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54.7: Gauss’s Formulation
It is possible to re-cast Newton's law of gravity into a different mathematical form using a mathematical theorem known as Gauss's
law. This is not a separate theory of gravity—it is still Newton's law, but in different mathematical clothing. This form of Newton's
law of gravity lets us easily solve some problems that would be fairly difficult using Newton's original formulation.

An alternative formulation of Newtonian gravity is Gauss's law for gravity. It states that the acceleration  due to gravity of a mass 
 (not necessarily a point mass) is given by

This equation requires a bit of explanation. The circled integral sign indicates an area integral evaluated over a closed surface . A
closed surface may be a sphere, cube, cylinder, or some irregular shape—any closed surface that has a well-defined "inside" and
"outside." The integral is an area integral: we imagine that the surface  is divided into many infinitesimal squares, each of which
has area . Performing the integral means summing up the integrand times  over the entire closed surface .

The vector  is the acceleration due to gravity, as a vector. The vector always points toward the mass. The vector  is a unit vector,
perpendicular ("normal") to the surface , and pointing outward from .

On the right-hand side of Equation , we find familiar constants (  and  ), along with mass . Here  is the total mass
inside surface S. It doesn't matter what shape the mass  is, or how it is distributed;  is just the total mass inside surface .

So Gauss's law for gravity says this: we're given some mass , which may be of some arbitrary shape. Now imagine constructing
an imaginary surface  around mass  (a sphere, or any other closed shape). Divide surface  into many infinitesimally small
squares, each of which has area . At each square, draw a unit normal vector  that is perpendicular to the surface at that square's
location, and which is pointing outward from . Let  be the acceleration due to gravity at that square. If we take the dot product
of  and  at that square, multiply by the area of the square , then sum up all of those products for all the squares making up
surface , then the result will be  times the total mass enclosed by .

This law applies in general, but in practice it is most useful for finding the acceleration to to gravity  due to a highly symmetrical
mass distribution (a point, sphere, line, cylinder, or plane of mass). In these cases, the integral is particularly easy to evaluate, and
we can easily solve for  in just a few steps.

Point Mass
For example, let's use Gauss's law to find the acceleration  due to the gravity of a point mass . Since  and 

, the result should be

We begin with a point mass  sitting in space. We now need to construct an imaginary closed surface  surrounding . While in
theory any surface would do, we should pick a surface that will make the integral easy to evaluate. Such a surface should have
these properties:

The gravitational acceleration  should be either perpendicular or parallel to  everywhere.
The gravitational acceleration  should have the same value everywhere on . (Or it may be zero on some parts of .)
The surface  should pass through the point at which you wish to calculate the acceleration due to gravity.

If we can find a surface  that has these properties, the integral will be very simple to evaluate. For the point mass, we will choose 
 to be a sphere of radius  centered on mass . Since we know  points radially inward toward mass , it is clear that  will be

perpendicular to  everywhere. Also, by symmetry, it is not hard to see that  will have the same value everywhere on .

Having chosen a surface , let us now apply Gauss's law for gravity. The law states that

Now everywhere on the sphere  (since  and  are anti-parallel-g points inward, and  points outward). Since  is
a constant, Eq.  becomes
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Now the integral is very simple: it is just  integrated over the surface of a sphere, so it's just the area of a sphere:

Equation  is then just

or (cancelling  on both sides)

in agreement with Eq.  from Newton's law.

Line of Mass
The Gaussian formulation allows you to easily calculate the gravitational field due to a few other shapes. For example, suppose you
have an infinitely long line of mass, having linear mass density  (kilograms per meter), and you wish to calculate the acceleration 

 due to the gravity of the line mass at a perpendicular distance  of the mass. The appropriate imaginary "Gaussian surface"  in
this case is a cylinder of length  and radius , whose axis lies along the line mass. In this case, everywhere along the curved
surface of cylinder , the gravitational acceleration  (pointing radially inward) is anti-parallel to the outward normal unit vector 

. Everywhere along the flat ends of the cylinder , the gravitational acceleration  is perpendicular to the outward normal vector 
, so that on the ends, , and the ends contribute nothing to the integral. We therefore need only consider the curved

surface of cylinder .

Now apply Gauss's law:

Since  is anti-parallel to  along the curved surface of cylinder , we have  there. Bringing this constant outside the
integral, we get

The integral is just the area of a cylinder:

so Eq. (\PageIndex{9}\) ) becomes

Now  is the total mass enclosed by surface . This is a segment of length  and density , so it has mass . This gives

Cancelling  on both sides gives

Plane of Mass
In addition to spherical and cylindrical symmetry, this technique may also be applied to plane symmetry. Imagine that you have an
infinite plane of mass, having area mass density  (kilograms per square meter), and you wish to calculate the acceleration  due to
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the gravity of the plane at a perpendicular distance  from the plane. The approach is similar to the previous cases: draw an
imaginary closed "Gaussian surface," write down Gauss's law for gravity, evaluate the integral, and solve for the acceleration .

In this case, the appropriate Gaussian surface  is a "pillbox" shape-a short cylinder whose flat faces (of area  ) are parallel to the
plane of mass. In this case, everywhere along the curved surface of , the gravitational acceleration  is perpendicular to the
outward normal unit vector , so the curved sides of  contribute nothing to the integral. Only the flat ends of the pillbox-shaped
surface  contribute to the integral. On each end,  is anti-parallel to , so  on the ends.

Now apply Gauss's law to this situation:

Here the integral needs only to be evaluated over the two flat ends of . Since , we can bring  outside the integral to
get

The integral in this case is just the area of the two ends of the cylinder,  (one circle of area  from each end). This gives

Now let's look at the right-hand side of this equation. The mass  is the total amount of mass enclosed by surface . Surface  is
sort of a "cookie cutter" that punches a circle of area  out of the plane. The mass enclosed by  is a circle of area  and density 

, so it has mass . Then Eq.  becomes

Cancelling  on both sides, we get

Note that this is a constant: the acceleration due to gravity of an infinite plane of mass is independent of the distance from the
plane!

In his science fiction novel 2010: Odyssey Two, author Arthur C. Clarke describes a large rectangular slab that has been build by
an alien race and placed in orbit around Jupiter. Astronauts are able to calculate the mass of the slab by placing a small spacecraft
near the center of the large face and timing it to see how long it takes to fall to the surface of the slab. By approximating the slab as
an infinite plane, they use Eq. (\PageIndex{18}\) to find the acceleration; from that and the falling time, they can calculate the
mass. (Actually, Dr. Clarke got the wrong answer in the book. You may want to find the book and see if you can calculate the
correct answer.)

Gauss's Law for Electrostatics
You will find the techniques described here will appear again in your study of electricity and magnetism. Classical electricity and
magnetism is described by four equations called Maxwell's equations; one of these is Gauss's law, and describes the electric field 
produced by an electric charge  :

This equation is of the same form as Gauss's law for gravity, so everything discussed previously for gravity also applies here.
Although this equation is true in general, it has a good practical use for easily calculating the electric field  due to a point, sphere,
line, cylinder, or plane of electric charge. To do this, you do just as we did with the gravity examples: draw an imaginary Gaussian
surface around the charge , write down Gauss's Law, evaluate the integral, and solve for the electric field . Here  is the total
electric charge enclosed by . The electric field  points away from positive electric charge, and toward negative charge. The
constant  is called the permittivity of free space, and has a value of .

You'll find more details about Maxwell's equations in General Physics II.
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