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4.7: Phase Transitions

Define phase transitions and phase transition temperatures
Explain the relation between phase transition temperatures and intermolecular attractive forces
Describe the processes represented by typical heating and cooling curves, and compute heat flows and enthalpy
changes accompanying these processes

We witness and utilize changes of physical state, or phase transitions, in a great number of ways. As one example of global
significance, consider the evaporation, condensation, freezing, and melting of water. These changes of state are essential aspects of
our earth’s water cycle as well as many other natural phenomena and technological processes of central importance to our lives. In
this module, the essential aspects of phase transitions are explored.

Vaporization and Condensation
When a liquid vaporizes in a closed container, gas molecules cannot escape. As these gas phase molecules move randomly about,
they will occasionally collide with the surface of the condensed phase, and in some cases, these collisions will result in the
molecules re-entering the condensed phase. The change from the gas phase to the liquid is called condensation. When the rate of
condensation becomes equal to the rate of vaporization, neither the amount of the liquid nor the amount of the vapor in the
container changes. The vapor in the container is then said to be in equilibrium with the liquid. Keep in mind that this is not a static
situation, as molecules are continually exchanged between the condensed and gaseous phases. Such is an example of a dynamic
equilibrium, the status of a system in which reciprocal processes (for example, vaporization and condensation) occur at equal rates.
The pressure exerted by the vapor in equilibrium with a liquid in a closed container at a given temperature is called the liquid’s
vapor pressure (or equilibrium vapor pressure). The area of the surface of the liquid in contact with a vapor and the size of the
vessel have no effect on the vapor pressure, although they do affect the time required for the equilibrium to be reached. We can
measure the vapor pressure of a liquid by placing a sample in a closed container, like that illustrated in Figure , and using a
manometer to measure the increase in pressure that is due to the vapor in equilibrium with the condensed phase.

Figure 10.4.110.4.1: In a closed container, dynamic equilibrium is reached when (a) the rate of molecules escaping from the liquid
to become the gas (b) increases and eventually (c) equals the rate of gas molecules entering the liquid. When this equilibrium is

reached, the vapor pressure of the gas is constant, although the vaporization and condensation processes continue.

The chemical identities of the molecules in a liquid determine the types (and strengths) of intermolecular attractions possible;
consequently, different substances will exhibit different equilibrium vapor pressures. Relatively strong intermolecular attractive
forces will serve to impede vaporization as well as favoring “recapture” of gas-phase molecules when they collide with the liquid
surface, resulting in a relatively low vapor pressure. Weak intermolecular attractions present less of a barrier to vaporization, and a
reduced likelihood of gas recapture, yielding relatively high vapor pressures. The following example illustrates this dependence of
vapor pressure on intermolecular attractive forces.
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Given the shown structural formulas for these four compounds, explain their relative vapor pressures in terms of types and
extents of IMFs:

Solution
Diethyl ether has a very small dipole and most of its intermolecular attractions are London forces. Although this molecule is
the largest of the four under consideration, its IMFs are the weakest and, as a result, its molecules most readily escape from the
liquid. It also has the highest vapor pressure. Due to its smaller size, ethanol exhibits weaker dispersion forces than diethyl
ether. However, ethanol is capable of hydrogen bonding and, therefore, exhibits stronger overall IMFs, which means that fewer
molecules escape from the liquid at any given temperature, and so ethanol has a lower vapor pressure than diethyl ether. Water
is much smaller than either of the previous substances and exhibits weaker dispersion forces, but its extensive hydrogen
bonding provides stronger intermolecular attractions, fewer molecules escaping the liquid, and a lower vapor pressure than for
either diethyl ether or ethanol. Ethylene glycol has two −OH groups, so, like water, it exhibits extensive hydrogen bonding. It
is much larger than water and thus experiences larger London forces. Its overall IMFs are the largest of these four substances,
which means its vaporization rate will be the slowest and, consequently, its vapor pressure the lowest.

At 20 °C, the vapor pressures of several alcohols are given in this table. Explain these vapor pressures in terms of types and
extents of IMFs for these alcohols:

At 20 °C, the vapor pressures of several alcohols

Compound methanol CH OH ethanol C H OH propanol C H OH butanol C H OH

Vapor Pressure at 20 °C 11.9 kPa 5.95 kPa 2.67 kPa 0.56 kPa

Answer

All these compounds exhibit hydrogen bonding; these strong IMFs are difficult for the molecules to overcome, so the vapor
pressures are relatively low. As the size of molecule increases from methanol to butanol, dispersion forces increase, which
means that the vapor pressures decrease as observed:

As temperature increases, the vapor pressure of a liquid also increases due to the increased average KE of its molecules. Recall that
at any given temperature, the molecules of a substance experience a range of kinetic energies, with a certain fraction of molecules
having a sufficient energy to overcome IMF and escape the liquid (vaporize). At a higher temperature, a greater fraction of
molecules have enough energy to escape from the liquid, as shown in Figure . The escape of more molecules per unit of time
and the greater average speed of the molecules that escape both contribute to the higher vapor pressure.

 Example : Explaining Vapor Pressure in Terms of IMFs4.7.1

 Exercise 4.7.1
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Figure 10.4.210.4.2: Temperature affects the distribution of kinetic energies for the molecules in a liquid. At the higher
temperature, more molecules have the necessary kinetic energy, KE, to escape from the liquid into the gas phase.

Boiling Points
When the vapor pressure increases enough to equal the external atmospheric pressure, the liquid reaches its boiling point. The
boiling point of a liquid is the temperature at which its equilibrium vapor pressure is equal to the pressure exerted on the liquid by
its gaseous surroundings. For liquids in open containers, this pressure is that due to the earth’s atmosphere. The normal boiling
point of a liquid is defined as its boiling point when surrounding pressure is equal to 1 atm (101.3 kPa). Figure  shows the
variation in vapor pressure with temperature for several different substances. Considering the definition of boiling point, these
curves may be seen as depicting the dependence of a liquid’s boiling point on surrounding pressure.

Figure 10.4.310.4.3: The boiling points of liquids are the temperatures at which their equilibrium vapor pressures equal the pressure
of the surrounding atmosphere. Normal boiling points are those corresponding to a pressure of 1 atm (101.3 kPa.)

A typical atmospheric pressure in Leadville, Colorado (elevation 10,200 feet) is 68 kPa. Use the graph in Figure  to
determine the boiling point of water at this elevation.

Solution
The graph of the vapor pressure of water versus temperature in Figure  indicates that the vapor pressure of water is 68 kPa
at about 90 °C. Thus, at about 90 °C, the vapor pressure of water will equal the atmospheric pressure in Leadville, and water
will boil.

4.7.3

 Example : A Boiling Point at Reduced Pressure4.7.2

4.7.3
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The boiling point of ethyl ether was measured to be 10 °C at a base camp on the slopes of Mount Everest. Use Figure  to
determine the approximate atmospheric pressure at the camp.

Answer

Approximately 40 kPa (0.4 atm)

The quantitative relation between a substance’s vapor pressure and its temperature is described by the Clausius-Clapeyron
equation:

where

 is the enthalpy of vaporization for the liquid,
 is the gas constant, and

 is a constant whose value depends on the chemical identity of the substance.

Equation  is often rearranged into logarithmic form to yield the linear equation:

This linear equation may be expressed in a two-point format that is convenient for use in various computations, as demonstrated in
the examples and exercises that follow. If at temperature , the vapor pressure is , and at temperature , the vapor pressure is 

, the corresponding linear equations are:

and

Since the constant, ln A, is the same, these two equations may be rearranged to isolate  and then set them equal to one another:

which can be combined into:

Isooctane (2,2,4-trimethylpentane) has an octane rating of 100. It is used as one of the standards for the octane-rating system
for gasoline. At 34.0 °C, the vapor pressure of isooctane is 10.0 kPa, and at 98.8 °C, its vapor pressure is 100.0 kPa. Use this
information to estimate the enthalpy of vaporization for isooctane.

Solution
The enthalpy of vaporization, , can be determined by using the Clausius-Clapeyron equation (Equation ):

Since we have two vapor pressure-temperature values

 and

 Exercise 4.7.2

4.7.3

P = Ae−Δ /RTHvap (4.7.1)
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 Example : Estimating Enthalpy of Vaporization4.7.3
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we can substitute them into this equation and solve for . Rearranging the Clausius-Clapeyron equation and solving for 
 yields:

Note that the pressure can be in any units, so long as they agree for both P values, but the temperature must be in kelvin for the
Clausius-Clapeyron equation to be valid.

At 20.0 °C, the vapor pressure of ethanol is 5.95 kPa, and at 63.5 °C, its vapor pressure is 53.3 kPa. Use this information to
estimate the enthalpy of vaporization for ethanol.

Answer

47,782 J/mol = 47.8 kJ/mol

For benzene (C H ), the normal boiling point is 80.1 °C and the enthalpy of vaporization is 30.8 kJ/mol. What is the boiling
point of benzene in Denver, where atmospheric pressure = 83.4 kPa?

Solution
If the temperature and vapor pressure are known at one point, along with the enthalpy of vaporization, ΔH  then the
temperature that corresponds to a different vapor pressure (or the vapor pressure that corresponds to a different temperature)
can be determined by using the Clausius-Clapeyron equation (Equation ) :

Since the normal boiling point is the temperature at which the vapor pressure equals atmospheric pressure at sea level, we
know one vapor pressure-temperature value (  = 80.1 °C = 353.3 K,  = 101.3 kPa,  = 30.8 kJ/mol) and want to find
the temperature ( ) that corresponds to vapor pressure P  = 83.4 kPa. We can substitute these values into the Clausius-
Clapeyron equation and then solve for . Rearranging the Clausius-Clapeyron equation and solving for  yields:

= C = 372.0 KT2 98.8o

= 100 kP aP2

ΔHvap
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= 33, 800 J/mol = 33.8 kJ/mol

 Exercise 4.7.3

 Example : Estimating Temperature (or Vapor Pressure)4.7.4
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For acetone , the normal boiling point is 56.5 °C and the enthalpy of vaporization is 31.3 kJ/mol. What is the vapor
pressure of acetone at 25.0 °C?

Answer

30.1 kPa

Enthalpy of Vaporization

Vaporization is an endothermic process. The cooling effect can be evident when you leave a swimming pool or a shower. When the
water on your skin evaporates, it removes heat from your skin and causes you to feel cold. The energy change associated with the
vaporization process is the enthalpy of vaporization, . For example, the vaporization of water at standard temperature is
represented by:

As described in the chapter on thermochemistry, the reverse of an endothermic process is exothermic. And so, the condensation of
a gas releases heat:

One way our body is cooled is by evaporation of the water in sweat (Figure ). In very hot climates, we can lose as much
as 1.5 L of sweat per day. Although sweat is not pure water, we can get an approximate value of the amount of heat removed
by evaporation by assuming that it is. How much heat is required to evaporate 1.5 L of water (1.5 kg) at T = 37 °C (normal
body temperature);  at 37 °C.

Figure : Evaporation of sweat helps cool the body. (credit: “Kullez”/Flickr)
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 Exercise 4.7.4

CO( )CH3 2
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 Example : Using Enthalpy of Vaporization4.7.5

4.7.4

Δ = 43.46 kJ/molHvap
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Solution We start with the known volume of sweat (approximated as just water) and use the given information to convert to the
amount of heat needed:

Thus, 3600 kJ of heat are removed by the evaporation of 1.5 L of water.

How much heat is required to evaporate 100.0 g of liquid ammonia, , at its boiling point if its enthalpy of vaporization is
4.8 kJ/mol?

Answer

28 kJ

Melting and Freezing
When we heat a crystalline solid, we increase the average energy of its atoms, molecules, or ions and the solid gets hotter. At some
point, the added energy becomes large enough to partially overcome the forces holding the molecules or ions of the solid in their
fixed positions, and the solid begins the process of transitioning to the liquid state, or melting. At this point, the temperature of the
solid stops rising, despite the continual input of heat, and it remains constant until all of the solid is melted. Only after all of the
solid has melted will continued heating increase the temperature of the liquid (Figure .

Figure : (a) This beaker of ice has a temperature of −12.0 °C. (b) After 10 minutes the ice has absorbed enough heat from the
air to warm to 0 °C. A small amount has melted. (c) Thirty minutes later, the ice has absorbed more heat, but its temperature is still

0 °C. The ice melts without changing its temperature. (d) Only after all the ice has melted does the heat absorbed cause the
temperature to increase to 22.2 °C. (credit: modification of work by Mark Ott).

If we stop heating during melting and place the mixture of solid and liquid in a perfectly insulated container so no heat can enter or
escape, the solid and liquid phases remain in equilibrium. This is almost the situation with a mixture of ice and water in a very good
thermos bottle; almost no heat gets in or out, and the mixture of solid ice and liquid water remains for hours. In a mixture of solid
and liquid at equilibrium, the reciprocal processes of melting and freezing occur at equal rates, and the quantities of solid and liquid
therefore remain constant. The temperature at which the solid and liquid phases of a given substance are in equilibrium is called the
melting point of the solid or the freezing point of the liquid. Use of one term or the other is normally dictated by the direction of the
phase transition being considered, for example, solid to liquid (melting) or liquid to solid (freezing).

The enthalpy of fusion and the melting point of a crystalline solid depend on the strength of the attractive forces between the units
present in the crystal. Molecules with weak attractive forces form crystals with low melting points. Crystals consisting of particles
with stronger attractive forces melt at higher temperatures.

The amount of heat required to change one mole of a substance from the solid state to the liquid state is the enthalpy of fusion,
ΔHfus of the substance. The enthalpy of fusion of ice is 6.0 kJ/mol at 0 °C. Fusion (melting) is an endothermic process:

The reciprocal process, freezing, is an exothermic process whose enthalpy change is −6.0 kJ/mol at 0 °C:

1.5 × × × = 3.6 × kJL
1000 g

1 L

1 mol

18 g

43.46 kJ

1 mol
103

 Exercise : Boiling Ammonia4.7.5

NH3

4.7.5

4.7.5

→ Δ = 6.01 kJ/molH2O(s) H2O(l) Hfus (4.7.5)
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Sublimation and Deposition
Some solids can transition directly into the gaseous state, bypassing the liquid state, via a process known as sublimation. At room
temperature and standard pressure, a piece of dry ice (solid CO ) sublimes, appearing to gradually disappear without ever forming
any liquid. Snow and ice sublime at temperatures below the melting point of water, a slow process that may be accelerated by
winds and the reduced atmospheric pressures at high altitudes. When solid iodine is warmed, the solid sublimes and a vivid purple
vapor forms (Figure ). The reverse of sublimation is called deposition, a process in which gaseous substances condense
directly into the solid state, bypassing the liquid state. The formation of frost is an example of deposition.

Figure : Sublimation of solid iodine in the bottom of the tube produces a purple gas that subsequently deposits as solid iodine
on the colder part of the tube above. (credit: modification of work by Mark Ott)

Like vaporization, the process of sublimation requires an input of energy to overcome intermolecular attractions. The enthalpy of
sublimation, ΔHsub, is the energy required to convert one mole of a substance from the solid to the gaseous state. For example, the
sublimation of carbon dioxide is represented by:

Likewise, the enthalpy change for the reverse process of deposition is equal in magnitude but opposite in sign to that for
sublimation:

Consider the extent to which intermolecular attractions must be overcome to achieve a given phase transition. Converting a solid
into a liquid requires that these attractions be only partially overcome; transition to the gaseous state requires that they be
completely overcome. As a result, the enthalpy of fusion for a substance is less than its enthalpy of vaporization. This same logic
can be used to derive an approximate relation between the enthalpies of all phase changes for a given substance. Though not an
entirely accurate description, sublimation may be conveniently modeled as a sequential two-step process of melting followed by
vaporization in order to apply Hess’s Law.

Viewed in this manner, the enthalpy of sublimation for a substance may be estimated as the sum of its enthalpies of fusion and
vaporization, as illustrated in Figure . For example:

→ Δ = −Δ = −6.01 kJ/molH2O(l) H2O(s) Hfrz Hfus (4.7.6)

2

4.7.6

4.7.6

(s)⟶ (g) Δ = 26.1 kJ/molCO2 CO2 Hsub

(g)⟶ (s) Δ = −Δ = −26.1 kJ/molCO2 CO2 Hdep Hsub

solid⟶ liquid ΔHfus

liquid⟶ gas ΔHvap
– ––––––––––––––––––––––

solid⟶ gas Δ = Δ +ΔHsub Hfus Hvap
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Figure : For a given substance, the sum of its enthalpy of fusion and enthalpy of vaporization is approximately equal to its
enthalpy of sublimation.

Heating and Cooling Curves

In the chapter on thermochemistry, the relation between the amount of heat absorbed or related by a substance, q, and its
accompanying temperature change, ΔT, was introduced:

where m is the mass of the substance and c is its specific heat. The relation applies to matter being heated or cooled, but not
undergoing a change in state. When a substance being heated or cooled reaches a temperature corresponding to one of its phase
transitions, further gain or loss of heat is a result of diminishing or enhancing intermolecular attractions, instead of increasing or
decreasing molecular kinetic energies. While a substance is undergoing a change in state, its temperature remains constant. Figure 

 shows a typical heating curve.

Figure : A typical heating curve for a substance depicts changes in temperature that result as the substance absorbs increasing
amounts of heat. Plateaus in the curve (regions of constant temperature) are exhibited when the substance undergoes phase

4.7.7

q = mcΔT

4.7.8

4.7.8
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transitions.

Consider the example of heating a pot of water to boiling. A stove burner will supply heat at a roughly constant rate; initially, this
heat serves to increase the water’s temperature. When the water reaches its boiling point, the temperature remains constant despite
the continued input of heat from the stove burner. This same temperature is maintained by the water as long as it is boiling. If the
burner setting is increased to provide heat at a greater rate, the water temperature does not rise, but instead the boiling becomes
more vigorous (rapid). This behavior is observed for other phase transitions as well: For example, temperature remains constant
while the change of state is in progress.

How much heat is required to convert 135 g of ice at −15 °C into water vapor at 120 °C?

Solution
The transition described involves the following steps:

1. Heat ice from −15 °C to 0 °C
2. Melt ice
3. Heat water from 0 °C to 100 °C
4. Boil water
5. Heat steam from 100 °C to 120 °C

The heat needed to change the temperature of a given substance (with no change in phase) is: q = m × c × ΔT (see previous
chapter on thermochemistry). The heat needed to induce a given change in phase is given by q = n × ΔH.

Using these equations with the appropriate values for specific heat of ice, water, and steam, and enthalpies of fusion and
vaporization, we have:

Converting the quantities in J to kJ permits them to be summed, yielding the total heat required:

What is the total amount of heat released when 94.0 g water at 80.0 °C cools to form ice at −30.0 °C?

Answer

40.5 kJ

Summary
Phase transitions are processes that convert matter from one physical state into another. There are six phase transitions between the
three phases of matter. Melting, vaporization, and sublimation are all endothermic processes, requiring an input of heat to overcome
intermolecular attractions. The reciprocal transitions of freezing, condensation, and deposition are all exothermic processes,
involving heat as intermolecular attractive forces are established or strengthened. The temperatures at which phase transitions occur
are determined by the relative strengths of intermolecular attractions and are, therefore, dependent on the chemical identity of the
substance.

 Example : Total Heat Needed to Change Temperature and Phase for a Substance4.7.6

qtotal = (m ⋅ c ⋅ ΔT +n ⋅ Δ +(m ⋅ c ⋅ ΔT +n ⋅ Δ +(m ⋅ c ⋅ ΔT)ice Hfus )water Hvap )steam

= (135 g ⋅ 2.09 J/g ⋅ °C ⋅ 15°C) +(135 ⋅ ⋅ 6.01 kJ/mol)
1 mol

18.02 g

+(135 g ⋅ 4.18 J/g ⋅ °C ⋅ 100°C) +(135 g ⋅ ⋅ 40.67 kJ/mol)
1 mol

18.02 g

+(135 g ⋅ 1.84 J/g ⋅ °C ⋅ 20°C)

= 4230 J +45.0 kJ +56, 500 J +305 kJ +4970 J

= 4.23 kJ +45.0 kJ +56.5 kJ +305 kJ +4.97 kJ = 416 kJ

 Exercise 4.7.6
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Key Equations

Glossary

boiling point
temperature at which the vapor pressure of a liquid equals the pressure of the gas above it

Clausius-Clapeyron equation
mathematical relationship between the temperature, vapor pressure, and enthalpy of vaporization for a substance

condensation
change from a gaseous to a liquid state

deposition
change from a gaseous state directly to a solid state

dynamic equilibrium
state of a system in which reciprocal processes are occurring at equal rates

freezing
change from a liquid state to a solid state

freezing point
temperature at which the solid and liquid phases of a substance are in equilibrium; see also melting point

melting
change from a solid state to a liquid state

melting point
temperature at which the solid and liquid phases of a substance are in equilibrium; see also freezing point

normal boiling point
temperature at which a liquid’s vapor pressure equals 1 atm (760 torr)

sublimation
change from solid state directly to gaseous state

vapor pressure
(also, equilibrium vapor pressure) pressure exerted by a vapor in equilibrium with a solid or a liquid at a given temperature

vaporization
change from liquid state to gaseous state
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