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11.2: Constant Acceleration
As was done in one-dimensional kinematics, we may derive a set of equations for the motion of a particle under a constant
acceleration. In two or three dimensions, though, it's a constant acceleration vector a. If the acceleration vector a is constant, we can
bring it outside the integral sign of Eq. (11.1.4) just as we do with constant scalars. We get

or

where  is the constant of integration. By setting , we can see that physically, just as in one-dimensional kinematics, 
 represents the velocity vector at time , so

Substituting this result into Eq. (11.1.3), we have

or

where  is the position vector at time .

The remaining constant-acceleration formula is a formula for , in which we eliminate time  to get an expression for velocity
in terms of position. We did this in one dimension by solving the equation for  for , then substituting into the equation for 
and solving for . Unfortunately, that technique won't work with vectors, because it would require dividing by a vector, which is
not defined. Instead, being guided by the knowledge that the vector formula must reduce to the known scalar formula when the
vectors are one-dimensional, we proceed as follows. Start with Eq.  for  for constant acceleration:

Now take the dot product of both sides with the acceleration a:

and multiply both sides by 2 :

The left-hand side looks similar to the second term on the right-hand side of the one-dimensional Eq. , but we still need to
eliminate  on the right-hand side. To do that, let's start by working on the first term on the right-hand side of Eq. . Starting
with Eq. , we have
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Now take the dot product of the left-hand side of Eq.  with itself, and dot the right-hand side with itself:

Next, let's work on the second term on the right-hand side of Eq. . To do this, let's take the dot product of both sides of Eq. 
 with  :

Now we have all the pieces we need to eliminate . In Eq. , we use Eq.  to replace , and we use Eq.  to
replace  :

or
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