
4.6.1 https://phys.libretexts.org/@go/page/91212

4.6: Using Computation to Simulate Motion in Multiple Dimensions
Let's continue where we left off with computationally simulating one-dimensional motion. We saw that we can write vectors in
Visual Python using the syntax.

r = vec(x, y, z)

where x, y, and z are the components of the position vector r. Of course, we can write a vector of any quantity. For example,
position, velocity, or acceleration. Continuing the example of a ball moving from before, try adding a velocity component of

 m/s by editing ball.vel. This will create motion in the y-direction that is the same as the x-direction. You may start
from the code that ended the previous computational simulation. We will make a small change first. In the definition of the ball, we
are going to create a trail of dots that shows the ball's past positions, and we will remove the velocity arrow for the this example.

ball = sphere(pos=vec(0,0,0), color=color.green, radius=0.1, make_trail=True, trail_ty
ball.vel = vec(0.5, 0, 0)
r_0 = ball.pos
t = 0
dt = 1
while t<10:
 rate(1)
 ball.pos = r_0 + ball.vel * t
 t = t + dt

= 0.5vy

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/91212?pdf
https://phys.libretexts.org/Courses/Berea_College/Introductory_Physics%3A_Berea_College/04%3A_Describing_Motion_in_Multiple_Dimensions/4.06%3A_Using_Computation_to_Simulate_Motion_in_Multiple_Dimensions

4.6.2 https://phys.libretexts.org/@go/page/91212

Next, let's look at an example from an earlier section that includes acceleration. The example is shown again below.

An object starts at the origin of a coordinate system at time , with an initial velocity vector
 direction is and the acceleration in the direction is

.

1. Write an equation for the position vector as a function of time.
2. Determine the position of the object at .
3. Plot the trajectory of the object for the first of motion.

Answer

  Code  Run  Help


Remix



  Share

  main.py

scene2 = canvas(title='Examples of 2D Accelerated Motion',
 width=400, height=400,
 center=vector(5,0,0), background=color.black,

 Exercise 4.6.1

t = 0s

= (10m/s) +(15m/s) . T heaccelerationinthe\(xv0 x̂ ŷ 0m/s2 y

−10m/s2

t = 10s

5s

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/91212?pdf

4.6.3 https://phys.libretexts.org/@go/page/91212

To solve this we need to do several things to our constant velocity code above. First, we need to edit the initial velocity,
ball.vel, using what is given in the example. Then, we should define ball.acc = vec(0, -10, 0). Third, we should
make the while loop go until less than or equal to 10s by writing while t <= 10:. Fourth, inside the loop, we need to edit the
ball.pos to include the acceleration. In Python, raising to a power is done by two asterisks, e.g., t**2 is the square of t. The time-
dependent position is

will be written in Visual Python as

ball.pos = r_0 + ball.vel * t + 0.5 * ball.acc * t**2

Finally, we can print the ball's position after the loop finishes with the command print(ball.pos). This print statement
should be unindented after the while loop to let Python know that it occurs after the looping is complete. Of course, you are
welcome to put the print statement in the loop (indented under t = t + dt) if you want to see what difference this makes. Making
these changes we can show the position vs. time of the object and print the position after 10 s have passed. To summarize, the steps
are

1. Edit ball.vel.
2. Create an acceleration of the ball, ball.acc.
3. Make the loop end at 10 s.
4. Edit ball.pos in the loop to include ball.acc.
5. Add a print statement to see the ball's position at .

Below is a trinket that will keep the scene fixed. Copy the constant velocity code above and make these five edits. The ball radius
may need to be increased if it is difficult to see. If you get stuck look at the answer to the example.

 range=300)

ball = sphere(pos=vec(0,0,0), color=color.green, radius=10, make_trail=True, tra
ball.vel = vec(10, 15, 0)
ball.acc = vec(0, -10, 0)
r_0 = ball.pos
t = 0
dt = 1
while t<=10:
 rate(1)
 ball.pos = r_0 + ball.vel * t + 0.5 * ball.acc * t**2
 t = t + dt

print(ball.pos)

(t) = + t +r ⃗ r ⃗ 0 v ⃗ 0
1

2
a⃗ t2 (4.6.1)

t = 10s

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/91212?pdf

4.6.4 https://phys.libretexts.org/@go/page/91212

It's not necessary to simulate the motion if we only want to calculate or graph. We can use Visual Python to calculate the position
of an object as we did above. To do this, we simply define the initial position, initial velocity, and acceleration. Then, we can use
the kinematic equation to calculate the position at a later time. Try putting this into the trinket above.

r0 = vec(0,0,0)
v0 = vec(10, 15, 0)
a = vec(0, -10, 0)

t = 10

rt = r0 + v0*t + 0.5*a*t**2
print(rt)

Similarly, we can use Python (not Visual Python) to plot. You'll notice the trinket below says Python3. This distinguishes it from
the other trinkets above. It also does not have the first line that imports Visual Python (Web VPython 3.2).

  Code  Run  Help


Remix



  Share

  main.py

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/91212?pdf

4.6.5 https://phys.libretexts.org/@go/page/91212

To make lists (arrays) of numbers, it is best to use a library called numpy. To make graphs also requires importing a library
matplotlib for making graphs. Using the command import a as b makes library a available by using b to call it.

import numpy as np
import matplotlib.pyplot as plt

We won't use vectors, but we keep our initial values for , and . Then, we need to make lists of , and
 that correspond to the points we want to graph. These are calculated using , and the list of times .

Therefore, we must define before attempting to calculate , and

x_0 = 0
y_0 = 0
v_x0= 10
v_y0 = 15
a_x = 0
a_y = -10
t = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0])

xt = x_0 + v_x0 * t + 0.5 * a_x * t**2
yt = y_0 + v_y0 * t + 0.5 * a_y * t**2

 That will create lists of and because Python recognizes that is a list and calculates for each value.

Finally, we insert the code to make a graph.

plt.plot(xt, yt, 'or')
plt.xlabel('x (m)')
plt.ylabel('y (m)')
plt.show()

The first line plots xt on the axis and yt on the axis. The 'or' makes circles for the points that are red. The second line
labels the axis. The third line labels the axis. The last line puts all the plot code into an image. Try combining these three blocks
of code in the trinket below to see that they plot the 2D motion of the object.

, , , ,x0 y0 vx0 vy0 ax ay x(t), y(t)

t , , , , ,x0 y0 vx0 vy0 ax ay t

t x(t) y(t)

x(t) y(t) t

x y

x y

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/91212?pdf

4.6.6 https://phys.libretexts.org/@go/page/91212

4.6: Using Computation to Simulate Motion in Multiple Dimensions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by LibreTexts.

 Code


Remix



 
3
Python3

 Run  Share

No file chosenChoose File

  main.py   

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/91212?pdf
https://phys.libretexts.org/Courses/Berea_College/Introductory_Physics%3A_Berea_College/04%3A_Describing_Motion_in_Multiple_Dimensions/4.06%3A_Using_Computation_to_Simulate_Motion_in_Multiple_Dimensions
https://creativecommons.org/licenses/by-sa/4.0

