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21.1: Banking

Roadway engineers often bank a curve, especially if it is a very tight turn, so the cars will not have to rely on friction alone to
provide the required centripetal force. The picture shows a car going around such a curve, which we can model as an arc of a
circle of radius . In terms of , the bank angle , and the coefficient of static friction, find the maximum safe speed around the
curve.

Figure : A car going around a banked curve (sketch and free-body diagram). The center of the circle is towards the right.

The figure shows the appropriate choice of axes for this problem. The criterion is, again, to choose the axes so that one of them
will coincide with the direction of the acceleration. In this case, the acceleration is all centripetal, that is to say, pointing,
horizontally, towards the center of the circle on which the car is traveling.

It may seem strange to see the force of static friction pointing down the slope, but recall that for a car turning on a flat surface it
would have been pointing inwards (towards the center of the circle), so this is the natural extension of that. In general, you
should always try to imagine which way the object would slide if friction disappeared altogether:  must point in the
direction opposite that. Thus, for a car traveling at a reasonable speed, the direction in which it would skid is up the slope, and
that means  must point down the slope. But, for a car just sitting still on the tilted road,  must point upwards, and we shall
see in a moment that in general there is a minimum velocity required for the force of static friction to point in the direction we
have chosen.

Apart from this, the main difference with the flat surface case is that now the normal force has a component along the direction
of the acceleration, so it helps to keep the car moving in a circle. On the other hand, note that we now lose (for centripetal
purposes) a little bit of the friction force, since it is pointing slightly downwards. This, however, is more than compensated for
by the fact that the normal force is greater now than it would be for a flat surface, since the car is now, so to speak, “driving
into” the road somewhat.

The dashed blue lines in the free-body diagram are meant to indicate that the angle  of the bank is also the angle between the
normal force and the positive  axis, as well as the angle that  makes below the positive  axis. It follows that the
components of these two forces along the axes shown are:

and

Our force equation in column vector form is:

where I have already substituted the value of the centripetal acceleration for  and 0 for  and .
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This shows that  is indeed greater than just  for this problem, and must increase as the angle 
 increases (since  decreases with increasing ).

The first and second lines of Equation ( ) form a system that needs to be solved for the two unknowns  and . The
result is:

Note that the second equation would have  becoming negative if . This means that below that speed, the force
of static friction must actually point up the slope, as discussed above. We can call this particular speed, for which  becomes
zero, :

What this means is that it is possible to arrange the banking angle so that a car going at a specific speed would not have to rely
on friction at all in order to make the curve: the normal force would be just right to provide the required centripetal
acceleration. A car going at that speed would not feel either pulled down or pushed up the slope. However, a car going faster
than that would tend to “fly off”, and the static friction force would be required to pull it in and keep it on the curve, whereas a
car moving more slowly would tend to slide down and would have to be pushed up by the friction force. Friction, therefore,
provides a range of safe speeds to drive in this case, just as it did in the flat surface case.

We can calculate the maximum safe speed as we did before, recalling that we must always have . Substituting Eqs.
( ) in this expression, and solving for , we get the condition

This reproduces our result (8.4.5) for  = 0 (a flat road), as it should.

To put some numbers into this, suppose the curve has a radius of 20 m, and the coefficient of static friction between the tires
and the road is  = 0.7. Then, for a flat surface, we get  = 11.7 m/s, or about 26 mph, whereas for a bank angle of  = 10
 (the angle chosen for the figure above) we get  = 14 m/s, or about 31 mph.

Equation ( ) actually indicates that the maximum velocity would “become infinite” for a finite bank angle, namely, if 
, or  (if  = 0.7, this corresponds to  = 55 ). This is mathematically correct, but of course we

cannot take it literally: it assumes that there is no limit to how large a normal force the roadway may exert without sustaining
damage, and also that  can become arbitrarily large as long as it stays below the bound . Neither of these
assumptions would hold in real life for very large speeds. Also, the angle  is much too steep: recall that,
according to Equation (8.3.11), the force of friction will only be able to keep an object (initially at rest) from sliding down the
slope if , which for  = 0.7 means . So, with a bank angle of 55  you might drive on the curve, provided
you were going fast enough, but you could not park on it—the car would slide down! Bottom line, use Equation ( ) only
for moderate values of ... and do not exceed  if you want a car to be able to drive around the curve slowly
without sliding down into the ditch.

Imagine you are inside a rotating cylindrical room of radius . There is a metal puck on the floor, a distance  from the axis of
rotation, held in place with an electromagnet. At some time you switch off the electromagnet and the puck is free to slide
without friction. Find where the puck strikes the wall, and show that, if it was not too far away from the wall to begin with, it
appears as if it had moved straight for the wall as soon as it was released.

Solution

The picture looks as shown below, to an observer in an inertial frame, looking down. The puck starts at point A, with
instantaneous velocity  pointing straight to the left at the moment it is released, so it just moves straight (in the inertial
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frame) until it hits the wall at point B. From the cyan-colored triangle shown, we can see that it travels a distance ,
which takes a time

In this time, the room rotates counterclockwise through an angle :

Figure : The motion of the puck (cyan) and the wall (magenta) as seen by an inertial observer.

This is the angle shown in magenta in the figure. As a result of this rotation, the point A  that was initially on the wall straight
across from the puck has moved (following the magenta dashed line) to the position B , so to an observer in the rotating room,
looking at things from the point O, the puck appears to head for the wall and drift a little to the right while doing so.

The cyan angle in the picture, which we could call , has tangent equal to , so we have

This tells us the two angles are going to be pretty close if they are small enough, which is what happens if the puck starts close
enough to the wall in the first place. The picture shows, for clarity, the case when , which gives  = 1.02 rad,
and  = 0.8 rad. For , on the other hand, one finds  = 0.48 rad, and 

(0.48) = 0.45 rad.

In terms of pseudoforces (forces that do not, physically, exist, but may be introduced to describe mathematically the motion of
objects in non-inertial frames of reference), the non-inertial observer would say that the puck heads towards the wall because
of a centrifugal force (that is, a force pointing away from the center of rotation), and while doing so it drifts to the right
because of the so-called Coriolis force.
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