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3.5: Oscillations
Let's revisit the example of the stretched spring from the previous section. We know that its energy is a form of electrical energy of
interacting atoms, which is nice conceptually but doesn't help us to solve problems, since we don't know how the energy, 

, depends on the length of the spring. All we know is that there's an equilibrium (figure a/1), which is a local
minimum of the function . An extremely important problem which arises in this connection is how to
calculate oscillatory motion around an equilibrium, as in a/4-13. Even if we did special experiments to find out how the spring's
energy worked, it might seem like we'd have to go through just as much work to deal with any other kind of oscillation, such as a
sapling swinging back and forth in the breeze.

a / The spring has a minimum-energy length, 1, and energy is required in order to compress or stretch it, 2 and 3. A mass attached
to the spring will oscillate around the equilibrium, 4-13.

Surprisingly, it's possible to analyze this type of oscillation in a very general and elegant manner, as long as the analysis is limited
to small oscillations. We'll talk about the mass on the spring for concreteness, but there will be nothing in the discussion at all that
is restricted to that particular physical system. First, let's choose a coordinate system in which 
corresponds to the position of the mass where the spring is in equilibrium, and since interaction energies like 

 are only well defined up to an additive constant, we'll simply define it to be zero at equilibrium:

Since  is an equilibrium,  must have a local minimum there, and a differentiable
function (which we assume  is) has a zero derivative at a local minimum:

b / Three functions with the same curvature at =0.

There are still infinitely many functions that could satisfy these criteria, including the three shown in figure b, which are 
, , and . Note, however, how all three functions are virtually

identical right near the minimum. That's because they all have the same curvature. More specifically, each function has its second
derivative equal to 1 at , and the second derivative is a measure of curvature. We write 

 for the second derivative of the energy at an equilibrium point,
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Physically,  is a measure of stiffness. For example, the heavy-duty springs in a car's shock absorbers
would have a high value of . It is often referred to as the spring constant, but we're only using a spring as
an example here. As shown in figure b, any two functions that have , , and 

, with the same value of , are virtually indistinguishable for small values of 
, so if we want to analyze small oscillations, it doesn't even matter which function we assume. For simplicity,

we'll just use  from now on.

Now we're ready to analyze the mass-on-a-spring system, while keeping in mind that it's really only a representative example of a
whole class of similar oscillating systems. We expect that the motion is going to repeat itself over and over again, and since we're
not going to include frictional heating in our model, that repetition should go on forever without dying out. The most interesting
thing to know about the motion would be the period, , which is the amount of time required for one
complete cycle of the motion. We might expect that the period would depend on the spring constant, , the
mass, , and and the amplitude, , defined in figure c.

c / The amplitude would usually be defined as the distance from equilibrium to one extreme of the motion, i.e., half the total travel.

In examples like the brachistochrone and the Apollo 11 mission, it was generally necessary to use numerical techniques to
determine the amount of time required for a certain motion. Once again, let's dust off the time3 function from page 93 and modify
it for our purposes. For flexibility, we'll define the function  as a separate Python function. We really want
to calculate the time required for the mass to come back to its starting point, but that would be awkward to set up, since our
function works by dividing up the distance to be traveled into tiny segments. By symmetry, the time required to go from one end to
the other equals the time required to come back to the start, so we'll just calculate the time for half a cycle and then double it when
we return the result at the end of the function. The test at lines 16-19 is necessary because otherwise at the very end of the motion
we can end up trying to take the square root of a negative number due to rounding errors.

import math 

def u(k,x): 

  return .5*k*x**2 

 

def osc(m,k,a,n): 

  x=a 

  v=0 

  dx = -2.*a/n 

  t=0 

  e = u(k,x)+.5*m*v**2 

  for i in range(n): 

    x_old = x 

    v_old = v 

    x = x+dx 

    kinetic = e-u(k,x) 

    if kinetic<0. : 

      v=0. 

      print "warning, K=",kinetic,"<0" 

    else : 

      v = -math.sqrt(2.*kinetic/m) 

    v_avg = (v+v_old)/2. 

    dt=dx/v_avg 

    t=t+dt 

  return 2.*t 
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>>> print(osc(1.,1.,1.,100000)) 

warning, K= -1.43707268307e-12 <0 

6.2831854132667919 

The first thing to notice is that with this particular set of inputs ( =1 kg, , and
), the program has done an excellent job of computing . This is Mother Nature

giving us a strong hint that the problem has an algebraic solution, not just a numerical one. The next interesting thing happens when
we change the amplitude from 1 m to 2 m:

>>> print(osc(1.,1.,2.,100000)) 

warning, K= -5.7482907323e-12 <0 

6.2831854132667919 

Even though the mass had to travel double the distance in each direction, the period is the same to within the numerical accuracy of
the calculation!

With these hints, it seems like we should start looking for an algebraic solution. For guidance, here's a graph of 
 as a function of , as calculated by the osc function with n=10.

This looks like a cosine function, so let's see if a  is a solution to the conservation of energy equation ---
it's not uncommon to try to “reverse-engineer” the cryptic results of a numerical calculation like this. The symbol 

 (Greek omega), called angular frequency, is a standard symbol for the number of radians per second of oscillation. Except
for the factor of , it is identical to the ordinary frequency , which has units of

 or Hz (Hertz). The phase angle  is to allow for the possibility that 
 doesn't coincide with the beginning of the motion. The energy is

According to conservation of energy, this has to be a constant. Using the identity , we can see that it will
be a constant if we have , or , i.e., . Note that the period
is independent of amplitude.

Example 23: A spring and a lever
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d / Example 23. The rod pivots on the hinge at the bottom.
 What is the period of small oscillations of the system shown in the figure? Neglect the mass of the lever and

the spring. Assume that the spring is so stiff that gravity is not an important effect. The spring is relaxed when the lever is vertical.
 This is a little tricky, because the spring constant , although it is relevant, is not the
 we should be putting into the equation . The  that goes in

there has to be the second derivative of  with respect to the position, , of the mass
that's moving. The energy  stored in the spring depends on how far the tip of the lever is from the center. This
distance equals , so the energy in the spring is

and the  we have to put in  is

The result is

The leverage of the lever makes it as if the spring was stronger, and decreases the period of the oscillations by a factor of 
.

Example 24: Water in a U-shaped tube

e / Water in a U-shaped tube.
 What is the period of oscillation of the water in figure e?
 In example 13 on p. 89, we found , so the “spring constant,” which really isn't a

spring constant here at all, is

This is an interesting example, because  can be calculated without any approximations, but the kinetic energy
requires an approximation, because we don't know the details of the pattern of flow of the water. It could be very complicated. There
will be a tendency for the water near the walls to flow more slowly due to friction, and there may also be swirling, turbulent motion.
However, if we make the approximation that all the water moves with the same velocity as the surface, , then
the mass-on-a-spring analysis applies. Letting  be the total length of the filled part of the tube, the mass is

, and we have
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