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13.2: Example- Square Roots
When the first electronic calculators became available in the mid-1970s, many of them were simple "fourfunction" calculators that
could only add, subtract, multiply, and divide. The author's father, L.L. Simpson (Ref. [11]), showed him how he could calculate
square roots on one of these calculators using Newton's method, as described here.

To calculate the square root of a number , we wish to find the number  in the equation

Squaring both sides then subtracting  from both sides, we get a function of the form of Eq. (13.1.1):

The values of  that satisfy this equation are the desired square roots of . Newton's method for finding square roots is then Eq.
(10.2.2) with this  (and with  ):

For example, to calculate , set . Make an initial estimate of the answer-say . Then we calculate several iterations of
Newton's method (Eq.  to get better and better estimates of  :

After just a few iterations, the solution has converged to four decimal places: we have .

There are actually two square roots of 5 . To find the other solution, we choose a different initial estimate, one that is closer to the
other root. If we take the initial estimate , we get 

So to four decimals, the other square root of 5 is -2.2361 .

L.L. Simpson notes that Eq.  for computing square roots was typically used in the equivalent form

so that you repeatedly find the average of  and . For the above example of finding , this gives:

Initial est   = 2

1st iteration: Average of 2 and 5/2 = 2.25

2nd iteration: Average of 2.25 and 5/2.25 = 2.2361
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3rd iteration: Average of 2.2361 and 5/2.2361 = 2.2361 (converged)
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