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60.1: Examples

v Example 60.1.1 Simple Harmonic Oscillator

As an example of the use of Lagrange's equation, consider a one-dimensional simple harmonic oscillator. We wish to find the
position z of the oscillator at any time \(t\

Solution
We begin by writing the usual expression for the kinetic energy K :

1
K= quﬁ (60.1.1)
The potential energy U of a simple harmonic oscillator is given by
1
U:§kw2 (60.1.2)
The Lagrangian in this case is then
L(z,v) =K-U
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Lagrange's equation in one dimension is
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Substituting for L from Eq. 60.1.4 we find

7 [av(va —2km )] —aw(2mv —2ka: =0 (60.1.4)

Evaluating the partial derivatives, we get

d
—(mv)+kz =0 (60.1.5)
dt
or, since v = dz/dt,
d’z
m——-+kx=0 60.1.6
I ( )
which is a second-order ordinary differential equation that one can solve for z(t). Note that the first term on the left is
ma = F', so this equation is equivalent to ' = —kz (Hooke's Law). The solution to the differential equation (57.10) turns out
to be
z(t) = Acos(wt +9) (60.1.7)

where A is the amplitude of the motion, w = 4/k/m is the angular frequency of the oscillator, and § is a phase constant that
depends on where the oscillator is at ¢ = 0.

v/ Example 60.1.2 Plane Pendulum

Part of the power of the Lagrangian formulation of mechanics is that one may define any coordinates that are convenient for
solving the problem; those coordinates and their corresponding velocities are then used in place of # and v in Lagrange's
equation.

For example, consider a simple plane pendulum of length ¢ with a bob of mass m, where the pendulum makes an angle 8 with
the vertical. The goal is to find the angle 6 at any time ¢.

Solution
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In this case we replace x with the angle 6, and we replace v with the pendulum's angular velocity w. The kinetic energy K of
the pendulum is the rotational kinetic energy

1.9 1 50
—2Iw —zmlw, (60.1.8)

where I is the moment of inertia of the pendulum, I =m#?. The potential energy of the pendulum is the gravitational
potential energy

U =mgl(1—cosb) (60.1.9)
The Lagrangian in this case is then
Ll,w) =K-U

1
= 5m€2w2 —mgl(1—cosb)

Lagrange's equation becomes
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Substituting for L,
%{ 8% [%mﬁ 2 —mgl(1 —cosﬁ)] } — % [%mﬁ > —mgl(1—cosh)| =0 (60.1.11)
Computing the partial derivatives, we find
%(mﬁw) +mglsing =0 (60.1.12)
Since w = df/dt, this gives
2
mZZ% +mglsind =0, (60.1.13)

which is a second-order ordinary differential equation that one may solve for the motion 6(t). The first term on the left-hand
side is the torque 7 on the pendulum, so this equation is equivalent to 7 = —mgf sin 6 .

The solution to the differential equation ( 60.1.17) is quite complicated, but we can simplify it if the pendulum only makes
small oscillations. In that case, we can approximate sinf =6, and the differential equation ( 60.1.17 becomes a simple
harmonic oscillator equation with solution

0(t) = 0y cos(wt +6) (60.1.14)

where 6, is the (angular) amplitude of the pendulum, w = ,/g/¢ is the angular frequency, and ¢ is a phase constant that
depends on where the pendulum is at ¢ = 0.
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