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58.3: Elliptical Orbits
Several of the results we found earlier for a circular orbit can be generalized for an elliptical orbit. Suppose

an elliptical orbit has semi-major axis  and eccentricity . The the semi-minor axis , and the distance from the
center of the ellipse to either of the two foci is . Then the distance from the center of the Earth (located at one
focus) to the perigee point is

and the distance from the center of the Earth to the apogee point is

A little algebra gives an expression for the semi-major axis  in terms of the perigee and apogee distances:

and similarly we can get an expression for the eccentricity  :

Energy
The total orbit energy  of a spacecraft in an elliptical orbit turns out to be

The potential and kinetic energies vary with  around the orbit. The potential energy at  is given by Eq. 58.1.1. The orbit velocity
at  is found from the vis viva equation, Eq. 57.10.6,

from which we find the kinetic energy at  to be

At perigee, , and so

At apogee, , and so

Angular Momentum
The angular momentum also varies with , and is given by
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Here  is called the elevation angle, and is the angle between the tangent to the ellipse at the spacecraft and the spacecraft velocity
vector.

At either perigee or apogee, , so . At perigee, , and so the angular momentum is

At apogee, , and so

Since angular momentum is conserved, then ; if the orbit parameters  and  are known and the velocity at either the
apogee or perigee point is known, then the velocity at the other point is known:

Thus the perigee velocity  is related to the apogee velocity  through

In terms of the apogee and perigee distances  and ,

Example. Suppose a spacecraft is in an Earth-orbiting elliptical orbit with a semi-major axis   and eccentricity 
. What are its velocities at perigee and apogee?

Solution. From Eq. , the perigee velocity is

The apogee velocity can be found using Eq. |9|pageIndex{18}\):

Circularizing an Orbit
An elliptical orbit may be circularized by changing the spacecraft velocity appropriately. One can change the spacecraft velocity at
perigee to create a circular orbit whose radius is equal to the perigee distance, or one can change the spacecraft velocity at apogee
to create a circular orbit whose radius is equal to the apogee distance. To calculate the change in spacecraft velocity (called the
Delta , or  ), one uses the principle of conservation of energy.

Suppose a spacecraft is in an elliptical orbit with semi-major axis  and eccentricity , and we wish to circularize it at perigee. The
spacecraft velocity at perigee is given by Eq. , and the circular velocity at  is given by Eq. 58.1.4. The required change
in spacecraft velocity at perigee is their difference. Using these equations along with Eq.  gives, after a little algebra,

Similarly, if we wanted to circularize the orbit at apogee, the required change in spacecraft velocity at apogee is found by finding
the difference of Eqs.  and ; using these equations along with Eq. , we get

ϕ

ϕ = 0 L = mrv = a(1 −e)rp

= m a(1 −e).Lp vp (58.3.13)

= a(1 +e)ra

= m a(1 +e)La va (58.3.14)

=Lp La a e

Lp

m a(1 −e)vp

(1 −e)vp

= La

= m a(1 +e)va

= (1 +e)va

(58.3.15)

(58.3.16)

(58.3.17)

vp va

=
vp

va

1 +e

1 −e
(58.3.18)

ra rp

=
vp

va

ra

rp

(58.3.19)

a = 8000 km
e = 0.1500

58.3.8

vp =
GM⊕

a

1 +e

1 −e

− −−−−−−−−−
√

=
3.986005 ×1014 m3  s−2

8000 ×  m103

1 +0.1500

1 −0.1500

− −−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 8210 km/s.
– ––––––––––

= = 8210 km/s =va vp

1 −e

1 +e

1 −0.1500

1 +0.1500
6069 km/s
– –––––––––

(58.3.20)

v Δv

a e

58.3.8 r = rp

58.3.1

Δv = − = (1 − ).vc vp

GM⊕

a(1 −e)

− −−−−−−

√ 1 +e
− −−−

√ (58.3.21)

58.3.2 58.3.10 58.3.2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/92379?pdf


58.3.3 https://phys.libretexts.org/@go/page/92379

If the spacecraft velocity vector is perpendicular to the radius vector  at some instant in time, then the magnitude of the velocity
determines what kind of orbit the spacecraft is in:

If  (Eq. 58.2.4), then the spacecraft is in a circular orbit.
If , then the spacecraft is at perigee in an elliptical orbit.
If , then the spacecraft is at apogee in an elliptical orbit.

Suppose we have an Earth-orbiting spacecraft in an elliptical orbit, with perigee distance 8000  and apogee distance 
. We wish to circularize the orbit at apogee to create a circular orbit with radius 12000 km.

Solution
From Eqs.  and , we have

The eccentricity is

Circularizing the elliptical orbit to the apogee distance will require a single engine burn at the apogee point that results in a
change in spacecraft velocity given by Eq. :
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