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5.2: Rigid-Body Rotation

4.2.1 Kinematics

When a rigid object rotates, every part of it (every atom) moves in a circle, covering the same angle in the same amount of time, a.
Every atom has a different velocity vector, b. Since all the velocities are different, we can't measure the speed of rotation of the top
by giving a single velocity. We can, however, specify its speed of rotation consistently in terms of angle per unit time. Let the
position of some reference point on the top be denoted by its angle , measured in a circle around the axis. For reasons that will
become more apparent shortly, we measure all our angles in radians. Then the change in the angular position of any point on the
top can be written as , and all parts of the top have the same value of  over a certain time interval . We define the angular
velocity,  (Greek omega),

which is similar to, but not the same as, the quantity  we defined earlier to describe vibrations. The relationship between  and 
is exactly analogous to that between  and  for the motion of a particle through space.

Figure 4.2.1: (left) he two atoms cover the same angle in a given time interval. (right) Their velocity vectors, however, differ in both
magnitude and direction.

If two different people chose two different reference points on the top in order to define , how would their -  graphs
differ? What effect would this have on the angular velocities?

(answer in the back of the PDF version of the book)

The angular velocity has units of radians per second, rad/s. However, radians are not really units at all. The radian measure of an
angle is defined, as the length of the circular arc it makes, divided by the radius of the circle. Dividing one length by another gives
a unitless quantity, so anything with units of radians is really unitless. We can therefore simplify the units of angular velocity, and
call them inverse seconds, .

 In the early 20th century, the standard format for music recordings was a plastic disk that held a single song and rotated at 78
rpm (revolutions per minute). What was the angular velocity of such a disk?

 If we measure angles in units of revolutions and time in units of minutes, then 78 rpm is the angular velocity. Using standard
physics units of radians/second, however, we have

In the absence of any torque, a rigid body will rotate indefinitely with the same angular velocity. If the angular velocity is changing
because of a torque, we define an angular acceleration,

θ

dθ dθ dt

ω

ω =
dθ

dt
(5.2.1)

[definition of angular velocity; θ in units of radians] (5.2.2)

ω ω t

x t

Exercise 5.2.1

θ=0 θ t

s−1

Example : A 78-rpm record5.2.1

▹

▹

× × = 8.2  .
78 revolutions

1 minute

2π radians

1 revolution

1 minute

60 seconds
s−1 (5.2.3)

α =
dω

dt
(5.2.4)

[definition of angular acceleration] (5.2.5)
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The symbol is the Greek letter alpha. The units of this quantity are , or simply .

The mathematical relationship between  and  is the same as the one between  and , and similarly for  and . We can thus
make a system of analogies, c, and recycle all the familiar kinematic equations for constant-acceleration motion.

Figure 4.2.2: Analogies between rotational and linear quantities.

Mars takes nearly twice as long as the Earth to complete an orbit. If the two planets are alongside one another on a certain day,
then one year later, Earth will be back at the same place, but Mars will have moved on, and it will take more time for Earth to
finish catching up. Angular velocities add and subtract, just as velocity vectors do. If the two planets' angular velocities are 
and , then the angular velocity of one relative to the other is . The corresponding period,  is
known as the synodic period.

 A neutron star is initially observed to be rotating with an angular velocity of , determined via the radio pulses it emits.
If its angular acceleration is a constant , how many rotations will it complete before it stops? (In reality, the
angular acceleration is not always constant; sudden changes often occur, and are referred to as “starquakes!”)

 The equation  can be translated into , giving

4.2.2 Relations between angular quantities and
motion of a point
It is often necessary to be able to relate the angular quantities to the motion of a particular point on the rotating object. As we
develop these, we will encounter the first example where the advantages of radians over degrees become apparent.

Figure 4.2.3: We construct a coordinate system that coincides with the location and motion of the moving point of interest at a
certain moment.

The speed at which a point on the object moves depends on both the object's angular velocity  and the point's distance  from the
axis. We adopt a coordinate system, d, with an inward (radial) axis and a tangential axis. The length of the infinitesimal circular arc 

 traveled by the point in a time interval  is related to  by the definition of radian measure, , where positive and
negative values of  represent the two possible directions of motion along the tangential axis. We then have 

, or

rad/s2 s−2

ω θ v x α a

Example : The synodic period5.2.2

ω1

ω2 −ω1 ω2 1/(1/ −1/ )T1 T2

Example : A neutron star5.2.3

▹ 2.0 s−1

−1.0 ×  10−8 s−2

▹ − =2aΔxv2
f v2

i − =2αΔθω2
f ω2

i

Δθ = ( − )/2αω2
f ω2

i

= 2.0 ×  radians108

= 3.2 ×  rotations.107

ω r

ds dt dθ dθ = ds/r

ds

= ds/dt = rdθ/dt = ωrvt

= ωrvt (5.2.6)

tangential velocity of a point at a distance r from the axis of rotation (5.2.7)
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The radial component is zero, since the point is not moving inward or outward,

Note that we had to use the definition of radian measure in this derivation. Suppose instead we had used units of degrees for our
angles and degrees per second for angular velocities. The relationship between  and  is ,
where the extra conversion factor of  comes from that fact that there are 360 degrees in a full circle, which is equivalent
to  radians. The equation for  would then have been , which would have been much
messier. Simplicity, then, is the reason for using radians rather than degrees; by using radians we avoid infecting all our equations
with annoying conversion factors.

Figure 4.2.4: Even if the rotating object has zero angular acceleration, every point on it has an acceleration towards the center.

Since the velocity of a point on the object is directly proportional to the angular velocity, you might expect that its acceleration
would be directly proportional to the angular acceleration. This is not true, however. Even if the angular acceleration is zero, i.e., if
the object is rotating at constant angular velocity, every point on it will have an acceleration vector directed toward the axis, e. As
derived on page 209, the magnitude of this acceleration is

For the tangential component, any change in the angular velocity  will lead to a change  in the tangential velocity, so it is
easily shown that

Positive and negative signs of  represent rotation in opposite directions. Why does it therefore make sense physically that  is
raised to the first power in the equation for  and to the second power in the one for ?

(answer in the back of the PDF version of the book)

 What is your radial acceleration due to the rotation of the earth if you are at the equator?

 At the equator, your distance from the Earth's rotation axis is the same as the radius of the spherical Earth, .
Your angular velocity is

which gives an acceleration of

The angular velocity was a very small number, but the radius was a very big number. Squaring a very small number, however,
gives a very very small number, so the  factor “wins,” and the final result is small.

= 0vr (5.2.8)

radial velocity of a point at a distance r from the axis of rotation (5.2.9)

dθdegrees ds d = (360/2π)s/rθdegrees
(360/2π)

2π vt = (2π/360)( )(r)vt ωdegrees per second

= r.ar ω2 (5.2.10)

radial acceleration of a point at a distance r from the axis (5.2.11)

dω dω ⋅ r

= αr.at (5.2.12)

tangential acceleration of a point at a distance r from the axis (5.2.13)

Exercise 5.2.2

ω ω

vt ar

Example : Radial acceleration at the surface of the Earth5.2.3

▹

▹ 6.4 ×  m106

ω =
2π radians

1 day

= 7.3 ×   ,10−5 s−1

ar = rω2

= 0.034 m/ .s2

ω2
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If you're standing on a bathroom scale, this small acceleration is provided by the imbalance between the downward force of
gravity and the slightly weaker upward normal force of the scale on your foot. The scale reading is therefore a little lower than
it should be.

4.2.3 Dynamics

If we want to connect all this kinematics to anything dynamical, we need to see how it relates to torque and angular momentum.
Our strategy will be to tackle angular momentum first, since angular momentum relates to motion, and to use the additive property
of angular momentum: the angular momentum of a system of particles equals the sum of the angular momenta of all the individual
particles. The angular momentum of one particle within our rigidly rotating object, , can be rewritten as ,
where  and  are the magnitudes of the particle's  and momentum vectors, and  is the angle between these two vectors. (The r
vector points outward perpendicularly from the axis to the particle's position in space.) In rigid-body rotation the angle  is 90°, so
we have simply . Relating this to angular velocity, we have

The particle's contribution to the total angular momentum is proportional to , with a proportionality constant . We refer to 
 as the particle's contribution to the object's total moment of inertia, , where “moment” is used in the sense of “important,” as

in “momentous” --- a bigger value of  tells us the particle is more important for determining the total angular momentum. The
total moment of inertia is

The angular momentum of a rigidly rotating body is then

Since torque is defined as , and a rigid body has a constant moment of inertia, we have ,

which is analogous to .

The complete system of analogies between linear motion and rigid-body rotation is given in figure f.

Figure 4.2.5: Analogies between rotational and linear quantities.

L = m rv⊥ L = r p sin θ

r p r θ

θ

L = rp

L = rp = (r)(mv) = (r)(mωr) = m ω.r2 (5.2.14)

ω mr2

mr2 I

I

I =∑mir2
i (5.2.15)

[definition of the moment of inertia;

for rigid-body rotation in a plane; r is the distance

from the axis, measured perpendicular to the axis]

(5.2.16)

L = Iω. (5.2.17)

[angular momentum of

rigid-body rotation in a plane]

(5.2.18)

dL/dt τ = dL/dt = Idω/dt = Iα

τ = Iα (5.2.19)

[relationship between torque and

angular acceleration for rigid-body rotation in a plane]

(5.2.20)

F = ma

Example : A barbell5.2.3
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g / Example 15

 The barbell shown in figure g consists of two small, dense, massive balls at the ends of a very light rod. The balls have
masses of 2.0 kg and 1.0 kg, and the length of the rod is 3.0 m. Find the moment of inertia of the rod (1) for rotation about its
center of mass, and (2) for rotation about the center of the more massive ball.

 (1) The ball's center of mass lies 1/3 of the way from the greater mass to the lesser mass, i.e., 1.0 m from one and 2.0 m from
the other. Since the balls are small, we approximate them as if they were two pointlike particles. The moment of inertia is

Perhaps counterintuitively, the less massive ball contributes far more to the moment of inertia.

(2) The big ball theoretically contributes a little bit to the moment of inertia, since essentially none of its atoms are exactly at 
=0. However, since the balls are said to be small and dense, we assume all the big ball's atoms are so close to the axis that we

can ignore their small contributions to the total moment of inertia:

This example shows that the moment of inertia depends on the choice of axis. For example, it is easier to wiggle a pen about its
center than about one end.

Example 16: The parallel axis theorem

 Generalizing the previous example, suppose we pick any axis parallel to axis 1, but offset from it by a distance . Part (2) of the
previous example then corresponds to the special case of  (negative being to the left). What is the moment of inertia about
this new axis?

 The big ball's distance from the new axis is , and the small one's is . The new moment of inertia is

The constant term is the same as the moment of inertia about the center-of-mass axis, the first-order terms cancel out, and the third term
is just the total mass multiplied by . The interested reader will have no difficulty in generalizing this to any set of particles (problem
38, p. 294), resulting in the parallel axis theorem: If an object of total mass  rotates about a line at a distance  from its center of
mass, then its moment of inertia equals , where  is the moment of inertia for rotation about a parallel line through the
center of mass.

Example 17: Scaling of the moment of inertia

 (1) Suppose two objects have the same mass and the same shape, but one is less dense, and larger by a factor . How do their
moments of inertia compare? 
(2) What if the densities are equal rather than the masses?

 (1) This is like increasing all the distances between atoms by a factor . All the 's become greater by this factor, so the moment of
inertia is increased by a factor of . 
(2) This introduces an increase in mass by a factor of , so the moment of inertia of the bigger object is greater by a factor of .

4.2.4 Iterated integrals

▹

▹

I = +(2.0\ kg)(1.0\ m)
2

(1.0\ kg)(2.0\ m)
2

= 2.0 kg⋅ +4.0 kg⋅m2 m2

= 6.0 kg⋅m2

r

I = (1.0\ kg)(3.0\ m)
2

= 9.0 kg⋅m2

▹ h

h = −1.0 m

▹ (1.0\ m)+h (2.0\ m)-h

I = (2.0 kg)[(1.0 m)+h + (1.0 kg)[(2.0 m) −h]2 ]2

= 6.0 kg⋅ + (4.0 kg⋅m)h− (4.0 kg⋅m)h+ (3.0 kg) .m2
h

2

h2

M h

+MIcm h2 Icm

▹ k

▹ k r

k2

k3 k5
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In various places in this book, starting with subsection 4.2.5, we'll come across integrals stuck inside other integrals. These are
known as iterated integrals, or double integrals, triple integrals, etc. Similar concepts crop up all the time even when you're not
doing calculus, so let's start by imagining such an example. Suppose you want to count how many squares there are on a chess
board, and you don't know how to multiply eight times eight. You could start from the upper left, count eight squares across, then
continue with the second row, and so on, until you how counted every square, giving the result of 64. In slightly more formal
mathematical language, we could write the following recipe: for each row, , from 1 to 8, consider the columns, , from 1 to 8, and
add one to the count for each one of them. Using the sigma notation, this becomes

If you're familiar with computer programming, then you can think of this as a sum that could be calculated using a loop nested
inside another loop. To evaluate the result (again, assuming we don't know how to multiply, so we have to use brute force), we can
first evaluate the inside sum, which equals 8, giving

Notice how the “dummy” variable  has disappeared. Finally we do the outside sum, over , and find the result of 64.

Now imagine doing the same thing with the pixels on a TV screen. The electron beam sweeps across the screen, painting the pixels
in each row, one at a time. This is really no different than the example of the chess board, but because the pixels are so small, you
normally think of the image on a TV screen as continuous rather than discrete. This is the idea of an integral in calculus. Suppose
we want to find the area of a rectangle of width  and height , and we don't know that we can just multiply to get the area . The
brute force way to do this is to break up the rectangle into a grid of infinitesimally small squares, each having width  and height 

, and therefore the infinitesimal area . For convenience, we'll imagine that the rectangle's lower left corner is at the
origin. Then the area is given by this integral:

Notice how the leftmost integral sign, over , and the rightmost differential, , act like bookends, or the pieces of bread on a
sandwich. Inside them, we have the integral sign that runs over , and the differential  that matches it on the right. Finally, on the
innermost layer, we'd normally have the thing we're integrating, but here's it's 1, so I've omitted it. Writing the lower limits of the
integrals with  and  helps to keep it straight which integral goes with with differential. The result is

Example 18: Area of a triangle

r c

1.∑
r=1

8

∑
c=1

8

(5.2.21)

8.∑
r=1

8

(5.2.22)

c r

a b ab

dx

dy dA = dxdy

area = dA∫
b

y=0

∫
a

x=0

= dxdy∫
b

y=0

∫
a

x=0

y dy

x dx

x = y =

area = dA∫
b

y=0

∫
a

x=0

= dxdy∫
b

y=0

∫
a

x=0

= ( dx) dy∫
b

y=0

∫
a

x=0

= ady∫
b

y=0

= a dy∫
b

y=0

= ab.
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 Find the area of a 45-45-90 right triangle having legs .
 Let the triangle's hypotenuse run from the origin to the point , and let its legs run from the origin to , and then to . In

other words, the triangle sits on top of its hypotenuse. Then the integral can be set up the same way as the one before, but for a
particular value of , values of  only run from 0 (on the  axis) to  (on the hypotenuse). We then have

Note that in this example, because the upper end of the  values depends on the value of , it makes a difference which order we do the
integrals in. The  integral has to be on the inside, and we have to do it first.

Example 19: Volume of a cube

 Find the volume of a cube with sides of length .
 This is a three-dimensional example, so we'll have integrals nested three deep, and the thing we're integrating is the volume 

.

Example 20: Area of a circle

 Find the area of a circle.
 To make it easy, let's find the area of a semicircle and then double it. Let the circle's radius be , and let it be centered on the origin

and bounded below by the  axis. Then the curved edge is given by the equation , or . Since the 
integral's limit depends on , the  integral has to be on the outside. The area is

The definite integral equals , as you can find using a trig substitution or simply by looking it up in a table, and the result is, as
expected,  for the area of the semicircle.

▹ a

▹ (a, a) (0, a) (a, a)

y x y y

area = dA∫
a

y=0
∫

y

x=0

= dxdy∫
a

y=0
∫

y

x=0

= ( dx)dy∫
a

y=0
∫

y

x=0

= ydy∫
a

y=0

=
1

2
a

2

x y

x

▹ a

▹

dV = dxdydz

volume = dxdydz∫
a

z=0
∫

a

y=0
∫

a

x=0

= adydz∫
a

z=0
∫

a

y=0

= a dydz∫
a

z=0

∫
a

y=0

= a adz∫
a

z=0

= a
3

▹

▹ r

x = +r2 x2 y2 y = −r2 x2
− −−−−−

√ y

x x

area

Substituting u = x/r,

area = dur2 ∫
1

u=−1

1 −u2− −−−−
√

= dydx∫
r

x=−r

∫
−r2 x2√

y=0

= dx∫
r

x=−r

−r2 x2− −−−−−
√

= r dx.∫
r

x=−r

1 − (x/r)2
− −−−−−−−

√

π

π /2r2
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4.2.5 Finding moments of inertia by integration

When calculating the moment of inertia of an ordinary-sized object with perhaps  atoms, it would be impossible to do an
actual sum over atoms, even with the world's fastest supercomputer. Calculus, however, offers a tool, the integral, for breaking a
sum down to infinitely many small parts. If we don't worry about the existence of atoms, then we can use an integral to compute a
moment of inertia as if the object was smooth and continuous throughout, rather than granular at the atomic level. Of course this
granularity typically has a negligible effect on the result unless the object is itself an individual molecule. This subsection consists
of three examples of how to do such a computation, at three distinct levels of mathematical complication.

Moment of inertia of a thin rod

What is the moment of inertia of a thin rod of mass  and length  about a line perpendicular to the rod and passing through its
center? We generalize the discrete sum

In this example the object was one-dimensional, which made the math simple. The next example shows a strategy that can be used
to simplify the math for objects that are three-dimensional, but possess some kind of symmetry.

Moment of inertia of a disk

What is the moment of inertia of a disk of radius , thickness , and mass , for rotation about its central axis?

We break the disk down into concentric circular rings of thickness . Since all the mass in a given circular slice has essentially the
same value of  (ranging only from  to ), the slice's contribution to the total moment of inertia is simply . We then
have

where  is the total volume,  is the density, and the volume of one slice can be calculated as the
volume enclosed by its outer surface minus the volume enclosed by its inner surface, .

In the most general case where there is no symmetry about the rotation axis, we must use iterated integrals, as discussed in
subsection 4.2.4. The example of the disk possessed two types of symmetry with respect to the rotation axis: (1) the disk is the
same when rotated through any angle about the axis, and (2) all slices perpendicular to the axis are the same. These two symmetries
reduced the number of layers of integrals from three to one. The following example possesses only one symmetry, of type (2), and
we simply set it up as a triple integral. You may not have seen multiple integrals yet in a math course. If so, just skim this example.

Moment of inertia of a cube

What is the moment of inertia of a cube of side , for rotation about an axis that passes through its center and is parallel to four of
its faces? Let the origin be at the center of the cube, and let  be the rotation axis.

1026

M L

I

to a continuous one,

I = ∫ dmr2

=∑mir
2
i

= dx[r = |x|, so  = ]∫
L/2

−L/2

x2 M

L
r2 x2

= M
1

12
L2

b t M

dr

r r r+dr dmr2

I = ∫ dmr2

= ∫ ρdV ,r2

V = π tb2 ρ = M/V = M/π tb2

dV = π(r+dr t−π t = 2πtrdr)2 r2

I = 2πt rdr∫
b

0

r2 M

π tb2

= M .
1

2
b2

b

x
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The fact that the last step is a trivial integral results from the symmetry of the problem. The integrand of the remaining double
integral breaks down into two terms, each of which depends on only one of the variables, so we break it into two integrals,

which we know have identical results. We therefore only need to evaluate one of them and double the result:

Figure h shows the moments of inertia of some shapes, which were evaluated with techniques like these.

h / Moments of inertia of some geometric shapes.

 In the men's Olympic hammer throw, a steel ball of radius 6.1 cm is swung on the end of a wire of length 1.22 m. What
fraction of the ball's angular momentum comes from its rotation, as opposed to its motion through space?

 It's always important to solve problems symbolically first, and plug in numbers only at the end, so let the radius of the ball be
, and the length of the wire . If the time the ball takes to go once around the circle is , then this is also the time it takes to

revolve once around its own axis. Its speed is , so its angular momentum due to its motion through space is 
. Its angular momentum due to its rotation around its own center is . The ratio of these two

angular momenta is . The angular momentum due to the ball's spin is extremely small.

 A rod of length  and mass  stands upright. We want to strike the rod at the bottom, causing it to fall and land flat. Find the
momentum, , that should be delivered, in terms of , , and . Can this really be done without having the rod scrape on the
floor?

I = ∫ dmr2

= ρ∫ dVr2

= ρ ( + )dxdydz∫
b/2

−b/2
∫

b/2

−b/2
∫

b/2

−b/2
y2 z2

= ρb ( + )dydz∫
b/2

−b/2

∫
b/2

−b/2

y2 z2

I = ρb dydz+ρb dydz∫
b/2

−b/2

∫
b/2

−b/2

y2 ∫
b/2

−b/2

∫
b/2

−b/2

z2 (5.2.23)

I = 2ρb dyd z∫
b/2

−b/2

∫
b/2

−b/2

z2

= 2ρ dzb2 ∫
b/2

−b/2

z2

= ρ
1

6
b5

= M
1

6
b2

Example : The hammer throw5.2.9

▹

▹

b ℓ T

v= 2πℓ/T

mvℓ = 2πm /Tℓ2 (4π/5)m /Tb2

(2/5)(b/ℓ = 1.0 ×)2 10−3

Example : Toppling a rod5.2.10

▹ b m

p m b g
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i / Example 22.

 This is a nice example of a question that can very nearly be answered based only on units. Since the three variables, , ,
and , all have different units, they can't be added or subtracted. The only way to combine them mathematically is by
multiplication or division. Multiplying one of them by itself is exponentiation, so in general we expect that the answer must be
of the form

where , , , and  are unitless constants. The result has to have units of . To get kilograms to the first power, we
need

meters to the first power requires

and seconds to the power  implies

We find , , and , so the solution must be of the form

Note that no physics was required!

Consideration of units, however, won't help us to find the unitless constant . Let  be the time the rod takes to fall, so that 
. If the rod is going to land exactly on its side, then the number of revolutions it completes while in the air

must be 1/4, or 3/4, or 5/4, ..., but all the possibilities greater than 1/4 would cause the head of the rod to collide with the floor
prematurely. The rod must therefore rotate at a rate that would cause it to complete a full rotation in a time , and it has
angular momentum .

The momentum lost by the object striking the rod is , and by conservation of momentum, this is the amount of momentum, in
the horizontal direction, that the rod acquires. In other words, the rod will fly forward a little. However, this has no effect on
the solution to the problem. More importantly, the object striking the rod loses angular momentum , which is also
transferred to the rod. Equating this to the expression above for , we find .

Finally, we need to know whether this can really be done without having the foot of the rod scrape on the floor. The figure
shows that the answer is no for this rod of finite width, but it appears that the answer would be yes for a sufficiently thin rod.
This is analyzed further in homework problem 37 on page 294.
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p = A ,mjbkgl (5.2.24)

A j k l kg⋅m/s

j= 1, (5.2.25)

k+ l = 1, (5.2.26)
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l = 1/2. (5.2.27)

j= 1 k = 1/2 l = 1/2

p = Am .bg
−−

√ (5.2.28)
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