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22.1: Model I F ∝ v
In this first model, we model the resistive force  through a fluid as being proportional to the first power of the velocity  :

where  is the constant of proportionality; the minus sign shows that the resistive force is always opposite the direction of motion.

Under this model, the net downward force on the falling body is . Then by Newton's second law,

Dividing through by , we have

This is a first-order differential equation, which you will learn to solve for  in a course on differential equations. But briefly, for
a differential equation of the form

the solution  is found to be (Ref. [2])

where  is a constant that depends on the initial conditions, and  is an integrating factor, given by

Since this is a first-order differential equation, there will be one arbitrary constant of integration, and it is the constant  in Eq. 
.

Comparing Eq.  with Eq. , we have

Then the integrating factor  is, from Eq. ,

where  is a constant of integration. The solution to Eq.  is then given by Eq. :

To find the constant , we use the initial condition: if we release the body at time zero, then  when ; Eq.  then
becomes at 
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and so

Therefore, from Eq. , the solution is

or

This is the solution we're after: it gives the falling object's velocity  at any time , assuming that it's dropped from rest at time 
.

Now let's examine what happens to the solution (Eq. ) as . In this case, the exponential term approaches zero, and
the falling object’s velocity approaches the limiting value

This is called the terminal velocity, and is a general feature of bodies falling through resistive fluids: at some point the resistive
force balances the downward gravitational force, and the body stops accelerating and moves at a constant velocity.  Sky divers
experience this phenomenon: some time after jumping out of an airplane, a sky diver will reach a terminal velocity of roughly 100
miles per hour, and will not change speed further until the parachute is deployed.

 A simpler way to arrive at Eq.  is to simply set the acceleration  in Eq. (19.5), which immediately gives  
.
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