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7.2: 3-Dimensional Models

Particle in a 3D Infinite Square Well

The infinite square well in three dimensions has the same property as the one-dimensional box — the potential is zero everywhere
inside, and instantly becomes infinity at the boundaries. The one-dimensional case had a specified length, but we will not saddle
this infinite well with the same width in all three directions, meaning we will confine the particle to a rectangular prism, not a cube.
We will define our coordinate system so that the walls are parallel to the three planes, and we will place the origin at one of the box
corners. The lengths of the walls along the z, y, and z axes we will call L;, Ly, L., respectively.

Figure 7.2.1 Three-Dimensional Infinite Square Well
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Mathematically, the potential is written:

V(z,y,2) =

{0 0<z<L, and 0<y<Ly and 0<2z<L, (7.2.1)
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As we saw for the one-dimensional box, we can use a combination of two oppositely-moving plane waves (for each of the three
axes) to construct a wave function of definite energy that vanishes at the walls (i.e. sinusoidal functions). The individual solutions
to the differential equations in x, y, and z are the same as before, with two exceptions: Each dimension involves a separate
harmonic number 7, so like the 1-dimensional well, all the wave functions are sines:

Y (y) = Aysin Z(z) = A,sin nzL7rz’ Ng, Ny, n; =1, 2, ... (7.2.2)

T Y z

NgT T nymy

X (z)=A,sin

Before we move on to the energy spectrum, let's construct the spatial full wave function by multiplying the partial wave functions.
We also have to deal with normalizing the full wave function. Normalization does not tell us anything about the values of A,, A,
and A,, but their product must equal the normalization constant for the full wave function. The normalization integral is over all
three dimensions and integrals over = will only affect X (z), and similarly for y and z, so the normalization constant for the full
wave function turns out to be the same as the product of the normalization constants for the three separate one-dimensional wave

functions.
8 LN, MWYTY | N,T2
Yn,nyn, (T,Y,2) = ,LzLyLz sin I sin I, sin I Mgy Ny, N =1, 2, ... (7.2.3)

In keeping with our notation of labeling the wave function with the quantum numbers, we have labeled the energy eigenstate wave
function accordingly.

Plugging the wave function back into the stationary-state Schrodinger equation, we get the following energy spectrum:

nZ n;‘j n2\ h?
Eﬂznynz = <L_%+L_Z+L_g) %, Mgy Ty, n,=1, 2, ... (7.2.4)
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One might be tempted to think that the ground state energy of this particle occurs when the n along the longest dimension is 1,
while the others are zero, but It should be emphasized that the minimum value of all three n values is 1. None of the three modes
can provide a zero contribution to the energy.

Another way that the three-dimensional case differs from the one-dimensional case is apparent if we consider the hierarchy of the
energy spectrum. Suppose for example, we wanted to draw an energy-level diagram for this spectrum. We know that 111 is the
ground state, but which quantum state would be the first excited state? The answer depends upon the dimensions of the well. If the
L, is greater than the other two box dimensions, then the smallest increase in the total energy will come from incrementing 7,
from 1 to 2, and the first excited state would be 91;. What about the second excited state? Well, now we need even more
information. If L, is only slightly greater than L, dimension (and both are longer than L), then the second excited state would be
1991. But if L, is significantly longer than the other dimensions, then the second excited state would be %311 . In other words, with
three quantum numbers, we have lost the ability (at least for this case) to express the energy levels with a single integer.

The 3D Harmonic Oscillator

As our final example of a potential that allows for separation of variables in Cartesian coordinates, we consider the three
dimensional harmonic oscillator, which has a potential that is a sum of functions purely of z, y, and z. In general, the spring
constants are different for each direction, so:

1 1 1
V(2,y,2) = she®® + Shyy* + S k.27 (7.2.5)
2 2 2
This sort of model might be useful for crystal lattices where the bonds differ along the different dimensions. Plugging this into

Equation 7.1.10 results in an equation with three separated functions again:

(7.2.6)

X 022 | R Yo F e Y Z 92 | R h2

1 0°X Fam o] [ 1 %Y  kym , N 18*Z Kem o] 2mE
Y 8y? K2

Following the same procedure as before gives us three separate differential equations. This decoupling maneuver once again leaves
us with three wave function pieces, which are multiplied together to get the full wave function. As with the case of the square well,
the energy contributions of the partial wave functions are added together to give the total energy of the state:

- 1 [Kg 1 [Ky 1 [K.
En,nynz—(nm+2)h m +(7’Ly+2)h m+(nz+2)h ™ (727)

This gives us a nice way to describe bonds along different axes in general, but of particular interest is the isotropic harmonic
oscillator, which involves equal spring constants () in all three directions. In this case, the energy spectrum reduces to:

3 K
Enznynz = (nz +ny +n,+ 5) hwc , We = E (728)

Notice that even with the simplification of isotropy, three quantum numbers are required to define the state.

Degeneracy

Notice that unlike one-dimensional potentials, in these cases a single quantum number does not define the energy. But there is even
more to it than that. Looking at the case of the three-dimensional box again, suppose it has three equal sides: L, = L, = L, =L .
In this case, there exist three distinct quantum states that possess the same total energy, namely 211, %121, and 1115. These states
clearly possess equal energies, and yet they are distinct because, for example, the states 10517 and 1197 yield different uncertainties
in the z-component of the particle's position (1211 has two antinodes along the z axis, while 1127 has only one). A similar thing
occurs (only more dramatically) for the isotropic harmonic oscillator, as any combination of n;, n,, and n, that gives the same
sum will result in the same energy.

When multiple quantum states yield the same energy, they are said to be degenerate, and if there are a total of j distinct states for
the same energy, that energy level is said to be j-fold degenerate. Typically degeneracy comes about due to obvious symmetries,
such as in the cases mentioned above. All we need to do is rename our axes, and the states morph into each other, so naturally the
energies are the same. But occasionally degeneracies arise unexpectedly, through what can only really be described as a
coincidence. These are called accidental degeneracies. An example of one of these for the three-dimensional square well with all
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three sides of equal length arises for the states ¥511, ¥151, Y115, and W33 — this energy level is 4-fold degenerate, rather than the
"expected" 3-fold degeneracy. Naturally the first three states are not unexpectedly degenerate, but the fourth seems to come from
out of nowhere.

Symmetric quantum systems are common in physics, and degeneracy follows them everywhere. This can cause difficulty in
developing theory, as some internal structure can be obscured when different configurations result in the same energy spectrum.
The trick then is to introduce an external perturbation that breaks the symmetry, thereby separating otherwise degenerate states. The
analogous case for the cubical box would be squeezing or stretching one of the dimensions slightly. This also can work in the other
direction — we might see unexpected additional spectral lines that indicate that there is additional structure present that breaks the
symmetry we thought existed. So the analogous case for this is an infinite well that we think should be cubical, but provides a
spectrum with energy levels landing between those that we compute.

This page titled 7.2: 3-Dimensional Models is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom
Weideman.
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