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13.5: Summary

13.5.1: Key Takeaways
The equation of motion for the position, , of the mass in a one-dimensional spring-mass system with no friction can be written:

and has a solution:

where  is the amplitude of the motion,  is the phase, which depends on our choice of initial conditions (when we choose time 
), and :

is the angular frequency of the motion. The mass will oscillate about an equilibrium position with a period, , and frequency, ,
given by:

The velocity and acceleration of the mass are found by taking the time derivatives of the position :

The total mechanical energy of the mass, at some position , is given by:

and is conserved.

Any system that can be described by the equation of motion:

is said to be a simple harmonic oscillator, and its position will be described by:

A simple harmonic oscillator will always oscillate about an equilibrium position, where the net force on the oscillator is zero. The
net force on a simple harmonic oscillator is always directed towards the equilibrium position, and has a magnitude proportional to
the distance of the oscillator from its equilibrium position. The force is called a restoring force. A vertical spring-mass system, and
a mass attached to two springs will both undergo simple harmonic motion about their respective equilibrium position.

A simple pendulum will undergo simple harmonic oscillations, if the amplitude of the oscillations is small. The angular frequency
for the oscillations of a simple pendulum only depends on the length of the pendulum:
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This is valid in the small angle approximation, where:

A physical pendulum of mass  which oscillates about an axis through the object will also undergo simple harmonic oscillation in
the small angle approximation. The angular frequency of the oscillations for a physical pendulum is given by:

where  is the distance between the center of mass and the axis of rotation, and  is the moment of inertia of the object about the
rotation axis.

13.5.2: Important Equations

13.5.2.1: Position, velocity, and acceleration for SHM:

13.5.2.2: Period and frequency:

13.5.2.2.1: Mechanical energy:

13.5.2.3: Simple pendulum (small angles):

13.5.2.3.1: Physical pendulum (small angles):

13.5.3: Important Definitions

Angular frequency: is related to a usual frequency by a factor of . For an object rotating around a circle at constant speed,
the angular frequency of the rotation is the same as the angular speed (the rate of change of a position angle). SI units: .
Common variable(s): .
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