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42.1: Introduction to Simple Harmonic Motion
The small-angle approximation of the simple plane pendulum is an example of what is called simple harmonic motion. Simple
harmonic motion is the motion that a particle exhibits when under the influence of a force of the form given by Hooke's law
(named for the 17th century English scientist Robert Hooke):

A force of this form describes, for example, the force on a mass attached to a spring with spring constant , where  is a measure
of the stiffness of the spring. In this case  is the force exerted by the spring, and  is the distance of the mass from its equilibrium
position - that is, the "resting" position at which the mass can be left where it will not oscillate.

Substituting Hooke's law as the force in Newton's second law  (and recalling the acceleration  ) gives the
equation

This is a second-order linear differential equation with constant coefficients, and can be solved for  using standard methods
from the theory of differential equations. We won't go into the theory of differential equations here, but just present the result. The
solution is

Here  is called the angular frequency of the motion, and measures how fast the particle oscillates back and forth. The constant 
is called the amplitude of the motion, and is the maximum distance the particle travels from its equilibrium position, . The
constant  called the phase constant, and determines where in its cycle the particle is at time . A plot of  is shown in Fig. 

.

Figure : Simple harmonic motion. Shown are the amplitude , period , and phase constant . The horizontal line 
is the equilibrium position.

Since the sine and cosine function differ only by a phase shift (  ), we could replace the cosine function in Eq.
 with a sine by simply adding an extra  to the phase constant . So either the sine or the cosine can be used equally well

to describe simple harmonic motion; here we will choose to use the cosine function.

The calculus may also be used to find the velocity of the particle at any time ; the result is

so that the maximum speed of the simple harmonic oscillator is

F = −kx. (42.1.1)
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Further, it can be shown that the acceleration at any time  is

 

Multiplying Eq.  by the particle mass , we find

Comparing this with Eq.  we see that

or

In Eq. , the amplitude  depends on how far the particle was displaced from equilibrium before being released; the phase
constant  just depends on when we choose time ; but the angular frequency  depends on the physical parameters of the
system: the stiffness of the spring  and the mass of the particle .
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