at (0, 2 m). Evaluate the path integral using Cartesian coordinates. (Hint: You will
probably need to consult a table of integrals.)

103. Answer the preceding problem using polar coordinates.
104. Find the work done by the same force in Example 7.4, between the same points, A = (0, 0) and B = (2 m, 2 m), over a

circular arc of radius 2 m, centered at (2 m, 0). Evaluate the path integral using Cartesian coordinates. (Hint: You will
probably need to consult a table of integrals.)

105. Answer the preceding problem using polar coordinates.
106. Constant power P is delivered to a car of mass m by its engine. Show that if air resistance can be ignored, the distance

covered in a time t by the car, starting from rest, is given by s = t .
107. Suppose that the air resistance a car encounters is independent of its speed. When the car travels at 15 m/ s, its engine

delivers 20 hp to its wheels. (a) What is the power delivered to the wheels when the car travels at 30 m/ s? (b) How much
energy does the car use in covering 10 km at 15 m/s? At 30 m/s? Assume that the engine is 25% efficient. (c) Answer the
same questions if the force of air resistance is proportional to the speed of the automobile. (d) What do these results, plus
your experience with gasoline consumption, tell you about air resistance?

108. Consider a linear spring, as in Figure 7.7(a), with mass M uniformly distributed along its length. The left end of the
spring is fixed, but the right end, at the equilibrium position x = 0, is moving with speed v in the x-direction. What is the
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total kinetic energy of the spring? (Hint: First express the kinetic energy of an infinitesimal element of the spring dm in
terms of the total mass, equilibrium length, speed of the right-hand end, and position along the spring; then integrate.)
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23.1: Rotational Variables

Describe the physical meaning of rotational variables as applied to fixed-axis rotation
Explain how angular velocity is related to tangential speed
Calculate the instantaneous angular velocity given the angular position function
Find the angular velocity and angular acceleration in a rotating system
Calculate the average angular acceleration when the angular velocity is changing
Calculate the instantaneous angular acceleration given the angular velocity function

So far in this text, we have mainly studied translational motion, including the variables that describe it: displacement, velocity, and
acceleration. Now we expand our description of motion to rotation—specifically, rotational motion about a fixed axis. We will find
that rotational motion is described by a set of related variables similar to those we used in translational motion.

Angular Velocity
Uniform circular motion (discussed previously in Motion in Two and Three Dimensions) is motion in a circle at constant speed.
Although this is the simplest case of rotational motion, it is very useful for many situations, and we use it here to introduce
rotational variables.

In Figure , we show a particle moving in a circle. The coordinate system is fixed and serves as a frame of reference to define
the particle’s position. Its position vector from the origin of the circle to the particle sweeps out the angle , which increases in the
counterclockwise direction as the particle moves along its circular path. The angle  is called the angular position of the particle.
As the particle moves in its circular path, it also traces an arc length s.

Figure : A particle follows a circular path. As it moves counterclockwise, it sweeps out a positive angle  with respect to the
x-axis and traces out an arc length s.

The angle is related to the radius of the circle and the arc length by

The angle , the angular position of the particle along its path, has units of radians (rad). There are  radians in 360°. Note that the
radian measure is a ratio of length measurements, and therefore is a dimensionless quantity. As the particle moves along its circular
path, its angular position changes and it undergoes angular displacements .

We can assign vectors to the quantities in Equation . The angle  is a vector out of the page in Figure . The angular
position vector  and the arc length  both lie in the plane of the page. These three vectors are related to each other by

That is, the arc length is the cross product of the angle vector and the position vector, as shown in Figure .
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Figure : The angle vector points along the z-axis and the position vector and arc length vector both lie in the xy-plane. We
see that . All three vectors are perpendicular to each other.

The magnitude of the angular velocity, denoted by , is the time rate of change of the angle  as the particle moves in its circular
path. The instantaneous angular velocity is defined as the limit in which t → 0 in the average angular velocity :

where  is the angle of rotation (Figure ). The units of angular velocity are radians per second (rad/s). Angular velocity can
also be referred to as the rotation rate in radians per second. In many situations, we are given the rotation rate in revolutions/s or
cycles/s. To find the angular velocity, we must multiply revolutions/s by 2 , since there are 2  radians in one complete revolution.
Since the direction of a positive angle in a circle is counterclockwise, we take counterclockwise rotations as being positive and
clockwise rotations as negative.

We can see how angular velocity is related to the tangential speed of the particle by differentiating Equation  with respect to
time. We rewrite Equation  as

Taking the derivative with respect to time and noting that the radius r is a constant, we have

where  = 0. Here,  is just the tangential speed v  of the particle in Figure . Thus, by using Equation , we arrive at

That is, the tangential speed of the particle is its angular velocity times the radius of the circle. From Equation , we see that
the tangential speed of the particle increases with its distance from the axis of rotation for a constant angular velocity. This effect is
shown in Figure . Two particles are placed at different radii on a rotating disk with a constant angular velocity. As the disk
rotates, the tangential speed increases linearly with the radius from the axis of rotation. In Figure , we see that v  = r  and

v  = r . But the disk has a constant angular velocity, so . This means  or v  = v . Thus, since r  > r , v  >

v .

Figure : Two particles on a rotating disk have different tangential speeds, depending on their distance to the axis of rotation.

Up until now, we have discussed the magnitude of the angular velocity , which is a scalar quantity—the change in angular
position with respect to time. The vector  is the vector associated with the angular velocity and points along the axis of rotation.
This is useful because when a rigid body is rotating, we want to know both the axis of rotation and the direction that the body is
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rotating about the axis, clockwise or counterclockwise. The angular velocity  gives us this information. The angular velocity 
has a direction determined by what is called the right-hand rule. The right-hand rule is such that if the fingers of your right hand
wrap counterclockwise from the x-axis (the direction in which  increases) toward the y-axis, your thumb points in the direction of
the positive z-axis (Figure ). An angular velocity  that points along the positive z-axis therefore corresponds to a
counterclockwise rotation, whereas an angular velocity  that points along the negative z-axis corresponds to a clockwise rotation.

Figure : For counterclockwise rotation in the coordinate system shown, the angular velocity points in the positive z-direction
by the right-hand-rule.

We can verify the right-hand-rule using the vector expression for the arc length , Equation . If we differentiate this
equation with respect to time, we find

Since  is constant, the term  = 0. Since  is the tangential velocity and  is the angular velocity, we have

That is, the tangential velocity is the cross product of the angular velocity and the position vector, as shown in Figure . From
part (a) of this figure, we see that with the angular velocity in the positive z-direction, the rotation in the xy-plane is
counterclockwise. In part (b), the angular velocity is in the negative z-direction, giving a clockwise rotation in the xy-plane.

Figure : The vectors shown are the angular velocity, position, and tangential velocity. (a) The angular velocity points in the
positive z-direction, giving a counterclockwise rotation in the xy-plane. (b) The angular velocity points in the negative z-direction,
giving a clockwise rotation.

A flywheel rotates such that it sweeps out an angle at the rate of  = t = (45.0 rad/s)t radians. The wheel rotates
counterclockwise when viewed in the plane of the page. (a) What is the angular velocity of the flywheel? (b) What direction is
the angular velocity? (c) How many radians does the flywheel rotate through in 30 s? (d) What is the tangential speed of a
point on the flywheel 10 cm from the axis of rotation?

Strategy

The functional form of the angular position of the flywheel is given in the problem as (t) = t, so by taking the derivative
with respect to time, we can find the angular velocity. We use the right-hand rule to find the angular velocity. To find the
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angular displacement of the flywheel during 30 s, we seek the angular displacement , where the change in angular position
is between 0 and 30 s. To find the tangential speed of a point at a distance from the axis of rotation, we multiply its distance
times the angular velocity of the flywheel.

Solution
a.  =  = 45 rad/s. We see that the angular velocity is a constant.
b. By the right-hand rule, we curl the fingers in the direction of rotation, which is counterclockwise in the plane of the page,

and the thumb points in the direction of the angular velocity, which is out of the page.
c.  = (30 s) − (0 s) = 45.0(30.0 s) − 45.0(0 s) = 1350.0 rad.
d. v  = r  = (0.1 m)(45.0 rad/s) = 4.5 m/s.

Significance

In 30 s, the flywheel has rotated through quite a number of revolutions, about 215 if we divide the angular displacement by 2 .
A massive flywheel can be used to store energy in this way, if the losses due to friction are minimal. Recent research has
considered superconducting bearings on which the flywheel rests, with zero energy loss due to friction.

Angular Acceleration
We have just discussed angular velocity for uniform circular motion, but not all motion is uniform. Envision an ice skater spinning
with his arms outstretched—when he pulls his arms inward, his angular velocity increases. Or think about a computer’s hard disk
slowing to a halt as the angular velocity decreases. We will explore these situations later, but we can already see a need to define an
angular acceleration for describing situations where  changes. The faster the change in , the greater the angular acceleration.
We define the instantaneous angular acceleration  as the derivative of angular velocity with respect to time:

where we have taken the limit of the average angular acceleration,  as . The units of angular acceleration are
(rad/s)/s, or rad/s .

In the same way as we defined the vector associated with angular velocity , we can define , the vector associated with angular
acceleration (Figure ). If the angular velocity is along the positive z-axis, as in Figure , and  is positive, then the
angular acceleration  is positive and points along the +z- axis. Similarly, if the angular velocity  is along the positive z-axis and 

 is negative, then the angular acceleration is negative and points along the +z-axis.

Figure : The rotation is counterclockwise in both (a) and (b) with the angular velocity in the same direction. (a) The angular
acceleration is in the same direction as the angular velocity, which increases the rotation rate. (b) The angular acceleration is in the
opposite direction to the angular velocity, which decreases the rotation rate.

We can express the tangential acceleration vector as a cross product of the angular acceleration and the position vector. This
expression can be found by taking the time derivative of  and is left as an exercise:

The vector relationships for the angular acceleration and tangential acceleration are shown in Figure .
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Figure : (a) The angular acceleration is the positive z-direction and produces a tangential acceleration in a counterclockwise
sense. (b) The angular acceleration is in the negative z-direction and produces a tangential acceleration in the clockwise sense.

We can relate the tangential acceleration of a point on a rotating body at a distance from the axis of rotation in the same way that
we related the tangential speed to the angular velocity. If we differentiate Equation  with respect to time, noting that the
radius r is constant, we obtain

Thus, the tangential acceleration a is the radius times the angular acceleration. Equations  and  are important for the
discussion of rolling motion (see Angular Momentum).

Let’s apply these ideas to the analysis of a few simple fixed-axis rotation scenarios. Before doing so, we present a problem-solving
strategy that can be applied to rotational kinematics: the description of rotational motion.

1. Examine the situation to determine that rotational kinematics (rotational motion) is involved.
2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the situation is useful.
3. Make a complete list of what is given or can be inferred from the problem as stated (identify the knowns).
4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be useful to think in

terms of a translational analog, because by now you are familiar with the equations of translational motion.
5. Substitute the known values along with their units into the appropriate equation and obtain numerical solutions complete

with units. Be sure to use units of radians for angles.
6. Check your answer to see if it is reasonable: Does your answer make sense?

Now let’s apply this problem-solving strategy to a few specific examples.

A bicycle mechanic mounts a bicycle on the repair stand and starts the rear wheel spinning from rest to a final angular velocity
of 250 rpm in 5.00 s. (a) Calculate the average angular acceleration in rad/s . (b) If she now hits the brakes, causing an angular
acceleration of −87.3 rad/s , how long does it take the wheel to stop?

Strategy

The average angular acceleration can be found directly from its definition  because the final angular velocity and time
are given. We see that  =  −  = 250 rev/min and t is 5.00 s. For part (b), we know the angular acceleration
and the initial angular velocity. We can find the stopping time by using the definition of average angular acceleration and
solving for t, yielding

Solution
a. Entering known information into the definition of angular acceleration, we get $\bar{\alpha} = \frac{\Delta \omega}{\Delta

t} = \frac{250\; rpm}{5.00\; s} \ldotp$Because  is in revolutions per minute (rpm) and we want the standard units of
rad/s  for angular acceleration, we need to convert from rpm to rad/s: $\Delta \omega = 250 \frac{rev}{min}\; \cdotp
\frac{2 \pi\; rad}{rev}\; \cdotp \frac{1\; min}{60\; s} = 26.2\; rad/s \ldotp$Entering this quantity into the expression for ,
we get $bar{\alpha} = \frac{\Delta \omega}{\Delta t} = \frac{26.2\; rpm}{5.00\; s} = 5.24\; rad/s^{2} \ldotp$

b. Here the angular velocity decreases from 26.2 rad/s (250 rpm) to zero, so that  is −26.2 rad/s, and  is given to be –87.3
rad/s . Thus $\Delta t = \frac{-26.2\; rad/s}{-87.3\; rad/s^{2}} = 0.300\; s \ldotp$
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Significance

Note that the angular acceleration as the mechanic spins the wheel is small and positive; it takes 5 s to produce an appreciable
angular velocity. When she hits the brake, the angular acceleration is large and negative. The angular velocity quickly goes to
zero.

The fan blades on a turbofan jet engine (shown below) accelerate from rest up to a rotation rate of 40.0 rev/s in 20 s. The
increase in angular velocity of the fan is constant in time. (The GE90-110B1 turbofan engine mounted on a Boeing 777, as
shown, is currently the largest turbofan engine in the world, capable of thrusts of 330–510 kN.) (a) What is the average angular
acceleration? (b) What is the instantaneous angular acceleration at any time during the first 20 s?

A wind turbine (Figure ) in a wind farm is being shut down for maintenance. It takes 30 s for the turbine to go from its

operating angular velocity to a complete stop in which the angular velocity function is (t) = rad/s. If the turbine

is rotating counterclockwise looking into the page, (a) what are the directions of the angular velocity and acceleration vectors?
(b) What is the average angular acceleration? (c) What is the instantaneous angular acceleration at t = 0.0, 15.0, 30.0 s?

Figure : A wind turbine that is rotating counterclockwise, as seen head on.

Strategy

a. We are given the rotational sense of the turbine, which is counterclockwise in the plane of the page. Using the right hand
rule (Figure 10.5), we can establish the directions of the angular velocity and acceleration vectors.

b. We calculate the initial and final angular velocities to get the average angular acceleration. We establish the sign of the
angular acceleration from the results in (a).

c. We are given the functional form of the angular velocity, so we can find the functional form of the angular acceleration
function by taking its derivative with respect to time.

Solution

 Exercise 23.1.1

 Example : Wind Turbine23.1.3
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a. Since the turbine is rotating counterclockwise, angular velocity  points out of the page. But since the angular velocity is
decreasing, the angular acceleration  points into the page, in the opposite sense to the angular velocity.

b. The initial angular velocity of the turbine, setting t = 0, is  = 9.0 rad/s. The final angular velocity is zero, so the average
angular acceleration is $\bar{\alpha} \frac{\Delta \omega}{\Delta t} = \frac{\omega - \omega_{0}}{t - t_{0}} = \frac{0 -
9.0\; rad/s}{30.0 - 0\; s} = -0.3\; rad/s^{2} \ldotp$

c. Taking the derivative of the angular velocity with respect to time gives  rad/s $\alpha (0.0; s) = -0.6\;
rad/s^{2}, \alpha (15.0\; s) = -0.3\; rad/s^{2}, and\; \alpha (30.0\; s) = 0\; rad/s \ldotp$

Significance

We found from the calculations in (a) and (b) that the angular acceleration α and the average angular acceleration  are
negative. The turbine has an angular acceleration in the opposite sense to its angular velocity.

We now have a basic vocabulary for discussing fixed-axis rotational kinematics and relationships between rotational variables. We
discuss more definitions and connections in the next section.

This page titled 23.1: Rotational Variables is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

10.2: Rotational Variables by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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23.2: Rotation with Constant Angular Acceleration

Derive the kinematic equations for rotational motion with constant angular acceleration
Select from the kinematic equations for rotational motion with constant angular acceleration the appropriate equations to
solve for unknowns in the analysis of systems undergoing fixed-axis rotation
Use solutions found with the kinematic equations to verify the graphical analysis of fixed-axis rotation with constant
angular acceleration

In the preceding section, we defined the rotational variables of angular displacement, angular velocity, and angular acceleration. In
this section, we work with these definitions to derive relationships among these variables and use these relationships to analyze
rotational motion for a rigid body about a fixed axis under a constant angular acceleration. This analysis forms the basis for
rotational kinematics. If the angular acceleration is constant, the equations of rotational kinematics simplify, similar to the
equations of linear kinematics discussed in Motion along a Straight Line and Motion in Two and Three Dimensions. We can then
use this simplified set of equations to describe many applications in physics and engineering where the angular acceleration of the
system is constant. Rotational kinematics is also a prerequisite to the discussion of rotational dynamics later in this chapter.

Kinematics of Rotational Motion
Using our intuition, we can begin to see how the rotational quantities , , , and t are related to one another. For example, we saw
in the preceding section that if a flywheel has an angular acceleration in the same direction as its angular velocity vector, its angular
velocity increases with time and its angular displacement also increases. On the contrary, if the angular acceleration is opposite to
the angular velocity vector, its angular velocity decreases with time. We can describe these physical situations and many others
with a consistent set of rotational kinematic equations under a constant angular acceleration. The method to investigate rotational
motion in this way is called kinematics of rotational motion.

To begin, we note that if the system is rotating under a constant acceleration, then the average angular velocity follows a simple
relation because the angular velocity is increasing linearly with time. The average angular velocity is just half the sum of the initial
and final values:

From the definition of the average angular velocity, we can find an equation that relates the angular position, average angular
velocity, and time:

Solving for , we have

where we have set t  = 0. This equation can be very useful if we know the average angular velocity of the system. Then we could
find the angular displacement over a given time period. Next, we find an equation relating , , and t. To determine this equation,
we start with the definition of angular acceleration:

We rearrange this to get dt = d  and then we integrate both sides of this equation from initial values to final values, that is, from
t  to t and  to . In uniform rotational motion, the angular acceleration is constant so it can be pulled out of the integral,
yielding two definite integrals:

Setting t  = 0, we have
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We rearrange this to obtain

where  is the initial angular velocity. Equation  is the rotational counterpart to the linear kinematics equation v  = v  + at.
With Equation , we can find the angular velocity of an object at any specified time t given the initial angular velocity and the
angular acceleration.

Let’s now do a similar treatment starting with the equation . We rearrange it to obtain dt = d  and integrate both sides
from initial to final values again, noting that the angular acceleration is constant and does not have a time dependence. However,
this time, the angular velocity is not constant (in general), so we substitute in what we derived above:

where we have set t  = 0. Now we rearrange to obtain

Equation  is the rotational counterpart to the linear kinematics equation found in Motion Along a Straight Line for position
as a function of time. This equation gives us the angular position of a rotating rigid body at any time t given the initial conditions
(initial angular position and initial angular velocity) and the angular acceleration.

We can find an equation that is independent of time by solving for t in Equation  and substituting into Equation .
Equation  becomes

or

Equation  through Equation  describe fixed-axis rotation for constant acceleration and are summarized in Table 10.1.

Table 10.1 - Kinematic Equations

Angular displacement from average angular velocity

Angular velocity from angular acceleration

Angular displacement from angular velocity and angular
acceleration

αt = − .ωf ω0 (23.2.6)

= +αt,ωf ω0 (23.2.7)

ω0 23.2.7 f 0
23.2.7

ω = dθ

dt
ω θ

( +α )d∫
tf

t0

ω0 t′ t′

dt+ αtdt∫
t

t0

ω0 ∫
t

t0

= dθ;∫
θf

θ0

= dθ = [ +α = t+α( ) = − .∫
θf

θ0

ω0t
′ ( )

(t′)2

2

2

]

t

t0

ω0
t2

2
θf θ0

0

= + t+ α .θf θ0 ω0
1

2
t2 (23.2.8)

23.2.8

23.2.7 23.2.8

23.2.8

θf

−θf θ0

= + ( )+ αθ0 ω0

−ωf ω0

α

1

2
( )

−ωf ω0

α

2

= + − + − +θ0

ω0ωf

α

ω2
0

α

1

2

ω2
f

α

ω0ωf

α

1

2

ω2
0

α

= + − ,θ0
1

2

ω2
f

α

1

2

ω2
0

α

=
−ω2

f ω2
0

2α

= +2α(Δθ).ω2
f

ω2
0 (23.2.9)

23.2.3 23.2.9

= + tθf θ0 ω̄

= +αtωf ω0

= + t + αθf θ0 ω0
1
2

t2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/85868?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/15%3A_N2)_1_Dimensional_Kinematics


23.2.3 https://phys.libretexts.org/@go/page/85868

Angular velocity from angular displacement and angular
acceleration

Applying the Equations for Rotational Motion
Now we can apply the key kinematic relations for rotational motion to some simple examples to get a feel for how the equations
can be applied to everyday situations.

A deep-sea fisherman hooks a big fish that swims away from the boat, pulling the fishing line from his fishing reel. The whole
system is initially at rest, and the fishing line unwinds from the reel at a radius of 4.50 cm from its axis of rotation. The reel is
given an angular acceleration of 110 rad/s  for 2.00 s (Figure ).

a. What is the final angular velocity of the reel after 2 s?
b. How many revolutions does the reel make?

Figure : Fishing line coming off a rotating reel moves linearly

Strategy

Identify the knowns and compare with the kinematic equations for constant acceleration. Look for the appropriate equation that
can be solved for the unknown, using the knowns given in the problem description.

Solution
a. We are given  and t and want to determine . The most straightforward equation to use is , since all terms

are known besides the unknown variable we are looking for. We are given that  = 0 (it starts from rest), so $\omega_{f}
= 0 + (110\; rad/s^{2})(2.00\; s) = 220\; rad/s \ldotp$

b. We are asked to find the number of revolutions. Because 1 rev = 2  rad, we can find the number of revolutions by finding θ
in radians. We are given  and t, and we know  is zero, so we can obtain  by using $

$Converting radians to revolutions gives $Number\; of\; rev = (220\; rad) \left(\dfrac{1\; rev}{2 \pi\; rad}\right) = 35.0\; rev
\ldotp$

Significance

This example illustrates that relationships among rotational quantities are highly analogous to those among linear quantities.
The answers to the questions are realistic. After unwinding for two seconds, the reel is found to spin at 220 rad/s, which is
2100 rpm. (No wonder reels sometimes make high-pitched sounds.)

In the preceding example, we considered a fishing reel with a positive angular acceleration. Now let us consider what happens with
a negative angular acceleration.

= + 2α(Δθ)ω2
f ω2

0

 Example 10.4: Calculating the Acceleration of a Fishing Reel
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Now the fisherman applies a brake to the spinning reel, achieving an angular acceleration of −300 rad/s . How long does it take
the reel to come to a stop?

Strategy

We are asked to find the time t for the reel to come to a stop. The initial and final conditions are different from those in the
previous problem, which involved the same fishing reel. Now we see that the initial angular velocity is  = 220 rad/s and the
final angular velocity  is zero. The angular acceleration is given as  = −300 rad/s . Examining the available equations, we
see all quantities but t are known in , making it easiest to use this equation.

Solution
The equation states

We solve the equation algebraically for t and then substitute the known values as usual, yielding

Significance

Note that care must be taken with the signs that indicate the directions of various quantities. Also, note that the time to stop the
reel is fairly small because the acceleration is rather large. Fishing lines sometimes snap because of the accelerations involved,
and fishermen often let the fish swim for a while before applying brakes on the reel. A tired fish is slower, requiring a smaller
acceleration.

A centrifuge used in DNA extraction spins at a maximum rate of 7000 rpm, producing a “g-force” on the sample that is 6000
times the force of gravity. If the centrifuge takes 10 seconds to come to rest from the maximum spin rate: (a) What is the
angular acceleration of the centrifuge? (b) What is the angular displacement of the centrifuge during this time?

Figure  shows a graph of the angular velocity of a propeller on an aircraft as a function of time. Its angular velocity starts
at 30 rad/s and drops linearly to 0 rad/s over the course of 5 seconds. (a) Find the angular acceleration of the object and verify
the result using the kinematic equations. (b) Find the angle through which the propeller rotates during these 5 seconds and
verify your result using the kinematic equations.

Figure : A graph of the angular velocity of a propeller versus time.

Strategy

a. Since the angular velocity varies linearly with time, we know that the angular acceleration is constant and does not depend
on the time variable. The angular acceleration is the slope of the angular velocity vs. time graph, . To calculate the
slope, we read directly from Figure , and see that  = 30 rad/s at t = 0 s and  = 0 rad/s at t = 5 s. Then, we can

 Example 10.5: Calculating the Duration When the Fishing Reel Slows Down and Stops

2

ω0

ω α 2

= +αtωf ω0

= +αt.ωf ω0 (23.2.10)

t = = = 0.733 s.
−ωf ω0

α

0 −220.0 rad/s

−300.0 rad/s2
(23.2.11)

 Exercise 10.2

 Example 10.6: Angular Acceleration of a Propeller
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verify the result using .
b. We use the equation ; since the time derivative of the angle is the angular velocity, we can find the angular

displacement by integrating the angular velocity, which from the figure means taking the area under the angular velocity
graph. In other words:  Then we use the kinematic equations for constant acceleration to
verify the result.

Solution
a. Calculating the slope, we get  We see that this is exactly Equation  with

a little rearranging of terms.
b. We can find the area under the curve by calculating the area of the right triangle, as shown in Figure .

Figure : The area under the curve is the area of the right triangle.

We verify the solution using Equation :

Setting  = 0, we have

This verifies the solution found from finding the area under the curve.

Significance

We see from part (b) that there are alternative approaches to analyzing fixed-axis rotation with constant acceleration. We
started with a graphical approach and verified the solution using the rotational kinematic equations. Since , we could
do the same graphical analysis on an angular acceleration-vs.-time curve. The area under an -vs.-t curve gives us the change
in angular velocity. Since the angular acceleration is constant in this section, this is a straightforward exercise.

This page titled 23.2: Rotation with Constant Angular Acceleration is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts
platform.

10.3: Rotation with Constant Angular Acceleration by OpenStax is licensed CC BY 4.0. Original source:
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s2 23.2.7

23.2.3

23.2.3

Δθ = area(triangle) = (30 rad/s)(5 s) = 75 rad.
1

2
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23.2.8
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23.3: Relating Angular and Translational Quantities
In this section, we relate each of the rotational variables to the translational variables defined in 1 Dimensional Kinematics and 2
Dimensional Kinematics. This will complete our ability to describe rigid-body rotations.

Angular vs. Linear Variables
In Rotational Variables, we introduced angular variables. If we compare the rotational definitions with the definitions of linear
kinematic variables, we find that there is a mapping of the linear variables to the rotational ones. Linear position, velocity, and
acceleration have their rotational counterparts, as we can see when we write them side by side:

  Linear Rotational

Position

Velocity

Acceleration

Mass

Let’s compare the linear and rotational variables individually. The linear variable of position has physical units of meters, whereas
the angular position variable has dimensionless units of radians, as can be seen from the definition of , which is the ratio of
two lengths. The linear velocity has units of m/s, and its counterpart, the angular velocity, has units of rad/s. In Rotational
Variables, we saw in the case of circular motion that the linear tangential speed of a particle at a radius r from the axis of rotation is
related to the angular velocity by the relation v  = r . This could also apply to points on a rigid body rotating about a fixed axis.
Here, we consider only circular motion. In circular motion, both uniform and nonuniform, there exists a centripetal acceleration
(Motion in Two and Three Dimensions). The centripetal acceleration vector points inward from the particle executing circular
motion toward the axis of rotation. The derivation of the magnitude of the centripetal acceleration is given in Motion in Two and
Three Dimensions. From that derivation, the magnitude of the centripetal acceleration was found to be

where r is the radius of the circle.

Thus, in uniform circular motion when the angular velocity is constant and the angular acceleration is zero, we have a linear
acceleration—that is, centripetal acceleration—since the tangential speed in Equation  is a constant. If nonuniform circular
motion is present, the rotating system has an angular acceleration, and we have both a linear centripetal acceleration that is
changing (because v  is changing) as well as a linear tangential acceleration. These relationships are shown in Figure , where
we show the centripetal and tangential accelerations for uniform and nonuniform circular motion.

Figure : (a) Uniform circular motion: The centripetal acceleration a  has its vector inward toward the axis of rotation. There
is no tangential acceleration. (b) Nonuniform circular motion: An angular acceleration produces an inward centripetal acceleration
that is changing in magnitude, plus a tangential acceleration a .

x θ

v = dx

dt
ω = dθ

dt

a = dv

dt
a = dω

dt

1 m I
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t ω
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The centripetal acceleration is due to the change in the direction of tangential velocity, whereas the tangential acceleration is due to
any change in the magnitude of the tangential velocity. The tangential and centripetal acceleration vectors  and  are always
perpendicular to each other, as seen in Figure . To complete this description, we can assign a total linear acceleration vector
to a point on a rotating rigid body or a particle executing circular motion at a radius r from a fixed axis. The total linear acceleration
vector  is the vector sum of the centripetal and tangential accelerations,

The total linear acceleration vector in the case of nonuniform circular motion points at an angle between the centripetal and
tangential acceleration vectors, as shown in Figure . Since , the magnitude of the total linear acceleration is

Note that if the angular acceleration is zero, the total linear acceleration is equal to the centripetal acceleration.

Figure : A particle is executing circular motion and has an angular acceleration. The total linear acceleration of the particle is
the vector sum of the centripetal acceleration and tangential acceleration vectors. The total linear acceleration vector is at an angle
in between the centripetal and tangential accelerations.

Relationships between Rotational and Translational Motion
We can look at two relationships between rotational and translational motion.

1. Generally speaking, the linear kinematic equations have their rotational counterparts. Table 10.2 lists the four linear kinematic
equations and the corresponding rotational counterpart. The two sets of equations look similar to each other, but describe two
different physical situations, that is, rotation and translation.

Table 10.2 - Rotational and Translational Kinematic Equations
Rotational Translational

2. The second correspondence has to do with relating linear and rotational variables in the special case of circular motion. This is
shown in Table 10.3, where in the third column, we have listed the connecting equation that relates the linear variable to the
rotational variable. The rotational variables of angular velocity and acceleration have subscripts that indicate their definition in
circular motion.

Table 10.3 - Rotational and Translational Quantities: Circular Motion
Rotational Translational Relationship ( r = radius

a⃗ t a⃗ c
23.3.1

a⃗ 

= + .a⃗  a⃗ c a⃗ t (23.3.2)

23.3.2 ⊥a⃗ c a⃗ t

| | = .a⃗  +a2
c a2
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Rotational Translational Relationship ( r = radius

 

A centrifuge has a radius of 20 cm and accelerates from a maximum rotation rate of 10,000 rpm to rest in 30 seconds under a
constant angular acceleration. It is rotating counterclockwise. What is the magnitude of the total acceleration of a point at the
tip of the centrifuge at t = 29.0s? What is the direction of the total acceleration vector?

Strategy

With the information given, we can calculate the angular acceleration, which then will allow us to find the tangential
acceleration. We can find the centripetal acceleration at t = 0 by calculating the tangential speed at this time. With the
magnitudes of the accelerations, we can calculate the total linear acceleration. From the description of the rotation in the
problem, we can sketch the direction of the total acceleration vector.

Solution
The angular acceleration is

Therefore, the tangential acceleration is

The angular velocity at t = 29.0 s is

Thus, the tangential speed at t = 29.0 s is

We can now calculate the centripetal acceleration at t = 29.0 s:

Since the two acceleration vectors are perpendicular to each other, the magnitude of the total linear acceleration is

Since the centrifuge has a negative angular acceleration, it is slowing down. The total acceleration vector is as shown in Figure 
. The angle with respect to the centripetal acceleration vector is

The negative sign means that the total acceleration vector is angled toward the clockwise direction.

ac =ac
v2
t

r

 Example 10.7: Linear Acceleration of a Centrifuge

α = = = −34.9 rad/ .
ω−ω0

t

0 −(1.0 × )( )104 2π rad
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30.0 s
s2 (23.3.4)

= rα = (0.2 m)(−34.9 rad/ ) = −7.0 m/ .at s2 s2 (23.3.5)

ω = +αt = (1.0 × )( )+(−39.49 rad/ )(29.0 s)ω0 104 2π rad
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s2

= 1047.2 rad/s−1012.71 rad/s = 35.1 rad/s.

= rω = (0.2 m)(35.1 rad/s) = 7.0 m/s.vt (23.3.6)
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Figure : The centripetal, tangential, and total acceleration vectors. The centrifuge is slowing down, so the tangential
acceleration is clockwise, opposite the direction of rotation (counterclockwise).

Significance

From Figure , we see that the tangential acceleration vector is opposite the direction of rotation. The magnitude of the
tangential acceleration is much smaller than the centripetal acceleration, so the total linear acceleration vector will make a very
small angle with respect to the centripetal acceleration vector.

A boy jumps on a merry-go-round with a radius of 5 m that is at rest. It starts accelerating at a constant rate up to an angular
velocity of 5 rad/s in 20 seconds. What is the distance travelled by the boy?

Check out this PhET simulation to change the parameters of a rotating disk (the initial angle, angular velocity, and angular
acceleration), and place bugs at different radial distances from the axis. The simulation then lets you explore how circular
motion relates to the bugs’ xy-position, velocity, and acceleration using vectors or graphs.

 

It is a little bit strange to put mass in this table of quantities that are purely related to the motion of the object; however, it is worth
pointing out that the moment of inertia ( ) is very much the rotational equivalent of mass ( )

This page titled 23.3: Relating Angular and Translational Quantities is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

10.4: Relating Angular and Translational Quantities by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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23.4: Newton’s Second Law for Rotation
In this subsection, we put together all the pieces learned so far in this chapter to analyze the dynamics of rotating rigid bodies. We
have analyzed motion with kinematics and rotational kinetic energy but have not yet connected these ideas with force and/or
torque. In this subsection, we introduce the rotational equivalent to Newton’s second law of motion and apply it to rigid bodies with
fixed-axis rotation.

Newton’s Second Law for Rotation
We have thus far found many counterparts to the translational terms used throughout this text, most recently, torque, the rotational
analog to force. This raises the question: Is there an analogous equation to Newton’s second law,  = m , which involves
torque and rotational motion? To investigate this, we start with Newton’s second law for a single particle rotating around an axis
and executing circular motion. Let’s exert a force  on a point mass m that is at a distance r from a pivot point (Figure ). The
particle is constrained to move in a circular path with fixed radius and the force is tangent to the circle. We apply Newton’s second
law to determine the magnitude of the acceleration a =  in the direction of . Recall that the magnitude of the tangential
acceleration is proportional to the magnitude of the angular acceleration by a = r . Substituting this expression into Newton’s
second law, we obtain

Figure : An object is supported by a horizontal frictionless table and is attached to a pivot point by a cord that supplies
centripetal force. A force  is applied to the object perpendicular to the radius r, causing it to accelerate about the pivot point. The
force is perpendicular to r.

Multiply both sides of this equation by r,

Note that the left side of this equation is the torque about the axis of rotation, where r is the lever arm and F is the force,
perpendicular to r. Recall that the moment of inertia for a point particle is I = mr . The torque applied perpendicularly to the point
mass in Figure  is therefore

The torque on the particle is equal to the moment of inertia about the rotation axis times the angular acceleration. We can
generalize this equation to a rigid body rotating about a fixed axis.

If more than one torque acts on a rigid body about a fixed axis, then the sum of the torques equals the moment of inertia times
the angular acceleration:

The term I  is a scalar quantity and can be positive or negative (counterclockwise or clockwise) depending upon the sign of the net
torque. Remember the convention that counterclockwise angular acceleration is positive. Thus, if a rigid body is rotating clockwise
and experiences a positive torque (counterclockwise), the angular acceleration is positive.

Equation  is Newton’s second law for rotation and tells us how to relate torque, moment of inertia, and rotational
kinematics. This is called the equation for rotational dynamics. With this equation, we can solve a whole class of problems

∑F ⃗  a⃗ 

F ⃗  23.4.1

F
m F ⃗ 

α

F = mrα. (23.4.1)

23.4.1

F ⃗ 

rF = m α.r2 (23.4.2)

2
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involving force and rotation. It makes sense that the relationship for how much force it takes to rotate a body would include the
moment of inertia, since that is the quantity that tells us how easy or hard it is to change the rotational motion of an object.

Deriving Newton’s Second Law for Rotation in Vector Form

As before, when we found the angular acceleration, we may also find the torque vector. The second law  = m  tells us the
relationship between net force and how to change the translational motion of an object. We have a vector rotational equivalent of
this equation, which can be found by using Equation 10.2.10 and Figure 10.2.7. Equation 10.2.10 relates the angular acceleration to
the position and tangential acceleration vectors:

We form the cross product of this equation with  and use a cross product identity (note that  = 0):

We now form the cross product of Newton’s second law with the position vector ,

Identifying the first term on the left as the sum of the torques, and mr  as the moment of inertia, we arrive at Newton’s second law
of rotation in vector form:

This equation is exactly Equation  but with the torque and angular acceleration as vectors. An important point is that the
torque vector is in the same direction as the angular acceleration.

Applying the Rotational Dynamics Equation

Before we apply the rotational dynamics equation to some everyday situations, let’s review a general problem-solving strategy for
use with this category of problems.

1. Examine the situation to determine that torque and mass are involved in the rotation. Draw a careful sketch of the situation.
2. Determine the system of interest.
3. Draw a free-body diagram. That is, draw and label all external forces acting on the system of interest.
4. Identify the pivot point. If the object is in equilibrium, it must be in equilibrium for all possible pivot points––chose the one

that simplifies your work the most.
5. Apply , the rotational equivalent of Newton’s second law, to solve the problem. Care must be taken to use the

correct moment of inertia and to consider the torque about the point of rotation.
6. As always, check the solution to see if it is reasonable.

Consider the father pushing a playground merry-go-round in Figure . He exerts a force of 250 N at the edge of the
200.0-kg merry-go-round, which has a 1.50-m radius. Calculate the angular acceleration produced (a) when no one is on the
merry-go-round and (b) when an 18.0-kg child sits 1.25 m away from the center. Consider the merry-go-round itself to be a
uniform disk with negligible friction.

∑F ⃗  a⃗ 

= × .a⃗  α⃗  r ⃗  (23.4.5)

r ⃗  ⋅r ⃗  α⃗ 

× = ×( × ) = ( ⋅ ) − ( ⋅ ) = ( ⋅ ) = .r ⃗  a⃗  r ⃗  α⃗  r ⃗  α⃗  r ⃗  r ⃗  r ⃗ r ⃗  α⃗  α⃗  r ⃗  r ⃗  α⃗ r2 (23.4.6)

r ⃗ 

∑( × ) = ×(m ) = m × = m .r ⃗  F ⃗  r ⃗  a⃗  r ⃗  a⃗  r2α⃗  (23.4.7)

2

∑ τ = Iα. (23.4.8)
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 Problem-Solving Strategy: Rotational Dynamics
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 Example 10.16: Calculating the Effect of Mass Distribution on a Merry-Go-Round
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Figure : A father pushes a playground merry-go-round at its edge and perpendicular to its radius to achieve maximum
torque.

Strategy

The net torque is given directly by the expression , To solve for , we must first calculate the net torque  (which
is the same in both cases) and moment of inertia I (which is greater in the second case).

Solution
a. The moment of inertia of a solid disk about this axis is given in Figure 10.5.4 to be . We have M = 50.0 kg and R =

1.50 m, so 

 
To find the net torque, we note that the applied force is perpendicular to the radius and friction is negligible, so that 

 
Now, after we substitute the known values, we find the angular acceleration to be 
\[\alpha = \frac{\tau}{I} = \frac{375.0\; N\; \cdotp m}{56.25\; kg\; \cdotp m^{2}} = 6.67\; rad/s^{2} \ldotp

b. We expect the angular acceleration for the system to be less in this part because the moment of inertia is greater when the
child is on the merry-go-round. To find the total moment of inertia I, we first find the child’s moment of inertia I by
approximating the child as a point mass at a distance of 1.25 m from the axis. Then 

 
The total moment of inertia is the sum of the moments of inertia of the merry-go-round and the child (about the same axis): 

 
Substituting known values into the equation for  gives 

Significance

The angular acceleration is less when the child is on the merry-go-round than when the merry-go-round is empty, as expected.
The angular accelerations found are quite large, partly due to the fact that friction was considered to be negligible. If, for
example, the father kept pushing perpendicularly for 2.00 s, he would give the merry-goround an angular velocity of 13.3 rad/s
when it is empty but only 8.89 rad/s when the child is on it. In terms of revolutions per second, these angular velocities are 2.12
rev/s and 1.41 rev/s, respectively. The father would end up running at about 50 km/h in the first case.

23.4.2

= Iα∑i τi α τ

M .1
2
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The fan blades on a jet engine have a moment of inertia 30.0 kg • m . In 10 s, they rotate counterclockwise from rest up to a
rotation rate of 20 rev/s. (a) What torque must be applied to the blades to achieve this angular acceleration? (b) What is the
torque required to bring the fan blades rotating at 20 rev/s to a rest in 20 s?

 

We do not actually need the force of static friction to keep an object rolling on a flat surface (as I mentioned above, the motion
could in principle go on “unforced” forever), but things are different on an inclined plane. Figure  shows an object rolling
down an inclined plane, and the corresponding extended free-body diagram.

Figure : An object rolling down an inclined plane, and the extended free-body diagram. Note that neither gravity (applied at
the CM) nor the normal force (whose line of action passes through the CM) exert a torque around the center of mass; only the force
of static friction, , does.

The basic equations we use to solve for the object’s motion are the sum of forces equation:

the net torque equation, with torques taken around the center of mass

and the extension of the condition of rolling without slipping, (11.2.1), to the accelerations:

For the situation shown in Figure , if we take down the plane as the positive direction for linear motion, and clockwise
torques as negative, we have to write . In the direction perpendicular to the plane, we conclude from ( ) that 

, an equation we will not actually need; in the direction along the plane, we have

and the torque equation just gives , which with  becomes

We can eliminate  in between these two equations and solve for :

Now you can see why, earlier in the semester, we were always careful to assume that all the objects we sent down inclined planes
were sliding, not rolling! The acceleration for a rolling object is never equal to simply . Most remarkably, the correction
factor depends only on the shape of the rolling object, and not on its mass or size, since the ratio of  to  is independent of 
and  for any given geometry. Thus, for instance, for a disk, , so , whereas for a hoop, , so 
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. So any disk or solid cylinder will always roll down the incline faster than any hoop or hollow cylinder, regardless
of mass or size.

This rather surprising result may be better understood in terms of energy. First, let's show (a result that is somewhat overdue) that
for a rigid object that is rotating around an axis passing through its center of mass with angular velocity  we can write the total
kinetic energy as

This is because for every particle the velocity can be written as , where  is the velocity relative to the center of mass
(that is, in the CM frame). Since in this frame the motion is a simple rotation, we have , where  is the particle’s distance
to the axis. Therefore, the kinetic energy of that particle will be

(Note how I have made use of the dot product to calculate the magnitude squared of a vector.) On the last line, the quantity  is the
momentum of that particle in the CM frame. Adding those momenta for all the particles should give zero, since, as we saw in an
earlier chapter, the center of mass frame is the zero momentum frame. Then, adding the contributions of all particles to the first and
second terms in  gives Equation ( ).

This page titled 23.4: Newton’s Second Law for Rotation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

10.8: Newton’s Second Law for Rotation by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
9.6: Rolling Motion by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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23.5: Examples
After a couple of whiteboard problems, we will present a few additional examples in this section show you have to set up and solve
the equations of motion for somewhat more complicated systems, and you should study them carefully.

Consider the drawbridge in the figure above, which is in static equilibrium. Determine the magnitude and direction of all the
forces on the bridge - tension, gravity, and the hinge.

Consider a very light ladder, of length 5.0 m, placed against a wall as shown at an angle of 60 . The wall is smooth (no
friction), but the floor is rough and the coefficient of static friction between the ladder and the floor is 0.5. A painter of mass 65
kg is standing on the ladder at a distance  from the bottom. (Hint:  Draw a free body diagram, and make sure the object
appears to be in rotational equilibrium before deciding you've identified all the forces!)

1. What is the normal force exerted by the floor on the ladder? 
2. How far up the ladder  can the painter go before the ladder starts to slide? 

 Whiteboard Problem 23.5.1

 Whiteboard Problem 23.5.2

∘
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 Whiteboard Problem 23.5.3
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A specific centrifuge can spin at a rate of 1000 rpm.

1. What is the angular speed of this centrifuge, in radians per second?
2. The centrifuge is slowed down by applying a clamp at a distance 15 cm from the center of rotation. This clamp applies a

force of 32 N to the centrifuge. What is the largest amount of torque this clamp could be exerting?
3. If the clamp exerts the largest amount of torque (which you just found), what will the angular acceleration of the centrifuge

be? Take the centrifuge to be a uniform disk with radius 27 cm and total mass 4.5 kg.
4. How long will it take for this centrifuge to come to a stop?

Consider an accelerating bicycle. The rider exerts a torque on the pedals, which is transmitted to the rear wheel by the chain
(possibly amplified by the gears, etc). How does this “drive” torque on the rear wheel (call it ) relate to the final acceleration
of the center of mass of the bicycle?

Solution

We need first to figure out how many external forces, at a minimum, we have to deal with. As the bicycle accelerates, two
things happen: the wheels (both wheels) turn faster, so there must be a net torque (clockwise in the picture, if the bicycle is
accelerating to the right) on each wheel; and the center of mass of the system accelerates, so there must be a net external force
on the whole system. The system is only in contact with the road, and so, as long as no slippage happens, the only external
source of torques or forces on the wheels has to be the force of static friction between the tires and the road.

For the front wheel, this is in fact the only external force, and the only force of any sort that exerts a torque on that wheel (there
are forces acting at the axle, but they exert no torque around the axle). Since the torque has to be clockwise, then, the force of

Example : Torques and forces on the wheels of an accelerating bicycle23.5.4

τd
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static friction on the front wheel, applied as it is at the point of contact with the road, must point backwards, that is, opposite
the direction of motion. We get then one equation of motion (of the type (22.4.13)) for that wheel:

where the subscript “ft” stands for “front tire”, and the wheel is supposed to have a radius  and moment of inertia .

For the rear wheel, we have the “drive torque” , exerted by the chain, and another torque exerted by the force of static
friction, , between that tire and the road. However, now the force  needs to point forward. This is because the net

external force on the whole bicycle-rider system is , and that has to point forward, or the center of mass could
never accelerate in that direction. Since we have established that  has to point backwards, it follows that  needs to be
larger, and in the forward direction. This means we get, for the center of mass acceleration, the equation ( )

and for the rear wheel, the torque equation

I am following the convention that clockwise torques are negative, and also that a force symbol without an arrow on top
represents the magnitude of the force. If a clockwise angular acceleration is likewise negative, the condition of rolling without
slipping [Equation (22.4.11)] needs to be written as

These are all the equations we need to relate the acceleration to . We can start by solving ( ) for  and substituting
in ( ), then likewise solving ( ) for  and substituting in ( ). The result is

then use Eq ( ) to write , and solve for :

Consider again the setup illustrated in the figure below, but now assume that the pulley has a mass  and radius . For
simplicity, leave the friction force out. What is now the acceleration of the system?

Solution

The figure below shows the setup, plus free-body diagrams for the two blocks (the vertical forces on block 1 have been left out
to avoid cluttering the figure, since they are not relevant here), and an extended free-body diagram for the pulley. (You can see
from the pulley diagram that there has to be another force acting on it, to balance the two forces shown. This would be a
contact force at the axle, directed upwards and to the left. If this was a statics problem, I would have to include it, but since it
does not exert a torque around the axis of rotation, it does not contribute to the dynamics of the system, so I have left it out as
well.)
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Example : Blocks connected by rope over a pulley with non-zero mass23.5.5
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Figure \(\PageIndex{1}\)

The key new feature of this problem is that the tension on the string has to have different values on either side of the pulley,
because there has to be a net torque on the pulley. Hence, the leftward force on the pulley ( ) has to be smaller than the
downward force ( ).

On the other hand, as long as the mass of the rope is negligible, it will still be the case that the horizontal part of the rope will
pull with equal strength on block 1 and on the pulley, and similarly the vertical part of the rope will pull with equal strength on
the pulley and on block 2. (To make this point clearer, I have “color-coded” these matching forces in the figure.) This means
that we can write  and , and write the torque equation (22.4.10) for the pulley as

We also have  for each block:

where I have taken  to be . The condition of rolling without slipping, Equation (22.4.11), applied to the
pulley, gives then

since, in the situation shown,  will be negative, and  has been defined as positive. Substituting Eqs. ( ), ( ), and (
) into ( ), we get

which is easily solved for :

If you look at the structure of this equation, it all makes sense. The numerator is the force of gravity on block 2, which is,
ultimately, the force responsible for setting the whole thing in motion. The denominator is, essentially, the inertia of the
system: ordinary inertia for the blocks, and rotational inertia for the pulley. Note further that, if we treat the pulley as a flat,
homogeneous disk of mass , then , and the denominator of ( ) becomes just .

 

This page titled 23.5: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

9.8: Examples by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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23.E: Fixed-Axis Rotation Introduction (Exercises)

Conceptual Questions

10.1 Rotational Variables
1. A clock is mounted on the wall. As you look at it, what is the direction of the angular velocity vector of the second hand?
2. What is the value of the angular acceleration of the second hand of the clock on the wall?
3. A baseball bat is swung. Do all points on the bat have the same angular velocity? The same tangential speed?
4. The blades of a blender on a counter are rotating clockwise as you look into it from the top. If the blender is put to a

greater speed what direction is the angular acceleration of the blades?

10.2 Rotation with Constant Angular Acceleration
5. If a rigid body has a constant angular acceleration, what is the functional form of the angular velocity in terms of the time

variable?
6. If a rigid body has a constant angular acceleration, what is the functional form of the angular position?
7. If the angular acceleration of a rigid body is zero, what is the functional form of the angular velocity?
8. A massless tether with a masses tied to both ends rotates about a fixed axis through the center. Can the total acceleration

of the tether/mass combination be zero if the angular velocity is constant?

10.3 Relating Angular and Translational Quantities
9. Explain why centripetal acceleration changes the direction of velocity in circular motion but not its magnitude.

10. In circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction. Explain your
answer.

11. Suppose a piece of food is on the edge of a rotating microwave oven plate. Does it experience nonzero tangential
acceleration, centripetal acceleration, or both when: (a) the plate starts to spin faster? (b) The plate rotates at constant
angular velocity? (c) The plate slows to a halt?

10.4 Moment of Inertia and Rotational Kinetic Energy
12. What if another planet the same size as Earth were put into orbit around the Sun along with Earth. Would the moment of

inertia of the system increase, decrease, or stay the same?
13. A solid sphere is rotating about an axis through its center at a constant rotation rate. Another hollow sphere of the same

mass and radius is rotating about its axis through the center at the same rotation rate. Which sphere has a greater
rotational kinetic energy?

10.5 Calculating Moments of Inertia
14. If a child walks toward the center of a merry-go-round, does the moment of inertia increase or decrease?
15. A discus thrower rotates with a discus in his hand before letting it go. (a) How does his moment of inertia change after

releasing the discus? (b) What would be a good approximation to use in calculating the moment of inertia of the discus
thrower and discus?

16. Does increasing the number of blades on a propeller increase or decrease its moment of inertia, and why?
17. The moment of inertia of a long rod spun around an axis through one end perpendicular to its length is . Why is this

moment of inertia greater than it would be if you spun a point mass m at the location of the center of mass of the rod (at 
) (that would be )

18. Why is the moment of inertia of a hoop that has a mass M and a radius R greater than the moment of inertia of a disk that
has the same mass and radius?

10.6 Torque
19. What three factors affect the torque created by a force relative to a specific pivot point?
20. Give an example in which a small force exerts a large torque. Give another example in which a large force exerts a small

torque.
21. When reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires and wheel

rims. Why does this allow a racer to achieve greater accelerations than would an identical reduction in the mass of the
bicycle’s frame?
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22. Can a single force produce a zero torque?
23. Can a set of forces have a net torque that is zero and a net force that is not zero?
24. Can a set of forces have a net force that is zero and a net torque that is not zero?
25. In the expression  can  ever be less than the lever arm? Can it be equal to the lever arm?

10.7 Newton’s Second Law for Rotation
26. If you were to stop a spinning wheel with a constant force, where on the wheel would you apply the force to produce the

maximum negative acceleration?
27. A rod is pivoted about one end. Two forces  and  are applied to it. Under what circumstances will the rod not rotate?

Problems

10.1 Rotational Variables
28. Calculate the angular velocity of Earth.
29. A track star runs a 400-m race on a 400-m circular track in 45 s. What is his angular velocity assuming a constant speed?
30. A wheel rotates at a constant rate of 2.0 x 10  rev/min. (a) What is its angular velocity in radians per second? (b) Through

what angle does it turn in 10 s? Express the solution in radians and degrees.
31. A particle moves 3.0 m along a circle of radius 1.5 m. (a) Through what angle does it rotate? (b) If the particle makes this

trip in 1.0 s at a constant speed, what is its angular velocity? (c) What is its acceleration?
32. A compact disc rotates at 500 rev/min. If the diameter of the disc is 120 mm, (a) what is the tangential speed of a point at

the edge of the disc? (b) At a point halfway to the center of the disc?
33. Unreasonable results. The propeller of an aircraft is spinning at 10 rev/s when the pilot shuts off the engine. The

propeller reduces its angular velocity at a constant 2.0 rad/s  for a time period of 40 s. What is the rotation rate of the
propeller in 40 s? Is this a reasonable situation?

34. A gyroscope slows from an initial rate of 32.0 rad/s at a rate of 0.700 rad/s . How long does it take to come to rest?
35. On takeoff, the propellers on a UAV (unmanned aerial vehicle) increase their angular velocity for 3.0 s from rest at a rate

of  = (25.0t) rad/s where t is measured in seconds. (a) What is the instantaneous angular velocity of the propellers at t =
2.0 s? (b) What is the angular acceleration?

36. The angular position of a rod varies as 20.0t  radians from time t = 0. The rod has two beads on it as shown in the
following figure, one at 10 cm from the rotation axis and the other at 20 cm from the rotation axis. (a) What is the
instantaneous angular velocity of the rod at t = 5 s? (b) What is the angular acceleration of the rod? (c) What are the
tangential speeds of the beads at t = 5 s? (d) What are the tangential accelerations of the beads at t = 5 s? (e) What are the
centripetal accelerations of the beads at t = 5 s?

10.2 Rotation with Constant Angular Acceleration
37. A wheel has a constant angular acceleration of 5.0 rad/s . Starting from rest, it turns through 300 rad. (a) What is its final

angular velocity? (b) How much time elapses while it turns through the 300 radians?
38. During a 6.0-s time interval, a flywheel with a constant angular acceleration turns through 500 radians that acquire an

angular velocity of 100 rad/s. (a) What is the angular velocity at the beginning of the 6.0 s? (b) What is the angular
acceleration of the flywheel?

39. The angular velocity of a rotating rigid body increases from 500 to 1500 rev/min in 120 s. (a) What is the angular
acceleration of the body? (b) Through what angle does it turn in this 120 s?

40. A flywheel slows from 600 to 400 rev/min while rotating through 40 revolutions. (a) What is the angular acceleration of
the flywheel? (b) How much time elapses during the 40 revolutions?

41. A wheel 1.0 m in radius rotates with an angular acceleration of 4.0 rad/s . (a) If the wheel’s initial angular velocity is 2.0
rad/s, what is its angular velocity after 10 s? (b) Through what angle does it rotate in the 10-s interval? (c) What are the
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tangential speed and acceleration of a point on the rim of the wheel at the end of the 10-s interval?
42. A vertical wheel with a diameter of 50 cm starts from rest and rotates with a constant angular acceleration of 5.0 rad/s

around a fixed axis through its center counterclockwise. (a) Where is the point that is initially at the bottom of the wheel
at t = 10 s? (b) What is the point’s linear acceleration at this instant?

43. A circular disk of radius 10 cm has a constant angular acceleration of 1.0 rad/s ; at t = 0 its angular velocity is 2.0 rad/s.
(a) Determine the disk’s angular velocity at t = 5.0 s . (b) What is the angle it has rotated through during this time? (c)
What is the tangential acceleration of a point on the disk at t = 5.0 s?

44. The angular velocity vs. time for a fan on a hovercraft is shown below. (a) What is the angle through which the fan blades
rotate in the first 8 seconds? (b) Verify your result using the kinematic equations.

45. A rod of length 20 cm has two beads attached to its ends. The rod with beads starts rotating from rest. If the beads are to
have a tangential speed of 20 m/s in 7 s, what is the angular acceleration of the rod to achieve this?

10.3 Relating Angular and Translational Quantities
46. At its peak, a tornado is 60.0 m in diameter and carries 500 km/h winds. What is its angular velocity in revolutions per

second?
47. A man stands on a merry-go-round that is rotating at 2.5 rad/s. If the coefficient of static friction between the man’s shoes

and the merry-go-round is S = 0.5, how far from the axis of rotation can he stand without sliding?
48. An ultracentrifuge accelerates from rest to 100,000 rpm in 2.00 min. (a) What is the average angular acceleration in

rad/s ? (b) What is the tangential acceleration of a point 9.50 cm from the axis of rotation? (c) What is the centripetal
acceleration in m/s  and multiples of g of this point at full rpm? (d) What is the total distance traveled by a point 9.5 cm
from the axis of rotation of the ultracentrifuge?

49. A wind turbine is rotating counterclockwise at 0.5 rev/s and slows to a stop in 10 s. Its blades are 20 m in length. (a)
What is the angular acceleration of the turbine? (b) What is the centripetal acceleration of the tip of the blades at t = 0 s?
(c) What is the magnitude and direction of the total linear acceleration of the tip of the blades at t = 0 s?

50. What is (a) the angular speed and (b) the linear speed of a point on Earth’s surface at latitude 30° N. Take the radius of
the Earth to be 6309 km. (c) At what latitude would your linear speed be 10 m/s?

51. A child with mass 30 kg sits on the edge of a merrygo-round at a distance of 3.0 m from its axis of rotation. The merry-
go-round accelerates from rest up to 0.4 rev/s in 10 s. If the coefficient of static friction between the child and the surface
of the merry-go-round is 0.6, does the child fall off before 5 s?

52. A bicycle wheel with radius 0.3m rotates from rest to 3 rev/s in 5 s. What is the magnitude and direction of the total
acceleration vector at the edge of the wheel at 1.0 s?

53. The angular velocity of a flywheel with radius 1.0 m varies according to (t) = 2.0t. Plot a (t) and a (t) from t = 0 to 3.0 s
for r = 1.0 m. Analyze these results to explain when a  >> a  and when a  << a  for a point on the flywheel at a radius of
1.0 m.

10.4 Moment of Inertia and Rotational Kinetic Energy
54. A system of point particles is shown in the following figure. Each particle has mass 0.3 kg and they all lie in the same

plane. (a) What is the moment of inertia of the system about the given axis? (b) If the system rotates at 5 rev/s, what is its
rotational kinetic energy?
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55. (a) Calculate the rotational kinetic energy of Earth on its axis. (b) What is the rotational kinetic energy of Earth in its orbit
around the Sun?

56. Calculate the rotational kinetic energy of a 12-kg motorcycle wheel if its angular velocity is 120 rad/s and its inner radius
is 0.280 m and outer radius 0.330 m.

57. A baseball pitcher throws the ball in a motion where there is rotation of the forearm about the elbow joint as well as other
movements. If the linear velocity of the ball relative to the elbow joint is 20.0 m/s at a distance of 0.480 m from the joint
and the moment of inertia of the forearm is 0.500 kg-m , what is the rotational kinetic energy of the forearm?

58. A diver goes into a somersault during a dive by tucking her limbs. If her rotational kinetic energy is 100 J and her
moment of inertia in the tuck is 9.0 kg • m , what is her rotational rate during the somersault?

59. An aircraft is coming in for a landing at 300 meters height when the propeller falls off. The aircraft is flying at 40.0 m/s
horizontally. The propeller has a rotation rate of 20 rev/s, a moment of inertia of 70.0 kg • m , and a mass of 200 kg.
Neglect air resistance. (a) With what translational velocity does the propeller hit the ground? (b) What is the rotation rate
of the propeller at impact?

60. If air resistance is present in the preceding problem and reduces the propeller’s rotational kinetic energy at impact by
30%, what is the propeller’s rotation rate at impact?

61. A neutron star of mass 2 x 10  kg and radius 10 km rotates with a period of 0.02 seconds. What is its rotational kinetic
energy?

62. An electric sander consisting of a rotating disk of mass 0.7 kg and radius 10 cm rotates at 15 rev/s. When applied to a
rough wooden wall the rotation rate decreases by 20%. (a) What is the final rotational kinetic energy of the rotating disk?
(b) How much has its rotational kinetic energy decreased?

63. A system consists of a disk of mass 2.0 kg and radius 50 cm upon which is mounted an annular cylinder of mass 1.0 kg
with inner radius 20 cm and outer radius 30 cm (see below). The system rotates about an axis through the center of the
disk and annular cylinder at 10 rev/s. (a) What is the moment of inertia of the system? (b) What is its rotational kinetic
energy?

10.5 Calculating Moments of Inertia
64. While punting a football, a kicker rotates his leg about the hip joint. The moment of inertia of the leg is 3.75 kg • m  and

its rotational kinetic energy is 175 J. (a) What is the angular velocity of the leg? (b) What is the velocity of tip of the
punter’s shoe if it is 1.05 m from the hip joint?

65. Using the parallel axis theorem, what is the moment of inertia of the rod of mass m about the axis shown below?

66. Find the moment of inertia of the rod in the previous problem by direct integration.
67. A uniform rod of mass 1.0 kg and length 2.0 m is free to rotate about one end (see the following figure). If the rod is

released from rest at an angle of 60° with respect to the horizontal, what is the speed of the tip of the rod as it passes the
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horizontal position?

68. A pendulum consists of a rod of mass 2 kg and length 1 m with a solid sphere at one end with mass 0.3 kg and radius 20
cm (see the following figure). If the pendulum is released from rest at an angle of 30°, what is the angular velocity at the
lowest point?

69. A solid sphere of radius 10 cm is allowed to rotate freely about an axis. The sphere is given a sharp blow so that its center
of mass starts from the position shown in the following figure with speed 15 cm/s. What is the maximum angle that the
diameter makes with the vertical?

70. Calculate the moment of inertia by direct integration of a thin rod of mass M and length L about an axis through the rod
at L/3, as shown below. Check your answer with the parallel-axis theorem.

10.6 Torque
71. Two flywheels of negligible mass and differ3ent radii are bonded together and rotate about a common axis (see below).

The smaller flywheel of radius 30 cm has a cord that has a pulling force of 50 N on it. What pulling force needs to be
applied to the cord connecting the larger flywheel of radius 50 cm such that the combination does not rotate?

72. The cylinder head bolts on a car are to be tightened with a torque of 62.0 N·m. If a mechanic uses a wrench of length 20
cm, what perpendicular force must he exert on the end of the wrench to tighten a bolt correctly?

73. (a) When opening a door, you push on it perpendicularly with a force of 55.0 N at a distance of 0.850 m from the hinges.
What torque are you exerting relative to the hinges? (b) Does it matter if you push at the same height as the hinges? There
is only one pair of hinges.

74. When tightening a bolt, you push perpendicularly on a wrench with a force of 165 N at a distance of 0.140 m from the
center of the bolt. How much torque are you exerting in newton-meters (relative to the center of the bolt)?

75. What hanging mass must be placed on the cord to keep the pulley from rotating (see the following figure)? The mass on
the frictionless plane is 5.0 kg. The inner radius of the pulley is 20 cm and the outer radius is 30 cm.
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76. A simple pendulum consists of a massless tether 50 cm in length connected to a pivot and a small mass of 1.0 kg attached
at the other end. What is the torque about the pivot when the pendulum makes an angle of 40° with respect to the
vertical?

77. Calculate the torque about the z-axis that is out of the page at the origin in the following figure, given that F  = 3 N, F  =
2 N, F  = 3 N, F  = 1.8 N.

78. A seesaw has length 10.0 m and uniform mass 10.0 kg and is resting at an angle of 30° with respect to the ground (see the
following figure). The pivot is located at 6.0 m. What magnitude of force needs to be applied perpendicular to the seesaw
at the raised end so as to allow the seesaw to barely start to rotate?

79. A pendulum consists of a rod of mass 1 kg and length 1 m connected to a pivot with a solid sphere attached at the other
end with mass 0.5 kg and radius 30 cm. What is the torque about the pivot when the pendulum makes an angle of 30°
with respect to the vertical?

80. A torque of 5.00 x 10  N • m is required to raise a drawbridge (see the following figure). What is the tension necessary to
produce this torque? Would it be easier to raise the drawbridge if the angle  were larger or smaller?

81. A horizontal beam of length 3 m and mass 2.0 kg has a mass of 1.0 kg and width 0.2 m sitting at the end of the beam (see
the following figure). What is the torque of the system about the support at the wall?
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82. What force must be applied to end of a rod along the x-axis of length 2.0 m in order to produce a torque on the rod about
the origin of 8.0  N • m?

83. What is the torque about the origin of the force (5.0  − 2.0  + 1.0 ) N if it is applied at the point whose position is:  =
(−2.0  + 4.0 ) m?

10.7 Newton’s Second Law for Rotation
84. You have a grindstone (a disk) that is 90.0 kg, has a 0.340-m radius, and is turning at 90.0 rpm, and you press a steel axe

against it with a radial force of 20.0 N. (a) Assuming the kinetic coefficient of friction between steel and stone is 0.20,
calculate the angular acceleration of the grindstone. (b) How many turns will the stone make before coming to rest?

85. Suppose you exert a force of 180 N tangential to a 0.280-m-radius, 75.0-kg grindstone (a solid disk). (a)What torque is
exerted? (b) What is the angular acceleration assuming negligible opposing friction? (c) What is the angular acceleration
if there is an opposing frictional force of 20.0 N exerted 1.50 cm from the axis?

86. A flywheel (I = 50 kg • m ) starting from rest acquires an angular velocity of 200.0 rad/s while subject to a constant
torque from a motor for 5 s. (a) What is the angular acceleration of the flywheel? (b) What is the magnitude of the
torque?

87. A constant torque is applied to a rigid body whose moment of inertia is 4.0 kg • m  around the axis of rotation. If the
wheel starts from rest and attains an angular velocity of 20.0 rad/s in 10.0 s, what is the applied torque?

88. A torque of 50.0 N • m is applied to a grinding wheel (I = 20.0 kg • m ) for 20 s. (a) If it starts from rest, what is the
angular velocity of the grinding wheel after the torque is removed? (b) Through what angle does the wheel move through
while the torque is applied?

89. A flywheel (I = 100.0 kg • m ) rotating at 500.0 rev/ min is brought to rest by friction in 2.0 min. What is the frictional
torque on the flywheel?

90. A uniform cylindrical grinding wheel of mass 50.0 kg and diameter 1.0 m is turned on by an electric motor. The friction
in the bearings is negligible. (a) What torque must be applied to the wheel to bring it from rest to 120 rev/min in 20
revolutions? (b) A tool whose coefficient of kinetic friction with the wheel is 0.60 is pressed perpendicularly against the
wheel with a force of 40.0 N. What torque must be supplied by the motor to keep the wheel rotating at a constant angular
velocity?

91. Suppose when Earth was created, it was not rotating. However, after the application of a uniform torque after 6 days, it
was rotating at 1 rev/day. (a) What was the angular acceleration during the 6 days? (b) What torque was applied to Earth
during this period? (c) What force tangent to Earth at its equator would produce this torque?

92. A pulley of moment of inertia 2.0 kg • m  is mounted on a wall as shown in the following figure. Light strings are
wrapped around two circumferences of the pulley and weights are attached. What are (a) the angular acceleration of the
pulley and (b) the linear acceleration of the weights? Assume the following data: r  = 50 cm, r  = 20 cm, m  = 1.0 kg, m
= 2.0 kg.

k̂
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93. A block of mass 3 kg slides down an inclined plane at an angle of 45° with a massless tether attached to a pulley with
mass 1 kg and radius 0.5 m at the top of the incline (see the following figure). The pulley can be approximated as a disk.
The coefficient of kinetic friction on the plane is 0.4. What is the acceleration of the block?

94. The cart shown below moves across the table top as the block falls. What is the acceleration of the cart? Neglect friction
and assume the following data: m  = 2.0 kg, m  = 4.0 kg, I = 0.4 kg • m , r = 20 cm.

95. A uniform rod of mass and length is held vertically by two strings of negligible mass, as shown below. (a) Immediately
after the string is cut, what is the linear acceleration of the free end of the stick? (b) Of the middle of the stick?

96. A thin stick of mass 0.2 kg and length L = 0.5 m is attached to the rim of a metal disk of mass M = 2.0 kg and radius R =
0.3 m. The stick is free to rotate around a horizontal axis through its other end (see the following figure). (a) If the
combination is released with the stick horizontal, what is the speed of the center of the disk when the stick is vertical? (b)
What is the acceleration of the center of the disk at the instant the stick is released? (c) At the instant the stick passes
through the vertical?
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10.8 Work and Power for Rotational Motion
97. A wind turbine rotates at 20 rev/min. If its power output is 2.0 MW, what is the torque produced on the turbine from the

wind?
98. A clay cylinder of radius 20 cm on a potter’s wheel spins at a constant rate of 10 rev/s. The potter applies a force of 10 N

to the clay with his hands where the coefficient of friction is 0.1 between his hands and the clay. What is the power that
the potter has to deliver to the wheel to keep it rotating at this constant rate?

99. A uniform cylindrical grindstone has a mass of 10 kg and a radius of 12 cm. (a) What is the rotational kinetic energy of
the grindstone when it is rotating at 1.5 x 10  rev/min? (b) After the grindstone’s motor is turned off, a knife blade is
pressed against the outer edge of the grindstone with a perpendicular force of 5.0 N. The coefficient of kinetic friction
between the grindstone and the blade is 0.80. Use the work energy theorem to determine how many turns the grindstone
makes before it stops.

100. A uniform disk of mass 500 kg and radius 0.25 m is mounted on frictionless bearings so it can rotate freely around a
vertical axis through its center (see the following figure). A cord is wrapped around the rim of the disk and pulled with a
force of 10 N. (a) How much work has the force done at the instant the disk has completed three revolutions, starting
from rest? (b) Determine the torque due to the force, then calculate the work done by this torque at the instant the disk has
completed three revolutions? (c) What is the angular velocity at that instant? (d) What is the power output of the force at
that instant?

101. A propeller is accelerated from rest to an angular velocity of 1000 rev/min over a period of 6.0 seconds by a constant
torque of 2.0 x 10  N • m. (a) What is the moment of inertia of the propeller? (b) What power is being provided to the
propeller 3.0 s after it starts rotating?

102. A sphere of mass 1.0 kg and radius 0.5 m is attached to the end of a massless rod of length 3.0 m. The rod rotates about
an axis that is at the opposite end of the sphere (see below). The system rotates horizontally about the axis at a constant
400 rev/min. After rotating at this angular speed in a vacuum, air resistance is introduced and provides a force 0.15 N on
the sphere opposite to the direction of motion. What is the power provided by air resistance to the system 100.0 s after air
resistance is introduced?

103. A uniform rod of length L and mass M is held vertically with one end resting on the floor as shown below. When the rod
is released, it rotates around its lower end until it hits the floor. Assuming the lower end of the rod does not slip, what is
the linear velocity of the upper end when it hits the floor?
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104. An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min.
The length of the pedal arms is 30 cm. What is the power delivered to the bicycle by the athlete?

105. A 2-kg block on a frictionless inclined plane at 40° has a cord attached to a pulley of mass 1 kg and radius 20 cm (see the
following figure). (a) What is the acceleration of the block down the plane? (b) What is the work done by the cord on the
pulley?

106. Small bodies of mass m  and m  are attached to opposite ends of a thin rigid rod of length L and mass M. The rod is
mounted so that it is free to rotate in a horizontal plane around a vertical axis (see below). What distance d from m
should the rotational axis be so that a minimum amount of work is required to set the rod rotating at an angular velocity 

?

Additional Problems
107. A cyclist is riding such that the wheels of the bicycle have a rotation rate of 3.0 rev/s. If the cyclist brakes such that the

rotation rate of the wheels decrease at a rate of 0.3 rev/s , how long does it take for the cyclist to come to a complete
stop?

108. Calculate the angular velocity of the orbital motion of Earth around the Sun.
109. A phonograph turntable rotating at 33  rev/min slows down and stops in 1.0 min. (a) What is the turntable’s angular

acceleration assuming it is constant? (b) How many revolutions does the turntable make while stopping?
110. With the aid of a string, a gyroscope is accelerated from rest to 32 rad/s in 0.40 s under a constant angular acceleration.

(a) What is its angular acceleration in rad/s ? (b) How many revolutions does it go through in the process?
111. Suppose a piece of dust has fallen on a CD. If the spin rate of the CD is 500 rpm, and the piece of dust is 4.3 cm from the

center, what is the total distance traveled by the dust in 3 minutes? (Ignore accelerations due to getting the CD rotating.)
112. A system of point particles is rotating about a fixed axis at 4 rev/s. The particles are fixed with respect to each other. The

masses and distances to the axis of the point particles are m  = 0.1 kg, r  = 0.2 m, m  = 0.05 kg, r  = 0.4 m, m  = 0.5 kg,
r  = 0.01 m. (a) What is the moment of inertia of the system? (b) What is the rotational kinetic energy of the system?

113. Calculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approximated as a
cylinder that has a 0.110-m radius. (b) The skater with arms extended is approximated by a cylinder that is 52.5 kg, has a
0.110-m radius, and has two 0.900-m-long arms which are 3.75 kg each and extend straight out from the cylinder like
rods rotated about their ends.

114. A stick of length 1.0 m and mass 6.0 kg is free to rotate about a horizontal axis through the center. Small bodies of masses
4.0 and 2.0 kg are attached to its two ends (see the following figure). The stick is released from the horizontal position.
What is the angular velocity of the stick when it swings through the vertical?
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115. A pendulum consists of a rod of length 2 m and mass 3 kg with a solid sphere of mass 1 kg and radius 0.3 m attached at
one end. The axis of rotation is as shown below. What is the angular velocity of the pendulum at its lowest point if it is
released from rest at an angle of 30°?

116. Calculate the torque of the 40-N force around the axis through O and perpendicular to the plane of the page as shown
below.

117. Two children push on opposite sides of a door during play. Both push horizontally and perpendicular to the door. One
child pushes with a force of 17.5 N at a distance of 0.600 m from the hinges, and the second child pushes at a distance of
0.450 m. What force must the second child exert to keep the door from moving? Assume friction is negligible.

118. The force of 20  N is applied at  = (4.0  − 2.0 ) m. What is the torque of this force about the origin? 119. An
automobile engine can produce 200 N • m of torque. Calculate the angular acceleration produced if 95.0% of this torque
is applied to the drive shaft, axle, and rear wheels of a car, given the following information. The car is suspended so that
the wheels can turn freely. Each wheel acts like a 15.0-kg disk that has a 0.180-m radius. The walls of each tire act like a
2.00-kg annular ring that has inside radius of 0.180 m and outside radius of 0.320 m. The tread of each tire acts like a
10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts
like a rod that has a 3.20-cm radius.

119. A grindstone with a mass of 50 kg and radius 0.8 m maintains a constant rotation rate of 4.0 rev/s by a motor while a
knife is pressed against the edge with a force of 5.0 N. The coefficient of kinetic friction between the grindstone and the
blade is 0.8. What is the power provided by the motor to keep the grindstone at the constant rotation rate?

Challenge Problems
121. The angular acceleration of a rotating rigid body is given by  = (2.0 − 3.0t) rad/s . If the body starts rotating from rest at

t = 0, (a) what is the angular velocity? (b) Angular position? (c) What angle does it rotate through in 10 s? (d) Where does
the vector perpendicular to the axis of rotation indicating 0° at t = 0 lie at t = 10 s?

122. Earth’s day has increased by 0.002 s in the last century. If this increase in Earth’s period is constant, how long will it take
for Earth to come to rest?

123. A disk of mass m, radius R, and area A has a surface mass density  (see the following figure). What is the
moment of inertia of the disk about an axis through the center?

ĵ r ⃗  î ĵ

α 2

σ = mr

AR
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124. Zorch, an archenemy of Rotation Man, decides to slow Earth’s rotation to once per 28.0 h by exerting an opposing force
at and parallel to the equator. Rotation Man is not immediately concerned, because he knows Zorch can only exert a force
of 4.00 x 10  N (a little greater than a Saturn V rocket’s thrust). How long must Zorch push with this force to accomplish
his goal? (This period gives Rotation Man time to devote to other villains.)

125. A cord is wrapped around the rim of a solid cylinder of radius 0.25 m, and a constant force of 40 N is exerted on the cord
shown, as shown in the following figure. The cylinder is mounted on frictionless bearings, and its moment of inertia is
6.0 kg • m . (a) Use the work energy theorem to calculate the angular velocity of the cylinder after 5.0 m of cord have
been removed. (b) If the 40-N force is replaced by a 40-N weight, what is the angular velocity of the cylinder after 5.0 m
of cord have unwound?
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24.1: Introduction- The Physics of Oscillations
It is probably not an exaggeration to suggest that we are all introduced to oscillatory motion from our first moments of life. Babies,
it seems, are constantly rocked to sleep, in many cases using devices, such as cradles and rocking chairs, that exemplify the kind of
mechanical oscillator with which this chapter is concerned. And then, of course, there are swings, which function essentially like
the pendulum depicted below.

Figure : A simple pendulum. In (a), the equilibrium position, the tension and gravity forces balance out. In (b), they combine
to produce a restoring force (in blue) pointing back towards equilibrium. In (c), the bob is passing through equilibrium and the net
force on it at that instant is again zero, but its momentum keeps it going. At (d) we have the mirror image of (b).

In fact, oscillatory motion is extremely common, both in natural systems and in human-made structures. It essentially requires only
two things: a stable equilibrium configuration, where the stability is ensured by what we call a restoring force; and inertia, which,
of course, every physical system has.

The pendulum in Figure  illustrates how these things combine to produce an oscillation. As the pendulum bob is displaced
from its equilibrium position, a net force on it appears (a combination of gravity and the tension in the string), pointing back
towards the vertical. When the bob is released, it accelerates under the influence of this force, with the result that when it reaches
back the equilibrium position, its inertia (or, if you prefer, its momentum) causes it to overshoot it. Once this happens, the restoring
force changes direction, always trying to bring the mass back to equilibrium; as a result, the bob slows down, and eventually
reverses course, accelerates again towards the vertical, overshoots it again... the process will repeat itself, until all the energy we
initially put in the system (gravitational potential energy, in this case) is dissipated away (or damped), mostly through friction at the
pivot point, though air resistance plays a small part as well.

That the motion, in the absence of dissipation, must be symmetric around the equilibrium position follows from conservation of
energy: the speed of the bob at any given height must be the same on either side, in order for the sum of its potential and kinetic
energies to be the same. In particular, if released from rest from some height, it will stop when it reaches the same height on the
other side. In the presence of dissipation, the motion is neither exactly symmetric, nor exactly periodic (that is to say, it does not
repeat itself exactly—the maximum height gets lower every time, the speed as it passes through the equilibrium position gets also
smaller and smaller), but when the dissipation is not very large one can always define an approximate period (which we will denote
with the letter ) as the time it takes to complete one full swing.

The inverse of the period is the frequency, , which tells us how many full swings the pendulum completes per second. These two
quantities,  and , can be defined for any type of periodic (or approximately periodic) motion, and will always satisfy the
relationship

The units of frequency are, of course, inverse seconds (s ). In this context, however, this unit is called a ”hertz,” and abbreviated
Hz.

This page titled 24.1: Introduction- The Physics of Oscillations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts
platform.

24.1.1

24.1.1

T

f

T f

f = .
1

T
(24.1.1)

−1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/88076?pdf
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/24%3A_Simple_Harmonic_Motion/24.01%3A_Introduction-_The_Physics_of_Oscillations
https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/24%3A_Simple_Harmonic_Motion/24.01%3A_Introduction-_The_Physics_of_Oscillations
https://creativecommons.org/licenses/by-sa/4.0
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://libraries.uark.edu/
https://scholarworks.uark.edu/oer/3


24.1.2 https://phys.libretexts.org/@go/page/88076

11.1: Introduction- The Physics of Oscillations by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source:
https://scholarworks.uark.edu/oer/3.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/88076?pdf
https://phys.libretexts.org/@go/page/22267
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://creativecommons.org/licenses/by-sa/4.0/
https://scholarworks.uark.edu/oer/3


24.2.1 https://phys.libretexts.org/@go/page/88077

24.2: Simple Harmonic Motion
A particularly important kind of oscillatory motion is called simple harmonic motion. This is what happens when the restoring
force is linear in the displacement from the equilibrium position: that is to say, in one dimension, if  is the equilibrium position,
the restoring force has the form

We are familiar with this from Hooke’s “law” for an ideal spring (see Chapter 19). So, an object attached to an ideal, massless
spring, as in the figure below, should perform simple harmonic motion. This kind of oscillation is distinguished by the following
characteristics:

The position as a function of time, , is a sinusoidal function.
The period of the oscillations does not depend on their amplitude (by “amplitude” we mean the maximum displacement from
the equilibrium position).

What this second property means is that, for instance, with reference to Figure , you can displace the mass a distance , or 
, or , or whatever you choose, and the period (and frequency) of the resulting oscillations will be the same regardless.

(This means, actually, that if you displace it farther it has to end up moving faster, to cover the larger distance in the same time.)

Figure  (a) shows the spring in its relaxed state (the “equilibrium” position for the mass, at coordinate ). If displaced from
equilibrium a distance  and released (b), the mass will perform simple harmonic oscillations with amplitude .

Since we know that “Hooke’s law” is actually just an approximation, valid only provided that the spring is not compressed or
stretched too much, we expect that in real life the “ideal” simple harmonic motion properties I have listed above will only hold
approximately, as well; so, in fact, if you stretch a spring too much you will get a different period, eventually, than if you stay in the
“linear,” Hooke’s law regime. This is a general characteristic of most physical systems: simple harmonic motion only happens for
relatively small oscillations, but “relatively small” can still be fairly large sometimes, and even as an approximation it is often an
extremely valuable one.

The other distinctive characteristic of simple harmonic motion is that the position function is sinusoidal, by which I mean a sine or
a cosine. Thus, for example, if the mass in Figure  is released from rest at  = 0, and the position  is measured from the
equilibrium position  (that is, the point  is taken as the origin of coordinates), the function  will be

where the quantity , known as the oscillator’s angular frequency, is given by

Here,  is the spring constant, and  the mass of the object (remember the spring is assumed to be massless). I will prove that
Equation ( ), together with ( ), satisfy Newton’s second law of motion for this system in a moment; first, however, I
need to say a couple of things about . You’ll recall that we have used this symbol before, in Chapter 6, to represent the angular
velocity of a particle moving in a circle (or, more generally, of any rotating object). Why bring it up again now for an apparently
completely different purpose?

x0

F = −k (x− ) .x0 (24.2.1)
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Figure : A particle moving on a circle with constant angular velocity . Assuming  = 0 at  = 0, we have , and
therefore the particle’s  coordinate is given by the function . This means the corresponding point on the  axis
(the red dot) performs simple harmonic motion with angular frequency  as the particle rotates.

The answer is that there is a very close relationship between simple harmonic motion and circular motion with constant speed, as
Figure  illustrates: as the point P rotates with constant angular velocity , its projection onto the  axis (the red dot in the
figure) performs simple harmonic motion with angular frequency  (and amplitude ). (Of course, there is nothing special about
the  axis; the projection on any other axis will also perform simple harmonic motion with the same angular frequency; for
example, the blue dot on the figure.)

If the angular velocity of the particle in Figure  is constant, then its “orbital period” (the time needed to complete one
revolution) will be , and this will also be the period of the associated harmonic motion (the time it takes for the motion to
repeat itself). You can see this directly from Equation ( ): if you increase the time  by , you get the same value of :

Since the frequency  of an oscillator is equal to 1/ , this gives us the following relationship between  and :

One way to tell whether one is talking about an oscillator’s frequency ( ) or its angular frequency ( )—apart from the different
symbols, of course—is to pay attention to the units. The frequency  is usually given in hertz, whereas the angular frequency  is
always given in radians per second. Apart from the factor of , they are, of course, completely equivalent; sometimes one is just
more convenient than the other. On the other hand, the only way to tell whether  is a harmonic oscillator’s angular frequency or
the angular velocity of something moving in a circle is from the context. (In this chapter, of course, it will always be the former).

Let us go back now to Equation  for our block-on-a-spring system. The derivative with respect to time will give us the
block’s velocity. This is a simple application of the chain rule of calculus:

Another derivative will then give us the acceleration:

Note that the acceleration is always proportional to the position, only with the opposite sign. The proportionality constant is .
Since the force exerted by the spring on the block is  (because we are measuring the position from the equilibrium
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position ), Newton’s second law, , gives us

and you can check for yourself that this will be satisfied if  is given by Equation ( ),  is given by Equation ( ), and 
is given by Equation ( ).

The expression ( ) for  is typical of what we find for many different kinds of oscillators: the restoring force (here
represented by the spring constant ) and the object’s inertia ( ) together determine the frequency of the motion, acting in
opposite directions: a larger restoring force means a higher frequency (faster oscillations) whereas a larger inertia means a lower
frequency (slower oscillations—a more “sluggish” response).

The position, velocity and acceleration graphs for the motion ( ) are shown in Figure  below. You may want to pay
attention to some of their main features. For instance, the position and the velocity are what we call “90  out of phase”: one is
maximum (or minimum) when the other one is zero. The acceleration, on the other hand, is “180  out of phase” (that is to say, in
complete opposition) with the position. As a result of that, all combinations of signs for  and  are possible: the object may be
moving to the right with positive or negative acceleration (depending on which side of the origin it’s on), and likewise when it is
moving to the left.

Figure : Position, velocity and acceleration as a function of time for an object performing simple harmonic motion according
to Equation ( ).

Since the time we choose as  = 0 is arbitrary, the function in Equation ( ) (which assumes that  = 0 is when the object’s
displacement is maximum and positive) is clearly not the most general formula for simple harmonic motion. Another way to see
this is to realize that we could have started the motion differently. For instance, we could have hit the block with a sharp,
“impulsive” force, lasting only a very short time, so it would have acquired a substantial velocity before it could have moved very
far from its initial (equilibrium) position. In such a case, the motion would be better described by a sine function, such as 

, which is zero at  = 0 but whose derivative (the object’s velocity) is maximum at that time.

If we stick to using cosines, for definiteness, then the most general equation for the position of a simple harmonic oscillator is as
follows:

where  is what we call a “phase angle,” that allows us to match the function to the initial conditions—by which I mean, the
object’s initial position and velocity. Specifically, you can see, by setting  = 0 in Equation ( ) and its derivative, that the
initial position and velocity of the motion described by Equation ( ) are

Conversely, if you are given  and , you can use Eqs. ( ) to determine  and , which is what you need to know in order
to use Equation ( ) (note that the angular frequency, , does not depend on the initial conditions—it is always the same
regardless of how you choose to start the motion). Specifically, you can verify that Eqs. ( ) imply the following:

x0 F = ma

ma = −kx (24.2.8)
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and then, once you know , you can get  from either  or  (in fact, since the inverse sine and inverse
cosine are both multivalued functions, you should use both equations, to make sure you get the correct sign for ).

Energy in Simple Harmonic Motion
Equation ( ) above actually follows from the conservation of energy principle for a harmonic oscillator. Consider again the
mass on the spring in Figure . Its kinetic energy is clearly , whereas the potential energy in the spring is .
Using Equation ( ) and its derivative, we have

Recalling Equation ( ), note that , so if you substitute this in the second equation above, you can see that the
amplitude of both the potential and the kinetic energy is the same, namely, . Since, for any angle , it is always true that 

, we find

so the total energy of the system is constant (independent of time), at it should be, in the absence of dissipation. Figure 
shows how the potential and kinetic energies oscillate in opposition, so one is maximum whenever the other is minimum. It also
shows that they oscillate twice as fast as the oscillator itself: for example, the potential energy is maximum both when the
displacement is maximum (spring maximally stretched) and when it is minimum (spring maximally compressed). Similarly, the
kinetic energy is maximum when the oscillator passes through the equilibrium position, regardless of whether it is moving to the
left or to the right.

Figure : Kinetic (red), potential (blue) and total (black) energy for the oscillator shown in Figure .

Harmonic Oscillator Subject to an External, Constant Force
Consider a mass hanging from an ideal spring suspended from the ceiling, as in Figure  below (next page). Supposed the
relaxed length of the spring is , such that, in the absence of gravity, the object’s equilibrium position would be at the height 
shown in figure (a). In the presence of gravity, of course, the spring needs to stretch, to balance the object’s weight, and so
the actual equilibrium position for the system will be , as shown in figure (b). The upwards force from the spring at that
point will be , and to balance gravity we must have

= +A2 x2
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Suppose that we now stretch the spring beyond this new equilibrium position, so the mass is now at a height  (figure (c)).
What happens then? The net upwards force will be , but using Equation ( ) this can be rewritten as

This is a remarkable result, because the force of gravity has disappeared completely from the final expression. Basically, the system
behaves as if it consisted of just a spring of constant  with equilibrium length , and no gravity. In other words, the
only thing gravity does is to change the equilibrium position, so that if you now displace the mass, it will oscillate around 
instead of around . The oscillation’s period and frequency are the same as if the spring was horizontal.

Figure : (a) An ideal (massless) spring hanging from the ceiling, in its relaxed position. (b) With a mass  hanging from its
end, the spring stretches to a new length  , so that . (c) If the mass is now displaced from this equilibrium position
(labeled  in the figure) it will perform harmonic oscillations symmetrically around the point , with the same frequency as if the
spring was horizontal.

Although I have established this here for the specific case where the oscillator involves a spring, and the external force is gravity,
this is a completely general result, valid for any simple harmonic oscillator, since for such a system the restoring force will always
be a linear function of the displacement (which is all that is required for the math to work). As long as the external force is
constant, the frequency of the oscillations will not be affected, and only the equilibrium position will change. In an example at the
end of the chapter (under “Advanced Topics”) I will show you how you can make use of this to calculate the effect of friction on
the horizontal mass-spring combination in Figure .

One thing you need to keep in mind, however, is that when the oscillator is subjected to an external force, as was the case here, its
energy will not, in general, remain constant (unlike what we saw in the previous subsection "Energy in Simple Harmonic Motion"),
since the external force will be doing work on the system as it oscillates. If the external force is constant, and does not change
direction, this work will be positive half the time, and negative half the time. If it is kinetic friction, then of course it will change
direction every half cycle, and the work will be negative all the time.

In the case shown in Figure , the external force is gravity, which we know to be a conservative force, so the energy that will
be conserved will be the total energy of the system that includes the oscillation and the Earth, and hence also the gravitational
potential energy (for which we can use here the familiar form ):

The reason it is no longer possible to combine the terms  into the constant , as in Equation ( ), is that now
we have
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so the oscillations are centered around the new equilibrium position , but the spring energy is not zero at that point: it is zero at 
 instead. You can check for yourself, however, that if you substitute Eqs. ( ) into Equation ( ), and make use of

the fact that  (Equation ( )), you do indeed get a constant, as you should.

This page titled 24.2: Simple Harmonic Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-
Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

11.2: Simple Harmonic Motion by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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24.3: Pendulums

The Simple Pendulum
Besides masses on springs, pendulums are another example of a system that will exhibit simple harmonic motion, at least
approximately, as long as the amplitude of the oscillations is small. The simple pendulum is just a mass (or “bob”), approximated
here as a point particle, suspended from a massless, inextensible string, as in Figure .

We could analyze the motion of the bob by using the general methods introduced in Chapter 8 to deal with motion in two
dimensions—breaking down all the forces into components and applying  along two orthogonal directions—but this
turns out to be complicated by the fact that both the direction of motion and the direction of the acceleration are constantly
changing. Although, under the assumption of small oscillations, it turns out that simply using the vertical and horizontal directions
is good enough, this is not immediately obvious, and arguably it is not the most pedagogical way to proceed.

Figure : A simple pendulum. The mass of the bob is , the length of the string is , and torques are calculated around the
point of suspension O. The counterclockwise direction is taken as positive.

Instead, I will take advantage of the obvious fact that the bob moves on an arc of a circle, and that we have developed already in
Chapter 22 a whole set of tools to deal with that kind of motion. Let us, therefore, describe the position of the pendulum by the
angle it makes with the vertical, , and let  be the angular acceleration; we can then write the equation of motion in
the form , with the torques taken around the center of rotation—which is to say, the point from which the pendulum is
suspended. Then the torque due to the tension in the string is zero (since its line of action goes through the center of rotation), and 

 is just the torque due to gravity, which can be written

The minus sign is there to enforce a consistent sign convention for  and : if, for instance, I choose counterclockwise as positive
for both, then I note that when  is positive (pendulum to the right of the vertical),  is clockwise, and hence negative, and vice-
versa. This is characteristic of a restoring torque, that is to say, one that will always try to push the system back to its equilibrium
position (the vertical in this case).

As for the moment of inertia of the bob, it is just  (if we treat it as just a point particle), so the equation  takes
the form

The mass and one factor of  cancel, and we get

24.3.1

= mF ⃗ 
net a⃗ 

24.3.1 m l

θ α = θ/dd2 t2

= Iατnet

τnet

= −mgl sinθ.τnet (24.3.1)

θ τ

θ τ

I = ml2 = Iατnet

m = −mgl sinθ.l2
θd2

dt2
(24.3.2)

l

= − sinθ.
θd2

dt2
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l
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Equation ( ) is an example of what is known as a differential equation. The problem is to find a function of time, , that
satisfies this equation; that is to say, when you take its second derivative the result is equal to . Such functions exist
and are called elliptic functions; they are included in many modern mathematical packages, but they are still not easy to use. More
importantly, the oscillations they describe, in general, are not of the simple harmonic type.

On the other hand, if the amplitude of the oscillations is small, so that the angle , expressed in radians, is a small number, we can
make an approximation that greatly simplifies the problem, namely,

This is known as the small angle approximation, and requires  to be in radians. As an example, if  = 0.2 rad (which corresponds
to about 11.5 ), we find  = 0.199, to three-figure accuracy.

With this approximation, the equation to solve become much simpler:

We have, in fact, already solved an equation completely equivalent to this one in the previous section: that was equation (23.2.8)
for the mass-on-a-spring system, which can be rewritten as

since . Just like the solutions to ( ) could be written in the form , with , the
solutions to ( ) can be written as

This tells us that if a pendulum is not pulled too far away from the vertical (say, about 10  or less) it will perform approximate
simple harmonic oscillations, with a period of

This depends only on the length of the pendulum, and remains constant even as the oscillations wind down, which is why it became
the basis for time-keeping devices, beginning with the invention of the pendulum clock by Christiaan Huygens in 1656. In
particular, a pendulum of length  = 1 m will have a period of almost exactly 2 s, which is what gives you the familiar “tick-tock”
rhythm of a “grandfather’s clock,” once per second (that is to say, once every half period).

The "Physical Pendulum"
By a “physical pendulum” one means typically any pendulum-like device for which the moment of inertia is not given by the
simple expression . This means that the mass is not concentrated into a single point-like particle a distance  away from the
point of suspension; rather, for example, the bob could have a size that is not negligible compared to  (as in Figure 23.3.2a), or the
“string” could have a substantial mass of its own—it could, for instance, be a chain, like in a playground swing, or a metal rod, as
in most pendulum clocks.

24.3.3 θ(t)

−(g/l) sin[θ(t)]

θ

sinθ ≃ θ. (24.3.4)

θ θ
∘ sinθ

= − θ.
θd2

dt2

g

l
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Figure  (b) shows the special case of a thin rod of length  pivoted at one end (the distance  in this case). In both
cases, there is an additional force (not shown) acting at the pivot point, to balance gravity.

Regardless of the reason, having to deal with a distributed mass means also that one needs to use the center of mass of the system
as the point of application of the force of gravity. When this is done, the motion of the pendulum can again be described by the
angle between the vertical and a line connecting the point of suspension and the center of mass. If the distance between these two
points is , then the torque due to gravity is , and the only other force on the system, the force at the pivot point, exerts
no torque around that point, so we can write the equation of motion in the form

Under the small-angle approximation, this will again lead to simple harmonic motion, only now with an angular frequency given
by

As an example, consider the oscillations of a uniform, thin rod of length  and mass  pivoted at one end. We then have 
, and , so Equation ( ) gives

This is about 22% larger than the result ( ) for a simple pendulum of the same length, implying a correspondingly shorter
period.

This page titled 24.3: Pendulums is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-Banacloche
(University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

11.3: Pendulums by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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24.4: In Summary
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24.5: Examples

Consider a block-spring system inside a box, as shown in the figure. The block is attached to the spring, which is attached to
the inside wall of the box. The mass of the block is 0.2 kg. For parts (a) through (f), assume that the box does not move.

Suppose you pull the block 10 cm to the right and release it. The angular frequency of the oscillations is 30 rad/s. Neglect
friction between the block and the bottom of the box.

a. What is the spring constant?
b. What will be the amplitude of the oscillations?
c. Taking to the right to be positive, at what point in the oscillation is the velocity minimum and what is its minimum value?
d. At what point in the oscillation is the acceleration minimum, and what is its minimum value?
e. What is the total energy of the spring-block system?
f. If you take  = 0 to be the instant when you release the block, write an equation of motion for the oscillation,  = ?,

identifying the values of all constants that you use.
g. Imagine now that the box, with the spring and block in it, starts moving to the left with an acceleration  = −4 m/s . By

how much does the equilibrium position of the block shift (relative to the box), and in what direction?

Solution

Most of this is really pretty straightforward, since it is just a matter of using the equations introduced in this chapter properly:

(a) Since we know that for this kind of situation, the angular frequency, the mass and the spring constant are related by

we con solve this for :

(b) The amplitude will be 10 cm, since it is released at that point with no kinetic energy.

(c) The velocity is minimum (largest in magnitude, but with a negative sign) as the object passes through the equilibrium
position moving to the left.

(d) The acceleration is minimum (again, largest in magnitude, but with a negative sign) when the spring is maximally stretched
(block is farthest to the right), since this gives you the maximal force in the negative direction:

(e) The total energy is given by the formula (either one is acceptable)

Example : Oscillator in a box (a basic accelerometer!)24.5.1
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(You could also use .)

(f) The result is

with  = 0.1 m and  = 30 rad/s. You could also just write the numbers directly in the formula, but in that case you need to
include the units implicitly or explicitly. What I mean by “implicitly” is to say something like: “ , with  in
meters and  in seconds.”

(g) The equilibrium position is where the block could sit at rest relative to the box. In that case, relative to the ground outside
the box, it would be moving with an acceleration  = −4 m/s , and the spring force (which is the only actual force acting on the
block) would have to provide this acceleration:

so

or 4.44 mm. This is positive, so the spring stretches—the equilibrium position for the block is shifted to the right, relative to
the box’s walls.

Another way to see this is the following. As we saw in example 20.3.4, an accelerated reference system, with acceleration a,
appears “from the inside” as an inertial reference system subject to a gravitational interaction that pulls any object with mass 
with a force equal to  in the direction opposite the acceleration. Therefore, inside the box, which is accelerating towards the
left, the block behaves as if there was a force of gravity of magnitude , pulling it to the right. In other words, we have a
situation like the one illustrated in Figure 11.2.5, only sideways. As in that case, we find the equilibrium position is shifted just
enough for the force of the stretched spring to match the “force of gravity,” and in this way we get again the equation 

.

To get an accelerometer, we provide the box with some readout mechanism that can tell us the change in the oscillator’s
equilibrium position. This basic principle is one of the ways accelerometers— and so-called “inertial navigation systems”—
work.

While working on the lab on torques, you notice that a meter stick suspended from the middle behaves a little like a pendulum,
in that it performs very slow oscillations when you tilt it slightly. Intrigued, you notice that it is suspended by a simple loop of
string tied in a knot at the top (see figure). You measure the period of the oscillations to be about 5 s, and the width of the stick
to be about 2.5 cm.

a. What does this tell you about the quantity , where  is the mass of the stick, and  its moment of inertia around a
certain point?

b. What is the “certain point” mentioned in (a)?

Solution

As the picture below shows, the stick will behave like a physical pendulum, oscillating around the point of suspension O,
which in this case is just next to the stick, where the knot is. As seen in the blown-up detail, if the width of the stick is w, the
center of mass of the stick is located a distance  away from the point of suspension:

E = m1
2

v2
max

x(t) = A cos(ωt) = A sin(ωt+ )
π

2

A ω

x(t) = 0.1 cos(30t) x

t

a 2

= −kΔx = maF
spr
x

Δx = − = = 0.00444 m
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k
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Example : Meter stick as a physical pendulum24.5.2
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As shown in Section 23.3, we have then

Squaring this, and solving for ,

The moment of inertia is to be calculated around the point O, that is to say, the point of suspension (where the knot is in the
figure). For reference, the moment of inertia of a thin rod of length  around its midpoint is . The length of
the meter stick is, of course, 1 m, so the result  ∼ 0.08 m  obtained above seems reasonable.

A block of mass  is sliding on a frictionless, horizontal surface, with a velocity . It hits an ideal spring, of spring constant 
, which is attached to the wall. The spring compresses until the block momentarily stops, and then starts expanding again, so

the block ultimately bounces off.

a. Write down an equation of motion (a function ) for the block, which is valid for as long as it is in contact with the
spring. For simplicity, assume the block is initially moving to the right, take the time when it first makes contact with the
spring to be  = 0, and let the position of the block at that time to be  = 0. Make sure that you express any constants in
your equation (such as  or ) in terms of the given data, namely, , , and .

b. Sketch the function  for the relevant time interval.

For this problem, imagine that you are on a ship that is oscillating up and down on a rough sea. Assume for simplicity that this
is simple harmonic motion (in the vertical direction) with amplitude 5 cm and frequency 2 Hz. There is a box on the floor with
mass  = 1 kg.

a. Assuming the box remains in contact with the floor throughout, find the maximum and minimum values of the normal
force exerted on it by the floor over an oscillation cycle.

b. How large would the amplitude of the oscillations have to become for the box to lose contact with the floor, assuming the
frequency remains constant? (Hint: what is the value of the normal force at the moment the box loses contact with the
floor?)

Imagine a simple pendulum swinging in an elevator. If the cable holding the elevator up was to snap, allowing the elevator to
go into free fall, what would happen to the frequency of oscillation of the pendulum? Justify your answer.

Consider a block of mass  attached to two springs, one on the left with spring constant  and one on the right with spring
constant . Each spring is attached on the other side to a wall, and the block slides without friction on a horizontal surface.
When the block is sitting at  = 0, both springs are relaxed.

Write Newton’s second law, , as a differential equation for an arbitrary position  of the block. What is the period of
oscillation of this system?

ω = .
Mgw

2I

− −−−−
√ (24.5.1)
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Consider the block hanging from a spring shown in Figure 23.2.5. Suppose the mass of the block is 1.5 kg and the system is at
rest when the spring has been stretched 2 cm from its original length (that is, with reference to the figure,  = 0.02 m).

a. What is the value of the spring constant ?
b. If you stretch the spring by an additional 2 cm downward from this equilibrium position, and release it, what will be the

frequency of the oscillations?
c. Now consider the system formed by the spring, the block, and the earth. Take the “zero” of gravitational potential energy to

be at the height  (the equilibrium point; you may also use this as the origin for the vertical coordinate!), and calculate all
the energies in the system (kinetic, spring/elastic, and gravitational) at the highest point in the oscillation, the equilibrium
point, and the lowest point. Verify that the sum is indeed constant.
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24.6: Advanced Topics

Mass on a Spring Damped By Friction with a Surface
Consider the system depicted in Figure 23.2.1 in the presence of friction between the block and the surface. Let the coefficient of
kinetic friction be  and the coefficient of static friction be . As usual, we will assume that .

As the mass oscillates, it will experience a kinetic friction force of magnitude , in the direction opposite the direction
of motion; that is to say, a force that changes direction every half period. As shown in section 23.2, this force does not change the
frequency of the motion, but it displaces the equilibrium position in the direction of the force. Let's study this process in more
detail.

First, think about that spring moving to the right - as the friction force acts on it, it shifts the position of the equilibrium, like in
equation (23.2.14). We can determine the new equilibrium position using Newton's second law; we get

(Notice we have to be careful with the signs here - when moving to the right, the friction acts the other way!) Since the equilibrium
moves to the right, the actual amplitude of this motion is (see the figure)  Now when the block turns
around, at the other maximum, during the leftward moving period the equilbrium changes again. We can find this again:

and the new amplitude is

In other words, the amplitude after  "half swings" is . The amplitude gets smaller and smaller each time, and in
fact it vanishes for some number of these half-swings.

The figure below shows an example of how this would go, for the following choice of parameters: period  = 1 s,  = 0.1, and 
= 0.18 m. Note that, since  depends only on the ratio , there is no need to specify  and  separately. We can
determine the number of half-swings by just asking when the amplitude vanishes,

So that means the motion goes for 4 half-swings before stopping.
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Figure : Damped oscillations.

 

Just for the record, this is not the way dissipation in simple harmonic motion is usually handled. The conventional thing is to
assume a damping force that is proportional to the oscillator’s velocity. You will almost certainly see this more standard approach
(which leads to a relatively simple differential equation) in some later course.

We can study this same example in a little more detail using energy. Consider the total mechanical energy of the system, 
. This energy does not include the friction, so we don't anticipate ; but we can still take a time

derivative of this formula to see what happens:

The first equality is taking the derivative, being careful to use the chain run on the velocity and position. The second equality is just
recognizing that the derivative of velocity and position is the accleration and velocity, respectively. The resulting expression looks a
bit strange, but notice that the velocity is a common term, so we can write

The expression inside the parenthesis looks interesting, because it looks something like Newton's second law for this situation -
being sure of the signs (assuming the block is moving in the positive direction) we have

Plugging this in above we finally find

So the rate of energy loss is negative - exactly what we would have expected. Using a little calculus we can take this analysis
further - recall that , so we can intergrate

Of course, this is the work-energy theorem! (What else could we possibly have gotten by calculating ??) If we pick that
half-swing from above,  and we can determine that our system looses  each half cycle - although notice
that the amplitude  is actually getting smaller during this process, so we can't easily compare our two approaches.

The Cavendish Experiment- How to Measure  with a Torsion Balance
Suppose that you want to try and duplicate Cavendish’s experiment to measure directly the gravitational force between two masses
(and hence, indirectly, the value of ). You take two relatively small, identical objects, each of mass , and attach them to the ends
of a rod of length  (let us say the mass of the rod is negligible, for simplicity), making a sort of dumbbell; then you suspend this
from the ceiling, by the midpoint, using a nylon line.
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Figure : : (a) Torsion balance. The extremes of the oscillation are drawn in black and gray, respectively. (b) The view from
the top. The dashed line indicates the equilibrium position. (c) In the presence of two nearby large masses, the equilibrium position
is tilted very slightly; the light blue lines in the background show the oscillation in the absence of the masses, for reference.

You have now made a torsion balance similar to the one Cavendish used. You will probably find out that it it is very hard to keep it
motionless: the slightest displacement causes it to oscillate around an equilibrium position. The way it works is that an angular
displacement  from equilibrium puts a small twist on the line, which results in a restoring torque , where  is the torsion
constant for your setup. If your dumbbell has moment of inertia , then the equation of motion  gives you

If you compare this to Equation (23.3.3), and follow the derivation there, you can see that the period of oscillation is

so if you measure  you can get , since  for the dumbbell.

Now suppose you bring two large masses, a distance  each from each end of the dumbbell, perpendicular to the dumbbell axis,
and one on either side, as in the figure. The gravitational force  between the large and small mass results in a net
“external” torque of magnitude

This torque will cause a very small displacement, so small that the change in  will be practically negligible, so you can treat ,
and hence , as a constant. Then the situation is analogous to that of an oscillator subjected to a constant external force (section
23.2): the frequency of the oscillations will not change, but the equilibrium position will. In Equation (23.2.14) we found that 

 for a spring of spring constant , where  was the old and  the new equilibrium position (the force was equal
to ; the displacement of the equilibrium position will be in the direction of the force). For the torsion balance, the equivalent
result is

So, if you measure the angular displacement of the equilibrium position, you can get . This displacement is going to be very
small, but you can try to monitor the position of the dumbbell by, for instance, reflecting a laser from it (or, one or both of your
small masses could be a small laser). Tracking the oscillations of the point of laser light on the wall, you might be able to detect the
very small shift predicted by Equation ( ).

Historically, this experimental set up was used in the first precision calculation of the gravitational constant G, from the force .
This experiment was carried out in the late 1790s by Henry Cavendish, but several others were involved in the several decades
beforehand (you can check the story out on Wikipedia).
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24.7: Simple Harmonic Motion: Exercises

Exercises
1.       The device pictured in this picture entertains infants while keeping them from wandering. The child bounces in a harness
suspended from a doorframe by a spring. (a) If the spring stretches 0.250 m while supporting an
8.0-kg child, what is its force constant? (b) What is the time for one complete bounce of this
child? (c) What is the child’s maximum velocity if the amplitude of her bounce is 0.200 m?

2.       A mass is placed on a frictionless, horizontal table. A spring (k = 100 N/m), which can be
stretched or compressed, is placed on the table. A 5.00-kg mass is attached to one end of the
spring, the other end is anchored to the wall. The equilibrium position is marked at zero. A
student moves the mass out to x = 4.0 cm and releases it from rest. The mass oscillates in SHM.
(a) Determine the equations of motion. (b) Find the position, velocity, and acceleration of the
mass at time t = 3.00 s.

3.       Assume that a pendulum used to drive a grandfather clock has a length L  = 1.00 m and a
mass M at temperature T = 20.00°C. It can be modeled as a physical pendulum as a rod
oscillating around one end. By what percentage will the period change if the temperature
increases by 10°C? Assume the length of the rod changes linearly with temperature, where L = L  (1 +  αΔT) and the rod is made
of brass (α = 18 x 10−6 °C−1).(Note: This effect was one of the reasons it took so long for navigators to reliably determine
longitude at sea.)
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