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Preface
This Libretexts book introduces the reader to the intellectual beauty, and philosophical implications, of the fact that nature obeys
variational principles that underlie the Lagrangian and Hamiltonian analytical formulations of classical mechanics. These
variational methods, developed for classical mechanics during the 18th − 19th century, have become the preeminent formalisms for
classical dynamics, as well as for many other branches of science and engineering. This book leads the reader from the intuitive
Newtonian vectorial formulation, to introduction of the more abstract variational principles that underlie Hamilton’s Principle, and
the related Lagrangian and Hamiltonian analytical formulations. This culminates in discussion of the contributions of variational
principles to classical mechanics, relativistic mechanics, and quantum physics. This book attempts to unify the undergraduate
physics curriculum by bridging the chasm that divides the Newtonian vector-differential, from the integral variational formulations
of classical mechanics, and the corresponding philosophical approaches adopted in classical and quantum mechanics.

Development of this textbook was influenced by two graduate textbooks: The Variational Principles of Mechanics by Cornelius
Lanczos (1949) [La49], and Classical Mechanics (1950) by Herbert Goldstein[Go50]. The present textbook presents the techniques
and philosophical implications of the variational approaches to classical mechanics, with a breadth and depth close to that provided
by Goldstein and Lanczos, but in a format that better matches the needs of undergraduate students. This book is based on lecture
notes written in support of the physics junior/senior undergraduate course P235W entitled “Variational Principles in Classical
Mechanics” that the author taught at the University of Rochester between 1993 − 2015. This course typically comprised ≈ 70%
junior/senior undergraduates, ≈ 25% sophomores, ≤ 5% graduate students, and the occasional well-prepared freshman. The target
audience was physics and astrophysics majors, but the course attracted a significant fraction of majors from other disciplines such
as mathematics, chemistry, optics, engineering, music, and the humanities. As a consequence, the book includes introductory level
physics, plus mathematical review material, to accommodate the wide range of prior preparation of the students. To conform with
modern literature in this field, this book follows the widely-adopted nomenclature used in Goldstein [Go50], with recent additions
by Johns [Jo05] and the present textbook.

The scientific content of the Libretexts book is identical to the Third Edition of Variational Principles in Classical Mechanics,
version 3.1, by Douglas Cline, published in 2021 by Amazon. This Libretexts version of the book introduces the convenience of
modern interactive on-line computer access. All versions of this book review the role of variational principles in bridging the gap
between classical mechanics and quantum mechanics. They illustrate the pivotal role that variational principles have played in the
development of classical, relativistic, quantal, and statistical mechanics. Skill at solving problems is essential to fully exploit
variational principles in classical mechanics. Compilations of worked problems, with corresponding solutions, [La10, Li94, Th04]
can be used to develop this skill.

The author thanks Meghan Sarkis who prepared most of the illustrations, and Moriana Garcia, who organized the open-access
publication of the printed book. This Libretexts version of the book was produced in collaboration with Delmar Larsen, Hope
Koonin and the LibreTexts group. The author appreciates the permission, granted by Professor Struckmeier, to quote his published
articles [Str05,Str08] on the extended Hamilton-Lagrangian formalism. The author acknowledges feedback and suggestions made
by many students who have taken the P235W course, as well as helpful suggestions by colleagues; Adam Hayes, David Munson,
Alice Quillen, Richard Sarkis, James Schneeloch, Dan Watson, and Frank Wolfs.

Douglas Cline, 
University of Rochester, 2021
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Prologue
Two dramatically different philosophical approaches to science were developed in the field of classical mechanics during the 17  -
18  centuries. This time period coincided with the Age of Enlightenment in Europe during which remarkable intellectual and
philosophical developments occurred. This was a time when both philosophical and causal arguments were equally acceptable in
science, in contrast with current convention where there appears to be tacit agreement to discourage use of philosophical arguments
in science.

Figure : Vectorial and variational representation of Snell’s Law for refraction of light.

Snell's Law
The genesis of two contrasting philosophical approaches to science relates back to early studies of the reflection and refraction of
light. The velocity of light in a medium of refractive index  equals . Thus a light beam incident at an angle  to the normal
of a plane interface between medium 1 and medium 2 is refracted at an angle  in medium 2 where the angles are related by
Snell’s Law.

Ibn Sahl of Bagdad (984) first described the refraction of light, while Snell (1621) derived his law mathematically. Both of these
scientists used the "vectorial approach" where the light velocity  is considered to be a vector pointing in the direction of
propagation.

Fermat's Principle
Fermat’s principle of least time (1657), which is based on the work of Hero of Alexandria (~ 60) and Ibn al-Haytham (1021), states
that "light travels between two given points along the path of shortest time," where the transit time  of a light beam between two
locations  and  in a medium with position-dependent refractive index  given by

Fermat’s Principle leads to the derivation of Snell’s Law.

Philosophically the physics underlying the contrasting vectorial and Fermat’s Principle derivations of Snell’s Law are dramatically
different. The vectorial approach is based on differential relations between the velocity vectors in the two media, whereas Fermat’s
variational approach is based on the fact that the light preferentially selects a path for which the integral of the transit time between
the initial location  and the final location  is minimized. That is, the first approach is based on “vectorial mechanics” whereas
Fermat’s approach is based on variational principles in that the path between the initial and final locations is varied to find the path
that minimizes the transit time. Fermat’s enunciation of variational principles in physics played a key role in the historical
development, and subsequent exploitation, of the principle of least action in analytical formulations of classical mechanics as
discussed below.
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Newtonian Mechanics
Momentum and force are vectors that underlie the Newtonian formulation of classical mechanics. Newton’s monumental treatise,
entitled “Philosophiae Naturalis Principia Mathematica”, published in 1687, established his three universal laws of motion, the
universal theory of gravitation, the derivation of Kepler’s three laws of planetary motion, and the development of calculus.
Newton’s three universal laws of motion provide the most intuitive approach to classical mechanics in that they are based on vector
quantities like momentum, and the rate of change of momentum, which are related to force. Newton’s equation of motion

is a vector differential relation between the instantaneous forces and rate of change of momentum, or equivalent instantaneous
acceleration, all of which are vector quantities. Momentum and force are easy to visualize, and both cause and effect are embedded
in Newtonian mechanics. Thus, if all of the forces, including the constraint forces, acting on the system are known, then the motion
is solvable for two body systems. The mathematics for handling Newton’s “vectorial mechanics” approach to classical mechanics is
well established.

Analytical Mechanics
Variational principles apply to many aspects of our daily life. Typical examples include; selecting the optimum compromise in
quality and cost when shopping, selecting the fastest route to travel from home to work, or selecting the optimum compromise to
satisfy the disparate desires of the individuals comprising a family. Variational principles underlie the analytical formulation of
mechanics. It is astonishing that the laws of nature are consistent with variational principles involving the principle of least action.
Minimizing the action integral led to the development of the mathematical field of variational calculus, plus the analytical
variational approaches to classical mechanics, by Euler, Lagrange, Hamilton, and Jacobi.

Leibniz, who was a contemporary of Newton, introduced methods based on a quantity called “vis viva”, which is Latin for “living
force” and equals twice the kinetic energy. Leibniz believed in the philosophy that God created a perfect world where nature would
be thrifty in all its manifestations. In 1707, Leibniz proposed that the optimum path is based on minimizing the time integral of the
vis viva, which is equivalent to the action integral of Lagrangian/Hamiltonian mechanics. In 1744 Euler derived the Leibniz result
using variational concepts while Maupertuis restated the Leibniz result based on teleological arguments. The development of
Lagrangian mechanics culminated in the 1788 publication of Lagrange’s monumental treatise entitled “Mécanique Analytique”.
Lagrange used d’Alembert’s Principle to derive Lagrangian mechanics providing a powerful analytical approach to determine the
magnitude and direction of the optimum trajectories, plus the associated forces.

The culmination of the development of analytical mechanics occurred in 1834 when Hamilton proposed his Principle of Least
Action, as well as developing Hamiltonian mechanics which is the premier variational approach in science. Hamilton’s concept of
least action is defined to be the time integral of the Lagrangian. Hamilton’s Action Principle (1834) minimizes the action integral 
defined by

In the simplest form, the Lagrangian  equals the difference between the kinetic energy  and the potential energy .
Hamilton’s Least Action Principle underlies Lagrangian mechanics. This Lagrangian is a function of  generalized coordinates 
plus their corresponding velocities . Hamilton also developed the premier variational approach, called Hamiltonian mechanics,
that is based on the Hamiltonian  which is a function of the  fundamental position  plus the conjugate momentum 
variables. In 1843 Jacobi provided the mathematical framework required to fully exploit the power of Hamiltonian mechanics.
Note that the Lagrangian, Hamiltonian, and the action integral, all are scalar quantities which simplifies derivation of the equations
of motion compared with the vector calculus used by Newtonian mechanics.
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Figure : Philosophical road map of the hierarchy of stages involved in analytical mechanics. Hamilton’s Action Principle is the
foundation of analytical mechanics. Stage 1 uses Hamilton’s Principle to derive the Lagrangian and Hamiltonian. Stage 2 uses
either the Lagrangian or Hamiltonian to derive the equations of motion for the system. Stage 3 uses these equations of motion to
solve for the actual motion using the assumed initial conditions. The Lagrangian approach can be derived directly based on
d’Alembert’s Principle. Newtonian mechanics can be derived directly based on Newton’s Laws of Motion. The advantages and
power of Hamilton’s Action Principle are unavailable if the Laws of Motion are derived using either d’Alembert’s Principle or
Newton’s Laws of Motion.

Figure  presents a philosophical roadmap illustrating the hierarchy of philosophical approaches based on Hamilton’s Action
Principle, that are available for deriving the equations of motion of a system. The primary  uses Hamilton’s Action
functional,  to derive the Lagrangian, and Hamiltonian functionals which provide the most fundamental and
sophisticated level of understanding.  involves specifying all the active degrees of freedom, as well as the interactions
involved.  uses the Lagrangian or Hamiltonian functionals, derived at , in order to derive the equations of motion
for the system of interest.  then uses these derived equations of motion to solve for the motion of the system subject to a
given set of initial boundary conditions. Note that Lagrange first derived Lagrangian mechanics based on d’ Alembert’s Principle,
while Newton’s Laws of Motion specify the equations of motion used in Newtonian mechanics.

The analytical approach to classical mechanics appeared contradictory to Newton’s intuitive vectorial treatment of force and
momentum. There is a dramatic difference in philosophy between the vector-differential equations of motion derived by Newtonian
mechanics, which relate the instantaneous force to the corresponding instantaneous acceleration, and analytical mechanics, where
minimizing the scalar action integral involves integrals over space and time between specified initial and final states. Analytical
mechanics uses variational principles to determine the optimum trajectory, from a continuum of tentative possibilities, by requiring
that the optimum trajectory minimizes the action integral between specified initial and final conditions.

Initially there was considerable prejudice and philosophical opposition to use of the variational principles approach which is based
on the assumption that nature follows the principles of economy. The variational approach is not intuitive, and thus it was
considered to be speculative and “metaphysical”, but it was tolerated as an efficient tool for exploiting classical mechanics. This
opposition to the variational principles underlying analytical mechanics, delayed full appreciation of the variational approach until
the start of the 20  century. As a consequence, the intuitive Newtonian formulation reigned supreme in classical mechanics for
over two centuries, even though the remarkable problem-solving capabilities of analytical mechanics were recognized and
exploited following the development of analytical mechanics by Lagrange.

The full significance and superiority of the analytical variational formulations of classical mechanics became well recognised and
accepted following the development of the Special Theory of Relativity in 1905. The Theory of Relativity requires that the laws of
nature be invariant to the reference frame. This is not satisfied by the Newtonian formulation of mechanics which assumes one
absolute frame of reference and a separation of space and time. In contrast, the Lagrangian and Hamiltonian formulations of the
principle of least action remain valid in the Theory of Relativity, if the Lagrangian is written in a relativistically-invariant form in
space-time. The complete invariance of the variational approach to coordinate frames is precisely the formalism necessary for
handling relativistic mechanics.

Hamiltonian mechanics, which is expressed in terms of the conjugate variables , relates classical mechanics directly to the
underlying physics of quantum mechanics and quantum field theory. As a consequence, the philosophical opposition to exploiting
variational principles no longer exists, and Hamiltonian mechanics has become the preeminent formulation of modern physics. The
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reader is free to draw their own conclusions regarding the philosophical question “is the principle of economy a fundamental law of
classical mechanics, or is it a fortuitous consequence of the fundamental laws of nature?”

From the late seventeenth century, until the dawn of modern physics at the start of the twentieth century, classical mechanics
remained a primary driving force in the development of physics. Classical mechanics embraces an unusually broad range of topics
spanning motion of macroscopic astronomical bodies to microscopic particles in nuclear and particle physics, at velocities ranging
from zero to near the velocity of light, from one-body to statistical many-body systems, as well as having extensions to quantum
mechanics. Introduction of the Special Theory of Relativity in 1905, and the General Theory of Relativity in 1916, necessitated
modifications to classical mechanics for relativistic velocities, and can be considered to be an extended theory of classical
mechanics. Since the 1920's, quantal physics has superseded classical mechanics in the microscopic domain. Although quantum
physics has played the leading role in the development of physics during much of the past century, classical mechanics still is a
vibrant field of physics that recently has led to exciting developments associated with non-linear systems and chaos theory. This
has spawned new branches of physics and mathematics as well as changing our notion of causality.

Goals
The primary goal of this book is to introduce the reader to the powerful variational-principles approaches that play such a pivotal
role in classical mechanics and many other branches of modern science and engineering. This book emphasizes the intellectual
beauty of these remarkable developments, as well as stressing the philosophical implications that have had a tremendous impact on
modern science. A secondary goal is to apply variational principles to solve advanced applications in classical mechanics in order
to introduce many sophisticated and powerful mathematical techniques that underlie much of modern physics.

This book starts with a review of Newtonian mechanics plus the solutions of the corresponding equations of motion. This is
followed by an introduction to Lagrangian mechanics, based on d’Alembert’s Principle, in order to develop familiarity in applying
variational principles to classical mechanics. This leads to introduction of the more fundamental Hamilton’s Action Principle, plus
Hamiltonian mechanics, to illustrate the power provided by exploiting the full hierarchy of stages available for applying variational
principles to classical mechanics. Finally the book illustrates how variational principles in classical mechanics were exploited
during the development of both relativisitic mechanics and quantum physics. The connections and applications of classical
mechanics to modern physics, are emphasized throughout the book in an effort to span the chasm that divides the Newtonian
vector-differential formulation, and the integral variational formulation, of classical mechanics. This chasm is especially applicable
to quantum mechanics which is based completely on variational principles. Note that variational principles, developed in the field
of classical mechanics, now are used in a diverse and wide range of fields outside of physics, including economics, meteorology,
engineering, and computing.

This study of classical mechanics involves climbing a vast mountain of knowledge, and the pathway to the top leads to elegant and
beautiful theories that underlie much of modern physics. This book exploits variational principles applied to four major topics in
classical mechanics to illustrate the power and importance of variational principles in physics. Being so close to the summit
provides the opportunity to take a few extra steps beyond the normal introductory classical mechanics syllabus to glimpse the
exciting physics found at the summit. This new physics includes topics such as quantum, relativistic, and statistical mechanics.
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1.1: Introduction
This chapter briefly reviews the historical evolution of classical mechanics since considerable insight can be gained from study of
the history of science. There are two dramatically different approaches used in classical mechanics. The first is the vectorial
approach of Newton which is based on vector quantities like momentum, force, and acceleration. The second is the analytical
approach of Lagrange, Euler, Hamilton, and Jacobi, that is based on the concept of least action and variational calculus. The more
intuitive Newtonian picture reigned supreme in classical mechanics until the start of the twentieth century. Variational principles,
which were developed during the nineteenth century, never aroused much enthusiasm in scientific circles due to philosophical
objections to the underlying concepts; this approach was merely tolerated as an efficient tool for exploiting classical mechanics. A
dramatic advance in the philosophy of scientific thinking occurred at the start of the 20  century leading to widespread acceptance
of the superiority of variational principles.
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1.2: Greek Antiquity
The great philosophers in ancient Greece played a key role by using the astronomical work of the Babylonians to develop scientific
theories of mechanics. Thales of Miletus (624 - 547 B.C.), the first of the seven great greek philosophers, developed geometry and
is hailed as the first true mathematician. Pythagorus (570 - 495 BC) developed mathematics and postulated that the earth is
spherical.

Democritus (460 - 370 B.C.) has been called the father of modern science, while Socrates (469 - 399BC) is renowned for his
contributions to ethics. Plato (427-347 B.C.) who was a mathematician and student of Socrates, wrote important philosophical
dialogues. He founded the Academy in Athens which was the first institution of higher learning in the Western world that helped
lay the foundations of Western philosophy and science.

Aristotle (384-322 B.C.) is an important founder of Western philosophy encompassing ethics, logic, science, and politics. His
views on the physical sciences profoundly influenced medieval scholarship that extended well into the Renaissance. He presented
the first implied formulation of the principle of virtual work in statics and his statement that "what is lost in velocity is gained in
force" is a veiled reference to kinetic and potential energy. He adopted an Earth centered model of the universe.

Aristarchus (310 - 240 B.C.) argued that the Earth orbited the Sun and used measurements to imply the relative distances of the
Moon and the Sun. The greek philosophers were relatively advanced in logic and mathematics and developed concepts that enabled
them to calculate areas and perimeters. Unfortunately their philosophical approach neglected collecting quantitative and systematic
data that is an essential ingredient to the advancement of science.

Archimedes (287-212 B.C.) represented the culmination of science in ancient Greece. As an engineer he designed machines of war
while as a scientist he made significant contributions to hydrostatics and the principle of the lever. As a mathematician he applied
infinitesimal in a way that is reminiscent of modern integral calculus which he used to derive a value for . Unfortunately much of
the work of the brilliant Archimedes subsequently fell into oblivion.

Hero of Alexandria (10 - 70 A.D.) described the principle of reflection that light takes the shortest path. This is an early
illustration of variational principle of least time. Ptolemy (83 - 161 A.D.) wrote several scientific treatises that greatly influenced
subsequent philosophers. Unfortunately he adopted the incorrect geocentric solar system in contrast to the heliocentric model of
Aristarchus and others.
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1.3: Middle Ages
The decline and fall of the Roman Empire in ∼410 A.D. marks the end of Classical Antiquity and the beginning of the Dark Ages
in Western Europe (Christendom) while the Muslim scholars in Eastern Europe continued to make progress in astronomy and
mathematics. For example, in Egypt, Alhazen (965 - 1040 A.D.) expanded the principle of least time to reflection and refraction.
The Dark Ages involved a long scientific decline in Western Europe that languished for about 900 years. Science was dominated by
religious dogma, all western scholars were monks, and the important scientific achievements of Greek antiquity were forgotten.
The works of Aristotle were reintroduced to Western Europe by Arabs in the early 13  century leading to the concepts of forces in
static systems which were developed during the fourteenth century. This included concepts of the work done by a force, and the
virtual work involved in virtual displacements. Leonardo da Vinci (1452-1519) was a leader in mechanics at that time. He made
seminal contributions to science, in addition to his well known contributions to architecture, engineering, sculpture, and art.

Nicolaus Copernicus (1473-1543) rejected the geocentric theory of Ptolomy and formulated a scientifically based heliocentric
cosmology that displaced the Earth from the center of the universe. The Ptolomic view was that heaven represented the perfect
unchanging divine while the earth represented change plus chaos and the celestial bodies moved relative to the fixed heavens. The
book, "De revolutionibus orbium coelestium "(On the Revolutions of the Celestial Spheres), published by Copernicus in 1543, is
regarded as the starting point of modern astronomy and the defining epiphany that began the Scientific Revolution. The book "De
Magnete" written in 1600 by the English physician William Gilbert (1540-1603) presented the results of well-planned studies of
magnetism and strongly influenced the intellectual-scientific evolution at that time.

Johannes Kepler (1571-1630), a German mathematician, astronomer and astrologer, was a key figure in the 17  century
Scientific Revolution. He is best known for recognizing the connection between the motions in the sky and physics. His laws of
planetary motion were developed by later astronomers based on his written work "Astronomia nova", "Harmonices Mundi", and
"Epitome of Copernican Astrononomy". Kepler was an assistant to Tycho Brahe (1546-1601) who for many years recorded
accurate astronomical data that played a key role in the development of Kepler’s theory of planetary motion. Kepler’s work
provided the foundation for Isaac Newton’s theory of universal gravitation. Unfortunately Kepler did not recognize the true nature
of the gravitational force.

Galileo Galilei (1564-1642) built on the Aristotle principle by recognizing the law of inertia, the persistence of motion if no forces
act, and the proportionality between force and acceleration. This amounts to recognition of work as the product of force times
displacement in the direction of the force. He applied virtual work to the equilibrium of a body on an inclined plane. He also
showed that the same principle applies to hydrostatic pressure that had been established by Archimedes, but he did not apply his
concepts in classical mechanics to the considerable knowledge base on planetary motion. Galileo is famous for the apocryphal
story that he dropped two cannon balls of different masses from the Tower of Pisa to demonstrate that their speed of descent was
independent of their mass.
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1.4: Age of Enlightenment
The Age of Enlightenment is a term used to describe a phase in Western philosophy and cultural life in which reason was
advocated as the primary source and legitimacy for authority. It developed simultaneously in Germany, France, Britain, the
Netherlands, and Italy around the 1650’s and lasted until the French Revolution in 1789. The intellectual and philosophical
developments led to moral, social, and political reforms. The principles of individual rights, reason, common sense, and deism were
a revolutionary departure from the existing theocracy, autocracy, oligarchy, aristocracy, and the divine right of kings. It led to
political revolutions in France and the United States. It marks a dramatic departure from the Early Modern period which was noted
for religious authority, absolute state power, guild-based economic systems, and censorship of ideas. It opened a new era of rational
discourse, liberalism, freedom of expression, and scientific method. This new environment led to tremendous advances in both
science and mathematics in addition to music (Johann Sebastian Bach, Mozart), literature (Goethe), philosophy (Spinoza, Kant)
and art (Rubens). Scientific development during the 17  century included the pivotal advances made by Newton and Leibniz at the
beginning of the revolutionary Age of Enlightenment, culminating in the development of variational calculus and analytical
mechanics by Euler and Lagrange. The scientific advances of this age include publication of two monumental books "Philosophiae
Naturalis Principia Mathematica" by Newton in 1687 and Mécanique analytique by Lagrange in 1788. These are the definitive two
books upon which classical mechanics is built.

René Descartes (1596-1650) attempted to formulate the laws of motion in 1644. He talked about conservation of motion
(momentum) in a straight line but did not recognize the vector character of momentum. Pierre de Fermat (1601-1665) and René
Descartes were two leading mathematicians in the first half of the 17  century. Independently they discovered the principles of
analytic geometry and developed some initial concepts of calculus. Fermat and Blaise Pascal (1623-1662) were the founders of the
theory of probability.

Isaac Newton (1642-1727) made pioneering contributions to physics and mathematics as well as being a theologian. At 18 he was
admitted to Trinity College Cambridge where he read the writings of modern philosophers like Descartes, and astronomers like
Copernicus, Galileo, and Kepler. By 1665 he had discovered the generalized binomial theorem, and began developing
infinitessimal calculus. Due to a plague, the university closed for two years in 1665 during which Newton worked at home
developing the theory of calculus that built upon the earlier work of Barrow and Descartes. He was elected Lucasian Professor of
Mathematics in 1669 at the age of 26. From 1670 Newton focussed on optics leading to his Hypothesis of Light published in 1675
and his book Opticks in 1704. Newton described light as being made up of a flow of extremely subtle corpuscles that also had
associated wavelike properties to explain diffraction and optical interference that he studied. Newton returned to mechanics in 1677
by studying planetary motion and gravitation that applied the calculus he had developed. In 1687 he published his monumental
treatise entitled Philosophiae Naturalis Principia Mathematica which established his three universal laws of motion, the universal
theory of gravitation, derivation of Kepler’s three laws of planetary motion, and was his first publication of the development of
calculus which he called “the science of fluxions”. Newton’s laws of motion are based on the concepts of force and momentum,
that is, force equals the rate of change of momentum. Newton’s postulate of an invisible force able to act over vast distances led
him to be criticized for introducing “occult agencies” into science. In a remarkable achievement, Newton completely solved the
laws of mechanics. His theory of classical mechanics and of gravitation reigned supreme until the development of the Theory of
Relativity in 1905. The followers of Newton envisioned the Newtonian laws to be absolute and universal. This dogmatic reverence
of Newtonian mechanics prevented physicists from an unprejudiced appreciation of the analytic variational approach to mechanics
developed during the 17  through 19  centuries. Newton was the first scientist to be knighted and was appointed president of the
Royal Society

Gottfried Leibniz (1646-1716) was a brilliant German philosopher, a contemporary of Newton, who worked on both calculus and
mechanics. Leibniz started development of calculus in 1675, ten years after Newton, but Leibniz published his work in 1684, which
was three years before Newton’s Principia. Leibniz made significant contributions to integral calculus and developed the notation
currently used in calculus. He introduced the name calculus based on the Latin word for the small stone used for counting. Newton
and Leibniz were involved in a protracted argument over who originated calculus. It appears that Leibniz saw drafts of Newton’s
work on calculus during a visit to England. Throughout their argument Newton was the ghost writer of most of the articles in
support of himself and he had them published under nonde-plume of his friends. Leibniz made the tactical error of appealing to the
Royal Society to intercede on his behalf. Newton, as president of the Royal Society, appointed his friends to an “impartial”
committee to investigate this issue, then he wrote the committee’s report that accused Leibniz of plagiarism of Newton’s work on
calculus, after which he had it published by the Royal Society. Still unsatisfied he then wrote an anonymous review of the report in
the Royal Society’s own periodical. This bitter dispute lasted until the death of Leibniz. When Leibniz died his work was largely
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discredited. The fact that he falsely claimed to be a nobleman and added the prefix “von” to his name, coupled with Newton’s
vitriolic attacks, did not help his credibility. Newton is reported to have declared that he took great satisfaction in “breaking
Leibniz’s heart.” Studies during the 20  century have largely revived the reputation of Leibniz and he is recognized to have made
major contributions to the development of calculus.

Figure : Chronological roadmap of the parallel development of the Newtonian and Variational-principles approaches to
classical mechanics.
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1.5: Variational methods in physics
Pierre de Fermat (1601-1665) revived the principle of least time, which states that light travels between two given points along
the path of shortest time and was used to derive Snell’s law in 1657. This enunciation of variational principles in physics played a
key role in the historical development of the variational principle of least action that underlies the analytical formulations of
classical mechanics.

Gottfried Leibniz (1646-1716) made significant contributions to the development of variational principles in classical mechanics.
In contrast to Newton’s laws of motion, which are based on the concept of momentum, Leibniz devised a new theory of dynamics
based on kinetic and potential energy that anticipates the analytical variational approach of Lagrange and Hamilton. Leibniz argued
for a quantity called the “vis viva”, which is Latin for living force, that equals twice the kinetic energy. Leibniz argued that the
change in kinetic energy is equal to the work done. In 1687 Leibniz proposed that the optimum path is based on minimizing the
time integral of the vis viva, which is equivalent to the action integral. Leibniz used both philosophical and causal arguments in his
work which were acceptable during the Age of Enlightenment. Unfortunately for Leibniz, his analytical approach based on
energies, which are scalars, appeared contradictory to Newton’s intuitive vectorial treatment of force and momentum. There was
considerable prejudice and philosophical opposition to the variational approach which assumes that nature is thrifty in all of its
actions. The variational approach was considered to be speculative and “metaphysical” in contrast to the causal arguments
supporting Newtonian mechanics. This opposition delayed full appreciation of the variational approach until the start of the 20
century.

Johann Bernoulli (1667-1748) was a Swiss mathematician who was a student of Leibniz’s calculus, and sided with Leibniz in the
Newton-Leibniz dispute over the credit for developing calculus. Also Bernoulli sided with the Descartes’ vortex theory of
gravitation which delayed acceptance of Newton’s theory of gravitation in Europe. Bernoulli pioneered development of the
calculus of variations by solving the problems of the catenary, the brachistochrone, and Fermat’s principle. Johann Bernoulli’s son
Daniel played a significant role in the development of the well-known Bernoulli Principle in hydrodynamics.

Pierre Louis Maupertuis (1698-1759) was a student of Johann Bernoulli and conceived the universal hypothesis that in nature
there is a certain quantity called action which is minimized. Although this bold assumption correctly anticipates the development of
the variational approach to classical mechanics, he obtained his hypothesis by an entirely incorrect method. He was a dilettante
whose mathematical prowess was behind the high standards of that time, and he could not establish satisfactorily the quantity to be
minimized. His teleological  argument was influenced by Fermat’s principle and the corpuscle theory of light that implied a close
connection between optics and mechanics.

Leonhard Euler (1707-1783) was the preeminent Swiss mathematician of the 18  century and was a student of Johann Bernoulli.
Euler developed, with full mathematical rigor, the calculus of variations following in the footsteps of Johann Bernoulli. Euler used
variational calculus to solve minimum/maximum isoperimetric problems that had attracted and challenged the early developers of
calculus, Newton, Leibniz, and Bernoulli. Euler also was the first to solve the rigid-body rotation problem using the three
components of the angular velocity as kinematical variables. Euler became blind in both eyes by 1766 but that did not hinder his
prolific output in mathematics due to his remarkable memory and mental capabilities. Euler’s contributions to mathematics are
remarkable in quality and quantity; for example during 1775 he published one mathematical paper per week in spite of being blind.
Euler implicitly implied the principle of least action using vis visa which is not the exact form explicitly developed by Lagrange.

Jean le Rond d’Alembert (1717-1785) was a French mathematician and physicist who had the clever idea of extending use of the
principle of virtual work from statics to dynamics. D’Alembert’s Principle rewrites the principle of virtual work in the form

where the inertial reaction force  is subtracted from the corresponding force . This extension of the principle of virtual work
applies equally to both statics and dynamics leading to a single variational principle.

Joseph Louis Lagrange (1736-1813) was an Italian mathematician and a student of Leonhard Euler. In 1788 Lagrange published
his monumental treatise on analytical mechanics entitled Mécanique Analytique which introduces his Lagrangian mechanics
analytical technique which is based on d’Alembert’s Principle of Virtual Work. Lagrangian mechanics is a remarkably powerful
technique that is equivalent to minimizing the action integral  defined as
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i

ri
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The Lagrangian  frequently is defined to be the difference between the kinetic energy  and potential energy . His theory only
required the analytical form of these scalar quantities. In the preface of his book he refers modestly to his extraordinary
achievements with the statement “The reader will find no figures in the work. The methods which I set forth do not require either
constructions or geometrical or mechanical reasonings: but only algebraic operations, subject to a regular and uniform rule of
procedure.” Lagrange also introduced the concept of undetermined multipliers to handle auxiliary conditions which plays a vital
part of theoretical mechanics. William Hamilton, an outstanding figure in the analytical formulation of classical mechanics, called
Lagrange the “Shakespeare of mathematics,” on account of the extraordinary beauty, elegance, and depth of the Lagrangian
methods. Lagrange also pioneered numerous significant contributions to mathematics. For example, Euler, Lagrange, and
d’Alembert developed much of the mathematics of partial differential equations. Lagrange survived the French Revolution, and, in
spite of being a foreigner, Napoleon named Lagrange to the Legion of Honour and made him a Count of the Empire in 1808.
Lagrange was honoured by being buried in the Pantheon.

Carl Friedrich Gauss (1777-1855) was a German child prodigy who made many significant contributions to mathematics,
astronomy and physics. He did not work directly on the variational approach, but Gauss’s law, the divergence theorem, and the
Gaussian statistical distribution are important examples of concepts that he developed and which feature prominently in classical
mechanics as well as other branches of physics, and mathematics.

Simeon Poisson (1781-1840), was a brilliant mathematician who was a student of Lagrange. He developed the Poisson statistical
distribution as well as the Poisson equation that features prominently in electromagnetic and other field theories. His major
contribution to classical mechanics is development, in 1809, of the Poisson bracket formalism which featured prominently in
development of Hamiltonian mechanics and quantum mechanics.

The zenith in development of the variational approach to classical mechanics occurred during the 19  century primarily due to the
work of Hamilton and Jacobi.

William Hamilton (1805-1865) was a brilliant Irish physicist, astronomer and mathematician who was appointed professor of
astronomy at Dublin when he was barely 22 years old. He developed the Hamiltonian mechanics formalism of classical mechanics
which now plays a pivotal role in modern classical and quantum mechanics. He opened an entirely new world beyond the
developments of Lagrange. Whereas the Lagrange equations of motion are complicated second-order differential equations,
Hamilton succeeded in transforming them into a set of first-order differential equations with twice as many variables that consider
momenta and their conjugate positions as independent variables. The differential equations of Hamilton are linear, have separated
derivatives, and represent the simplest and most desirable form possible for differential equations to be used in a variational
approach. Hence the name “canonical variables” given by Jacobi. Hamilton exploited the d’Alembert principle to give the first
exact formulation of the principle of least action which underlies the variational principles used in analytical mechanics. The form
derived by Euler and Lagrange employed the principle in a way that applies only for conservative (scleronomic) cases. A
significant discovery of Hamilton is his realization that classical mechanics and geometrical optics can be handled from one unified
viewpoint. In both cases he uses a “characteristic” function that has the property that, by mere differentiation, the path of the body,
or light ray, can be determined by the same partial differential equations. This solution is equivalent to the solution of the equations
of motion.

Carl Gustave Jacob Jacobi (1804-1851), a Prussian mathematician and contemporary of Hamilton, made significant
developments in Hamiltonian mechanics. He immediately recognized the extraordinary importance of the Hamiltonian formulation
of mechanics. Jacobi developed canonical transformation theory and showed that the function, used by Hamilton, is only one
special case of functions that generate suitable canonical transformations. He proved that any complete solution of the partial
differential equation, without the specific boundary conditions applied by Hamilton, is sufficient for the complete integration of the
equations of motion. This greatly extends the usefulness of Hamilton’s partial differential equations. In 1843 Jacobi developed both
the Poisson brackets, and the Hamilton-Jacobi, formulations of Hamiltonian mechanics. The latter gives a single, first-order partial
differential equation for the action function in terms of the  generalized coordinates which greatly simplifies solution of the
equations of motion. He also derived a principle of least action for time-independent cases that had been studied by Euler and
Lagrange. Jacobi developed a superior approach to the variational integral that, by eliminating time from the integral, determined
the path without saying anything about how the motion occurs in time.
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James Clerk Maxwell (1831-1879) was a Scottish theoretical physicist and mathematician. His most prominent achievement was
formulating a classical electromagnetic theory that united previously unrelated observations, plus equations of electricity,
magnetism and optics, into one consistent theory. Maxwell’s equations demonstrated that electricity, magnetism and light are all
manifestations of the same phenomenon, namely the electromagnetic field. Consequently, all other classic laws and equations of
electromagnetism were simplified cases of Maxwell’s equations. Maxwell’s achievements concerning electromagnetism have been
called the “second great unification in physics”. Maxwell demonstrated that electric and magnetic fields travel through space in the
form of waves, and at a constant speed of light. In 1864 Maxwell wrote “A Dynamical Theory of the Electromagnetic Field” which
proposed that light was in fact undulations in the same medium that is the cause of electric and magnetic phenomena. His work in
producing a unified model of electromagnetism is one of the greatest advances in physics. Maxwell, in collaboration with Ludwig
Boltzmann (1844-1906), also helped develop the Maxwell—Boltzmann distribution, which is a statistical means of describing
aspects of the kinetic theory of gases. These two discoveries helped usher in the era of modern physics, laying the foundation for
such fields as special relativity and quantum mechanics. Boltzmann founded the field of statistical mechanics and was an early
staunch advocate of the existence of atoms and molecules.

Henri Poincaré (1854-1912) was a French theoretical physicist and mathematician. He was the first to present the Lorentz
transformations in their modern symmetric form and discovered the remaining relativistic velocity transformations. Although there
is similarity to Einstein’s Special Theory of Relativity, Poincaré and Lorentz still believed in the concept of the ether and did not
fully comprehend the revolutionary philosophical change implied by Einstein. Poincaré worked on the solution of the three-body
problem in planetary motion and was the first to discover a chaotic deterministic system which laid the foundations of modern
chaos theory. It rejected the long-held deterministic view that if the position and velocities of all the particles are known at one
time, then it is possible to predict the future for all time.

The last two decades of the 19  century saw the culmination of classical physics and several important discoveries that led to a
revolution in science that toppled classical physics from its throne. The end of the 19  century was a time during which
tremendous technological progress occurred; flight, the automobile, and turbine-powered ships were developed, Niagara Falls was
harnessed for power, etc. During this period, Heinrich Hertz (1857-1894) produced electromagnetic waves confirming their
derivation using Maxwell’s equations. Simultaneously he discovered the photoelectric effect which was crucial evidence in support
of quantum physics. Technical developments, such as photography, the induction spark coil, and the vacuum pump played a
significant role in scientific discoveries made during the 1890’s. At the end of the 19  century, scientists thought that the basic
laws were understood and worried that future physics would be in the fifth decimal place; some scientists worried that little was left
for them to discover. However, there remained a few, presumed minor, unexplained discrepancies plus new discoveries that led to
the revolution in science that occurred at the beginning of the 20  century.

Teleology is any philosophical account that holds that final causes exist in nature, analogous to purposes found in human actions,
nature inherently tends toward definite ends.
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1.6: The 20th Century Revolution in Physics
The two greatest achievements of modern physics occurred in the beginning of the 20th century. The first was Einstein’s
development of the Theory of Relativity; the Special Theory of Relativity in 1905 and the General Theory of Relativity in 1915.
This was followed in 1925 by the development of quantum mechanics.

Albert Einstein (1879-1955) developed the Special Theory of Relativity in 1905 and the General Theory of Relativity in 1915;
both of these revolutionary theories had a profound impact on classical mechanics and the underlying philosophy of physics. The
Newtonian formulation of mechanics was shown to be an approximation that applies only at low velocities while the General
Theory of Relativity superseded Newton’s Law of Gravitation and explained the Equivalence Principle. The Newtonian concepts of
an absolute frame of reference, plus the assumption of the separation of time and space were shown to be invalid at relativistic
velocities. Einstein’s postulate that the laws of physics are the same in all inertial frames requires a revolutionary change in the
philosophy of time, space and reference frames which leads to a breakdown in the Newtonian formalism of classical mechanics. By
contrast, the Lagrange and Hamiltonian variational formalisms of mechanics, plus the principle of least action, remain intact using
a relativistically invariant Lagrangian. The independence of the variational approach to reference frames is precisely the formalism
necessary for relativistic mechanics. The invariance to coordinate frames of the basic field equations also must remain invariant for
the General Theory of Relativity. Thus the development of the Theory of Relativity unambiguously demonstrated the superiority of
the variational formulation of classical mechanics over the vectorial Newtonian formulation, and thus the considerable effort made
by Euler, Lagrange, Hamilton, Jacobi, and others in developing the analytical variational formalism of classical mechanics finally
came to fruition at the start of the 20th century. Newton’s two crowning achievements, the Laws of Motion and the Laws of
Gravitation, that had reigned supreme since published in the Principia in 1687, were toppled from the throne by Einstein.

Emmy Noether (1882-1935) has been described as "the greatest ever woman mathematician". In 1915 she proposed a theorem that
a conservation law is associated with any differentiable symmetry of a physical system. Noether’s theorem evolves naturally from
Lagrangian and Hamiltonian mechanics and she applied it to the four-dimensional world of general relativity. Noether’s theorem
has had an important impact in guiding the development of modern physics.

Other profound developments that had revolutionary impacts on classical mechanics were quantum physics and quantum field
theory. The 1913 model of atomic structure by Niels Bohr (1885-1962) and the subsequent enhancements by Arnold Sommerfeld
(1868-1951), were based completely on classical Hamiltonian mechanics. The proposal of wave-particle duality by Louis de
Broglie (1892-1987), made in his 1924 thesis, was the catalyst leading to the development of quantum mechanics. In 1925 Werner
Heisenberg (1901-1976), and Max Born (1882-1970) developed a matrix representation of quantum mechanics using non-
commuting conjugate position and momenta variables.

Paul Dirac (1902-1984) showed in his Ph.D. thesis that Heisenberg’s matrix representation is based on the Poisson Bracket
generalization of Hamiltonian mechanics, which, in contrast to Hamilton’s canonical equations, allows for non-commuting
conjugate variables. In 1926 Erwin Schrödinger (1887-1961) independently introduced the operational viewpoint and
reinterpreted the partial differential equation of Hamilton-Jacobi as a wave equation. His starting point was the optical-mechanical
analogy of Hamilton that is a built-in feature of the Hamilton-Jacobi theory. Schrödinger then showed that the wave mechanics he
developed, and the Heisenberg matrix mechanics, are equivalent representations of quantum mechanics. In 1928 Dirac developed
his relativistic equation of motion for the electron and pioneered the field of quantum electrodynamics. Dirac also introduced the
Lagrangian and the principle of least action to quantum mechanics and these ideas were developed into the path-integral
formulation of quantum mechanics and the theory of electrodynamics by Richard Feynman (1918-1988).

The concepts of wave-particle duality, and quantization of observables, both are beyond the classical notions of infinite
subdivisions in classical physics. In spite of the radical departure of quantum mechanics from earlier classical concepts, the basic
feature of the differential equations of quantal physics is their selfadjoint character which means that they are derivable from a
variational principle. Thus both the Theory of Relativity, and quantum physics are consistent with the variational principle of
mechanics, and inconsistent with Newtonian mechanics. As a consequence Newtonian mechanics has been dislodged from the
throne it occupied since 1687, and the intellectually beautiful and powerful variational principles of analytical mechanics have been
validated.

The 2015 observation of gravitational waves is a remarkable recent confirmation of Einstein’s General Theory of Relativity and the
validity of the underlying variational principles in physics. Another advance in physics is the understanding of the evolution of
chaos in non-linear systems that have been made during the past four decades. This advance is due to the availability of computers
which has reopened this interesting branch of classical mechanics, that was pioneered by Henri Poincaré about a century ago.
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Although classical mechanics is the oldest and most mature branch of physics, there still remain new research opportunities in this
field of physics.

The focus of this book is to introduce the general principles of the mathematical variational principle approach, and its applications
to classical mechanics. It will be shown that the variational principles, that were developed in classical mechanics, now play a
crucial role in modern physics and mathematics, plus many other fields of science and technology.

References
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Wikipedia, and the book “Variational Principle of Mechanics” by Lanczos.[La49]
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2.1: Introduction to Newtonian Mechanics
It is assumed that the reader has been introduced to Newtonian mechanics applied to one or two point objects. This chapter reviews
Newtonian mechanics for motion of many-body systems as well as for macroscopic sized bodies. Newton’s Law of Gravitation
also is reviewed. The purpose of this review is to ensure that the reader has a solid foundation of elementary Newtonian mechanics
upon which to build the powerful analytic Lagrangian and Hamiltonian approaches to classical dynamics.

Newtonian mechanics is based on application of Newton’s Laws of motion which assume that the concepts of distance, time, and
mass, are absolute, that is, motion is in an inertial frame. The Newtonian idea of the complete separation of space and time, and the
concept of the absoluteness of time, are violated by the Theory of Relativity as discussed in chapter . However, for most practical
applications, relativistic effects are negligible and Newtonian mechanics is an adequate description at low velocities. Therefore
chapters  will assume velocities for which Newton’s laws of motion are applicable.

This page titled 2.1: Introduction to Newtonian Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
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2.2: Newton's Laws of motion
Newton defined a vector quantity called linear momentum  which is the product of mass and velocity.

Since the mass  is a scalar quantity, then the velocity vector  and the linear momentum vector  are colinear.

Newton’s laws, expressed in terms of linear momentum, are:

1. Law of inertia: A body remains at rest or in uniform motion unless acted upon by a force.
2. Equation of motion: A body acted upon by a force moves in such a manner that the time rate of change of momentum equals the

force.

3. Action and reaction: If two bodies exert forces on each other these forces are equal in magnitude and opposite in direction.

Newton’s second law contains the essential physics relating the force  and the rate of change of linear momentum .

Newton’s first law, the law of inertia, is a special case of Newton’s second law in that if

then  is a constant of motion.

Newton’s third law also can be interpreted as a statement of the conservation of momentum, that is, for a two particle system with
no external forces acting,

If the forces acting on two bodies are their mutual action and reaction, then Equation  simplifies to

This implies that the total linear momentum  is a constant of motion. Combining Equations  and  leads to
a second-order differential equation

Note that the force on a body , and the resultant acceleration  are colinear. Appendix  gives explicit expressions for
the acceleration  in cartesian and curvilinear coordinate systems. The definition of force depends on the definition of the mass .
Newton’s laws of motion are obeyed to a high precision for velocities much less than the velocity of light. For example, recent
experiments have shown they are obeyed with an error in the acceleration of .

This page titled 2.2: Newton's Laws of motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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2.3: Inertial Frames of reference
An inertial frame of reference is one in which Newton’s Laws of motion are valid. It is a non-accelerated frame of reference. An
inertial frame must be homogeneous and isotropic. Physical experiments can be carried out in different inertial reference frames.
The Galilean transformation provides a means of converting between two inertial frames of reference moving at a constant relative
velocity. Consider two reference frames  and  with  moving with constant relative velocity  at time . Figure  shows
a Galilean transformation which can be expressed in vector form.

Equation  gives the boost, assuming Newton’s hypothesis that the time is invariant to change of inertial frames of reference.
Differentiation of this transformation gives

Note that the forces in the primed and unprimed inertial frames are related by

 
Figure : Frame  moving with a constant velocity  with respect to frame  at the time .

Thus Newton’s Laws of motion are invariant under a Galilean transformation, that is, the inertial mass is unchanged under Galilean
transformations. If Newton’s laws are valid in one inertial frame of reference, then they are valid in any frame of reference in
uniform motion with respect to the first frame of reference. This invariance is called Galilean invariance. There are an infinite
number of possible inertial frames all connected by Galilean transformations.

Galilean invariance violates Einstein’s Theory of Relativity. In order to satisfy Einstein’s postulate that the laws of physics are the
same in all inertial frames, as well as satisfy Maxwell’s equations for electromagnetism, it is necessary to replace the Galilean
transformation by the Lorentz transformation. As will be discussed in chapter , the Lorentz transformation leads to Lorentz
contraction and time dilation both of which are related to the parameter  where c is the velocity of light in vacuum.

Fortunately, most situations in life involve velocities where ; for example, for a body moving at 25 000 mph (11 111 m/s)
which is the escape velocity for a body at the surface of the earth, the  factor differs from unity by about  which is
negligible. Relativistic effects are significant only in nuclear and particle physics and some exotic conditions in astrophysics. Thus,
for the purpose of classical mechanics usually it is reasonable to assume that the Galilean transformation is valid and is well obeyed
under most practical conditions.
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2.4: First-order Integrals in Newtonian mechanics
A fundamental goal of mechanics is to determine the equations of motion for an −body system, where the force  acts on the
individual mass  where . Newton’s second-order equation of motion, equation  must be solved to calculate the
instantaneous spatial locations, velocities, and accelerations for each mass  of an -body system. Both  and  are vectors
each having three orthogonal components. The solution of equation  involves integrating second-order equations of motion
subject to a set of initial conditions. Although this task appears simple in principle, it can be exceedingly complicated for many-
body systems. Fortunately, solution of the motion often can be simplified by exploiting three first-order integrals of Newton’s
equations of motion, that relate directly to conservation of either the linear momentum, angular momentum, or energy of the
system. In addition, for the special case of these three first-order integrals, the internal motion of any many-body system can be
factored out by a simple transformations into the center of mass of the system. As a consequence, the following three first-order
integrals are exploited extensively in classical mechanics.

Linear Momentum
Newton’s Laws can be written as the differential and integral forms of the first-order time integral which equals the change in
linear momentum.

This allows Newton’s law of motion to be expressed directly in terms of the linear momentum  of each of the 
bodies in the system. This first-order time integral features prominently in classical mechanics since it connects to the important
concept of linear momentum . This first-order time integral gives that the total linear momentum is a constant of motion when the
sum of the external forces is zero.

Angular Momentum
The angular momentum  of a particle  with linear momentum  with respect to an origin from which the position vector  is
measured, is defined by

The torque, or moment of the force  with respect to the same origin is defined to be

where  is the position vector from the origin to the point where the force  is applied. Note that the torque  can be written as

Consider the time differential of the angular momentum, 

However,

Equations  −  can be used to write the first-order time integral for angular momentum in either differential or integral
form as

Newton’s Law relates torque and angular momentum about the same axis. When the torque about any axis is zero then angular
momentum about that axis is a constant of motion. If the total torque is zero then the total angular momentum, as well as the
components about three orthogonal axes, all are constants.
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Kinetic Energy
The third first-order integral, that can be used for solving the equations of motion, is the first-order spatial integral .
Note that this spatial integral is a scalar in contrast to the first-order time integrals for linear and angular momenta which are
vectors. The work done on a mass  by a force  in transforming from condition 1 to 2 is defined to be

If  is the net resultant force acting on a particle  then the integrand can be written as

where the kinetic energy of a particle  is defined as

Thus the work done on the particle , that is,  equals the change in kinetic energy of the particle if there is no change in other
contributions to the total energy such as potential energy, heat dissipation, etc. That is

Thus the differential, and corresponding first integral, forms of the kinetic energy can be written as

If the work done on the particle is positive, then the final kinetic energy  Especially noteworthy is that the kinetic energy 
 is a scalar quantity which makes it simple to use. This first-order spatial integral is the foundation of the analytic formulation

of mechanics that underlies Lagrangian and Hamiltonian mechanics.
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2.5: Conservation Laws in Classical Mechanics
Elucidating the dynamics in classical mechanics is greatly simplified when conservation laws are applicable. In nature, isolated
many-body systems frequently conserve one or more of the first-order integrals for linear momentum, angular momentum, and
mass/energy. Note that mass and energy are coupled in the Theory of Relativity, but for non-relativistic mechanics the conservation
of mass and energy are decoupled. Other observables such as lepton and baryon numbers are conserved, but these conservation
laws usually can be subsumed under conservation of mass for most problems in non-relativistic classical mechanics.

The power of conservation laws in calculating classical dynamics makes it useful to combine the conservation laws with the first
integrals for linear momentum, angular momentum, and work-energy, when solving problems involving Newtonian mechanics.
These three conservation laws will be derived assuming Newton’s laws of motion, however, these conservation laws are
fundamental laws of nature that apply well beyond the domain of applicability of Newtonian mechanics.
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2.6: Motion of finite-sized and many-body systems
Elementary presentations in classical mechanics discuss motion and forces involving single point particles. However, in real life,
single bodies have a finite size introducing new degrees of freedom such as rotation and vibration, and frequently many finite-sized
bodies are involved.

A finite-sized body can be thought of as a system of interacting particles such as the individual atoms of the body. The interactions
between the parts of the body can be strong which leads to rigid body motion where the positions of the particles are held fixed
with respect to each other, and the body can translate and rotate. When the interaction between the bodies is weaker, such as for a
diatomic molecule, additional vibrational degrees of relative motion between the individual atoms are important. Newton’s third
law of motion becomes especially important for such many-body systems.
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2.7: Center of Mass of a Many-Body System
A finite sized body needs a reference point with respect to which the motion can be described. For example, there are 8 corners of a
cube that could server as reference points, but the motion of each corner is complicated if the cube is both translating and rotating.
The treatment of the behavior of finite-sized bodies, or many-body systems, is greatly simplified using the concept of center of
mass. The center of mass is a particular fixed point in the body that has an especially valuable property; that is, the translational
motion of a finite sized body can be treated like that of a point mass located at the center of mass. In addition the translational
motion is separable from the rotational-vibrational motion of a many-body system when the motion is described with respect to the
center of mass. Thus it is convenient at this juncture to introduce the concept of center of mass of a many-body system.

Figure : Position vector with respect to the center of mass.

For a many-body system, the position vector , defined relative to the laboratory system, is related to the position vector  with
respect to the center of mass, and the center-of-mass location  relative to the laboratory system. That is, as shown in Figure 

This vector relation defines the transformation between the laboratory and center of mass systems. For discrete and continuous
systems respectively, the location of the center of mass is uniquely defined as being where

Define the total mass

The average location of the system corresponds to the location of the center of mass since  that is

The vector  which describes the location of the center of mass, depends on the origin and coordinate system chosen. For a
continuous mass distribution the location vector of the center of mass is given by

The center of mass can be evaluated by calculating the individual components along three orthogonal axes.

The center-of-mass frame of reference is defined as the frame for which the center of mass is stationary. This frame of reference is
especially valuable for elucidating the underlying physics which involves only the relative motion of the many bodies. That is, the
trivial translational motion of the center of mass frame, which has no influence on the relative motion of the bodies, is factored out
and can be ignored. For example, a tennis ball  approaching the earth  with velocity  could be treated in
three frames, (a) assume the earth is stationary, (b) assume the tennis ball is stationary, or (c) the center-of-mass frame. The latter
frame ignores the center of mass motion which has no influence on the relative motion of the tennis ball and the earth. The center
of linear momentum and center of mass coordinate frames are identical in Newtonian mechanics but not in relativistic mechanics as
described in chapter .
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2.8: Total Linear Momentum of a Many-body System

Center-of-mass decomposition

The total linear momentum  for a system of  particles is given by

It is convenient to describe a many-body system by a position vector  with respect to the center of mass.

That is,

since  as given by th definition of the center of mass. That is,

Thus the total linear momentum for a system is the same as the momentum of a single particle of mass  located at the
center of mass of the system.

Equations of motion

The force acting on particle  in an -particle many-body system, can be separated into an external force  plus internal forces 
 between the  particles of the system

The origin of the external force is from outside of the system while the internal force is due to the mutual interaction between the 
particles in the system. Newton’s Law tells us that

Thus the rate of change of total momentum is

Note that since the indices are dummy then

Substituting Newton’s third law  into Equation  implies that

which is satisfied only for the case where the summations equal zero. That is, for every internal force, there is an equal and
opposite reaction force that cancels that internal force.
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Therefore the first-order integral for linear momentum can be written in differential and integral forms as

The reaction of a body to an external force is equivalent to a single particle of mass M located at the center of mass assuming that
the internal forces cancel due to Newton’s third law.

Note that the total linear momentum  is conserved if the net external force  is zero, that is

Therefore the total linear momentum  of the center of mass is a constant. Moreover, if the component of the force along any
direction  is zero, that is,

then  is a constant. This fact is used frequently to solve problems involving motion in a constant force field. For example, in
the earth’s gravitational field, the momentum of an object moving in vacuum in the vertical direction is time dependent because of
the gravitational force, whereas the horizontal component of momentum is constant if no forces act in the horizontal direction.

Consider a cannon shell of mass  moves along a parabolic trajectory in the earths gravitational field. An internal explosion,
generating an amount  of mechanical energy, blows the shell into two parts. One part of mass , where , continues
moving along the same trajectory with velocity  while the other part is reduced to rest. Find the velocity of the mass 
immediately after the explosion.

It is important to remember that the energy release  is given in the center of mass. If the velocity of the shell immediately
before the explosion is  and  is the velocity of the  part immediately after the explosion, then energy conservation gives
that . The conservation of linear momentum gives . Eliminating  from these equations
gives

Figure : Exploding cannon shell

A billiard ball with mass  and incident velocity  collides with an identical stationary ball. Assume that the balls bounce off
each other elastically in such a way that the incident ball is deflected at a scattering angle  to the incident direction. Calculate
the final velocities  and  of the two balls and the scattering angle  of the target ball. The conservation of linear
momentum in the incident direction , and the perpendicular direction give

Energy conservation gives.
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Solving these three equations gives , that is, the balls bounce off perpendicular to each other in the laboratory
frame. The final velocities are

This page titled 2.8: Total Linear Momentum of a Many-body System is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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2.9: Angular Momentum of a Many-Body System

Center-of-mass Decomposition
As was the case for linear momentum, for a many-body system it is possible to separate the angular momentum into two
components. One component is the angular momentum about the center of mass and the other component is the angular motion of
the center of mass about the origin of the coordinate system. This separation is done by describing the angular momentum of a
many-body system using a position vector  with respect to the center of mass plus the vector location  of the center of mass.

The total angular momentum

Note that if the position vectors are with respect to the center of mass, then  resulting in the middle two terms in the
bracket being zero, that is;

The total angular momentum separates into two terms, the angular momentum about the center of mass, plus the angular
momentum of the center of mass about the origin of the axis system. This factoring of the angular momentum only applies for the
center of mass. This is called Samuel König’s first theorem.

Equations of motion
The time derivative of the angular momentum

Consider that the resultant force acting on particle  in this  -particle system can be separated into an external force  plus
internal forces between the  particles of the system

The origin of the external force is from outside of the system while the internal force is due to the interaction with the other 
particles in the system. Newton’s Law tells us that

The rate of change of total angular momentum is
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Since  the last expression can be written as

Note that  is the vector  connecting  to . For central forces the force vector  thus

That is, for central internal forces the total internal torque on a system of particles is zero, and the rate of change of total angular
momentum for central internal forces becomes

where  is the net external torque acting on the system. Equation  leads to the differential and integral forms of the first
integral relating the total angular momentum to total external torque.

Angular momentum conservation occurs in many problems involving zero external torques  plus two-body central forces 
 since the torque on the particle about the center of the force is zero

Examples are, the central gravitational force for stellar or planetary systems in astrophysics, and the central electrostatic force
manifest for motion of electrons in the atom. In addition, the component of angular momentum about any axis  is conserved if
the net external torque about that axis .

Consider the bolas thrown by a gaucho to catch cattle. This is a system with conserved linear and angular momentum about
certain axes. When the bolas leaves the gaucho’s hand the center of mass has a linear velocity  and an angular momentum
about the center of mass of . If no external torques act, then the center of mass of the bolas will follow a typical ballistic
trajectory in the earth’s gravitational field while the angular momentum vector  is conserved, that is, both in magnitude and
direction. The tension in the ropes connecting the three balls does not impact the motion of the system as long as the ropes do
not snap due to centrifugal forces.

Figure : Bolas thrown by a guacho.
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( − ) × = ×∑
i

∑
j

i<j

ri rj fij ∑
i

∑
j

i<j

ri fijriĵ (2.9.11)
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Figure : A hunter using bolas while mounted on a horse. (Public Domain; Pearson Scott Foresman)
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2.10: Work and Kinetic Energy for a Many-Body System

Center-of-mass kinetic energy

For a many-body system the position vector  with respect to the center of mass is given by.

The location of the center of mass is uniquely defined as being at the location where . The velocity of the  particle
can be expressed in terms of the velocity of the center of mass  plus the velocity of the particle with respect to the center of mass 

. That is,

The total kinetic energy  is

For the special case of the center of mass, the middle term is zero since, by definition of the center of mass, .Therefore

Thus the total kinetic energy of the system is equal to the sum of the kinetic energy of a mass  moving with the center of mass
velocity plus the kinetic energy of motion of the individual particles relative to the center of mass. This is called Samuel König’s
second theorem.

Note that for a fixed center-of-mass energy, the total kinetic energy  has a minimum value of  when the velocity of
the center of mass  = 0. For a given internal excitation energy, the minimum energy required to accelerate colliding bodies occurs
when the colliding bodies have identical, but opposite, linear momenta. That is, when the center-of-mass velocity  = 0.

Conservative forces and Potential Energy

In general, the line integral of a force field , that is,  is both path and time dependent. However, an important class of
forces, called conservative forces, exist for which the following two facts are obeyed.

1. Time independence: The force depends only on the particle position , that is, it does not depend on velocity or time.
2. Path independence: For any two points 1 and 2 , the work done by  is independent of the path taken between 1 and 2.

If forces are path independent, then it is possible to define a scalar field, called potential energy and denoted by  that is only a
function of position. The path independence can be expressed by noting that the integral around a closed loop is zero. That is

Applying Stokes theorem for a path-independent force leads to the alternate statement that the curl is zero.

See appendix .

Note that the vector product of two del operators  acting on a scalar field U equals

Thus it is possible to express a path-independent force field as the gradient of a scalar field, , that is

Then the spatial integral
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i (2.10.1)

∫ ρ dV = 0r′
i ith

Ṙ
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Thus for a path-independent force, the work done on the particle is given by the change in potential energy if there is no change in
kinetic energy. For example, if an object is lifted against the gravitational field, then work is done on the particle and the final
potential energy  exceeds the initial potential energy, .

Total Mechanical Energy
The total mechanical energy  of a particle is defined as the sum of the kinetic and potential energies.

Note that the potential energy is defined only to within an additive constant since the force  depends only on difference
in potential energy. Similarly, the kinetic energy is not absolute since any inertial frame of reference can be used to describe the
motion and the velocity of a particle depends on the relative velocities of inertial frames. Thus the total mechanical energy 

 is not absolute.

If a single particle is subject to several path-independent forces, such as gravity, linear restoring forces, etc., then a potential energy 
 can be ascribed to each of the  forces where for each force . In contrast to the forces, which add vectorially, these

scalar potential energies are additive, . Thus the total mechanical energy for  potential energies equals

The time derivative of the total mechanical energy  equals

Equation (2.4.9) gave that . Thus, the first term in Equation  equals

The potential energy can be a function of both position and time. Thus the time difference in potential energy due to change in both
time and position is given as

The time derivative of the total mechanical energy is given using Equations  and  in Equation 

Note that if the field is path independent, that is  then the force and potential are related by

Therefore, for path independent forces, the first term in the time derivative of the total energy in Equation  is zero. That is,

In addition, when the potential energy  is not an explicit function of time, then  and thus the total energy is conserved.
That is, for the combination of (a) path independence plus (b) time independence, then the total energy of a conservative field is
conserved.

Note that there are cases where the concept of potential still is useful even when it is time dependent. That is, if path independence
applies, i.e.  at any instant. For example, a Coulomb field problem where charges are slowly changing due to leakage
etc., or during a peripheral collision between two charged bodies such as nuclei.

F ⋅ dr = − (∇U) ⋅ dr = −∫
2

1

∫
2

1

U1 U2 (2.10.9)

U2 U1

E
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A particle of mass m moves along a trajectory given by .

a) Find the x and y components of the force and determine the condition for which the force is a central force.

Differentiating with respect to time gives

Newton's second law gives

Note that if  then

That is, it is a central force if .

b) Find the potential energy as a function of x and y.

Since

then

assuming that  at the origin.

c) Determine the kinetic energy of the particle and show that it is conserved.

The total energy

since . Thus the total energy  is a constant and is conserved.

Total mechanical energy for conservative systems

Equation (2.4.11) showed that, using Newton's second law, , the first-order spatial integral gives that the work done  is
related to the change in the kinetic energy. That is,

The work done  also can be evaluated in terms of the known forces  in the spatial integral. Consider that the resultant force
acting on particle  in this -particle system can be separated into an external force  plus internal forces between the 
particles of the system

The origin of the external force is from outside of the system while the internal force is due to the interaction with the other 
particles in the system. Newton’s Law tells us that

Example : Central force2.10.1

x = cos t and  sin txo ω1 y0 ω2

= − sin( t)ẋ x0ω1 ω1
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ẋ2 ẏ2

1

2
ω2

1x
2 ω2

2y
2 1

2
x2

0ω
2
1 y2

0ω
2
2

θ+ θ = 1cos2 sin2 E

F =
dp

dt
W12

≡ F ⋅ dr = m − = −W12 ∫
2

1

1

2
v2

2

1

2
v2

1 T2 T1 (2.10.18)

W12 Fi

i n FExt
i n

= +Fi FE
i ∑

j
i≠j

n

fij (2.10.19)

n−1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/13957?pdf


2.10.4 https://phys.libretexts.org/@go/page/13957

The work done on the system by a force moving from configuration  is given by

Since  then

Where  is the vector from  to .

Assume that both the external and internal forces are conservative, and thus can be derived from time independent potentials, that is

Then

Define the total external potential energy,

and the total internal energy

Equating the two equivalent equations for , that is, Equations  and  gives that

Regroup these terms in Equation  gives

This shows that, for conservative forces, the total energy is conserved and is given by

The three first-order integrals for linear momentum, angular momentum, and energy provide powerful approaches for solving the
motion of Newtonian systems due to the applicability of conservation laws for the corresponding linear and angular momentum,
plus energy conservation for conservative forces. In addition, the important concept of center-of-mass motion naturally separates
out for these three first-order integrals. Although these conservation laws were derived assuming Newton’s Laws of motion, these
conservation laws are more generally applicable, and these conservation laws surpass the range of validity of Newton’s Laws of
motion. For example, in 1930 Pauli and Fermi postulated the existence of the neutrino in order to account for non-conservation of
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energy and momentum in  -decay because they did not wish to relinquish the concepts of energy and momentum conservation.
The neutrino was first detected in 1956 confirming the correctness of this hypothesis.
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β

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/13957?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/02%3A_Review_of_Newtonian_Mechanics/2.10%3A_Work_and_Kinetic_Energy_for_a_Many-Body_System
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/


2.11.1 https://phys.libretexts.org/@go/page/13958

2.11: Virial Theorem
The virial theorem is an important theorem for a system of moving particles both in classical physics and quantum physics. The
Virial Theorem is useful when considering a collection of many particles and has a special importance to central-force motion. For
a general system of mass points with position vectors  and applied forces , consider the scalar product 

where  sums over all particles. The time derivative of  is

However,

Also, since 

Thus

The time average over a period  is

where the  brackets refer to the time average. Note that if the motion is periodic and the chosen time  equals a multiple of the

period, then . Even if the motion is not periodic, if the constraints and velocities of all the particles remain finite,

then there is an upper bound to .This implies that choosing  means that . In both cases the left-hand side of
the equation tends to zero giving the virial theorem

The right-hand side of this equation is called the virial of the system. For a single particle subject to a conservative central force 
 the Virial theorem equals

If the potential is of the form  that is, , then . Thus for a single particle in a central
potential  the Virial theorem reduces to

The following two special cases are of considerable importance in physics.

Hooke’s Law: Note that for a linear restoring force  then

You may be familiar with this fact for simple harmonic motion where the average kinetic and potential energies are the same and
both equal half of the total energy.
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Inverse-square law: The other interesting case is for the inverse square law  where

The Virial theorem is useful for solving problems in that knowing the exponent  of the field makes it possible to write down
directly the average total energy in the field. For example, for

This occurs for the Bohr model of the hydrogen atom where the kinetic energy of the bound electron is half of the potential energy.
The same result occurs for planetary motion in the solar system.

The Virial theorem deals with average properties and has applications to statistical mechanics. Consider an ideal gas.
According to the equipartition theorem the average kinetic energy per atom in an ideal gas is  where  is the absolute
temperature and  is the Boltzmann constant. Thus the average total kinetic energy for  atoms is . The
right-hand side of the Virial theorem contains the force . For an ideal gas it is assumed that there are no interaction forces
between atoms, that is the only force is the force of constraint of the walls of the pressure vessel. The pressure  is force per
unit area and thus the instantaneous force on an area of wall  is  where  designates the unit vector normal
to the surface. Thus the right-hand side of the Virial theorem is

Use of the divergence theorem thus gives that . Thus the Virial theorem leads to the
ideal gas law, that is

The Virial theorem can be used to make a crude estimate of the mass of a cluster of galaxies. Assuming a spherically-
symmetric cluster of  galaxies, each of mass  then the total mass of the cluster is . A crude estimate of the
cluster potential energy is

where  is the radius of a cluster. The average kinetic energy per galaxy is  where  is the average square of the
galaxy velocities with respect to the center of mass of the cluster. Thus the total kinetic energy of the cluster is

The Virial theorem tells us that a central force having a radial dependence of the form  gives . For the
inverse-square gravitational force then

Thus equations , and  give an estimate of the total mass of the cluster to be
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This estimate is larger than the value estimated from the luminosity of the cluster implying a large amount of "dark matter"
must exist in galaxies which remains an open question in physics.

This page titled 2.11: Virial Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline
via source content that was edited to the style and standards of the LibreTexts platform.
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2.12: Applications of Newton's Equations of Motion
Newton’s equation of motion can be written in the form

A description of the motion of a particle requires a solution of this second-order differential equation of motion. This equation of
motion may be integrated to find  and  if the initial conditions and the force field  are known. Solution of the equation
of motion can be complicated for many practical examples, but there are various approaches to simplify the solution. It is of value
to learn efficient approaches to solving problems.

The following sequence is recommended

a. Make a vector diagram of the problem indicating forces, velocities, etc.
b. Write down the known quantities.
c. Before trying to solve the equation of motion directly, look to see if a basic conservation law applies. That is, check if any of the

three first-order integrals, can be used to simplify the solution. The use of conservation of energy or conservation of momentum
can greatly simplify solving problems.

The following examples show the solution of typical types of problem encountered using Newtonian mechanics

Constant Force Problems
Problems having a constant force imply constant acceleration. The classic example is a block sliding on an inclined plane, where
the block of mass  is acted upon by both gravity and friction. The net force  is given by the vector sum of the gravitational
force , normal force  and frictional force 

Taking components perpendicular to the inclined plane in the  direction

That is, since 

Similarly, taking components along the inclined plane in the  direction

Using the concept of coefficient of friction 

Thus the equation of motion can be written as

The block accelerates if , that is, . The acceleration is constant if  and  are constant, that is

F = = m = m
dp

dt

dv

dt

rd2

dt2
(2.12.1)
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Figure : Block on an inclined plane

Remember that if the block is stationary, the friction coefficient balances such that  that is, .
However, there is a maximum static friction coefficient  beyond which the block starts sliding. The kinetic coefficient of friction

 is applicable for sliding friction and usually 

Another example of constant force and acceleration is motion of objects free falling in a uniform gravitational field when air drag is
neglected. Then one obtains the simple relations such , etc.

Linear Restoring Force
An important class of problems involve a linear restoring force, that is, they obey Hooke’s law. The equation of motion for this
case is

It is usual to define

Then the equation of motion then can be written as

which is the equation of the harmonic oscillator. Examples are small oscillations of a mass on a spring, vibrations of a stretched
piano string, etc.

The solution of this second order equation is

This is the well known sinusoidal behavior of the displacement for the simple harmonic oscillator. The angular frequency 

Note that for this linear system with no dissipative forces, the total energy is a constant of motion as discussed previously. That is,
it is a conservative system with a total energy  given by

The first term is the kinetic energy and the second term is the potential energy. The Virial theorem gives that for the linear restoring
force the average kinetic energy equals the average potential energy.

Position-dependent conservative forces

The linear restoring force is an example of a conservative field. The total energy  is conserved, and if the field is time
independent, then the conservative forces are a function only of position. The easiest way to solve such problems is to use the
concept of potential energy  illustrated in Figure .

2.12.1
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Consider a conservative force in one dimension. Since it was shown that the total energy  is conserved for a
conservative field, then

Therefore:

Integration of this gives

where  when  Knowing  it is possible to solve this equation as a function of time.

Figure : One-dimensional potential .

It is possible to understand the general features of the solution just from inspection of the function . For example, as shown in
Figure  the motion for energy  is periodic between the turning points  and . Since the potential energy curve is
approximately parabolic between these limits the motion will exhibit simple harmonic motion. For  the turning point coalesce to 

 that is there is no motion. For total energy  the motion is periodic in two independent regimes,  and 
. Classically the particle cannot jump from one pocket to the other. The motion for the particle with total energy  is

that it moves freely from infinity, stops and rebounds at  and then returns to infinity. That is the particle bounces off the
potential at . For energy  the particle moves freely and is unbounded. For all these cases, the actual velocity is given by the
above relation for . Thus the kinetic energy is largest where the potential is deepest. An example would be motion of a roller
coaster car.

Position-dependent forces are encountered extensively in classical mechanics. Examples are the many manifestations of motion in
gravitational fields, such as interplanetary probes, a roller coaster, and automobile suspension systems. The linear restoring force is
an especially simple example of a position-dependent force while the most frequently encountered conservative potentials are in
electrostatics and gravitation for which the potentials are;

Knowing  it is possible to solve the equation of motion as a function of time.

− = − F ⋅ dxU2 U1 ∫
2

1

(2.12.15)

E = T +U

E = T +U = m +U(x)
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2
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An example of a conservative field is a vibrating diatomic molecule which has a potential energy dependence with separation
distance  that is described approximately by the Morse function

where  are parameters chosen to best describe the particular pair of atoms. The restoring force is given by

This has a minimum value of  at .

Figure : Potential energy function  versus  for the diatomic molecule.

Note that for small amplitude oscillations, where

the exponential term in the potential function can be expanded to give

This gives a restoring force

That is, for small amplitudes the restoring force is linear.

Constrained Motion
A frequently encountered problem with position dependent forces is when the motion is constrained to follow a certain trajectory.
Forces of constraint must exist to constrain the motion to a specific trajectory. Examples are, the roller coaster, a rolling ball on an
undulating surface, or a downhill skier, where the motion is constrained to follow the surface or track contours. The potential
energy can be evaluated at all positions along the constrained trajectory for conservative forces such as gravity. However, the
additional forces of constraint that must exist to constrain the motion, can be complicated and depend on the motion. For example,
the roller coaster must always balance the gravitational and centripetal forces. Fortunately forces of constraint  often are normal
to the direction of motion and thus do not contribute to the total mechanical energy since then the work done  is zero.
Magnetic forces  exhibit this feature of having the force normal to the motion.

Solution of constrained problems is greatly simplified if the other forces are conservative and the forces of constraint are normal to
the motion, since then energy conservation can be used.

Consider motion of a roller coaster shown in the adjacent figure.

Example : Diatomic molecule2.12.1
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(x− )x0

δ e−
(x− )x0

δ

U( ) =x0 U0 x = x0
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Example : Roller coaster2.12.2
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Figure : Roller coaster (CCO Public Domain)

This system is conservative if the friction and air drag are neglected and then the forces of constraint are normal to the
direction of motion. The kinetic energy at any position is just given by energy conservation and the fact that

where  depends on the height of the track at any the given location. The kinetic energy is greatest when the potential energy
is lowest. The forces of constraint can be deduced if the velocity of motion on the track is known. Assuming that the motion is
confined to a vertical plane, then one has a centripetal force of constraint  normal to the track inwards towards the center of
the radius of curvature , plus the gravitation force downwards of .

The constraint force is  upwards at the top of the loop, while it is  downwards at the bottom of the loop.
To ensure that the car and occupants do not leave the required trajectory, the force upwards at the top of the loop has to be
positive, that is, . The velocity at the bottom of the loop is given by  assuming that the track
has a constant radius of curvature . That is; at a minimum  Therefore the occupants now will feel an

acceleration downwards of at least  at the bottom of the loop. The first roller coaster was built with such a
constant radius of curvature but an acceleration of  was too much for the average passenger. Therefore roller coasters are
designed such that the radius of curvature is much larger at the bottom of the loop, as illustrated, in order to maintain
sufficiently low  loads and also ensure that the required constraint forces exist.

Note that the minimum velocity at the top of the loop, , implies that if the cart starts from rest it must start at a height 
above the top of the loop if friction is negligible. Note that the solution for the rolling ball on such a roller coaster differs from
that for a sliding object since one must include the rotational energy of the ball as well as the linear velocity.

Looping the loop in a glider involves the same physics making it necessary to vary the elevator control to vary the radius of
curvature throughout the loop to minimize the maximum  load.

Velocity Dependent Forces

Velocity dependent forces are encountered frequently in practical problems. For example, motion of an object in a fluid, such as air,
where viscous forces retard the motion. In general the retarding force has a complicated dependence on velocity. The drag force
usually is expressed in terms of a drag coefficient ,

where  is a dimensionless drag coefficient,  is the density of air,  is the cross sectional area perpendicular to the direction of
motion, and  is the velocity. Modern automobiles have drag coefficients as low as 0.3. As described in chapter , the drag
coefficient  depends on the Reynold’s number which relates the inertial to viscous drag forces. Small sized objects at low

2.12.4
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velocity, such as light raindrops, have low Reynold’s numbers for which  is roughly proportional to  leading to a linear
dependence of the drag force on velocity, i.e. . Larger objects moving at higher velocities, such as a car or sky-diver,
have higher Reynold’s numbers for which  is roughly independent of velocity leading to a drag force . This drag
force always points in the opposite direction to the unit velocity vector. Approximately for air

where for spherical objects of diameter  and  and in MKS units. Fortunately, the equation of
motion usually can be integrated when the retarding force has a simple power law dependence. As an example, consider free fall in
the Earth’s gravitational field.

Linear regime 

For small objects at low-velocity, i.e. low Reynold’s number, the drag has approximately a linear dependence on velocity. The
equation of motion is

Separate the variables and integrate

That is

Note that for  the velocity approaches a terminal velocity of . The characteristic time constant is 
. Note that if , then

For the case of small raindrops with  then  and time constant . Note that in the
absence of air drag, these rain drops falling from 2000 m would attain a velocity of over 400 mph. It is fortunate that the drag
reduces the speed of rain drops to non-damaging values. Note that the above relation would predict high velocities for hail.
Fortunately, the drag increases quadratically at the higher velocities attained by large rain drops or hail, and this limits the
terminal velocity to moderate values. As known in the mid-west, these velocities still are sufficient to do considerable crop
damage.

Quadratic regime 

For larger objects at higher velocities, i.e. high Reynold’s number, the drag depends on the square of the velocity making it
necessary to differentiate between objects rising and falling. The equation of motion is

where the positive sign is for falling objects and negative sign for rising objects. Integrating the equation of motion for falling
gives

where  and  That is,  For the case of a falling object with  solving for velocity gives

cD v−1

(v) ∝ vFD

cD (v) ∝FD v2

(v) = −( v+ )FD c1 c2v
2 v̂ (2.12.20)

D, ≈ 1.55 × Dc1 10−4 ≈ 0.22c2 D2

Example : Vertical fall in the earth's gravitational field.2.12.3
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As an example, a 0.6 kg basket ball with  = 0.25 m will have  ( 43 mph) and .

Consider President George H.W. Bush skydiving. Assume his mass is 70 kg and assume an equivalent spherical shape of the
former President to have a diameter of  This gives that  ( 120 mph) and . When Bush senior
opens his 8 m diameter parachute his terminal velocity is estimated to decrease to 7m/s ( 15 mph) which is close to the value
for a typical ( 8m) diameter emergency parachute which has a measured terminal velocity of 11 mph in spite of air leakage
through the central vent needed to provide stability.

Consider a projectile initially at , at , that is fired at an initial velocity v  at an angle  to the horizontal. In
order to understand the general features of the solution, assume that the drag is proportional to velocity. This is incorrect for
typical projectile velocities, but simplifies the mathematics. The equations of motion can be expressed as

where k is the coefficient for air drag. Take the initial conditions at  to be , .

Solving in the  coordinate,

Therefore

That is, the velocity decays to zero with a time constant 

Integration of the velocity equation gives

Note that this implies that the body approaches a value of  as 

The trajectory of an object is distorted from the parabolic shape, that occurs for , due to the rapid drop in range as the
drag coefficient increases. For realistic cases it is necessary to use a computer to solve this numerically.

Systems with Variable Mass
Classic examples of systems with variable mass are the rocket, nuclear fission and other modes of nuclear decay.

Consider the problem of rocket motion in a gravitational field. When there is a vertical gravitational external field the vertical
momentum is not conserved due to both gravity and the ejection of rocket propellant. In a time  the rocket ejects propellant 
with exhaust velocity relative to the rocket of . Thus the momentum imparted to this propellant is

Therefore the rocket is given an equal and opposite increase in momentum

In the time interval  the net change in the linear momentum of the rocket plus fuel system is given by

The rate of change of the linear momentum thus equals

Consider the problem for the special case of vertical ascent of the rocket against the external gravitational force . Then

D = 20m/sv∞ τ = 2.1 s

D = 1 m = 56 m/sv∞ τ = 5.6 s

Example : Projectile motion in air2.12.4
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This can be rewritten as

Figure : Vertical motion of a rocket in a gravitational field

The second term comes from the variable mass. But the loss of mass of the rocket equals the mass of the ejected propellant.
Assuming a constant fuel burn  then

where  Then the equation becomes

Since

then

Inserting this in the above equation gives

Integration gives

But the change in mass is given by

That is

Thus

Note that once the propellant is exhausted the rocket will continue to fly upwards as it decelerates in the gravitational field. You can
easily calculate the maximum height. Note that this formula assumes that the acceleration due to gravity is constant whereas for
large heights above the Earth it is necessary to use the true gravitational force  where  is the distance from the center of
the earth. In real situations it is necessary to include air drag which requires a computer to numerically solve the equations of
motion. The highest rocket velocity is attained by maximizing the exhaust velocity and the ratio of initial to final mass. Because the
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terminal velocity is limited by the mass ratio, engineers construct multistage rockets that jettison the spent fuel containers and
rockets. The variational-principle approach applied to variable mass problems is discussed in chapter 

Rigid-body rotation about a body-fixed rotation axis
The most general case of rigid-body rotation involves rotation about some body-fixed point with the orientation of the rotation axis
undefined. For example, an object spinning in space will rotate about the center of mass with the rotation axis having any
orientation. Another example is a child’s spinning top which spins with arbitrary orientation of the axis of rotation about the
pointed end which touches the ground about a static location. Such rotation about a body-fixed point is complicated and will be
discussed in chapter . Rigid-body rotation is easier to handle if the orientation of the axis of rotation is fixed with respect to the
rigid body. An example of such motion is a hinged door.

For a rigid body rotating with angular velocity  the total angular momentum  is given by

For rotation equation appendix  gives

thus the angular momentum can be written as

This can be simplified using the vector identity equation  giving

Rigid-body rotation about a body-fixed symmetry axis

The simplest case for rigid-body rotation is when the body has a symmetry axis with the angular velocity  parallel to this body-
fixed symmetry axis. For this case then  can be taken perpendicular to  for which the second term in Equation , i.e. 

, thus

The moment of inertia about the symmetry axis is defined as

where  is the perpendicular distance from the axis of rotation to the body,  For a continuous body the moment of inertia can be
generalized to an integral over the mass density  of the body

where  is perpendicular to the rotation axis. The definition of the moment of inertia allows rewriting the angular momentum about
a symmetry axis  in the form

where the moment of inertia  is taken about the symmetry axis and assuming that the angular velocity of rotation vector is
parallel to the symmetry axis.

8.7
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Rigid-body rotation about a non-symmetric body-fixed axis

In general the fixed axis of rotation is not aligned with a symmetry axis of the body, or the body does not have a symmetry axis,
both of which complicate the problem. For illustration consider that the rigid body comprises a system of  masses  located at
positions  with the rigid body rotating about the  axis with angular velocity  That is,

In cartesian coordinates the fixed-frame vector for particle i is

using these in the cross product  gives

which is written as a column vector for clarity. Inserting  in the cross-product  gives the components of the angular
momentum to be

Figure : A rigid rotating body comprising a single mass  attached by a massless rod at a fixed angle  shown at the instant
when  happens to lie in the  plane. As the body rotates about the − axis the mass  has a velocity and momentum into the
page (the negative  direction). Therefore the angular momentum  is in the direction shown which is not parallel to the
angular velocity .

That is, the components of the angular momentum are

Note that the perpendicular distance from the  axis in cylindrical coordinates is  thus the angular momentum  about

the  axis can be written as
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where  gives the elementary formula for the moment of inertia  about the  axis given earlier in . The
surprising result is that  and  are non-zero implying that the total angular momentum vector  is in general not parallel with 
This can be understood by considering the single body  shown in Figure . When the body is in the  plane then 
and . Thus the angular momentum vector  has a component along the  direction as shown which is not parallel with 
and, since the vectors  are coplanar, then  must sweep around the rotation axis  to remain coplanar with the body as it
rotates about the  axis. Instantaneously the velocity of the body  is into the plane of the paper and, since , then 

 is at an angle  to the  axis. This implies that a torque must be applied to rotate the angular momentum vector. This
explains why your automobile shakes if the rotation axis and symmetry axis are not parallel for one wheel.

The first two moments in  are called products of inertia of the body designated by the pair of axes involved. Therefore, to
avoid confusion, it is necessary to define the diagonal moment, which is called the moment of inertia, by two subscripts as 
Thus in general, a body can have three moments of inertia about the three axes plus three products of inertia. This group of
moments comprise the inertia tensor which will be discussed further in chapter . If a body has an axis of symmetry along the 
axis then the summations will give  while  will be unchanged. That is, for rotation about a symmetry axis the
angular momentum and rotation axes are parallel. For any axis along which the angular momentum and angular velocity coincide is
called a principal axis of the body.

Consider that the door has width a and height b and assume the door thickness is negligible with areal density .
Assume that the door is hinged about the  axis. The mass of a surface element of dimension  at a distance  from the
rotation axis is  thus the mass of the complete door is . The moment of inertia about the  axis is given
by

A child of mass m jumps onto the outside edge of a circular merry-go-round of moment of inertia , and radius  and initial
angular velocity  What is the final angular velocity  ? If the initial angular momentum is  and, assuming the child
jumps with zero angular velocity, then the conservation of angular momentum implies that

That is

Note that this is true independent of the details of the acceleration of the initially stationary child.

Consider a billiard ball of mass  and radius  is pushed by a cue in a direction that passes through the center of gravity such
that the ball attains a velocity . The friction coefficient between the table and the ball is . How far does the ball move
before the initial slipping motion changes to pure rolling motion?

Figure : Cue pushing a billiard ball horizontally at the height of the centre of rotation of the ball.

Since the direction of the cue force passes through the center of mass of the ball, it contributes zero torque to the ball. Thus the
initial angular momentum is zero at . The friction force  points opposite to the direction of motion and causes a torque 
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Example : Moment of inertia of a thin door2.12.5
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 about the center of mass in the direction 

Since the moment of inertia about the center of a uniform sphere is  then the angular acceleration of the ball is

Moreover the frictional force causes a deceleration  of the linear velocity of the center of mass of

Integrating  from time zero to t gives

The linear velocity of the center of mass at time  is given by integration of equation 

The billiard ball stops sliding and only rolls when , that is, when

That is, when

Thus the ball slips for a distance

Note that if the ball is pushed at a distance h above the center of mass, besides the linear velocity there is an initial angular
momentum of

For the case  then the ball immediately assumes a pure non-slipping roll. For  one has  while 
corresponds to . In the latter case the frictional force points forward.

Time dependent forces

Many problems involve action in the presence of a time dependent force. There are two extreme cases that are often encountered.
One is an impulsive force that acts for a very short time, for example, striking a ball with a bat, or the collision of two cars while
the second force is an oscillatory time dependent force. The response to impulsive forces is discussed below whereas the response
to oscillatory time dependent forces is discussed in chapter .

Translational impulsive forces

An impulsive force acts for a very short time relative to the response time of the mechanical system being discussed. In principle
the equation of motion can be solved if the complicated time dependence of the force,  is known. However, often it is possible
to use the much simpler approach employing the concept of an impulse and the principle of the conservation of linear momentum.

Define the linear impulse to be the first-order time integral of the time-dependent force.
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Since  then Equation  gives that

Thus the impulse  is an unambiguous quantity that equals the change in linear momentum of the object that has been struck
which is independent of the details of the time dependence of the impulsive force. Computation of the spatial motion still requires
knowledge of  since the  can be written as

Integration gives

In general this is complicated. However, for the case of a constant force , this simplifies to the constant acceleration
equation

where the constant acceleration .

Angular impulsive torques

Note that the principle of impulse also applies to angular motion. Define an impulsive torque as the first-order time integral of the
time-dependent torque.

Since torque is related to the rate of change of angular momentum

then

Thus the impulsive torque  equals the change in angular momentum  of the struck body.

P = ∫ F(t)dt (2.12.49)
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Figure 

When an impulsive force  strikes a bat of mass  at a distance  from the center of mass, then both the linear momentum of
the center of mass, and angular momenta about the center of mass, of the bat are changed. Assume that the ball strikes the bat
with an impulsive force  perpendicular to the symmetry axis of the bat at the strike point  which is a distance 
from the center of mass of the bat. The translational impulse given to the bat equals the change in linear momentum of the ball
as given by Equation  coupled with the conservation of linear momentum

Similarly Equation  gives that the angular impulse  equals the change in angular momentum about the center of mass
to be

The above equations give that

Assume that the bat was stationary prior to the strike, then after the strike the net translational velocity of a point  along the
body-fixed symmetry axis of the bat at a distance  from the center of mass, is given by

It is assumed that  and  are perpendicular and thus  which simplifies the above equation to

Note that the translational velocity of the location , along the bat symmetry axis at a distance  from the center of mass, is
zero if the bracket equals zero, that is, if

where  is called the radius of gyration of the body about the center of mass. Note that when the scalar product 
 then there will be no translational motion at the point . This point on the  axis lies on the opposite

side of the center of mass from the strike point , and is called the center of percussion corresponding to the impulse at the
point . The center of percussion often is referred to as the "sweet spot" for an object corresponding to the impulse at the point 

. For a baseball bat the batter holds the bat at the center of percussion so that they do not feel an impulse in their hands when
the ball is struck at the point . This principle is used extensively to design bats for all sports involving striking a ball with a
bat, such as, cricket, squash, tennis, etc. as well as weapons such of swords and axes used to decapitate opponents.
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Consider a particle of charge  moving with very high velocity  along a straight line that passes a distance  from another
charge  and mass . Find the energy  transferred to the mass  during the encounter assuming the force is given by
Coulomb’s law. Since the charged particle  moves at very high speed it is assumed that charge 2 does not change position
during the encounter. Assume that charge 1 moves along the  axis through the origin while charge 2 is located on the  axis
at . Let us consider the impulse given to charge 2 during the encounter. By symmetry the  component must cancel while
the  component is given by

But

where

Thus

Integrate from  gives that the total momentum imparted to  is

Thus the recoil energy of charge 2 is given by

Figure : Charged-particle scattering
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2.13: Solution of many-body equations of motion
The following are general methods used to solve Newton’s many-body equations of motion for practical problems.

Analytic solution
In practical problems one has to solve a set of equations of motion since the forces depend on the location of every body involved.
For example one may be dealing with a set of coupled oscillators such as the many components that comprise the suspension
system of an automobile. Often the coupled equations of motion comprise a set of coupled second-order differential equations.

The first approach to solve such a system is to try an analytic solution comprising a general solution of the inhomogeneous
equation plus one particular solution of the inhomogeneous equation. Another approach is to employ numeric integration using a
computer.

Successive approximation

When the system of coupled differential equations of motion is too complicated to solve analytically one can use the method of
successive approximation. The differential equations are transformed to integral equations. Then one starts with some initial
conditions to make a first order estimate of the functions. The functions determined by this first order estimate then are used in a
second iteration and this is repeated until the solution converges.

An example of this approach is when making Hartree-Foch calculations of the electron distributions in an atom. The first order
calculation uses the electron distributions predicted by the one-electron model of the atom. This result then is used to compute the
influence of the electron charge distribution around the nucleus on the charge distribution of the atom for a second iteration etc.

Perturbation method

The perturbation technique can be applied if the force separates into two parts  where  and the solution is
known for the dominant  part of the force. Then the correction to this solution due to addition of the perturbation  usually is
easier to evaluate. As an example, consider that one of the Space Shuttle thrusters fires. In principle one has all the gravitational
forces acting plus the thrust force of the thruster. The perturbation approach is to assume that the trajectory of the Space Shuttle in
the earth’s gravitational field is known. Then the perturbation to this motion due to the very small thrust, produced by the thruster,
is evaluated as a small correction to the motion in the Earth’s gravitational field. This perturbation technique is used extensively in
physics, especially in quantum physics. An example from my own research is scattering of a Pb ion in the Coulomb field
of a Au nucleus. The trajectory for elastic scattering is simple to calculate since neither nucleus is excited and thus the total
energy and momenta are conserved. However, usually one of these nuclei will be internally excited by the electromagnetic
interaction. This is called Coulomb excitation. The effect of the Coulomb excitation usually can be treated as a perturbation by
assuming that the trajectory is given by the elastic scattering solution and then calculate the excitation probability assuming the
Coulomb excitation of the nucleus is a small perturbation to the trajectory.

This page titled 2.13: Solution of many-body equations of motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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2.14: Newton's Law of Gravitation
Gravitation plays a fundamental role in classical mechanics as well as being an important example of a conservative central 
force. Although you may not be familiar with the following presentation addressing the gravitational field , it is assumed that you
have met the identical discussion when addressing the electric field  in electrostatics. The only difference is that mass  replaces
charge  and gravitational field  replaces the electric field . Thus this chapter is designed to be a review of the concepts that can
be used for study of any conservative inverse-square law central fields.

In 1666 Newton formulated the Theory of Gravitation which he eventually published in the Principia in 1687. Newton’s Law of
Gravitation states that each mass particle attracts every other particle in the universe with a force that varies directly as the product
of the mass and inversely as the square of the distance between them. That is, the force on a gravitational point mass  produced
by a mass 

where  is the unit vector pointing from the gravitational mass  to the gravitational mass  as shown in Figure . Note
that the force is attractive, that is, it points toward the other mass. This is in contrast to the repulsive electrostatic force between two
similar charges. Newton’s law was verified by Cavendish using a torsion balance. The experimental value of 

The gravitational force between point particles can be extended to finite-sized bodies using the fact that the gravitational force field
satisfies the superposition principle, that is, the net force is the vector sum of the individual forces between the component point
particles. Thus the force summed over the mass distribution is

where  is the vector from the gravitational mass  to the gravitational mass  at the position .

For a continuous gravitational mass distribution , the net force on the gravitational mass  at the location  can be written
as

where  is the volume element at the point  as illustrated in Figure .

Figure : Gravitational force on mass m due to an infinitessimal volume element of the mass density distribution.

Gravitational and inertial mass

Newton's Laws use the concept of inertial mass  in relating the force  to acceleration 

and momentum  to velocity 

That is, inertial mass is the constant of proportionality relating the acceleration to the applied force.
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The concept of gravitational mass  is the constant of proportionality between the gravitational force and the amount of matter.
That is, on the surface of the earth, the gravitational force is assumed to be

where  is the gravitational field which is a position-dependent force per unit gravitational mass pointing towards the center of the
Earth. The gravitational mass is measured when an object is weighed.

Newton’s Law of Gravitation leads to the relation for the gravitational field  at the location  due to a gravitational mass
distribution at the location  as given by the integral over the gravitational mass density 

The acceleration of matter in a gravitational field relates the gravitational and inertial masses

Thus

That is, the acceleration of a body depends on the gravitational strength  and the ratio of the gravitational and inertial masses. It
has been shown experimentally that all matter is subject to the same acceleration in vacuum at a given location in a gravitational
field. That is,  is a constant common to all materials. Galileo first showed this when he dropped objects from the Tower of Pisa.
Modern experiments have shown that this is true to 5 parts in 10 .

The exact equivalence of gravitational mass and inertial mass is called the weak principle of equivalence which underlies the
General Theory of Relativity as discussed in chapter . It is convenient to use the same unit for the gravitational and inertial
masses and thus they both can be written in terms of the common mass symbol .

Therefore the subscripts  and  can be omitted in equations  and . Also the local acceleration due to gravity  can
be written as

The gravitational field  has units of N/kg in the MKS system while the acceleration  has units .

Gravitational potential energy 
Chapter  showed that a conservative field can be expressed in terms of the concept of a potential energy  which depends
on position. The potential energy difference  between two points  and , is the work done moving from  to  against a
force . That is:

In general, this line integral depends on the path taken.

Consider the gravitational field produced by the single point mass . The work done moving a mass  from  to  in this
gravitational field can be calculate along an arbitrary path shown in Figure  by assuming Newton's law of gravitation. Then
the force on  due to point mass  is:
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Figure : Work done against a force field moving from a to b.

Expressing  in spherical coordinates  gives that the path integral  from  to 
 is

since the scalar product of the unit vectors . Note that the second two terms also cancel since  since the
unit vectors are mutually orthogonal. Thus the line integral just depends only on the starting and ending radii and is independent of
the angular coordinates or the detailed path taken between  and .

Consider the Principle of Superposition for a gravitational field produced by a set of n point masses. The line integral then can be
written as

Thus the net potential energy difference is the sum of the contributions from each point mass producing the gravitational force
field. Since each component is conservative, then the total potential energy difference also must be conservative. For a conservative
force, this line integral is independent of the path taken, it depends only on the starting and ending positions,  and . That is, the
potential energy is a local function dependent only on position. The usefulness of gravitational potential energy is that, since the
gravitational force is a conservative force, it is possible to solve many problems in classical mechanics using the fact that the sum
of the kinetic energy and potential energy is a constant. Note that the gravitational field is conservative, since the potential energy
difference  is independent of the path taken. It is conservative because the force is radial and time independent, it is not due
to the  dependence of the field.

Gravitational potential 

Using  gives that the change in potential energy due to moving a mass  from  to  in a gravitational field  is:

Note that the probe mass  factors out from the integral. It is convenient to define a new quantity called gravitational potential 
where

That is; gravitational potential difference is the work that must be done, per unit mass, to move from  to  with no change in
kinetic energy. Be careful not to confuse the gravitational potential energy difference  and gravitational potential difference 

, that is,  has units of energy, Joules while  has units of Joules/Kg.

The gravitational potential is a property of the gravitational force field; it is given as minus the line integral of the gravitational
field from  to . The change in gravitational potential energy for moving a mass  from  to  is given in terms of gravitational
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potential by:

Superposition and potential

Previously it was shown that the gravitational force is conservative for the superposition of many masses.

To recap, if the gravitational field

then

Thus gravitational potential is a simple additive scalar field because the Principle of Superposition applies. The gravitational
potential, between two points differing by  in height, is . Clearly, the greater  or , the greater the energy released by the
gravitational field when dropping a body through the height . The unit of gravitational potential is the 

Potential theory
The gravitational force and electrostatic force both obey the inverse square law, for which the field and corresponding potential are
related by:

for an arbitrary infinitessimal element distance  the change in electric potential  is

Using cartesian coordinates both  and  can be written as

Taking the scalar product gives:

Differential calculus expresses the change in potential  in terms of partial derivatives by:

By association,  and  imply that

Thus on each axis, the gravitational field can be written as minus the gradient of the gravitational potential. In three dimensions, the
gravitational field is minus the total gradient of potential and the gradient of the scalar function  can be written as:

In cartesian coordinates this equals

Thus the gravitational field is just the gradient of the gravitational potential, which always is perpendicular to the equipotentials.
Skiers are familiar with the concept of gravitational equipotentials and the fact that the line of steepest descent, and thus maximum
acceleration, is perpendicular to gravitational equipotentials of constant height. The advantage of using potential theory for inverse-
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square law forces is that scalar potentials replace the more complicated vector forces, which greatly simplifies calculation. Potential
theory plays a crucial role for handling both gravitational and electrostatic forces.

Curl of gravitational field
It has been shown that the gravitational field is conservative, that is  is independent of the path taken between  and 
Therefore, Equation  gives that the gravitational potential is independent of the path taken between two points  and .
Consider two possible paths between  and  as shown in Figure . The line integral from  to  via route 1 is equal and
opposite to the line integral back from  to  via route 2 if the gravitational field is conservative as shown earlier.

Figure : Circulation of the gravitational field.

A better way of expressing this is that the line integral of the gravitational field is zero around any closed path. Thus the line
integral between  and , via path 1, and returning back to , via path 2, are equal and opposite. That is, the net line integral for a
closed loop is zero.

which is a measure of the circulation of the gravitational field. The fact that the circulation equals zero corresponds to the statement
that the gravitational field is radial for a point mass.

Stokes Theorem, discussed in appendix , states that

Thus the zero circulation of the gravitational field can be rewritten as

Since this is independent of the shape of the perimeter , therefore

That is, the gravitational field is a curl-free field.

A property of any curl-free field is that it can be expressed as the gradient of a scalar potential  since

Therefore, the curl-free gravitational field can be related to a scalar potential  as

Thus  is consistent with the above definition of gravitational potential  in that the scalar product

An identical relation between the electric field and electric potential applies for the inverse-square law electrostatic field.

Reference potentials

Note that only differences in potential energy, , and gravitational potential, , are meaningful, the absolute values depend on
some arbitrarily chosen reference. However, often it is useful to measure gravitational potential with respect to a particular
arbitrarily chosen reference point  such as to sea level. Aircraft pilots are required to set their altimeters to read with respect to
sea level rather than their departure airport. This ensures that aircraft leaving from say both Rochester,   and Denver  

ΔUa→b a b

2.14.16 a b

a b 2.14.3 a b

b a

2.14.3

a b a

∮ ⋅ dl = 0gnet (2.14.28)
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, have their altimeters set to a common reference to ensure that they do not collide. The gravitational force is the gradient of the
gravitational field which only depends on differences in potential, and thus is independent of any constant reference.

Gravitational potential due to continuous distributions of charge

Suppose mass is distributed over a volume  with a density  at any point within the volume. the gravitational potential at any field
point  due to an element of mass  at the point  is given by:

This integral is over a scalar quantity. Since gravitational potential  is a scalar quantity, it is easier to compute than is the vector
gravitational field . If the scalar potential field is known, then the gravitational field is derived by taking the gradient of the
gravitational potential.

Gauss's Law for Gravitation
The flux  of the gravitational field  through a surface , as shown in Figure  is defined as

Note that there are two possible perpendicular directions that could be chosen for the surface vector . Using Newton’s law of
gravitation for a point mass  the flux through the surface  is

Note that the solid angle subtended by the surface  at an angle  to the normal from the point mass is given by

Thus the net gravitational flux equals

Figure : Flux of the gravitational field through an infinitessimal surface element dS.

Consider a closed surface where the direction of the surface vector  is defined as outwards. The net flux out of this closed
surface is given by

This is independent of where the point mass lies within the closed surface or on the shape of the closed surface. Note that the solid
angle subtended is zero if the point mass lies outside the closed surface. Thus the flux is as given by Equation  if the mass is
enclosed by the closed surface, while it is zero if the mass is outside of the closed surface.

Since the flux for a point mass is independent of the location of the mass within the volume enclosed by the closed surface, and
using the principle of superposition for the gravitational field, then for n enclosed point masses the net flux is

msl

v ρ

p dm = ρv p′

Δ = −Gϕ∞→p ∫
v

ρ( )dp′ v′

r pp′

(2.14.35)

ϕ
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S
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This can be extended to continuous mass distributions, with local mass density , giving that the net flux

Gauss's Divergence Theorem was given in appendix  as

Applying the Divergence Theorem to Gauss's law gives that

or

This is true independent of the shape of the surface, thus the divergence of the gravitational field

This is a statement that the gravitational field of a point mass has a  dependence.

Using the fact that the gravitational field is conservative, this can be expressed as the gradient of the gravitational potential ,

and Gauss’s law, then becomes

which also can be written as Poisson’s equation

Knowing the mass distribution  allows determination of the potential by solving Poisson’s equation. A special case that often is
encountered is when the mass distribution is zero in a given region. Then the potential for this region can be determined by solving
Laplace’s equation with known boundary conditions.

For example, Laplace’s equation applies in the free space between the masses. It is used extensively in electrostatics to compute the
electric potential between charged conductors which themselves are equipotentials.

Condensed forms of Newton's Law of Gravitation

The above discussion has resulted in several alternative expressions of Newton’s Law of Gravitation that will be summarized here.
The most direct statement of Newton’s law is

An elegant way to express Newton’s Law of Gravitation is in terms of the flux and circulation of the gravitational field. That is

Flux:

Φ ≡ G ⋅ dS = −4πG∫
S

∑
i

n

mi (2.14.41)

ρ

Φ ≡ g ⋅ dS = −4πG ρdv∫
S

∫
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volume

(2.14.42)

19.8.2

Φ = F ⋅ dS = ∇ ⋅ Fdv∮
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∫
enclosed
volume

(2.14.43)

Φ = g ⋅ dS = ∇ ⋅ gdv= −4πG ρdv∮
s

∫
enclosed
volume

∫
enclosed
volume

[∇ ⋅ g +4πGρ]dv= 0∫
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volume

(2.14.44)

∇ ⋅ g = −4πGρ (2.14.45)

1
r2

ϕ

g = −∇ϕ (2.14.46)

∇ ⋅ ∇ϕ = 4πGρ (2.14.47)

ϕ = 4πGρ∇2 (2.14.48)

ρ

ϕ = 0∇2 (2.14.49)

g(r) = −G d∫
V

ρ( )( − )r′ r̂ r̂
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Circulation:

The flux and circulation are better expressed in terms of the vector differential concepts of divergence and curl.

Divergence:

Curl:

Remember that the flux and divergence of the gravitational field are statements that the field between point masses has a 
dependence. The circulation and curl are statements that the field between point masses is radial.

Because the gravitational field is conservative it is possible to use the concept of the scalar potential field . This concept is
especially useful for solving some problems since the gravitational potential can be evaluated using the scalar integral

An alternate approach is to solve Poisson’s equation if the boundary values and mass distributions are known where Poisson’s
equation is:

These alternate expressions of Newton’s law of gravitation can be exploited to solve problems. The method of solution is identical
to that used in electrostatics.

Consider the simple case of the gravitational field due to a uniform sphere of matter of radius  and mass . Then the volume
mass density

The gravitational field and potential for this uniform sphere of matter can be derived three ways;

a) The field can be evaluated by directly integrating over the volume

b) The potential can be evaluated directly by integration of

and then

c) The obvious spherical symmetry can be used in conjunction with Gauss’s law to easily solve this problem.

That is: for 

∮ ⋅ dl = 0gnet (2.14.52)

∇ ⋅ g = −4πGρ (2.14.53)

∇ ×g = 0 (2.14.54)
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r pp′
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Example : gravitational field of a uniform sphere2.14.1
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Similarly, for 

That is:

Figure : Gravitational field  and gravitational potential  of a uniformly-dense spherical mass distribution of radius .

The field inside the Earth is radial and is proportional to the distance from the center of the Earth. This is Hooke’s Law, and
thus ignoring air drag, any body dropped down a hole through the center of the Earth will undergo harmonic oscillations with

an angular frequency of . This gives a period of oscillation of 1.4 hours, which is about the length of a 

 lecture in classical mechanics, which may seem like a long time.

Clearly method (c) is much simpler to solve for this case. In general, look for a symmetry that allows identification of a surface
upon which the magnitude and direction of the field is constant. For such cases use Gauss’s law. Otherwise use methods (a) or
(b) whichever one is easiest to apply. Further examples will not be given here since they are essentially identical to those
discussed extensively in electrostatics.

This page titled 2.14: Newton's Law of Gravitation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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2.E: Review of Newtonian Mechanics (Exercises)
1. Two particles are projected from the same point with velocities  and , at elevations  and , respectively .
Show that if they are to collide in mid-air the interval between the firings must be

2. The teeter totter comprises two identical weights which hang on drooping arms attached to a peg as shown. The arrangement is
unexpectedly stable and can be spun and rocked with little danger of toppling over.

Figure 

a. Find an expression for the potential energy of the teeter toy as a function of  when the teeter toy is cocked at an angle  about
the pivot point. For simplicity, consider only rocking motion in the vertical plane.

b. Determine the equilibrium values(s) of .
c. Determine whether the equilibrium is stable, unstable, or neutral for the value(s) of  found in part (b).
d. How could you determine the answers to parts (b) and (c) from a graph of the potential energy versus ?
e. Expand the expression for the potential energy about  and determine the frequency of small oscillations.

3. A particle of mass  is constrained to move on the frictionless inner surface of a cone of half-angle .

a. Find the restrictions on the initial conditions such that the particle moves in a circular orbit about the vertical axis.
b. Determine whether this kind of orbit is stable. A particle of mass  is constrained to move on the frictionless inner surface of a

cone of half-angle , as shown in the figure.

4. Consider a thin rod of length  and mass .

a. Draw gravitational field lines and equipotential lines for the rod. What can you say about the equipotential surfaces of the rod?
b. Calculate the gravitational potential at a point  that is a distance  from one end of the rod and in a direction perpendicular to

the rod.
c. Calculate the gravitational field at  by direct integration.
d. Could you have used Gauss’s law to find the gravitational field at ? Why or why not?

5. Consider a single particle of mass .

a. Determine the position  and velocity  of a particle in spherical coordinates.
b. Determine the total mechanical energy of the particle in potential .
c. Assume the force is conservative. Show that . Show that it agrees with Stoke’s theorem.
d. Show that the angular momentum  of the particle is conserved. Hint: .

6. Consider a fluid with density  and velocity  in some volume . The mass current  determines the amount of mass
exiting the surface per unit time by the integral .

a. Using the divergence theorem, prove the continuity equation, 

7. A rocket of initial mass  burns fuel at constant rate  (kilograms per second), producing a constant force . The total mass of
available fuel is . Assume the rocket starts from rest and moves in a fixed direction with no external forces acting on it.

v1 v2 α1 α2 ( > )α1 α2
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a. Determine the equation of motion of the rocket.
b. Determine the final velocity of the rocket.
c. Determine the displacement of the rocket in time.

8. Consider a solid hemisphere of radius . Compute the coordinates of the center of mass relative to the center of the spherical
surface used to define the hemisphere.

9. A 2000 kg Ford was travelling south on Mt. Hope Avenue when it collided with your 1000 kg sports car travelling west on
Elmwood Avenue. The two badly-damaged cars became entangled in the collision and leave a skid mark that is 20 meters long in a
direction 14  to the west of the original direction of travel of the Excursion. The wealthy Excursion driver hires a high-powered
lawyer who accuses you of speeding through the intersection. Use your P235 knowledge, plus the police officer’s report of the
recoil direction, the skid length, and knowledge that the coefficient of sliding friction between the tires and road is , to
deduce the original velocities of both cars. Were either of the cars exceeding the 30 mph speed limit?

10. A particle of mass  moving in one dimension has potential energy , where  and  are positive
constants.

a. Find the force  that acts on the particle.
b. Sketch . Find the positions of stable and unstable equilibrium.
c. What is the angular frequency  of oscillations about the point of stable equilibrium?
d. What is the minimum speed the particle must have at the origin to escape to infinity?
e. At  the particle is at the origin and its velocity is positive and equal to the escape velocity. Find  and sketch the result.

11.

a. Consider a single-stage rocket travelling in a straight line subject to an external force  acting along the same line where 
is the exhaust velocity of the ejected fuel relative to the rocket. Show that the equation of motion is

b. Specialize to the case of a rocket taking off vertically from rest in a uniform gravitational field . Assume that the rocket ejects
mass at a constant rate of  where  is a positive constant. Solve the equation of motion to derive the dependence of
velocity on time.

c. The first couple of minutes of the launch of the Space Shuttle can be described roughly by; initial mass  kg, mass
after 2 minutes =  kg, exhaust speed  m/s and initial velocity is zero. Estimate the velocity of the Space
Shuttle after two minutes of flight.

d. Describe what would happen to a rocket where .

12. A time independent field  is conservative if . Use this fact to test if the following fields are conservative, and
derive the corresponding potential .

a. 
b. 

13. Consider a solid cylinder of mass  and radius  sliding without rolling down the smooth inclined face of a wedge of mass 
that is free to slide without friction on a horizontal plane floor. Use the coordinates shown in the figure.

a. How far has the wedge moved by the time the cylinder has descended from rest a vertical distance ?
b. Now suppose that the cylinder is free to roll down the wedge without slipping. How far does the wedge move in this case if the

cylinder rolls down a vertical distance ?
c. In which case does the cylinder reach the bottom faster? How does this depend on the radius of the cylinder?
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Figure 

14. If the gravitational field vector is independent of the radial distance within a sphere, find the function describing the mass
density  of the sphere.

This page titled 2.E: Review of Newtonian Mechanics (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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2.S: Newtonian Mechanics (Summary)

Newton's Laws of Motion

A cursory review of Newtonian mechanics has been presented. The concept of inertial frames of reference was introduced since
Newton’s laws of motion apply only to inertial frames of reference.

Newton’s Law of motion

leads to second-order equations of motion which can be difficult to handle for many-body systems.

Solution of Newton’s second-order equations of motion can be simplified using the three first-order integrals coupled with
corresponding conservation laws. The first-order time integral for linear momentum is

The first-order time integral for angular momentum is

The first-order spatial integral is related to kinetic energy and the concept of work. That is

The conditions that lead to conservation of linear and angular momentum and total mechanical energy were discussed for many-
body systems. The important class of conservative forces was shown to apply if the position-dependent force do not depend on
time or velocity, and if the work done by a force  is independent of the path taken between the initial and final locations.
The total mechanical energy is a constant of motion when the forces are conservative.

It was shown that the concept of center of mass of a many-body or finite sized body separates naturally for all three first-order
integrals. The center of mass is that point about which

where  is the vector defining the location of mass  with respect to the center of mass. The concept of center of mass greatly
simplifies the description of the motion of finite-sized bodies and many-body systems by separating out the important internal
interactions and corresponding underlying physics, from the trivial overall translational motion of a many-body system..

The Virial theorem states that the time-averaged properties are related by

It was shown that the Virial theorem is useful for relating the time-averaged kinetic and potential energies, especially for cases
involving either linear or inverse-square forces.

Typical examples were presented of application of Newton’s equations of motion to solving systems involving constant, linear,
position-dependent, velocity-dependent, and time-dependent forces, to constrained and unconstrained systems, as well as systems
with variable mass. Rigid-body rotation about a body-fixed rotation axis also was discussed.

It is important to be cognizant of the following limitations that apply to Newton’s laws of motion:

1) Newtonian mechanics assumes that all observables are measured to unlimited precision, that is  are known exactly.
Quantum physics introduces limits to measurement due to wave-particle duality.
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2) The Newtonian view is that time and position are absolute concepts. The Theory of Relativity shows that this is not true.
Fortunately for most problems  and thus Newtonian mechanics is an excellent approximation.

3) Another limitation, to be discussed later, is that it is impractical to solve the equations of motion for many interacting bodies
such as molecules in a gas. Then it is necessary to resort to using statistical averages, this approach is called statistical mechanics.

Newton’s work constitutes a theory of motion in the universe that introduces the concept of causality. Causality is that there is a
one-to-one correspondence between cause of effect. Each force causes a known effect that can be calculated. Thus the causal
universe is pictured by philosophers to be a giant machine whose parts move like clockwork in a predictable and predetermined
way according to the laws of nature. This is a deterministic view of nature. There are philosophical problems in that such a
deterministic viewpoint appears to be contrary to free will. That is, taken to the extreme it implies that you were predestined to read
this book because it is a natural consequence of this mechanical universe!

Newton’s Laws of Gravitation
Newton’s Laws of Gravitation and the Laws of Electrostatics are essentially identical since they both involve a central inverse
square-law dependence of the forces. The important difference is that the gravitational force is attractive whereas the electrostatic
force between identical charges is repulsive. That is, the gravitational constant G is replaced by , and the mass density 
becomes the charge density for the case of electrostatics. As a consequence it is unnecessary to make a detailed study of Newton’s
law of gravitation since it is identical to what has already been studied in your accompanying electrostatic courses. Table 
summarizes and compares the laws of gravitation and electrostatics. For both gravitation and electrostatics the field is central and
conservative and depends as .

The laws of gravitation and electrostatics can be expressed in a more useful form in terms of the flux and circulation of the
gravitational field as given either in the vector integral or vector differential forms. The radial independence of the flux, and
corresponding divergence, is a statement that the fields are radial and have a  dependence. The statement that the circulation,
and corresponding curl, are zero is a statement that the fields are radial and conservative.

Gravitation Electrostatics

Force field

Density Mass density Charge density 

Conservative central field

Flux

Circulation

Divergence

Curl

Potential

Poisson’s equation

Table : Comparison of Newton’s law of gravitation and electrostatics.

Both the gravitational and electrostatic central fields are conservative making it possible to use the concept of the scalar potential
field . This concept is especially useful for solving some problems since the potential can be evaluated using a scalar integral. An
alternate approach is to solve Poisson’s equation if the boundary values and mass distributions are known. The methods of solution
of Newton’s law of gravitation are identical to those used in electrostatics and are readily accessible in the literature.
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3.1: Introduction to Linear Oscillators
Oscillations are a ubiquitous feature in nature. Examples are periodic motion of planets, the rise and fall of the tides, water waves,
pendulum in a clock, musical instruments, sound waves, electromagnetic waves, and wave-particle duality in quantal physics.
Oscillatory systems all have the same basic mathematical form although the names of the variables and parameters are different.
The classical linear theory of oscillations will be assumed in this chapter since:

1. The linear approximation is well obeyed when the amplitudes of oscillation are small, that is, the restoring force obeys Hooke’s
Law.

2. The Principle of Superposition applies.
3. The linear theory allows most problems to be solved explicitly in closed form. This is in contrast to non-linear system where the

motion can be complicated and even chaotic as discussed in chapter .
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3.2: Linear Restoring Forces
An oscillatory system requires that there be a stable equilibrium about which the oscillations occur. Consider a conservative system
with potential energy  for which the force is given by

Figure : Stability for a one-dimensional potential U(x).

Figure  illustrates a conservative system that has three locations at which the restoring force is zero, that is, where the gradient
of the potential is zero. Stable oscillations occur only around locations 1 and 3 whereas the system is unstable at the zero gradient
location 2. Point 2 is called a separatrix in that an infinitessimal displacement of the particle from this separatrix will cause the
particle to diverge towards either minimum 1 or 3 depending on which side of the separatrix the particle is displaced.

The requirements for stable oscillations about any point  are that the potential energy must have the following properties.

Stability requirements
1. The potential has a stable position for which the restoring force is zero, i.e. 
2. The potential  must be positive and an even function of displacement . That is.  where  is even.

The requirement for the restoring force to be linear is that the restoring force for perturbation about a stable equilibrium at  is of
the form

The potential energy function for a linear oscillator has a pure parabolic shape about the minimum location, that is,

where  is the location of the minimum.

Most oscillatory systems involve small amplitude oscillations about a stable minimum. For weak non-linear systems, where the
amplitude of oscillation  about the minimum is small, it is useful to make a Taylor expansion of the potential energy about the
minimum. That is

By definition, at the minimum  and thus Equation  can be written as

For small amplitude oscillations, the system is linear if the second-order  term in Equation  is dominant.

The linearity for small amplitude oscillations greatly simplifies description of the oscillatory motion and complicated chaotic
motion is avoided. Most physical systems are approximately linear for small amplitude oscillations, and thus the motion close to
equilibrium approximates a linear harmonic oscillator.
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3.3: Linearity and Superposition
An important aspect of linear systems is that the solutions obey the Principle of Superposition, that is, for the superposition of
different oscillatory modes, the amplitudes add linearly. The linearly-damped linear oscillator is an example of a linear system in
that it involves only linear operators, that is, it can be written in the operator form (appendix )

The quantity in the brackets on the left hand side is a linear operator that can be designated by  where

An important feature of linear operators is that they obey the principle of superposition. This property results from the fact that
linear operators are distributive, that is

Therefore if there are two solutions  and  for two different forcing functions  and 

then the addition of these two solutions, with arbitrary constants, also is a solution for linear operators.

In general then

The left hand bracket can be identified as the linear combination of solutions

while the driving force is a linear superposition of harmonic forces

Thus these linear combinations also satisfy the general linear equation

Applicability of the Principle of Superposition to a system provides a tremendous advantage for handling and solving the equations
of motion of oscillatory systems.
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3.4: Geometrical Representations of Dynamical Motion
The powerful pattern-recognition capabilities of the human brain, coupled with geometrical representations of the motion of
dynamical systems, provide a sensitive probe of periodic motion. The geometry of the motion often can provide more insight into
the dynamics than inspection of mathematical functions. A system with  degrees of freedom is characterized by locations ,
velocities , and momenta , in addition to the time  and instantaneous energy . Geometrical representations of the
dynamical correlations are illustrated by the configuration space and phase space representations of these  variables.

Configuration space 

A configuration space plot shows the correlated motion of two spatial coordinates  and  averaged over time. An example is the
two-dimensional linear oscillator with two equations of motion and solutions

where . For unequal restoring force constants,  the trajectory executes complicated Lissajous figures that depend

on the angular frequencies  and the phase factor . When the ratio of the angular frequencies along the two axes is rational,
that is  is a rational fraction, then the curve will repeat at regular intervals as shown in Figure , and this shape depends on
the phase difference. Otherwise the trajectory gradually fills the whole rectangle.

Figure : Configuration plots of  where  and  at four different phase values . The curves are
called Lissajous figures

State space, 

Visualization of a trajectory is enhanced by correlation of configuration  and it’s corresponding velocity  which specifies the
direction of the motion. The state space representation  is especially valuable when discussing Lagrangian mechanics which is
based on the Lagrangian .

The free undamped harmonic oscillator provides a simple application of state space. Consider a mass  attached to a spring with
linear spring constant  for which the equation of motion is

By integration this gives

The first term in Equation  is the kinetic energy, the second term is the potential energy, and  is the total energy which is
conserved for this system. This equation can be expressed in terms of the state space coordinates as
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dẋ

dx
(3.4.3)

m + k = E
1

2
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This corresponds to the equation of an ellipse for a state-space plot of  versus  as shown in Figure -upper. The elliptical
paths shown correspond to contours of constant total energy which is partitioned between kinetic and potential energy. For the
coordinate axis shown, the motion of a representative point will be in a clockwise direction as the total oscillator energy is
redistributed between potential to kinetic energy. The area of the ellipse is proportional to the total energy .

Phase space, 

Figure : State space (upper), and phase space (lower) diagrams, for the linear harmonic oscillator.

Phase space, which was introduced by J.W. Gibbs for the field of statistical mechanics, provides a fundamental graphical
representation in classical mechanics. The phase space coordinates  are the conjugate coordinates  and are fundamental
to Hamiltonian mechanics which is based on the Hamiltonian . For a conservative system, only one phase-space curve
passes through any point in phase space like the flow of an incompressible fluid. This makes phase space more useful than state
space where many curves pass through any location. Lanczos [La49] defined an extended phase space using four-dimensional
relativistic space-time as discussed in chapter .

Since  for the non-relativistic, one-dimensional, linear oscillator, then Equation  can be rewritten in the form

This is the equation of an ellipse in the phase space diagram shown in Fig. -lower which looks identical to Fig. -upper
since that the ordinate variable is multiplied by the constant . That is, the only difference is the phase-space coordinates 
replace the state-space coordinates . State space plots are used extensively in this chapter to describe oscillatory motion.
Although phase space is more fundamental, both state space and phase space plots provide useful representations for characterizing
and elucidating a wide variety of motion in classical mechanics. The following discussion of the undamped simple pendulum
illustrates the general features of state space.

Plane pendulum
Consider a simple plane pendulum of mass  attached to a string of length  in a uniform gravitational field . There is only one
generalized coordinate, . Since the moment of inertia of the simple plane-pendulum is  then the kinetic energy is

and the potential energy relative to the bottom dead center is

Thus the total energy equals
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where  is a constant of motion. Note that the angular momentum  is not a constant of motion since the angular acceleration 
explicitly depends on .

It is interesting to look at the solutions for the equation of motion for a plane pendulum on a  state space diagram shown in

Figure . The curves shown are equally-spaced contours of constant total energy. Note that the trajectories are ellipses only at
very small angles where , the contours are non-elliptical for higher amplitude oscillations. When the energy is in the
range   the motion corresponds to oscillations of the pendulum about . The center of the ellipse is at 
which is a stable equilibrium point for the oscillation. However, when  there is a phase change to rotational motion
about the horizontal axis, that is, the pendulum swings around and over top dead center, i.e. it rotates continuously in one direction
about the horizontal axis. The phase change occurs at  . and is designated by the separatrix trajectory.

Figure : State space diagram for a plane pendulum. The \theta axis is in units of  radians. Note that  and 
correspond to the same physical point, that is the phase diagram should be rolled into a cylinder connected at .

Figure  shows two cycles for  to better illustrate the cyclic nature of the phase diagram. The closed loops, shown as fine solid
lines, correspond to pendulum oscillations about  or  for  . The dashed lines show rolling motion for cases
where the total energy  . The broad solid line is the separatrix that separates the rolling and oscillatory motion. Note that
at the separatrix the kinetic energy and  are zero when the pendulum is at top dead center which occurs when . The point 

 is an unstable equilibrium characterized by phase lines that are hyperbolic to this unstable equilibrium point. Note that 
 and  correspond to the same physical point, that is, the phase diagram is better presented on a cylindrical phase space

representation since  is a cyclic variable that cycles around the cylinder whereas  oscillates equally about zero having both
positive and negative values. The state-space diagram can be wrapped around a cylinder, then the unstable and stable equilibrium
points will be at diametrically opposite locations on the surface of the cylinder at . For small oscillations about equilibrium,
also called librations, the correlation between  and  is given by the clockwise closed loops wrapped on the cylindrical surface,
whereas for energies   the positive  corresponds to counterclockwise rotations while the negative  corresponds to
clockwise rotations.

State-space diagrams will be used for describing oscillatory motion in chapters  and . Phase space is used in statistical mechanics
in order to handle the equations of motion for ensembles of  independent particles since momentum is more fundamental
than velocity. Rather than try to account separately for the motion of each particle for an ensemble, it is best to specify the region of
phase space containing the ensemble. If the number of particles is conserved, then every point in the initial phase space must
transform to corresponding points in the final phase space. This will be discussed in chapters  and .

A universal name for the  representation has not been adopted in the literature. Therefore this book has adopted the name
"state space". Lanczos [La49] uses the term "state space" to refer to the extended phase space  discussed in chapter .
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3.5: Linearly-damped Free Linear Oscillator

General solution

All simple harmonic oscillations are damped to some degree due to energy dissipation via friction, viscous forces, or electrical
resistance etc. The motion of damped systems is not conservative since energy is dissipated as heat. As was discussed in chapter 
the damping force can be expressed as

where the velocity dependent function  can be complicated. Fortunately there is a very large class of problems in electricity
and magnetism, classical mechanics, molecular, atomic, and nuclear physics, where the damping force depends linearly on velocity
which greatly simplifies solution of the equations of motion. Therefore this chapter will discuss linear damping.

Consider the free simple harmonic oscillator, that is, assuming no oscillatory forcing function, with a linear damping term 
 where the parameter  is the damping factor. Then the equation of motion is

This can be rewritten as

where the damping parameter

and the characteristic angular frequency

The general solution to the linearly-damped free oscillator is obtained by inserting the complex trial solution . Then

This implies that

The solution is

The two solutions  are complex conjugates and thus the solutions of the damped free oscillator are

This can be written as

where

2
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Underdamped motion 

When  then the square root is real so the solution can be written taking the real part of  which gives that Equation 
equals

Where  and  are adjustable constants fit to the initial conditions. Therefore the velocity is given by

This is the damped sinusoidal oscillation illustrated in Figure -upper. The solution has the following characteristics:

a. The oscillation amplitude decreases exponentially with a time constant .

b. There is a small reduction in the frequency of the oscillation due to the damping leading to 

Figure : The amplitude-time dependence and state-space diagrams for the free linearly-damped harmonic oscillator. The upper
row shows the underdamped system for the case with damping . The lower row shows the overdamped  [solid
line] and critically damped  [dashed line] in both cases assuming that initially the system is at rest.

Figure : Real and imaginary solutions  of the damped harmonic oscillator. A phase transition occurs at . For 
 (dashed) the two solutions are complex conjugates and imaginary. For , (solid), there are two real solutions 

and  with widely different decay constants where  dominates the decay at long times.

Overdamped case 

In this case the square root of  is imaginary and can be expressed as . Therefore the solution is obtained
more naturally by using a real trial solution  in Equation  which leads to two roots
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Thus the exponentially damped decay has two time constants  and .

The time constant  thus the first term  in the bracket decays in a shorter time than the second term . As
illustrated in Figure  the decay rate, which is imaginary when underdamped, i.e.  bifurcates into two real values 
for overdamped, i.e. . At large times the dominant term when overdamped is for  which has the smallest decay rate, that
is, the longest decay constant . There is no oscillatory motion for the overdamped case, it slowly moves monotonically to
zero as shown in fig 3.5 lower. The amplitude decays away with a time constant that is longer than .

Critically damped 

This is the limiting case where  For this case the solution is of the form

This motion also is non-sinusoidal and evolves monotonically to zero. As shown in Figure  the critically-damped solution
goes to zero with the shortest time constant, that is, largest . Thus analog electric meters are built almost critically damped so the
needle moves to the new equilibrium value in the shortest time without oscillation.

It is useful to graphically represent the motion of the damped linear oscillator on either a state space  diagram or phase space 
 diagram as discussed in chapter . The state space plots for the undamped, overdamped, and critically-damped solutions

of the damped harmonic oscillator are shown in Figure . For underdamped motion the state space diagram spirals inwards to
the origin in contrast to critical or overdamped motion where the state and phase space diagrams move monotonically to zero.

Energy dissipation

The instantaneous energy is the sum of the instantaneous kinetic and potential energies

where  and  are given by the solution of the equation of motion. Consider the total energy of the underdamped system

where . The average total energy is given by substitution for  and  and taking the average over one cycle. Since

Then the velocity is given by

Inserting equations  and  into  gives a small amplitude oscillation about an exponential decay for the energy .
Averaging over one cycle and using the fact that , and , gives the time-averaged total
energy as

which can be written as

Note that the energy of the linearly damped free oscillator decays away exponentially with a time constant . That is, the
intensity has a time constant that is half the time constant for the decay of the amplitude of the transient response. Note that the
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( , x)px 3.4

3.5.1

E = m + k
1

2
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average kinetic and potential energies are identical, as implied by the Virial theorem, and both decay away with the same time
constant. This relation between the mean life  for decay of the damped harmonic oscillator and the damping width term  occurs
frequently in physics.

The damping of an oscillator usually is characterized by a single parameter  called the Quality Factor where

The energy loss per radian is given by

where the numerator  is the frequency of the free damped linear oscillator.

Thus the Quality factor  equals

The larger the  factor, the less damped is the system, and the greater is the number of cycles of the oscillation in the damped wave
train. Chapter  shows that the longer the wave train, that is the higher is the  factor, the narrower is the frequency
distribution around the central value. The Mössbauer effect in nuclear physics provides a remarkably long wave train that can be
used to make high precision measurements. The high-  precision of the LIGO laser interferometer was used in the recent
successful search for gravity waves.

Oscillating system Typical Q factors

Earth, for earthquake wave 250-1400

Piano string 3000

Crystal in digital watch

Microwave cavity

Excited atom

Neutron star

LIGO laser

Mössbauer effect in nucleus

Table : Typical Q factors in nature.

This page titled 3.5: Linearly-damped Free Linear Oscillator is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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3.6: Sinusoidally-driven, linearly-damped, linear oscillator
The linearly-damped linear oscillator, driven by a harmonic driving force, is of considerable importance to all branches of science
and engineering. The equation of motion can be written as

where  is the driving force. For mathematical simplicity the driving force is chosen to be a sinusoidal harmonic force. The
solution of this second-order differential equation comprises two components, the complementary solution (transient response),
and the particular solution (steady-state response).

Transient response of a driven oscillator

The transient response of a driven oscillator is given by the complementary solution of the above second-order differential equation

which is identical to the solution of the free linearly-damped harmonic oscillator. As discussed in section  the solution of the
linearly-damped free oscillator is given by the real part of the complex variable  where

and

Underdamped motion :

When , then the square root is real so the transient solution can be written taking the real part of  which gives

The solution has the following characteristics:

a) The amplitude of the transient solution decreases exponentially with a time constant  while the energy decreases with a
time constant of .

b) There is a small downward frequency shift in that .

Overdamped case :

In this case the square root is imaginary, which can be expressed as  which is real and the solution is just an

exponentially damped one

There is no oscillatory motion for the overdamped case, it slowly moves monotonically to zero. The total energy decays away with
two time constants greater than .

Critically damped :

For this case, as mentioned for the damped free oscillator, the solution is of the form

The critically-damped system decays away the quickest.
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Steady state response of a driven oscillator
The particular solution of the differential equation gives the important steady state response,  to the forcing function.
Consider that the forcing term is a single frequency sinusoidal oscillation.

Thus the particular solution is the real part of the complex variable  which is a solution of

A trial solution is

This leads to the relation

Multiplying the numerator and denominator by the factor  gives

The steady state solution  thus is given by the real part of , that is

This can be expressed in terms of a phase  defined as

Figure : Phase between driving force and resultant motion.

As shown in Figure  the hypotenuse of the triangle equals . Thus

and

The phase  represents the phase difference between the driving force and the resultant motion. For a fixed  the phase 
when , and increases to  when . For  the phase  as .

The steady state solution can be re-expressed in terms of the phase shift  as
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Figure : Amplitude versus time, and state space plots of the transient solution (dashed) and total solution (solid) for two cases.
The upper row shows the case where the driving frequency  while the lower row shows the same for the case where the
driving frequency .

Complete solution of the driven oscillator

To summarize, the total solution of the sinusoidally forced linearly-damped harmonic oscillator is the sum of the transient and
steady-state solutions of the equations of motion.

This for the underdamped case, the transient solution is the complementary solution

where . The steady-state solution is given by the particular solution

Note that the frequency of the transient solution is  which in general differs from the driving frequency . The phase shift 
for the transient component is set by the initial conditions. The transient response leads to a more complicated motion immediately
after the driving function is switched on. Figure  illustrates the amplitude time dependence and state space diagram for the
transient component, and the total response, when the driving frequency is either  or . Note that the modulation of
the steady-state response by the transient response is unimportant once the transient response has damped out leading to a constant
elliptical state space trajectory. For cases where the initial conditions are  then the transient solution has a relative phase
difference  radians at  and relative amplitudes such that the transient and steady-state solutions cancel at .

The characteristic sounds of different types of musical instruments depend very much on the admixture of transient solutions plus
the number and mixture of oscillatory active modes. Percussive instruments, such as the piano, have a large transient component.
The mixture of transient and steady-state solutions for forced oscillations occurs frequently in studies of RLC networks in electrical
circuit analysis.
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Resonance
The discussion so far has discussed the role of the transient and steady-state solutions of the driven damped harmonic oscillator
which occurs frequently is science, and engineering. Another important aspect is resonance that occurs when the driving frequency 

 approaches the natural frequency  of the damped system. Consider the case where the time is sufficient for the transient
solution to have decayed to zero.

Figure : Resonance behavior for the linearly-damped, harmonically driven, linear oscillator.

Figure  shows the amplitude and phase for the steady-state response as  goes through a resonance as the driving frequency is
changed. The steady-states solution of the driven oscillator follows the driving force when  in that the phase difference is
zero and the amplitude is just . The response of the system peaks at resonance, while for  the harmonic system is
unable to follow the more rapidly oscillating driving force and thus the phase of the induced oscillation is out of phase with the
driving force and the amplitude of the oscillation tends to zero.

Note that the resonance frequency for a driven damped oscillator, differs from that for the undriven damped oscillator, and differs
from that for the undamped oscillator. The natural frequency for an undamped harmonic oscillator is given by

The transient solution is the same as damped free oscillations of a damped oscillator and has a frequency of the system  given
by

That is, damping slightly reduces the frequency.

For the driven oscillator the maximum value of the steady-state amplitude response is obtained by taking the maximum of the
function , that is when . This occurs at the resonance angular frequency  where

No resonance occurs if  since then  is imaginary and the amplitude decreases monotonically with increasing .
Note that the above three frequencies are identical if  but they differ when  with .

For the driven oscillator it is customary to define the quality factor  as

When  then one has a narrow high resonance peak. As the damping increases the quality factor decreases leading to a
wider and lower peak. The resonance disappears when .
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Energy absorption
Discussion of energy stored in resonant systems is best described using the steady state solution which is dominant after the
transient solution has decayed to zero. Then

This can be rewritten as

where the elastic amplitude

while the absorptive amplitude

Figure : Elastic (solid) and absorptive (dashed) amplitudes of the steady-state solution for  .

Figure  shows the behavior of the absorptive and elastic amplitudes as a function of angular frequency . The absorptive
amplitude is significant only near resonance whereas the elastic amplitude goes to zero at resonance. Note that the full width at half
maximum of the absorptive amplitude peak equals .

The work done by the force  on the oscillator is

Thus the absorbed power  is given by

The steady state response gives a velocity

Thus the steady-state instantaneous power input is

The absorptive term steadily absorbs energy while the elastic term oscillates as energy is alternately absorbed or emitted. The time
average over one cycle is given by

where  and   are the time average over one cycle. The time averages over one complete cycle for the first
term in the bracket is
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while for the second term

Thus the time average power input is given by only the absorptive term

This shape of the power curve is a classic Lorentzian shape. Note that the maximum of the average kinetic energy occurs at 
 which is different from the peak of the amplitude which occurs at . The potential energy is

proportional to the amplitude squared, i.e.  which occurs at the same angular frequency as the amplitude, that is, 

. The kinetic and potential energies resonate at different angular frequencies as a result of the fact that
the driven damped oscillator is not conservative because energy is continually exchanged between the oscillator and the driving
force system in addition to the energy dissipation due to the damping.

When , then the power equation simplifies since

Therefore

This is called the Lorentzian or Breit-Wigner shape. The half power points are at a frequency difference from resonance of 
where

Thus the full width at half maximum of the Lorentzian curve equals . Note that the Lorentzian has a narrower peak but much
wider tail relative to a Gaussian shape. At the peak of the absorbed power, the absorptive amplitude can be written as

That is, the peak amplitude increases with increase in . This explains the classic comedy scene where the soprano shatters the
crystal glass because the highest quality crystal glass has a high  which leads to a large amplitude oscillation when she sings on
resonance.

The mean lifetime  of the free linearly-damped harmonic oscillator, that is, the time for the energy of free oscillations to decay to 
 was shown to be related to the damping coefficient  by

Therefore we have the classical uncertainty principle for the linearly-damped harmonic oscillator that the measured full-width
at half maximum of the energy resonance curve for forced oscillation and the mean life for decay of the energy of a free linearly-
damped oscillator are related by

This relation is correct only for a linearly-damped harmonic system. Comparable relations between the lifetime and damping width
exist for different forms of damping.

One can demonstrate the above line width and decay time relationship using an acoustically driven electric guitar string. It also
occurs for the width of the electromagnetic radiation and the lifetime for decay of atomic or nuclear electromagnetic decay. This
classical uncertainty principle is exactly the same as the one encountered in quantum physics due to wave-particle duality. In
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nuclear physics it is difficult to measure the lifetime of states when . For shorter lifetimes the value of  can be
determined from the shape of the resonance curve which can be measured directly when the damping is large.

The harmonically-driven, resonant, series RLC circuit, is encountered frequently in AC circuits. Kirchhoff’s Rules applied to
the series RLC circuit lead to the differential equation

where  is charge,  is the inductance,  is the capacitance,  is the resistance, and the applied voltage across the circuit is 
. The linearity of the network allows use of the phasor approach which assumes that the current ,

the voltage , and the impedance is a complex number  where  is the phase difference between the
voltage and the current. For this circuit the impedance is given by

Because of the phases involved in this RLC circuit, at resonance the maximum voltage across the resistor occurs at a frequency
of , across the capacitor the maximum voltage occurs at a frequency , and across the inductor  the

maximum voltage occurs at a frequency , where  is the resonance angular frequency when . Thus

these resonance frequencies differ when .

Figure 

This page titled 3.6: Sinusoidally-driven, linearly-damped, linear oscillator is shared under a CC BY-NC-SA 4.0 license and was authored,
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3.7: Wave equation
Wave motion is a ubiquitous feature in nature. Mechanical wave motion is manifest by transverse waves on fluid surfaces,
longitudinal and transverse seismic waves travelling through the Earth, and vibrations of mechanical structures such as suspended
cables. Acoustical wave motion occurs on the stretched strings of the violin, as well as the cavities of wind instruments.
Electromagnetic wave motion includes wavelengths ranging from  radiowaves, to -rays. Matter waves are a
prominent feature of quantum physics. All these manifestations of waves exhibit the same general features of wave motion.

Wave motion occurs for deformable bodies where elastic forces acting between the nearest-neighbor atoms of the body exert time-
dependent forces on one another. Chapter  will introduce the collective modes of motion, called the normal modes, of coupled,
many-body, linear oscillators which act as independent modes of motion. However, it is useful to introduce wavemotion at this
juncture because the equations of wave motion are simple, and wave motion features prominently in several chapters of this book.

Consider a travelling wave in one dimension for a linear system. If the wave is moving, then the wave function   describing
the shape of the wave, is a function of both  and . The instantaneous amplitude of the wave   could correspond to the
transverse displacement of a wave on a string, the longitudinal amplitude of a wave on a spring, the pressure of a longitudinal
sound wave, the transverse electric or magnetic fields in an electromagnetic wave, a matter wave, etc. If the wave train maintains
its shape as it moves, then one can describe the wave train by the function  where the coordinate  is measured relative to the
shape of the wave, that is, it could correspond to the phase of a crest of the wave. Consider that  corresponds to a constant
phase, e.g. the peak of the travelling pulse, then assuming that the wave travels at a phase velocity  in the  direction and the peak
is at  for , then it is at  at time . That is, a point with phase  fixed with respect to the waveform shape of the
wave profile  moves in the  direction for  and in  direction for .

General wave motion can be described by solutions of a wave equation. The wave equation can be written in terms of the spatial
and temporal derivatives of the wave function . Consider the first partial derivatives of  = .

and

Factoring out  for the first derivatives gives

The sign in this equation depends on the sign of the wave velocity making it not a generally useful formula.

Consider the second derivatives

and

Factoring out  gives

This wave equation in one dimension for a linear system is independent of the sign of the velocity. There are an infinite number of
possible shapes of waves both travelling and standing in one dimension, all of these must satisfy this one-dimensional wave
equation. The converse is that any function that satisfies this one dimensional wave equation must be a wave in this one dimension.

The Wave Equation in three dimensions is
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There are an infinite number of possible solutions  to this wave equation, any one of which corresponds to a wave motion with
velocity .

The Wave Equation is applicable to all manifestations of wave motion, both transverse and longitudinal, for linear systems. That is,
it applies to waves on a string, water waves, seismic waves, sound waves, electromagnetic waves, matter waves, etc. If it can be
shown that a wave equation can be derived for any system, discrete or continuous, then this is equivalent to proving the existence
of waves of any waveform, frequency, or wavelength travelling with the phase velocity given by the wave equation.[Cra65]

This page titled 3.7: Wave equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via
source content that was edited to the style and standards of the LibreTexts platform.
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3.8: Travelling and standing wave solutions of the wave equation
The wave equation can have both travelling and standing-wave solutions. Consider a one-dimensional travelling wave with
velocity  having a specific wavenumber . Then the travelling wave is best written in terms of the phase of the wave as

where the wave number , with  being the wave length, and angular frequency . This particular solution satisfies the
wave equation and corresponds to a travelling wave with phase velocity  in the positive or negative direction  depending
on whether the sign is negative or positive. Assuming that the superposition principle applies, then the superposition of these two
particular solutions of the wave equation can be written as

Thus the superposition of two identical single wavelength travelling waves propagating in opposite directions can correspond to a
standing wave solution. Note that a standing wave is identical to a stationary normal mode of the system discussed in chapter .
This transformation between standing and travelling waves can be reversed, that is, the superposition of two standing waves, i.e.
normal modes, can lead to a travelling wave solution of the wave equation. Discussion of waveforms is simplified when using
either of the following two limits.

1) The time dependence of the waveform at a given location  which can be expressed using a Fourier decomposition,
appendix , of the time dependence as a function of angular frequency .

2) The spatial dependence of the waveform at a given instant  which can be expressed using a Fourier decomposition of the
spatial dependence as a function of wavenumber 

The above is applicable both to discrete, or continuous linear oscillator systems, e.g. waves on a string. In summary, stationary
normal modes of a system are obtained by a superposition of travelling waves travelling in opposite directions, or equivalently,
travelling waves can result from a superposition of stationary normal modes.

This page titled 3.8: Travelling and standing wave solutions of the wave equation is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

v k ≡ 2π

λ

Ψ(x, t) = A(k) = A(k)e
i (x∓vt)2π

λ e
i(kx∓ωt) (3.8.1)

k ≡ 2π

λ
λ ω ≡ kv

v =
ωn

kn

x

Ψ(x, t) = A(k)( + ) = A(k) ( + ) = 2A(k) cos ωte
i(kx−ωt)

e
i(kx+ωt)

e
ikx

e
−iωt

e
iωt

e
ikx (3.8.2)

14

x = x0

19.9.2 ω = nω0

Ψ( , t) = = ( )x0 ∑
n=−∞

∞

Ane
in( − t)k0x0 ω0 ∑

n=−∞

∞

Bn x0 e
−in tω0 (3.8.3)

t = t0

k = nk0

Ψ(x, ) = = ( )t0 ∑
n=−∞

∞

Ane
in( x− )k0 ω1t0 ∑

n=−∞

∞

Cn t0 e
in xk0 (3.8.4)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14009?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/03%3A_Linear_Oscillators/3.08%3A_Travelling_and_standing_wave_solutions_of_the_wave_equation
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/03%3A_Linear_Oscillators/3.08%3A_Travelling_and_standing_wave_solutions_of_the_wave_equation
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/


3.9.1 https://phys.libretexts.org/@go/page/14010

3.9: Waveform Analysis

Harmonic decomposition

As described in appendix , when superposition applies, then a Fourier series decomposition of the form  can be made of
any periodic function where

or the more general Fourier Transform can be made for an aperiodic function where

Any linear system that is subject to the forcing function  has an output that can be expressed as a linear superposition of the
solutions of the individual harmonic components of the forcing function. Fourier analysis of periodic waveforms in terms of
harmonic trigonometric functions plays a key role in describing oscillatory motion in classical mechanics and signal processing for
linear systems. Fourier’s theorem states that any arbitrary forcing function  can be decomposed into a sum of harmonic terms.
As a consequence two equivalent representations can be used to describe signals and waves; the first is in the time domain which
describes the time dependence of the signal. The second is in the frequency domain which describes the frequency decomposition
of the signal. Fourier analysis relates these equivalent representations.

Figure : The time and frequency representations of a system exhibiting beats.

For example, the superposition of two equal intensity harmonic oscillators in the time domain is given by

The free linearly-damped linear oscillator
The response of the free, linearly-damped, linear oscillator is one of the most frequently encountered waveforms in science and
thus it is useful to investigate the Fourier transform of this waveform. The damped waveform for the underdamped case, shown in
figure (3.5.1) is given by equation (3.5.12), that is

where  and where  is the angular frequency of the underdamped system. The Fourier transform is given by

which is complex and has the famous Lorentz form.
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Figure : The intensity  and Fourier transform  of the free linearly-underdamped harmonic oscillator with 
 and damping .

The intensity of the wave gives

Note that since the average over  of , then the average over the  term gives the intensity 
which has a mean lifetime for the decay of . The  distribution has the classic Lorentzian shape, shown in Figure 

, which has a full width at half-maximum, FWHM, equal to . Note that  is complex and thus one also can determine the
phase shift  which is given by the ratio of the imaginary to real parts of Equation , i.e. .

The mean lifetime of the exponential decay of the intensity can be determined either by measuring  from the time dependence, or
measuring the FWHM  of the Fourier transform . In nuclear and atomic physics excited levels decay by photon
emission with the wave form of the free linearly-damped, linear oscillator. Typically the mean lifetime  usually can be measured
when  whereas for shorter lifetimes the radiation width  becomes sufficiently large to be measured. Thus the two
experimental approaches are complementary.

Damped linear oscillator subject to an arbitrary periodic force
Fourier’s theorem states that any arbitrary forcing function  can be decomposed into a sum of harmonic terms. Consider the
response of a damped linear oscillator to an arbitrary periodic force.

For each harmonic term  the response of a linearly-damped linear oscillator to the forcing function  is
given by equation (3.6.18-3.6.20) to be

The amplitude is obtained by substituting into Equation  the derived values  from the Fourier analysis.

Frequently it is desired to isolate instrumentation from the influence of horizontal and vertical external vibrations that exist in
its environment. One arrangement to achieve this isolation is to mount a heavy base of mass  on weak springs of spring
constant  plus weak damping. The response of this system is given by Equation  which exhibits a resonance at the
angular frequency  associated with each resonant frequency  of the system. For each resonant frequency
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the system amplifies the vibrational amplitude for angular frequencies close to resonance that is, below , while it
attenuates the vibration roughly by a factor of  at higher frequencies. To avoid the amplification near the resonance it is
necessary to make  very much smaller than the frequency range of the vibrational spectrum and have a moderately high 
value. This is achieved by use a very heavy base and weak spring constant so that  is very small. A typical table may have
the resonance frequency at 0.5  which is well below typical perturbing vibrational frequencies, and thus the table attenuates
the vibration by 99% at 5  and even more attenuation for higher frequency perturbations. This principle is used extensively
in design of vibration-isolation tables for optics or microbalance equipment.

Figure : Seismic isolation of an optical bench.

This page titled 3.9: Waveform Analysis is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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3.10: Signal Processing
It has been shown that the response of the linearly-damped linear oscillator, subject to any arbitrary periodic force, can be
calculated using a frequency decomposition, (Fourier analysis), of the force, appendix . The response can equally well can be
calculated using a time-ordered discrete-time sampling of the pulse shape; that is, the Green’s function approach, appendix .
The linearly-damped, linear oscillator is the simplest example of a linear system that exhibits both resonance and frequency-
dependent response. Typical physical linear systems exhibit far more complicated response functions with multiple resonances and
corresponding frequency response. For example, an automobile suspension system involves four wheels and associated springs
plus dampers allowing the car to rock sideways, or forward and backward, in addition to the updown motion, when subject to the
forces produced by a rough road. Similarly a suspension bridge or aircraft wing can twist as well as bend due to air turbulence, or a
building can undergo complicated oscillations due to seismic waves. An acoustic system exhibits similar complexity. Signal
analysis and signal processing is of pivotal importance to elucidating the response of complicated linear systems to complicated
periodic forcing functions. This is used extensively in engineering, acoustics, and science.

The response of a low-pass filter, such as an R-C circuit or a coaxial cable, to a input square wave, shown in Figure ,
provides a simple example of the relative advantages of using the complementary Fourier analysis in the frequency domain, or the
Green’s discrete-function analysis in the time domain. The response of a repetitive square-wave input signal is shown in the time
domain and the Fourier transform to the frequency domain. The middle curves show the time dependence for the response of the
low-pass filter to an impulse  and the Fourier transform . The output of the low-pass filter can be calculated by folding
the input square wave and impulse time dependence in the time domain as shown on the left or by folding of their Fourier
transforms shown on the right. Working in the frequency domain the response of linear mechanical systems, such as an automobile
suspension or a musical instrument, as well as linear electronic signal processing systems such as amplifiers, loudspeakers and
microphones, can be treated as black boxes having a certain transfer function  describing the gain and phase shift versus
frequency. That is, the output wave frequency decomposition is

Working in the time domain, the the low-pass system has an impulse response , which is the Fourier transform of the
transfer function . In the time domain

This is shown schematically in Figure . The Fourier transformation connects the three quantities in the time domain with the
corresponding three in the frequency domain. For example, the impulse response of the low-pass filter has a fall time of  which is
related by a Fourier transform to the width of the transfer function. Thus the time and frequency domain approaches are closely
related and give the same result for the output signal for the low-pass filter to the applied square-wave input signal. The result is
that the higher-frequency components are attenuated leading to slow rise and fall times in the time domain.

Analog signal processing and Fourier analysis were the primary tools to analyze and process all forms of periodic motion during
the 20  century. For example, musical instruments, mechanical systems, electronic circuits, all employed resonant systems to
enhance the desired frequencies and suppress the undesirable frequencies and the signals were observed using analog oscilloscopes.
The remarkable development of computing has enabled use of digital signal processing leading to a revolution in signal processing
that has had a profound impact on both science and engineering. For example, the digital oscilloscope, which can sample at
frequencies above   has replaced the analog oscilloscope because it allows sophisticated analysis of each individual signal
that was not possible using analog signal processing. For example, the analog approach in nuclear physics involved tiny analog
electric signals, produced by many individual radiation detectors, that were transmitted hundreds of meters via carefully shielded
and expensive coaxial cables to the data room where the signals were amplified and signal processed using analog filters to
maximize the signal to noise in order to separate the signal from the background noise. Stray electromagnetic radiation picked up
via the cables significantly degraded the signals. The performance and limitations of the analog electronics severely restricted the
pulse processing capabilities. Digital signal processing has rapidly replaced analog signal processing. Analog to digital detector
circuits are built directly into the electronics for each individual detector so that only digital information needs to be transmitted
from each detector to the analysis computers. Computer processing provides unlimited and flexible processing capabilities for the
digital signals greatly enhancing the response and sensitivity of our detector systems. Common examples of digital signal
processing are digital CD and DVD disks.
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Figure : Response of an RC electrical circuit to an input square wave. The upper row shows the time and the exponential-
form frequency representations of the square-wave input signal. The middle row gives the impulse response, and corresponding
transfer function for the RC circuit. The bottom row shows the corresponding output properties in both the time and frequency
domains

This page titled 3.10: Signal Processing is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline
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3.11: Wave Propagation
Wave motion typically involves a packet of waves encompassing a finite number of wave cycles. Information in a wave only can be
transmitted by starting, stopping, or modulating the amplitude of a wave train, which is equivalent to forming a wave packet. For example, a
musician will play a note for a finite time, and this wave train propagates out as a wave packet of finite length. You have no information as
to the frequency and amplitude of the sound prior to the wave packet reaching you, or after the wave packet has passed you. The velocity of
the wavelets contained within the wave packet is called the phase velocity. For a dispersive system the phase velocity of the wavelets
contained within the wave packet is frequency dependent and the shape of the wave packet travels at the group velocity which usually
differs from the phase velocity. If the shape of the wave packet is time dependent, then neither the phase velocity, which is the velocity of
the wavelets, nor the group velocity, which is the velocity of an instantaneous point fixed to the shape of the wave packet envelope,
represent the actual velocity of the overall wavepacket.

A third wavepacket velocity, the signal velocity, is defined to be the velocity of the leading edge of the energy distribution, and
corresponding information content, of the wave packet. For most linear systems the shape of the wave packet is not time dependent and
then the group and signal velocities are identical. However, the group and signal velocities can be very different for non-linear systems as
discussed in chapter . Note that even when the phase velocity of the waves within the wave packet travels faster than the group velocity
of the shape, or the signal velocity of the energy content of the envelope of the wave packet, the information contained in a wave packet is
only manifest when the wave packet envelope reaches the detector and this energy and information travel at the signal velocity.

The modern ideas of wave propagation, including Hamilton’s concept of group velocity, were developed by Lord Rayleigh when applied to
the theory of sound[Ray1887]. The concept of phase, group, and signal velocities played a major role in discussion of electromagnetic
waves as well as de Broglie’s development of the concept of wave-particle duality and the development of wave mechanics by Schrödinger.

Phase, group, and signal velocities of wave packets

The concepts of wave packets, as well as their phase, group, and signal velocities, are of considerable importance for propagation of
information and other manifestations of wave motion in science and engineering which warrants further discussion at this juncture.

Consider a particular , component of a one-dimensional wave,

The argument of the exponential is called the phase  of the wave where

If we move along the  axis at a velocity such that the phase is constant then we perceive a stationary wave. The velocity of this wave is
called the phase velocity. To ensure constant phase we require that  is constant or, assuming real  and 

Therefore the phase velocity is defined to be

The velocity we have used so far is just the phase velocity of the individual wavelets at the carrier frequency. If  or  are complex then one
must take the real parts to ensure that the velocity is real.

If the phase velocity of a wave is dependent on the wavelength, that is, , then the system is said to be dispersive in that the wave is
dispersed according the wavelength. The simplest illustration of dispersion is the refraction of light in glass prism which leads to dispersion
of the light into the spectrum of wavelengths. Dispersion leads to development of wave packets that travel at group and signal velocities that
usually differ from the phase velocity. To illustrate this consider two equal amplitude travelling waves having slightly different wave
number  and angular frequency . Superposition of these waves gives

This corresponds to a wave with the average carrier frequency modulated by the cosine term which has a wavenumber of  and angular
frequency , that is, this is the usual example of beats. The cosine term modulates the average wave producing wave packets as shown in
figure (3.9.1). The velocity of these wave packets is called the group velocity given by requiring that the phase of the modulating term is
constant, that is
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Thus the group velocity is given by

If dispersion is present then the group velocity  does not equal the phase velocity .

Expanding the above example to superposition of  waves gives

In the event that  and the frequencies are continuously distributed, then the summation is replaced by an integral

where the factor  represents the distribution amplitudes of the component waves, that is the spectral decomposition of the wave. This is
the usual Fourier decomposition of the spatial distribution of the wave.

Consider an extension of the linear superposition of two waves to a well defined wave packet where the amplitude is nonzero only for a
small range of wavenumbers .

This functional shape is called a wave packet which only has meaning if . The angular frequency can be expressed by making a
Taylor expansion around 

For a linear system the phase then reduces to

The summation of terms in the exponent given by  leads to the amplitude  having the form of a product where the integral
becomes

The integral term modulates the  first term.

The group velocity is defined to be that for which the phase of the exponential term in the integral is constant. Thus

Since  then

For non-dispersive systems the phase velocity is independent of the wave number  or angular frequency  and thus . The
case discussed earlier, equation (3.9.3), for beating of two waves gives the same relation in the limit that  and  are infinitessimal.

The group velocity of a wave packet is of physical significance for dispersive media where . Every wave
train has a finite extent and thus we usually observe the motion of a group of waves rather than the wavelets moving within the wave
packet. In general, for non-linear dispersive systems the derivative  can be either positive or negative and thus in principle the group
velocity can either be greater than, or less than, the phase velocity. Moreover, if the group velocity is frequency dependent, that is, when
group velocity dispersion occurs, then the overall shape of the wave packet is time dependent and thus the speed of a specific relative
location defined by the shape of the envelope of the wave packet does not represent the signal velocity of the wave packet. Brillouin showed
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that the distribution of the energy, and corresponding information content, in any wave packet travels at the signal velocity which can be
different from the group velocity if the shape of the envelope of the wave packet is time dependent. For electromagnetic waves one has the
possibility that the group velocity . In 1914 Brillouin[Bri14][Bri60] showed that the signal velocity of electromagnetic
waves, defined by the leading edge of the time-dependent envelope of the wave packet, never exceeds  even though the group velocity
corresponding to the velocity of the instantaneous shape of the wave packet may exceed . Thus, there is no violation of Einstein’s
fundamental principle of relativity that the velocity of an electromagnetic wave cannot exceed .

The concepts of phase and group velocity are illustrated by the example of water waves moving at velocity  incident upon a straight
beach at an angle  to the shoreline. Consider that the wavepacket comprises many wavelengths of wavelength . During the time it
takes the wave to travel a distance , the point where the crest of one wave breaks on the beach travels a distance  along beach.
Thus the phase velocity of the crest of the one wavelet in the wave packet is

The velocity of the wave packet along the beach equals

Note that for the wave moving parallel to the beach  and . However, for  and .
In general for waves breaking on the beach

The same behavior is exhibited by surface waves bouncing off the sides of the Erie canal, sound waves in a trombone, and
electromagnetic waves transmitted down a rectangular wave guide. In the latter case the phase velocity exceeds the velocity of light  in
apparent violation of Einstein’s theory of relativity. However, the information travels at the signal velocity which is less than .

In the "Theory of Sound" Rayleigh discusses the example of surface waves for water where he derives a dispersion relation for the
phase velocity  and wavenumber  which are related to the density , depth , gravity , and surface tension , by

For deep water where the wavelength is short compared with the depth, that is , then  and the dispersion relation
is given approximately by

For long surface waves for deep water, that is, small , then the gravitational first term in the dispersion relation dominates and the
group velocity is given by

That is, the group velocity is half of the phase velocity. Here the wavelets are building at the back of the wave packet, progress through
the wave packet and dissipate at the front. This can be demonstrated by dropping a pebble into a calm lake. It will be seen that the
surface disturbance comprises a wave packet moving outwards at the group velocity with the individual waves within the wave packet
expanding at twice the group velocity of the wavepacket, that is, they appear at the inner radius of the wave packet and disappear at the
outer radius of the wave packet.

For small wavelength ripples, where  is large, then the surface tension term dominates and the dispersion relation is approximately
given by

leading to a group velocity of
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Here the group velocity exceeds the phase velocity and wavelets are building at the front of the wave packet and dissipate at the back.
Note that for this linear system the Brillion signal velocity equals the group velocity for both gravity and surface tension waves for deep
water.

The response to radio waves of the free electron plasma in the ionosphere provides an excellent example that involves cut-off
frequency, complex wavenumber , as well as the phase, group, and signal velocities.

Maxwell’s equations give the most general wave equation for electromagnetic waves to be

where  and  are the unbound charge and current densities. The effect of the bound charges and currents are absorbed into 
and . Ohm’s Law can be written in terms of the electrical conductivity  which is a constant

Assuming Ohm’s Law plus assuming , in the plasma gives the relations

The third term in both of these wave equations is a damping term that leads to a damped solution of an electromagnetic wave in a good
conductor.

The solution of these damped wave equations can be solved by considering an incident wave

Substituting for  in the first damped wave equation gives

That is

In general  is complex, that is, it has real  and imaginary  parts that lead to a solution of the form

The first exponential term is an exponential damping term while the second exponential term is the oscillating term.

Consider that the plasma involves the motion of a bound damped electron, of charge  of mass , bound in a one dimensional atom or
lattice subject to an oscillatory electric field of frequency . Assume that the electromagnetic wave is travelling in the  direction with
the transverse electric field in the  direction. The equation of motion of an electron can be written as

where  is the damping factor. The instantaneous displacement of the oscillating charge equals

and the velocity is
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Thus the instantaneous current density is given by

therefore the electrical conductivity is given by

Let us consider only unbound charges in the plasma, that is let . Then the conductivity is given by

For a low density ionized plasma  thus the conductivity is given approximately by

Since  is pure imaginary, then  and  have a phase difference of  which implies that the average of the Joule heating over a
complete period is . Thus there is no energy loss due to Joule heating implying that the electromagnetic energy is conserved.

Substitution of  into the relation for 

Define the Plasma oscillation frequency  to be

then  can be written as

For a low density plasma the dielectric constant  and the relative permeability  and thus  and 
. The velocity of light in vacuum . Thus for low density equation  can be written as

Differentiation of equation  with respect to  gives . That is,  and the phase velocity is

There are three cases to consider.

1) : For this case  and thus  is a pure real number. Therefore the electromagnetic wave is transmitted with a
phase velocity that exceeds  while the group velocity is less than .

2) : For this case  and thus  is a pure imaginary number. Therefore the electromagnetic wave is not

transmitted and in the ionosphere it is attenuated rapidly as . However, since there are no Joule heating losses then the
electromagnetic wave must be complete reflected. Thus the Plasma oscillation frequency serves as a cut-off frequency. For this example
the signal and group velocities are identical.

For the ionosphere  electrons/ , which corresponds to a Plasma oscillation frequency of  . Thus
electromagnetic waves in the AM waveband ( < 1.6 ) are totally reflected by the ionosphere and bounce repeatedly around the
Earth, whereas for VHF frequencies above 3 , the waves are transmitted and refracted passing through the atmosphere. Thus light
is transmitted by the ionosphere. By contrast, for a good conductor like silver, the Plasma oscillation frequency is around  
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which is in the far ultraviolet part of the spectrum. Thus, all lower frequencies, such as light, are totally reflected by such a good
conductor, whereas X-rays have frequencies above the Plasma oscillation frequency and are transmitted.

Fourier transform of wave packets

The relation between the time distribution and the corresponding frequency distribution, or equivalently, the spatial distribution and the
corresponding wave-number distribution, are of considerable importance in discussion of wave packets and signal processing. It directly
relates to the uncertainty principle that is a characteristic of all forms of wave motion. The relation between the time and corresponding
frequency distribution is given via the Fourier transform discussed in appendix . The following are two examples of the Fourier
transforms of typical but rather different wavepacket shapes that are encountered frequently in science and engineering.

Assuming that the amplitude of the wave is a Gaussian wave packet shown in the adjacent figure where

This leads to the Fourier transform

Note that the wavepacket has a standard deviation for the amplitude of the wavepacket of , that is . The Gaussian
wavepacket results in the minimum product of the standard deviations of the frequency and time representations for a wavepacket. This
has profound importance for all wave phenomena, and especially to quantum mechanics. Because matter exhibits wave-like behavior,
the above property of wave packet leads to Heisenberg’s Uncertainty Principle. For signal processing, it shows that if you truncate a
wavepacket you will broaden the frequency distribution.

Figure : Fourier transform of a Gaussian frequency distribution.

Assume unity amplitude of the frequency distribution between , that is, a single isolated square pulse of
width  that is described by the rectangular function  defined as

Then the Fourier transform us given by

19.9
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That is, the transform of a rectangular wavepacket gives a cosine wave modulated by an unnormalized sinc function which is a nice
example of a simple wave packet. That is, on the right hand side we have a wavepacket  wide. Note that the product of the
two measures of the widths . Example  considers a rectangular pulse of unity amplitude between 

which resulted in a Fourier transform . That is, for a pulse of width  the frequency envelope has the first

zero at . Note that this is the complementary system to the one considered here which has  illustrating the
symmetry of the Fourier transform and its inverse.

Wave-packet Uncertainty Principle
The Uncertainty Principle states that for all types of wave motion there is a minimum product of the uncertainty in the width of a wave
packet and the distribution width of the frequency decomposition of the wave packet. This was illustrated by the Fourier transforms of wave
packets discussed above where it was shown the product of the widths is minimized for a Gaussian-shaped wave packet. The Uncertainty
Principle implies that to make a precise measurement of the frequency of a sinusoidal wave requires that the wave packet be infinitely long.
If the length of the wave packet is reduced then the frequency distribution broadens. Then the crucial aspect needed for this discussion, is
that, for the amplitudes of any wavepacket, the standard deviations  characterizing the width of the spectral
distribution in the angular frequency domain, , and the width in time  are related:

This product of the standard deviations equals unity only for the special case of Gaussian-shaped spectral distributions, and is greater than
unity for all other shaped spectral distributions.

The intensity of the wave is the square of the amplitude leading to standard deviation widths for a Gaussian distribution where 

, that is, . Thus the standard deviations for the spectral distribution and width of the intensity of the

wavepacket are related by:

This states that the uncertainties with which you can simultaneously measure the time and frequency for the intensity of a given wavepacket
are related. If you try to measure the frequency within a short time interval  then the uncertainty in the frequency measurement 

. Accurate measurement of the frequency requires measurement times that encompass many cycles of oscillation, that is, a

long wavepacket.

Exactly the same relations exist between the spectral distribution as a function of wavenumber  and the spatial dependence of a wave 
which are conjugate representations. Thus the spectral distribution plotted versus  is directly related to the amplitude as a function of
position ; the spectral distribution versus  is related to the amplitude as a function of ; and the  spectral distribution is related to the
spatial dependence on . Following the same arguments discussed above, the standard deviation,  characterizing the width of the
spectral intensity distribution of , and the standard deviation , characterizing the spatial width of the wave packet intensity as a
function of , are related by the Uncertainty Principle for position-wavenumber. Thus in summary the uncertainty principle for the intensity
of wave motion is,

This applies to all forms of wave motion, be they, sound waves, water waves, electromagnetic waves, or matter waves.

As discussed in chapter , the transition to quantum mechanics involves relating the matter-wave properties to the energy and momentum
of the corresponding particle. That is, in the case of matter waves, multiplying both sides of Equation  by  and using the de Broglie
relations gives that the particle energy is related to the angular frequency by  and the particle momentum is related to the
wavenumber, that is . These lead to the Heisenberg Uncertainty Principle:

This uncertainty principle applies equally to the wavefunction of the electron in the hydrogen atom, proton in a nucleus, as well as to a
wavepacket describing a particle wave moving along some trajectory. Thus, this implies that, for a particle of given momentum, the
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wavefunction is spread out spatially. Planck’s constant  is extremely small compared with
energies and times encountered in normal life, and thus the effects due to the Uncertainty Principle are not manifest for macroscopic
dimensions.

Confinement of a particle, of mass , within  of a fixed location implies that there is a corresponding uncertainty in the momentum

Now the variance in momentum  is given by the difference in the average of the square , and the square of the average of .
That is

Assuming a fixed average location implies that , then

Since the kinetic energy is given by:

This zero-point energy is the minimum kinetic energy that a particle of mass  can have if confined within a distance . This zero-
point energy is a consequence of wave-particle duality and the uncertainty between the size and wavenumber for any wave packet. It is a
quantal effect in that the classical limit has  for which the zero-point energy .

Inserting numbers for the zero-point energy gives that an electron confined to the radius of the atom, that is , has a zero-
point kinetic energy of . Confining this electron to , the size of a nucleus, gives a zero-point energy of 

. Confining a proton to the size of the nucleus gives a zero-point energy of 0.5 . These values are typical of the level
spacing observed in atomic and nuclear physics. If  was a large number, then a billiard ball confined to a billiard table would be a blur as it
oscillated with the minimum zero-point kinetic energy. The smaller the spatial region that the ball was confined, the larger would be its
zero-point energy and momentum causing it to rattle back and forth between the boundaries of the confined region. Life would be
dramatically different if  was a large number.

In summary, Heisenberg’s Uncertainty Principle is a well-known and crucially important aspect of quantum physics. What is less well
known, is that the Uncertainty Principle exists for all forms of wave motion, that is, it is not restricted to matter waves. The following three
examples illustrate application of the Uncertainty Principle to acoustics, the nuclear Mössbauer effect, and quantum mechanics.

A violinist plays the note middle C (261.625 ) with constant intensity for precisely 2 seconds. Using the fact that the velocity of
sound in air is 343.2  calculate the following:

1. The wavelength of the sound wave in air:  = 343.2/261.625 = 1.312 .
2. The length of the wavepacket in air: Wavepacket length = 343.2  2 = 686.4 
3. The fractional frequency width of the note: Since the wave packet has a square pulse shape of length , then the Fourier

transform is a sinc function having the first zeros when , that is, .

Therefore the fractional width is  = 0.0019. Note that to achieve a purity of  the violinist would have to play the
note for 1.06 hours.

The Mössbauer effect in nuclear physics provides a wave packet that has an exceptionally small fractional width in frequency. For
example, the Fe nucleus emits a 14.4  deexcitation-energy photon which corresponds to   that has a decay
time of  . Thus the fractional width is . In 1959 Pound and Rebka used this to test Einstein’s general theory
of relativity by measurement of the gravitational red shift between the attic and basement of the 22.5  high physics building at
Harvard. The magnitude of the predicted relativistic red shift is  which is what was observed with a fractional
precision of about 1%.
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George Gamow, in his book ”Mr. Tompkins in Wonderland”, describes the strange world that would exist if  was a large number. As
an example, consider you play baseball in a universe where  is a large number. The pitcher throws a 150  ball 20  to the batter at a
speed of 40 . For a strike to be thrown, the ball’s position must be pitched within the 30  radius of the strike zone, that is, it is
required that  . The uncertainty relation tells us that the transverse velocity of the ball cannot be less than . The
time of flight of the ball from the mound to batter is . Because of the transverse velocity uncertainty, , the ball will deviate 

 transversely from the strike zone. This also must not exceed the size of the strike zone, that is;

Combining both of these requirements gives

This is 32 orders of magnitude larger than  so quantal effects are negligible. However, if  exceeded the above value, then the pitcher
would have difficulty throwing a reliable strike.

This page titled 3.11: Wave Propagation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via
source content that was edited to the style and standards of the LibreTexts platform.
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3.E: Linear Oscillators (Exercises)
1. Consider a simple harmonic oscillator consisting of a mass  attached to a spring of spring constant . For this oscillator 

.

a. Find an expression for .
b. Eliminate  between  and  to arrive at one equation similar to that for an ellipse.
c. Rewrite the equation in part (b) in terms of , and the total energy .
d. Give a rough sketch of the phase space diagram (  versus ) for this oscillator. Also, on the same set of axes, sketch the phase

space diagram for a similar oscillator with a total energy that is larger than the first oscillator.
e. What direction are the paths that you have sketched? Explain your answer.
f. Would different trajectories for the same oscillator ever cross paths? Why or why not?

2. Consider a damped, driven oscillator consisting of a mass  attached to a spring of spring constant .

a. What is the equation of motion for this system?
b. Solve the equation in part (a). The solution consists of two parts, the complementary solution and the particular solution. When

might it be possible to safely neglect one part of the solution?
c. What is the difference between amplitude resonance and kinetic energy resonance?
d. How might phase space diagrams look for this type of oscillator? What variables would affect the diagram?

3. A particle of mass  is subject to the following force

where  is a constant.

a. Determine the points when the particle is in equilibrium.
b. Which of these points is stable and which are unstable?
c. Is the motion bounded or unbounded?

4. A very long cylindrical shell has a mass density that depends upon the radial distance such that , where  is a constant.
The inner radius of the shell is  and the outer radius is .

a. Determine the direction and the magnitude of the gravitational field for all regions of space.
b. If the gravitational potential is zero at the origin, what is the difference between the gravitational potential at  and ?

5. A mass  is constrained to move along one dimension. Two identical springs are attached to the mass, one on each side, and
each spring is in turn attached to a wall. Both springs have the same spring constant .

a. Determine the frequency of the oscillation, assuming no damping.
b. Now consider damping. It is observed that after  oscillations, the amplitude of the oscillation has dropped to one-half of its

initial value. Find an expression for the damping constant.
c. How long does it take for the amplitude to decrease to one-quarter of its initial value?

6. Discuss the motion of a continuous string when plucked at one third of the length of the string. That is, the initial condition is 

, and 

7. When a particular driving force is applied to a stretched string it is observed that the string vibration in purely of the 
harmonic. Find the driving force.

8. Consider the two-mass system pivoted at its vertex where . It undergoes oscillations of the angle  with respect to the
vertical in the plane of the triangle.
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a. Determine the angular frequency of small oscillations.
b. Use your result from part (a) to show  for .

c. Show that your result from part (a) agrees with  where  is the equilibrium angle and  is the moment of inertia.
d. Assume the system has energy . Setup an integral that determines the period of oscillation.

9. An unusual pendulum is made by fixing a string to a horizontal cylinder of radius , wrapping the string several times around
the cylinder, and then tying a mass  to the loose end. In equilibrium the mass hangs a distance  vertically below the edge of the
cylinder. Find the potential energy if the pendulum has swung to an angle  from the vertical. Show that for small angles, it can be
written in the Hooke’s Law form . Comment of the value of .

10. Consider the two-dimensional anisotropic oscillator with motion with  and .

a. Prove that if the ratio of the frequencies is rational (that is,  where  and  are integers) then the motion is periodic.
What is the period?

b. Prove that if the same ratio is irrational, the motion never repeats itself.

11. A simple pendulum consists of a mass  suspended from a fixed point by a weight-less, extensionless rod of length .

a. Obtain the equation of motion, and in the approximation , show that the natural frequency is , where  is the

gravitational field strength.
b. Discuss the motion in the event that the motion takes place in a viscous medium with retarding force .

12. Derive the expression for the State Space paths of the plane pendulum if the total energy is  . Note that this is just the
case of a particle moving in a periodic potential . Sketch the State Space diagram for both   and 

 .

13. Consider the motion of a driven linearly-damped harmonic oscillator after the transient solution has died out, and suppose that
it is being driven close to resonance, .

a. Show that the oscillator’s total energy is .
b. Show that the energy  dissipated during one cycle by the damping force  is 

14. Two masses  and  slide freely on a horizontal frictionless rail and are connected by a spring whose force constant is k.
Find the frequency of oscillatory motion for this system.

15. A particle of mass  moves under the influence of a resistive force proportional to velocity and a potential , that is .

where  and 

a. Find the points of stable and unstable equilibrium.
b. Find the solution of the equations of motion for small oscillations around the stable equilibrium points
c. Show that as  the particle approaches one of the stable equilibrium points for most choices of initial conditions. What are

the exceptions? (Hint: You can prove this without finding the solutions explicitly.)

This page titled 3.E: Linear Oscillators (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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3.S: Linear Oscillators (Summary)
Linear systems have the feature that the solutions obey the Principle of Superposition, that is, the amplitudes add linearly for the
superposition of different oscillatory modes. Applicability of the Principle of Superposition to a system provides a tremendous
advantage for handling and solving the equations of motion of oscillatory systems.

Geometric representations of the motion of dynamical systems provide sensitive probes of periodic motion. Configuration space 
, state space  and phase space , are powerful geometric representations that are used extensively for

recognizing periodic motion where , , and  are vectors in -dimensional space.

Linearly-damped free linear oscillator
The free linearly-damped linear oscillator is characterized by the equation

The solutions of the linearly-damped free linear oscillator are of the form

The solutions fall into three categories

underdamped

overdamped

critically damped

Table 

The energy dissipation for the linearly-damped free linear oscillator time averaged over one period is given by

The quality factor  characterizing the damping of the free oscillator is define to be

where  is the energy dissipated per radian.

Sinusoidally-driven, linearly-damped, linear oscillator
The linearly-damped linear oscillator, driven by a harmonic driving force, is of considerable importance to all branches of physics,
and engineering. The equation of motion can be written as

where  is the driving force. The complete solution of this second-order differential equation comprises two components, the
complementary solution (transient response), and the particular solution (steady-state response). That is,

For the underdamped case, the transient solution is the complementary solution

and the steady-state solution is given by the particular solution
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Resonance
A detailed discussion of resonance and energy absorption for the driven linearly-damped linear oscillator was given. For resonance
the maximum amplitudes occur at frequencies

Resonant system Resonant frequency

undamped free linear oscillator

linearly-damped free linear oscillator

driven linearly-damped linear oscillator

Table 

The energy absorption for the steady-state solution for resonance is given by

where the elastic amplitude

while the absorptive amplitude

The time average power input is given by only the absorptive term

This power curve has the classic Lorentzian shape.

Wave propagation
The wave equation was introduced and both travelling and standing wave solutions of the wave equation were discussed. Harmonic
wave-form analysis, and the complementary time-sampled wave form analysis techniques, were introduced in this chapter and in
appendix . The relative merits of Fourier analysis and the digital Green’s function waveform analysis were illustrated for signal
processing.

The concepts of phase velocity, group velocity, and signal velocity were introduced. The phase velocity is given by

and group velocity

If the group velocity is frequency dependent then the information content of a wave packet travels at the signal velocity which can
differ from the group velocity.

The Wave-packet Uncertainty Principle implies that making a precise measurement of the frequency of a sinusoidal wave requires
that the wave packet be infinitely long. The standard deviation  characterizing the width of the amplitude of
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the wavepacket spectral distribution in the angular frequency domain, , and the corresponding width in time , are
related by :

The standard deviations for the spectral distribution and width of the intensity of the wave packet are related by:

This applies to all forms of wave motion, including sound waves, water waves, electromagnetic waves, or matter waves.

This page titled 3.S: Linear Oscillators (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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4.1: Introduction to Nonlinear Systems and Chaos
In nature only a subset of systems have equations of motion that are linear. Contrary to the impression given by the analytic
solutions presented in undergraduate physics courses, most dynamical systems in nature exhibit non-linear behavior that leads to
complicated motion. The solutions of non-linear equations usually do not have analytic solutions, superposition does not apply, and
they predict phenomena such as attractors, discontinuous period bifurcation, extreme sensitivity to initial conditions, rolling
motion, and chaos. During the past four decades, exciting discoveries have been made in classical mechanics that are associated
with the recognition that nonlinear systems can exhibit chaos. Chaotic phenomena have been observed in most fields of science and
engineering such as, weather patterns, fluid flow, motion of planets in the solar system, epidemics, changing populations of
animals, birds and insects, and the motion of electrons in atoms. The complicated dynamical behavior predicted by non-linear
differential equations is not limited to classical mechanics, rather it is a manifestation of the mathematical properties of the
solutions of the differential equations involved, and thus is generally applicable to solutions of first or second-order non-linear
differential equations. It is important to understand that the systems discussed in this chapter follow a fully deterministic evolution
predicted by the laws of classical mechanics, the evolution for which is based on the prior history. This behavior is completely
different from a random walk where each step is based on a random process. The complicated motion of deterministic non-linear
systems stems in part from sensitivity to the initial conditions. There are many examples of turbulent and laminar flow.

The French mathematician Poincaré is credited with being the first to recognize the existence of chaos during his investigation of
the gravitational three-body problem in celestial mechanics. At the end of the nineteenth century Poincaré noticed that such
systems exhibit high sensitivity to initial conditions characteristic of chaotic motion, and the existence of nonlinearity which is
required to produce chaos. Poincaré’s work received little notice, in part it was overshadowed by the parallel development of the
Theory of Relativity and quantum mechanics at the start of the  century. In addition, solving nonlinear equations of motion is
difficult, which discouraged work on nonlinear mechanics and chaotic motion. The field blossomed during the  when
computers became sufficiently powerful to solve the nonlinear equations required to calculate the long-time histories necessary to
document the evolution of chaotic behavior.

Laplace, and many other scientists, believed in the deterministic view of nature which assumes that if the position and velocities of
all particles are known, then one can unambiguously predict the future motion using Newtonian mechanics. Researchers in many
fields of science now realize that this “clockwork universe" is invalid. That is, knowing the laws of nature can be insufficient to
predict the evolution of nonlinear systems in that the time evolution can be extremely sensitive to the initial conditions even though
they follow a completely deterministic development. There are two major classifications of nonlinear systems that lead to chaos in
nature. The first classification encompasses nondissipative Hamiltonian systems such as Poincaré’s three-body celestial mechanics
system. The other main classification involves driven, damped, non-linear oscillatory systems.

Nonlinearity and chaos is a broad and active field and thus this chapter will focus only on a few examples that illustrate the general
features of non-linear systems. Weak non-linearity is used to illustrate bifurcation and asymptotic attractor solutions for which the
system evolves independent of the initial conditions. The common sinusoidally-driven linearly-damped plane pendulum illustrates
several features characteristic of the evolution of a non-linear system from order to chaos. The impact of non-linearity on
wavepacket propagation velocities and the existence of soliton solutions is discussed. The example of the three-body problem is
discussed in chapter . The transition from laminar flow to turbulent flow is illustrated by fluid mechanics discussed in chapter 

. Analytic solutions of nonlinear systems usually are not available and thus one must resort to computer simulations. As a
consequence the present discussion focusses on the main features of the solutions for these systems and ignores how the equations
of motion are solved.

This page titled 4.1: Introduction to Nonlinear Systems and Chaos is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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4.2: Weak Nonlinearity
Most physical oscillators become non-linear with increase in amplitude of the oscillations. Consequences of non-linearity include
breakdown of superposition, introduction of additional harmonics, and complicated chaotic motion that has great sensitivity to the
initial conditions as illustrated in this chapter. Weak non-linearity is interesting since perturbation theory can be used to solve the
non-linear equations of motion.

The potential energy function for a linear oscillator has a pure parabolic shape about the minimum location, that is, 
 where  is the location of the minimum. Weak non-linear systems have small amplitude oscillations  about

the minimum allowing use of the Taylor expansion

By definition, at the minimum  and thus Equation  can be written as

For small amplitude oscillations the system is linear when only the second-order  term in Equation  is significant.
The linearity for small amplitude oscillations greatly simplifies description of the oscillatory motion in that superposition applies,
and complicated chaotic motion is avoided. For slightly larger amplitude motion, where the higher-order terms in the expansion are
still much smaller than the second-order term, then perturbation theory can be used as illustrated by the simple plane pendulum
which is non linear since the restoring force equals

This is linear only at very small angles where the higher-order terms in the expansion can be neglected. Consider the equation of
motion at small amplitudes for the harmonically-driven, linearly-damped plane pendulum

where only the first two terms in the expansion  have been included. It was shown in chapter  that when  then the
steady-state solution of Equation  is of the form

Insert this first-order solution into Equation , then the cubic term in the expansion gives a term 
. Thus the perturbation expansion to third order involves a solution of the form

This perturbation solution shows that the non-linear term has distorted the signal by addition of the third harmonic of the driving
frequency with an amplitude that depends sensitively on . This illustrates that the superposition principle is not obeyed for this
non-linear system, but, if the non-linearity is weak, perturbation theory can be used to derive the solution of a non-linear equation
of motion.

Figure  illustrates that for a potential  the  non-linear term are greatest at the maximum amplitude 
which makes the total energy contours in state-space more rectangular than the elliptical shape for the harmonic oscillator as shown
in figure (3.4.2). The solution is of the form given in Equation .

U = k(x−1
2

x0)2 x0 Δx
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dx4
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Figure : The left side shows the potential energy for a symmetric potential . The right side shows the
contours of constant total energy on a state-space diagram.

Assume that a non-linear oscillator has a potential given by

where  is small. Find the solution of the equation of motion to first order in , assuming  at .

Solution

The equation of motion for the nonlinear oscillator is

If the  term is neglected, then the second-order equation of motion reduces to a normal linear oscillator with

where

Assume that the first-order solution has the form

Substituting this into the equation of motion, and neglecting terms of higher order than  gives

To solve this try a particular integral

and substitute into the equation of motion gives

Comparison of the coefficients gives

The homogeneous equation is

4.2.1 U(x) = 2 +x2 x4

Example : Non-linear oscillator4.2.1

U(x) = −
kx2

2

mλx3

3

λ λ x = 0 t = 0

m = − = −kx+mλẍ
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dx
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√
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which has a solution of the form

Thus combining the particular and homogeneous solutions gives

The initial condition  at  then gives

and

The constant  is given by the initial amplitude and velocity.

This system is nonlinear in that the output amplitude is not proportional to the input amplitude. Secondly, a large amplitude
second harmonic component is introduced in the output waveform; that is, for a non-linear system the gain and frequency
decomposition of the output differs from the input. Note that the frequency composition is amplitude dependent. This particular
example of a nonlinear system does not exhibit chaos. The Laboratory for Laser Energetics uses nonlinear crystals to double
the frequency of laser light.

This page titled 4.2: Weak Nonlinearity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline
via source content that was edited to the style and standards of the LibreTexts platform.
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4.3: Bifurcation and Point Attractors
Interesting new phenomena, such as bifurcation, and attractors, occur when the non-linearity is large. In chapter  it was shown that
the state-space diagram  for an undamped harmonic oscillator is an ellipse with dimensions defined by the total energy of the
system. As shown in figure (3.5.1), for the damped harmonic oscillator, the state-space diagram spirals inwards to the origin due to
dissipation of energy. Non-linearity distorts the shape of the ellipse or spiral on the state-space diagram, and thus the state-space, or
corresponding phase-space, diagrams, provide useful representations of the motion of linear and non-linear periodic systems.

The complicated motion of non-linear systems makes it necessary to distinguish between transient and asymptotic behavior. The
damped harmonic oscillator executes a transient spiral motion that asymptotically approaches the origin. The transient behavior
depends on the initial conditions, whereas the asymptotic limit of the steady-state solution is a specific location, that is called a
point attractor. The point attractor for damped motion in the anharmonic potential well

is at the minimum, which is the origin of the state-space diagram as shown in figure (4.2.1).

The more complicated one-dimensional potential well

shown in Figure , has two minima that are symmetric about  with a saddle of height .

The kinetic plus potential energies of a particle with mass  released in this potential, will be assumed to be given by

The state-space plot in Figure  shows contours of constant energy with the minima at . At slightly higher
total energy the contours are closed loops around either of the two minima at . At total energies above the saddle energy of 

 the contours are peanut-shaped and are symmetric about the origin. Assuming that the motion is weakly damped, then a particle
released with total energy  which is higher than  will follow a peanut-shaped spiral trajectory centered at 

 in the state-space diagram for . For  there are two separate solutions for the two
minimum centered at  and . This is an example of bifurcation where the one solution for  bifurcates
into either of the two solutions for .

Figure : The left side shows the potential energy for a bimodal symmetric potential . The right-hand
figure shows contours of the sum of kinetic and potential energies on a state-space diagram. For total energies above the saddle
point the particle follows peanut-shaped trajectories in statespace centered around . For total energies below the
saddle point the particle will have closed trajectories about either of the two symmetric minima located at . Thus
the system solution bifurcates when the total energy is below the saddle point.

For an initial total energy  damping will result in spiral trajectories of the particle that will be trapped in one of the
two minima. For  the particle trajectories are centered giving the impression that they will terminate at 

 when the kinetic energy is dissipated. However, for  the particle will be trapped in one of the two
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minimum and the trajectory will terminate at the bottom of that potential energy minimum occurring at . These
two possible terminal points of the trajectory are called point attractors. This example appears to have a single attractor for 

 which bifurcates leading to two attractors at  for . The determination as to which
minimum traps a given particle depends on exactly where the particle starts in state space and the damping etc. That is, for this
case, where there is symmetry about the -axis, the particle has an initial total energy  then the initial conditions
with  radians of state space will lead to trajectories that are trapped in the left minimum, and the other  radians of state space will
be trapped in the right minimum. Trajectories starting near the split between these two halves of the starting state space will be
sensitive to the exact starting phase. This is an example of sensitivity to initial conditions.

This page titled 4.3: Bifurcation and Point Attractors is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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4.4: Limit Cycles

Poincaré-Bendixson theorem

Coupled first-order differential equations in two dimensions of the form

occur frequently in physics. The state-space paths do not cross for such two-dimensional autonomous systems, where an
autonomous system is not explicitly dependent on time.

The Poincaré-Bendixson theorem states that, state-space, and phase-space, can have three possible paths:

1. closed paths, like the elliptical paths for the undamped harmonic oscillator,
2. terminate at an equilibrium point as , like the point attractor for a damped harmonic oscillator,
3. tend to a limit cycle as .

The limit cycle is unusual in that the periodic motion tends asymptotically to the limit-cycle attractor independent of whether the
initial values are inside or outside the limit cycle. The balance of dissipative forces and driving forces often leads to limit-cycle
attractors, especially in biological applications. Identification of limit-cycle attractors, as well as the trajectories of the motion
towards these limit-cycle attractors, is more complicated than for point attractors.

Figure : The Poincaré-Bendixson theorem allows the following three scenarios for two-dimensional autonomous systems. (1)
Closed paths as illustrated by the undamped harmonic oscillator. (2) Terminate at an equilibrium point as , as illustrated by
the damped harmonic oscillator, and (3) Tend to a limit cycle as  as illustrated by the van der Pol oscillator.

van der Pol damped harmonic oscillator
The van der Pol damped harmonic oscillator illustrates a non-linear equation that leads to a well-studied, limit-cycle attractor
that has important applications in diverse fields. The van der Pol oscillator has an equation of motion given by

The non-linear  damping term is unusual in that the sign changes when  leading to positive damping for 
and negative damping for  To simplify Equation , assume that the term  that is, .

This equation was studied extensively during the 1920’s and 1930’s by the Dutch engineer, Balthazar van der Pol, for describing
electronic circuits that incorporate feedback. The form of the solution can be simplified by defining a variable  Then the
second-order Equation  can be expressed as two coupled first-order equations.

It is advantageous to transform the  state space to polar coordinates by setting

and using the fact that . Therefore
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Similarly for the angle coordinate

Figure : Solutions of the van der Pol system for  top row and  bottom row, assuming that . The left
column shows the time dependence . The right column shows the corresponding  state space plots. Upper: Weak
nonlinearity, ; At large times the solution tends to one limit cycle for initial values inside or outside the limit cycle
attractor. The amplitude  for two initial conditions approaches an approximately harmonic oscillation. Lower: Strong
nonlinearity, ; Solutions approach a common limit cycle attractor for initial values inside or outside the limit cycle attractor
while the amplitude  approaches a common approximate square-wave oscillation.

Multiply Equation  by  and  by  and subtract gives

Equations  and  allow the van der Pol equations of motion to be written in polar coordinates

The non-linear terms on the right-hand side of equations -  have a complicated form.

Weak non-linearity: 

In the limit that , equations ,  correspond to a circular state-space trajectory similar to the harmonic oscillator.
That is, the solution is of the form
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dt
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dt
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dt
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where  and  are arbitrary parameters. For weak non-linearity,  the angular Equation  has a rotational frequency
that is unity since the  term changes sign twice per period, in addition to the small value of . For  and 
the radial Equation  has a sign of the  term that is positive and thus the radius increases monotonically to
unity. For  the bracket is predominantly negative resulting in a spiral decrease in the radius. Thus, for very weak non-
linearity, this radial behavior results in the amplitude spiralling to a well defined limit-cycle attractor value of  as illustrated
by the state-space plots in Figure  for cases where the initial condition is inside or external to the circular attractor. The final
amplitude for different initial conditions also approach the same asymptotic behavior.

Dominant non-linearity: 

For the case where the non-linearity is dominant, that is , then as shown in Figure , the system approaches a well
defined attractor, but in this case it has a significantly skewed shape in state-space, while the amplitude approximates a square
wave. The solution remains close to  until  and then it relaxes quickly to  with  This is
followed by the mirror image. This behavior is called a relaxed vibration in that a tension builds up slowly then dissipates by a
sudden relaxation process. The seesaw is an extreme example of a relaxation oscillator where the seesaw angle switches
spontaneously from one solution to the other when the difference in their moment arms changes sign.

The study of feedback in electronic circuits was the stimulus for study of this equation by van der Pol. However, Lord Rayleigh
first identified such relaxation oscillator behavior in  during studies of vibrations of a stringed instrument excited by a bow, or
the squeaking of a brake drum. In his discussion of non-linear effects in acoustics, he derived the equation

Differentiation of Rayleigh’s Equation  gives

Using the substitution of

leads to the relations

Substituting these relations into Equation  gives

Multiplying by  and rearranging leads to the van der Pol equation

The rhythm of a heartbeat driven by a pacemaker is an important application where the self-stabilization of the attractor is a
desirable characteristic to stabilize an irregular heartbeat; the medical term is arrhythmia. The mechanism that leads to
synchronization of the many pacemaker cells in the heart and human body due to the influence of an implanted pacemaker is
discussed in chapter . Another biological application of limit cycles is the time variation of animal populations.

In summary the non-linear damping of the van der Pol oscillator leads to a self-stabilized, single limit-cycle attractor that is
insensitive to the initial conditions. The van der Pol oscillator has many important applications such as bowed musical instruments,
electrical circuits, and human anatomy as mentioned above. The van der Pol oscillator illustrates the complicated manifestations of
the motion that can be exhibited by non-linear systems.

This page titled 4.4: Limit Cycles is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via
source content that was edited to the style and standards of the LibreTexts platform.
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4.5: Harmonically-driven, linearly-damped, plane pendulum
The harmonically-driven, linearly-damped, plane pendulum illustrates many of the phenomena exhibited by non-linear systems as
they evolve from ordered to chaotic motion. It illustrates the remarkable fact that determinism does not imply either regular
behavior or predictability. The well-known, harmonically-driven linearly-damped pendulum provides an ideal basis for an
introduction to non-linear dynamics .

Consider a harmonically-driven linearly-damped plane pendulum of moment of inertia  and mass  in a gravitational field that is
driven by a torque due to a force  acting at a moment arm . The damping term is  and the angular
displacement of the pendulum, relative to the vertical, is . The equation of motion of the harmonically-driven linearly-damped
simple pendulum can be written as

Note that the sinusoidal restoring force for the plane pendulum is non-linear for large angles . The natural period of the free
pendulum is

A dimensionless parameter , which is called the drive strength, is defined by

The equation of motion  can be generalized by introducing dimensionless units for both time  and relative drive frequency 
defined by

In addition, define the inverse damping factor  as

These definitions allow Equation  to be written in the dimensionless form

The behavior of the angle  for the driven damped plane pendulum depends on the drive strength  and the damping factor .
Consider the case where Equation  is evaluated assuming that the damping coefficient , and that the relative angular
frequency  which is close to resonance where chaotic phenomena are manifest. The Runge-Kutta method is used to solve
this non-linear equation of motion.

Close to Linearity
For drive strength  the amplitude is sufficiently small that  superposition applies, and the solution is identical to
that for the driven linearly-damped linear oscillator. As shown in Figure , once the transient solution dies away, the steady-
state solution asymptotically approaches one attractor that has an amplitude of  radians and a phase shift  with respect to the
driving force. The abscissa is given in units of the dimensionless time . The transient solution depends on the initial
conditions and dies away after about  periods, whereas the steady-state solution is independent of the initial conditions and has a
state-space diagram that has an elliptical shape, characteristic of the harmonic oscillator. For all initial conditions, the time
dependence and state space diagram for steady-state motion approaches a unique solution, called an "attractor", that is, the
pendulum oscillates sinusoidally with a given amplitude at the frequency of the driving force and with a constant phase shift , i.e.

This solution is identical to that for the harmonically-driven, linearly-damped, linear oscillator discussed in chapter 
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Figure : Motion of the driven damped pendulum for drive strengths of , , , and . The left
side shows the time dependence of the deflection angle  with the time axis expressed in dimensionless units . The right side
shows the corresponding state-space plots. These plots assume , , and the motion starts with .

Figure : The driven damped pendulum assuming that , , with initial conditions , . The
system exhibits period-two motion for drive strengths of  as shown by the state space diagram for cycles . For 

 the system exhibits period-four motion shown for cycles .
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Weak nonlinearity
Figure  shows that for drive strength , after the transient solution dies away, the steady-state solution settles down to
one attractor that oscillates at the drive frequency with an amplitude of slightly more than  radians for which the small angle
approximation fails. The distortion due to the non-linearity is exhibited by the non-elliptical shape of the state-space diagram.

The observed behavior can be calculated using the successive approximation method discussed in chapter . That is, close to
small angles the sine function can be approximated by replacing

in Equation  to give

As a first approximation assume that

then the small  term in Equation  contributes a term proportional to . But

That is, the nonlinearity introduces a small term proportional to . Since the right-hand side of Equation  is a
function of only  then the terms in  and  on the left hand side must contain the third harmonic  term.
Thus a better approximation to the solution is of the form

where the admixture coefficient . This successive approximation method can be repeated to add additional terms proportional
to  where  is an integer with . Thus the nonlinearity introduces progressively weaker -fold harmonics to the
solution. This successive approximation approach is viable only when the admixture coefficient  Note that these harmonics
are integer multiples of , thus the steady-state response is identical for each full period even though the state space contours
deviate from an elliptical shape.

Onset of complication
Figure  shows that for  the drive strength is sufficiently strong to cause the transient solution for the pendulum to
rotate through two complete cycles before settling down to a single steady-state attractor solution at the drive frequency. However,
this attractor solution is shifted two complete rotations relative to the initial condition. The state space diagram clearly shows the
rolling motion of the transient solution for the first two periods prior to the system settling down to a single steady-state attractor.
The successive approximation approach completely fails at this coupling strength since  oscillates through large values that are
multiples of 

Figure  shows that for drive strength  the motion evolves to a much more complicated periodic motion with a
period that is three times the period of the driving force. Moreover the amplitude exceeds  corresponding to the pendulum
oscillating over top dead center with the centroid of the motion offset by  from the initial condition. Both the state-space
diagram, and the time dependence of the motion, illustrate the complexity of this motion which depends sensitively on the
magnitude of the drive strength  in addition to the initial conditions,  and damping factor  as is shown in Figure 

Period doubling and bifurcation
For drive strength  with the initial condition  the system exhibits a regular motion with a period
that is three times the drive period. In contrast, if the initial condition is  then, as shown in Figure , the
steady-state solution has the drive frequency with no offset in , that is, it exhibits period-one oscillation. This appearance of two
separate and very different attractors for  using different initial conditions, is called bifurcation.
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An additional feature of the system response for  is that changing the initial conditions to  shows
that the amplitude of the even and odd periods of oscillation differ slightly in shape and amplitude, that is, the system really has
period-two oscillation. This period-two motion, i.e. period doubling, is clearly illustrated by the state space diagram in that,
although the motion still is dominated by period-one oscillations, the even and odd cycles are slightly displaced. Thus, for different
initial conditions, the system for  bifurcates into either of two attractors that have very different waveforms, one of which
exhibits period doubling.

The period doubling exhibited for  is followed by a second period doubling when  as shown in Figure .
With increase in drive strength this period doubling keeps increasing in binary multiples to period , , ,  etc. Numerically it
is found that the threshold for period doubling is  from two to four occurs at  etc. Feigenbaum showed
that this cascade increases with increase in drive strength according to the relation that obeys

where ,  is called a Feigenbaum number. As this cascading sequence goes to a limit  where

Rolling motion
It was shown that for  the transient solution causes the pendulum to have angle excursions exceeding , that is, the
system rolls over top dead center. For drive strengths in the range  the steady-state solution for the system
undergoes continuous rolling motion as illustrated in Figure . The time dependence for the angle exhibits a periodic
oscillatory motion superimposed upon a monotonic rolling motion, whereas the time dependence of the angular frequency 
is periodic. The state space plots for rolling motion corresponds to a chain of loops with a spacing of  between each loop. The
state space diagram for rolling motion is more compactly presented if the origin is shifted by  per revolution to keep the plot
within bounds as illustrated in Figure .

Figure : Rolling motion for the driven damped plane pendulum for . (a) The time dependence of angle  increases
by  per drive period whereas (b) the angular velocity  exhibits periodicity. (c) The state space plot for rolling motion is
shown with the origin shifted by  per revolution to keep the plot within the bounds 

Onset of chaos
When the drive strength is increased to  then the system does not approach a unique attractor as illustrated by Figure 

 which shows state space orbits for cycles . Note that these orbits do not repeat implying the onset of chaos. For
drive strengths greater than  the driven damped plane pendulum starts to exhibit chaotic behavior. The onset of chaotic
motion is illustrated by making a -dimensional plot which combines the time coordinate with the state-space coordinates as
illustrated in Figure . This plot shows  trajectories starting at different initial values in the range 
for . Some solutions are erratic in that, while trying to oscillate at the drive frequency, they never settle down to a steady
periodic motion which is characteristic of chaotic motion. Figure  illustrates the considerable sensitivity of the motion to
the initial conditions. That is, this deterministic system can exhibit either order, or chaos, dependent on miniscule differences in
initial conditions.
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Figure : Left: Space-space orbits for the driven damped pendulum with . Note that the orbits do not repeat for
cycles 25 to 200. Right: Time-state-space diagram for . The plot shows 16 trajectories starting with different initial
values in the range .

Figure : State-space plots for the harmonically-driven, linearly-damped, pendulum for driving amplitudes of  and 
. These calculations were performed using the Runge-Kutta method by E. Shah, (Private communication)

A similar approach is used by the book "Chaotic Dynamics" by Baker and Gollub[Bak96].

This page titled 4.5: Harmonically-driven, linearly-damped, plane pendulum is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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4.6: Differentiation Between Ordered and Chaotic Motion
Chapter  showed that motion in non-linear systems can exhibit both order and chaos. The transition between ordered motion and
chaotic motion depends sensitively on both the initial conditions and the model parameters. It is surprisingly difficult to
unambiguously distinguish between complicated ordered motion and chaotic motion. Moreover, the motion can fluctuate between
order and chaos in an erratic manner depending on the initial conditions. The extremely sensitivity to initial conditions of the
motion for non-linear systems, makes it essential to have quantitative measures that can characterize the degree of order, and
interpret the complicated dynamical motion of systems. As an illustration, consider the harmonically-driven, linearly-damped,
pendulum with  and driving force  where . Figure (4.5.5) shows the state-space plots for two
driving amplitudes,  which leads to ordered motion, and  which leads to possible chaotic motion. It can be seen
that for  the state-space diagram converges to a single attractor once the transient solution has died away. This is in
contrast to the case for  where the state-space diagram does not converge to a single attractor, but exhibits possible
chaotic motion. Three quantitative measures can be used to differentiate ordered motion from chaotic motion for this system;
namely, the Lyapunov exponent, the bifurcation diagram, and the Poincaré section, as illustrated below.

Lyapunov Exponent
The Lyapunov exponent provides a quantitative and useful measure of the instability of trajectories, and how quickly nearby
initial conditions diverge. It compares two identical systems that start with an infinitesimally small difference in the initial
conditions in order to ascertain whether they converge to the same attractor at long times, corresponding to a stable system, or
whether they diverge to very different attractors, characteristic of chaotic motion. If the initial separation between the trajectories in
phase space at  is , then to first order the time dependence of the difference can be assumed to depend exponentially on
time. That is,

where  is the Lyapunov exponent. That is, the Lyapunov exponent is defined to be

Systems for which the Lyapunov exponent  (negative), converge exponentially to the same attractor solution at long times
since  for . By contrast, systems for which  (positive) diverge to completely different long-time solutions,
that is,  for . Even for infinitesimally small differences in the initial conditions, systems having a positive
Lyapunov exponent diverge to different attractors, whereas when the Lyapunov exponent  they correspond to stable
solutions.
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Figure : Lyapunov plots of  versus time for two initial starting points differing by  . The parameters are 
, and , and  . The Lyapunov exponent for  which is drawn as a dashed line, is

convergent with . For  the exponent is divergent as indicated by the dashed line which as a slope of 
. These calculations were performed using the Runge-Kutta method by E. Shah, (Private communication)

Figure  illustrates Lyapunov plots for the harmonically-driven, linearly-damped, plane pendulum, with the same conditions
discussed in chapter . Note that for the small driving amplitude  the Lyapunov plot converges to ordered motion with
an exponent  whereas for  the plot diverges characteristic of chaotic motion with an exponent 
The Lyapunov exponent usually fluctuates widely at the local oscillator frequency, and thus the time average of the Lyapunov
exponent must be taken over many periods of the oscillation to identify the general trend with time. Some systems near an order-to-
chaos transition can exhibit positive Lyapunov exponents for short times, characteristic of chaos, and then converge to negative 
at longer time implying ordered motion. The Lyapunov exponents are used extensively to monitor the stability of the solutions for
non-linear systems. For example the Lyapunov exponent is used to identify whether fluid flow is laminar or turbulent as discussed
in chapter .

A dynamical system in -dimensional phase space will have a set of  Lyapunov exponents  associated with a set
of attractors, the importance of which depend on the initial conditions. Typically one Lyapunov exponent dominates at one specific
location in phase space, and thus it is usual to use the maximal Lyapunov exponent to identify chaos. The Lyapunov exponent is a
very sensitive measure of the onset of chaos and provides an important test of the chaotic nature for the complicated motion
exhibited by non-linear systems.

Bifurcation Diagram
The bifurcation diagram simplifies the presentation of the dynamical motion by sampling the status of the system once per period,
synchronized to the driving frequency, for many sets of initial conditions. The results are presented graphically as a function of one
parameter of the system in the bifurcation diagram. For example, the wildly different behavior in the driven damped plane
pendulum is represented on a bifurcation diagram in Figure , which shows the observed angular velocity  of the pendulum
sampled once per drive cycle plotted versus drive strength. The bifurcation diagram is obtained by sampling either the angle , or
angular velocity , once per drive cycle, that is, it represents the observables of the pendulum using a stroboscopic technique that
samples the motion synchronous with the drive frequency. Bifurcation plots also can be created as a function of either the time ,
the damping factor , the normalized frequency , or the driving amplitude .
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Figure : Bifurcation diagram samples the angular velocity  once per period for the driven, linearly-damped, plane pendulum
plotted as a function of the drive strength . Regions of period doubling, and chaos, as well as islands of stability all are manifest as
the drive strength  is changed. Note that the limited number of samples causes broadening of the lines adjacent to bifurcations.

In the domain with drive strength  there is one unique angle each drive cycle as illustrated by the bifurcation diagram.
For slightly higher drive strength period-two bifurcation behavior results in two different angles per drive cycle. The Lyapunov
exponent is negative for this region corresponding to ordered motion. The cascade of period doubling with increase in drive
strength is readily apparent until chaos sets in at the critical drive strength  when there is a random distribution of sampled
angular velocities and the Lyapunov exponent becomes positive. Note that at  there is a brief interval of period-
motion followed by another region of chaos. Around  there is a region that is primarily chaotic which is reflected by
chaotic values of the angular velocity on the bifurcation plot and large positive values of the Lyapunov exponent. The region
around  exhibits period three motion and negative Lyapunov exponent corresponding to ordered motion. The 

 region is mainly chaotic and has a large positive Lyapunov exponent. The region with  is striking
in that this corresponds to rolling motion with reemergence of period one and negative Lyapunov exponent. This period-1 motion is
due to a continuous rolling motion of the plane pendulum as shown in figure (4.5.3) where it is seen that the average  increases 
per cycle, whereas the angular velocity  exhibits a periodic motion. That is, on average the pendulum is rotating  per cycle.
Above  the system start to exhibit period doubling followed by chaos reminiscent of the behavior seen at lower  values.

These results show that the bifurcation diagram nicely illustrates the order to chaos transitions for the harmonically-driven,
linearly-damped, pendulum. Several transitions between order and chaos are seen to occur. The apparent ordered and chaotic
regimes are confirmed by the corresponding Lyapunov exponents which alternate between negative and positive values for the
ordered and chaotic regions respectively.

Poincaré Section
State-space plots are very useful for characterizing periodic motion, but they become too dense for useful interpretation when the
system approaches chaos as illustrated in Figure . Poincaré sections solve this difficulty by taking a stroboscopic sample once
per cycle of the state-space diagram. That is, the point on the state space orbit is sampled once per drive frequency. For period-
motion this corresponds to a single point . For period-  motion this corresponds to two points etc. For chaotic systems the
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sequence of state-space sample points follow complicated trajectories. Figure  shows the Poincaré sections for the
corresponding state space diagram shown in figure (4.5.5) for cycles  to . Note the complicated curves do not cross or
repeat. Enlargements of any part of this plot will show increasingly dense parallel trajectories, called fractals, that indicates the
complexity of the chaotic cyclic motion. That is, zooming in on a small section of this Poincaré plot shows many closely parallel
trajectories. The fractal attractors are surprisingly robust to large differences in initial conditions. Poincaré sections are a sensitive
probe of periodic motion for systems where periodic motion is not readily apparent.

Figure : Three Poincaré section plots for the harmonically-driven, linearly-damped, pendulum for various initial conditions
with , , and . These calculations used the Runge-Kutta method and were performed for 6000 cycles by
E. Shah (Private communication).

In summary, the behavior of the well-known, harmonically-driven, linearly-damped, plane pendulum becomes remarkably
complicated at large driving amplitudes where non-linear effects dominate. That is, when the restoring force is non-linear. The
system exhibits bifurcation where it can evolve to multiple attractors that depend sensitively on the initial conditions. The system
exhibits both oscillatory, and rolling, solutions depending on the amplitude of the motion. The system exhibits domains of simple
ordered motion separated by domains of very complicated ordered motion as well as chaotic regions. The transitions between these
dramatically different modes of motion are extremely sensitive to the amplitude and phase of the driver. Eventually the motion
becomes completely chaotic. The Lyapunov exponent, bifurcation diagram, and Poincaré section plots, are sensitive measures of
the order of the motion. These three sensitive measures of order and chaos are used extensively in many fields in classical
mechanics. Considerable computing capabilities are required to elucidate the complicated motion involved in non-linear systems.
Examples include laminar and turbulent flow in fluid dynamics and weather forecasting of hurricanes, where the motion can span a
wide dynamic range in dimensions from  to  .

This page titled 4.6: Differentiation Between Ordered and Chaotic Motion is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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4.7: Wave Propagation for Non-linear Systems

Phase, group, and signal velocities

Chapter  discussed the wave equation and solutions for linear systems. It was shown that, for linear systems, the wave motion
obeys superposition and exhibits dispersion, that is, a frequency-dependent phase velocity, and, in some cases, attenuation.
Nonlinear systems introduce intriguing new wave phenomena. For example for nonlinear systems, second, and higher terms must
be included in the Taylor expansion given in equation . These second and higher order terms result in the group velocity
being a function of  that is, group velocity dispersion occurs which leads to the shape of the envelope of the wave packet being
time dependent. As a consequence the group velocity in the wave packet is not well defined, and does not equal the signal velocity
of the wave packet or the phase velocity of the wavelets. Nonlinear optical systems have been studied experimentally where 

, which is called slow light, while other systems have  which is called superluminal light. The ability to
control the velocity of light in such optical systems is of considerable current interest since it has signal transmission applications.

The dispersion relation for a nonlinear system can be expressed as a Taylor expansion of the form

where  is used as the independent variable since it is invariant to phase transitions of the system. Note that the factor for the first
derivative term is the reciprocal of the group velocity

while the factor for the second derivative term is

which gives the velocity dispersion for the system.

Since

then

The inverse velocities for electromagnetic waves are best represented in terms of the corresponding refractive indices  where

and the group refractive index

Then Equation  can be written in the more convenient form
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Figure : The real and imaginary parts of the phase refractive index n plus the real part of the group refractive index associated
with an isolated atomic resonance.

Wave propagation for an optical system that is subject to a single resonance gives one example of nonlinear frequency response
that has applications to optics.

Figure  shows that the real  and imaginary  parts of the phase refractive index exhibit the characteristic resonance
frequency dependence of the sinusoidally-driven, linear oscillator that was discussed in chapter  and as illustrated in figure
(3.6.4). Figure  also shows the group refractive index  computed using Equation .

Note that at resonance,  is reduced below the non-resonant value which corresponds to superluminal (fast) light, whereas in
the wings of the resonance  is larger than the non-resonant value corresponding to slow light. Thus the nonlinear dependence
of the refractive index  on angular frequency  leads to fast or slow group velocities for isolated wave packets. Velocities of light
as slow as   have been observed. Experimentally the energy absorption that occurs on resonance makes it difficult to
observe the superluminal electromagnetic wave at resonance.

Note that Sommerfeld and Brillouin showed that even though the group velocity may exceed , the signal velocity, which marks
the arrival of the leading edge of the optical pulse, does not exceed , the velocity of light in vacuum, as was postulated by
Einstein.

Soliton wave propagation
The soliton is a fascinating and very special wave propagation phenomenon that occurs for certain non-linear systems. The soliton
is a self-reinforcing solitary localized wave packet that maintains its shape while travelling long distances at a constant speed.
Solitons are caused by a cancellation of phase modulation resulting from non-linear velocity dependence, and the group velocity
dispersive effects in a medium. Solitons arise as solutions of a widespread class of weakly-nonlinear dispersive partial differential
equations describing many physical systems. Figure  shows a soliton comprising a solitary water wave approaching the coast
of Hawaii. While the soliton in Fig.  may appear like a normal wave, it is unique in that there are no other waves
accompanying it. This wave was probably created far away from the shore when a normal wave was modulated by a geometrical
change in the ocean depth, such as the rising sea floor, which forced it into the appropriate shape for a soliton. The wave then was
able to travel to the coast intact, despite the apparently placid nature of the ocean near the beach. Solitons are notable in that they
interact with each other in ways very different from normal waves. Normal waves are known for their complicated interference
patterns that depend on the frequency and wavelength of the waves. Solitons, can pass right through each other without being a
affected at all. This makes solitons very appealing to scientists because soliton waves are more sturdy than normal waves, and can
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therefore be used to transmit information in ways that are distinctly different than for normal wave motion. For example, optical
solitons are used in optical fibers made of a dispersive, nonlinear optical medium, to transmit optical pulses with an invariant
shape.

Figure : A solitary wave approaches the coast of Hawaii. (Image: Robert Odom/University of Washington)

Solitons were first observed in  by John Scott Russell ( ). Russell was an engineer conducting experiments to
increase the efficiency of canal boats. His experimental and theoretical investigations allowed him to recreate the phenomenon in
wave tanks. Through his extensive studies, Scott Russell noticed that soliton propagation exhibited the following properties:

The waves are stable and hold their shape for long periods of time.
The waves can travel over long distances at uniform speed.
The speed of propagation of the wave depends on the size of the wave, with larger waves traveling faster than smaller waves.
The waves maintained their shape when they collided - seemingly passing right through each other.

Scott Russell’s work was met with scepticism by the scientific community. The problem with the Wave of Translation was that it
was an effect that depended on nonlinear effects, whereas previously existing theories of hydrodynamics (such as those of Newton
and Bernoulli) only dealt with linear systems. George Biddell Airy, and George Gabriel Stokes, published papers attacking Scott
Russell’s observations because the observations could not be explained by their theories of wave propagation in water. Regardless,
Scott Russell was convinced of the prime importance of the Wave of Translation, and history proved that he was correct. Scott
Russell went on to develop the "wave line" system of hull construction that revolutionized nineteenth century naval architecture,
along with a number of other great accomplishments leading him to fame and prominence. Despite all of the success in his career,
he continued throughout his life to pursue his studies of the Wave of Translation.

In  Korteweg and de Vries developed a wave equation for surface waves for shallow water.

A solution of this equation has the characteristics of a solitary wave with fixed shape. It is given by substituting the form 
 into the Korteweg-de Vries equation which gives

Integrating with respect to  gives

where  is a constant of integration. This non-linear equation has a solution
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where  is a constant. Equation  is the equation of a solitary wave moving in the  direction at a velocity .

Soliton behavior is observed in phenomena such as tsunamis, tidal bores that occur for some rivers, signals in optical fibres,
plasmas, atmospheric waves, vortex filaments, superconductivity, and gravitational fields having cylindrical symmetry. Much work
has been done on solitons for fibre optics applications. The soliton’s inherent stability make long-distance transmission possible
without the use of repeaters, and could potentially double the transmission capacity.

Before the discovery of solitons, mathematicians were under the impression that nonlinear partial differential equations could not
be solved exactly. However, solitons led to the recognition that there are non-linear systems that can be solved analytically. This
discovery has prompted much investigation into these so-called "integrable systems." Such systems are rare, as most non-linear
differential equations admit chaotic behavior with no explicit solutions. Integrable systems nevertheless lead to very interesting
mathematics ranging from differential geometry and complex analysis to quantum field theory and fluid dynamics.

Many of the fundamental equations in physics (Maxwell’s, Schrödinger’s) are linear equations. However, physicists have begun to
recognize many areas of physics in which nonlinearity can result in qualitatively new phenomenon which cannot be constructed via
perturbation theory starting from linearized equations. These include phenomena in magnetohydrodynamics, meteorology,
oceanography, condensed matter physics, nonlinear optics, and elementary particle physics. For example, the European space
mission Cluster detected a soliton-like electrical disturbances that travelled through the ionized gas surrounding the Earth starting
about 50,000 kilometers from Earth and travelling towards the planet at about 8 km/s. It is thought that this soliton was generated
by turbulence in the magnetosphere.

Efforts to understand the nonlinearity of solitons has led to much research in many areas of physics. In the context of solitons, their
particle-like behavior (in that they are localized and preserved under collisions) leads to a number of experimental and theoretical
applications. The technique known as bosonization allows viewing particles, such as electrons and positrons, as solitons in
appropriate field equations. There are numerous macroscopic phenomena, such as internal waves on the ocean, spontaneous
transparency, and the behavior of light in fiber optic cable, that are now understood in terms of solitons. These phenomena are
being applied to modern technology.

This page titled 4.7: Wave Propagation for Non-linear Systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
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4.E: Nonlinear Systems and Chaos (Exercises)
1. Consider the chaotic motion of the driven damped pendulum whose equation of motion is given by

for which the Lyapunov exponent is  with time measured in units of the drive period.

a. Assume that you need to predict  with accuracy of  , and that the initial value  is known to within 
  . What is the maximum time horizon  for which you can predict  to within the required accuracy?

b. Suppose that you manage to improve the accuracy of the initial value to   (that is, a thousand-fold
improvement). What is the time horizon now for achieving the accuracy of  ?

c. By what factor has  improved with the  improvement in initial measurement.
d. What does this imply regarding long-term predictions of chaotic motion?

2. A non-linear oscillator satisfies the equation  Find the polar equations for the motion in the state-space
diagram. Show that any trajectory that starts within the circle  encircle the origin infinitely many times in the clockwise
direction. Show further that these trajectories in state space terminate at the origin.

3. Consider the system of a mass suspended between two identical springs as shown.

Figure 

 
If each spring is stretched a distance  to attach the mass at the equilibrium position the mass is subject to two equal and
oppositely directed forces of magnitude . Ignore gravity. Show that the potential in which the mass moves is approximately

Construct a state-space diagram for this potential.

4. A non-linear oscillator satisfies the equation

Find the polar equations for the motion in the state-space diagram. Show that any trajectory that starts in the domain 
 spirals clockwise and tends to the limit cycle . [The same is true of trajectories that start in the domain 

. ] What is the period of the limit cycle?

5. A mass  moves in one direction and is subject to a constant force  when  and to a constant force  when .
Describe the motion by constructing a state space diagram. Calculate the period of the motion in terms of  and the
amplitude . Disregard damping.

6. Investigate the motion of an undamped mass subject to a force of the form

This page titled 4.E: Nonlinear Systems and Chaos (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
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4.S: Nonlinear Systems and Chaos (Summary)
The study of the dynamics of non-linear systems remains a vibrant and rapidly evolving field in classical mechanics as well as
many other branches of science. This chapter has discussed examples of non-linear systems in classical mechanics. It was shown
that the superposition principle is broken even for weak nonlinearity. It was shown that increased nonlinearity leads to bifurcation,
point attractors, limit-cycle attractors, and sensitivity to initial conditions.

Limit-cycle attractors
The Poincaré-Bendixson theorem for limit cycle attractors states that the paths, both in state-space and phase-space, can have three
possible paths:

1. closed paths, like the elliptical paths for the undamped harmonic oscillator,
2. terminate at an equilibrium point as , like the point attractor for a damped harmonic oscillator,
3. tend to a limit cycle as .

The limit cycle is unusual in that the periodic motion tends asymptotically to the limit-cycle attractor independent of whether the
initial values are inside or outside the limit cycle. The balance of dissipative forces and driving forces often leads to limit-cycle
attractors, especially in biological applications. Identification of limit-cycle attractors, as well as the trajectories of the motion
towards these limit-cycle attractors, is more complicated than for point attractors.

The van der Pol oscillator is a common example of a limit-cycle system that has an equation of motion of the form

The van der Pol oscillator has a limit-cycle attractor that includes non-linear damping and exhibits periodic solutions that
asymptotically approach one attractor solution independent of the initial conditions. There are many examples in nature that exhibit
similar behavior.

Harmonically-driven, linearly-damped, plane pendulum
The non-linearity of the well-known driven linearly-damped plane pendulum was used as an example of the behavior of non-linear
systems in nature. It was shown that non-linearity leads to discontinuous period bifurcation, extreme sensitivity to initial
conditions, rolling motion and chaos.

Differentiation between ordered and chaotic motion

Lyapunov exponents, bifurcation diagrams, and Poincaré sections were used to identify the transition from order to chaos. Chapter 
 discusses the non-linear Navier-Stokes equations of viscous-fluid flow which leads to complicated transitions between

laminar and turbulent flow. Fluid flow exhibits remarkable complexity that nicely illustrates the dominant role that non-linearity
can have on the solutions of practical non-linear systems in classical mechanics.

Wave propagation for non-linear systems
Non-linear equations can lead to unexpected behavior for wave packet propagation such as fast or slow light as well as soliton
solutions. Moreover, it is notable that some non-linear systems can lead to analytic solutions.

The complicated phenomena exhibited by the above non-linear systems is not restricted to classical mechanics, rather it is a
manifestation of the mathematical behavior of the solutions of the differential equations involved. That is, this behavior is a general
manifestation of the behavior of solutions for second-order differential equations. Exploration of this complex motion has only
become feasible with the advent of powerful computer facilities during the past three decades. The breadth of phenomena exhibited
by these examples is manifest in other nonlinear systems, ranging from many-body motion, weather patterns, growth of biological
species, epidemics, motion of electrons in atoms, etc. Other examples of non-linear equations of motion not discussed here, are the
three-body problem, which is mentioned in chapter , and turbulence in fluid flow which is discussed in chapter .

It is stressed that the behavior discussed in this chapter is very different from the random walk problem which is a stochastic
process where each step is purely random and not deterministic. This chapter has assumed that the motion is fully deterministic and
rigorously follows the laws of classical mechanics. Even though the motion is fully deterministic, and follows the laws of classical
mechanics, the motion is extremely sensitive to the initial conditions and the non-linearities can lead to chaos. Computer modelling
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is the only viable approach for predicting the behavior of such non-linear systems. The complexity of solving non-linear equations
is the reason that this book will continue to consider only linear systems. Fortunately, in nature, non-linear systems can be
approximately linear when the small-amplitude assumption is applicable.
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CHAPTER OVERVIEW

5: Calculus of Variations
The prior chapters have focussed on the intuitive Newtonian approach to classical mechanics, which is based on vector quantities
like force, momentum, and acceleration. Newtonian mechanics leads to second-order differential equations of motion. The calculus
of variations underlies a powerful alternative approach to classical mechanics that is based on identifying the path that minimizes
an integral quantity. This integral variational approach was first championed by Gottfried Wilhelm Leibniz, contemporaneously
with Newton’s development of the differential approach to classical mechanics.

5.1: Introduction to the Calculus of Variations
5.2: Euler’s Differential Equation
5.3: Applications of Euler’s Equation
5.4: Selection of the Independent Variable
5.5: Functions with Several Independent Variables
5.6: Euler’s Integral Equation
5.7: Constrained Variational Systems
5.8: Generalized coordinates in Variational Calculus
5.9: Lagrange multipliers for Holonomic Constraints
5.10: Geodesic
5.11: Variational Approach to Classical Mechanics
5.E: Calculus of Variations (Exercises)
5.S: Calculus of Variations (Summary)

Thumbnail: Minimizing function and trial functions. (CC BY-SA 2.5; Banerjee).
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5.1: Introduction to the Calculus of Variations
During the  century, Bernoulli, who was a student of Leibniz, developed the field of variational calculus which underlies the
integral variational approach to mechanics. He solved the brachistochrone problem which involves finding the path for which the
transit time between two points is the shortest. The integral variational approach also underlies Fermat’s principle in optics, which
can be used to derive that the angle of reflection equals the angle of incidence, as well as derive Snell’s law. Other applications of
the calculus of variations include solving the catenary problem, finding the maximum and minimum distances between two points
on a surface, polygon shapes having the maximum ratio of enclosed area to perimeter, or maximizing profit in economics.
Bernoulli, developed the principle of virtual work used to describe equilibrium in static systems, and d’Alembert extended the
principle of virtual work to dynamical systems. Euler, the preeminent Swiss mathematician of the  century and a student of
Bernoulli, developed the calculus of variations with full mathematical rigor. The culmination of the development of the Lagrangian
variational approach to classical mechanics was done by Lagrange (1736-1813), who was a student of Euler.

The Euler-Lagrangian approach to classical mechanics stems from a deep philosophical belief that the laws of nature are based on
the principle of economy. That is, the physical universe follows paths through space and time that are based on extrema principles.
The standard Lagrangian  is defined as the difference between the kinetic and potential energy, that is

Chapters  through  will show that the laws of classical mechanics can be expressed in terms of Hamilton’s variational
principle which states that the motion of the system between the initial time and final time  follows a path that minimizes the
scalar action integral  defined as the time integral of the Lagrangian.

The calculus of variations provides the mathematics required to determine the path that minimizes the action integral. This
variational approach is both elegant and beautiful, and has withstood the rigors of experimental confirmation. In fact, not only is it
an exceedingly powerful alternative approach to the intuitive Newtonian approach in classical mechanics, but Hamilton’s
variational principle now is recognized to be more fundamental than Newton’s Laws of Motion. The Lagrangian and Hamiltonian
variational approaches to mechanics are the only approaches that can handle the Theory of Relativity, statistical mechanics, and the
dichotomy of philosophical approaches to quantum physics.

This page titled 5.1: Introduction to the Calculus of Variations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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5.2: Euler’s Differential Equation
The calculus of variations, presented here, underlies the powerful variational approaches that were developed for classical
mechanics. Variational calculus, developed for classical mechanics, now has become an essential approach to many other
disciplines in science, engineering, economics, and medicine.

For the special case of one dimension, the calculus of variations reduces to varying the function  such that the scalar functional
 is an extremum, that is, it is a maximum or minimum, where.

Here  is the independent variable,  the dependent variable, plus its first derivative . The quantity 
has some given dependence on  and  The calculus of variations involves varying the function  until a stationary value of

 is found, which is presumed to be an extremum. This means that if a function  gives a minimum value for the scalar
functional , then any neighboring function, no matter how close to  must increase . For all paths, the integral  is taken
between two fixed points,  and . Possible paths between the initial and final points are illustrated in Figure .
Relative to any neighboring path, the functional  must have a stationary value which is presumed to be the correct extremum
path.

Define a neighboring function using a parametric representation  such that for ,  is the function
that yields the extremum for . Assume that an infinitesimally small fraction  of the neighboring function  is added to the
extremum path . That is, assume

where it is assumed that the extremum function  and the auxiliary function  are well behaved functions of  with
continuous first derivatives, and where  vanishes at  and  because, for all possible paths, the function  must be
identical with  at the end points of the path, i.e. . The situation is depicted in Figure . It is possible to
express any such parametric family of curves  as a function of 

The condition that the integral has a stationary (extremum) value is that  be independent of  to first order along the path. That is,
the extremum value occurs for ( ) where

for all functions  This is illustrated on the right side of Figure .

Applying condition  to Equation , and since  is independent of  then

Since the limits of integration are fixed, the differential operation affects only the integrand. From equations ,

and

Consider the second term in the integrand

y(x)

F

F = f [y(x), (x); x] dx∫
x2

x1

y′ (5.2.1)

x y(x) ≡y′ dy

dx
f [y(x), (x); x]y′

y, y′ x. y(x)

F y = y(x)

F y(x), F F

,x1 y1 ,x2 y2 5.2.1

F

y(ϵ, x), ϵ = 0 y = y(0, x) = y(x)

F ϵ η(x)

y(x)

y(ϵ, x)

(ϵ, x)y′

= y(0, x) + ϵη(x)

≡ = + ϵ
dy(ϵ, x)

dx

dy(0, x)

dx

dη

dx

(5.2.2)

y(0, x) η(x) x

η(x) x1 ,x2 y(ϵ, x)

y(x) η( ) = η( ) = 0x1 x2 5.2.1

F ϵ

F (ϵ) = f [y(ϵ, x), (ϵ, x); x] dx∫
x2

x1

y′ (5.2.3)

F ϵ

ϵ = 0

= 0( )
dF

dϵ ϵ=0

(5.2.4)

η(x). 5.2.1

5.2.4 5.2.3 x ϵ,

= ( + ) dx = 0
∂F

∂ϵ
∫

x2

x1

∂f

∂y

∂y

∂ϵ

∂f

∂y′

∂y′

∂ϵ
(5.2.5)

5.2.2

= η(x)
∂y

∂ϵ
(5.2.6)

=
∂y′

∂ϵ

dη

dx
(5.2.7)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9587?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/05%3A_Calculus_of_Variations/5.02%3A_Eulers_Differential_Equation


5.2.2 https://phys.libretexts.org/@go/page/9587

Figure : The left shows the extremum  and neighboring paths  between  and  that
minimizes the function . The right shows the dependence of  as a function of the admixture
coefficient  for a maximum (upper) or a minimum (lower) at .

Integrate by parts

gives

Note that the first term on the right-hand side is zero since by definition  at  and  Thus

Thus Equation  reduces to

The function  will be an extremum if it is stationary at . That is,

This integral now appears to be independent of  However, the functions  and  occurring in the derivatives are functions of .

Since  must vanish for a stationary value, and because  is an arbitrary function subject to the conditions stated , then

the above integrand must be zero. This derivation that the integrand must be zero leads to Euler’s differential equation

where  and  are the original functions, independent of . The basis of the calculus of variations is that the function  that
satisfies Euler’s equation is an stationary function. Note that the stationary value could be either a maximum or a minimum value.
When Euler’s equation is applied to mechanical systems using the Lagrangian as the functional, then Euler’s differential equation is
called the Euler-Lagrange equation.
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5.3: Applications of Euler’s Equation

Consider the path lies in the  plane.

Figure : Shortest distance between two points in a plane.

The infinitessimal length of arc is

Then the length of the arc is

The function  is

Therefore

and

Inserting these into Euler’s equation  gives

that is

This is valid if

Therefore

Example : Shortest distance between two points5.3.1
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which is the equation of a straight line in the plane. Thus the shortest path between two points in a plane is a straight line
between these points, as is intuitively obvious. This stationary value obviously is a minimum.

This trivial example of the use of Euler’s equation to determine an extremum value has given the obvious answer. It has been
presented here because it provides a proof that a straight line is the shortest distance in a plane and illustrates the power of the
calculus of variations to determine extremum paths.

The Brachistochrone problem involves finding the path having the minimum transit time between two points. The
Brachistochrone problem stimulated the development of the calculus of variations by John Bernoulli and Euler. For simplicity,
take the case of frictionless motion in the  plane with a uniform gravitational field acting in the  direction, as shown in
the adjacent figure. The question is what constrained path will result in the minimum transit time between two points 
and 

Figure : The Bachistochrone problem involves finding the path for the minimum transit time for constrained frictionless
motion in a uniform gravitational field.

Consider that the particle of mass  starts at the origin  with zero velocity. Since the problem conserves energy
and assuming that initially  then

That is

The transit time is given by

where . Note that, in this example, the independent variable has been chosen to be  and the dependent variable is 
.

The function  of the integral is

Factor out the constant  term, which does not affect the final equation, and note that

y = ax+b

Example : Brachistochrone problem5.3.2
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( )x1y1

( ).x2y2

5.3.2

m = 0, = 0x1 y1

E = KE+PE = 0

m −mgy = 0
1

2
v2

v= 2gy
−−−√

t = = = dy∫
x2

x1

ds

v
∫

x2

x1

d +dx2 y2− −−−−−−−√

2gy
−−−√

∫
x2

x1

(1 + )x′2

2gy

− −−−−−−−

√

≡x′ dx

dy
y

x(y)

f

f =
1

2g
−−

√

(1 + )x′2

y

− −−−−−−−

√

2g
−−√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9588?pdf


5.3.3 https://phys.libretexts.org/@go/page/9588

Therefore Euler’s equation gives

or

That is

This may be rewritten as

Change the variable to  gives that  leading to the integral

or

The parametric equations for a cycloid passing through the origin are

which is the form of the solution found. That is, the shortest time between two points is obtained by constraining the motion of
the mass to follow a cycloid shape. Thus the mass first accelerates rapidly by falling down steeply and then follows the curve
and coasts upward at the end. The elapsed time is obtained by inserting the above parametric relations for  and  in terms of 

 into the transit time integral giving  where  and  are fixed by the end point coordinates. Thus the time to fall

from starting with zero velocity at the cusp to the minimum of the cycloid is  If  then  which

defines the shape of the cycloid and the minimum time is  If the mass starts with a non-zero initial velocity,

then the starting point is not at the cusp of the cycloid, but down a distance  such that the kinetic energy equals the potential
energy difference from the cusp.

A modern application of the Brachistochrone problem is determination of the optimum shape of the low-friction emergency
chute that passengers slide down to evacuate a burning aircraft. Bernoulli solved the problem of rapid evacuation of an aircraft
two centuries before the first flight of a powered aircraft.
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Assume that the cost of flying an aircraft at height  is  per unit distance of flight-path, where  is a positive constant.
Consider that the aircraft flies in the -plane from the point  to the point  where  corresponds to ground
level, and where the -axis points vertically upwards. Find the extremal for the problem of minimizing the total cost of the
journey.

The differential arc-length element of the flight path  can be written as

where . Thus the cost integral to be minimized is

The function of this integral is

The partial differentials required for the Euler equations are

Therefore Euler’s equation equals

This can be simplified by multiplying the radical to give

Cancelling terms gives

Separating the variables leads to

Integration gives

Using the initial condition that  gives . Similarly the final condition  implies that . Thus
Euler’s equation has determined that the optimal trajectory that minimizes the cost integral  is

This example is typical of problems encountered in economics.

This page titled 5.3: Applications of Euler’s Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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5.4: Selection of the Independent Variable
A wide selection of variables can be chosen as the independent variable for variational calculus. The derivation of Euler’s equation
and example ( ) both assumed that the independent variable is  whereas example ( ) used  as the independent variable,
example ( ) used , and Lagrange mechanics uses time  as the independent variable. Selection of which variable to use as the
independent variable does not change the physics of a problem, but some selections can simplify the mathematics for obtaining an
analytic solution. The following example of a cylindrically-symmetric soap-bubble surface formed by blowing a soap bubble that
stretches between two circular hoops, illustrates the importance when selecting the independent variable.

Consider a cylindrically-symmetric soap-bubble surface formed by blowing a soap bubble that stretches between two circular
hoops. The surface energy, that results from the surface tension of the soap bubble, is minimized when the surface area of the
bubble is minimized. Assume that the axes of the two hoops lie along the  axis as shown in the adjacent figure. It is intuitively
obvious that the soap bubble having the minimum surface area that is bounded by the two hoops will have a circular cross
section that is concentric with the symmetry axis, and the radius will be smaller between the two hoops. Therefore, intuition
can be used to simplify the problem to finding the shape of the contour of revolution around the axis of symmetry that defines
the shape of the surface of minimum surface area. Use cylindrical coordinates  and assume that hoop  at  has radius

 and hoop  at  has radius . Consider the cases where either , or , are selected to be the independent variable.

Figure : Cylindrically-symmetric surface formed by rotation about the  axis of a soap bubble suspended between two
identical hoops centred on the  axis.

The differential arc-length element of the circular annulus at constant  between  and  is given by .
Therefore the area of the infinitessimal circular annulus is  which can be integrated to give the area of the surface 

 of the soap bubble bounded by the two circular hoops as

Independent variable 

This is not an easy equation to solve.

Independent variable 

which is the equation of a catenary. The catenary is the shape of a uniform flexible cable hung in a uniform gravitational field.
The constants  and  are given by the end points. The physics of the solution must be identical for either choice of
independent variable. However, mathematically one case is easier to solve than the other because, in the latter case, one term in
Euler’s equation is zero.

5.3.1 x, 5.3.2 y

5.3.3 z t

Example : Surface area of a cylindrically-symmetric soap bubble5.4.1
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5.5: Functions with Several Independent Variables

Functions with several independent variables 

The discussion has focussed on systems having only a single function  such that the functional is an extremum. It is more
common to have a functional that is dependent upon several independent variables  which
can be written as

where 

By analogy with the one dimensional problem, define neighboring functions  for each variable. Then

where  are independent functions of  that vanish at  and  Using equations ( ) and  leads to the requirements for
an extremum value to be

If the variables  are independent, then the  are independent. Since the  are independent, then evaluating the above
equation at  implies that each term in the bracket must vanish independently. That is, Euler’s differential equation becomes a
set of  equations for the  independent variables

where  Thus, each of the  equations can be solved independently when the  variables are independent. Euler’s
equation involves partial derivatives for the dependent variables , and the total derivative for the independent variable .

In  Fermat’s proposed that the propagation of light obeyed the generalized principle of least transit time. In optics,
Fermat’s principle, or the principle of least time, is the principle that the path taken between two points by a ray of light is the
path that can be traversed in the least time. Historically, the proof of Fermat’s principle by Johann Bernoulli was one of the first
triumphs of the calculus of variations, and served as a guiding principle in the formulation of physical laws using variational
calculus.

Consider the geometry shown in the figure, where the light travels from the point  to the point . The
light beam intersects a plane glass interface at the point .

Figure : Light incident upon a plane glass interface in the  plane at .

The French mathematician Fermat discovered that the required path travelled by light is the path for which the travel time  is a
minimum. That is, the transit time from the initial point  to the final point  is given by
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assuming that the velocity of light in any medium is given by  where  is the refractive index of the medium and  is
the velocity of light in vacuum.

This is a problem that has two dependent variables  and  with  chosen as the independent variable. The integral can
be broken into two parts  and 

The functionals are functions of  and  but not  or . Thus Euler’s equation for  simplifies to

This implies that , therefore  is a constant. Since the initial and final values were chosen to be , therefore
at the interface . Similarly Euler’s equations for  are

But  for  and  for  and it was shown that . Thus

Therefore  constant which must be zero since when  then . Thus Fermat’s
principle leads to Snell’s Law.

The geometry of this problem is simple enough to directly minimize the path rather than using Euler’s equations for the two
parameters as performed above. The lengths of the paths  and  are

The total transit time is given by

This problem involves two dependent variables,  and . To find the minima, set the partial derivatives  and 
. That is,

This is zero only if , that is the point  lies in the plane containing  and . Similarly

This is zero only if Snell’s law applies that is
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Fermat’s principle has shown that the refracted light is given by Snell’s Law, and is in a plane normal to the surface. The laws
of reflection also are given since then  and the angle of reflection equals the angle of incidence.

Find the function  that has the minimum value of  per unit volume. For the volume  it is desired to
minimize the following

Note that the variables  are independent, and thus Euler’s equation for several independent variables can be used. To
minimize the functional , the function

must satisfy the Euler equation

where . Substitute  into Euler’s equation gives

This is just Laplace’s equation

Therefore  must satisfy Laplace’s equation in order that the functional  be a minimum.
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5.6: Euler’s Integral Equation
An integral form of the Euler differential equation can be written which is useful for cases when the function  does not depend
explicitly on the independent variable , that is, when  Note that

But

Combining these two equations gives

The last two terms can be rewritten as

which vanishes when the Euler equation is satisfied. Therefore the above equation simplifies to

This integral form of Euler’s equation is especially useful when  that is, when  does not depend explicitly on the
independent variable . Then the first integral of Equation  is a constant, i.e.

This is Euler’s integral variational equation. Note that the shortest distance between two points, the minimum surface of rotation,
and the brachistochrone, described earlier, all are examples where  and thus the integral form of Euler’s equation is useful
for solving these cases.
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5.7: Constrained Variational Systems
Imposing a constraint on a variational system implies:

1. The  constrained coordinates  are correlated which violates the assumption made in chapter  that the  variables are
independent.

2. Constrained motion implies that constraint forces must be acting to account for the correlation of the variables. These constraint
forces must be taken into account in the equations of motion.

Figure : A disk rolling down an inclined plane.

For example, for a disk rolling down an inclined plane without slipping, there are three coordinates  [perpendicular to the wedge], 
, [Along the surface of the wedge], and the rotation angle  shown in Figure . The constraint forces,  , lead to the

correlation of the variables such that , while . Basically there is only one independent variable, which can be either 
or . The use of only one independent variable essentially buries the constraint forces under the rug, which is fine if you only need
to know the equation of motion. If you need to determine the forces of constraint then it is necessary to include all coordinates
explicitly in the equations of motion as discussed below.

Holonomic constraints
Most systems involve restrictions or constraints that couple the coordinates. For example, the  may be confined to a surface in
coordinate space. The constraints mean that the coordinates  are not independent, but are related by equations of constraint. A
constraint is called holonomic if the equations of constraint can be expressed in the form of an algebraic equation that directly and
unambiguously specifies the shape of the surface of constraint. A non-holonomic constraint does not provide an algebraic relation
between the correlated coordinates. In addition to the holonomy of the constraints, the equations of constraint also can be grouped
into the following three classifications depending on whether they are algebraic, differential, or integral. These three classifications
for the constraints exhibit different holonomy relating the coupled coordinates. Fortunately the solution of constrained systems is
greatly simplified if the equations of constraint are holonomic.

Geometric (algebraic) equations of constraint

Geometric constraints can be expressed in the form of algebraic relations that directly specify the shape of the surface of constraint
in coordinate space 

where . There can be  such equations of constraint where . An example of such a geometric
constraint is when the motion is confined to the surface of a sphere of radius  in coordinate space which can be written in the
form  Such algebraic constraint equations are called Holonomic which allows use of generalized
coordinates as well as Lagrange multipliers to handle both the constraint forces and the correlation of the coordinates.

Kinematic (differential) equations of constraint

The  constraint equations also can be expressed in terms of the infinitessimal displacements of the form

where , . If Equation  represents the total differential of a function then it can be integrated
to give a holonomic relation of the form of Equation . However, if Equation  is not the total differential, then it is non-
holonomic and can be integrated only after having solved the full problem.
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An example of differential constraint equations is for a wheel rolling on a plane without slipping which is non-holonomic and more
complicated than might be expected. The wheel moving on a plane has five degrees of freedom since the height  is fixed. That is,
the motion of the center of mass requires two coordinates  plus there are three angles  where  is the rotation angle
for the wheel,  is the pivot angle of the axis, and  is the tilt angle of the wheel. If the wheel slides then all five degrees of
freedom are active. If the axis of rotation of the wheel is horizontal, that is, the tilt angle  is constant, then this kinematic
system leads to three differential constraint equations The wheel can roll with angular velocity , as well as pivot which
corresponds to a change in  Combining these leads to two differential equations of constraint

These constraints are insufficient to provide finite relations between all the coordinates. That is, the constraints cannot be reduced
by integration to the form of Equation  because there is no functional relation between  and the other three variables, .
Many rolling trajectories are possible between any two points of contact on the plane that are related to different pivot angles. That
is, the point of contact of the disk could pivot plus roll in a circle returning to the same point where  are unchanged whereas
the value of  depends on the circumference of the circle. As a consequence the rolling constraint is non-holonomic except for the
case where the disk rolls in a straight line and remains vertical.

Isoperimetric (integral) equations of constraint

Equations of constraint also can be expressed in terms of direct integrals. This situation is encountered for isoperimetric problems,
such as finding the maximum volume bounded by a surface of fixed area, or the shape of a hanging rope of fixed length. Integral
constraints occur in economics when minimizing some cost algorithm subject to a fixed total cost constraint.

A simple example of an isoperimetric problem involves finding the curve  such that the functional has an extremum
where the curve  satisfies boundary conditions such that  and , that is

is an extremum such that the perimeter also is constrained to satisfy

where  is a fixed length. This integral constraint is geometric and holonomic. Another example is finding the minimum surface
area of a closed surface subject to the enclosed volume being the constraint.

Properties of the constraint equations

Holonomic constraints

Geometric constraints can be expressed in the form of an algebraic equation that directly specifies the shape of the surface of
constraint

Such a system is called holonomic since there is a direct relation between the coupled variables. An example of such a holonomic
geometric constraint is if the motion is confined to the surface of a sphere of radius  which can be written in the form

Non-holonomic constraints

There are many classifications of non-holonomic constraints that exist if Equation  is not satisfied. The algebraic approach is
difficult to handle when the constraint is an inequality, such as the requirement that the location is restricted to lie inside a spherical
shell of radius  which can be expressed as

This non-holonomic constrained system has a one-sided constraint. Systems usually are non-holonomic if the constraint is
kinematic as discussed above.
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Partial Holonomic constraints

Partial-holonomic constraints are holonomic for a restricted range of the constraint surface in coordinate space, and this range can
be case specific. This can occur if the constraint force is one-sided and perpendicular to the path. An example is the pendulum with
the mass attached to the fulcrum by a flexible string that provides tension but not compression. Then the pendulum length is
constant only if the tension in the string is positive. Thus the pendulum will be holonomic if the gravitational plus centrifugal
forces are such that the tension in the string is positive, but the system becomes non-hononomic if the tension is negative as can
happen when the pendulum rotates to an upright angle where the centrifugal force outwards is insufficient to compensate for the
vertical downward component of the gravitational force. There are many other examples where the motion of an object is
holonomic when the object is pressed against the constraint surface, such as the surface of the Earth, but is unconstrained if the
object leaves the surface.

Time dependence

A constraint is called scleronomic if the constraint is not explicitly time dependent. This ignores the time dependence contained
within the solution of the equations of motion. Fortunately a major fraction of systems are scleronomic. The constraint is called
rheonomic if the constraint is explicitly time dependent. An example of a rheonomic system is where the size or shape of the
surface of constraint is explicitly time dependent such as a deflating pneumatic tire.

Energy Conservation

The solution depends on whether the constraint is conservative or dissipative, that is, if friction or drag are acting. The system will
be conservative if there are no drag forces, and the constraint forces are perpendicular to the trajectory of the path such as the
motion of a charged particle in a magnetic field. Forces of constraint can result from sliding of two solid surfaces, rolling of solid
objects, fluid flow in a liquid or gas, or result from electromagnetic forces. Energy dissipation can result from friction, drag in a
fluid or gas, or finite resistance of electric conductors leading to dissipation of induced electric currents in a conductor, e.g. eddy
currents.

A rolling constraint is unusual in that friction between the rolling bodies is necessary to maintain rolling. A disk on a frictionless
inclined plane will conserve it’s angular momentum since there is no torque acting if the rolling contact is frictionless, that is, the
disk will just slide. If the friction is sufficient to stop sliding, then the bodies will roll and not slide. A perfect rolling body does not
dissipate energy since no work is done at the instantaneous point of contact where both bodies are in zero relative motion and the
force is perpendicular to the motion. In real life, a rolling wheel can involve a very small energy dissipation due to deformation at
the point of contact coupled with non-elastic properties of the material used to make the wheel and the plane surface. For example,
a pneumatic tire can heat up and expand due to flexing of the tire.

Treatment of constraint forces in variational calculus

There are three major approaches to handle constraint forces in variational calculus. All three of them exploit the tremendous
freedom and flexibility available when using generalized coordinates. The (1) generalized coordinate approach, described in
chapter , exploits the correlation of the  coordinates due to the  constraint forces to reduce the dimension of the equations of
motion to  degrees of freedom. This approach embeds the  constraint forces, into the choice of generalized
coordinates and does not determine the constraint forces, (2) Lagrange multiplier approach, described in chapter , exploits
generalized coordinates but includes the  constraint forces into the Euler equations to determine both the constraint forces in
addition to the  equations of motion. (3) Generalized forces approach, described in chapter  introduces constraint and other
forces explicitly.
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5.8: Generalized coordinates in Variational Calculus
Newtonian mechanics is based on a vectorial treatment of mechanics which can be difficult to apply when solving complicated
problems in mechanics. Constraint forces acting on a system usually are unknown. In Newtonian mechanics constrained forces
must be included explicitly so that they can be determined simultaneously with the solution of the dynamical equations of motion.
The major advantage of the variational approaches is that solution of the dynamical equations of motion can be simplified by
expressing the motion in terms of  independent generalized coordinates. These generalized coordinates can be any set of
independent variables, , where , plus the corresponding velocities  for Lagrangian mechanics, or the corresponding
canonical variables,  for Hamiltonian mechanics. These generalized coordinates for the  variables are used to specify the
scalar functional dependence on these generalized coordinates. The variational approach employs this scalar functional to
determine the trajectory. The generalized coordinates used for the variational approach do not need to be orthogonal, they only
need to be independent since they are used only to completely specify the magnitude of the scalar functional. This greatly expands
the arsenal of possible generalized coordinates beyond what is available using Newtonian mechanics. For example, generalized
coordinates can be the dimensionless amplitudes for the  normal modes of coupled oscillator systems, or action-angle variables.
In addition, generalized coordinates having different dimensions can be used for each of the  variables. Each generalized
coordinate,  specifies an independent mode of the system, not a specific particle. For example, each normal mode of coupled
oscillators can involve correlated motion of several coupled particles. The major advantage of using generalized coordinates is that
they can be chosen to be perpendicular to a corresponding constraint force, and therefore that specific constraint force does no
work for motion along that generalized coordinate. Moreover, the constrained motion does no work in the direction of the
constraint force for rigid constraints. Thus generalized coordinates allow specific constraint forces to be ignored in evaluation of
the minimized functional. This freedom and flexibility of choice of generalized coordinates allows the correlated motion produced
by the constraint forces to be embedded directly into the choice of the independent generalized coordinates, and the actual
constraint forces can be ignored. Embedding of the constraint induced correlations into the generalized coordinates, effectively
"sweeps the constraint forces under the rug" which greatly simplifies the equations of motion for any system that involve constraint
forces. Selection of the appropriate generalized coordinates can be obvious, and often it is performed subconsciously by the user.

Three variational approaches are used that employ generalized coordinates to derive the equations of motion of a system that has 
generalized coordinates subject to  constraints.

1) Minimal set of generalized coordinates: When the  equations of constraint are holonomic, then the  algebraic constraint
relations can be used to transform the coordinates into  independent generalized coordinates . This approach reduces
the number of unknowns,  by the number of constraints , to give a minimal set of  independent generalized
dynamical variables. The forces of constraint are not explicitly discussed, or determined, when this generalized coordinate
approach is employed. This approach greatly simplifies solution of dynamical problems by avoiding the need for explicit treatment
of the constraint forces. This approach is straight forward for holonomic constraints, since the  spatial coordinates 

 are coupled by  algebraic equations which can be used to make the transformation to generalized coordinates.
Thus the  coupled spatial coordinates are transformed to  independent generalized dynamical coordinates 

, and their generalized first derivatives  These generalized coordinates are independent, and
thus it is possible to use Euler’s equation for each independent parameter 

where . There are  such Euler equations. The freedom to choose generalized coordinates underlies the
tremendous advantage of applying the variational approach.

2) Lagrange multipliers: The  Lagrange equations, plus the  equations of constraint, can be used to explicitly determine the 
generalized coordinates plus the  constraint forces. That is,  unknowns are determined. This approach is discussed in
chapter .

3) Generalized forces: This approach introduces the constraint forces explicitly. This approach, applied to Lagrangian mechanics,
is discussed in chapter 

The above three approaches exploit generalized coordinates to handle constraint forces as described in chapter .
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5.9: Lagrange multipliers for Holonomic Constraints

Algebraic equations of constraint

The Lagrange multiplier technique provides a powerful, and elegant, way to handle holonomic constraints using Euler’s equations .
The general method of Lagrange multipliers for  variables, with  constraints, is best introduced using Bernoulli’s ingenious
exploitation of virtual infinitessimal displacements, which Lagrange signified by the symbol . The term "virtual" refers to an
intentional variation of the generalized coordinates  in order to elucidate the local sensitivity of a function  to variation
of the variable. Contrary to the usual infinitessimal interval in differential calculus, where an actual displacement  occurs during
a time , a virtual displacement is imagined to be an instantaneous, infinitessimal, displacement of a coordinate, not an actual
displacement, in order to elucidate the local dependence of  on the coordinate. The local dependence of any functional  to
virtual displacements of all  coordinates, is given by taking the partial differentials of .

The function  is stationary, that is an extremum, if Equation  equals zero. The extremum of the functional , given by
equation ( ), can be expressed in a compact form using the virtual displacement formalism as

The auxiliary conditions, due to the  holonomic algebraic constraints for the  variables , can be expressed by the  equations

where  and  with . The variational problem for the  holonomic constraint equations also can be
written in terms of  differential equations where 

Since equations  and  both equal zero, the  equations  can be multiplied by arbitrary undetermined factors  and
added to equations  to give.

Note that this is not trivial in that although the sum of the constraint equations for each is zero; the individual terms of the sum
are not zero.

Insert equations  plus  into , and collect all  terms, gives

Note that all the  are free independent variations and thus the terms in the brackets, which are the coefficients of each ,
individually must equal zero. For each of the  values of , the corresponding bracket implies

This is equivalent to what would be obtained from the variational principle

Equation  is equivalent to a variational problem for finding the stationary value of 
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i

n ∂F

∂qi
∑
k=1

m

λk
∂gk
∂qi

qi (5.9.6)

δqi δqi
n i

+ = 0
∂F

∂qi
∑
k=1

m

λk
∂gk
∂qi

(5.9.7)

δF + δ = 0∑
k=1

m

λk gk (5.9.8)
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where  is defined to be

The solution to Equation  can be found using Euler’s differential equation ( ) of variational calculus. At the extremum 
 corresponds to following contours of constant  which are in the surface that is perpendicular to the gradients of the

terms in . The Lagrange multiplier constants are required because, although these gradients are parallel at the extremum, the
magnitudes of the gradients are not equal.

The beauty of the Lagrange multipliers approach is that the auxiliary conditions do not have to be handled explicitly, since they are
handled automatically as  additional free variables during solution of Euler’s equations for a variational problem with 
unknowns fit to  equations. That is, the  variables  are determined by the variational procedure using the  variational
equations

simultaneously with the  variables  which are determined by the  variational equations

Equation  usually is expressed as

The elegance of Lagrange multipliers is that a single variational approach allows simultaneous determination of all 
unknowns. Chapter  shows that the forces of constraint are given directly by the  terms.

The powerful, and generally applicable, Lagrange multiplier technique is illustrated by considering the case of only two
dependent variables,  and  with the function  and with one holonomic equation of
constraint coupling these two dependent variables. The extremum is given by requiring

with the constraint expressed by the auxiliary condition

Note that the variations  and  are no longer independent because of the constraint equation, thus the the two terms in the
brackets of Equation  are not separately equal to zero at the extremum. However, differentiating the constraint Equation 
gives

No  term applies because, for the independent variable,   Introduce the neighboring paths by adding the auxiliary
functions

δ ( ) = δ(F + ) = 0F ′ ∑
k

m

λkgk (5.9.9)

F ′

≡(F + )F ′ ∑
k=1

m

λkgk (5.9.10)

5.9.9 5.5.4
δ ( ) = 0F ′ F ′

F ′

m n+m

n+m n qi n

( ) −( ) = ( ) −( ) − = 0
d

dx

∂F ′

∂q ′
i

∂F ′

∂qi

d

dx

∂F

∂q ′
i

∂F

∂qi
∑
k

m

λk
∂gk
∂qi

(5.9.11)

m λk m

( ) −( ) = 0
d

dx

∂F ′

∂λ′
k

∂F ′

∂λk
(5.9.12)

5.9.11

( ) − ( ) + = 0
∂F

∂qi

d

dx

∂F

∂q ′
i

∑
k

m

λk
∂gk
∂qi

(5.9.13)

n+m

6.2 λk
∂gk
∂qi

Example : Two dependent variables coupled by one holonomic constraint5.9.1

y(x), z (x) , f(y(x), (x), z(x), z(x ; x)y′ )′

= [( − ) +( − ) ]dx = 0
∂F

∂ϵ
∫

x2

x1

∂f

∂y

d

dx

∂f

∂y′

∂y

∂ϵ

∂f

∂z

d

dx

∂f

∂z′

∂z

∂ϵ
(A)

g (y, z; x) = 0 (B)

∂y

∂ϵ
∂z
∂ϵ

A B

=( + ) = 0
dg

dϵ

∂g

∂y

∂y

∂ϵ

∂g

∂z

∂z

∂ϵ
(C)

∂g

∂x
∂x
∂ϵ

= 0.

y(ϵ, x)

z(ϵ, x)

=

=

y(x) + ϵ (x)η1

z(x) + ϵ (x)η2

(D)

(E)
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Insert the differentials of equations  and  , into  gives

implying that

Equation  can be rewritten as

Equation  now contains only a single arbitrary function  that is not restricted by the constraint. Thus the bracket in the
integrand of Equation  must equal zero for the extremum. That is

Now the left-hand side of this equation is only a function of  and  with respect to  and  while the right-hand side is a
function of  and  with respect to  and  Because both sides are functions of  then each side can be set equal to a function

 Thus the above equations can be written as

The complete solution of the three unknown functions.  and  is obtained by solving the two equations, , plus
the equation of constraint . The Lagrange multiplier  is related to the force of constraint. This example of two variables
coupled by one holonomic constraint conforms with the general relation for many variables and constraints given by Equation 

.

Integral equations of constraint
The constraint equation also can be given in an integral form which is used frequently for isoperimetric problems . Consider a one
dependent-variable isoperimetric problem, for finding the curve  such that the functional has an extremum, and the curve 

 satisfies boundary conditions such that  and . That is

is an extremum such that the fixed length  of the perimeter satisfies the integral constraint

Analogous to  these two functionals can be combined requiring that

That is, it is an extremum for both  and the Lagrange multiplier . This effectively involves finding the extremum path for the
function  where both  and  are the minimized variables. Therefore the curve  must
satisfy the differential equation

D E C

=( (x) + (x)) = 0
dg

dϵ

∂g

∂y
η1

∂g

∂z
η2 (F )

(x) = − (x)η2

∂g

∂y

∂g

∂z

η1

A

[( − ) (x) +( − ) (x)]dx∫
x2

x1

∂f

∂y

d

dx

∂f

∂y′
η1

∂f

∂z

d

dx

∂f

∂z′
η2

( − )−( − ) (x)dx∫
x2

x1

⎡

⎣
⎢

∂f

∂y

d

dx

∂f

∂y′

∂f

∂z

d

dx

∂f

∂z′

∂g

∂y

∂g
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⎤

⎦
⎥ η1

=

=

0

0 (G)

G (x)η1

G

( − ) =( − ) ≡ −λ(x)
∂f

∂y

d

dx

∂f

∂y′
( )

∂g

∂y

−1 ∂f

∂z

d

dx

∂f

∂z′
( )

∂g

∂z

−1

f g y y′

f g z .z′ x

−λ(x).

− = λ (x) − = λ (x)
d

dx

∂f

∂y′

∂f

∂y

∂g

∂y

d

dx

∂f

∂z′

∂f

∂z

∂g

∂z
(H)

y(x), z(x), λ(x). H

F λ(x)

5.9.13

q = q(x)
q(x) q( ) = ax1 q( ) = bx2

F (y) = f(q, ; x)dx∫
x2

x1

q ′ (5.9.14)

l

G(y) = g(q, ; x)dx = l∫
x2

x1

q ′ (5.9.15)

5.9.10

δK(q, x,λ) ≡ δ [F (q) +λG(q)] = δ [f +λg]dx = 0∫
x2

x1

(5.9.16)

q(x) λ

K(q, x,λ) = F (q, x) +λG(q, x) q(x) λ q(x)
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subject to the boundary conditions   and .

One isoperimetric problem is the catenary which is the shape a uniform rope or chain of fixed length  that minimizes the
gravitational potential energy. Let the rope have a uniform mass per unit length of  kg/m

Figure : The catenary

The gravitational potential energy is

The constraint is that the length be a constant 

Thus the function is  while the integral constraint sets 

These need to be inserted into the Euler Equation  by defining

Note that this case is one where  and  is a constant; also defining  then  Therefore the Euler’s
equations can be written in the integral form

Inserting the relation  gives

where  is an arbitrary constant. This simplifies to

The integral of this is

where  and  are arbitrary constants fixed by the locations of the two fixed ends of the rope.

− +λ [ − ] = 0
d

dx

∂f

∂q ′
i

∂f

∂qi

d

dx

∂g

∂q ′
i

∂g

∂qi
(5.9.17)

q( ) = a,x1 q( ) = b,x2 G(q) = l

Example : Catenary5.9.2

l

σ .

5.9.1

U = σg yds = σg y = σg y dx∫
2

1
∫

2

1
d +dx2 y2
− −−−−−−−

√ ∫
2

1
1 +y′2
− −−−−−

√

l

l = ds = dx∫
2

1
∫

2

1
1 +y′2
− −−−−−

√

f(y, ; x) = yy′ 1 +y′2− −−−−−√ g = 1 +y′2− −−−−−√

5.9.17

F = f +λg = (y+λ) 1 +y′2
− −−−−−

√

= 0∂F
∂x

λ z = y+λ = .z′ y′

F − = c = constantz′ ∂F

∂z′

F = z 1 +z′2
− −−−−−

√

z − = c1 +z′2− −−−−−
√ z′ zz′

1 +z′2
− −−−−−

√
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= −1z′2 ( )
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c
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A famous constrained isoperimetric legend is that of Dido, first Queen of Carthage. Legend says that, when Dido landed in
North Africa, she persuaded the local chief to sell her as much land as an oxhide could contain. She cut an oxhide into narrow
strips and joined them to make a continuous thread more than four kilometers in length which was sufficient to enclose the
land adjoining the coast on which Carthage was built. Her problem was to enclose the maximum area for a given perimeter. Let
us assume that the coast line is straight and the ends of the thread are at  on the coast line. The enclosed area is given by

The constraint equation is that the total perimeter equals .

Thus we have that the functional  and . Then  and 

 Insert these into the Euler-Lagrange Equation  gives

That is

Integrate with respect to  gives

where  is a constant of integration. This can be rearranged to give

The integral of this is

Rearranging this gives

This is the equation of a circle centered at . Setting the bounds to be  to  gives that  and the circle
radius is  Thus the length of the thread must be . Assuming that  then  and Queen Dido could
buy an area of 

This textbook uses the symbol  to designate a generalized coordinate, and  to designate the corresponding first derivative with
respect to the independent variable, in order to differentiate the spatial coordinates from the more powerful generalized coordinates.

This page titled 5.9: Lagrange multipliers for Holonomic Constraints is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

Example : The Queen Dido problem5.9.3

±a

A = ydx∫
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l
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−a
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√ = 1, = 0, = 0
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5.9.17
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5.10: Geodesic
The geodesic is defined as the shortest path between two fixed points for motion that is constrained to lie on a surface. Variational
calculus provides a powerful approach for determining the equations of motion constrained to follow a geodesic.

The use of variational calculus is illustrated by considering the geodesic constrained to follow the surface of a sphere of radius .
As discussed in appendix , the element of path length on the surface of the sphere is given in spherical coordinates as 

. Therefore the distance  between two points  and  is

The function  for ensuring that  be an extremum value uses

where  This is a case where  and thus the integral form of Euler’s equation can be used leading to the result that

This gives that

This can be rewritten as

Solving for  gives

where

That is

Expanding the sine and cotangent gives

Since the brackets are constants, this can be written as

The terms in the brackets are just expressions for the rectangular coordinates  That is,

This is the equation of a plane passing through the center of the sphere. Thus the geodesic on a sphere is the path where a plane
through the center intersects the sphere as well as the initial and final locations. This geodesic is called a great circle. Euler’s
equation gives both the maximum and minimum extremum path lengths for motion on this great circle.

Chapter  discusses the geodesic in the four-dimensional space-time coordinates that underlie the General Theory of Relativity.
As a consequence, the use of the calculus of variations to determine the equations of motion for geodesics plays a pivotal role in the
General Theory of Relativity.

R

19.3.2C

ds = R d +θ2 (sinθdϕ)
2

− −−−−−−−−−−−−
√ s 1 2

s = R [ ] dϕ∫
2

1
+ θ( )

dθ

dϕ

2

sin2

− −−−−−−−−−−−−

√ (5.10.1)

f s

f = + θθ′2 sin2− −−−−−−−−
√ (5.10.2)

= .θ′ dθ

dϕ
= 0

∂f

∂ϕ

− =  constant = a+ θθ′2 sin2− −−−−−−−−
√ θ′ ∂

∂θ′
+ θθ′2 sin2− −−−−−−−−

√ (5.10.3)

θ = asin2 + θθ′2 sin2− −−−−−−−−
√ (5.10.4)

= =
dϕ

dθ

1

θ′

a θcsc2

1 − θa2 csc2
− −−−−−−−−−

√
(5.10.5)

ϕ

ϕ = ( )+αsin−1 cotθ

β
(5.10.6)

β ≡
1 −a2

a2
(5.10.7)

cotθ = β sin(ϕ−α) (5.10.8)

(β cosα)R sinθ sinϕ−(β sinα)R sinθcosϕ = R cosθ (5.10.9)

A (R sinθ sinϕ) −B (R sinθcosϕ) = (R cosθ) (5.10.10)

x, y, z.

Ay−Bx = z (5.10.11)
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5.11: Variational Approach to Classical Mechanics
This chapter has introduced the general principles of variational calculus needed for understanding the Lagrangian and Hamiltonian
approaches to classical mechanics. Although variational calculus was developed originally for classical mechanics, now it has
grown to be an important branch of mathematics with applications to many other fields outside of physics. The prologue of this
book emphasized the dramatic differences between the differential vectorial approach of Newtonian mechanics, and the integral
variational approaches of Lagrange and Hamiltonian mechanics. The Newtonian vectorial approach involves solving Newton’s
differential equations of motion that relate the force and momenta vectors. This requires knowledge of the time dependence of all
the force vectors, including constraint forces, acting on the system which can be very complicated. Chapter  showed that the first-
order time integrals, equations ( ), ( ), relate the initial and final total momenta without requiring knowledge of the
complicated instantaneous forces acting during the collision of two bodies. Similarly, for conservative systems, the first-order
spatial integral, equation ( ), relates the initial and final total energies to the net work done on the system without requiring
knowledge of the instantaneous force vectors. The first-order spatial integral has the advantage that it is a scalar quantity, in
contrast to time integrals which are vector quantities. These first-order integral relations are used frequently in Newtonian
mechanics to derive solutions of the equations of motion that avoid having to solve complicated differential equations of motion.

This chapter has illustrated that variational principles provide a means of deriving more detailed information, such as the
trajectories for the motion between given initial and final conditions, by requiring that scalar functionals have extrema values. For
example, the solution of the brachistochrone problem determined the trajectory having the minimum transit time, based on only the
magnitudes of the kinetic and gravitational potential energies. Similarly, the catenary shape of a suspended chain was derived by
minimizing the gravitational potential energy. The calculus of variations uses Euler’s equations to determine directly the
differential equations of motion of the system that lead to the functional of interest being stationary at an extremum. The
Lagrangian and Hamiltonian variational approaches to classical mechanics are discussed in chapters . The broad range of
applicability, the flexibility, and the power provided by variational approaches to classical mechanics and modern physics will be
illustrated.

This page titled 5.11: Variational Approach to Classical Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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5.E: Calculus of Variations (Exercises)
1. Find the extremal of the functional

that satisfies  and . Show that this extremal provides the global minimum of .

2. Consider the use of equations of constraint.

a. A particle is constrained to move on the surface of a sphere. What are the equations of constraint for this system?
b. A disk of mass  and radius  rolls without slipping on the outside surface of a half-cylinder of radius . What are the

equations of constraint for this system?
c. What are holonomic constraints? Which of the equations of constraint that you found above are holonomic?
d. Equations of constraint that do not explicitly contain time are said to be scleronomic. Moving constraints are rheonomic. Are

the equations of constraint that you found above scleronomic or rheonomic?

3. For each of the following systems, describe the generalized coordinates that would work best. There may be more than one
answer for each system.

a. An inclined plane of mass  is sliding on a smooth horizontal surface, while a particle of mass  is sliding on the smooth
inclined surface.

b. A disk rolls without slipping across a horizontal plane. The plane of the disk remains vertical, but it is free to rotate about a
vertical axis.

c. A double pendulum consisting of two simple pendula, with one pendulum suspended from the bob of the other. The two
pendula have equal lengths and have bobs of equal mass. Both pendula are confined to move in the same plane.

d. A particle of mass  is constrained to move on a circle of radius . The circle rotates in space about one point on the circle,
which is fixed. The rotation takes place in the plane of the circle, with constant angular speed , in the absence of a
gravitational force.

e. A particle of mass  is attracted toward a given point by a force of magnitude , where  is a constant.

4. Looking back at the systems in problem , which ones could have equations of constraint? How would you classify the
equations of constraint (holonomic, scleronomic, rheonomic, etc.)?

5. Find the extremal of the functional

that satisfies . Show that this extremal provides the global maximum of .

6. Find and describe the path  for which the the integral  is stationary.

7. Find the dimensions of the parallelepiped of maximum volume circumscribed by a sphere of radius .

8. Consider a single loop of the cycloid having a fixed value of  as shown in the figure. A car released from rest at any point 
anywhere on the track between  and the lowest point , that is,  has a parameter .

Figure 
a. Show that the time  for the cart to slide from  to  is given by the integral

J(x) = dt∫
2

1

ẋ2

t3

x(1) = 3 x(2) = 18 J

m R 5R

M m

m R

ω

m k/r2 k

3

J(x) = (2x sin t− )dt∫
π

0
ẋ2

x(o) = x(π) = 0 J

y = y(x) dx∫ x2

x1
x−−√ 1 +(y′)2− −−−−−−
√

R

a P0

O P P0 0 < < πθ0
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b. Prove that this time  is equal to  which is independent of the position .
c. Explain qualitatively how this surprising result can possibly be true.

9. Consider a medium for which the refractive index  where  is a constant and  is the distance from the origin. Use
Fermat’s Principle to find the path of a ray of light travelling in a plane containing the origin. Hint, use two-dimensional polar
coordinates with . Show that the resulting path is a circle through the origin.

10. Find the shortest path between the  points  and  on a conical surface

What is the length of this path? Note that this is the shortest mountain path around a volcano.

11. Show that the geodesic on the surface of a right circular cylinder is a segment of a helix.

This page titled 5.E: Calculus of Variations (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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5.S: Calculus of Variations (Summary)

Euler’s differential equation

The calculus of variations has been introduced and Euler’s differential equation was derived. The calculus of variations reduces to
varying the functions  where , such that the integral

is an extremum, that is, it is a maximum or minimum. Here  is the independent variable,  are the dependent variables plus

their first derivatives  The quantity  has some given dependence on  and  The calculus of
variations involves varying the functions  until a stationary value of  is found which is presumed to be an extremum. It was
shown that if the  are independent, then the extremum value of  leads to  independent Euler equations

where . This can be used to determine the functional form  that ensures that the integral 
 is a stationary value, that is, presumably a maximum or minimum value.

Note that Euler’s equation involves partial derivatives for the dependent variables  and the total derivative for the
independent variable 

Euler’s integral equation
It was shown that if the function  does not depend on the independent variable, then Euler’s differential

equation can be written in an integral form. This integral form of Euler’s equation is especially useful when  that is, when 
 does not depend explicitly on , then the first integral of the Euler equation is a constant

Constrained variational systems

Most applications involve constraints on the motion. The equations of constraint can be classified according to whether the
constraints are holonomic or non-holonomic, the time dependence of the constraints, and whether the constraint forces are
conservative.

Generalized coordinates in variational calculus
Independent generalized coordinates can be chosen that are perpendicular to the rigid constraint forces and therefore the constraint
does not contribute to the functional being minimized. That is, the constraints are embedded into the generalized coordinates and
thus the constraints can be ignored when deriving the variational solution.

Minimal set of generalized coordinates
If the constraints are holonomic then the  holonomic equations of constraint can be used to transform the  coupled generalized
coordinates to  independent generalized variables . The generalized coordinate method then uses Euler’s equations
to determine these  independent generalized coordinates.

Lagrange multipliers for holonomic constraints

The Lagrange multipliers approach for  variables, plus  holonomic equations of constraint, determines all  unknowns
for the system. The holonomic forces of constraint acting on the  variables, are related to the Lagrange multiplier terms 

 that are introduced into the Euler equations.
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That is,

where the holonomic equations of constraint are given by

The advantage of using the Lagrange multiplier approach is that the variational procedure simultaneously determines both the
equations of motion for the  variables plus the  constraint forces acting on the system.

This page titled 5.S: Calculus of Variations (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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6.1: Introduction to Lagrangian Dynamics
Newtonian mechanics is based on vector observables such as momentum and force, and Newton’s equations of motion can be
derived if the forces are known. However, Newtonian mechanics becomes difficult for many-body systems when constraint forces
apply. The alternative algebraic Lagrangian mechanics approach is based on the concept of scalar energies which circumvent many
of the difficulties in handling constraint forces and many-body systems.

The Lagrangian approach to classical dynamics is based on the calculus of variations introduced in chapter . It was shown that the
calculus of variations determines the function  such that the scalar functional

is an extremum, that is, a maximum or minimum. Here  is the independent variable,  are the  dependent variables, and their
derivatives , where . The function  has an assumed dependence on ,  and . The
calculus of variations determines the functional dependence of the dependent variables  on the independent variable , that is
needed to ensure that  is an extremum. For  independent variables,  has a stationary point, which is presumed to be an
extremum, that is determined by solution of Euler’s differential equations

If the coordinates  are independent, then the Euler equations, , for each coordinate  are independent. However, for
constrained motion, the constraints lead to auxiliary conditions that correlate the coordinates. As shown in chapter , a
transformation to independent generalized coordinates can be made such that the correlations induced by the constraint forces are
embedded into the choice of the independent generalized coordinates. The use of generalized coordinates in Lagrangian mechanics
simplifies derivation of the equations of motion for constrained systems. For example, for a system of  coordinates, that involves 

 holonomic constraints, there are  independent generalized coordinates. For such holonomic constrained motion, it
will be shown that the Euler equations can be solved using either of the following three alternative ways.

1) The minimal set of generalized coordinates approach involves finding a set of  independent generalized
coordinates  that satisfy the assumptions underlying . These generalized coordinates can be determined if the  equations
of constraint are holonomic, that is, related by algebraic equations of constraint

where  These equations uniquely determine the relationship between the  correlated coordinates. This method
has the advantage that it reduces the system of  coordinates, subject to  constraints, to  independent generalized
coordinates which reduces the dimension of the problem to be solved. However, it does not explicitly determine the forces of
constraint which are effectively swept under the rug.

2) The Lagrange multipliers approach takes account of the correlation between the  coordinates and  holonomic constraints by
introducing the Lagrange multipliers . These  generalized coordinates  are correlated by the  holonomic constraints.

where . The Lagrange multiplier approach has the advantage that Euler’s calculus of variations automatically use
the  Lagrange equations, plus the  equations of constraint, to explicitly determine both the  coordinates  plus the  forces of
constraint which are related to the Lagrange multipliers  as given in Equation . Chapter  shows that the 

terms are directly related to the holonomic forces of constraint.

3) The generalized force approach incorporates the forces of constraint explicitly as will be shown in chapter . Incorporating
the constraint forces explicitly allows use of holonomic, non-holonomic, and non-conservative constraint forces.

Understanding the Lagrange formulation of classical mechanics is facilitated by use of a simple non-rigorous plausibility approach
that is based on Newton’s laws of motion. This introductory plausibility approach will be followed by two more rigorous
derivations of the Lagrangian formulation developed using either d’Alembert Principle or Hamiltons Principle. These better
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elucidate the physics underlying the Lagrange and Hamiltonian analytic representations of classical mechanics. In  Lagrange
derived his equations of motion using the differential d’Alembert Principle, that extends to dynamical systems the Bernoulli
Principle of infinitessimal virtual displacements and virtual work. The other approach, developed in , uses the integral
Hamilton’s Principle to derive the Lagrange equations. Hamilton’s Principle is discussed in more detail in chapter  Euler’s
variational calculus underlies d’Alembert’s Principle and Hamilton’s Principle since both are based on the philosophical belief that
the laws of nature prefer economy of motion. Chapters  show that both d’Alembert’s Principle and Hamilton’s Principle
lead to the Euler-Lagrange equations. This will be followed by a series of examples that illustrate the use of Lagrangian mechanics
in classical mechanics.

This page titled 6.1: Introduction to Lagrangian Dynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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6.2: Newtonian plausibility argument for Lagrangian mechanics
Insight into the physics underlying Lagrange mechanics is given by showing the direct relationship between Newtonian and
Lagrangian mechanics. The variational approaches to classical mechanics exploit the first-order spatial integral of the force,
equation ( ), which equals the work done between the initial and final conditions. The work done is a simple scalar quantity
that depends on the initial and final location for conservative forces. Newton’s equation of motion is

The kinetic energy is given by

It can be seen that

and

Consider that the force, acting on a mass  is arbitrarily separated into two components, one part that is conservative, and thus
can be written as the gradient of a scalar potential , plus the excluded part of the force, . The excluded part of the force 
could include non-conservative frictional forces as well as forces of constraint which may be conservative or non-conservative.
This separation allows the force to be written as

Along each of the  axes,

Equation  can be extended by transforming the cartesian coordinate  to the generalized coordinates 

Define the standard Lagrangian to be the difference between the kinetic energy and the potential energy, which can be written in
terms of the generalized coordinates  as

Assume that the potential is only a function of the generalized coordinates  that is  then

Using the above equations allows Newton’s equation of motion  to be expressed as

The excluded force  can be partitioned into a holonomic constraint force  plus any remaining excluded forces  as
given by

A comparison of equations  and  shows that the holonomic constraint forces  that are contained in the excluded
force  can be identified with the Lagrange multiplier term in equation .
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That is the Lagrange multiplier terms can be used to account for holonomic constraint forces . Thus Equation  can be
written as

where the Lagrange multiplier term accounts for holonomic constraint forces, and  includes all the remaining forces that are
not accounted for by the scalar potential , or the Lagrange multiplier terms .

For holonomic, conservative forces it is possible to absorb all the forces into the potential  plus the Lagrange multiplier term, that
is  Moreover, the use of a minimal set of generalized coordinates allows the holonomic constraint forces to be ignored
by explicitly reducing the number of coordinates from  dependent coordinates to  independent generalized
coordinates. That is, the correlations due to the constraint forces are embedded into the generalized coordinates. Then Equation 

 reduces to the basic Euler differential equations.

Note that Equation  is identical to Euler’s equation ( ), if the independent variable  is replaced by time . Thus
Newton’s equation of motion are equivalent to minimizing the action integral , that is

which is Hamilton’s Principle. Hamilton’s Principle underlies many aspects of physics as discussed in chapter , and is used as the
starting point for developing classical mechanics. Hamilton’ Principle was postulated  years after Lagrange introduced
Lagrangian mechanics.

The above plausibility argument, which is based on Newtonian mechanics, illustrates the close connection between the vectorial
Newtonian mechanics and the algebraic Lagrangian mechanics approaches to classical mechanics.

This page titled 6.2: Newtonian plausibility argument for Lagrangian mechanics is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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6.3: Lagrange Equations from d’Alembert’s Principle

d’Alembert’s Principle of virtual work

The Principle of Virtual Work provides a basis for a rigorous derivation of Lagrangian mechanics. Bernoulli introduced the concept
of virtual infinitessimal displacement of a system mentioned in chapter . This refers to a change in the configuration of the
system as a result of any arbitrary infinitessimal instantaneous change of the coordinates  that is consistent with the forces and
constraints imposed on the system at the instant . Lagrange’s symbol  is used to designate a virtual displacement which is called
"virtual" to imply that there is no change in time , i.e. . This distinguishes it from an actual displacement  of body 
during a time interval  when the forces and constraints may change.

Suppose that the system of  particles is in equilibrium, that is, the total force on each particle  is zero. The virtual work done by
the force  moving a distance  is given by the dot product . For equilibrium, the sum of all these products for the 
bodies also must be zero

Decomposing the force  on particle  into applied forces  and constraint forces  gives

The second term in Equation  can be ignored if the virtual work due to the constraint forces is zero. This is rigorously true for
rigid bodies and is valid for any forces of constraint where the constraint forces are perpendicular to the constraint surface and the
virtual displacement is tangent to this surface. Thus if the constraint forces do no work, then  reduces to

This relation is the Bernoulli’s Principle of Static Virtual Work and is used to solve problems in statics.

Bernoulli introduced dynamics by using Newton’s Law to related force and momentum.

Equation  can be rewritten as

In 1742, d’Alembert developed the Principle of Dynamic Virtual Work in the form

Using equations  plus  gives

For the special case where the forces of constraint are zero, then Equation  reduces to d’Alembert’s Principle

d’Alembert’s Principle, by a stroke of genius, cleverly transforms the principle of virtual work from the realm of statics to
dynamics. Application of virtual work to statics primarily leads to algebraic equations between the forces, whereas d’Alembert’s
principle applied to dynamics leads to differential equations.
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Transformation to generalized coordinates
In classical mechanical systems the coordinates  usually are not independent due to the forces of constraint and the constraint-
force energy contributes to Equation . These problems can be eliminated by expressing d’Alembert’s Principle in terms of
virtual displacements of  independent generalized coordinates of the system for which the constraint force term 

. Then the individual variational coefficients  are independent and  can be equated to zero
for each value of .

The transformation of the -body system to  independent generalized coordinates  can be expressed as

Assuming  independent coordinates, then the velocity  can be written in terms of general coordinates  using the chain rule for
partial differentiation.

The arbitrary virtual displacement  can be related to the virtual displacement of the generalized coordinate  by

Note that by definition, a virtual displacement considers only displacements of the coordinates, and no time variation  is
involved.

The above transformations can be used to express d’Alembert’s dynamical principle of virtual work in generalized coordinates.
Thus the first term in d’Alembert’s Dynamical Principle,  becomes

where  are called components of the generalized force,  defined as

Note that just as the generalized coordinates  need not have the dimensions of length, so the  do not necessarily have the
dimensions of force, but the product  must have the dimensions of work. For example,  could be torque and  could be
the corresponding infinitessimal rotation angle.

The second term in d’Alembert’s Principle  can be transformed using Equation 

The right-hand side of  can be rewritten as

Note that Equation  gives that

therefore the first right-hand term in  can be written as
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The second right-hand term in  can be rewritten by interchanging the order of the differentiation with respect to  and 

Substituting  and  into  gives

Inserting  and  into d’Alembert’s Principle  leads to the relation

The  term can be identified with the system kinetic energy . Thus d’Alembert Principle reduces to the relation

For cartesian coordinates  is a function only of velocities  and thus the term  However, as discussed in appendix

, for curvilinear coordinates  due to the curvature of the coordinates as is illustrated for polar coordinates where 

.

where . That is, this leads to  Euler-Lagrange equations of motion for the generalized forces . As discussed in
chapter  when  holonomic constraint forces apply, it is possible to reduce the system to  independent generalized
coordinates for which Equation  applies.

In  Leibniz proposed minimizing the time integral of his “vis viva", which equals  That is,

The variational Equation  accomplishes the minimization of Equation . It is remarkable that Leibniz anticipated the
basic variational concept prior to the birth of the developers of Lagrangian mechanics, i.e., d’Alembert, Euler, Lagrange, and
Hamilton.

Lagrangian

The handling of both conservative and non-conservative generalized forces  is best achieved by assuming that the generalized
force  can be partitioned into a conservative velocity-independent term, that can be expressed in terms of the

gradient of a scalar potential,  plus an excluded generalized force  which contains the non-conservative, velocity-
dependent, and all the constraint forces not explicitly included in the potential . That is,

Inserting  into , and assuming that the potential  is velocity independent, allows  to be rewritten as

The standard definition of the Lagrangian is

then  can be written as
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Note that if all the generalized coordinates are independent, then the square bracket terms are zero for each value of , which leads
to the general Euler-Lagrange equations of motion.

where .

Chapter  will show that the holonomic constraint forces can be factored out of the generalized force term  which
simplifies derivation of the equations of motion using Lagrangian mechanics. The general Euler-Lagrange equations of motion are
used extensively in classical mechanics because conservative forces play a ubiquitous role in classical mechanics.

This proof, plus the notation, conform with that used by Goldstein [Go50] and by other texts on classical mechanics.

This page titled 6.3: Lagrange Equations from d’Alembert’s Principle is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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6.4: Lagrange equations from Hamilton’s Principle

Lagrange equations from Hamilton’s Action Principle
Hamilton published two papers in 1834 and 1835, announcing a fundamental new dynamical principle that underlies both
Lagrangian and Hamiltonian mechanics. Hamilton was seeking a theory of optics when he developed Hamilton’s Action Principle,
plus the field of Hamiltonian mechanics, both of which play a crucial role in classical mechanics and modern physics. Hamilton’s
Action Principle states "dynamical systems follow paths that minimize the time integral of the Lagrangian". That is, the action
functional 

has a minimum value for the correct path of motion. Hamilton’s Action Principle can be written in terms of a virtual
infinitessimal displacement  as

Variational calculus therefore implies that a system of  independent generalized coordinates must satisfy the basic Lagrange-Euler
equations

Note that for , this is the same as equation  which was derived using d’Alembert’s Principle.

This discussion has shown that Euler’s variational differential equation underlies both the differential variational d’Alembert
Principle, and the more fundamental integral Hamilton’s Action Principle. As discussed in chapter , Hamilton’s Principle of
Stationary Action adds a fundamental new dimension to classical mechanics which leads to derivation of both Lagrangian and
Hamiltonian mechanics. That is, both Hamilton’s Action Principle, and d’Alembert’s Principle, can be used to derive Lagrangian
mechanics leading to the most general Lagrange equations that are applicable to both holonomic and non-holonomic constraints, as
well as conservative and non-conservative systems. In addition, Chapter  presented a plausibility argument showing that
Lagrangian mechanics can be justified based on Newtonian mechanics. Hamilton’s Action Principle, and d’Alembert’s Principle,
can be expressed in terms of generalized coordinates which is much broader in scope than the equations of motion implied using
Newtonian mechanics.

This page titled 6.4: Lagrange equations from Hamilton’s Principle is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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6.5: Constrained Systems
The motion for systems subject to constraints is difficult to calculate using Newtonian mechanics because all the unknown
constraint forces must be included explicitly with the active forces in order to determine the equations of motion. Lagrangian
mechanics avoids these difficulties by allowing selection of independent generalized coordinates that incorporate the correlated
motion induced by the constraint forces. This allows the constraint forces acting on the system to be ignored by reducing the
system to a minimal set of generalized coordinates. The holonomic constraint forces can be determined using the Lagrange
multiplier approach, or all constraint forces can be determined by including them as generalized forces, as described below.

Choice of generalized coordinates
As discussed in chapter , the flexibility and freedom for selection of generalized coordinates is a considerable advantage of
Lagrangian mechanics when handling constrained systems. The generalized coordinates can be any set of independent variables
that completely specify the scalar action functional, equation . The generalized coordinates are not required to be orthogonal
as is required when using the vectorial Newtonian approach. The secret to using generalized coordinates is to select coordinates
that are perpendicular to the constraint forces so that the constraint forces do no work. Moreover, if the constraints are rigid, then
the constraint forces do no work in the direction of the constraint force. As a consequence, the constraint forces do not contribute to
the action integral and thus the  term in equation  can be omitted from the action integral. Generalized
coordinates allow reducing the number of unknowns from  to  when the system has  holonomic constraints. In
addition, generalized coordinates facilitate using both the Lagrange multipliers, and the generalized forces, approaches for
determining the constraint forces.

Minimal set of generalized coordinates
The set of  generalized coordinates  are used to describe the motion of the system. No restrictions have been placed on the
nature of the constraints other than they are workless for a virtual displacement. If the  constraints are holonomic, then it is
possible to find sets of  independent generalized coordinates  that contain the  constraint conditions implicitly in
the transformation equations

For the case of  unknowns, any virtual displacement  is independent of , therefore the only way for  to
hold is for the term in brackets to vanish for each value of , that is

where   These are the Lagrange equations for the minimal set of  independent generalized coordinates.

If all the generalized forces are conservative plus velocity independent, and are included in the potential  and , then 
 simplifies to

This is Euler’s differential equation, derived earlier using the calculus of variations. Thus d’Alembert’s Principle leads to a solution
that minimizes the action integral  as stated by Hamilton’s Principle.

Lagrange multipliers approach
Equation  sums over all  coordinates for  particles, providing  equations of motion. If the  constraints are
holonomic they can be expressed by  algebraic equations of constraint

where  Kinematic constraints can be expressed in terms of the infinitessimal displacements of the form
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where , , and where the , and  are functions of the generalized coordinates , described

by the vector  that are derived from the equations of constraint. As discussed in chapter , if  represents the total
differential of a function, then it can be integrated to give a holonomic relation of the form of Equation . However, if  is
not the total differential, then it can be integrated only after having solved the full problem. If  then the  constraint is
scleronomic.

The discussion of Lagrange multipliers in chapter , showed that, for virtual displacements  the correlation of the
generalized coordinates, due to the constraint forces, can be taken into account by multiplying  by unknown Lagrange
multipliers  and summing over all  constraints. Generalized forces can be partitioned into a Lagrange multiplier term plus a
remainder force. That is

since by definition  for virtual displacements.

Chapter  showed that holonomic forces of constraint can be taken into account by introducing the Lagrange undetermined
multipliers approach, which is equivalent to defining an extended Lagrangian  where

Finding the extremum for the extended Lagrangian  using  gives

where  is the remaining part of the generalized force  after subtracting both the part of the force absorbed in the potential
energy , which is buried in the Lagrangian , as well as the holonomic constraint forces which are included in the Lagrange
multiplier terms . The  Lagrange multipliers  can be chosen arbitrarily in . Utilizing the free choice of

the  Lagrange multipliers  allows them to be determined in such a way that the coefficients of the first  infinitessimals, i.e.
the square brackets vanish. Therefore the expression in the square bracket must vanish for each value of . Thus it
follows that

when  Thus  reduces to a sum over the remaining coordinates between 

In Equation  the  infinitessimals  can be chosen freely since the  degrees of freedom are
independent. Therefore the expression in the square bracket must vanish for each value of . Thus it follows that

where  Combining equations  and  then gives the important general relation that for 

To summarize, the Lagrange multiplier approach  automatically solves the  equations plus the  holonomic equations of
constraint, which determines the  unknowns, that is, the  coordinates plus the  forces of constraint. The beauty of the
Lagrange multipliers is that all  variables, plus the  constraint forces, are found simultaneously by using the calculus of
variations to determine the extremum for the expanded Lagrangian .
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Generalized forces approach
The two right-hand terms in  can be understood to be those forces acting on the system that are not absorbed into the scalar

potential  component of the Lagrangian . The Lagrange multiplier terms  account for the holonomic forces of

constraint that are not included in the conservative potential or in the generalized forces . The generalized force

is the sum of the components in the  direction for all external forces that have not been taken into account by the scalar potential
or the Lagrange multipliers. Thus the non-conservative generalized force  contains non-holonomic constraint forces,
including dissipative forces such as drag or friction, that are not included in  or used in the Lagrange multiplier terms to account
for the holonomic constraint forces.

The concept of generalized forces is illustrated by the case of spherical coordinate systems. The attached table gives the
displacement elements , (taken from table ) and the generalized force for the three coordinates. Note that  has the
dimensions of force and  has the units of energy. By contrast equation  gives that  and  which
have the dimensions of torque. However,  and  both have the dimensions of energy as is required in equation .
This illustrates that the units used for generalized forces depend on the units of the corresponding generalized coordinate.

Unit vectors

This page titled 6.5: Constrained Systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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6.6: Applying the Euler-Lagrange equations to classical mechanics
d’Alembert’s principle of virtual work has been used to derive the Euler-Lagrange equations, which also satisfy Hamilton’s
Principle, and the Newtonian plausibility argument. These imply that the actual path taken in configuration space  is the
one that minimizes the action integral  As a consequence, the Euler equations for the calculus of variations lead
to the Lagrange equations of motion.

for  variables, with  equations of constraint. The generalized forces  are not included in the conservative, potential energy
 or the Lagrange multipliers approach for holonomic equations of constraint.

The following is a logical procedure for applying the Euler-Lagrange equations to classical mechanics.

1) Select a set of independent generalized coordinates:
Select an optimum set of independent generalized coordinates as described in chapter . Use of generalized coordinates is
always advantageous since they incorporate the constraints, and can reduce the number of unknowns, both of which simplify use of
Lagrangian mechanics

2) Partition of the active forces:

The active forces should be partitioned into the following three groups:

i. Conservative one-body forces plus the velocity-dependent electromagnetic force which can be characterized by the scalar
potential , that is absorbed into the Lagrangian. The gravitational forces plus the velocity-dependent electromagnetic force
can be absorbed into the potential  as discussed in chapter . This approach is by far the easiest way to account for such
forces in Lagrangian mechanics.

ii. Holonomic constraint forces provide algebraic relations that couple some of the generalized coordinates. This coupling can be
used either to reduce the number of generalized coordinates used, or to determine these holonomic constraint forces using the
Lagrange multiplier approach.

iii. Generalized forces provide a mechanism for introducing non-conservative and non-holonomic constraint forces into
Lagrangian mechanics. Typically general forces are used to introduce dissipative forces.

Typical systems can involve a mixture of all three categories of active forces. For example, mechanical systems often include
gravity, introduced as a potential, holonomic constraint forces are determined using Lagrange multipliers, and dissipative forces are
included as generalized forces.

3) Minimal set of generalized coordinates:
The ability to embed constraint forces directly into the generalized coordinates is a tremendous advantage enjoyed by the
Lagrangian and Hamiltonian variational approaches to classical mechanics. If the constraint forces are not required, then choice of
a minimal set of generalized coordinates significantly reduces the number of equations of motion that need to be solved.

4) Derive the Lagrangian:
The Lagrangian is derived in terms of the generalized coordinates and including the conservative forces that are buried into the
scalar potential 

5) Derive the equations of motion:

Equation  is solved to determine the  generalized coordinates, plus the  Lagrange multipliers characterizing the holonomic
constraint forces, plus any generalized forces that were included. The holonomic constraint forces then are given by evaluating the 

 terms for the  holonomic forces.

In summary, in Lagrangian mechanics is based on energies which are scalars in contrast to Newtonian mechanics which is based on
vector forces and momentum. As a consequence, Lagrange mechanics allows use of any set of independent generalized
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coordinates, which do not have to be orthogonal, and they can have very different units for different variables. The generalized
coordinates can incorporate the correlations introduced by constraint forces.

The active forces are split into the following three categories;

1. Velocity-independent conservative forces are taken into account using scalar potentials .
2. Holonomic constraint forces can be determined using Lagrange multipliers.
3. Non-holonomic constraints require use of generalized forces .

Use of the concept of scalar potentials is a trivial and powerful way to incorporate conservative forces in Lagrangian mechanics.
The Lagrange multipliers approach requires using the Euler-Lagrange equations for  coordinates but determines both
holonomic constraint forces and equations of motion simultaneously. Non-holonomic constraints and dissipative forces can be
incorporated into Lagrangian mechanics via use of generalized forces which broadens the scope of Lagrangian mechanics.

Note that the equations of motion resulting from the Lagrange-Euler algebraic approach are the same equations of motion as
obtained using Newtonian mechanics. However, the Lagrangian is a scalar which facilitates rotation into the most convenient frame
of reference. This can greatly simplify determination of the equations of motion when constraint forces apply. As discussed in
chapter , the Lagrangian and the Hamiltonian variational approaches to mechanics are the only viable way to handle relativistic,
statistical, and quantum mechanics.

Euler’s differential equation is ubiquitous in Lagrangian mechanics. Thus, for brevity, it is convenient to define the concept of the
Lagrange linear operator , as described in table .

where  operates on the Lagrangian . Then Euler’s equations can be written compactly in the form .

This page titled 6.6: Applying the Euler-Lagrange equations to classical mechanics is shared under a CC BY-NC-SA 4.0 license and was
authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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6.7: Applications to unconstrained systems
Although most dynamical systems involve constrained motion, it is useful to consider examples of systems subject to conservative
forces with no constraints . For no constraints, the Lagrange-Euler equations  simplify to  where  and
the transformation to generalized coordinates is of no consequence.

The Lagrangian in cartesian coordinates is  Then

Insert these in the Lagrange equation gives

Thus

That is, this shows that the linear momentum is conserved if  is a constant, that is, no forces apply. Note that momentum
conservation has been derived without any direct reference to forces.

Figure : Motion in a gravitational field

Consider the motion is in the  plane. The kinetic energy  while the potential energy is 

where  Thus

Using the Lagrange equation for the  coordinate gives

(6.6.1) L = 0Λj j= 1, 2, . .n,

Example : Motion of a free particle, 6.7.1 U = 0
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ẋ2 ẏ2 ż2
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Thus the horizontal momentum  is conserved and  The  coordinate gives

Thus the Lagrangian produces the same results as derived using Newton’s Laws of Motion.

The importance of selecting the most convenient generalized coordinates is nicely illustrated by trying to solve this problem
using polar coordinates  where  is radial distance and  the elevation angle from the  axis as shown in the adjacent
figure. Then

Thus

 for the  coordinate

 for the  coordinate

These equations written in polar coordinates are more complicated than the result expressed in Cartesian coordinates. This is
because the potential energy depends directly on the  coordinate, whereas it is a function of both  This illustrates the
freedom for using different generalized coordinates, plus the importance of choosing a sensible set of generalized coordinates.

Consider a mass  moving under the influence of a spherically-symmetric, conservative, attractive, inverse-square force. The
potential then is

It is natural to express the Lagrangian in spherical coordinates for this system. That is,

 for the  coordinate gives
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where the  term comes from the centripetal acceleration.

 for the  coordinate gives

This implies that the derivative of the angular momentum about the  axis,  and thus  is a constant
of motion.

 for the  coordinate gives

That is,

Note that  is a constant of motion if  and only the radial coordinate is influenced by the radial form of the central
potential.

This page titled 6.7: Applications to unconstrained systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
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6.8: Applications to systems involving holonomic constraints
The equations of motion that result from the Lagrange-Euler algebraic approach are the same as those given by Newtonian
mechanics. The solution of these equations of motion can be obtained mathematically using the chosen initial conditions. The
following simple example of a disk rolling on an inclined plane, is useful for comparing the merits of the Newtonian method with
Lagrange mechanics employing either minimal generalized coordinates, the Lagrange multipliers, or the generalized forces
approaches.

Figure : Disk rolling without slipping on an inclined plane.

Rolling constraint gives

a) Newton’s laws of motion

The moment of inertia of a uniform solid circular disk is 

which is smaller than the gravitational force along the plane which is 

b) Lagrange equations with a minimal set of generalized coordinates

Again if  then

The solution for the  coordinate is trivial. This answer is identical to that obtained using Newton’s laws of motion. Note that
no forces have been determined using the single generalized coordinate.

c) Lagrange equation with Lagrange multipliers

and the torque is

Example : Disk rolling on an inclined plane6.8.1
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d) Lagrange equation using a generalized force

The Euler-Lagrange equations are:

The four methods for handling the equations of constraint all are equivalent and result in the same equations of motion. The
scalar Lagrangian mechanics is able to calculate the vector forces acting in a direct and simple way. The Newton’s law
approach is more intuitive for this simple case and the ease and power of the Lagrangian approach is not apparent for this
simple system.

The following series of examples will gradually increase in complexity, and will illustrate the power, elegance, plus superiority of
the Lagrangian approach compared with the Newtonian approach.

Figure : Two connected masses on frictionless inclined planes

The Lagrangian then gives that

Therefore

Note that the system acts as though the inertial mass is  while the driving force comes from the difference of the
forces. The acceleration is zero if

− R = R = Iλ1 Ff θ̈
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=
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mg

3

Example : Two connected masses on frictionless inclined planes6.8.2
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1

L = ( + ) + g sin + g (l− ) sin
1

2
m1 m2 ẋ2
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Note that this problem has been solved without any reference to the force in the rope or the normal constraint forces on the
inclined planes.

Figure : A block sliding on a frictionless movable inclined plane.

The Lagrangian is

Consider the Lagrange-Euler equation for the  coordinate,  which gives

which states that  is a constant of motion. This constant of motion is just the total linear momentum of
the complete system in the  direction. That is, conservation of the linear momentum is satisfied automatically by the
Lagrangian approach. The Newtonian approach also predicts conservation of the linear momentum since there are no external
horizontal forces,

Consider the Lagrange-Euler equation for the  coordinate,  which gives

This example illustrates the flexibility of being able to use non-orthogonal displacement vectors to specify the scalar
Lagrangian energy. Newtonian mechanics would require more thought to solve this problem.

Assume initial conditions are  Choose the independent coordinates  and  as
generalized coordinates plus the holonomic constraint . Then the Lagrangian is

Figure : Solid sphere rolling without slipping on an inclined plane on a frictionless horizontal floor.

Example : Block sliding on a movable frictionless inclined plane6.8.3
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Example : Sphere rolling without slipping down an inclined plane on a frictionless floor6.8.4
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Note that these equations predict conservation of linear momentum for the block plus sphere.

Figure : Mass sliding on a rotating straight frictionless rod.

Thus the angular momentum is constant

The Lagrange equation for  gives

The  equation states that the angular momentum is conserved for this case which is what we expect since there are no
external torques acting on the system. The  equation states that the centrifugal acceleration is  These equations of
motion were derived without reference to the forces between the rod and mass.

Figure : Spherical pendulum

giving that

This is just the angular momentum  for the pendulum rotating in the  direction. Automatically the Lagrange approach
shows that the angular momentum  is a conserved quantity. This is what is expected from Newton’s Laws of Motion since
there are no external torques applied about this vertical axis.
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Example : Mass sliding on a rotating straight frictionless rod.6.8.5
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The equation of motion for  can be simplified to

There are many possible solutions depending on the initial conditions. The pendulum can just oscillate in the  direction, or
rotate in the  direction or some combination of these. Note that if  is zero, then the equation reduces to the simple harmonic
pendulum, while the other extreme is when  for which the motion is that of a conical pendulum that rotates at a constant
angle  to the vertical axis.

Figure : Mass constrained to slide on the inside of a frictionless paraboloid.

with a gravitational potential energy of 

This system is holonomic, scleronomic, and conservative. Choose cylindrical coordinates  with respect to the vertical
axis of the paraboloid to be the generalized coordinates.

The Lagrange multiplier approach will be used to determine the forces of constraint.

For 

For 

Thus the angular momentum  is conserved, that is, it is a constant of motion.

The above four equations of motion can be used to determine 

Assuming that  then equation  for  and  gives

which is the usual centripetal force. These relations also give that the initial angular velocity required for such a stable
trajectory with height  is
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Example : Mass constrained to move on the inside of a frictionless paraboloid6.8.7
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Figure : Mass , hanging from a rope that is connected to , which slides on a frictionless plane.

Two masses  and  are connected by a string of length . Mass  is on a horizontal frictionless table and it is assumed
that mass  moves in a vertical plane. This is another problem involving holonomic constrained motion. The constraints are:

1)  moves in the horizontal plane

2)  moves in the vertical plane

3)  Therefore 

Thus the Lagrange equations are 

that is

This last equation is a statement of the conservation of angular momentum. These three differential equations of motion can be
solved for known initial conditions.

Figure : Two identical masses  constrained to slide on a moving rod of mass . The masses are attached to the center
of the rod by identical springs each having a spring constant .

Consider two identical masses  constrained to move along the axis of a thin straight rod, of mass  and length  which is
free to both translate and rotate. Two identical springs link the two masses to the central point of the rod. Consider only
motions of the system for which the extended lengths of the two springs are equal and opposite such that the two masses always

  = ω =ϕ̇
2g

a

−−−
√

Example : Mass on a frictionless plane connected to a plane pendulum6.8.8
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are equal distances from the center of the rod keeping the center of mass at the center of the rod. Find the equations of motion
for this system.

Use a fixed cartesian coordinate system  and a moving frame with the origin  at the center of the rod with its
cartesian coordinates  being parallel to the fixed coordinate frame as shown in the figure. Let  be the
spherical coordinates of a point referring to the center of the moving  frame as shown in the figure. Then the two
masses  have spherical coordinates  and  in the moving-rod fixed frame. The frictionless constraints are
holonomic.

Using Lagrange’s equations  for the generalized coordinates gives.

The first three equations show that the three components of the linear momentum of the center of mass are constants of motion.
The fourth equation shows that the component of the angular momentum about the  axis is a constant of motion. Since the 
axis has been arbitrarily chosen then the total angular momentum must be conserved. The fifth and sixth equations give the
radial and angular equations of motion of the oscillating masses .

This page titled 6.8: Applications to systems involving holonomic constraints is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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θ̈ ṙ θ̇ r2 ml2

24m
φ̇2

=

=

=

=

=

=

constant

constant

constant

constant

0

0

( L = 0)Λx

( L = 0)Λy

( L = 0)Λz

( L = 0)Λφ

( L = 0)Λr

( L = 0)Λθ

z′ z1

m

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14060?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/06%3A_Lagrangian_Dynamics/6.08%3A_Applications_to_systems_involving_holonomic_constraints
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/


6.9.1 https://phys.libretexts.org/@go/page/14061

6.9: Applications involving Non-holonomic Constraints
In general, non-holonomic constraints can be handled by use of generalized forces  in the Lagrange-Euler equations 

. The following examples, , involve one-sided constraints which exhibit holonomic behavior for restricted
ranges of the constraint surface in coordinate space, and this range is case specific. When the forces of constraint press the object
against the constraint surface, then the system is holonomic, but the holonomic range of coordinate space is limited to situations
where the constraint forces are positive. When the constraint force is negative, the object flies free from the constraint surface. In
addition, when the frictional force  where  is the static coefficient of friction, then the object slides negating
any rolling constraint that assumes static friction.

Consider a mass starts from rest at the top of a frictionless fixed spherical shell of radius . The questions are what is the force
of constraint and determine the angle  at which the mass leaves the surface of the spherical shell. The coordinates  shown
are the obvious generalized coordinates to use.

Figure : Mass  sliding on frictionless cylinder of radius .

The constraint will not apply if the force of constraint does not hold the mass against the surface of the spherical shell, that is, it
is only holonomic in a restricted domain.

This Lagrangian is applicable irrespective of whether the constraint is obeyed, where the constraint is given by

For the restricted domain where this system is holonomic, it can be solved using generalized coordinates, generalized forces,
Lagrange multipliers, or Newtonian mechanics as illustrated below.

Minimal generalized coordinates:
The minimal number of generalized coordinates reduces the system to one coordinate , which does not determine the
constraint force that is needed to know if the constraint applies. Thus this approach is not useful for solving this partially-
holonomic system.

Generalized forces:

Note that  when , that is 

Lagrange multipliers:

The Lagrange equation for  gives  since  Thus

QEXC
j

(6.5.12) 6.9.1 −6.9.4
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Example : Mass sliding on a frictionless spherical shell6.9.1
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assuming that  at 

Note that  when , that is 

Both of the above methods give identical results and give that the force of constraint is negative when  Assuming
that the surface cannot hold the mass against the surface, then the mass will fly off the spherical shell when  and the
system reduces to an unconstrained object falling freely in a uniform gravitational field, which is holonomic, that is 

 Then the equations of motion  and  reduce to

Energy conservation:

This occurs when . This is an unusual case where the Newtonian approach is the simplest.

This is a similar problem to the prior one with the added complication of rolling which is assumed to move in a vertical plane
making it holonomic. Here we would like to determine the forces of constraint to see when the solid sphere flies off the
spherical shell and when the friction is insufficient to stop the rolling sphere from slipping.

Figure : Disk of mass , radius , rolling on a cylindrical surface of radius .

The best generalized coordinates are the distance of the center of the sphere from the center of the spherical shell,  and  It
is important to note that  is measured with respect to the vertical, not the time-dependent vector . That is, the direction of the
radius  is  which is time dependent and thus is not a useful reference to use to define the angle . Let us assume that the
sphere is uniform with a moment of inertia of  If the tangential frictional force  is less than the limiting value 

, with  then the sphere will roll without slipping on the surface of the cylinder and both constraints apply.
Under these conditions the system is holonomic and the solution is solved using Lagrange multipliers and the equations of
constraint are the following:

1. The center of the sphere follows the surface of the cylinder

2. The sphere rolls without slipping

The kinetic energy is  and the potential energy is  Thus the Lagrangian is
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Example : Rolling solid sphere on a spherical shell6.9.2
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 gives

For larger angles  is negative implying that the solid sphere will fly off the surface of the spherical shell.

The sphere will leave the surface of the cylinder when  that is,  This is a significantly larger angle than
obtained for the similar problem where the mass is sliding on a frictionless cylinder because the energy stored in rotation
implies that the linear velocity of the mass is lower at a given angle  for the case of a rolling sphere.

It is in the negative direction because of the direction chosen for  The required coefficient of friction  is given by the ratio
of the frictional force to the normal force, that is

For  the disk starts to slip when  Note that the sphere starts slipping before it flies off the cylinder since a
normal force is required to support a frictional force and the difference depends on the coefficient of friction. The no-slipping
constraint is not satisfied once the sphere starts slipping and the frictional force should equal  Thus for the angles
beyond  the problem needs to be solved with the rolling constraint changed to a sliding non-conservative frictional
force. This is best handled by including the frictional force and normal forces as generalized forces. Fortunately this will be a
small correction. The friction will slightly change the exact angle at which the normal force becomes zero and the system
transitions to free motion of the sphere in a gravitational field.

when  is positive.

which gives

Similarly  gives

These can be solved by substituting the relation . The sphere flies off the spherical shell when  leading to
free motion discussed in example . The problem of a solid uniform sphere rolling inside a hollow sphere can be solved
the same way.

Assume that a small body of mass  is balanced on a rolling wheel of mass  and radius  as shown in the figure. The wheel
rolls in a vertical plane without slipping on a horizontal surface. This example illustrates that it is possible to use
simultaneously a mixture of holonomic constraints, partially-holonomic constraints, and generalized forces.

LΛϕ

I = aϕ̈ λ2 (c)
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Example : Solid sphere rolling plus slipping on a spherical shell6.9.3
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Example : Small body held by friction on the periphery of a rolling wheel6.9.4
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Figure : Small body of mass  held by friction on the periphery of a rolling wheel of mass  and radius .

Assume that at  the wheel touches the floor at  with the mass perched at the top of the wheel at . Let the
frictional force acting on the mass  be  and the reaction force of the periphery of the wheel on the mass be . Let  be the
angular velocity of the wheel, and  the horizontal velocity of the center of the wheel. The polar coordinates  of the mass 
are taken with  measured from the center of the wheel with  measured with respect to the vertical. Thus the cartesian
coordinates of the small mass  are  with respect to the origin at .

Thus the Lagrangian is

The equations of constraints are:

1) The wheel rolls without slipping on the ground plane leading to a holonomic constraint:

2) The mass  is touching the periphery of the wheel, that is, the normal force  This is a one-sided restricted
holonomic constraint.

3) The mass  does not slip on the wheel if the frictional force  . When this restricted holonomic constraint is
satisfied, then

The rolling constraint is holonomic, and can be accounted for using one Lagrange multiplier  plus the differential constraint
equations

This last equation can be derived by Newtonian mechanics from consideration of the forces acting.

The above equations of motion can be used to calculate the motion for the following conditions.

a) Mass not slipping:

This occurs if  which also implies that  That is a situation where the system is holonomic with  
  which can be solved using the generalized coordinate approach with only one independent coordinate which

can be taken to be .

b) Mass slipping:

Here the no-slip constraint is violated and thus one has to explicitly include the generalized forces  and assume that
sliding friction is given by 

6.9.3 m M R
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c) Reaction force  is negative:

Here the mass is not subject to any constraints and it is in free fall.

The above example illustrates the flexibility provided by Lagrangian mechanics that allows simultaneous use of Lagrange
multipliers, generalized forces, and scalar potential to handle combinations of several holonomic and nonholonomic constraints for
a complicated problem.

This problem is solved in detail in example 3.19 of "Classical Mechanics and Relativity". by Muller-Kirsten .

This page titled 6.9: Applications involving Non-holonomic Constraints is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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6.10: Velocity-dependent Lorentz force
The Lorentz force in electromagnetism is unusual in that it is a velocity-dependent force, as well as being a conservative force that
can be treated using the concept of potential. That is, the Lorentz force is

It is interesting to use Maxwell’s equations and Lagrangian mechanics to show that the Lorentz force can be represented by a
conservative potential in Lagrangian mechanics.

Maxwell’s equations can be written as

Since  then it follows from Appendix  that  can be represented by the curl of a vector potential,  that is

Substituting this into  gives that

Since this curl is zero it can be represented by the gradient of a scalar potential 

The following shows that this relation corresponds to taking the gradient of a potential  for the charge  where the potential  is
given by the relation

where  is the scalar electrostatic potential. This scalar potential  can be employed in the Lagrange equations using the
Lagrangian

The Lorentz force can be derived from this Lagrangian by considering the Lagrange equation for the cartesian coordinate 

Using the above Lagrangian  gives

But

and

F = q(E +v ×B) (6.10.1)
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Inserting equations  and  into  gives

Corresponding expressions can be obtained for  and . Thus the total force is the well-known Lorentz force

This has demonstrated that the electromagnetic scalar potential

satisfies Maxwell’s equations, gives the Lorentz force, and it can be absorbed into the Lagrangian. Note that the velocity-dependent
Lorentz force is conservative since  is conservative, and because  therefore the magnetic force does no work
since it is perpendicular to the trajectory. The velocity-dependent conservative Lorentz force is an important and ubiquitous force
that features prominently in many branches of science. It will be discussed further for the case of relativistic motion in chapter 

.
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6.11: Time-dependent forces
All examples discussed in this chapter have assumed Lagrangians that are time independent. Mathematical systems where the
ordinary differential equations do not depend explicitly on the independent variable, which in this case is time , are called
autonomous systems. Systems having differential equations governing the dynamical behavior that have time-dependent
coefficients are called non-autonomous systems.

In principle it is trivial to incorporate time-dependent behavior into the equations of motion by introducing either a time dependent
generalized force , or allowing the Lagrangian to be time dependent. For example, in the rocket problem the mass is time
dependent. In some cases the time dependent forces can be represented by a time-dependent potential energy rather than using a
generalized force. Solutions for non-autonomous systems can be considerably more difficult to obtain, and can involve regions
where the motion is stable and other regions where the motion is unstable or chaotic similar to the behavior discussed in chapter .
The following case of a simple pendulum, whose support is undergoing vertical oscillatory motion, illustrates the complexities that
can occur for systems involving time-dependent forces.

Consider a plane pendulum having a mass  fastened to a massless rigid rod of length  that is at an angle  to the
vertical gravitational field . The pendulum is attached to a support that is subject to a vertical oscillatory force  such that
the vertical position  of the support is

Substitute  into these equations gives

These correspond to stable harmonic oscillations about  if the bracket term is positive, and to unstable motion if the
bracket is negative. Thus, for small amplitude oscillation about  the motion of the system can be unstable whenever the
bracket is negative, that is, when the acceleration  and resonance behavior can occur coupling the pendulum
period and the forcing frequency .

The inverted pendulum has stable oscillations about  if the bracket is negative, that is, if  This illustrates
that nonautonomous dynamical systems can involve either stable or unstable motion.

This page titled 6.11: Time-dependent forces is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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Example : Plane pendulum hanging from a vertically-oscillating support6.11.1
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6.12: Impulsive Forces
Colliding bodies often involve large impulsive forces that act for a short time. As discussed in chapter  the treatment of
impulsive forces or torques is greatly simplified if they act for a sufficiently short time that the displacement during the impact can
be ignored, even though the instantaneous change in velocities may be large. The simplicity is achieved by taking the time integral
of the Euler-Lagrange equations over the duration  of the impulse and assuming .

The impact of the impulse on a system can be handled two ways. The first approach is to use the Euler-Lagrange equation during
the impulse to determine the equations of motion

where the impulsive force is introduced using the generalized force . Knowing the initial conditions at time  the conditions
at the time  are given by integration of Equation  over the duration  of the impulse which gives

This integration determines the conditions at time  which then are used as the initial conditions for the motion when the
impulsive force  is zero.

The second approach is to realize that Equation  can be rewritten in the form

Note that in the limit that  then the integral of the generalized momentum  simplifies to give the change in

generalized momentum . In addition, assuming that the non-impulsive forces  are finite and independent of the

instantaneous impulsive force during the infinitessimal duration , then the contribution of the non-impulsive forces 

 during the impulse can be neglected relative to the large impulsive force term; . Thus it can

be assumed that

where  is the generalized impulse associated with coordinate . This generalized impulse can be derived from
the time integral of the impulsive forces  given by equation  using the time integral of Equation , that is

Note that the generalized impulse  can be a translational impulse  with corresponding translational variable  or an angular
impulsive torque  with corresponding angular variable .

Impulsive force problems usually are solved in two stages. Either equations  or  are used to determine the conditions
of the system immediately following the impulse. If  then impulse changes the generalized velocities  but not the
generalized coordinates . The subsequent motion then is determined using the Lagrangian equations of motion with the impulsive
generalized force being zero, and assuming that the initial condition corresponds to the result of the impulse calculation.

This page titled 6.12: Impulsive Forces is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline
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6.13: The Lagrangian versus the Newtonian approach to classical mechanics
It is useful to contrast the differences, and relative advantages, of the Newtonian and Lagrangian formulations of classical
mechanics. The Newtonian force-momentum formulation is vectorial in nature, it has cause and effect embedded in it. The
Lagrangian approach is cast in terms of kinetic and potential energies which involve only scalar functions and the equations of
motion come from a single scalar function, i.e. Lagrangian. The directional properties of the equations of motion come from the
requirement that the trajectory is specified by the principle of least action. The directional properties of the vectors in the
Newtonian approach assist in our intuition when setting up a problem, but the Lagrangian method is simpler mathematically when
the mechanical system is more complex.

The major advantage of the variational approaches to mechanics is that solution of the dynamical equations of motion can be
simplified by expressing the motion in terms of independent generalized coordinates . For Lagrangian mechanics these
generalized coordinates can be any set of independent variables, , where , plus the corresponding velocities . These
independent generalized coordinates completely specify the scalar potential and kinetic energies used in the Lagrangian or
Hamiltonian. The variational approach allows for a much larger arsenal of possible generalized coordinates than the typical vector
coordinates used in Newtonian mechanics. For example, the generalized coordinates can be dimensionless amplitudes for the 
normal modes of coupled oscillator systems, or action-angle variables. Moreover, very different generalized coordinates can be
used for each of the  variables. The tremendous freedom plus flexibility of the choice of generalized coordinates is important
when constraint forces are acting on the system. Generalized coordinates allow the constraint forces to be ignored by including
auxiliary conditions to account for the kinematic constraints that lead to correlated motion. The Lagrange method provides an
incredibly consistent and mechanistic problem-solving strategy for many-body systems subject to constraints. Expressed in terms
of generalized coordinates, the Lagrange’s equations can be applied to a wide variety of physical problems including those
involving fields. The manipulation of scalar quantities in a configuration space of generalized coordinates can greatly simplify
problems compared with being confined to a rigid orthogonal coordinate system characterized by the Newtonian vector approach.

The use of generalized coordinates in Lagrange’s equations of motion can be applied to a wide range of physical phenomena
including field theory, such as for electromagnetic fields, which are beyond the applicability of Newton’s equations of motion. The
superiority of the Lagrangian approach compared to the Newtonian approach for solving problems in mechanics is apparent when
dealing with holonomic constraint forces. Constraint forces must be known and included explicitly in the Newtonian equations of
motion. Unfortunately, knowledge of the equations of motion is required to derive these constraint forces. For holonomic
constrained systems, the equations of motion can be solved directly without calculating the constraint forces using the minimal set
of generalized coordinate approach to Lagrangian mechanics. Moreover, the Lagrange approach has significant philosophical
advantages compared to the Newtonian approach.
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6.E: Lagrangian Dynamics (Exercises)
1. A disk of mass  and radius  rolls without slipping down a plane inclined from the horizontal by an angle . The disk has a

short weightless axle of negligible radius. From this axis is suspended a simple pendulum of length  and whose bob has a
mass . Assume that the motion of the pendulum takes place in the plane of the disk.
a. What generalized coordinates would be appropriate for this situation?
b. Are there any equations of constraint? If so, what are they?
c. Find Lagrange’s equations for this system.

2. A Lagrangian for a particular system can be written as

where  and  are arbitrary constants, but subject to the condition that .

a. What are the equations of motion?
b. Examine the case . What physical system does this represent?
c. Examine the case  and . What physical system does this represent?
d. Based on your answers to (b) and (c), determine the physical system represented by the Lagrangian given above.

3. Consider a particle of mass  moving in a plane and subject to an inverse square attractive force.
a. Obtain the equations of motion.
b. Is the angular momentum about the origin conserved?
c. Obtain expressions for the generalized forces. Recall that the generalized forces are defined by

4. Consider a Lagrangian function of the form . Here the Lagrangian contains a time derivative of the generalized
coordinates that is higher than the first. When working with such Lagrangians, the term “generalized mechanics” is used.

a. Consider a system with one degree of freedom. By applying the methods of the calculus of variations, and assuming that
Hamilton’s principle holds with respect to variations which keep both  and  fixed at the end points, show that the
corresponding Lagrange equation is

Such equations of motion have interesting applications in chaos theory.

b. Apply this result to the Lagrangian

Do you recognize the equations of motion?

5. A bead of mass  slides under gravity along a smooth wire bent in the shape of a parabola  in the vertical  plane.
a. What kind (holonomic, nonholonomic, scleronomic, rheonomic) of constraint acts on ?
b. Set up Lagrange’s equation of motion for  with the constraint embedded.
c. Set up Lagrange’s equations of motion for both  and  with the constraint adjoined and a Lagrangian multiplier 

introduced.
d. Show that the same equation of motion for  results from either of the methods used in part (b) or part (c).
e. Express  in terms of  and .
f. What are the  and  components of the force of constraint in terms of  and ?

6. Consider the two Lagrangians
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where  is an arbitrary function of the generalized coordinates . Show that these two Lagrangians yield the same
Euler-Lagrange equations. As a consequence two Lagrangians that differ only by an exact time derivative are said to be
equivalent.

7. Consider the double pendulum comprising masses  and  connected by inextensible strings as shown in the figure.
Assume that the motion of the pendulum takes place in a vertical plane.

a. Are there any equations of constraint? If so, what are they?
b. Find Lagrange’s equations for this system.

Figure 

8. Consider the system shown in the figure which consists of a mass  suspended via a constrained massless link of length 
where the point  is acted upon by a spring of spring constant . The spring is unstretched when the massless link is horizontal.
Assume that the holonomic constraints at  and  are frictionless.
a. Derive the equations of motion for the system using the method of Lagrange multipliers.

Figure 

9. Consider a pendulum, with mass , connected to a (horizontally) moveable support of mass .
a. Determine the Lagrangian of the system.
b. Determine the equations of motion for .
c. Find an equation of motion in  alone. What is the frequency of oscillation?
d. What is the frequency of oscillation for ? Does this make sense?

10. A sphere of radius  is constrained to roll without slipping on the lower half of the inner surface of a hollow cylinder of radius 
 Determine the Lagrangian function, the equation of constraint, and the Lagrange equations of motion. Find the frequency of

small oscillations.
11. A particle moves in a plane under the influence of a force  directed toward the origin;  and  are

constants. Choose generalized coordinates with the potential energy zero at the origin.
a. Find the Lagrangian equations of motion.
b. Is the angular momentum about the origin conserved?
c. Is the total energy conserved?
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12. Two blocks, each of mass , are connected by an extensionless, uniform string of length . One block is placed on a frictionless
horizontal surface, and the other block hangs over the side, the string passing over a frictionless pulley. Describe the motion of
the system:
a. when the mass of the string is negligible
b. when the string has mass .

13. Two masses  and   are connected by a rigid rod of length  and of negligible mass. An extensionless string of
length  is attached to  and connected to a fixed point of the support . Similarly a string of length   connects 

 and . Obtain the equation of motion describing the motion in the plane of  and , and find the frequency of small
oscillation around the equilibrium position.

14. A thin uniform rigid rod of length  and mass  is suspended by a massless string of length . Initially the system is hanging
vertically downwards in the gravitational field . Use as generalized coordinates the angles given in the diagram.

a. Derive the Lagrangian for the system.
b. Use the Lagrangian to derive the equations of motion
c. A horizontal impulsive force  in the  direction strikes the bottom end of the rod for an infinitessimal time . Derive the

initial conditions for the system immediately after the impulse has occurred.
d. Draw a diagram showing the geometry of the pendulum shortly after the impulse when the displacement angles are

significant.

Figure 
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6.S: Lagrangian Dynamics (Summary)

Newtonian plausibility argument for Lagrangian mechanics

A justification for introducing the calculus of variations to classical mechanics becomes apparent when the concept of the
Lagrangian  is used in the functional and time  is the independent variable. It was shown that Newton’s equation of
motion can be rewritten as

where  are the excluded forces of constraint plus any other conservative or non-conservative forces not included in the
potential  This corresponds to the Euler-Lagrange equation for determining the minimum of the time integral of the Lagrangian.

Equation  can be written as

where the Lagrange multiplier term accounts for holonomic constraint forces, and  includes all additional forces not
accounted for by the scalar potential , or the Lagrange multiplier terms . The constraint forces can be included explicitly as
generalized forces in the excluded term  of Equation .

d’Alembert’s Principle

It was shown that d’Alembert’s Principle

cleverly transforms the principle of virtual work from the realm of statics to dynamics. Application of virtual work to statics
primarily leads to algebraic equations between the forces, whereas d’Alembert’s principle applied to dynamics leads to differential
equations.

Lagrange equations from d’Alembert’s Principle

After transforming to generalized coordinates, d’Alembert’s Principle leads to

If all the  coordinates  are independent, then Equation  implies that the term in the square brackets is zero for each
individual value of . That is, this implies the basic Euler-Lagrange equations of motion.

The handling of both conservative and non-conservative generalized forces  is best achieved by assuming that the generalized
force  can be partitioned into a conservative velocity-independent term, that can be expressed in terms of the

gradient of a scalar potential, , plus an excluded generalized force  which contains the non-conservative, velocity-
dependent, and all the constraint forces not explicitly included in the potential . That is,

Inserting  into , and assuming that the potential  is velocity independent, allows  to be rewritten as

Expressed in terms of the standard Lagrangian  this gives
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Note that Equation  contains the basic Euler-Lagrange Equation  for the special case when . In addition, note that
if all the generalized coordinates are independent, then the square bracket terms are zero for each value of , which leads to the 
general Euler-Lagrange equations of motion

where . Newtonian mechanics has trouble handling constraint forces because they lead to coupling of the degrees of
freedom. Lagrangian mechanics is more powerful since it provides the following three ways to handle such correlated motion.

1) Minimal set of generalized coordinates

If the  coordinates  are independent, then the square bracket equals zero for each value of  in Equation , which
corresponds to Euler’s equation for each of the  independent coordinates. If the  generalized coordinates are coupled by 
constraints, then the coordinates can be transformed to a minimal set of  independent coordinates which then can be
solved by applying Equation  to the minimal set of  independent coordinates.

2) Lagrange multipliers approach

The Lagrangian method concentrates solely on active forces, completely ignoring all other internal forces. In Lagrangian
mechanics the generalized forces, corresponding to each generalized coordinate, can be partitioned three ways

where the velocity-independent conservative forces can be absorbed into a scalar potential , the holonomic constraint forces can
be handled using the Lagrange multiplier term , and the remaining part of the active forces can be absorbed into

the generalized force . The scalar potential energy  is handled by absorbing it into the standard Lagrangian . If
the constraint forces are holonomic then these forces are easily and elegantly handled by use of Lagrange multipliers. All remaining
forces, including dissipative forces, can be handled by including them explicitly in the the generalized force .

Combining the above two equations gives

Use of the Lagrange multipliers to handle the  constraint forces ensures that all  infinitessimals  are independent implying
that the expression in the square bracket must be zero for each of the  values of . This leads to  Lagrange equations plus 
constraint relations

where 

3) Generalized forces approach

The two right-hand terms in  can be understood to be those forces acting on the system that are not absorbed into the scalar
potential  component of the Lagrangian . The Lagrange multiplier terms  account for the holonomic forces of

constraint that are not included in the conservative potential or in the generalized forces . The generalized force

is the sum of the components in the  direction for all external forces that have not been taken into account by the scalar potential
or the Lagrange multipliers. Thus the non-conservative generalized force  contains non-holonomic constraint forces,
including dissipative forces such as drag or friction, that are not included in , or used in the Lagrange multiplier terms to account
for the holonomic constraint forces.
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Applying the Euler-Lagrange equations in mechanics:

The optimal way to exploit Lagrangian mechanics is as follows:

1. Select a set of independent generalized coordinates.
2. Partition the active forces into three groups:

1. Conservative one-body forces
2. Holonomic constraint forces
3. Generalized forces

3. Minimize the number of generalized coordinates.
4. Derive the Lagrangian
5. Derive the equations of motion

Velocity-dependent Lorentz force:

Usually velocity-dependent forces are non-holonomic. However, electromagnetism is a special case where the velocity-dependent
Lorentz force  can be obtained from a velocity-dependent potential function . It was shown that the
velocity-dependent potential

leads to the Lorentz force where  is the scalar electric potential and  the vector potential.

Time-dependent forces:

It was shown that time-dependent forces can lead to complicated motion having both stable regions and unstable regions of motion
that can exhibit chaos.

Impulsive forces:

A generalized impulse  can be derived for an instantaneous impulsive force from the time integral of the impulsive forces 
given by equation  using the time integral of equation , that is

Note that the generalized impulse  can be a translational impulse  with corresponding translational variable  or an angular
impulsive torque  with corresponding angular variable .

Comparison of Newtonian and Lagrangian mechanics:

In contrast to Newtonian mechanics, which is based on knowing all the vector forces acting on a system, Lagrangian mechanics can
derive the equations of motion using generalized coordinates without requiring knowledge of the constraint forces acting on the
system. Lagrangian mechanics provides a remarkably powerful, and incredibly consistent, approach to solving for the equations of
motion in classical mechanics which is especially powerful for handling systems that are subject to holonomic constraints.
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Thumbnail: Amalie Emmy Noether was a German mathematician known for her landmark contributions to abstract algebra and
theoretical physics. She invariably used the name "Emmy Noether" in her life and publications. She was described by Pavel
Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl, and Norbert Wiener as the most important woman in the history of
mathematics. As one of the leading mathematicians of her time, she developed the theories of rings, fields, and algebras. In physics,
Noether's theorem explains the connection between symmetry and conservation laws.
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7.1: Introduction to Symmetries, Invariance, and the Hamiltonian
The chapter  discussion of Lagrangian dynamics illustrates the power of Lagrangian mechanics for deriving the equations of
motion. In contrast to Newtonian mechanics, which is expressed in terms of force vectors acting on a system, the Lagrangian
method, based on d’Alembert’s Principle or Hamilton’s Principle, is expressed in terms of the scalar kinetic and potential energies
of the system. The Lagrangian approach is a sophisticated alternative to Newton’s laws of motion, that provides a simpler
derivation of the equations of motion that allows constraint forces to be ignored. In addition, the use of Lagrange multipliers or
generalized forces allows the Lagrangian approach to determine the constraint forces when these forces are of interest. The
equations of motion, derived either from Newton’s Laws or Lagrangian dynamics, can be non-trivial to solve mathematically. It is
necessary to integrate second-order differential equations, which for  degrees of freedom, imply  constants of integration.

Chapter  will explore the remarkable connection between symmetry and invariance of a system under transformation, and the
related conservation laws that imply the existence of constants of motion. Even when the equations of motion cannot be solved
easily, it is possible to derive important physical principles regarding the first-order integrals of motion of the system directly from
the Lagrange equation, as well as for elucidating the underlying symmetries plus invariance. This property is contained in
Noether’s theorem which states that conservation laws are associated with differentiable symmetries of a physical system.
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7.2: Generalized Momentum
Consider a holonomic system of  masses under the influence of conservative forces that depend on position  but not velocity 

, that is, the potential is velocity independent. Then for the  coordinate of particle  for  particles

Thus for a holonomic, conservative, velocity-independent potential we have

which is the  component of the linear momentum for the  particle.

This result suggests an obvious extension of the concept of momentum to generalized coordinates. The generalized momentum
associated with the coordinate  is defined to be

Note that  also is called the conjugate momentum or canonical momentum to  where  are conjugate, or canonical,
variables. Remember that the linear momentum  is the first-order time integral given by equation . If  is not a spatial
coordinate, then  is the generalized momentum, not the kinematic linear momentum. For example, if  is an angle, then  will
be angular momentum. That is, the generalized momentum may differ from the usual linear or angular momentum since the
definition  is more general than the usual  definition of linear momentum in classical mechanics. This is illustrated
by the case of a moving charged particles  in an electromagnetic field. Chapter  showed that electromagnetic forces on a
charge  can be described in terms of a scalar potential  where

Thus the Lagrangian for the electromagnetic force can be written as

The generalized momentum to the coordinate  for charge  and mass  is given by the above Lagrangian

Note that this includes both the mechanical linear momentum plus the correct electromagnetic momentum. The fact that the
electromagnetic field carries momentum should not be a surprise since electromagnetic waves also carry energy as is illustrated by
the transmission of radiant energy from the sun.

Feynman posed the following paradox [Fey84]. A circular insulating disk  mounted on frictionless bearings, has a circular ring
of total charge  uniformly distributed around the perimeter of the circular disk at the radius . A superconducting long
solenoid of radius , where , is fixed to the disk and is mounted coaxial with the bearings. The moment of inertia of the
system about the rotation axis is . Initially the disk plus superconducting solenoid are stationary with a steady current
producing a uniform magnetic field  inside the solenoid. Assume that a rise in temperature of the solenoid destroys the
superconductivity leading to a rapid dissipation of the electric current and resultant magnetic field. Assume that the system is
free to rotate, no other forces or torques are acting on the system, and that the charge carriers in the solenoid have zero mass
and thus do not contribute to the angular momentum. Does the system rotate when the current in the solenoid stops?
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,mj ej 6

ej Uj

= (Φ − )Uj ej A ⋅ vj (7.2.4)

L = [ ⋅ − (Φ − )]∑
j=1

N 1

2
mjvj vj ej A ⋅ vj (7.2.5)

xj ,ej ,mj

= = +pj,x
∂L

∂ẋj
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Figure 

Initially the system is stationary with zero mechanical angular momentum. Faraday’s Law states that, when the magnetic field
dissipates from  to zero, there will be a torque  acting on the circumferential charge  at radius  due to the change in
magnetic flux .

Since , this torque leads to an angular impulse which will equal the final mechanical angular momentum.

The initial angular momentum in the electromagnetic field can be derived using Equation , plus Stoke’s theorem
(Appendix ) . Equation  gives that the final angular momentum equals the angular impulse

where  is the initial total magnetic flux through the solenoid. Thus the total initial angular momentum
is given by

Since the final electromagnetic field is zero the final total angular momentum is given by

Note that the total angular momentum is conserved. That is, initially all the angular momentum is stored in the electromagnetic
field, whereas the final angular momentum is all mechanical. This explains the paradox that the mechanical angular
momentum is not conserved, only the total angular momentum of the system is conserved, that is, the sum of the mechanical
and electromagnetic angular momenta.

This page titled 7.2: Generalized Momentum is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.

7.2.1

B0 N q R

Φ

N(t) = −qR
dΦ

dt

< 0dΦ
dt

= T = N(t)dt = qRΦLMECH
final ∫

t

7.2.6

19.8.3 2.12.56

= R ∮ r dldt = R∮ r dl = qR∮ dl = qR∫ B ⋅ dS =qRΦLEM
initial ∫

t
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7.3: Invariant Transformations and Noether’s Theorem
One of the great advantages of Lagrangian mechanics is the freedom it allows in choice of generalized coordinates which can
simplify derivation of the equations of motion. For example, for any set of coordinates,  a reversible point transformation can
define another set of coordinates  such that

The new set of generalized coordinates satisfies Lagrange’s equations of motion with the new Lagrangian

The Lagrangian is a scalar, with units of energy, which does not change if the coordinate representation is changed. Thus 
 can be derived from  by substituting the inverse relation  into  That is, the

value of the Lagrangian  is independent of which coordinate representation is used. Although the general form of Lagrange’s
equations of motion is preserved in any point transformation, the explicit equations of motion for the new variables usually look
different from those with the old variables. A typical example is the transformation from cartesian to spherical coordinates. For a
given system, there can be particular transformations for which the explicit equations of motion are the same for both the old and
new variables. Transformations for which the equations of motion are invariant, are called invariant transformations. It will be
shown that if the Lagrangian does not explicitly contain a particular coordinate of displacement  then the corresponding
conjugate momentum,  is conserved. This relation is called Noether’s theorem which states “For each symmetry of the
Lagrangian, there is a conserved quantity".

Noether’s Theorem will be used to consider invariant transformations for two dependent variables,  and  plus their
conjugate momenta  and . For a closed system, these provide up to six possible conservation laws for the three axes. Then we
will discuss the independent variable  and its relation to the Generalized Energy Theorem, which provides another possible
conservation law. For simplicity, these discussions will assume that the systems are holonomic and conservative.

The Lagrange equations using generalized coordinates for holonomic systems, was given by equation  to be

This can be written in terms of the generalized momentum as

or equivalently as

Note that if the Lagrangian  does not contain  explicitly, that is, the Lagrangian is invariant to a linear translation, or
equivalently, is spatially homogeneous, and if the Lagrange multiplier constraint force and generalized force terms are zero, then

In this case the Lagrange equation reduces to

Equation  corresponds to  being a constant of motion. Stated in words, the generalized momentum  is a constant of motion
if the Lagrangian is invariant to a spatial translation of , and the constraint plus generalized force terms are zero. Expressed
another way, if the Lagrangian does not contain a given coordinate  and the corresponding constraint plus generalized forces are
zero, then the generalized momentum associated with this coordinate is conserved. Note that this example of Noether’s theorem
applies to any component of . For example, in the uniform gravitational field at the surface of the earth, the Lagrangian does not
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depend on the  and  coordinates in the horizontal plane, thus  and  are conserved, whereas, due to the gravitational force, the
Lagrangian does depend on the vertical  axis and thus  is not conserved.

Assume that the linear momentum is conserved for the Atwood’s machine shown in the figure below.

Figure : Example of an Atwood’s machine

Let the left mass rise a distance  and the right mass rise a distance . Then the middle mass must drop by  to conserve
the length of the string. The Lagrangian of the system is

Note that the transformation

results in the potential energy term  which is a constant of motion. As a result the Lagrangian is
independent of  which means that it is invariant to the small perturbation  and thus  Therefore, according to
Noether’s theorem, the corresponding linear momentum  is conserved. This conserved linear momentum then is given
by

Thus, if the system starts at rest with , then  always equals  since  is constant.

Note that this also can be shown using the Euler-Lagrange equations in that  and  give

Adding the second equation to twice the first gives

This is the result obtained directly using Noether’s theorem.
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7.4: Rotational invariance and conservation of angular momentum
The arguments, used above, apply equally well to conjugate momenta  and  for rotation about any axis. The Lagrange equation
is

If no constraint or generalized torques act on the system, then the right-hand side of Equation  is zero. Moreover if the
Lagrangian in not an explicit function of  then  and assuming that the constraint plus generalized torques are zero, then 

 is a constant of motion.

Noether’s Theorem illustrates this general result which can be stated as, if the Lagrangian is rotationally invariant about some axis,
then the component of the angular momentum along that axis is conserved. Also this is true for the more general case where the
Lagrangian is invariant to rotation about any axis, which leads to conservation of the total angular momentum.

Figure : Infinitessimal rotation

The Noether theorem result for rotational-invariance about an axis also can be derived using cartesian coordinates as shown
below. As discussed in appendix , it is necessary to limit discussion of rotation to infinitessimal rotation angles in order to
represent the rotation by a vector. Consider an infinitessimal rotation  about some axis, which is a vector. As illustrated in the
adjacent figure, this can be expressed as

The velocity vectors also change on rotation of the system obeying the transformation equation which is common to all
vectors, that is,

If the Lagrangian is unaffected by the orientation of the system, that is, it is rotationally invariant, then it can be shown that the
angular momentum is conserved. For example, consider that the Lagrangian is invariant to rotation about some axis . Since
the Lagrangian is a function

then the expression that the Lagrangian does not change due to an infinitesimal rotation  about this axis can be expressed as

pθ θ

{ − } = (q, t) +
d

dt
pθ

∂L

∂θ
∑
k=1

m

λk
∂gk
∂θ

QEXC
θ (7.4.1)

7.4.1

θ, = 0,∂L
∂θ

pθ

Example : Conservation of angular momentum for rotational invariance7.4.1

7.4.1

19.4

δθ

δr = δθ×r

δ = δθ×ṙ ṙ
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where cartesian coordinates have been used.

Using the generalized momentum

then, Lagrange’s equation gives

that is

Inserting this into Equation  gives

This is equivalent to the scalar products

For an infinitessimal rotation then  and . Therefore

The cyclic order can be permuted giving

Because the infinitessimal angle  is arbitrary, then the time derivative

about the axis of rotation  But the bracket  equals the angular momentum. That is;

This proves the Noether’ theorem that the angular momentum about any axis is conserved if the Lagrangian is rotationally
invariant about that axis

An interesting example of Noether’s theorem applies to diatomic molecules such as  and . The electric
field produced by the two charged nuclei of the diatomic molecule has cylindrical symmetry about the axis through the two
nuclei. Electrons are bound to this dumbbell arrangement of the two nuclear charges which may be rotating and vibrating in
free space. Assuming that there are no external torques acting on the diatomic molecule in free space, then the angular
momentum about any fixed axis in free space must be conserved according to Noether’s theorem. If no external torques are
applied, then the component of the angular momentum about any fixed axis is conserved, that is, the total angular momentum
is conserved. What is especially interesting is that since the electrostatic potential, and thus the Lagrangian, of the diatomic
molecule has cylindrical symmetry, that is , then the component of the angular momentum with respect to this
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symmetry axis also is conserved irrespective of how the diatomic molecule rotates or vibrates in free space. That is, an
additional symmetry has been identified that leads to an additional conservation law that applies to the angular momentum.

An example of Noether’s theorem is in nuclear physics where some nuclei have a spheroidal shape similar to an american
football or a rugby ball. This spheroidal shape has an axis of symmetry along the long axis. The Lagrangian is rotationally
invariant about the symmetry axis resulting in the angular momentum about the symmetry axis being conserved in addition to
conservation of the total angular momentum.
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7.5: Cyclic Coordinates
Translational and rotational invariance occurs when a system has a cyclic coordinate  A cyclic coordinate is one that does not
explicitly appear in the Lagrangian. The term cyclic is a natural name when one has cylindrical or spherical symmetry. In
Hamiltonian mechanics a cyclic coordinate often is called an ignorable coordinate . By virtue of Lagrange’s equations

then a cyclic coordinate  is one for which . Thus

that is,  is a constant of motion if the conjugate coordinate  is cyclic. This is just Noether’s Theorem.

This page titled 7.5: Cyclic Coordinates is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline
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7.6: Kinetic Energy in Generalized Coordinates
Application of Noether’s theorem to the conservation of energy requires the kinetic energy to be expressed in generalized
coordinates. In terms of fixed rectangular coordinates, the kinetic energy for  bodies, each having three degrees of freedom, is
expressed as

These can be expressed in terms of generalized coordinates as  and in terms of generalized velocities

Taking the square of  and inserting into the kinetic energy relation gives

This can be abbreviated as

where

where

When the transformed system is scleronomic, time does not appear explicitly in the transformation equations to generalized

coordinates since . Then , and the kinetic energy reduces to a homogeneous quadratic function of the
generalized velocities

A useful relation can be derived by taking the differential of Equation  with respect to . That is

Multiply this by  and sum over  gives

Similarly, the products of the generalized velocities  with the corresponding derivatives of  and  give
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mαẋ2
α,i (7.6.1)

= ( , t)xα,i xα,i qj
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Equation  gives that  when the transformed system is scleronomic, i.e.  and then the kinetic energy is a
quadratic function of the generalized velocities . Using the definition of the generalized momentum equation , assuming 

, and that the potential  is velocity independent, gives that

Then Equation  reduces to the useful relation that

where, for compactness, the summation is abbreviated as a scalar product.
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7.7: Generalized Energy and the Hamiltonian Function
Consider the time derivative of the Lagrangian, plus the fact that time is the independent variable in the Lagrangian. Then the total
time derivative is

The Lagrange equations for a conservative force are given by equation  to be

The holonomic constraints can be accounted for using the Lagrange multiplier terms while the generalized force  includes
non-holonomic forces or other forces not included in the potential energy term of the Lagrangian, or holonomic forces not
accounted for by the Lagrange multiplier terms.

Substituting Equation  into Equation  gives

This can be written in the form

Define Jacobi’s Generalized Energy   by

Jacobi’s generalized momentum, equation  can be used to express the generalized energy  in terms of the canonical
coordinates  and , plus time . Define the Hamiltonian function to equal the generalized energy expressed in terms of the
conjugate variables , that is,

This Hamiltonian  underlies Hamiltonian mechanics which plays a profoundly important role in most branches of
physics as illustrated in chapters  and .

Most textbooks call the function  Jacobi’s energy integral. This book adopts the more descriptive name Generalized
energy in analogy with use of generalized coordinates  and generalized momentum .
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7.8: Generalized energy theorem
The Hamilton function,  plus equation  lead to the generalized energy theorem

Note that for the special case where all the external forces , then

Thus the Hamiltonian is time independent if both  and the Lagrangian are time-independent.

For an isolated closed system having no external forces acting, then the Lagrangian is time independent because the velocities are
constant, and there is no external potential energy. That is, the Lagrangian is time-independent, and

As a consequence, the Hamiltonian  and generalized energy , both are constants of motion if the Lagrangian
is a constant of motion, and if the external non-potential forces are zero. This is an example of Noether’s theorem, where the
symmetry of time independence leads to conservation of the conjugate variable, which is the Hamiltonian or Generalized energy.
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7.9: Generalized energy and total energy
The generalized kinetic energy, equation , can be used to write the generalized Lagrangian as

If the potential energy  does not depend explicitly on velocities  or time, then

Equation  can be used to write the Hamiltonian, equation , as

Using equations , ,  gives that the total generalized Hamiltonian  equals

But the sum of the kinetic and potential energies equals the total energy. Thus Equation  can be rewritten in the form

Note that Jacobi’s generalized energy and the Hamiltonian do not equal the total energy . However, in the special case where the
transformation is scleronomic, then  and if the potential energy  does not depend explicitly of , then the
generalized energy (Hamiltonian) equals the total energy, that is,  Recognition of the relation between the Hamiltonian and
the total energy facilitates determining the equations of motion.
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7.10: Hamiltonian Invariance
Chapters  addressed two important and independent features of the Hamiltonian regarding:  when  is conserved, and )
when  equals the total mechanical energy. These important results are summarized below with a discussion of the assumptions
made in deriving the Hamiltonian, as well as the implications.

a) Conservation of generalized energy
The generalized energy theorem  was given as

Note that when

then Equation  reduces to

Also, when

and if the Lagrangian is not an explicit function of time, then the Hamiltonian is a constant of motion. That is,  is conserved if,
and only if, the Lagrangian, and consequently the Hamiltonian, are not explicit functions of time, and if the external forces are zero.

b) The generalized energy and total energy

If the following two requirements are satisfied

1. The kinetic energy has a homogeneous quadratic dependence on the generalized velocities, that is, the transformation to

generalized coordinates is independent of time, 

2. The potential energy is not velocity dependent, thus the terms 

Then equation  implies that the Hamiltonian equals the total mechanical energy, that is,

Expressed in words, the generalized energy (Hamiltonian) equals the total energy if the constraints are time independent and the
potential energy is velocity independent. This is equivalent to stating that, if the constraints, or generalized coordinates, for the
system are time independent, then .

The four combinations of the above two independent conditions, assuming that the external forces term in Equation  is zero,
are summarized in table .

Hamiltonian Constraints and coordinate transformation Constraints and coordinate transformation

Time behavior Time independent Time dependent

 conserved,  conserved, 

 not conserved,  not conserved, 

Table : Hamiltonian and total energy

7.8, 7.9 a) H b
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Note the following general facts regarding the Lagrangian and the Hamiltonian.

1. the Lagrangian is indefinite with respect to addition of a constant to the scalar potential,
2. the Lagrangian is indefinite with respect to addition of a constant velocity,
3. there is no unique choice of generalized coordinates.
4. the Hamiltonian is a scalar function that is derived from the Lagrangian scalar function.
5. the generalized momentum is derived from the Lagrangian.

These facts, plus the ability to recognize the conditions under which  is conserved, and when  can greatly facilitate
solving problems as shown by the following two examples.

Consider a linear harmonic oscillator located on a cart that is moving with constant velocity  in the  direction (Figure 
). Let the laboratory frame be the unprimed frame, and the cart frame be designated the primed frame. Assume that 
 at  Then

Figure : Harmonic oscillator on cart moving at uniform velocity .

The harmonic oscillator will have a potential energy of

Laboratory frame:

The Lagrangian is

Lagrange equation  gives the equation of motion to be

The definition of generalized momentum gives

The Hamiltonian is

H H = E,

Example : Linear harmonix oscillator on a cart moving at constant velocity7.10.1

v0 x
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mẋ2

2

1

2
(x− t)v0

2

L = 0Λx

m = −k(x− t)ẍ v0
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The Hamiltonian is the sum of the kinetic and potential energies and equals the total energy of the system, but it is not

conserved since  and  are both explicit functions of time, that is . Physically this is understood in

that energy must flow into and out of the external constraint keeping the cart moving uniformly at a constant velocity 
against the reaction to the oscillating mass. That is, assuming a uniform velocity for the moving cart constitutes a time-
dependent constraint on the mass, and the force of constraint does work in actual displacement of the complete system. If the
constraint did not exist, then the cart momentum would oscillate such that the total momentum of cart plus spring system is
conserved.

Cart frame:

Transform the Lagrangian to the primed coordinates in the moving frame of reference, which also is an inertial frame. Then the
Lagrangian  in terms of the moving cart frame coordinates, is

The Lagrange equation of motion  gives the equation of motion to be

where  is the displacement of the mass with respect to the cart. This implies that an observer on the cart will observe simple
harmonic motion as is to be expected from the principle of equivalence in Galilean relativity.

The definition of the generalized momentum gives the linear momentum in the primed frame coordinates to be

The cart-frame Hamiltonian also can be expressed in terms of the coordinates in the moving frame to be

Note that the Lagrangian and Hamiltonian expressed in terms of the coordinates in the cart frame of reference are not explicitly
time dependent, therefore  is conserved. However, the cart-frame Hamiltonian does not equal the total energy since the
coordinate transformation is time dependent. Actually the first two terms in the above Hamiltonian are the energy of the
harmonic oscillator in the cart frame. This example shows that the Hamiltonians differ when expressed in terms of either the
laboratory or cart frames of reference

Consider a mass subject to a central isotropic radial force  as shown in Figure . Compare the Hamiltonian  in the
fixed frame of reference , with the Hamiltonian  in a frame of reference  that is rotating about the center of the force
with constant angular velocity .

Figure : Mass subject to radial force
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Example : Isotropic central force in a rotating frame7.10.2
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Restrict this case to rotation about one axis so that only two polar coordinates  and  need to be considered. The
transformations are

Also

Fixed frame of reference :

Since the Lagrangian is not explicitly time dependent, then the Hamiltonian is conserved. For this fixed-frame Hamiltonian the
generalized momenta are

The Hamiltonian equals

The Hamiltonian in the fixed frame is conserved and equals the total energy, that is .

Rotating frame of reference 

The above inertial fixed-frame Lagrangian can be written in terms of the primed (non-inertial rotating frame) coordinates as

The generalized momenta derived from this Lagrangian are

The Hamiltonian expressed in terms of the non-inertial rotating frame coordinates is

Note that  is time independent and therefore is conserved, but  because the generalized
coordinates are time dependent. In addition,  is conserved since

The simple plane pendulum in a uniform gravitational field  is an example that illustrates Hamiltonian invariance.
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ṙ2 r2ϕ̇

2

pϕ

pr

=

=

= m
∂L

∂ϕ̇
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Example : The plane pendulum7.10.3
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Figure : The plane pendulum constrained to oscillate in a vertical plane in a uniform gravitational field.

There is only one generalized coordinate,  and the Lagrangian for this system is

The momentum conjugate to  is

which is the angular momentum about the pivot point.

Using the Lagrange-Euler equation this gives that

Note that the angular momentum  is not a constant of motion since it explicitly depends on .

The Hamiltonian is

Note that the Lagrangian and Hamiltonian are not explicit functions of time, therefore they are conserved. Also the potential is
velocity independent and there is no coordinate transformation, thus the Hamiltonian equals the total energy  which is a
constant of motion.

It is important to correctly account for constraint forces when using Noether’s theorem for constrained systems. Noether’s
theorem assumes the variables are independent. This is illustrated by considering the example of a solid cylinder rolling in a
fixed cylindrical bowl. Assume that a uniform cylinder of radius  and mass  is constrained to roll without slipping on the
inner surface of the lower half of a hollow cylinder of radius . The motion is constrained to ensure that the axes of both
cylinders remain parallel and .

7.10.3
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Example : Oscillating cylinder in a cylindrical bowl7.10.4
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Figure 

The generalized coordinates are taken to be the angles  and  which are measured with respect to a fixed vertical axis. Then
the kinetic energy and potential energy are

where  is the mass of the small cylinder and where  at the lowest position of the sphere. The moment of inertia of a

uniform cylinder is .

The Lagrangian is

Since the solid cylinder rotates without slipping inside the cylindrical shell, then the equation of constraint is

Using the Lagrangian, plus the one equation of constraint, requires one Lagrange multiplier. Then the Lagrange equations of
motion for  and  are

Substitute the Lagrangian and the equation of constraint gives two equations of motion

The lower equation of motion gives that

Substitute this into the equation of constraint gives

Substitute this into the first equation of motion gives the equation of motion for  to be

that is

The torque acting on the small cylinder due to the frictional force is

7.10.4
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Thus the frictional force is

Noether’s theorem can be used to ascertain if the angular momentum  is a constant of motion. The derivative of the
Lagrangian

and thus the Lagrange equations tells us that . Therefore  is not a constant of motion.

The Lagrangian is not an explicit function of  which would suggest that  is a constant of motion. But this is incorrect

because the constraint equation  couples  and , that is, they are not independent variables, and thus  and 

are coupled by the constraint equation. As a result  is not a constant of motion because it is directly coupled to 
 which is not a constant of motion. Thus neither  nor  are constants of motion. This illustrates that

one must account carefully for equations of constraint, and the concomitant constraint forces, when applying Noether’s
theorem which tacitly assumes independent variables.

The Hamiltonian can be derived using the generalized momenta

Then the Hamiltonian is given by

Note that the transformation to generalized coordinates is time independent and the potential is not velocity dependent, thus the

Hamiltonian also equals the total energy. Also the Hamiltonian is conserved since .
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7.11: Hamiltonian for Cyclic Coordinates
It is interesting to discuss the properties of the Hamiltonian for cyclic coordinates  for which . Ignoring the external and
Lagrange multiplier terms,

That is, a cyclic coordinate has a constant corresponding momentum  for the Hamiltonian as well as for the Lagrangian.
Conversely, if a generalized coordinate does not occur in the Hamiltonian, then the corresponding generalized momentum is
conserved. Cyclic coordinates were discussed earlier when discussing symmetries and conservation-law aspects of the Lagrangian.
For example, if the Lagrangian, or Hamiltonian do not depend on a linear coordinate  then  is conserved. Similarly for  and 

 An extension of this principle has been derived for the relationship between time independence and total energy of a system,
that is, the Hamiltonian equals the total energy if the transformation to generalized coordinates is time independent and the
potential is velocity independent.

A valuable feature of the Hamiltonian formulation is that it allows elimination of cyclic variables which reduces the number of
degrees of freedom to be handled. As a consequence, cyclic variables are called ignorable variables in Hamiltonian mechanics.
For example, consider that the Lagrangian has one cyclic variable . As a consequence, the Lagrangian does not depend on ,
and thus it can be written as

The Lagrangian still contains  generalized velocities, thus one still has to treat  degrees of freedom even though one degree of
freedom  is cyclic. However, in the Hamiltonian formulation, only  degrees of freedom are required since the momentum
for the cyclic degree of freedom is a constant  Thus the Hamiltonian can be written as

that is, the Hamiltonian includes only  degrees of freedom. Thus the dimension of the problem has been reduced by one since
the conjugate cyclic (ignorable) variables  are eliminated. Hamiltonian mechanics can significantly reduce the dimension
of the problem when the system involves several cyclic variables. This is in contrast to the situation for the Lagrangian approach as
discussed in chapters  and .
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7.12: Symmetries and Invariance
This chapter has shown that the symmetries of a system lead to invariance of physical quantities as was proposed by Noether. The
symmetry properties of the Lagrangian can lead to the conservation laws summarized in Table .

Symmetry Lagrange property Conserved quantity

Spatial invariance Translational invariance Linear momentum

Spatial homogeneous Rotational invariance Angular momentum

Time invariance Time independence Total energy

Table : Symmetries and conservation laws in classical mechanics

The importance of the relations between invariance and symmetry cannot be overemphasized. It extends beyond classical
mechanics to quantum physics and field theory. For a three-dimensional closed system, there are three possible constants for linear
momentum, three for angular momentum, and one for energy. It is especially interesting in that these, and only these, seven
integrals have the property that they are additive for the particles comprising a system, and this occurs independent of whether
there is an interaction among the particles. That is, this behavior is obeyed by the whole assemble of particles for finite systems.
Because of its profound importance to physics, these relations between symmetry and invariance are used extensively.
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7.13: Hamiltonian in Classical Mechanics
The Hamiltonian was defined by equation  during the discussion of time invariance and energy conservation. The
Hamiltonian is of much more profound importance to physics than implied by the ad hoc definition given by equation . This
relates to the fact that the Hamiltonian is written in terms of the fundamental coordinate  and its generalized momentum 
defined by equation .

It is more convenient to write the  generalized coordinates  plus their generalized momentum  as vectors, e.g. 
, . The generalized momenta conjugate to the coordinate , defined by , then can be

written in the form

Substituting this definition of the generalized momentum into the Hamiltonian defined in , and expressing it in terms of the
coordinate  and its conjugate generalized momenta , leads to

Note that the scalar product  equals  for systems that are scleronomic and when the potential is velocity
independent.

The crucial feature of the Hamiltonian is that it is expressed as  that is, it is a function of the  generalized coordinates 
 and their conjugate momenta , which are taken to be independent, in addition to the independent variable, . This is in contrast

to the Lagrangian  which is a function of the  generalized coordinates , the corresponding velocities , and time 
The velocities  are the time derivatives of the coordinates  and thus these are related. In physics, the fundamental conjugate
coordinates are  which are the coordinates underlying the Hamiltonian. This is in contrast to  which are the
coordinates that underlie the Lagrangian. Thus the Hamiltonian is more fundamental than the Lagrangian and is a reason why the
Hamiltonian mechanics, rather than the Lagrangian mechanics, was used as the foundation for development of quantum and
statistical mechanics.

Hamiltonian mechanics will be derived two other ways. Chapter  uses the Legendre transformation between the conjugate
variables  and  where the generalized coordinate  and its conjugate generalized momentum,  are independent.
This shows that Hamiltonian mechanics is based on the same variational principles as those used to derive Lagrangian mechanics.
Chapter  derives Hamiltonian mechanics directly from Hamilton’s Principle of Least action. Chapter  will introduce the algebraic
Hamiltonian mechanics, that is based on the Hamiltonian. The powerful capabilities provided by Hamiltonian mechanics will be
described in chapter .
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7.E: Symmetries, Invariance and the Hamiltonian (Exercises)
1. Consider a particle of mass  moving in a plane and subject to an inverse square attractive force.

a. Obtain the equations of motion.
b. Is the angular momentum about the origin conserved?
c. Obtain expressions for the generalized forces.

2. Consider a Lagrangian function of the form . Here the Lagrangian contains a time derivative of the generalized
coordinates that is higher than the first. When working with such Lagrangians, the term “generalized mechanics” is used.

a. Consider a system with one degree of freedom. By applying the methods of the calculus of variations, and assuming that
Hamilton’s principle holds with respect to variations which keep both  and  fixed at the end points, show that the
corresponding Lagrange equation is

Such equations of motion have interesting applications in chaos theory.

b. Apply this result to the Lagrangian

Do you recognize the equations of motion?

3. A uniform solid cylinder of radius  and mass  rests on a horizontal plane and an identical cylinder rests on it touching along
the top of the first cylinder with the axes of both cylinders parallel. The upper cylinder is given an infinitessimal displacement
so that both cylinders roll without slipping in the directions shown by the arrows.
a. Find Lagrangian for this system
b. What are the constants of motion?
c. Show that as long as the cylinders remain in contact then

Figure 

4. Consider a diatomic molecule which has a symmetry axis along the line through the center of the two atoms comprising the
molecule. Consider that this molecule is rotating about an axis perpendicular to the symmetry axis and that there are no external
forces acting on the molecule. Use Noether’s Theorem to answer the following questions:
a. Is the total angular momentum conserved?
b. Is the projection of the total angular momentum along a space-fixed  axis conserved?
c. Is the projection of the angular momentum along the symmetry axis of the rotating molecule conserved?
d. Is the projection of the angular momentum perpendicular to the rotating symmetry axis conserved?

5. A bead of mass  slides under gravity along a smooth wire bent in the shape of a parabola  in the vertical  plane.
a. What kind (holonomic, nonholonomic, scleronomic, rheonomic) of constraint acts on ?
b. Set up Lagrange’s equation of motion for  with the constraint embedded.
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c. Set up Lagrange’s equations of motion for both  and  with the constraint adjoined and a Lagrangian multiplier 
introduced.

d. Show that the same equation of motion for  results from either of the methods used in part (b) or part (c).
e. Express  in terms of  and 
f. What are the  and  components of the force of constraint in terms of  and  ?

6. Let the horizontal plane be the  plane. A bead of mass  is constrained to slide with speed  along a curve described by
the function . What force does the curve apply to the bead? (Ignore gravity)

7. Consider the Atwoods machine shown. The masses are , , and . Let  and  be the heights of the right two masses
relative to their initial positions.
a. Solve this problem using the Euler-Lagrange equations b) Use Noether’s theorem to find the conserved momentum.
b. Use Noether’s theorem to find the conserved momentum.

Figure 

8. A cube of side  and center of mass , is placed on a fixed horizontal cylinder of radius  and center  as shown in the figure.
Originally the cube is placed such that  is centered above  but it can roll from side to side without slipping. (a) Assuming
that  use the Lagrangian approach to to find the frequency for small oscillations about the top of the cylinder. For
simplicity make the small angle approximation for  before using the Lagrange-Euler equations. (b) What will be the motion if 

 ? Note that the moment of inertia of the cube about the center of mass is .

Figure 

9. Two equal masses of mass  are glued to a massless hoop of radius  is free to rotate about its center in a vertical plane. The
angle between the masses is , as shown. Find the frequency of oscillations.
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Figure 

10. Three massless sticks each of length , and mass  with the center of mass at the center of each stick, are hinged at their ends as
shown. The bottom end of the lower stick is hinged at the ground. They are held so that the lower two sticks are vertical, and
the upper one is tilted at a small angle  with respect to the vertical. They are then released. At the instant of release what are
the three equations of motion derived from the Lagrangian derived assuming that  is small  Use these to determine the initial
angular accelerations of the three sticks.

Figure 

This page titled 7.E: Symmetries, Invariance and the Hamiltonian (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

7.E. 4

2r

ε

ε ?

7.E. 5

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14092?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/07%3A_Symmetries_Invariance_and_the_Hamiltonian/7.E%3A_Symmetries_Invariance_and_the_Hamiltonian_(Exercises)
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/


7.S.1 https://phys.libretexts.org/@go/page/14091

7.S: Symmetries, Invariance and the Hamiltonian (Summary)
This chapter has explored the importance of symmetries and invariance in Lagrangian mechanics and has introduced the
Hamiltonian. The following summarizes the important conclusions derived in this chapter.

Noether’s theorem:
Noether’s theorem explores the remarkable connection between symmetry, plus the invariance of a system under transformation,
and related conservation laws which imply the existence of important physical principles, and constants of motion. Transformations
where the equations of motion are invariant are called invariant transformations. Variables that are invariant to a transformation are
called cyclic variables. It was shown that if the Lagrangian does not explicitly contain a particular coordinate of displacement, 
then the corresponding conjugate momentum,  is conserved. This is Noether’s theorem which states “ For each symmetry of the
Lagrangian, there is a conserved quantity" . In particular it was shown that translational invariance in a given direction leads to the
conservation of linear momentum in that direction, and rotational invariance about an axis leads to conservation of angular
momentum about that axis. These are the first-order spatial and angular integrals of the equations of motion. Noether’s theorem
also relates the properties of the Hamiltonian to time invariance of the Lagrangian, namely;

(1)  is conserved if, and only if, the Lagrangian, and consequently the Hamiltonian, are not explicit functions of time.

(2) The Hamiltonian gives the total energy if the constraints and coordinate transformations are time independent and the potential
energy is velocity independent. This is equivalent to stating that  if the constraints, or generalized coordinates, for the
system are time independent.

Noether’s theorem is of importance since it underlies the relation between symmetries, and invariance in all of physics; that is, its
applicability extends beyond classical mechanics.

Generalized momentum:

The generalized momentum associated with the coordinate  is defined to be

where  is also called the conjugate momentum (or canonical momentum) to  where  are conjugate, or canonical,
variables. Remember that the linear momentum  is the first-order time integral given by equation . Note that if  is not a
spatial coordinate, then  is not linear momentum, but is the conjugate momentum. For example, if  is an angle, then  will be
angular momentum.

Kinetic energy in generalized coordinates:

It was shown that the kinetic energy can be expressed in terms of generalized coordinates by

For scleronomic systems with a potential that is velocity independent, then the kinetic energy can be expressed as

Generalized energy
Jacobi’s Generalized Energy  was defined as
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Hamiltonian function
The Hamiltonian  was defined in terms of the generalized energy  and by introducing the generalized
momentum. That is

Generalized energy theorem

The equations of motion lead to the generalized energy theorem which states that the time dependence of the Hamiltonian is related
to the time dependence of the Lagrangian.

Note that if all the generalized non-potential forces are zero, then the bracket in Equation  is zero, and if the Lagrangian is not
an explicit function of time, then the Hamiltonian is a constant of motion.

Generalized energy and total energy:
The generalized energy, and corresponding Hamiltonian, equal the total energy if:

1) The kinetic energy has a homogeneous quadratic dependence on the generalized velocities and the transformation to generalized

coordinates is independent of time, 

2) The potential energy is not velocity dependent, thus the terms 

Chapter  will introduce Hamiltonian mechanics that is built on the Hamiltonian, and chapter  will explore applications of
Hamiltonian mechanics.
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8.1: Introduction
The three major formulations of classical mechanics are

1. Newtonian mechanics which is the most intuitive vector formulation used in classical mechanics.
2. Lagrangian mechanics is a powerful algebraic formulation of classical mechanics derived using either d’Alembert’s Principle,

or Hamilton’s Principle. The latter states ”A dynamical system follows a path that minimizes the time integral of the difference
between the kinetic and potential energies”.

3. Hamiltonian mechanics has a beautiful superstructure that, like Lagrangian mechanics, is built upon variational calculus,
Hamilton’s principle, and Lagrangian mechanics.

Hamiltonian mechanics is introduced at this juncture since it is closely interwoven with Lagrange mechanics. Hamiltonian
mechanics plays a fundamental role in modern physics, but the discussion of the important role it plays in modern physics will be
deferred until chapters  and  where applications to modern physics are addressed.

The following important concepts were introduced in chapter :

The generalized momentum was defined to be given by

Note that, as discussed in chapter , if the potential is velocity dependent, such as the Lorentz force, then the generalized
momentum includes terms in addition to the usual mechanical momentum.

Jacobi’s generalized energy function  was introduced where

The Hamiltonian function was defined to be given by expressing the generalized energy function, Equation , in terms of the
generalized momentum. That is, the Hamiltonian  is expressed as

The symbols , , designate vectors of  generalized coordinates,  . Equation  can be
written compactly in a symmetric form using the scalar product .

A crucial feature of Hamiltonian mechanics is that the Hamiltonian is expressed as  that is, it is a function of the 
generalized coordinates and their conjugate momenta, which are taken to be independent, plus the independent variable, time. This
contrasts with the Lagrangian  which is a function of the  generalized coordinates , and the corresponding velocities 

, that is the time derivatives of the coordinates , plus the independent variable, time.
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8.2: Legendre Transformation between Lagrangian and Hamiltonian mechanics
Hamiltonian mechanics can be derived directly from Lagrange mechanics by considering the Legendre transformation between the
conjugate variables  and . Such a derivation is of considerable importance in that it shows that Hamiltonian
mechanics is based on the same variational principles as those used to derive Lagrangian mechanics; that is d’Alembert’s Principle
and Hamilton’s Principle. The general problem of converting Lagrange’s equations into the Hamiltonian form hinges on the
inversion of Equation  that defines the generalized momentum  This inversion is simplified by the fact that  is the
first partial derivative of the Lagrangian scalar function .

As described in appendix , consider transformations between two functions  and  where  and  are the
active variables related by the functional form

and where  designates passive variables. The function  is the first-order derivative, (gradient) of  with
respect to the components of the vector . The Legendre transform states that the inverse formula can always be written as a first-
order derivative

The function  is related to  by the symmetric relation

where the scalar product .

Furthermore the first-order derivatives with respect to all the passive variables  are related by

The relationship between the functions  and  is symmetrical and each is said to be the Legendre transform of the
other.

The general Legendre transform can be used to relate the Lagrangian and Hamiltonian by identifying the active variables  with 
and  with  the passive variable  with , and the corresponding functions  and .
Thus the generalized momentum  corresponds to

where  are the passive variables. Then the Legendre transform states that the transformed variable  is given by the relation

Since the functions  and  are the Legendre transforms of each other, they satisfy the relation

The function , which is the Legendre transform of the Lagrangian  is called the Hamiltonian function and
Equation  is identical to our original definition of the Hamiltonian given by equation . The variables  and  are
passive variables thus Equation  gives that

Written in component form Equation  gives the partial derivative relations

Note that equations  and  are strictly a result of the Legendre transformation. To complete the transformation from
Lagrangian to Hamiltonian mechanics it is necessary to invoke the calculus of variations via the Lagrange-Euler equations. The
symmetry of the Legendre transform is illustrated by Equation .
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Equation  gives that the scalar product  For scleronomic systems, with velocity independent potentials  the
standard Lagrangian  and . Thus, for this simple case, Equation  reduces to an
identity .
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8.3: Hamilton’s Equations of Motion
The explicit form of the Legendre transform  gives that the time derivative of the generalized coordinate  is

The Euler-Lagrange equation  is

This gives the corresponding Hamilton equation for the time derivative of  to be

Substitute equation  into Equation  leads to the second Hamilton equation of motion

One can explore further the implications of Hamiltonian mechanics by taking the time differential of  giving.

Inserting the conjugate momenta  and Equation  into Equation  results in

The second and fourth terms cancel as well as the  terms, leaving

This is the generalized energy theorem given by equation .

The total differential of the Hamiltonian also can be written as

Use equations  and  to substitute for  and  in Equation  gives

Note that Equation  must equal the generalized energy theorem, i.e. Equation . Therefore,

In summary, Hamilton’s equations of motion are given by
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The symmetry of Hamilton’s equations of motion is illustrated when the Lagrange multiplier and generalized forces are zero. Then

This simplified form illustrates the symmetry of Hamilton’s equations of motion. Many books present the Hamiltonian only for this
special simplified case where it is holonomic, conservative, and generalized coordinates are used.

Canonical Equations of Motion
Hamilton’s equations of motion, summarized in equations -  use either a minimal set of generalized coordinates, or the
Lagrange multiplier terms, to account for holonomic constraints, or generalized forces  to account for non-holonomic or
other forces. Hamilton’s equations of motion usually are called the canonical equations of motion. Note that the term "canonical"
has nothing to do with religion or canon law; the reason for this name has bewildered many generations of students of classical
mechanics. The term was introduced by Jacobi in  to designate a simple and fundamental set of conjugate variables and
equations. Note the symmetry of Hamilton’s two canonical equations, plus the fact that the canonical variables  are treated as
independent canonical variables. The Lagrange mechanics coordinates  are replaced by the Hamiltonian mechanics
coordinates  where the conjugate momenta  are taken to be independent of the coordinate .

Lagrange was the first to derive the canonical equations but he did not recognize them as a basic set of equations of motion.
Hamilton derived the canonical equations of motion from his fundamental variational principle, chapter , and made them the
basis for a far-reaching theory of dynamics. Hamilton’s equations give  first-order differential equations for  for each of the

 degrees of freedom. Lagrange’s equations give  second-order differential equations for the  independent generalized
coordinates 

It has been shown that  and  are the Legendre transforms of each other. Although the Lagrangian formulation
is ideal for solving numerical problems in classical mechanics, the Hamiltonian formulation provides a better framework for
conceptual extensions to other fields of physics since it is written in terms of the fundamental conjugate coordinates, . The
Hamiltonian is used extensively in modern physics, including quantum physics, as discussed in chapters  and . For example,
in quantum mechanics there is a straightforward relation between the classical and quantal representations of momenta; this does
not exist for the velocities.

The concept of state space, introduced in chapter , applies naturally to Lagrangian mechanics since  are the generalized
coordinates used in Lagrangian mechanics. The concept of Phase Space, introduced in chapter , naturally applies to
Hamiltonian phase space since  are the generalized coordinates used in Hamiltonian mechanics.

This page titled 8.3: Hamilton’s Equations of Motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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8.4: Hamiltonian in Different Coordinate Systems
Prior to solving problems using Hamiltonian mechanics, it is useful to express the Hamiltonian in cylindrical and spherical
coordinates for the special case of conservative forces since these are encountered frequently in physics.

Cylindrical Coordinates 
Consider cylindrical coordinates . Expressed in Cartesian coordinate

Using appendix table  the Lagrangian can be written in cylindrical coordinates as

The conjugate momenta are

Assume a conservative force, then  is conserved. Since the transformation from Cartesian to non-rotating generalized cylindrical
coordinates is time independent, then  Then using Equations -  gives the Hamiltonian in cylindrical coordinates
to be

The canonical equations of motion in cylindrical coordinates can be written as

Note that if  is cyclic, that is  then the angular momentum about the  axis, , is a constant of motion. Similarly, if  is

cyclic, then  is a constant of motion.
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Spherical coordinates, 
Appendix table  shows that the spherical coordinates are related to the cartesian coordinates by

The Lagrangian is

The conjugate momenta are

Assuming a conservative force then  is conserved. Since the transformation from cartesian to generalized spherical coordinates is
time independent, then  Thus using -  the Hamiltonian is given in spherical coordinates by

Then the canonical equations of motion in spherical coordinates are

Note that if the coordinate  is cyclic, that is  then the angular momentum  is conserved. Also if the  coordinate is
cyclic, and  that is, there is no change in the angular momentum perpendicular to the  axis, then  is conserved.

An especially important spherically-symmetric Hamiltonian is that for a central field. Central fields, such as the gravitational or
Coulomb fields of a uniform spherical mass, or charge, distributions, are spherically symmetric and then both  and  are cyclic.
Thus the projection of the angular momentum  about the  axis is conserved for these spherically symmetric potentials. In
addition, since both  and  are conserved, then the total angular momentum also must be conserved as is predicted by
Noether’s theorem.
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8.5: Applications of Hamiltonian Dynamics
The equations of motion of a system can be derived using the Hamiltonian coupled with Hamilton’s equations of motion, that is,
equations .

Formally the Hamiltonian is constructed from the Lagrangian. That is

1. Select a set of independent generalized coordinates 
2. Partition the active forces.
3. Construct the Lagrangian 
4. Derive the conjugate generalized momenta via 
5. Knowing  derive 

6. Derive  and 

This procedure appears to be unnecessarily complicated compared to just using the Lagrangian plus Lagrangian mechanics to
derive the equations of motion. Fortunately the above lengthy procedure often can be bypassed for conservative systems. That is, if
the following conditions are satisfied;

i. , that is,  is independent of the velocity .
ii. the generalized coordinates are time independent.

then it is possible to use the fact that

The following five examples illustrate the use of Hamiltonian mechanics to derive the equations of motion.

Consider a mass  in a uniform gravitational field acting in the  direction. The Lagrangian for this simple case is

Therefore the generalized momenta are   . The corresponding Hamiltonian 

 is

Note that the Lagrangian is not explicitly time dependent, thus the Hamiltonian is a constant of motion.

Hamilton’s equations give that

Combining these gives that  . Note that the linear momenta  and  are constants of motion whereas
the rate of change of  is given by the gravitational force . Note also that  for this conservative system.

(8.3.11−8.3.13)

qi

L( , , t)qi q̇ i

=pi
∂L

∂q̇ i

L, ,q̇ i pi H = −L∑i pi q̇ i

=q̇ k
∂H

∂pk

=− + + .ṗj
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Example : Motion in a uniform gravitational field8.5.1
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Consider a mass  subject to a linear restoring force with spring constant  The Lagrangian  equals

Therefore the generalized momentum is

The Hamiltonian  is

Note that the Lagrangian is not explicitly time dependent, thus the Hamiltonian will be a constant of motion. Hamilton’s
equations give that

or

In addition

Combining these gives that

which is the equation of motion for the harmonic oscillator.

The plane pendulum, in a uniform gravitational field  is an interesting system to consider. There is only one generalized
coordinate,  and the Lagrangian for this system is

The momentum conjugate to  is

which is the angular momentum about the pivot point.

The Hamiltonian is

Hamilton’s equations of motion give

Example : One-dimensional harmonic oscillator8.5.2
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Example : Plane pendulum8.5.3
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Note that the Lagrangian and Hamiltonian are not explicit functions of time, therefore they are conserved. Also the potential is
velocity independent and there is no coordinate transformation, thus the Hamiltonian equals the total energy, that is

where  is a constant of motion. Note that the angular momentum  is not a constant of motion since  explicitly depends
on .

Figure : Phase-space diagrams for the plane pendulum. The separatrix (bold line) separates the oscillatory solutions from
the rolling solutions. The upper (a) shows one complete cycle while the lower (b) shows two complete cycles.

The solutions for the plane pendulum on a  phase diagram, shown in the adjacent figure, illustrate the motion. The upper
phase-space plot shows the range . Note that the  and  correspond to the same physical point, that is
the phase diagram should be rolled into a cylinder connected along the dashed lines. The lower phase space plot shows two
cycles for  to better illustrate the cyclic nature of the phase diagram. The corresponding state-space diagram is shown in
Figure . The trajectories are ellipses for low energy  corresponding to oscillations of the pendulum
about . The center of the ellipse  is a stable equilibrium point for the oscillation. However, there is a phase change
to rotational motion about the horizontal axis when , that is, the pendulum swings around a circle continuously, i.e.
it rotates continuously in one direction about the horizontal axis. The phase change occurs at  and is designated by
the separatrix trajectory.

The plot of  versus  for the plane pendulum is better presented on a cylindrical phase space representation since  is a
cyclic variable that cycles around the cylinder, whereas  oscillates equally about zero having both positive and negative
values. When wrapped around a cylinder then the unstable and stable equilibrium points will be at diametrically opposite
locations on the surface of the cylinder at . For small oscillations about equilibrium, also called librations, the
correlation between  and  is given by the clockwise closed ellipses wrapped on the cylindrical surface, whereas for energies

 the positive  corresponds to counterclockwise rotations while the negative  corresponds to clockwise rotations.

−mgl sinθ=− =ṗθ
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θ

8.5.1

(θ, )pθ

(θ =±π, )pθ θ =+π −π

θ

3.4.2 −mgl < E < mgl

θ = 0 (0, 0)

|E| > mgl

E = mgl.

pθ θ θ

pθ

= 0pθ

pθ θ

|E| > mgl pθ pθ

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9611?pdf


8.5.4 https://phys.libretexts.org/@go/page/9611

Figure : Mass attracted to origin by force proportional to distance from origin with the motion constrained to the surface
of a cylinder.

Consider the case where a mass  is attracted by a force directed toward the origin and proportional to the distance from the
origin. Determine the Hamiltonian if the mass is constrained to move on the surface of a cylinder defined by

It is natural to transform this problem to cylindrical coordinates . Since the force is just Hooke’s law

the potential is the same as for the harmonic oscillator, that is

This is independent of  and thus  is cyclic.

The system is conservative, and the transformation from rectangular to cylindrical coordinates does not depend explicitly on
time. Therefore the Hamiltonian is conserved and equals the total energy. That is

The equations of motion then are given by the canonical equations

Equation  and  imply that

Thus the angular momentum about the axis of the cylinder is conserved, that is, it is a cyclic variable.

Combining equations  and  implies that

Example : Hooke's law force constrained to the surface of a cylinder8.5.4
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∂ż
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This is the equation for simple harmonic motion with angular frequency . The symmetries imply that this problem

has the same solutions for the  coordinate as the harmonic oscillator, while the  coordinate moves with constant angular
velocity.

A magnetron comprises a hot cylindrical wire cathode that emits electrons and is at a high negative voltage. It is surrounded by
a larger diameter concentric cylindrical anode at ground potential. A uniform magnetic field runs parallel to the cylindrical axis
of the magnetron. The electron beam excites a multiple set of microwave cavities located around the circumference of the
cylindrical wall of the anode. The magnetron was invented in England during World War 2 to generate microwaves required
for the development of radar.

Consider a non-relativistic electron of mass  and charge  in a cylindrical magnetron moving between the central cathode
wire, of radius  at a negative electric potential , and a concentric cylindrical anode conductor of radius  which has zero
electric potential. There is a uniform constant magnetic field  parallel to the cylindrical axis of the magnetron.

Using SI units and cylindrical coordinates  aligned with the axis of the magnetron, the electromagnetic force
Lagrangian, given in chapter  equals

The electric and vector potentials for the magnetron geometry are

Thus expressed in cylindrical coordinates the Lagrangian equals

The generalized momenta are

Note that the vector potential  contributes an additional term to the angular momentum .

Using the above generalized momenta leads to the Hamiltonian

Note that the Hamiltonian is not an explicit function of time, therefore it is a constant of motion which equals the total energy.
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Example : Electron motion in a cylindrical magnetron8.5.5
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ż

A pθ

H =

=

=

=

+ + −Lpr ṙ pθ θ̇ pz ż
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Since  and if  is not an explicit function of  then  that is,  is a constant of motion. Thus  and  are

constants of motion.

Consider the initial conditions . Then

Note that at  then  is given by the last equation since the Hamiltonian equals a constant . That is, assuming that 
 then

Define a critical magnetic field by

then

Note that if  then  is real at . However, if  then  is imaginary at  implying that there must be a
maximum orbit radius  for the electron where . That is, the electron trajectories are confined spatially to coaxial
cylindrical orbits concentric with the magnetron electromagnetic fields. These closed electron trajectories excite the microwave
cavities located in the nearby outer cylindrical wall of the anode.

This page titled 8.5: Applications of Hamiltonian Dynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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8.6: Routhian Reduction
Noether’s theorem states that if the coordinate  is cyclic, and if the Lagrange multiplier plus generalized force contributions for
the  coordinates are zero, then the canonical momentum of the cyclic variable,  is a constant of motion as is discussed in
chapter . Therefore, both  are constants of motion for cyclic variables, and these constant  coordinates can be
factored out of the Hamiltonian . This reduces the number of degrees of freedom included in the Hamiltonian. For this
reason, cyclic variables are called ignorable variables in Hamiltonian mechanics. This advantage does not apply to the 
variables used in Lagrangian mechanics since  is not a constant of motion for a cyclic coordinate. The ability to eliminate the
cyclic variables as unknowns in the Hamiltonian is a valuable advantage of Hamiltonian mechanics that is exploited extensively for
solving problems, as is described in chapter .

It is advantageous to have the ability to exploit both the Lagrangian and Hamiltonian formulations simultaneously when handling
systems that involve a mixture of cyclic and non-cyclic coordinates. The equations of motion for each independent generalized
coordinate can be derived independently of the remaining generalized coordinates. Thus it is possible to select either the
Hamiltonian or the Lagrangian formulations for each generalized coordinate, independent of what is used for the other generalized
coordinates. Routh devised an elegant, and useful, hybrid technique that separates the cyclic and non-cyclic generalized coordinates
in order to simultaneously exploit the differing advantages of both the Hamiltonian and Lagrangian formulations of classical
mechanics. The Routhian reduction approach partitions the  kinetic energy term in the Hamiltonian into a cyclic group,
plus a non-cyclic group, i.e.

Routh’s clever idea was to define a new function, called the Routhian , that include only one of the two partitions of the kinetic
energy terms. This makes the Routhian a Hamiltonian for the coordinates for which the kinetic energy terms are included, while the
Routhian acts like a negative Lagrangian for the coordinates where the kinetic energy term is omitted. This book defines two
Routhians.

The first, Routhian, called  includes the kinetic energy terms only for the cyclic variables, and behaves like a Hamiltonian
for the cyclic variables, and behaves like a Lagrangian for the non-cyclic variables. The second Routhian, called 
includes the kinetic energy terms for only the non-cyclic variables, and behaves like a Hamiltonian for the non-cyclic variables, and
behaves like a negative Lagrangian for the cyclic variables. These two Routhians complement each other in that they make the
Routhian either a Hamiltonian for the cyclic variables, or the converse where the Routhian is a Hamiltonian for the non-cyclic
variables. The Routhians use  to denote those coordinates for which the Routhian behaves like a Lagrangian, and  for
those coordinates where the Routhian behaves like a Hamiltonian. For uniformity, it is assumed that the degrees of freedom
between  are non-cyclic, while those between  are ignorable cyclic coordinates.

The Routhian is a hybrid of Lagrangian and Hamiltonian mechanics. Some textbooks minimize discussion of the Routhian on the
grounds that this hybrid approach is not fundamental. However, the Routhian is used extensively in engineering in order to derive
the equations of motion for rotating systems. In addition it is used when dealing with rotating nuclei in nuclear physics, rotating
molecules in molecular physics, and rotating galaxies in astrophysics. The Routhian reduction technique provides a powerful way
to calculate the intrinsic properties for a rotating system in the rotating frame of reference. The Routhian approach is included in
this textbook because it plays an important role in practical applications of rotating systems, plus it nicely illustrates the relative
advantages of the Lagrangian and Hamiltonian formulations in mechanics.

R  - Routhian is a Hamiltonian for the cyclic variables

The cyclic Routhian  is defined assuming that the variables between  are non-cyclic, where , while the 
 variables between  are ignorable cyclic coordinates. The cyclic Routhian  expresses the cyclic coordinates

qj
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in terms of  which are required for use by Hamilton’s equations, while the non-cyclic variables are expressed in terms of 
 for use by the Lagrange equations. That is, the cyclic Routhian  is defined to be

where the summation  is over only the  cyclic variables . Note that the Lagrangian can be split into the
cyclic and the non-cyclic parts

The first two terms on the right can be combined to give the Hamiltonian  for only the  cyclic variables, 
, that is

The Routhian  also can be written in an alternate form

which is expressed as the complete Hamiltonian minus the kinetic energy term for the noncyclic coordinates. The Routhian 
behaves like a Hamiltonian for the  cyclic coordinates and behaves like a negative Lagrangian for all the 
noncyclic coordinates  Thus the equations of motion for the  non-cyclic variables are given using Lagrange’s
equations of motion, while the Routhian behaves like a Hamiltonian  for the  ignorable cyclic variables 

Ignoring both the Lagrange multiplier and generalized forces, then the partitioned equations of motion for the non-cyclic and cyclic
generalized coordinates are given in Table .

Table : Equations of motion for the Routhian 

Lagrange equations Hamilton equations

Coordinates Noncyclic: Cyclic: 

Equations of motion

Thus there are  cyclic (ignorable) coordinates  which obey Hamilton’s equations of motion, while the the
first  non-cyclic (non-ignorable) coordinates  for  obey Lagrange equations. The
solution for the cyclic variables is trivial since they are constants of motion and thus the Routhian  has reduced the number
of equations of motion that must be solved from  to the  non-cyclic variables  This Routhian provides an especially
useful way to reduce the number of equations of motion for rotating systems.

Note that there are several definitions used to define the Routhian, for example some books define this Routhian as being the
negative of the definition used here so that it corresponds to a positive Lagrangian. However, this sign usually cancels when
deriving the equations of motion, thus the sign convention is unimportant if a consistent sign convention is used.

R  - Routhian is a Hamiltonian for the non-cyclic variables

The non-cyclic Routhian  complements . Again the generalized coordinates between  are assumed to be
non-cyclic, while those between  are ignorable cyclic coordinates. However, the expression in terms of  and 
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 are interchanged, that is, the cyclic variables are expressed in terms of  and the non-cyclic variables are expressed in
terms of  which is opposite of what was used for .

It can be written in a frequently used form

This Routhian behaves like a Hamiltonian for the  non-cyclic variables which are expressed in terms of  and  appropriate for a
Hamiltonian. This Routhian writes the  cyclic coordinates in terms of , and  appropriate for a Lagrangian, which are treated
assuming the Routhian  is a negative Lagrangian for these cyclic variables as summarized in table .

Table : Equations of motion for the Routhian 

Hamilton equations Lagrange equations

Coordinates Noncyclic: Cyclic: 

Equations of motion

This non-cyclic Routhian  is especially useful since it equals the Hamiltonian for the non-cyclic variables, that is, the
kinetic energy for motion of the cyclic variables has been removed. Note that since the cyclic variables are constants of motion,
then  is a constant of motion if  is a constant of motion. However,  does not equal the total energy since the
coordinate transformation is time dependent, that is,  corresponds to the energy of the non-cyclic parts of the motion. For
example, when used to describe rotational motion,  corresponds to the energy in the non-inertial rotating body-fixed
frame of reference. This is especially useful in treating rotating systems such as rotating galaxies, rotating machinery, molecules, or
rotating strongly-deformed nuclei as discussed in chapter 

The Lagrangian and Hamiltonian are the fundamental algebraic approaches to classical mechanics. The Routhian reduction method
is a valuable hybrid technique that exploits a trick to reduce the number of variables that have to be solved for complicated
problems encountered in science and engineering. The Routhian  provides the most useful approach for solving the
equations of motion for rotating molecules, deformed nuclei, or astrophysical objects in that it gives the Hamiltonian in the non-
inertial body-fixed rotating frame of reference ignoring the rotational energy of the frame. By contrast, the cyclic Routhian 
is especially useful to exploit Lagrangian mechanics for solving problems in rigid-body rotation such as the Tippe Top described in
example .

Note that the Lagrangian, Hamiltonian, plus both the  and  Routhian’s, all are scalars under rotation, that is, they
are rotationally invariant. However, they may be expressed in terms of the coordinates in either the stationary or a rotating frame.
The major difference is that the Routhian includes only subsets of the kinetic energy term . The relative merits of using
Lagrangian, Hamiltonian, and both the  and  Routhian reduction methods, are illustrated by the following
examples.

(q, )q̇ (q, )q̇

(q, p) Rcyclic

( , . . . , ; , . . . , ; , . . . . , ; t)Rnoncyclic q1 qn p1 ps q̇ s+1 q̇ n =

=

− −∑
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s
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−Hnoncyclic Lcyclic
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Figure : Spherical pendulum

The spherical pendulum provides a simple test case for comparison of the use of Lagrangian mechanics, Hamiltonian
mechanics, and both approaches to Routhian reduction. The Lagrangian mechanics solution of the spherical pendulum is
described in example . The solution using Hamiltonian mechanics is given in this example followed by solutions using
both of the Routhian reduction approaches.

Consider the equations of motion of a spherical pendulum of mass  and length . The generalized coordinates are  since
the length is fixed at  The kinetic energy is

The potential energy  giving that

The generalized momenta are

Since the system is conservative, and the transformation from rectangular to spherical coordinates does not depend explicitly
on time, then the Hamiltonian is conserved and equals the total energy. The generalized momenta allow the Hamiltonian to be
written as

The equations of motion are

Take the time derivative of Equation  and use  to substitute for  gives that

Example : Spherical pendulum using Hamiltonian mechanics8.6.1
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Note that Equation  shows that  is a cyclic coordinate. Thus

that is the angular momentum about the vertical axis is conserved. Note that although  is a constant of motion, 
is a function of  and thus in general it is not conserved. There are various solutions depending on the initial conditions. If 

 then the pendulum is just the simple pendulum discussed previously that can oscillate, or rotate in the  direction. The
opposite extreme is where  where the pendulum rotates in the  direction with constant . In general the motion is a
complicated coupling of the  and  motions.

The Lagrangian for the spherical pendulum is

Note that the Lagrangian is independent of , therefore  is an ignorable variable with

Therefore  is a constant of motion equal to

The Routhian  equals

The Routhian  behaves like a Hamiltonian for  and like a Lagrangian  for . Use of
Hamilton’s canonical equations for  give

These two equations show that  is a constant of motion given by

Note that the Hamiltonian only includes the kinetic energy for the  motion which is a constant of motion, but this energy does
not equal the total energy. This solution is what is predicted by Noether’s theorem due to the symmetry of the Lagrangian
about the vertical  axis.

Since  behaves like a Lagrangian for  then the Lagrange equation for  is

where the negative sign of the Lagrangian in  cancels. This leads to
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L(r, θ,ϕ, , , ) = m + m θ +mgb cosθṙ θ̇ ϕ̇
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that is

This result is identical to the one obtained using Lagrangian mechanics in example  and Hamiltonian mechanics given in
example . The Routhian  simplified the problem to one degree of freedom  by absorbing into the Hamiltonian the
ignorable cyclic  coordinate and its conserved conjugate momentum . Note that the central term in Equation  is the
centrifugal term which is due to rotation about the vertical axis. This term is zero for plane pendulum motion when .

For a rotational system the Routhian  also can be used to project out the Hamiltonian for the active
variables in the rotating body-fixed frame of reference. Consider the spherical pendulum where the rotating frame is rotating
with angular velocity . The Lagrangian for the spherical pendulum is

Note that the Lagrangian is independent of , therefore  is an ignorable variable with

Therefore  is a constant of motion equal to

The total Hamiltonian is given by

The Routhian for the rotating frame of reference  is given by Equation , that is

This behaves like a negative Lagrangian for  and a Hamiltonian for . The conjugate momenta are

that is,  is a constant of motion.

Hamilton’s equations of motion give
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Equation  gives that

Inserting this into Equation  gives

which is identical to the equation of motion  derived using . The Hamiltonian in the rotating frame is a constant of
motion given by , but it does not include the total energy.

Note that these examples show that both forms of the Routhian, as well as the complete Lagrangian formalism, shown in
example , and complete Hamiltonian formalism, shown in example , all give the same equations of motion. This
illustrates that the Lagrangian, Hamiltonian, and Routhian mechanics all give the same equations of motion and this applies
both in the static inertial frame as well as a rotating frame since the Lagrangian, Hamiltonian and Routhian all are scalars under
rotation, that is, they are rotationally invariant.

The Lagrangian for a single particle of mass  moving in a vertical plane and subject to a central inverse square central force,
is specified by two generalized coordinates,  and 

The ignorable coordinate is  since it is cyclic. Let the constant conjugate momentum be denoted by . Then

the corresponding cyclic Routhian is

This Routhian is the equivalent one-dimensional potential  minus the kinetic energy of radial motion.

Applying Hamilton’s equation to the cyclic coordinate  gives

implying a solution

where the angular momentum  is a constant.

The Lagrange-Euler equation can be applied to the non-cyclic coordinate 

where the negative sign of  cancels. This leads to the radial solution

where  which is a constant of motion in the centrifugal term. Thus the problem has been reduced to a one-dimensional
problem in radius  that is in a rotating frame of reference.
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Example : Single particle moving in a vertical plane under the influence of an inverse-square central force8.6.4
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pθ

mr2
θ̇

= m = lpθ r2 θ̇

l

r

L = − = 0Λr

d

dt

∂Rcyclic

∂ṙ
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8.7: Variable-mass systems
Lagrangian and Hamiltonian mechanics assume that the total mass and energy of the system are conserved. Variable-mass systems
involve transferring mass and energy between donor and receptor bodies. However, such systems still can be conservative if the
Lagrangian or Hamiltonian include all the active degrees of freedom for the combined donor-receptor system. The following
examples of variable mass systems illustrate subtle complications that occur handling such problems using algebraic mechanics.

Rocket propulsion:
Newtonian mechanics was used to solve the rocket problem in chapter . The equation of motion ( ) relating the rocket
thrust  to the rate of change of the momentum separated into two terms,

The first term is the usual mass times acceleration, while the second term arises from the rate of change of mass times the velocity.
The equation of motion for rocket motion is easily derived using either Lagrangian or Hamiltonian mechanics by relating the rocket
thrust to the generalized force 

Moving chains:
The motion of a flexible, frictionless, heavy chain that is falling in a gravitational field, often can be split into two coupled variable-
mass partitions that have different chain-link velocities. These partitions are coupled at the moving intersection between the chain
partitions. That is, these partitions share time-dependent fractions of the total chain mass. Moving chains were discussed first by
Caley in  and since then the moving chain problem has had a controversial history due to the frequent erroneous assumption
that, in the gravitational field, the chain partitions fall with acceleration  rather than applying the correct energy conservation
assumption for this conservative system. The following two examples of conservative falling-chain systems illustrate solutions
obtained using variational principles applied to a single chain that is partitioned into two variable length sections.

Consider the following two possible scenarios for motion of a flexible, heavy, frictionless, chain located in a uniform gravitational
field . The first scenario is the "folded chain" system which assumes that one end of the chain is held fixed, while the adjacent free
end is released at the same altitude as the top of the fixed arm, and this free end is allowed to fall in the constant gravitational field 

. The second "falling chain", scenario assumes that one end of the chain is hanging down through a hole in a frictionless, smooth,
rigid, horizontal table, with the stationary partition of the chain sitting on the table surrounding the hole. The falling section of this
chain is being pulled out of the stationary pile by the hanging partition. Both of these systems are conservative since it is assumed
that the total mass of the chain is fixed, and no dissipative forces are acting. The chains are assumed to be inextensible, flexible,
and frictionless, and subject to a uniform gravitational field  in the vertical  direction. In both examples, the chain, with mass 
and length  is partitioned into a stationary segment, plus a moving segment, where the mass per unit length of the chain is 

. These partitions are strongly coupled at their intersection which propagates downward with time for the "folded chain"
and propagates upward, relative to the lower end of the falling chain, for the "falling chain". For the "folded chain", the chain links
are transferred from the moving segment to the stationary segment as the moving section falls. By contrast, for the "falling system",
the chain links are transferred from the stationary upper section to the moving lower segment of the chain.

2.12 2.12.23
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= = m +Fex ṗy ÿ ṁẏ (8.7.1)
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Figure 

The folded chain of length  and mass-per-unit-length  hangs vertically downwards in a gravitational field  with both
ends held initially at the same height. The fixed end is attached to a fixed support while the free end of the chain is dropped at
time  with the free end at the same height and adjacent to the fixed end. Let  be the distance the falling free end is below
the fixed end. Using an idealized one-dimensional assumption, the Lagrangian  is given by

where the bracket in the second term is the height of the center of mass of the folded chain with respect to the fixed upper end
of the chain.

The Hamiltonian is given by

where  is the linear momentum of the right-hand arm of the folded chain.

As shown in the discussion of the Generalized Energy Theorem, (chapters  and ), when all the active forces are included
in the Lagrangian and the Hamiltonian, then the total mechanical energy  is given by  Moreover, both the
Lagrangian and the Hamiltonian are time independent, since

Therefore the "folded chain" Hamiltonian equals the total energy, which is a constant of motion. Energy conservation for this
system can be used to give

Solve for  gives

The acceleration of the falling arm,  is given by taking the time derivative of Equation 

The rate of change in linear momentum for the moving right side of the chain, , is given by
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For this energy-conserving chain, the tension in the chain  at the fixed end of the chain is given by

Equations  and , imply that the tension  diverges to infinity when . Calkin and March measured the 
dependence of the chain tension at the support for the folded chain and observed the predicted  dependence. The maximum
tension was   which is consistent with that predicted using Equation  after taking into account the finite size and
mass of individual links in the chain. This result is very different from that obtained using the erroneous assumption that the
right arm falls with the free-fall acceleration , which implies a maximum tension  . Thus the free-fall assumption
disagrees with the experimental results, in addition to violating energy conservation and the tenets of Lagrangian and
Hamiltonian mechanics. That is, the experimental result demonstrates unambiguously that the energy conservation predictions
apply in contradiction with the erroneous free-fall assumption.

The unusual feature of variable mass problems, such as the folded chain problem, is that the rate of change of momentum in
Equation  includes two contributions to the force and rate of change of momentum, that is, it includes both the
acceleration term  plus the variable mass term  that accounts for the transfer of matter at the intersection of the
moving and stationary partitions of the chain. At the transition point of the chain, moving links are transferred from the moving
section and are added to the stationary subsection. Since this moving section is falling downwards, and the stationary section is
stationary, then the transferred momentum is in a downward direction corresponding to an increased effective downward force.
Thus the measured acceleration of the moving arm actually is faster than . A related phenomenon is the loud cracking sound
heard when cracking a whip.

Figure 

The "falling chain", scenario assumes that one end of the chain is hanging down through a hole in a frictionless, smooth, rigid,
horizontal table, with the stationary partition of the chain lying on the frictionless table surrounding the hole. The falling
section of this chain is being pulled out of the stationary pile by the hanging partition. The analysis for the problem of the
falling chain behaves differently from the folded chain. For the "falling- chain" let  be the falling distance of the lower end of
the chain measured with respect to the table top. The Lagrangian and Hamiltonian are given by

The Lagrangian and Hamiltonian are not explicitly time dependent, and the Hamiltonian equals the initial total energy, .
Thus energy conservation can be used to give that

Lagrange’s equation of motion gives
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The important difference between the folded chain and falling chain is that the moving component of the falling chain is
gaining mass with time rather than losing mass. Also the tension in the chain  reduces the acceleration of the falling chain
making it less than the free-fall value . This is in contrast to that for the folded chain system where the acceleration exceeds .

The above discussion shows that Lagrangian and Hamiltonian can be applied to variable-mass systems if both the donor and
receptor degrees of freedom are included to ensure that the total mass is conserved.

Discussions with Professor Frank Wolfs stimulated inclusion of these two examples of moving chains.

This page titled 8.7: Variable-mass systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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8.E: Hamiltonian Mechanics (Exercises)
1. A block of mass  rests on an inclined plane making an angle  with the horizontal. The inclined plane (a triangular block of
mass ) is free to slide horizontally without friction. The block of mass  is also free to slide on the larger block of mass 
without friction.

(a) Construct the Lagrangian function.

(b) Derive the equations of motion for this system.

(c) Calculate the canonical momenta.

(d) Construct the Hamiltonian function.

(e) Find which of the two momenta found in part (c) is a constant of motion and discuss why it is so. If the two blocks start from
rest, what is the value of this constant of motion?

2. Discuss among yourselves the following four conditions that can exist for the Hamiltonian and give several examples of systems
exhibiting each of the four conditions.

(a) The Hamiltonian is conserved and equals the total mechanical energy

(b) The Hamiltonian is conserved but does not equal the total mechanical energy

(c) The Hamiltonian is not conserved but does equal the total mechanical energy

(d) The Hamiltonian is not conserved and does not equal the mechanical total energy.

3. A block of mass  rests on an inclined plane making an angle  with the horizontal. The inclined plane (a triangular block of
mass ) is free to slide horizontally without friction. The block of mass  is also free to slide on the larger block of mass 
without friction.

(a) Construct the Lagrangian function.

(b) Derive the equations of motion for this system.

(c) Calculate the canonical momenta.

(d) Construct the Hamiltonian function.

(e) Find which of the two momenta found in part (c) is a constant of motion and discuss why it is so. If the two blocks start from
rest, what is the value of this constant of motion?

4. Discuss among yourselves the following four conditions that can exist for the Hamiltonian and give several examples of systems
exhibiting each of the four conditions.

a) The Hamiltonian is conserved and equals the total mechanical energy

b) The Hamiltonian is conserved but does not equal the total mechanical energy

c) The Hamiltonian is not conserved but does equal the total mechanical energy

d) The Hamiltonian is not conserved and does not equal the mechanical total energy

5. Compare the Lagrangian formalism and the Hamiltonian formalism by creating a two-column chart. Label one side “
Lagrangian” and the other side “ Hamiltonian” and discuss the similarities and differences. Here are some ideas to get you started:

What are the basic variables in each formalism?
What are the form and number of the equations of motion derived in each case?
How does the Lagrangian “state space” compare to the Hamiltonian “phase space”?

6. It can be shown that if  is the Lagrangian of a particle moving in one dimension, then  where 
 and  is an arbitrary function. This problem explores the consequences of this on the

Hamiltonian formalism.

(a) Relate the new canonical momentum , for , to the old canonical momentum , for  .

(b) Express the new Hamiltonian  for  in terms of the old Hamiltonian  and .
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(c) Explicitly show that the new Hamilton’s equations for  are equivalent to the old Hamilton’s equations for  .

7. A massless hoop of radius  is rotating about an axis perpendicular to its central axis at constant angular velocity . A mass 
can freely slide around the hoop.

(a) Determine the Lagrangian of the system.

(b) Determine the Hamiltonian of the system. Does it equal the total mechanical energy?

(c) Determine the Lagrangian of the system with respect to a coordinate frame in which . What is ? What force
generates the additional term in  ?

8. Consider a pendulum of length  attached to the end of rod of length . The rod is rotating at constant angular velocity  in the
plane. Assume the pendulum is always taut.

(a) Determine equations of motion.

(b) For what value of  is this system the same as a plane pendulum in a constant gravitational field?

(c) Show . What is the reason?

9. A particle of mass  in a gravitational field slides on the inside of a smooth parabola of revolution whose axis is vertical. Using
the distance from the axis  and the azimuthal angle  as generalized coordinates, find the following.

(a) The Lagrangian of the system.

(b) The generalized momenta and the corresponding Hamiltonian

(c) The equation of motion for the coordinate  as a function of time.

(d) If  show that the particle can execute small oscillations about the lowest point of the paraboloid and find the frequency
of these oscillations.

10. Consider a particle of mass  which is constrained to move on the surface of a sphere of radius . There are no external forces
of any kind acting on the particle.

(a) What is the number of generalized coordinates necessary to describe the problem?

(b) Choose a set of generalized coordinates and write the Lagrangian of the system.

(c) What is the Hamiltonian of the system? Is it conserved?

(d) Prove that the motion of the particle is along a great circle of the sphere.

11. A block of mass  is attached to a wedge of mass  by a spring with spring constant . The inclined frictionless surface of the
wedge makes an angle  to the horizontal. The wedge is free to slide on a horizontal frictionless surface as shown in the figure.

(a) Given that the relaxed length of the spring is , find the values  when both book and wedge are stationary.

(b) Find the Lagrangian for the system as a function of the  coordinate of the wedge and the length of spring . Write down the
equations of motion.

(c) What is the natural frequency of vibration?
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12. . A fly-ball governor comprises two masses  connected by 4 hinged arms of length  to a vertical shaft and to a mass 
which can slide up or down the shaft without friction in a uniform vertical gravitational field as shown in the figure The assembly
is constrained to rotate around the axis of the vertical shaft with same angular velocity as that of the vertical shaft. Neglect the mass
of the arms, air friction, and assume that the mass  has a negligible moment of inertia. Assume that the whole system is
constrained to rotate with a constant angular velocity .

(a) Choose suitable coordinates and use the Lagrangian to derive equations of motion of the system around the equilibrium
position.

(b) Determine the height  of the mass  above its lowest position as a function of .

(c) Find the frequency of small oscillations about this steady motion.

(d) Derive a Routhian that provides the Hamiltonian in the rotating system.

(e) Is the total energy of the fly-ball governor in the rotating frame of reference constant in time?

(f) Suppose that the shaft and assembly are not constrained to rotate at a constant angular velocity , that is, it is allowed to rotate
freely at angular velocity . What is the difference in the overall motion?

Figure 

13. A rigid straight, frictionless, massless, rod rotates about the  axis at an angular velocity . A mass  slides along the
frictionless rod and is attached to the rod by a massless spring of spring constant .

(a) Derive the Lagrangian and the Hamiltonian

(b) Derive the equations of motion in the stationary frame using Hamiltonian mechanics.

(c) What are the constants of motion?

(d) If the rotation is constrained to have a constant angular velocity  then is the non-cyclic Routhian  a
constant of motion, and does it equal the total energy?

(e) Use the non-cyclic Routhian  to derive the radial equation of motion in the rotating frame of reference for the cranked
system with .
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Figure 

14. A thin uniform rod of length  and mass  is suspended from a massless string of length  tied to a nail. Initially the rod
hangs vertically. A weak horizontal force  is applied to the rod’s free end.

(a) Write the Lagrangian for this system.

(b) For very short times such that all angles are small, determine the angles that string and the rod make with the vertical. Start
from rest at 

(c) Draw a diagram to illustrate the initial motion of the rod.

Figure 

15. A uniform ladder of mass  and length  is leaning against a frictionless vertical wall with its feet on a frictionless horizontal
floor. Initially the stationary ladder is released at an angle  to the floor. Assume that gravitation field  acts
vertically downward and that the moment of inertia of the ladder about its midpoint is .

(a) Derive the Lagrangian

(b) Derive the Hamiltonian

(c) Explain if the Hamiltonian is conserved and/or if it equals the total energy

(d) Use the Lagrangian to derive the equations of motion

(e) Derive the angle  at which the ladder loses contact with the vertical wall?

Figure 

16. The classical mechanics exam induces Jacob to try his hand at bungee jumping. Assume Jacob’s mass  is suspended in a
gravitational field by the bungee of unstretched length  and spring constant . Besides the longitudinal oscillations due to the
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bungee jump, Jacob also swings with plane pendulum motion in a vertical plane. Use polar coordinates , neglect air drag, and
assume that the bungee always is under tension.

(a) Derive the Lagrangian

(b) Determine Lagrange’s equation of motion for angular motion and identify by name the forces contributing to the angular
motion.

(c) Determine Lagrange’s equation of motion for radial oscillation and identify by name the forces contributing to the tension in the
spring.

(d) Derive the generalized momenta

(e) Determine the Hamiltonian and give all of Hamilton’s equations of motion.

Recommended reading: "Classical Mechanics" H. Goldstein, Addison-Wesley, Reading (1950). The present chapter closely
follows the notation used by Goldstein to facilitate cross-referencing and reading the many other textbooks that have adopted this
notation.

This page titled 8.E: Hamiltonian Mechanics (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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8.S: Hamiltonian Mechanics (Summary)

Hamilton’s equations of motion

Inserting the generalized momentum into Jacobi’s generalized energy relation was used to define the Hamiltonian function to be

The Legendre transform of the Lagrange-Euler equations, led to Hamilton’s equations of motion.

The generalized energy equation  gives the time dependence

where

The  are treated as independent canonical variables. Lagrange was the first to derive the canonical equations but he did not
recognize them as a basic set of equations of motion. Hamilton derived the canonical equations of motion from his fundamental
variational principle and made them the basis for a far-reaching theory of dynamics. Hamilton’s equations give  first-order
differential equations for  for each of the  degrees of freedom. Lagrange’s equations give  second-order differential
equations for the variables 

Routhian reduction technique

The Routhian reduction technique is a hybrid of Lagrangian and Hamiltonian mechanics that exploits the advantages of both
approaches for solving problems involving cyclic variables. It is especially useful for solving motion in rotating systems in science
and engineering. Two Routhians are used frequently for solving the equations of motion of rotating systems. Assuming that the
variables between  are non-cyclic, while the  variables between  are ignorable cyclic coordinates, then
the two Routhians are:

The Routhian  is a negative Lagrangian for the non-cyclic variables between , where  and is a
Hamiltonian for the  cyclic variables between . Since the cyclic variables are constants of the Hamiltonian, their
solution is trivial, and the number of variables included in the Lagrangian is reduced from  to . The Routhian  is
useful for solving some problems in classical mechanics. The Routhian  is a Hamiltonian for the non-cyclic variables
between , and is a negative Lagrangian for the  cyclic variables between . Since the cyclic variables are
constants of motion, the Routhian  also is a constant of motion but it does not equal the total energy since the coordinate
transformation is time dependent. The Routhian  is especially valuable for solving rotating many-body systems such as
galaxies, molecules, or nuclei, since the Routhian  is the Hamiltonian in the rotating body-fixed coordinate frame.

Variable mass systems:

Two examples of heavy flexible chains falling in a uniform gravitational field were used to illustrate how variable mass systems
can be handled using Lagrangian and Hamiltonian mechanics. The falling-mass system is conservative assuming that both the
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donor plus the receptor body systems are included.

Comparison of Lagrangian and Hamiltonian mechanics
Lagrangian and the Hamiltonian dynamics are two powerful and related variational algebraic formulations of mechanics that are
based on Hamilton’s action principle. They can be applied to any conservative degrees of freedom as discussed in chapters , ,
and . Lagrangian and Hamiltonian mechanics both concentrate solely on active forces and can ignore internal forces. They can
handle many-body systems and allow convenient generalized coordinates of choice. This ability is impractical or impossible using
Newtonian mechanics. Thus it is natural to compare the relative advantages of these two algebraic formalisms in order to decide
which should be used for a specific problem.

For a system with  generalized coordinates, plus  constraint forces that are not required to be known, then the Lagrangian
approach, using a minimal set of generalized coordinates, reduces to only  second-order differential equations and
unknowns compared to the Newtonian approach where there are  unknowns. Alternatively, use of Lagrange multipliers
allows determination of the constraint forces resulting in  second order equations and unknowns. The Lagrangian potential
function is limited to conservative forces, Lagrange multipliers can be used to handle holonomic forces of constraint, while
generalized forces can be used to handle non-conservative and non-holonomic forces. The advantage of the Lagrange equations of
motion is that they can deal with any type of force, conservative or non-conservative, and they directly determine ,  rather than 

 which then requires relating  to .

For a system with  generalized coordinates, the Hamiltonian approach determines  first-order differential equations which are
easier to solve than second-order equations. However, the  solutions must be combined to determine the equations of motion.
The Hamiltonian approach is superior to the Lagrange approach in its ability to obtain an analytical solution of the integrals of the
motion. Hamiltonian dynamics also has a means of determining the unknown variables for which the solution assumes a soluble
form. Important applications of Hamiltonian mechanics are to quantum mechanics and statistical mechanics, where quantum
analogs of  and  can be used to relate to the fundamental variables of Hamiltonian mechanics. This does not apply for the
variables  and  of Lagrangian mechanics. The Hamiltonian approach is especially powerful when the system has  cyclic
variables, then the  conjugate momenta  are constants. Thus the  conjugate variables  can be factored out of the
Hamiltonian, which reduces the number of conjugate variables required to . This is not possible using the Lagrangian
approach since, even though the  coordinates  can be factored out, the velocities  still must be included, thus the  conjugate
variables must be included. The Lagrange approach is advantageous for obtaining a numerical solution of systems in classical
mechanics. However, Hamiltonian mechanics expresses the variables in terms of the fundamental canonical variables  which
provides a more fundamental insight into the underlying physics.

This page titled 8.S: Hamiltonian Mechanics (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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9.1: Introduction to Hamilton's Action Principle
Hamilton’s principle of stationary action was introduced in two papers published by Hamilton in  and  Hamilton’s
Action Principle provides the foundation for building Lagrangian mechanics that had been pioneered  years earlier. Hamilton’s
Principle now underlies theoretical physics and many other disciplines in mathematics and economics. In  Hamilton was
seeking a theory of optics when he developed both his principle of stationary action, plus the field of Hamiltonian mechanics.

Hamilton’s Action Principle is based on defining the action functional   for  generalized coordinates which are expressed by
the vector  and their corresponding velocity vector .

The scalar action  is a functional of the Lagrangian , integrated between an initial time  and final time . In
principle, higher order time derivatives of the generalized coordinates could be included, but most systems in classical mechanics
are described adequately by including only the generalized coordinates, plus their velocities. The definition of the action functional
allows for more general Lagrangians than the standard Lagrangian  that has been used throughout
chapters . Hamilton stated that the actual trajectory of a mechanical system is that given by requiring that the action
functional is stationary with respect to change of the variables. The action functional is stationary when the variational principle
can be written in terms of a virtual infinitessimal displacement,  to be

Typically the stationary point corresponds to a minimum of the action functional. Applying variational calculus to the action
functional leads to the same Lagrange equations of motion for systems as the equations derived using d’Alembert’s Principle, if the
additional generalized force terms, , are omitted in the corresponding equations of motion.

These are used to derive the equations of motion, which then are solved for an assumed set of initial conditions. Prior to Hamilton’s
Action Principle, Lagrange developed Lagrangian mechanics based on d’Alembert’s Principle in contrast to Newtonian equations
of motion which are defined in terms of Newton’s Laws of Motion.

The term "action functional" was named "Hamilton’s Principal Function" in older texts. The name usually is abbreviated to
"action" in modern mechanics.

This page titled 9.1: Introduction to Hamilton's Action Principle is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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9.2: Hamilton's Principle of Stationary Action
Hamilton’s crowning achievement was his use of the general form of Hamilton’s principle of stationary action , equation ,
to derive both Lagrangian mechanics, and Hamiltonian mechanics. Consider the action  for the extremum path of a system in
configuration space, that is, along path  for  coordinates  at initial time  to  at a final time  as
shown in Figure .

Figure : Extremum path A, plus the neighboring path B, shown in configuration space.

Then the action  is given by

As used in chapter  a family of neighboring paths is defined by adding an infinitessimal fraction  of a continuous, well-
behaved neighboring function  where  for the extremum path. That is,

In contrast to the variational case discussed when deriving Lagrangian mechanics, the variational path used here does not assume
that the functions  vanish at the end points. Assume that the neighboring path  has an action  where

Expanding the integrand of  in Equation  gives that, relative to the extremum path , the incremental change in action is

The second term in the integral can be integrated by parts since  leading to

Note that Equation  includes contributions from the entire path of the integral as well as the variations at the ends of the curve
and the  terms. Equation  leads to the following two pioneering principles of least action in variational mechanics that were
developed by Hamilton.
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Stationary-action principle in Lagrangian mechanics
Derivation of Lagrangian mechanics in chapter  was based on the extremum path for neighboring paths between two given
locations  and  that the system occupies at the initial and final times  and  respectively. For this special case, where
the end points do not vary, that is, when , and , then the least action  for the stationary
path  reduces to

For independent generalized coordinates , the integrand in brackets vanishes leading to the Euler-Lagrange equations.
Conversely, if the Euler-Lagrange equations in  are satisfied, then,  that is, the path is stationary. This leads to the
statement that the path in configuration space between two configurations  and  that the system occupies at times  and 

 respectively, is that for which the action  is stationary. This is a statement of Hamilton’s Principle.

Stationary-action principle in Hamiltonian mechanics

Hamilton used the general variation of the least-action path to derive the basic equations of Hamiltonian mechanics. For the general
path, the integral term in Equation  vanishes because the Euler-Lagrange equations are obeyed for the stationary path. Thus
the only remaining non-zero contributions are due to the end point terms, which can be written by defining the total variation of
each end point to be

where  and  are evaluated at  and . Then Equation  reduces to

Since the generalized momentum , then Equation  can be expressed in terms of the Hamiltonian and generalized

momentum as

Equation  contains Hamilton’s Principle of Least-action. Equation  gives an alternative relation of the generalized
momentum  that is expressed in terms of the action functional . Note that equations  and  were derived directly
without invoking reference to the Lagrangian.

Integrating the action , Equation , between the end points gives the action for the path between  and , that is, 
 to be

The stationary path is obtained by using the variational principle

The integrand,  in this modified Hamilton’s principle, can be used in the  Euler-Lagrange equations for 
 to give

6

q( )ti q( )tf ti tf
δ ( ) = δ ( ) = 0qi ti qi tf Δ = Δ = 0ti tf δS

9.2.6

δS = ( − ) δ dt = 0∫
tf

ti

∑
j

∂L

∂qj

d

dt

∂L

∂q̇ j

qj (9.2.6)

δqj
9.2.6 δS = 0,

q( )ti q( )tf ti
tf S

9.2.5

Δ = δ + Δtqj qj q̇ j (9.2.7)

δqi q̇ i ti tf 9.2.5

δS = =[ δ +LΔt]∑
j

∂L

∂q̇ j

qj

tf

ti

[ Δ +(− +L)Δt]∑
j

∂L

∂q̇ j

qj ∑
j

∂L

∂q̇ j

q̇ j

tf

ti

(9.2.8)

=pj
∂L

∂q̇ j

9.2.8

δS = =[ Δ −HΔt]∑
j

pj qj

tf

ti

[p⋅Δq −HΔt]
tf
ti

(9.2.9)

= =
∂S

∂qj

∂L

∂q̇ j

pj (9.2.10)

9.2.9 9.2.10

pj S 9.2.9 9.2.10

δS 9.2.8 t = ti t = tf
S( ( ), , ( ), )qj ti t1 qj tf t2

S( ( ), , ( ), ) = [p ⋅ −H(q, p,t)] dtqj ti ti qj tf tf ∫
f

i

q̇ (9.2.11)

δS = δ [p ⋅ −H(q, p,t)] dt = 0∫
f

i

q̇ (9.2.12)

I = [p ⋅ −H(q, p,t)] ,q̇ n

j= 1, 2, 3, … ,n

( )− = + = 0
d

dt

∂I

∂q̇ j

∂I

∂qj
ṗj
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Similarly, the other  Euler-Lagrange equations give

Thus Hamilton’s principle of least-action leads to Hamilton’s equations of motion, that is equations  and .

The total time derivative of the action , which is a function of the coordinates and time, is

But the total time derivative of Equation  equals

Combining equations  and  gives the Hamilton-Jacobi equation which is discussed in chapter .

In summary, Hamilton’s principle of least action leads directly to Hamilton’s equations of motion ,  plus the Hamilton-
Jacobi Equation . Note that the above discussion has derived both Hamilton’s Principle , and Hamilton’s equations of
motion , , directly from Hamilton’s variational concept of stationary action, , without explicitly invoking the
Lagrangian.

Abbreviated action
Hamilton’s Action Principle determines completely the path of the motion and the position on the path as a function of time. If the
Lagrangian and the Hamiltonian are time independent, that is, conservative, then  and Equation  equals

The  term in Equation , is called the abbreviated action which is defined as

The abbreviated action can be simplified assuming use of the standard Lagrangian  with a velocity-independent
potential , then equation  gives.

Abbreviated action provides for use of a simplified form of the principle of least action that is based on the kinetic energy, and not
potential energy. For conservative systems it determines the path of the motion, but not the time dependence of the motion.
Consider virtual motions where the path satisfies energy conservation, and where the end points are held fixed, that is  but
allow for a variation  in the final time. Then using the Hamilton-Jacobi equation, 

However, Equation  gives that

Therefore

That is, the abbreviated action has a minimum with respect to all paths that satisfy the conservation of energy which can be written
as

n

( )− = − + = 0
d

dt
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∂ṗj
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∂pj
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Equation  is called the Maupertuis’ least-action principle which he proposed in  based on Fermat’s Principle in optics.
Credit for the formulation of least action commonly is given to Maupertuis; however, the Maupertuis principle is similar to the use
of least action applied to the "vis viva", as was proposed by Leibniz four decades earlier. Maupertuis used teleological arguments ,
rather than scientific rigor, because of his limited mathematical capabilities. In  Euler provided a scientifically rigorous
argument, presented above, that underlies the Maupertuis principle. Euler derived the correct variational relation for the abbreviated
action to be

Hamilton’s use of the principle of least action to derive both Lagrangian and Hamiltonian mechanics is a remarkable
accomplishment. It underlies both Lagrangian and Hamiltonian mechanics and confirmed the conjecture of Maupertuis.

Hamilton’s Principle applied using initial boundary conditions
Galley[Gal13] identified a subtle inconsistency in the applications of Hamilton’s Principle of Stationary Action to both Lagrangian
and Hamiltonian mechanics. The inconsistency involves the fact that Hamilton’s Principle is defined as the action integral between
the initial time  and the final time  as boundary conditions, that is, it is assumed to be time symmetric. However, most
applications in Lagrangian and Hamiltonian mechanics assume that the action integral is evaluated based on the initial values as
the boundary conditions, rather than the initial  and final times . That is, typical applications require use of a time-asymmetric
version of Hamilton’s principle. Galley proposed a framework for transforming Hamilton’s Principle to a time-asymmetric form in
order to handle problems where the boundary conditions are based on using only the initial values at the initial time , rather than
the initial plus final times  that is assumed in the time-symmetric definition of the action in Hamilton’s Principle.

Figure : The left schematic shows paths between the initial  and final  times for conservative mechanics. The solid
line designates the path for which the action is stationary, while the dashed lines represent the varied paths. The right schematic
shows the paths applied to the doubled degrees of freedom with two initial boundary conditions, that is,  and  plus
assuming that both paths are identical at their intersection and that they intersect at the same final time, that is, .

The following describes the framework proposed by Galley for transforming Hamilton’s Principle to a time-asymmetric form. Let 
 and  designate sets of  generalized coordinates, plus their velocities, where  and  are the fundamental variables assumed in

the definition of the Lagrangian used by Hamilton’s Principle. As illustrated schematically in Figure , Galley proposed
doubling the number of degrees of freedom for the system considered, that is, let  and . In addition he
defines two identical variational paths  and  where path  is the time reverse of path . That is, path  starts at the initial time ,
and ends at , whereas path  starts at  and ends at . That is, he assumes that  and  specify the two paths in the space of the
doubled degrees of freedom that are identical, and that they intersect at the final time . The arrows shown on the paths in Figure 

 designate the assumed direction of the time integration along these paths.

For the doubled system of degrees of freedom, the total action for the sum of the two paths is given by the time integral of the
doubled variables,  which can be written as

The above relation assumes that the doubled variables  and  are decoupled from each other. More generally one
can assume that the two sets of variables are coupled by some arbitrary function . Then the action can be

δ = δ 2Tdt = 0S0 ∫
tf

ti

(9.2.24)
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written as

The effective Lagrangian for this doubled system then can be defined as

and the action can be written as

The coupling term  for the doubled system of degrees of freedom must satisfy the following two properties.

(a) If it can be expressed as the difference of two scalar potentials, , then it can be absorbed into
the potential term for each of the doubled variables in the Lagrangian. This implies that  and there is no reason to double
the number of degrees of freedom because the system is conservative. Thus  describes generalized forces that are not derivable
from potential energy, that is, conservative.

(b) A second property of the coupling term  is that it must be antisymmetric under interchange of the arbitrary
labels . That is,

Therefore the antisymmetric function  vanishes when .

The variational condition requires that the action  has a well defined stationary point for the doubled system. This is
achieved by parametrizing both coordinate paths as

where  are the coordinates for which the action is stationary,  and where  are arbitrary functions of time
denoting virtual displacements of the paths. The doubled system has two independent paths connecting the two initial boundary
conditions at , and it requires that these paths intersect at . The variational system for the two intersecting paths requires
specifying four conditions, two per path. Two of the four conditions are determined by requiring that at  the initial boundary
conditions satisfies that . The remaining two conditions are derived by requiring that the variation of the action 

 satisfies

The canonical momenta  conjugate to the doubled coordinates  are defined using the nonconservative Lagrangian  to be

where the superscript  designates the solution based on the initial conditions. Note that the conjugate momentum 

while the  term is part of the total momentum due to the nonconservative interaction. Similarly the momentum for

the second path is

The last term in Equation , that is, the term  results from integration by parts, which will vanish if

The equality condition at the intersection of the two paths at  requires that

S ( , ) = [L ( , , t)dt−L ( , , t) +K ( , , , , t)] dtq1 q2 ∫
tf

ti
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Therefore equations  and  imply that

Therefore equations  and  constitute the equality condition that must be satisfied when the two paths intersect at .
The equality condition ensures that the boundary term for integration by parts in Equation  will vanish for arbitrary
variations provided that the two unspecified paths agree at the final time . Similarly the conjugate momenta  must
agree, but otherwise are unspecified. As a consequence, the equality condition ensures that the variational principle is consistent
with the final state at  not being specified. That is, the equations of motion are only specified by the initial boundary conditions
of the time-asymmetric action for the doubled system.

More physics insight is provided by using a more convenient parametrization of the coordinates in terms of their average and
difference. That is, let

Then the physical limit is

That is, the average history is the relevant physical history, while the difference coordinate simply vanishes. For these coordinates,
the nonconservative Lagrangian is  and the equality conditions reduce to

which implies that the physically relevant average  quantities are not specified at the final time  in order to have a well-
defined variational principle.

The canonical momenta are given by

The equations of motion can be written as.

Equation  is identically zero for the  subscript, while, in the physical limit (PL), the negative subscript gives that

Substituting for the Lagrangian  gives that

where  is a generalized nonconservative force derived from .

Note that Equation  can be derived equally well by taking the direct functional derivative with respect to , that is,
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The above time-asymmetric formalism applies Hamilton’s action principle to systems that involve initial boundary conditions
while the second path corresponds to the final boundary conditions. This framework, proposed recently by Galley, provides a
remarkable advance for the handling of nonconservative action in Lagrangian and Hamiltonian mechanics.  This formalism
directly incorporates the variational principle for initial boundary conditions and causal dynamics that are usually required for
applications of Lagrangian and Hamiltonian mechanics. Currently, there is limited exploitation of this new formalism because there
has been insufficient time for it to become well known, for full recognition of its importance, and for the development and
publication of applications. Chapter  discusses an application of this formalism to nonconservative systems in classical
mechanics.

This topic goes beyond the planned scope of this book. It is recommended that the reader refer to the work of Galley, Tsang, and
Stein[Gal13, Gal14] for further discussion plus examples of applying this formalism to nonconservative systems in classical
mechanics, electromagnetic radiation, RLC circuits, fluid dynamics, and field theory.

This page titled 9.2: Hamilton's Principle of Stationary Action is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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9.3: Lagrangian

Standard Lagrangian
Lagrangian mechanics, as introduced in chapter  was based on the concepts of kinetic energy and potential energy. d’Alembert’s
principle of virtual work was used to derive Lagrangian mechanics in chapter  and this led to the definition of the standard
Lagrangian. That is, the standard Lagrangian was defined in chapter  to be the difference between the kinetic and potential
energies.

Hamilton extended Lagrangian mechanics by defining Hamilton’s Principle, equation , which states that a dynamical system
follows a path for which the action functional is stationary, that is, the time integral of the Lagrangian. Chapter  showed that
using the standard Lagrangian for defining the action functional leads to the Euler-Lagrange variational equations

The Lagrange multiplier terms handle the holonomic constraint forces and  handles the remaining excluded generalized
forces. Chapters  showed that the use of the standard Lagrangian, with the Euler-Lagrange equations , provides a
remarkably powerful and flexible way to derive second-order equations of motion for dynamical systems in classical mechanics.

Note that the Euler-Lagrange equations, expressed solely in terms of the standard Lagrangian , that is, excluding the 
 terms, are valid only under the following conditions:

1. The forces acting on the system, apart from any forces of constraint, must be derivable from scalar potentials.
2. The equations of constraint must be relations that connect the coordinates of the particles and may be functions of time, that is,

the constraints are holonomic.

The  terms extend the range of validity of using the standard Lagrangian in the Lagrange-Euler

equations by introducing constraint and omitted forces explicitly.

Chapters  exploited Lagrangian mechanics based on use of the standard definition of the Lagrangian. The present chapter will
show that the powerful Lagrangian formulation, using the standard Lagrangian, can be extended to include alternative non-standard
Lagrangians that may be applied to dynamical systems where use of the standard definition of the Lagrangian is inapplicable. If
these non-standard Lagrangians satisfy Hamilton’s Action Principle, , then they can be used with the Euler-Lagrange
equations to generate the correct equations of motion, even though the Lagrangian may not have the simple relation to the kinetic
and potential energies adopted by the standard Lagrangian. Currently, the development and exploitation of non-standard
Lagrangians is an active field of Lagrangian mechanics.

Gauge invariance of the standard Lagrangian
Note that the standard Lagrangian is not unique in that there is a continuous spectrum of equivalent standard Lagrangians that all
lead to identical equations of motion. This is because the Lagrangian  is a scalar quantity that is invariant with respect to
coordinate transformations. The following transformations change the standard Lagrangian, but leave the equations of motion
unchanged.

1. The Lagrangian is indefinite with respect to addition of a constant to the scalar potential which cancels out when the derivatives
in the Euler-Lagrange differential equations are applied.

2. The Lagrangian is indefinite with respect to addition of a constant kinetic energy.
3. The Lagrangian is indefinite with respect to addition of a total time derivative of the form  for any

differentiable function  of the generalized coordinates plus time, that has continuous second derivatives.

This last statement can be proved by considering a transformation between two related standard Lagrangians of the form

6,

6

6.2

L(q, ,t) = T ( ,t) −U(q, t)q̇ q̇ (9.3.1)
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This leads to a standard Lagrangian  that has the same equations of motion as  as is shown by substituting Equation  into
the Euler-Lagrange equations. That is,

Thus even though the related Lagrangians  and  are different, they are completely equivalent in that they generate identical
equations of motion.

There is an unlimited range of equivalent standard Lagrangians that all lead to the same equations of motion and satisfy the
requirements of the Lagrangian. That is, there is no unique choice among the wide range of equivalent standard Lagrangians
expressed in terms of generalized coordinates. This discussion is an example of gauge invariance in physics.

Modern theories in physics describe reality in terms of potential fields. Gauge invariance, which also is called gauge symmetry, is a
property of field theory for which different underlying fields lead to identical observable quantities. Well-known examples are the
static electric potential field and the gravitational potential field where any arbitrary constant can be added to these scalar potentials
with zero impact on the observed static electric field or the observed gravitational field. Gauge theories constrain the laws of
physics in that the impact of gauge transformations must cancel out when expressed in terms of the observables. Gauge symmetry
plays a crucial role in both classical and quantal manifestations of field theory, e.g. it is the basis of the Standard Model of
electroweak and strong interactions.

Equivalent Lagrangians are a clear manifestation of gauge invariance as illustrated by equations ,  which show that
adding any total time derivative of a scalar function  to the Lagrangian has no observable consequences on the equations of
motion. That is, although addition of the total time derivative of the scalar function  changes the value of the Lagrangian, it
does not change the equations of motion for the observables derived using equivalent standard Lagrangians.

For Lagrangian formulations of classical mechanics, the gauge invariance is readily apparent by direct inspection of the
Lagrangian.

The scalar electric potential  and the vector potential  fields in electromagnetism are examples of gauge-invariant fields.
These electromagnetic-potential fields are not directly observable, that is, the electromagnetic observable quantities are the
electric field  and magnetic field  which can be derived from the scalar and vector potential fields  and . An advantage
of using the potential fields is that they reduce the problem from  components,  each for  and  to  components, one for
the scalar field  and  for the vector potential . The Lagrangian for the velocity-dependent Lorentz force, given by equation

, provides an example of gauge invariance. Equations  and  showed that the electric and magnetic
fields can be expressed in terms of scalar and vector potentials  and  by the relations

The equations of motion for a charge  in an electromagnetic field can be obtained by using the Lagrangian

Consider the transformations  in the transformed Lagrangian  where

The transformed Lorentz-force Lagrangian  is related to the original Lorentz-force Lagrangian  by
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Note that the additive term  is an exact time differential. Thus the Lagrangian  is gauge invariant implying
identical equations of motion are obtained using either of these equivalent Lagrangians.

The force fields  and  can be used to show that the above transformation is gauge-invariant. That is,

That is, the additive terms due to the scalar field  cancel. Thus the electromagnetic force fields following a gauge-
invariant transformation are shown to be identical in agreement with what is inferred directly by inspection of the Lagrangian.

Non-standard Lagrangians
The definition of the standard Lagrangian was based on d’Alembert’s differential variational principle. The flexibility and power of
Lagrangian mechanics can be extended to a broader range of dynamical systems by employing an extended definition of the
Lagrangian that is based on Hamilton’s Principle, equation . Note that Hamilton’s Principle was introduced  years after
development of the standard formulation of Lagrangian mechanics. Hamilton’s Principle provides a general definition of the
Lagrangian that applies to standard Lagrangians, which are expressed as the difference between the kinetic and potential energies,
as well as to non-standard Lagrangians where there may be no clear separation into kinetic and potential energy terms. These non-
standard Lagrangians can be used with the Euler-Lagrange equations to generate the correct equations of motion, even though they
may have no relation to the kinetic and potential energies. The extended definition of the Lagrangian based on Hamilton’s action
functional  can be exploited for developing non-standard definitions of the Lagrangian that may be applied to dynamical
systems where use of the standard definition is inapplicable. Non-standard Lagrangians can be equally as useful as the standard
Lagrangian for deriving equations of motion for a system. Secondly, non-standard Lagrangians, that have no energy interpretation,
are available for deriving the equations of motion for many nonconservative systems. Thirdly, Lagrangians are useful irrespective
of how they were derived. For example, they can be used to derive conservation laws or the equations of motion. Coordinate
transformations of the Lagrangian is much simpler than that required for transforming the equations of motion. The relativistic
Lagrangian defined in chapter  is a well-known example of a non-standard Lagrangian.

Inverse variational calculus
Non-standard Lagrangians and Hamiltonians are not based on the concept of kinetic and potential energies. Therefore, development
of non-standard Lagrangians and Hamiltonians require an alternative approach that ensures that they satisfy Hamilton’s Principle,
equation , which underlies the Lagrangian and Hamiltonian formulations. One useful alternative approach is to derive the
Lagrangian or Hamiltonian via an inverse variational process based on the assumption that the equations of motion are known.
Helmholtz developed the field of inverse variational calculus which plays an important role in development of non-standard
Lagrangians. An example of this approach is use of the well-known Lorentz force as the basis for deriving a corresponding
Lagrangian to handle systems involving electromagnetic forces. Inverse variational calculus is a branch of mathematics that is
beyond the scope of this textbook. The Douglas theorem states that, if the three Helmholtz conditions are satisfied, then there exists
a Lagrangian that, when used with the Euler-Lagrange differential equations, leads to the given set of equations of motion. Thus, it
will be assumed that the inverse variational calculus technique can be used to derive a Lagrangian from known equations of
motion.

This page titled 9.3: Lagrangian is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via
source content that was edited to the style and standards of the LibreTexts platform.
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9.4: Application of Hamilton's Action Principle to Mechanics
Knowledge of the equations of motion is required to predict the response of a system to any set of initial conditions. Hamilton’s
action principle, that is built into Lagrangian and Hamiltonian mechanics, coupled with the availability of a wide arsenal of
variational principles and techniques, provides a remarkably powerful and broad approach to deriving the equations of motions
required to determine the system response.

As mentioned in the Prologue, derivation of the equations of motion for any system, based on Hamilton’s Action Principle,
separates naturally into a hierarchical set of three stages that differ in both sophistication and understanding, as described below.

1. Action stage: The primary "action stage" employs Hamilton’s Action functional,  to derive the
Lagrangian and Hamiltonian functionals. This action stage provides the most fundamental and sophisticated level of
understanding. It involves specifying all the active degrees of freedom, as well as the interactions involved. Symmetries
incorporated at this primary action stage can simplify subsequent use of the Hamiltonian and Lagrangian functionals.

2. Hamiltonian/Lagrangian stage: The "Hamiltonian/Lagrangian stage" uses the Lagrangian or Hamiltonian functionals, that
were derived at the action stage, in order to derive the equations of motion for the system of interest. Symmetries, not already
incorporated at the primary action stage, may be included at this secondary stage.

3. Equations of motion stage: The "equations-of-motion stage" uses the derived equations of motion to solve for the motion of
the system subject to a given set of initial boundary conditions. Nonconservative forces, such as dissipative forces, that were not
included at the primary and secondary stages, may be added at the equations of motion stage.

Lagrange omitted the action stage when he used d’Alembert’s Principle to derive Lagrangian mechanics. The Newtonian
mechanics approach omits both the primary “action” stage, as well as the secondary “Hamiltonian/Lagrangian” stage, since
Newton’s Laws of Motion directly specify the “equations-of-motion stage”. Thus these do not exploit the considerable advantages
provided by the use of the action, the Lagrangian, and the Hamiltonian. Newtonian mechanics requires that all the active forces be
included when deriving the equations of motion, which involves dealing with vector quantities. In Newtonian mechanics,
symmetries must be incorporated directly at the equations of motion stage, which is more difficult than when done at the primary
“action” stage, or the secondary “Lagrangian/Hamiltonian” stage. The “action” and “Hamiltonian/Lagrangian” stages allow for use
of the powerful arsenal of mathematical techniques that have been developed for applying variational principles.

There are considerable advantages to deriving the equations of motion based on Hamilton’s Principle, rather than derive them using
Newtonian mechanics. It is significantly easier to use variational principles to handle the scalar functionals, action, Lagrangian, and
Hamiltonian, rather than starting at the equationsof-motion stage. For example, utilizing all three stages of algebraic mechanics
facilitates accommodating extra degrees of freedom, symmetries, and interactions. The symmetries identified by Noether’s theorem
are more easily recognized during the primary “action” and secondary “Hamiltonian/Lagrangian” stages rather than at the
subsequent “equations of motion” stage. Approximations made at the “action” stage are easier to implement than at the “equations-
of-motion” stage. Constrained motion is much more easily handled at the primary “action”, or secondary “Hamilton/Lagrangian”
stages, than at the equations-of-motion stage. An important advantage of using Hamilton’s Action Principle, is that there is a close
relationship between action in classical and quantal mechanics, as discussed in chapters  and . Algebraic principles, that
underly analytical mechanics, naturally encompass applications to many branches of modern physics, such as relativistic
mechanics, fluid motion, and field theory.

In summary, the use of the single fundamental invariant quantity, action, as described above, provides a powerful and elegant
framework, that was developed first for classical mechanics, but now is exploited in a wide range of science, engineering, and
economics. An important feature of using the algebraic approach to classical mechanics is the tremendous arsenal of powerful
mathematical techniques that have been developed for use of variational calculus applied to Lagrangian and Hamiltonian
mechanics. Some of these variational techniques were presented in chapters , , , and , while others will be introduced in
chapter .

This page titled 9.4: Application of Hamilton's Action Principle to Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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9.S: Hamilton's Action Principle (Summary)
The Hamilton’s 1834 publication, introducing both Hamilton’s Principle of Stationary Action and Hamiltonian mechanics, marked
the crowning achievements for the development of variational principles in classical mechanics. A fundamental advantage of
Hamiltonian mechanics is that it uses the conjugate coordinates , , plus time , which is a considerable advantage in most
branches of physics and engineering. Compared to Lagrangian mechanics, Hamiltonian mechanics has a significantly broader
arsenal of powerful techniques that can be exploited to obtain an analytical solution of the integrals of the motion for complicated
systems, as described in chapter . In addition, Hamiltonian dynamics provides a means of determining the unknown variables for
which the solution assumes a soluble form, and is ideal for study of the fundamental underlying physics in applications to fields
such as quantum or statistical physics. As a consequence, Hamiltonian mechanics has become the preeminent variational approach
used in modern physics.

This chapter has introduced and discussed Hamilton’s Principle of Stationary Action, which underlies the elegant and remarkably
powerful Lagrangian and Hamiltonian representations of algebraic mechanics. The basic concepts employed in algebraic
mechanics are summarized below.

Hamilton’s Action Principle
As discussed in chapter , Hamiltonian mechanics is built upon Hamilton’s action functional

Hamilton’s Principle of least action states that

Generalized momentum 

In chapter , the generalized (canonical) momentum was defined in terms of the Lagrangian  to be

Chapter  defined the generalized momentum in terms of the action functional  to be

Generalized energy 

Jacobi’s Generalized Energy  was defined in Equation  as

Hamiltonian function 

The Hamiltonian  was defined in terms of the generalized energy  plus the generalized momentum. That is

where ,  correspond to -dimensional vectors, e.g.  and the scalar product . Chapter 
used a Legendre transformation to derive this relation between the Hamiltonian and Lagrangian functions. Note that whereas the
Lagrangian  is expressed in terms of the coordinates , plus conjugate velocities , the Hamiltonian  is
expressed in terms of the coordinates  plus their conjugate momenta . For scleronomic systems, using the standard Lagrangian,
in equations  and , shows that the Hamiltonian simplifies to be equal to the total mechanical energy, that is, 
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Generalized energy theorem
The equations of motion lead to the generalized energy theorem which states that the time dependence of the Hamiltonian is related
to the time dependence of the Lagrangian.

Note that if all the generalized non-potential forces and Lagrange multiplier terms are zero, and if the Lagrangian is not an explicit
function of time, then the Hamiltonian is a constant of motion.

Lagrange equations of motion

Equation  gives that the  Lagrange equations of motion are

where .

Hamilton’s equations of motion
Chapter  showed that a Legendre transform, plus the Lagrange-Euler equations,  lead to Hamilton’s
equations of motion. Hamilton derived these equations of motion directly from the action functional, as shown in chapter .

Note the symmetry of Hamilton’s two canonical equations. The canonical variables ,  are treated as independent canonical
variables. Lagrange was the first to derive the canonical equations but he did not recognize them as a basic set of equations of
motion. Hamilton derived the canonical equations of motion from his fundamental variational principle and made them the basis
for a far-reaching theory of dynamics. Hamilton’s equations give  first-order differential equations for ,  for each of the 
degrees of freedom. Lagrange’s equations give  second-order differential equations for the variables , .

Hamilton-Jacobi equation
Hamilton used Hamilton’s Principle plus Equation  to derive the Hamilton-Jacobi equation.

The solution of Hamilton’s equations is trivial if the Hamiltonian is a constant of motion, or when a set of generalized coordinate
can be identified for which all the coordinates  are constant, or are cyclic (also called ignorable coordinates). Jacobi developed
the mathematical framework of canonical transformation required to exploit the Hamilton-Jacobi equation.

Hamilton’s Principle applied using initial boundary conditions
The definition of Hamilton’s Principle assumes integration between the initial time  and final time . A recent development has
extended applications of Hamilton’s Principle to apply to systems that are defined in terms of only the initial boundary conditions.
This method doubles the number of degrees of freedom and uses a coupling Lagrangian  between the
corresponding  and  doubled degrees of freedom
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and where  is a generalized nonconservative force derived from .

Standard Lagrangians
Derivation of Lagrangian mechanics, using d’Alembert’s principle of virtual work, assumed that the Lagrangian is defined by
Equation 

This was used in equation  to derive the action in terms of the fundamental Lagrangian defined by Equation . The
assumption that the action  is the fundamental property inverts this procedure and now equation  is used to derived the
Lagrangian. That is, the assumption that Hamilton’s Principle is the foundation of algebraic mechanics defines the Lagrangian in
terms of the fundamental action .

Non-standard Lagrangians

The flexibility and power of Lagrangian mechanics can be extended to a broader range of dynamical systems by employing an
extended definition of the Lagrangian that assumes that the action is the fundamental property, and then the Lagrangian is defined
in terms of Hamilton’s variational action principle using Equation . It was illustrated that the inverse variational calculus
formalism can be used to identify non-standard Lagrangians that generate the required equations of motion. These nonstandard
Lagrangians can be very different from the standard Lagrangian and do not separate into kinetic and potential energy components.
These alternative Lagrangians can be used to handle dissipative systems which are beyond the range of validity when using
standard Lagrangians. That is, it was shown that several very different Lagrangians and Hamiltonians can be equivalent for
generating useful equations of motion of a system. Currently the use of non-standard Lagrangians is a narrow, but active, frontier of
classical mechanics with important applications to relativistic mechanics.

Gauge invariance of the standard Lagrangian
It was shown that there is a continuum of equivalent standard Lagrangians that lead to the same set of equations of motion for a
system. This feature is related to gauge invariance in mechanics. The following transformations change the standard Lagrangian,
but leave the equations of motion unchanged.

1. The Lagrangian is indefinite with respect to addition of a constant to the scalar potential which cancels out when the derivatives
in the Euler-Lagrange differential equations are applied.

2. Similarly the Lagrangian is indefinite with respect to addition of a constant kinetic energy.
3. The Lagrangian is indefinite with respect to addition of a total time derivative of the form  for any

differentiable function  of the generalized coordinates, plus time, that has continuous second derivatives.

Application of Hamilton’s Action Principle to mechanics
The derivation of the equations of motion for any system can be separated into a hierarchical set of three stages in both
sophistication and understanding. Variational principles are employed during the primary “action” stage and secondary
“Hamilton/Lagrangian” stage to derive the required equations of motion, which then are solved during the third “equations-of-
motion stage”. Hamilton’s Action Principle, is a scalar function that is the basis for deriving the Lagrangian and Hamiltonian
functions. The primary “action stage” uses Hamilton’s Action functional,  to derive the Lagrangian and
Hamiltonian functionals that are based on Hamilton’s action functional and provide the most fundamental and sophisticated level of
understanding. The second “Hamiltonian/Lagrangian stage” involves using the Lagrangian and Hamiltonian functionals to derive
the equations of motion. The third “equations-of-motion stage” uses the derived equations of motion to solve for the motion subject
to a given set of initial boundary conditions. The Newtonian mechanics approach bypasses the primary “action” stage, as well as
the secondary “Hamiltonian/Lagrangian” stage. That is, Newtonian mechanics starts at the third “equations-of-motion” stage,
which does not allow exploiting the considerable advantages provided by use of action, the Lagrangian, and the Hamiltonian.
Newtonian mechanics requires that all the active forces be included when deriving the equations of motion, which involves dealing
with vector quantities. This is in contrast to the action, Lagrangian, and Hamiltonian which are scalar functionals. Both the primary
“action” stage, and the secondary “Lagrangian/Hamiltonian” stage, exploit the powerful arsenal of mathematical techniques that
have been developed for exploiting variational principles.
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10.1: Introduction to Nonconservative Systems
Hamilton’s action principle, Lagrangian mechanics, and Hamiltonian mechanics, all exploit the concept of action which is a single,
invariant, quantity. These algebraic formulations of mechanics all are based on energy, which is a scalar quantity, and thus these
formulations are easier to handle than the vector concept of force employed in Newtonian mechanics. Algebraic formulations
provide a powerful and elegant approach to understand and develop the equations of motion of systems in nature. Chapters 
applied variational principles to Hamilton’s action principle which led to the Lagrangian, and Hamiltonian formulations that
simplify determination of the equations of motion for systems in classical mechanics.

A conservative force has the property that the total work done moving between two points is independent of the taken path. That is,
a conservative force is time symmetric and can be expressed in terms of the gradient of a scalar potential . Hamilton’s action
principle implicitly assumes that the system is conservative for those degrees of freedom that are built into the definition of the
action, and the related Lagrangian, and Hamiltonian. The focus of this chapter is to discuss the origins of nonconservative motion
and how it can be handled in algebraic mechanics.

This page titled 10.1: Introduction to Nonconservative Systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
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10.2: Origins of Nonconservative Motion
Nonconservative degrees of freedom involve irreversible processes, such as dissipation, damping, and also can result from course-
graining, or ignoring coupling to active degrees of freedom. The nonconservative role of ignored active degrees of freedom is
illustrated by the weakly-coupled double harmonic oscillator system discussed below. Let the two harmonic oscillators have masses

 uncoupled angular frequencies , and oscillation amplitudes . Assume that the coupling potential energy
is  The Lagrangian for this weakly-coupled double oscillator is

Note that the total Lagrangian is conservative since the Lagrangian is explicitly time independent. As shown in chapter  the
solution for the amplitudes of the oscillation for the coupled system are given by

The system exhibits the common "beats" behavior where the coupled harmonic oscillators have an angular frequency that is the

average oscillator frequency  and the oscillation intensities are modulated at the difference frequency, 

 Although the total energy is conserved for this conservative system, this shared energy flows back and

forth between the two coupled harmonic oscillators at the difference frequency. If the equations of motion for oscillator  ignore
the coupling to the motion of oscillator , that is, assume a constant average value  is used, then the intensity  and

energy of the first oscillator still is modulated by the  term. Thus the total energy for this truncated coupled-

oscillator system is no longer conserved due to neglect of the energy flowing into and out of oscillator  due to its coupling to
oscillator . That is, the solution for the truncated system of oscillator  is not conservative since it is exchanging energy with the
coupled, but ignored, second oscillator. This elementary example illustrates that ignoring active degrees of freedom can transform a
conservative system into a nonconservative system, for which the equations of motion derived using the truncated Lagrangian is
incorrect.

The above example illustrates the importance of including all active degrees of freedom when deriving the equations of motion, in
order to ensure that the total system is conservative. Unfortunately, nonconservative systems due to viscous or frictional dissipation
typically result from weak thermal interactions with an enormous number of nearby atoms, which makes inclusion of all of these
degrees of freedom impractical. Even though the detailed behavior of such dissipative degrees of freedom may not be of direct
interest, all the active degrees of freedom must be included when applying Lagrangian or Hamiltonian mechanics.
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10.3: Algebraic Mechanics for Nonconservative Systems
Since Lagrangian and Hamiltonian formulations are invalid for the nonconservative degrees of freedom, the following three
approaches are used to include nonconservative degrees of freedom directly in the Lagrangian and Hamiltonian formulations of
mechanics.

1. Expand the number of degrees of freedom used to include all active degrees of freedom for the system, so that the expanded
system is conservative. This is the preferred approach when it is viable. Hamilton’s action principle based on initial conditions,
introduced in chapter , doubles the number of degrees of freedom, which can be used to account for the dissipative forces
providing one approach to solve nonconservative systems. However, this approach typically is impractical for handling
dissipated processes because of the large number of degrees of freedom that are involved in thermal dissipation.

2. Nonconservative forces can be introduced directly at the equations of motion stage as generalized forces . This approach
is used extensively. For the case of linear velocity dependence, the Rayleigh’s dissipation function provides an elegant and
powerful way to express the generalized forces in terms of scalar potential energies.

3. New degrees of freedom or effective forces can be postulated that are then incorporated into the Lagrangian or the Hamiltonian
in order to mimic the effects of the nonconservative forces.

Examples that exploit the above three ways to introduce nonconservative dissipative forces in algebraic formulations are given
below.
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10.4: Rayleigh’s Dissipation Function
As mentioned above, nonconservative systems involving viscous or frictional dissipation, typically result from weak thermal
interactions with many nearby atoms, making it impractical to include a complete set of active degrees of freedom. In addition,
dissipative systems usually involve complicated dependences on the velocity and surface properties that are best handled by
including the dissipative drag force explicitly as a generalized drag force in the Euler-Lagrange equations. The drag force can have
any functional dependence on velocity, position, or time.

Note that since the drag force is dissipative the dominant component of the drag force must point in the opposite direction to the
velocity vector.

In  Lord Rayleigh showed that if a dissipative force  depends linearly on velocity, it can be expressed in terms of a scalar
potential functional of the generalized coordinates called the Rayleigh dissipation function . The Rayleigh dissipation
function is an elegant way to include linear velocity-dependent dissipative forces in both Lagrangian and Hamiltonian mechanics,
as is illustrated below for both Lagrangian and Hamiltonian mechanics.

Generalized dissipative forces for linear velocity dependence
Consider  equations of motion for the  degrees of freedom, and assume that the dissipation depends linearly on velocity. Then,
allowing all possible cross coupling of the equations of motion for  the equations of motion can be written in the form

Multiplying Equation  by , take the time integral, and sum over , gives the following energy equation

The right-hand term is the total energy supplied to the system by the external generalized forces  at the time . The first time-
integral term on the left-hand side is the total kinetic energy, while the third time-integral term equals the potential energy. The
second integral term on the left is defined to equal  where Rayeigh’s dissipation function  is defined as

and the summations are over all  particles of the system. This definition allows for complicated cross-coupling effects between
the  particles.

The particle-particle coupling effects usually can be neglected allowing use of the simpler definition that includes only the diagonal
terms. Then the diagonal form of the Rayleigh dissipation function simplifies to

Therefore the frictional force in the  direction depends linearly on velocity , that is

In general, the dissipative force is the velocity gradient of the Rayleigh dissipation function,

The physical significance of the Rayleigh dissipation function is illustrated by calculating the work done by one particle  against
friction, which is

= −f( , q, t)Fdrag q̇ v̂ (10.4.1)
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Therefore

which is the rate of energy (power) loss due to the dissipative forces involved. The same relation is obtained after summing over all
the particles involved.

Transforming the frictional force into generalized coordinates requires equation 

Note that the derivative with respect to  equals

Using equations  and , the  component of the generalized frictional force  is given by

Equation  provides an elegant expression for the generalized dissipative force  in terms of the Rayleigh’s scalar
dissipation potential .

Generalized dissipative forces for nonlinear velocity dependence
The above discussion of the Rayleigh dissipation function was restricted to the special case of linear velocity-dependent
dissipation. Virga[Vir15] proposed that the scope of the classical Rayleigh-Lagrange formalism can be extended to include
nonlinear velocity dependent dissipation by assuming that the nonconservative dissipative forces are defined by

where the generalized Rayleigh dissipation function  satisfies the general Lagrange mechanics relation

This generalized Rayleigh’s dissipation function eliminates the prior restriction to linear dissipation processes, which greatly
expands the range of validity for using Rayleigh’s dissipation function.

Lagrange equations of motion
Linear dissipative forces can be directly, and elegantly, included in Lagrangian mechanics by using Rayleigh’s dissipation function
as a generalized force . Inserting Rayleigh dissipation function  in the generalized Lagrange equations of motion 

 gives

where  corresponds to the generalized forces remaining after removal of the generalized linear, velocity-dependent, frictional

force .

The holonomic forces of constraint are absorbed into the Lagrange multiplier term.

Hamiltonian mechanics
If the nonconservative forces depend linearly on velocity, and are derivable from Rayleigh’s dissipation function according to
Equation , then using the definition of generalized momentum gives
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Thus Hamilton’s equations become

The Rayleigh dissipation function  provides an elegant and convenient way to account for dissipative forces in both
Lagrangian and Hamiltonian mechanics.

Consider the two identical, linearly damped, coupled oscillators (damping constant ) shown in the figure.

Figure : Harmonically-driven, linearly-damped, coupled linear oscillators.

A periodic force  is applied to the left-hand mass . The kinetic energy of the system is

The potential energy is

Thus the Lagrangian equals

Since the damping is linear, it is possible to use the Rayleigh dissipation function

The applied generalized forces are

Use the Euler-Lagrange equations  to derive the equations of motion

gives

These two coupled equations can be decoupled and simplified by making a transformation to normal coordinates,  where
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Thus

Insert these into the equations of motion gives

Add and subtract these two equations gives the following two decoupled equations

Define . Then the two independent equations of motion become

This solution is a superposition of two independent, linearly-damped, driven normal modes  and  that have different
natural frequencies  and . For weak damping these two driven normal modes each undergo damped oscillatory motion

with the  and  normal modes exhibiting resonances at  and 

The mathematical equations governing the behavior of mechanical systems and  electrical circuits have a close similarity.
Thus variational methods can be used to derive the analogous behavior for electrical circuits. For example, for a system of 
separate circuits, the magnetic flux through circuit  due to electrical current  flowing in circuit  is given by

where  is the mutual inductance. The diagonal term  corresponds to the self inductance of circuit . The net
magnetic flux  through circuit  due to all  circuits, is the sum

Thus the total magnetic energy which is analogous to kinetic energy  is given by summing over all  circuits to be

Similarly the electrical energy  stored in the mutual capacitance  between the  circuits, which is analogous to
potential energy,  is given by

Thus the standard Lagrangian for this electric system is given by

Assuming that Ohm’s Law is obeyed, that is, the dissipation force depends linearly on velocity, then the Rayleigh dissipation
function can be written in the form
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where  is the resistance matrix. Thus the dissipation force, expressed in volts, is given by

Inserting equations , , and  into Equation , plus making the assumption that an additional generalized electrical
force  volts is acting on circuit  then the Euler-Lagrange equations give the following equations of motion.

This is a generalized version of Kirchhoff’s loop rule which can be seen by considering the case where the diagonal term 
is the only non-zero term. Then

This sum of the voltages is identical to the usual expression for Kirchhoff’s loop rule. This example illustrates the power of
variational methods when applied to fields beyond classical mechanics.

This page titled 10.4: Rayleigh’s Dissipation Function is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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10.5: Dissipative Lagrangians
The prior discussion of nonconservative systems mentioned the following three ways to incorporate dissipative processes into
Lagrangian or Hamiltonian mechanics.

1. Expand the number of degrees of freedom to include all the active dissipative active degrees of freedom as well as the
conservative ones.

2. Use generalized forces to incorporate dissipative processes.
3. Add dissipative terms to the Lagrangian or Hamiltonian to mimic dissipation.

The following illustrates the use of dissipative Lagrangians.

Bateman pointed out that an isolated dissipative system is physically incomplete, that is, a complete system must comprise at least
two coupled subsystems where energy is transferred from a dissipating subsystem to an absorbing subsystem. A complete system
should comprise both the dissipating and absorbing systems to ensure that the total system Lagrangian and Hamiltonian are
conserved, as is assumed in conventional Lagrangian and Hamiltonian mechanics. Both Bateman and Dekker have illustrated that
the equations of motion for a linearly-damped, free, one-dimensional harmonic oscillator are derivable using the Hamilton
variational principle via introduction of a fictitious complementary subsystem that mimics dissipative processes. The following
example illustrate that deriving the equations of motion for the linearly-damped, linear oscillator may be handled by three
alternative equivalent non-standard Lagrangians that assume either: (1) a multidimensional system, (2) explicit time dependent
Lagrangians and Hamiltonians, or (3) complex non-standard Lagrangians.

Three toy dynamical models have been used to describe the linearly-damped, linear oscillator employing very different non-
standard Lagrangians to generate the required Hamiltonians, and to derive the correct equations of motion.

1: Dual-component Lagrangian: 

Bateman proposed a dual system comprising a mass  subject to two coupled one-dimensional variables  where  is the
observed variable and  is the mirror variable for the subsystem that absorbs the energy dissipated by the subsystem .

Assume a non-standard Lagrangian of the form

where  is the damping coefficient. Minimizing by variation of the auxiliary variable , that is, , leads to the
uncoupled equation of motion for 

Similarly minimizing by variation of the primary variable  that is  leads to the uncoupled equation of motion for 

Note that equation of motion , which was obtained by variation of the auxiliary variable  corresponds to that for the usual
free, linearly-damped, one-dimensional harmonic oscillator for the  variable which dissipates energy as is discussed in
chapter . The equation of motion  is obtained by variation of the primary variable  and corresponds to a free linear, one-
dimensional, oscillator for the  variable that is absorbing the energy dissipated by the dissipating  system.

The generalized momenta,

can be used to derive the corresponding Hamiltonian

Example : The linearly-damped, linear oscillator10.5.1
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Note that this Hamiltonian is time independent, and thus is conserved for this complete dual-variable system. Using Hamilton’s
equations of motion gives the same two uncoupled equations of motion as obtained using the Lagrangian, i.e.  and .

2: Time-dependent Lagrangian: 

The complementary subsystem of the above dual-component Lagrangian, that is added to the primary dissipative subsystem, is
the adjoint to the equations for the primary subsystem of interest. In some cases, a set of the solutions of the complementary
equations can be expressed in terms of the solutions of the primary subsystem allowing the equations of motion to be expressed
solely in terms of the variables of the primary subsystem. Inspection of the solutions of the damped harmonic oscillator,
presented in chapter , implies that  and  must be related by the function

Therefore Bateman proposed a time-dependent, non-standard Lagrangian  of the form

This Lagrangian  corresponds to a harmonic oscillator for which the mass is accreting exponentially with
time in order to mimic the exponential energy dissipation. Use of this Lagrangian in the Euler-Lagrange equations gives the
solution

If the factor outside of the bracket is non-zero, then the equation in the bracket must be zero. The expression in the bracket is
the required equation of motion for the linearly-damped linear oscillator. This Lagrangian generates a generalized momentum
of

and the Hamiltonian is

The Hamiltonian is time dependent as expected. This leads to Hamilton’s equations of motion

Take the total time derivative of equation  and use equation  to substitute for  gives

If the term  is non-zero, then the term in brackets is zero. The term in the bracket is the usual equation of motion for the
linearly-damped harmonic oscillator.

3: Complex Lagrangian: 

Dekker proposed use of complex dynamical variables for solving the linearly-damped harmonic oscillator. It exploits the fact
that, in principle, each second order differential equation can be expressed in terms of a set of first-order differential equations.
This feature is the essential difference between Lagrangian and Hamiltonian mechanics. Let  be complex and assume it can be
expressed in the form of a real variable  as
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Substituting this complex variable into the relation

leads to the second-order equation for the real variable  of

This is the desired equation of motion for the linearly-damped harmonic oscillator. This result also can be shown by taking the
time derivative of Equation  and taking only the real part, i.e.

This feature is exploited using the following Lagrangian

where . The Lagrangian  is real for a conservative system and complex for a dissipative system.
Using the Lagrange-Euler equation for variation of , that is, , gives Equation  which leads to the required
equation of motion .

The canonical conjugate momenta are given by

The above Lagrangian plus canonically conjugate momenta lead to the complimentary Hamiltonians

These Hamiltonians give Hamilton equations of motion that lead to the correct equations of motion for  and 

The above examples have shown that three very different, non-standard, Lagrangians, plus their corresponding Hamiltonians, all
lead to the correct equation of motion for the linearly-damped harmonic oscillator. This illustrates the power of using non-standard
Lagrangians to describe dissipative motion in classical mechanics. However, postulating non-standard Lagrangians to produce the
required equations of motion appears to be of questionable usefulness. A fundamental approach is needed to build a firm
foundation upon which non-standard Lagrangian mechanics can be based. Non-standard Lagrangian mechanics remains an active,
albeit narrow, frontier of classical mechanics

This page titled 10.5: Dissipative Lagrangians is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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10.S: Nonconservative systems (Summary)
Dissipative drag forces are non-conservative and usually are velocity dependent. Chapter  showed that the motion of non-linear
dissipative dynamical systems can be highly sensitive to the initial conditions and can lead to chaotic motion.

Algebraic mechanics for nonconservative systems
Since Lagrangian and Hamiltonian formulations are invalid for the nonconservative degrees of freedom, the following three
approaches are used to include nonconservative degrees of freedom directly in the Lagrangian and Hamiltonian formulations of
mechanics.

1. Expand the number of degrees of freedom used to include all active degrees of freedom for the system, so that the expanded
system is conservative. This is the preferred approach when it is viable. Unfortunately this approach typically is impractical for
handling dissipated processes because of the large number of degrees of freedom that are involved in thermal dissipation.

2. Nonconservative forces can be introduced directly at the equations of motion stage as generalized forces . This approach
is used extensively. For the case of linear velocity dependence, the Rayleigh’s dissipation function provides an elegant and
powerful way to express the generalized forces in terms of scalar potential energies.

3. New degrees of freedom or effective forces can be postulated that are then incorporated into the Lagrangian or the Hamiltonian
in order to mimic the effects of the nonconservative forces.

Rayleigh’s Dissipation Function

Generalized dissipative forces that have a linear velocity dependence can be easily handled in Lagrangian or Hamiltonian
mechanics by introducing the powerful Rayleigh’s dissipation function  where

This approach is used extensively in physics. This approach has been generalized by defining a linear velocity dependent Rayleigh
dissipation function

where the generalized Rayleigh dissipation function  satisfies the general Lagrange mechanics relation

This generalized Rayleigh’s dissipation function eliminates the prior restriction to linear dissipation processes, which greatly
expands the range of validity for using Rayleigh’s dissipation function.

Rayleigh dissipation in Lagrange equations of motion

Linear dissipative forces can be directly, and elegantly, included in Lagrangian mechanics by using Rayleigh’s dissipation function
as a generalized force . Inserting Rayleigh dissipation function  in the generalized Lagrange equations of motion 

 gives

Where  corresponds to the generalized forces remaining after removal of the generalized linear, velocity-dependent,

frictional force . The holonomic forces of constraint are absorbed into the Lagrange multiplier term.

Rayleigh dissipation in Hamiltonian mechanics
If the nonconservative forces depend linearly on velocity, and are derivable from Rayleigh’s dissipation function according to
equation , then using the definition of generalized momentum gives
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Thus Hamilton’s equations become

The Rayleigh dissipation function  provides an elegant and convenient way to account for dissipative forces in both
Lagrangian and Hamiltonian mechanics.

Dissipative Lagrangians or Hamiltonians
New degrees of freedom or effective forces can be postulated that are then incorporated into the Lagrangian or the Hamiltonian in
order to mimic the effects of the nonconservative forces. This approach has been used for special cases.

This page titled 10.S: Nonconservative systems (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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Thumbnail: Two bodies with a major difference in mass orbiting a common barycenter internal to one body (similar to the Earth–
Moon system). (Public Domain; Zhatt).
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11.1: Introduction to Conservative two-body Central Forces
Conservative two-body central forces are important in physics because of the pivotal role that the Coulomb and the gravitational
forces play in nature. The Coulomb force plays a role in electrodynamics, molecular, atomic, and nuclear physics, while the
gravitational force plays an analogous role in celestial mechanics. Therefore this chapter focusses on the physics of systems
involving conservative two-body central forces because of the importance and ubiquity of these conservative two-body central
forces in nature.

A conservative two-body central force has the following three important attributes.

1. Conservative: A conservative force depends only on the particle position, that is, the force is not time dependent. Moreover the
work done by the force moving a body between any two points  and  is path independent. Conservative fields are discussed
in chapter .

2. Two-body: A two-body force between two bodies depends only on the relative locations of the two interacting bodies and is not
influenced by the proximity of additional bodies. For two-body forces acting between  bodies, the force on body  is the
vector superposition of the two-body forces due to the interactions with each of the other  bodies. This differs from three-
body forces where the force between any two bodies is influenced by the proximity of a third body.

3. Central: A central force field depends on the distance  from the origin of the force at point  to the body location at point ,
and the force is directed along the line joining them, that is, .

A conservative, two-body, central force combines the above three attributes and can be expressed as,

The force field  has a magnitude  that depends only on the magnitude of the relative separation vector 
between the origin of the force at point  and point  where the force acts, and the force is directed along the line joining them, that
is, .

Chapter  showed that if a two-body central force is conservative, then it can be written as the gradient of a scalar potential
energy  which is a function of the distance from the center of the force field.

As discussed in chapter , the ability to represent the conservative central force by a scalar function  greatly simplifies the
treatment of central forces.

The Coulomb and gravitational forces both are true conservative, two-body, central forces whereas the nuclear force between
nucleons in the nucleus has three-body components. Two bodies interacting via a two-body central force is the simplest possible
system to consider, but Equation  is applicable equally for  bodies interacting via two-body central forces because the
superposition principle applies for two-body central forces. This chapter will focus first on the motion of two bodies interacting via
conservative two-body central forces followed by a brief discussion of the motion for  interacting bodies.

This page titled 11.1: Introduction to Conservative two-body Central Forces is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

1 2

2.10

n 1

n −1

r12 1, 2

r̂12

=f(F21 r12)r̂12 (11.1.1)

F21 f( )r12 = −r12 r2 r1

1 2

r̂12

2.10

U(r)

= −∇U( )F21 r12 (11.1.2)

2 U(r)

11.1.1 n

n > 2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9614?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/11%3A_Conservative_two-body_Central_Forces/11.01%3A_Introduction_to_Conservative_two-body_Central_Forces
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/11%3A_Conservative_two-body_Central_Forces/11.01%3A_Introduction_to_Conservative_two-body_Central_Forces
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/


11.2.1 https://phys.libretexts.org/@go/page/9615

11.2: Equivalent one-body Representation for two-body motion
The motion of two bodies,  and , interacting via two-body central forces, requires  spatial coordinates, that is, three each for 
and . Since the two-body central force only depends on the relative separation  of the two bodies, it is more
convenient to separate the  degrees of freedom into  spatial coordinates of relative motion  plus  spatial coordinates for the
center-of-mass location  as described in chapter . It will be shown here that the equation of motion for relative motion of the
two-bodies in the center of mass can be represented by an equivalent one-body problem which simplifies the mathematics.

Figure : Center of mass cordinates for the two-body system.

Consider two bodies acted upon by a conservative two-body central force, where the position vectors  and  specify the location
of each particle as illustrated in Figure . An alternate set of six variables would be the three components of the center of mass
position vector  and the three components specifying the difference vector  defined by Figure . Define the vectors  and 

 as the position vectors of the masses  and  with respect to the center of mass. Then

By the definition of the center of mass

and

so that

Therefore

that is,

Similarly;

1 2 6 r1

r2 −r = r 1 r2

6 3 r, 3

R 2.7

11.2.1

r1 r2

11.2.1

R r 11.2.1 r′
1

r′
2 m1 m2

r1

r2

=

=

R+r′
1

R+r′
2

(11.2.1)

R =
+m1r1 m2r2

+m1 m2
(11.2.2)

+ = 0m1r′
1 m2r′

2 (11.2.3)

− =
m1

m2
r′

1 r′
2 (11.2.4)

r = − =r′
1 r′

2

+m1 m2

m2
r′

1 (11.2.5)

= rr′
1

m2

+m1 m2
(11.2.6)

= − rr′
2

m1

+m1 m2
(11.2.7)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9615?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/11%3A_Conservative_two-body_Central_Forces/11.02%3A_Equivalent_one-body_Representation_for_two-body_motion


11.2.2 https://phys.libretexts.org/@go/page/9615

Substituting these into Equation  gives

That is, the two vectors  are written in terms of the position vector for the center of mass  and the position vector  for
relative motion in the center of mass frame.

Assuming that the two-body central force is conservative and represented by , then the Lagrangian of the two-body system
can be written as

Differentiating equations , with respect to time, and inserting them into the Lagrangian, gives

where the total mass  is defined as

and the reduced mass  is defined by

or equivalently

The total Lagrangian can be separated into two independent parts

where

Assuming that no external forces are acting, then  and the three Lagrange equations for each of the three coordinates of the 
 coordinate can be written as

That is, for a pure central force, the center-of-mass momentum is a constant of motion where
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Figure : Orbits of a two-body system with mass ratio of 2 rotating about the center-of-mass, O. The dashed ellipse is the
equivalent one-body orbit with the center of force at the focus O.

It is convenient to work in the center-of-mass frame using the effective Lagrangian . In the center-of-mass frame of reference,

the translational kinetic energy  associated with center-of-mass motion is ignored, and only the energy in the center-of-
mass is considered. This center-of-mass energy is the energy involved in the interaction between the colliding bodies. Thus, in the
center-of-mass, the problem has been reduced to an equivalent one-body problem of a mass  moving about a fixed force center
with a path given by  which is the separation vector between the two bodies, as shown in figure . In reality, both masses
revolve around their center of mass, also called the barycenter, in the center-of-mass frame as shown in Figure . Knowing 

allows the trajectory of each mass about the center of mass  and  to be calculated. Of course the true path in the laboratory
frame of reference must take into account both the translational motion of the center of mass, in addition to the motion of the
equivalent one-body representation relative to the barycenter. Be careful to remember the difference between the actual trajectories
of each body, and the effective trajectory assumed when using the reduced mass which only determines the relative separation  of
the two bodies. This reduction to an equivalent one-body problem greatly simplifies the solution of the motion, but it misrepresents
the actual trajectories and the spatial locations of each mass in space. The equivalent one-body representation will be used
extensively throughout this chapter.
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11.3: Angular Momentum

Angular momentum 

The notation used for the angular momentum vector is  where the magnitude is designated by  . Be careful not to confuse
the angular momentum vector  with the Lagrangian  Note that the angular momentum for two-body rotation about the center
of mass with angular velocity  is identical when evaluated in either the laboratory or equivalent two-body representation. That is,
using equations  and 

The center-of-mass Lagrangian leads to the following two general properties regarding the angular momentum vector .

1) The motion lies entirely in a plane perpendicular to the fixed direction of the total angular momentum vector. This is because

that is, the radius vector is in the plane perpendicular to the total angular momentum vector. Thus, it is possible to express the
Lagrangian in polar coordinates,  rather than spherical coordinates. In polar coordinates the center-of-mass Lagrangian
becomes

2) If the potential is spherically symmetric, then the polar angle  is cyclic and therefore Noether’s theorem gives that the angular
momentum  is a constant of motion. That is, since  then the Lagrange equations imply that

where the vectors  and  imply that Equation  refers to three independent equations corresponding to the three
components of these vectors. Thus the angular momentum  conjugate to  is a constant of motion. The generalized momentum

 is a first integral of the motion which equals

where the magnitude of the angular momentum , and the direction  both are constants of motion.

Figure : Area swept out by the radius vector in the time dt.
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A simple geometric interpretation of Equation  is illustrated in Figure . The radius vector sweeps out an area  in
time  where

and the vector  is perpendicular to the  plane. The rate of change of area is

But the angular momentum is

Thus the conservation of angular momentum implies that the areal velocity  also is a constant of motion. This fact is called
Kepler’s second law of planetary motion which he deduced in  based on Tycho Brahe’s  years of observational records of
the motion of Mars. Kepler’s second law implies that a planet moves fastest when closest to the sun and slowest when farthest from
the sun. Note that Kepler’s second law is a statement of the conservation of angular momentum which is independent of the radial
form of the central potential.

This page titled 11.3: Angular Momentum is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
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11.4: Equations of Motion
The equations of motion for two bodies interacting via a conservative two-body central force can be determined using the center of
mass Lagrangian,  given by equation . For the radial coordinate, the operator equation  for Lagrangian
mechanics leads to

But

therefore the radial equation of motion is

Similarly, for the angular coordinate, the operator equation  leads to equation . That is, the angular equation of
motion for the magnitude of  is

Lagrange’s equations have given two equations of motion, one dependent on radius  and the other on the polar angle . Note that
the radial acceleration is just a statement of Newton’s Laws of motion for the radial force  in the center-of-mass system of

This can be written in terms of an effective potential

which leads to an equation of motion

Since , the second term in Equation  is the usual centrifugal force that originates because the variable  is in a

non-inertial, rotating frame of reference. Note that the angular equation of motion is independent of the radial dependence of the
conservative two-body central force.
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Figure : The attractive inverse-square law potential , the centrifugal potential , and the combined effective bound
potential.

Figure  shows, by dashed lines, the radial dependence of the potential corresponding to the attractive inverse square law
force, that is , and the potential corresponding to the centrifugal term  corresponding to a repulsive centrifugal force.

The sum of these two potentials , shown by the solid line, has a minimum  value at a certain radius similar to that
manifest by the diatomic molecule discussed in example .

It is remarkable that the six-dimensional equations of motion, for two bodies interacting via a two-body central force, has been
reduced to trivial center-of-mass translational motion, plus a one-dimensional one-body problem given by  in terms of the
relative separation  and an effective potential .
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11.5: Differential Orbit Equation
The differential orbit equation relates the shape of the orbital motion, in plane polar coordinates, to the radial dependence of the
two-body central force. A Binet coordinate transformation, which depends on the functional form of  can simplify the
differential orbit equation. For the inverse-square law force, the best Binet transformed variable is  which is defined to be

Inserting the transformed variable  into equation  gives

From the definition of the new variable

Differentiating again gives

Substituting these into Lagrange’s radial equation of motion gives

Binet’s differential orbit equation directly relates  and  which determines the overall shape of the orbit trajectory. This shape is
crucial for understanding the orbital motion of two bodies interacting via a two-body central force. Note that for the special case of
an inverse square-law force, that is where , then the right-hand side of Equation  equals a constant  since
the orbital angular momentum is a conserved quantity.

Figure : Circular trajectory passing through the origin of the central force.

Binet’s differential orbit equation can be used to derive the central potential that leads to the assumed circular trajectory of 
 where  is the radius of the circular orbit. Note that this circular orbit passes through the origin of the central

force when 

Inserting this trajectory into Binet’s differential orbit Equation  gives

Note that the differential is given by
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Inserting this differential into equation  gives

Thus the radial dependence of the required central force is

This corresponds to an attractive central force that depends to the fifth power on the inverse radius . Note that this example is
unrealistic since the assumed orbit implies that the potential and kinetic energies are infinite when  at .
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11.6: Hamiltonian
Since the center-of-mass Lagrangian is not an explicit function of time, then

Thus the center-of mass Hamiltonian  is a constant of motion. However, since the transformation to center of mass can be time
dependent, then  that is, it does not include the total energy because the kinetic energy of the center-of-mass motion has
been omitted from . Also, since no transformation is involved, then

That is, the center-of-mass Hamiltonian  equals the center-of-mass total energy. The center-of-mass Hamiltonian then can be
written using the effective potential  in the form

It is convenient to express the center-of-mass Hamiltonian  in terms of the energy equation for the orbit in a central field using
the transformed variable . Substituting equations  and  into the Hamiltonian Equation  gives the
energy equation of the orbit

Energy conservation allows the Hamiltonian to be used to solve problems directly. That is, since

then

The time dependence can be obtained by integration

An inversion of this gives the solution in the standard form  However, it is more interesting to find the relation between 
and  From relation  for  then

while equation  gives
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which can be used to calculate the angular coordinate. This gives the relation between the radial and angular coordinates which
specifies the trajectory.

Although equations  and  formally give the solution, the actual solution can be derived analytically only for certain
specific forms of the force law and these solutions differ for attractive versus repulsive interactions.

This page titled 11.6: Hamiltonian is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via
source content that was edited to the style and standards of the LibreTexts platform.

11.6.6 11.6.10

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9619?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/11%3A_Conservative_two-body_Central_Forces/11.06%3A_Hamiltonian
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/


11.7.1 https://phys.libretexts.org/@go/page/14111

11.7: General Features of the Orbit Solutions
It is useful to look at the general features of the solutions of the equations of motion given by the equivalent one-body
representation of the two-body motion. These orbits depend on the net center of mass energy  There are five possible
situations depending on the center-of-mass total energy .

1.  The trajectory is hyperbolic and has a minimum distance, but no maximum. The distance of closest approach is
given when  At the turning point  

2.  It can be shown that the orbit for this case is parabolic.
3.  For this case the equivalent orbit has both a maximum and minimum radial distance at which  At the

turning points the radial kinetic energy term is zero so   For the attractive inverse square law force the path is

an ellipse with the focus at the center of attraction (Figure ), which is Kepler’s First Law. During the time that the
radius ranges from  to  and back the radius vector turns through an angle  which is given by

The general path prescribes a rosette shape which is a closed curve only if  is a rational fraction of .

4.  In this case  is a constant implying that the path is circular since

5.  For this case the square root is imaginary and there is no real solution.

In general the orbit is not closed, and such open orbits do not repeat. Bertrand’s Theorem states that the inverse-square central
force, and the linear harmonic oscillator, are the only radial dependences of the central force that lead to stable closed orbits.

It is illustrative to use the differential orbit equation  to show that a body in free motion travels in a straight line.
Assume that a line through the origin  intersects perpendicular to the instantaneous trajectory at the point  which has polar
coordinates  relative to the origin. The point  with polar coordinates  lies on a straight line through  that is
perpendicular to  if, and only if,  Since the force is zero then the differential orbit equation simplifies to

A solution of this is

where  and  are arbitrary constants. This can be rewritten as

This is the equation of a straight line in polar coordinates as illustrated in the adjacent figure. This shows that a free body
moves in a straight line if no forces are acting on the body.
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Figure : Trajectory of a free body
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11.8: Inverse-square, two-body, central force
The most important conservative, two-body, central interaction is the attractive inverse-square law force, which is encountered in
both gravitational attraction and the Coulomb force. This force  can be written in the form

The force constant  is defined to be negative for an attractive force and positive for a repulsive force. In S.I. units the force
constant  for the gravitational force and  for the Coulomb force. Note that this sign convention is the
opposite of what is used in many books which use a negative sign in Equation  and assume  to be positive for an attractive
force and negative for a repulsive force.

The conservative, inverse-square, two-body, central force is unique in that the underlying symmetries lead to four conservation
laws, all of which are of pivotal importance in nature.

1. Conservation of angular momentum: Like all conservative central forces, the inverse-square central two-body force
conserves angular momentum as proven in chapter .

2. Conservation of energy: This conservative central force can be represented in terms of a scalar potential energy  as given
by equation , where for this central force

Moreover, equation  showed that the center-of-mass Hamiltonian is conserved, that is, 

3. Gauss’ Law: For a conservative, inverse-square, two-body, central force, the flux of the force field out of any closed surface is
proportional to the algebraic sum of the sources and sinks of this field that are located inside the closed surface. The net flux is
independent of the distribution of the sources and sinks inside the closed surface, as well as the size and shape of the closed
surface. Chapter  proved this for the gravitational force field.

4. Closed orbits: Two bodies interacting via the conservative, inverse-square, two-body, central force follow closed (degenerate)
orbits as stated by Bertrand’s Theorem. The first consequence of this symmetry is that Kepler’s laws of planetary motion have
stable, single-valued orbits. The second consequence of this symmetry is the conservation of the eccentricity vector defined in
Equation .

Observables that depend on Gauss’s Law, or on closed planetary orbits, are extremely sensitive to addition of even a miniscule
incremental exponent  to the radial dependence  of the force. The statement that the inverse-square, two-body, central force
leads to closed orbits can be proven by inserting Equation  into the orbit differential equation,

Using the transformation

the orbit equation becomes

A solution of this equation is
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This is the equation of a conic section. For an attractive, inverse-square, central force, Equation  is the equation for an ellipse
with the origin of  at one of the foci of the ellipse that has eccentricity  defined as

Equation  is the polar equation of a conic section. Equation  also can be derived with the origin at a focus by inserting
the inverse square law potential into equation  which gives

The solution of this gives

Equations  and  are identical if the eccentricity  equals

The value of  merely determines the orientation of the major axis of the equivalent orbit. Without loss of generality, it is possible
to assume that the angle  is measured with respect to the major axis of the orbit, that is . Then the equation can be written
as

This is the equation of a conic section where  is the eccentricity of the conic section. The conic section is a hyperbola if ,
parabola if  ellipse if  and a circle if  All the equivalent one-body orbits for an attractive force have the origin of
the force at a focus of the conic section. The orbits depend on whether the force is attractive or repulsive, on the conserved angular
momentum  and on the center-of-mass energy .

Bound orbits
Closed bound orbits occur only if the following requirements are satisfied.

1. The force must be attractive,  then Equation  ensures that  is positive.
2. For a closed elliptical orbit. the eccentricity  of the equivalent one-body representation of the orbit implies that the total

center-of-mass energy , that is, the closed orbit is bound.

Bound elliptical orbits have the center-of-force at one interior focus  of the elliptical one-body representation of the orbit as
shown in Figure .

Figure : Bound elliptical orbit.
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The minimum value of the orbit  occurs when  where

This minimum distance is called the periapsis .

The maximum distance,  which is called the apoapsis, occurs when 

Remember that since  for bound orbits, the negative signs in equations  and  lead to . The most bound

orbit is a circle having  which implies that .

The shape of the elliptical orbit also can be described with respect to the center of the elliptical equivalent orbit by deriving the
lengths of the semi-major axis  and the semi-minor axis  shown in Figure .

Remember that the predicted bound elliptical orbit corresponds to the equivalent one-body representation for the two-body motion
as illustrated in Figure . This can be transformed to the individual spatial trajectories of the each of the two bodies in an
inertial frame.

Kepler’s laws for bound planetary motion

Kepler’s three laws of motion apply to the motion of two bodies in a bound orbit due to the attractive gravitational force for which 
.

1. Each planet moves in an elliptical orbit with the sun at one focus
2. The radius vector, drawn from the sun to a planet, describes equal areas in equal times
3. The square of the period of revolution about the sun is proportional to the cube of the major axis of the orbit.

Two bodies interacting via the gravitational force, which is a conservative, inverse-square, two-body central force, is best handled
using the equivalent orbit representation. The first and second laws were proved in chapters  and . That is, the second law
is equivalent to the statement that the angular momentum is conserved. The third law can be derived using the fact that the area of
an ellipse is

Equations  and  give that the rate of change of area swept out by the radius vector is

Therefore the period for one revolution  is given by the time to sweep out one complete ellipse

This leads to Kepler’s  law

Bound orbits occur only for attractive forces for which the force constant  is negative, and thus cancel the negative sign in
Equation . For example, for the gravitational force .
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Note that the reduced mass  occurs in Kepler’s  law. That is, Kepler’s third law can be written in terms of the actual
masses of the bodies to be

In relating the relative periods of the different planets Kepler made the approximation that the mass of the planet  is negligible
relative to the mass of the sun 

The eccentricity of the major planets ranges from  for Mercury, to  for Venus. The Earth has an eccentricity
of  with miles and  miles. On the other hand,  for Halley’s comet, that is, the
radius vector ranges from  to  times the radius of the orbit of the Earth.

The orbit energy can be derived by substituting the eccentricity, given by Equation , into the semi-major axis length 
given by Equation , which leads to the center-of-mass energy of

However, the Hamiltonian, given by equation , implies that  is

For the simple case of a circular orbit,  then the velocity  equals

For a circular orbit, the drag on a satellite lowers the total energy resulting in a decrease in the radius of the orbit and a concomitant
increase in velocity. That is, when the orbit radius is decreased, part of the gain in potential energy accounts for the work done
against the drag, and the remaining part goes towards increase of the kinetic energy. Also note that, as predicted by the Virial
Theorem, the kinetic energy always is half the potential energy for the inverse square law force.

Unbound orbits
Attractive inverse-square central forces lead to hyperbolic orbits for  for which , that is, the orbit is unbound. In
addition, the orbits always are unbound for a repulsive force since  is positive as is the kinetic energy , thus 

. The radial orbit equation for either an attractive or a repulsive force is

For a repulsive force  is positive and  always is positive. Therefore to ensure that  remain positive the bracket term must be
negative. That is

For an attractive force  is negative and since  is positive then the bracket term must be positive to ensure that  is positive. That
is,
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Figure : Hyperbolic two-body orbits for a repulsive (left) and attractive (right) inverse-square, central two-body forces. Both
orbits have the angular momentum vector pointing upwards out of the plane of the orbit

Figure  shows both branches of the hyperbola for a given angle  for the equivalent two-body orbits where the center of
force is at the origin. For an attractive force,  the center of force is at the interior focus of the hyperbola, whereas for a
repulsive force the center of force is at the exterior focus. For a given value of  the asymptotes of the orbits both are displaced
by the same impact parameter  from parallel lines passing through the center of force. The scattering angle, between the
outgoing direction of the scattered body and the incident direction, is designated to be  which is related to the angle  by 

.

Eccentricity vector
Two-bodies interacting via a conservative two-body central force have two invariant first-order integrals, namely the conservation
of energy and the conservation of angular momentum. For the special case of the inverse-square law, there is a third invariant of the
motion, which Hamilton called the eccentricity vector , that unambiguously defines the orientation and direction of the major axis
of the elliptical orbit. It will be shown that the angular momentum plus the eccentricity vector completely define the plane and
orientation of the orbit for a conservative inverse-square law central force.

Newton’s second law for a central force can be written in the form

Note that the angular moment  is conserved for a central force, that is . Therefore the time derivative of the
product  reduces to

This can be simplified using the fact that

thus
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This allows Equation  to be reduced to

Assume the special case of the inverse-square law, Equation , then the central force Equation  reduces to

or

Define the eccentricity vector  as

then Equation  corresponds to

This is a statement that the eccentricity vector  is a constant of motion for an inverse-square, central force.

The definition of the eccentricity vector  and angular momentum vector  implies a zero scalar product,

Thus the eccentricity vector  and angular momentum  are mutually perpendicular, that is,  is in the plane of the orbit while 
is perpendicular to the plane of the orbit. The eccentricity vector , always points along the major axis of the ellipse from the focus
to the periapsis as illustrated on the left side in Figure . As a consequence, the two orthogonal vectors  and  completely
define the plane of the orbit, plus the orientation of the major axis of the Kepler orbit, in this plane. The three vectors , ,
and  obey the triangle rule as illustrated in the left side of Figure .

Figure : The elliptical trajectory and eccentricity vector  for two bodies interacting via the inversesquare, central force for
eccentricity . The left plot shows the elliptical spatial trajectory where the semi-major axis is assumed to be on the -axis
and the angular momentum , is out of the page. The force centre is at one foci of the ellipse. The vector coupling relation 

 is illustrated at four points on the spatial trajectory. The right plot is a hodograph of the linear momentum 
 for this trajectory. The periapsis is denoted by the number  and the apoapsis is marked as  on both plots. Note that the

eccentricity vector  is a constant that points parallel to the major axis towards the perapsis.

Hamilton noted the direct connection between the eccentricity vector  and the eccentricity  of the conic section orbit. This can
be shown by considering the scalar product

Note that the triple scalar product can be permuted to give
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Inserting Equation  into  gives

Note that equations  and  are identical if . This implies that the eccentricity  and  are related by

where  is defined to be negative for an attractive force. The relation between the eccentricity and total center-of-mass energy can
be used to rewrite Equation  in the form

The combination of the eccentricity vector  and the angular momentum vector  completely specifies the orbit for an inverse
square-law central force. The trajectory is in the plane perpendicular to the angular momentum vector , while the eccentricity,
plus the orientation of the orbit, both are defined by the eccentricity vector . The eccentricity vector and angular momentum
vector each have three independent coordinates, that is, these two vector invariants provide six constraints, while the scalar
invariant energy  adds one additional constraint. The exact location of the particle moving along the trajectory is not defined and
thus there are only five independent coordinates governed by the above seven constraints. Thus the eccentricity vector, angular
momentum, and center-of-mass energy are related by the two equations  and .

Noether’s theorem states that each conservation law is a manifestation of an underlying symmetry. Identification of the underlying
symmetry responsible for the conservation of the eccentricity vector  is elucidated using Equation  to give

Take the scalar product

Choose the angular momentum to be along the -axis, that is, , and, since  and  are perpendicular to , then  and 
are in the  plane. Assume that the semimajor axis of the elliptical orbit is along the -axis, then the locus of the momentum
vector on a momentum hodograph has the equation

Equation  implies that the locus of the momentum vector is a circle of radius  with the center displaced from the origin

at coordinates  as shown by the momentum hodograph on the right side of an Figure . The angle  and eccentricity 
are related by,

The circular orbit is centered at the origin for , and thus the magnitude  is a constant around the whole trajectory.

The inverse-square, central, two-body, force is unusual in that it leads to stable closed bound orbits because the radial and angular
frequencies are degenerate, i.e.  In momentum space, the locus of the linear momentum vector  is a perfect circle which
is the underlying symmetry responsible for both the fact that the orbits are closed, and the invariance of the eccentricity vector.
Mathematically this symmetry for the Kepler problem corresponds to the body moving freely on the boundary of a four-
dimensional sphere in space and momentum. The invariance of the eccentricity vector is a manifestation of the special property of
the inverse-square, central force under certain rotations in this four-dimensional space; this  symmetry is an example of a
hidden symmetry.

The greek term apsis refers to the points of greatest or least distance of approach for an orbiting body from one of the foci of the
elliptical orbit. The term periapsis or pericenter both are used to designate the closest distance of approach, while apoapsis or
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apocenter are used to designate the farthest distance of approach. Attaching the terms "perí-" and "apo-" to the general term "-
apsis" is preferred over having different names for each object in the solar system. For example, frequently used terms are "-helion"
for orbits of the sun, "-gee" for orbits around the earth, and "-cynthion" for orbits around the moon.

The symmetry underlying the eccentricity vector is less intuitive than the energy or angular momentum invariants leading to it
being discovered independently several times during the past three centuries. Jakob Hermann was the first to indentify this
invariant for the special case of the inverse-square central force. Bernoulli generalized his proof in 1710. Laplace derived the
invariant at the end of the 18th century using analytical mechanics. Hamilton derived the connection between the invariant and the
orbit eccentricity. Gibbs derived the invariant using vector analysis. Runge published the Gibb’s derivation in his textbook which
was referenced by Lenz in a 1924 paper on the quantal model of the hydrogen atom. Goldstein named this invariant the "Laplace-
Runge-Lenz vector", while others have named it the "Runge-Lenz vector" or the "Lenz vector". This book uses Hamilton’s more
intuitive name of "eccentricity vector".

This page titled 11.8: Inverse-square, two-body, central force is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

Current page by Douglas Cline is licensed CC BY-NC-SA 4.0. Original source: http://classicalmechanics.lib.rochester.edu.
11.E: Conservative two-body Central Forces (Exercises) by Douglas Cline is licensed CC BY-NC-SA 4.0. Original source:
http://classicalmechanics.lib.rochester.edu.
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11.9: Isotropic, linear, two-body, central force
Closed orbits occur for the two-dimensional linear oscillator when  is a rational fraction as discussed in chapter . Bertrand’s
Theorem states that the linear oscillator, and the inverse-square law (Kepler problem), are the only two-body central forces that
have single-valued, stable, closed orbits of the coupled radial and angular motion. The invariance of the eccentricity vector was
the underlying symmetry leading to single-valued, stable, closed orbits for the Kepler problem. It is interesting to explore the
symmetry that leads to stable closed orbits for the harmonic oscillator. For simplicity, this discussion will restrict discussion to the
isotropic, harmonic, two-body, central force where , for which the two-body, central force is linear

where  corresponds to a repulsive force and  to an attractive force. This isotropic harmonic force can be expressed in
terms of a spherical potential  where

Since this is a central two-body force, both the equivalent one-body representation, and the conservation of angular momentum, are
equally applicable to the harmonic two-body force. As discussed in section , since the two-body force is central, the motion is
confined to a plane, and thus the Lagrangian can be expressed in polar coordinates. In addition, since the force is spherically
symmetric, then the angular momentum is conserved. The orbit solutions are conic sections as described in chapter . The shape
of the orbit for the harmonic two-body central force can be derived using either polar or cartesian coordinates as illustrated below.

Polar coordinates

The origin of the equivalent orbit for the harmonic force will be found to be at the center of an ellipse, rather than the foci of the
ellipse as found for the inverse square law. The shape of the orbit can be defined using a Binet differential orbit equation that
employs the transformation

Then

The chain rule gives that

Substitute this into the Hamiltonian  equation , gives

Rearranging this equation gives

Addition of a constant to both sides of the equation completes the square

The right-hand side of Equation  is a constant. The solution of  must be a sine or cosine function with polar angle 
. That is
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That is,

Equation  corresponds to a closed orbit centered at the origin of the elliptical orbit as illustrated in Figure . The
eccentricity  of this closed orbit is given by

Equations ,  give that the eccentricity is related to the semi-major  and semi-minor  axes by

Note that for a repulsive force , then  leading to unbound hyperbolic or parabolic orbits centered on the origin. An
attractive force,  allows for bound elliptical, as well as unbound parabolic and hyperbolic orbits.

Figure : The elliptical equivalent trajectory for two bodies interacting via the linear, central force for eccentricity .
The left plot shows the elliptical spatial trajectory where the semi-major axis is assumed to be on the -axis and the angular
momentum , is out of the page. The force center is at the center of the ellipse. The right plot is a hodograph of the linear
momentum  for this trajectory.

Cartesian coordinates
The isotropic harmonic oscillator, expressed in terms of cartesian coordinates in the  plane of the orbit, is separable because
there is no direct coupling term between the  and  motion. That is. the center-of-mass Lagrangian in the  plane separates
into independent motion for  and .

Solutions for the independent coordinates, and their corresponding momenta, are

where . Therefore
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where

For a phase difference  this equation describes an ellipse centered at the origin which agrees with Equation 
that was derived using polar coordinates.

The two normal modes of the isotropic harmonic oscillator are degenerate, therefore  are equally good normal modes with two
corresponding total energies, , while the corresponding angular momentum  points in the  direction.

Figure  shows the closed elliptical equivalent orbit plus the corresponding momentum hodograph for the isotropic harmonic
two-body central force. Figures  and  contrast the differences between the elliptical orbits for the inverse-square
force, and those for the harmonic two-body central force. Although the orbits for bound systems with the harmonic two-body force,
and the inverse-square force, both lead to elliptical bound orbits, there are important differences. Both the radial motion and
momentum are two valued per cycle for the reflection-symmetric harmonic oscillator, whereas the radius and momentum have only
one maximum and one minimum per revolution for the inverse-square law. Although the inverse-square, and the isotropic,
harmonic, two-body central forces both lead to closed bound elliptical orbits for which the angular momentum is conserved and the
orbits are planar, there is another important difference between the orbits for these two interactions. The orbit equation for the
Kepler problem is expressed with respect to a foci of the elliptical equivalent orbit, as illustrated in Figure , whereas the
orbit equation for the isotropic harmonic oscillator orbit is expressed with respect to the center of the ellipse as illustrated in Figure 

.

Symmetry tensor 
The invariant vectors  and  provide a complete specification of the geometry of the bound orbits for the inverse square-law
Kepler system. It is interesting to search for a similar invariant that fully specifies the orbits for the isotropic harmonic central
force. In contrast to the Kepler problem, the harmonic force center is at the center of the elliptical orbit, and the orbit is reflection
symmetric with the radial and angular frequencies related by . Since the orbit is reflection-symmetric, the orientation of
the major axis of the orbit cannot be uniquely specified by a vector. Therefore, for the harmonic interaction it is necessary to
specify the orientation of the principal axis by the symmetry tensor. The symmetry of the isotropic harmonic, two-body, central
force leads to the symmetry tensor  which is an invariant of the motion analogous to the eccentricity vector . Like a rotation
matrix, the symmetry tensor defines the orientation, but not direction, of the major principal axis of the elliptical orbit. In the plane
of the polar orbit the  symmetry tensor  reduces to a  matrix having matrix elements defined to be,

The diagonal matrix elements , and  are constants of motion. The off-diagonal term is given by

The terms on the right-hand side of Equation  all are constants of motion, therefore  also is a constant of motion. Thus
the  symmetry tensor  can be reduced to a  symmetry tensor for which all the matrix elements are constants of
motion, and the trace of the symmetry tensor is equal to the total energy.
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In summary, the inverse-square, and harmonic oscillator two-body central interactions both lead to closed, elliptical equivalent
orbits, the plane of which is perpendicular to the conserved angular momentum vector. However, for the inverse-square force, the
origin of the equivalent orbit is at the focus of the ellipse and , whereas the origin is at the center of the ellipse and 

 for the harmonic force. As a consequence, the elliptical orbit is reflection symmetric for the harmonic force but not for
the inverse square force. The eccentricity vector and symmetry tensor both specify the major axes of these elliptical orbits, the
plane of which are perpendicular to the angular momentum vector. The eccentricity vector, and the symmetry tensor, both are
directly related to the eccentricity of the orbit and the total energy of the two-body system. Noether’s theorem states that the
invariance of the eccentricity vector and symmetry tensor, plus the corresponding closed orbits, are manifestations of underlying
symmetries. The dynamical  symmetry underlies the invariance of the symmetry tensor, whereas the dynamical  symmetry
underlies the invariance of the eccentricity vector. These symmetries lead to stable closed elliptical bound orbits only for these two
specific two-body central forces, and not for other two-body central forces.

This page titled 11.9: Isotropic, linear, two-body, central force is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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11.10: Closed-orbit Stability
Bertrand’s theorem states that the linear oscillator and the inverse-square law are the only two-body, central forces for which all
bound orbits are single-valued, and stable closed orbits. The stability of closed orbits can be illustrated by studying their response
to perturbations. For simplicity, the following discussion of stability will focus on circular orbits, but the general principles are the
same for elliptical orbits.

A circular orbit occurs whenever the attractive force just balances the effective ”centrifugal force” in the rotating frame. This can
occur for any radial functional form for the central force. The effective potential, equation  will have a stationary point
when

that is, when

This is equivalent to the statement that the net force is zero. Since the central attractive force is given by

then the stationary point occurs when

This is the so-called centrifugal force in the rotating frame. The Hamiltonian, equation , gives that

For a circular orbit  that is

A stable circular orbit is possible if both equations  and  are satisfied. Such a circular orbit will be a stable orbit at
the minimum when

Examples of stable and unstable orbits are shown in Figure .
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Figure : Stable and unstable effective central potentials. The repulsive centrifugal and the attractive potentials  are
shown dashed. The solid curve is the effective potential.

Stability of a circular orbit requires that

which can be written in terms of the central force for a stable orbit as

If the attractive central force can be expressed as a power law

then stability requires

or

Stable equivalent orbits will undergo oscillations about the stable orbit if perturbed. To first order, the restoring force on a bound
reduced mass  is given by
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To the extent that this linear restoring force dominates over higher-order terms, then a perturbation of the stable orbit will undergo
simple harmonic oscillations about the stable orbit with angular frequency

The above discussion shows that a small amplitude radial oscillation about the stable orbit with amplitude  will be of the form

The orbit will be closed if the product of the oscillation frequency  and the orbit period  is an integer value.

The fact that planetary orbits in the gravitational field are observed to be closed is strong evidence that the gravitational force field
must obey the inverse square law. Actually there are small precessions of planetary orbits due to perturbations of the gravitational
field by bodies other than the sun, and due to relativistic effects. Also the gravitational field near the earth departs slightly from the
inverse square law because the earth is not a perfect sphere, and the field does not have perfect spherical symmetry. The study of
the precession of satellites around the earth has been used to determine the oblate quadrupole and slight octupole (pear shape)
distortion of the shape of the earth.

The most famous test of the inverse square law for gravitation is the precession of the perihelion of Mercury. If the attractive force
experienced by Mercury is of the form

where  is small, then it can be shown that, for approximate circular orbitals, the perihelion will advance by a small angle  per
orbit period. That is, the precession is zero if , corresponding to an inverse square law dependence which agrees with
Bertrand’s theorem. The position of the perihelion of Mercury has been measured with great accuracy showing that, after correcting
for all known perturbations, the perihelion advances by  seconds of arc per century, that is  radians per revolution.
This corresponds to  which is small but still significant. This precession remained a puzzle for many years until 

 when Einstein predicted that one consequence of his general theory of relativity is that the planetary orbit of Mercury should
precess at  seconds of arc per century, which is in remarkable agreement with observations.

The effective potential for a linear two-body restoring force  is

At the minimum

Thus

and

which is a stable orbit. Small perturbations of such a stable circular orbit will have an angular frequency
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Note that this is twice the frequency for the planar harmonic oscillator with the same restoring coefficient. This is due to the
central repulsion, the effective potential well for this rotating oscillator example has about half the width for the corresponding
planar harmonic oscillator. Note that the kinetic energy for the rotational motion, which is  equals the potential energy 

 at the minimum as predicted by the Virial Theorem for a linear two-body restoring force.

The effective potential for an inverse square law restoring force  where  is assumed to be positive,

At the minimum

Thus

and

which is a stable orbit. Small perturbations about such a stable circular orbit will have an angular frequency

The kinetic energy for oscillations about this stable circular orbit, which is  equals half the magnitude of the potential

energy  at the minimum as predicted by the Virial Theorem.

The inverse cubic force is an interesting example to investigate the stability of the orbit equations. One solution of the inverse
cubic central force, for a reduced mass  is a spiral orbit

That this is true can be shown by inserting this orbit into the differential orbit equation.
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Substituting these into the differential equation of the orbit

gives

That is

which is a central attractive inverse cubic force.

The time dependence of the spiral orbit can be derived since the angular momentum gives

This can be written as

Integrating gives

where  is a constant. But the orbit gives

Thus the radius increases or decreases as the square root of the time. That is, an attractive cubic central force does not have a
stable orbit which is what is expected since there is no minimum in the effective potential energy. Note that it is obvious that
there will be no minimum or maximum for the summation of effective potential energy since, if the force is  then the
effective potential energy is

which has no stable minimum or maximum.

An example of an application of orbit stability is the case shown in the adjacent figure. A particle of mass  moves on a
horizontal frictionless table. This mass is attached by a light string of fixed length  and rotates about a hole in the table. The
string is attached to a second equal mass  that is hanging vertically downwards with no angular motion.
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Figure : Rotating mass  on a frictionless horizontal table connected to a suspended mass .

The equations are most conveniently expressed in cylindrical coordinates (  with the origin at the hole in the table, and 
vertically upward. The fixed length of the string requires . The potential energy is

The system is central and conservative, thus the Hamiltonian can be written as

The Lagrangian is independent of , that is,  is cyclic, thus the angular momentum  is a constant of motion.
Substituting this into the Hamiltonian equation gives

The effective potential is

which is shown in the adjacent figure. The stationary value occurs when

That is, when the angular momentum is related to the radius by

Note that  if .

Figure : Effective potential for two connected masses.

The stability of the solution is given by the second derivative
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Therefore the stationary point is stable.

Note that the equation of motion for the minimum can be expressed in terms of the restoring force on the two masses

Thus the system undergoes harmonic oscillation with frequency

The solution of this system is stable and undergoes simple harmonic motion.

This page titled 11.10: Closed-orbit Stability is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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11.11: The Three-Body Problem
Two bodies interacting via conservative central forces can be solved analytically for the inverse square law and the Hooke’s law
radial dependences as already discussed. Central forces that have other radial dependences for the equations of motion may not be
expressible in terms of simple functions, nevertheless the motion always can be given in terms of an integral. For a gravitational
system comprising  bodies that are interacting via the two-body central gravitational force, then the equations of motion can
be written as

Even when all the  bodies are interacting via two-body central forces, the problem usually is insoluble in terms of known analytic
integrals. Newton first posed the difficulty of the three-body Kepler problem which has been studied extensively by
mathematicians and physicists. No known general analytic integral solution has been found. Each body for the -body system has 

 degrees of freedom, that is,  for position and  for momentum. The center-of-mass motion can be factored out, therefore the
center-of-mass system for the -body system has  degrees of freedom after subtraction of  degrees for location of the
center of mass,  for the linear momentum of the center of mass,  for rotation of the center of mass, and  for the total energy of
the system. Thus for  there are  degrees of freedom for the two-body system for which the Kepler approach
takes to be  and  For  there are  degrees of freedom in the center of mass system that have to be determined.

Figure : A contour plot of the effective potential for the Sun-Earth gravitational system in the rotating frame where the Sun
and Earth are stationary. The 5 Lagrange points  are saddle points where the net force is zero. (Figure created by NASA)

Numerical solutions to the three-body problem can be obtained using successive approximation or perturbation methods in
computer calculations. The problem can be simplified by restricting the motion to either of following two approximations:

1) Planar approximation
This approximation assumes that the three masses move in the same plane, that is, the number of degrees of freedom are reduced
from  to  which simplifies the numerical solution.

2) Restricted three-body approximation

The restricted three-body approximation assumes that two of the masses are large and bound while the third mass is negligible such
that the perturbation of the motion of the larger two by the third body is negligible. This approximation essentially reduces the
system to a two body problem in order to calculate the gravitational fields that act on the third much lighter mass.
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Euler and Lagrange showed that the restricted three-body system has five points at which the combined gravitational attraction plus
centripetal force of the two large bodies cancel. These are called the Lagrange points and are used for parking satellites in stable
orbits with respect to the Earth-Moon system, or with respect to the Sun-Earth system. Figure  illustrates the five Lagrange
points for the Earth-Sun system. Only two of the Lagrange points,  and  lead to stable orbits. Note that these Lagrange points
are fixed with respect to the Earth-Sun system which rotates with respect to inertial coordinate frames. The ’s discovery of the
Trojan asteroids at the  and  Lagrange points of the Sun-Jupiter system confirmed the Lagrange predictions.

Poincaré showed that the motion of a light mass bound to two heavy bodies can exhibit extreme sensitivity to initial conditions as
well as characteristics of chaos. Solution of the three-body problem has remained a largely unsolved problem since Newton
identified the difficulties involved.

This page titled 11.11: The Three-Body Problem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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11.12: Two-body Scattering
Two moving bodies, that are interacting via a central force, scatter when the force is repulsive, or when an attractive system is
unbound. Two-body scattering of bodies is encountered extensively in the fields of astronomy, atomic, nuclear, and particle
physics. The probability of such scattering is most conveniently expressed in terms of scattering cross sections defined below.

Total two-body scattering cross section

Figure : Scattering probability for an incident beam of cross sectional area A by a target body of cross sectional area .

The concept of scattering cross section for two-body scattering is most easily described for the total two-body cross section. The
probability  that a beam of  incident point particles/second, distributed over a cross sectional area  will hit a single solid
object, having a cross sectional area  is given by the ratio of the areas as illustrated in Figure . That is,

where it is assumed that  For a spherical target body of radius , the cross section  The scattering probability 
is proportional to the cross section  which is the cross section of the target body perpendicular to the beam; thus  has the units of
area.

Since the incident beam of  incident point particles/second, has a cross sectional area , then it will have an areal density 
given by

The number of beam particles scattered per second  by this single target scatterer equals

Thus the cross section for scattering by this single target body is

Realistically one will have many target scatterers in the target and the total scattering probability increases proportionally to the
number of target scatterers. That is, for a target comprising an areal density of  target bodies per unit area of the incident beam,
then the number scattered will increase proportional to the target areal density  That is, there will be  scattering bodies
that interact with the beam assuming that the target has a larger area than the beam. Thus the total number scattered per second 
by a target that comprises multiple scatterers is

Note that this is independent of the cross sectional area of the beam assuming that the target area is larger than that of the beam.
That is, the number scattered per second is proportional to the cross section  times the product of the number of incident particles
per second,  and the areal density of target scatterers, . Typical cross sections encountered in astrophysics are ,
in atomic physics: , and in nuclear physics; 

N. B., the above proof assumed that the target size is larger than the cross sectional area of the incident beam. If the size of the
target is smaller than the beam, then  is replaced by the areal density/s of the beam  and  is replaced by the number of
target particles  and the cross-sectional size of the target cancels.
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Differential two-body scattering cross section

Figure : The equivalent one-body problem for scattering of a reduced mass  by a force centre in the centre of mass system.

The differential two-body scattering cross section gives much more detailed information of the scattering force than does the total
cross section because of the correlation between the impact parameter and the scattering angle. That is, a measurement of the
number of beam particles scattered into a given solid angle as a function of scattering angles  probes the radial form of the
scattering force.

The differential cross section for scattering of an incident beam by a single target body into a solid angle  at scattering angles 
 is defined to be

where the right-hand side is the ratio of the number scattered per target nucleus into solid angle  to the incident beam
intensity  .

Similar reasoning used to derive Equation  leads to the number of beam particles scattered into a solid angle  for 
beam particles incident upon a target with areal density  is

Consider the equivalent one-body system for scattering of one body by a scattering force center in the center of mass. As shown in
figures  and , the perpendicular distance between the center of force of the two body system and trajectory of the
incoming body at infinite distance is called the impact parameter . For a central force the scattering system has cylindrical
symmetry, therefore the solid angle  can be integrated over the azimuthal angle  to give 

For the inverse-square, two-body, central force there is a one-to-one correspondence between impact parameter  and scattering
angle  for a given bombarding energy. In this case, assuming conservation of flux means that the incident beam particles passing
through the impact-parameter annulus between  and  must equal the the number passing between the corresponding angles 

 and  That is, for an incident beam flux of   the number of particles per second passing through the
annulus is

The modulus is used to ensure that the number of particles is always positive. Thus

Impact parameter dependence on scattering angle

If the function  is known, then it is possible to evaluate  which can be used in Equation  to calculate the
differential cross section. A simple and important case to consider is two-body elastic scattering for the inverse-square law force
such as the Coulomb or gravitational forces. To avoid confusion in the following discussion, the center-of-mass scattering angle
will be called  while the angle used to define the hyperbolic orbits in the discussion of trajectories for the inverse square law, will
be called .
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In chapter  the equivalent one-body representation gave that the radial distance for a trajectory for the inverse square law is
given by

Note that closest approach occurs when  while for  the bracket must equal zero, that is

The polar angle  is measured with respect to the symmetry axis of the two-body system which is along the line of distance of
closest approach as shown in Figure . The geometry and symmetry show that the scattering angle  is related to the
trajectory angle  by

Equation  gives that

Since

then the scattering angle can be written as.

Let , then

For the repulsive inverse square law

where  is taken to be positive for a repulsive force. Thus the scattering angle relation becomes

Figure : Impact parameter dependence on scattering angle for Rutherford scattering.
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The solution of this equation is given by equation  to be

where the eccentricity

For   then, as shown previously,

Therefore

that is, the impact parameter  is given by the relation

Thus, for an inverse-square law force, the two-body scattering has a one-to-one correspondence between impact parameter  and
scattering angle  as shown schematically in Figure .

Figure : Classical trajectories for scattering to a given angle by the repulsive Coulomb field plus the attractive nuclear field
for three different impact parameters. Path 1 is pure Coulomb. Paths 2 and 3 include Coulomb plus nuclear interactions. The dashed
parts of trajectories 2 and 3 correspond to only the Coulomb force acting, i.e. zero nuclear force

If  is negative, which corresponds to an attractive inverse square law, then one gets the same relation between impact parameter
and scattering angle except that the sign of the impact parameter  is opposite. This means that the hyperbolic trajectory has an
interior rather than exterior focus. That is, the trajectory partially orbits around the center of force rather than being repelled away.

Note that for  then

which is what you would expect from equating the incident kinetic energy to the potential energy at the distance of closest
approach.

For scattering of two nuclei by the repulsive Coulomb force, if the impact parameter becomes small enough, the attractive nuclear
force also acts leading to impact-parameter dependent effective potentials illustrated in Figure . Trajectory  does not
overlap the nuclear force and thus is pure Coulomb. Trajectory  interacts at the periphery of the nuclear potential and the
trajectory deviates from pure Coulomb shown dashed. Trajectory  passes through the interior of the nuclear potential. These three
trajectories all can lead to the same scattering angle and thus there no longer is a one-to-one correspondence between scattering
angle and impact parameter.
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Rutherford scattering
Two models of the nucleus evolved in the ’s, the Rutherford model assumed electrons orbiting around a small nucleus like
planets around the sun, while J.J. Thomson’s ”plum-pudding” model assumed the electrons were embedded in a uniform sphere of
positive charge the size of the atom. When Rutherford derived his classical formula in  he realized that it can be used to
determine the size of the nucleus since the electric field obeys the inverse square law only when outside of the charged spherical
nucleus. Inside a uniform sphere of charge the electric field is  and thus the scattering cross section will not obey the
Rutherford relation for distances of closest approach that are less than the radius of the sphere of negative charge. Observation of
the angle beyond which the Rutherford formula breaks down immediately determines the radius of the nucleus.

This cross section assumes elastic scattering by a repulsive two-body inverse-square central force. For scattering of nuclei in the
Coulomb potential, the constant  is given to be

The cross section, scattering angle and  of Equation  are evaluated in the center-of-mass coordinate system, whereas
usually two-body elastic scattering data involve scattering of the projectiles by a stationary target as discussed in chapter 

Gieger and Marsden performed scattering of  MeV  particles from a thin gold foil and proved that the differential scattering
cross section obeyed the Rutherford formula back to angles corresponding to a distance of closest approach of  which is
much smaller that the  size of the atom. This validated the Rutherford model of the atom and immediately led to the Bohr
model of the atom which played such a crucial role in the development of quantum mechanics. Bohr showed that the agreement
with the Rutherford formula implies the Coulomb field obeys the inverse square law to small distances. This work was performed
at Manchester University, England between  and . It is fortunate that the classical result is identical to the quantal cross
section for scattering, otherwise the development of modern physics could have been delayed for many years.

Scattering of very heavy ions, such as Pb, can electromagnetically excite target nuclei. For the Coulomb force the impact
parameter  and the distance of closest approach,  are directly related to the scattering angle  by Equation . Thus
observing the angle of the scattered projectile unambiguously determines the hyperbolic trajectory and thus the electromagnetic
impulse given to the colliding nuclei. This process, called Coulomb excitation, uses the measured angular distribution of the
scattered ions for inelastic excitation of the nuclei to precisely and unambiguously determine the Coulomb excitation cross section
as a function of impact parameter. This unambiguously determines the shape of the nuclear charge distribution.

Assume two-body scattering by a potential  where . This corresponds to a repulsive two-body force .
Insert this force into Binet’s differential orbit, equation , gives

The solution is of the form  where  and  are constants of integration,  and

Initially ,  and therefore . Also at , , that is . Then

The initial energy gives that  Hence the orbit equation is
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The above trajectory has a distance of closest approach, , when . Moreover, due to the symmetry of the orbit,
the scattering angle  is given by

Since  then

This gives that the impact parameter  is related to scattering angle by

This impact parameter relation can be used in Equation  to give the differential cross section

These orbits are called Cotes spirals.

The term "barn" was chosen because nuclear physicists joked that the cross sections for neutron scattering by nuclei were as large
as a barn door.

This page titled 11.12: Two-body Scattering is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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11.13: Two-body kinematics
So far the discussion has been restricted to the center-of-momentum system. Actual scattering measurements are performed in the
laboratory frame, and thus it is necessary to transform the scattering angle, energies and cross sections between the laboratory and
center-of-momentum coordinate frame. In principle the transformation between the center-of-momentum and laboratory frames is
straightforward, using the vector addition of the center-of-mass velocity vector and the center-of-momentum velocity vectors of the
two bodies. The following discussion assumes non-relativistic kinematics apply.

In chapter  it was shown that, for Newtonian mechanics, the center-of-mass and center-of-momentum frames of reference are
identical. By definition, in the center-of-momentum frame the vector sum of the linear momentum of the incoming projectile, 

 and target,  are equal and opposite. That is

Using the center-of-momentum frame, coupled with the conservation of linear momentum, implies that the vector sum of the final
momenta of the  reaction products,  also is zero. That is

An additional constraint is that energy conservation relates the initial and final kinetic energies by

where the  value is the energy contributed to the final total kinetic energy by the reaction between the incoming projectile and
target. For exothermic reactions,  the summed kinetic of the reaction products exceeds the sum of the incoming kinetic
energies, while for endothermic reactions,  the summed kinetic energy of the reaction products is less than that of the
incoming channel.

For two-body kinematics, the following are three advantages to working in the center-of-momentum frame of reference.

1. The two incident colliding bodies are colinear as are the two final bodies.
2. The linear momenta for the two colliding bodies are identical in both the incident channel and the outgoing channel.
3. The total energy in the center-of-momentum coordinate frame is the energy available to the reaction during the collision. The

trivial kinetic energy of the center-of-momentum frame relative to the laboratory frame is handled separately.

The kinematics for two-body reactions is easily determined using the conservation of linear momentum along and perpendicular to
the beam direction plus the conservation of energy, - . Note that it is common practice to use the term "center-of-
mass" rather than "center-of-momentum" in spite of the fact that, for relativistic mechanics, only the center-of-momentum is a
meaningful concept.

General features of the transformation between the center-of-momentum and laboratory frames of reference are best illustrated by
elastic or inelastic scattering of nuclei where the two reaction products in the final channel are identical to the incident bodies.
Inelastic excitation of an excited state energy of  in either reaction product corresponds to  while elastic
scattering corresponds to .

For inelastic scattering, the conservation of linear momenta for the outgoing channel in the center-of-momentum simplifies to

that is, the linear momenta of the two reaction products are equal and opposite.

Assume that the center-of-momentum direction of the scattered projectile is at an angle  relative to the direction of the
incoming projectile and that the scattered target nucleus is scattered at a center-of-momentum direction . Elastic
scattering corresponds to simple scattering for which the magnitudes of the incoming and outgoing projectile momenta are equal,
that is, .
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Figure : Vector hodograph of the scattered projectile and target velocities for a projectile, with incident velocity , that is
elastically scattered by a stationary target body. The circles show the magnitude of the projectile and target body final velocities in
the center of mass. The center-of-mass velocity vectors are shown as dashed lines while the laboratory vectors are shown as solid
lines. The left hodograph shows normal kinematics where the projectile mass is less than the target mass. The right hodograph
shows inverse kinematics where the projectile mass is greater than the target mass. For elastic scattering .

Velocities

The transformation between the center-of-momentum and laboratory frames requires knowledge of the particle velocities which
can be derived from the linear momenta since the particle masses are known. Assume that a projectile, mass , with incident
energy  in the laboratory frame bombards a stationary target with mass  The incident projectile velocity  is given by

The initial velocities in the laboratory frame are taken to be

The final velocities in the laboratory frame after the inelastic collision are

In the center-of-momentum coordinate system, equation  implies that the initial center-of-momentum velocities are

It is simple to derive that the final center-of-momentum velocities after the inelastic collision are given by

The energy  is defined to be given by
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where  which is the excitation energy of the final excited states in the outgoing channel.

Angles
The angles of the scattered recoils are written as

and

where  is the center-of-mass (center-of-momentum) scattering angle.

Figure  shows that the angle relations between the laboratory and center of momentum frames for the scattered projectile
are connected by

where

and  is the energy per nucleon on the incident projectile.

Equation  can be rewritten as

Another useful relation from Equation  gives the center-of-momentum scattering angle in terms of the laboratory scattering
angle.

This gives the difference in angle between the lab scattering angle and the center-of-momentum scattering angle. Be careful with
this relation since  is two-valued for inverse kinematics corresponding to the two possible signs for the solution.

The angle relations between the lab and center-of-momentum for the recoiling target nucleus are connected by

That is

where

Note that  is the same under interchange of the two nuclei at the same incident energy/nucleon, and that  is always larger than or
equal to unity since  is negative. For elastic scattering  which gives
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For the target recoil Equation  can be rewritten as

Figure : The kinematic correlation of the laboratory and center-of-mass scattering angles of the recoiling projectile and
target nuclei for scattering for  /nucleon Pd on Pb (left) and for the inverse  /nucleon Pb on Pd
(right). The projectile scattering angles are shown by solid lines while the recoiling target angles are shown by dashed lines. The
blue curves correspond to elastic scattering, that is  while the red curves correspond to inelastic scattering with  

.

Velocity vector hodographs provide useful insight into the behavior of the kinematic solutions. As shown in Figure , in the
center-of-momentum frame the scattered projectile has a fixed final velocity , that is, the velocity vector describes a circle as a
function of . The vector addition of this vector and the velocity of the center-of-mass vector  gives the laboratory frame
velocity . Note that for normal kinematics, where  then  leading to a monotonic one-to-one mapping of
the center-of-momentum angle  and . However, for inverse kinematics, where  then  leading to two
valued  solutions at any fixed laboratory scattering angle .

Billiard ball collisions are an especially simple example where the two masses are identical and the collision is essentially elastic.

Then essentially ,  and , that is, the angle between the scattered billiard balls is .

Both normal and inverse kinematics are illustrated in Figure  which shows the dependence of the projectile and target
scattering angles in the laboratory frame as a function of center-of-momentum scattering angle for the Coulomb scattering of Pd
by Pb, that is, for a mass ratio of . Both normal and inverse kinematics are shown for the same bombarding energy of  

 for elastic scattering and for inelastic scattering with a -value of .

Figure : Recoil energies, in , versus laboratory scattering angle, shown on the left for scattering of   Pd
by Pb with  , and shown on the right for scattering of   Pb on Pd with  .
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Since  then Equation  implies that  Since  is always larger than or equal to unity there
is a maximum scattering angle in the laboratory frame for the recoiling target nucleus given by

For elastic scattering  since  for both   Pb bombarding Pd, and the inverse reaction
using a   Pd beam scattered by a Pb target. A -value of   gives  which implies a maximum
scattering angle of  for both   Pb bombarding  Pd, and the inverse reaction of a   Pd
beam scattered by a Pb target. As a consequence there are two solutions for  for any allowed value of  as illustrated in
Figure .

Since  then equation  implies that  For a   Pd beam scattered by a Pb
target , thus  for elastic scattering which implies that there is no upper bound to . This leads to a one-to-one
correspondence between  and  for normal kinematics. In contrast, the projectile has a maximum scattering angle in the
laboratory frame for inverse kinematics since  leading to an upper bound to  given by

For elastic scattering  implying . In addition to having a maximum value for , when  also there are two
solutions for  for any allowed value of . For the example of   Pb bombarding Hf leads to a maximum
projectile scattering angle of  for elastic scattering and  for  

Kinetic energies
The initial total kinetic energy in the center-of-momentum frame is

The final total kinetic energy in the center-of-momentum frame is

In the laboratory frame the kinetic energies of the scattered projectile and recoiling target nucleus are given by

where  and  are the center-of-mass scattering angles respectively for the scattered projectile and target nuclei.

For the chosen incident energies the normal and inverse reactions give the same center-of-momentum energy of   which
is the energy available to the interaction between the colliding nuclei. However, the kinetic energy of the center-of-momentum is 

  for normal kinematics and   for inverse kinematics. This trivial center-of-
momentum kinetic energy does not contribute to the reaction. Note that inverse kinematics focusses all the scattered nuclei into the
forward hemisphere which reduces the required solid angle for recoil-particle detection.

Solid angles

The laboratory-frame solid angles for the scattered projectile and target are taken to be  and  respectively, while the
center-of-momentum solid angles are  and  respectively. The Jacobian relating the solid angles is
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These can be used to transform the calculated center-of-momentum differential cross sections to the laboratory frame for
comparison with measured values. Note that relative to the center-of-momentum frame, the forward focussing increases the
observed differential cross sections in the forward laboratory frame and decreases them in the backward hemisphere.

Exploitation of two-body kinematics
Computing the above non-trivial transform relations between the center-of-mass and laboratory coordinate frames for two-body
scattering is used extensively in many fields of physics. This discussion has assumed non-relativistic two-body kinematics.
Relativistic two-body kinematics encompasses non-relativistic kinematics as discussed in chapter . Many computer codes are
available that can be used for making either non-relativistic or relativistic transformations.

It is stressed that the underlying physics for two interacting bodies is identical irrespective of whether the reaction is observed in
the center-of-mass or the laboratory coordinate frames. That is, no new physics is involved in the kinematic transformation.
However, the transformation between these frames can dramatically alter the angles and velocities of the observed scattered bodies
which can be beneficial for experimental detection. For example, in heavy-ion nuclear physics the projectile and target nuclei can
be interchanged leading to very different velocities and scattering angles in the laboratory frame of reference. This can greatly
facilitate identification and observation of the velocities vectors of the scattered nuclei. In high-energy physics it is advantageous to
collide beams having identical, but opposite, linear momentum vectors, since then the laboratory frame is the center-of-mass frame,
and the energy required to accelerate the colliding bodies is minimized.

This page titled 11.13: Two-body kinematics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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11.E: Conservative two-body Central Forces (Exercises)
1. Listed below are several statements concerning central force motion. For each statement, give the reason for why the statement

is true. If a statement is only true in certain situations, then explain when it holds and when it doesn’t. The system referred to
below consists of mass  located at  and mass  located at .
1. The potential energy of the system depends only on the difference , not on  and  separately.
2. The potential energy of the system depends only on the magnitude of , not the direction.
3. It is possible to choose an inertial reference frame in which the center of mass of the system is at rest.
4. The total energy of the system is conserved.
5. The total angular momentum of the system is conserved.

2. A particle of mass  moves in a potential .

1. Given the constant , find an implicit equation for the radius of the circular orbit. A circular orbit at  is possible if

where  is the effective potential.
2. What is the largest value of  for which a circular orbit exists? What is the value of the effective potential at this critical

orbit?

3. A particle of mass  is observed to move in a spiral orbit given by the equation , where  is a constant. Is it possible to
have such an orbit in a central force field? If so, determine the form of the force function.

4. The interaction energy between two atoms of mass  is given by the Lennard-Jones potential, 
1. Determine the Lagrangian of the system where  and  are the positions of the first and second mass, respectively.
2. Rewrite the Lagrangian as a one-body problem in which the center-of-mass is stationary.
3. Determine the equilibrium point and show that it is stable.
4. Determine the frequency of small oscillations about the stable point.

5. Consider two bodies of mass  in circular orbit of radius , attracted to each other by a force , where  is the distance
between the masses.
1. Determine the Lagrangian of the system in the center-of-mass frame (Hint: a one-body problem subject to a central force).
2. Determine the angular momentum. Is it conserved?
3. Determine the equation of motion in  in terms of the angular momentum and .

4. Expand your result in (c) about an equilibrium radius  and show that the condition for stability is, 

6. Consider two charges of equal magnitude  connected by a spring of spring constant  in circular orbit. Can the charges
oscillate about some equilibrium? If so, what condition must be satisfied?

7. Consider a mass  in orbit around a mass , which is subject to a force , where  is the distance between the
masses. Show that the eccentricity vector  is conserved.

8. Show that the areal velocity is constant for a particle moving under the influence of an attractive force given by .
Calculate the time averages of the kinetic and potential energies and compare with the the results of the virial theorem.

9. Assume that the Earth’s orbit is circular and that the Sun’s mass suddenly decreases by a factor of two.
1. What orbit will the earth then have?
2. Will the Earth escape the solar system?

10. Discuss the motion of a particle in a central inverse-square-law force field for a superimposed force whose magnitude is
inversely proportional to the cube of the distance from the particle to force center; that is

Show that the motion is described by a precessing ellipse. Consider the cases a) , b) , c)  where  is the
angular momentum and  the reduced mass.

11. A communications satellite is in a circular orbit around the earth at a radius  and velocity . A rocket accidentally fires quite
suddenly, giving the rocket an outward velocity  in addition to its original tangential velocity .
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1. Calculate the ratio of the new energy and angular momentum to the old.
2. Describe the subsequent motion of the satellite and plot , , the net effective potential, and  after the rocket

fires.
12. Two identical point objects, each of mass  are bound by a linear two-body force  where  is the vector distance

between the two point objects. The two point objects each slide on a horizontal frictionless plane subject to a vertical
gravitational field . The two-body system is free to translate, rotate and oscillate on the surface of the frictionless plane.
1. Derive the Lagrangian for the complete system including translation and relative motion.
2. Use Noether’s theorem to identify all constants of motion.
3. Use the Lagrangian to derive the equations of motion for the system.
4. Derive the generalized momenta and the corresponding Hamiltonian.
5. Derive the period for small amplitude oscillations of the relative motion of the two masses.

13. A bound binary star system comprises two spherical stars of mass  and  bound by their mutual gravitational attraction.
Assume that the only force acting on the stars is their mutual gravitation attraction and let  be the instantaneous separation
distance between the centers of the two stars where  is much larger than the sum of the radii of the stars.
1. Show that the two-body motion of the binary star system can be represented by an equivalent one-body system and derive

the Lagrangian for this system.
2. Show that the motion for the equivalent one-body system in the center of mass frame lies entirely in a plane and derive the

angle between the normal to the plane and the angular momentum vector.
3. Show whether  is a constant of motion and whether it equals the total energy.
4. It is known that a solution to the equation of motion for the equivalent one-body orbit for this gravitational force has the

form

and that the angular momentum is a constant of motion . Use these to prove that the attractive force leading to this
bound orbit is

where  must be negative.
14. When performing the Rutherford experiment, Gieger and Marsden scattered   He particles (alpha particles) from 

U at a scattering angle in the laboratory frame of . Derive the following observables as measured in the laboratory
frame.
1. The recoil scattering angle of the U in the laboratory frame.
2. The scattering angles of the He and U in the center-of-mass frame
3. The kinetic energies of the He and U in the laboratory frame
4. The impact parameter
5. The distance of closest approach 

This page titled 11.E: Conservative two-body Central Forces (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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11.S: Conservative two-body Central Forces (Summary)
This chapter has focussed on the classical mechanics of bodies interacting via conservative, two-body, central interactions. The
following are the main topics presented in this chapter.

Equivalent one-body representation for two bodies interacting via a central interaction
The equivalent one-body representation of the motion of two bodies interacting via a two-body central interaction greatly simplifies
solution of the equations of motion. The position vectors  and  are expressed in terms of the center-of-mass vector  plus total
mass  while the position vector , plus associated reduced mass  describe the relative motion of the
two bodies in the center of mass. The total Lagrangian then separates into two independent parts

where the center-of-mass Lagrangian is

Equations , and  can be used to derive the actual spatial trajectories of the two bodies expressed in terms of  and
, from the relative equations of motion, written in terms of  and , for the equivalent one-body solution..

Angular momentum
Noether’s theorem shows that the angular momentum is conserved if only a spherically-symmetric two-body central force acts
between the interacting two bodies. The plane of motion is perpendicular to the angular momentum vector and thus the Lagrangian
can be expressed in polar coordinates as

Differential orbit equation of motion

The Binet transformation  allows the center-of-mass Lagrangian  for a central force  to be used to express the
differential orbit equation for the radial motion as

The Lagrangian, and the Hamiltonian all were used to derive the equations of motion for two bodies interacting via a two-body,
conservative, central interaction. The general features of the conservation of angular momentum and conservation of energy for a
two-body, central potential were presented.

Inverse-square, two-body, central force
The inverse-square, two-body, central force is of pivotal importance in nature since it is applies to both the gravitational force and
the Coulomb force. The underlying symmetries of the inverse-square, two-body, central interaction, lead to conservation of angular
momentum, conservation of energy, Gauss’s law, and that the two-body orbits follow closed, degenerate, orbits that are conic
sections, for which the eccentricity vector is conserved. The radial dependence, relative to the force center lying at one focus of the
conic section, is given by

where the orbit eccentricity  equals
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These lead to Kepler’s three laws of motion for two bodies in a bound orbit due to the attractive gravitational force for which 
. The inverse-square law is special in that the eccentricity vector  is a third invariant of the motion, where

The eccentricity vector unambiguously defines the orientation and direction of the major axis of the elliptical orbit. The invariance
of the eccentricity vector, and the existence of stable closed orbits, are manifestations of the dynamical  symmetry.

Isotropic, harmonic, two-body, central force
The isotropic, harmonic, two-body, central interaction is of interest since, like the inverse-square law force, it leads to closed
elliptical orbits described by

where the eccentricity  is given by

The harmonic force orbits are distinctly different from those for the inverse-square law in that the force center is at the center of the
ellipse, rather than at the focus for the inverse-square law force. This elliptical orbit is reflection symmetric for the harmonic force,
but not for the inverse square force. The isotropic harmonic two-body force leads to invariance of the symmetry tensor,  which is
an invariant of the motion analogous to the eccentricity vector . This leads to stable closed orbits, which are manifestations of the
dynamical  symmetry.

Orbit stability

Bertrand’s theorem states that only the inverse square law and the linear radial dependences of the central forces lead to stable
closed bound orbits that do not precess. These are manifestation of the dynamical symmetries that occur for these two specific
radial forms of two-body forces.

The three-body problem
The difficulties encountered in solving the equations of motion for three bodies, that are interacting via two-body central forces,
was discussed. The three-body motion can include the existence of chaotic motion. It was shown that solution of the three-body
problem is simplified if either the planar approximation, or the restricted three-body approximation, are applicable.

Two-body scattering
The total and differential two-body scattering cross sections were introduced. It was shown that for the inverse-square law force
there is a simple relation between the impact parameter  and scattering angle  given by

This led to the solution for the differential scattering cross-section for Rutherford scattering due to the Coulomb interaction.

This cross section assumes elastic scattering by a repulsive two-body inverse-square central force. For scattering of nuclei in the
Coulomb potential the constant  is given to be

k = −Gm1m2 A

A ≡(p ×L) + (μk )r̂ (11.S.7)
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Two-body kinematics
The transformation from the center-of-momentum frame to laboratory frames of reference was introduced. Such transformations
are used extensively in many fields of physics for theoretical modelling of scattering, and for analysis of experiment data.

This page titled 11.S: Conservative two-body Central Forces (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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1

CHAPTER OVERVIEW

12: Non-inertial Reference Frames
This chapter will analyze the behavior of dynamical systems in accelerated frames of reference, especially rotating frames such as
on the surface of the Earth. Newtonian mechanics, as well as the Lagrangian and Hamiltonian approaches, will be used to handle
motion in non-inertial reference frames by introducing extra inertial forces that correct for the fact that the motion is being treated
with respect to a non-inertial reference frame. These inertial forces are often called fictitious even though they appear real in the
non-inertial frame. The underlying reasons for each of the inertial forces will be discussed followed by a presentation of important
applications.

12.1: Introduction to Non-inertial Reference Frames
12.2: Translational acceleration of a reference frame
12.3: Rotating Reference Frame
12.4: Reference Frame Undergoing Rotation Plus Translation
12.5: Newton’s Law of Motion in a Non-Inertial Frame
12.6: Lagrangian Mechanics in a Non-Inertial Frame
12.7: Centrifugal Force
12.8: Coriolis Force
12.9: Routhian Reduction for Rotating Systems
12.10: Effective gravitational force near the surface of the Earth
12.11: Free Motion on the Earth
12.12: Weather systems
12.13: Foucault pendulum
12.E: Non-inertial reference frames (Exercises)
12.S: Non-inertial reference frames (Summary)

Thumbnail: This low-pressure system over Iceland spins counterclockwise due to balance between the Coriolis force and the
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12.1.1 https://phys.libretexts.org/@go/page/9621

12.1: Introduction to Non-inertial Reference Frames
Newton’s Laws of motion apply only to inertial frames of reference. Inertial frames of reference make it possible to use either
Newton’s laws of motion, or Lagrangian, or Hamiltonian mechanics, to develop the necessary equations of motion. There are
certain situations where it is more convenient to treat the motion in a non-inertial frame of reference. Examples are motion in
frames of reference undergoing translational acceleration, rotating frames of reference, or frames undergoing both translational and
rotational motion. This chapter will analyze the behavior of dynamical systems in accelerated frames of reference, especially
rotating frames such as on the surface of the Earth. Newtonian mechanics, as well as the Lagrangian and Hamiltonian approaches,
will be used to handle motion in non-inertial reference frames by introducing extra inertial forces that correct for the fact that the
motion is being treated with respect to a non-inertial reference frame. These inertial forces are often called fictitious even though
they appear real in the non-inertial frame. The underlying reasons for each of the inertial forces will be discussed followed by a
presentation of important applications.
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12.2: Translational acceleration of a reference frame

Figure : Inertial reference frame (unprimed), and translational accelerating frame (primed).

Consider an inertial system  which is fixed in space, and a non-inertial system  that is moving
in a direction relative to the fixed frame such as to maintain constant orientations of the axes relative to the fixed frame, as
illustrated in Figure . The fixed frame is designated to be the unprimed frame and, to avoid confusion the subscript  is
attached to the fixed coordinates taken with respect to the fixed coordinate frame. Similarly, the translating reference frame, which
is undergoing translational acceleration, has the subscript  attached to the coordinates taken with respect to the translating
frame of reference. Newton’s Laws of motion are obeyed only in the inertial (unprimed) reference frame. The respective position
vectors are related by

where  is the vector relative to the fixed frame,  is the vector relative to the translationally accelerating frame and  is
the vector from the origin of the fixed frame to the origin of the accelerating frame. Differentiating Equation  gives the
velocity vector relation

where ,  and . Similarly the acceleration vector relation is

where ,  and .

In the fixed frame, Newton’s laws give that

The force in the fixed frame can be separated into two terms, the acceleration of the accelerating frame of reference  plus the
acceleration with respect to the accelerating frame .

Relative to the accelerating reference frame the acceleration is given by

The accelerating frame of reference can exploit Newton’s Laws of motion using an effective translational force 
. The additional  term is called an inertial force; it can be altered by choosing a different non-

inertial frame of reference, that is, it is dependent on the frame of reference in which the observer is situated.
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12.3: Rotating Reference Frame
Consider a rotating frame of reference which will be designated as the double-primed (rotating) frame to differentiate it from the
non-rotating primed (moving) frame, since both of which may be undergoing translational acceleration relative to the inertial fixed
unprimed frame as described in Figure .

Spatial time derivatives in a rotating, non-translating, reference frame
For simplicity assume that , that is, the primed reference frame is stationary and identical to the fixed stationary
unprimed frame. The double-primed (rotating) frame is a non-inertial frame rotating with respect to the origin of the fixed primed
frame.

Figure : Infinitessimal displacement in the non rotating primed frame and in the rotating double-primed reference frame
frame.

Appendix  shows that an infinitessimal rotation  about an instantaneous axis of rotation leads to an infinitessimal
displacement  where

Consider that during a time , the position vector in the fixed primed reference frame moves by an arbitrary infinitessimal
distance . As illustrated in Figure , this infinitessimal distance in the primed non-rotating frame can be split into two
parts:

a.  which is due to rotation of the rotating frame with respect to the translating primed frame.
b.  which is the motion with respect to the rotating (double-primed) frame.

That is, the motion has been arbitrarily divided into a part that is due to the rotation of the double-primed frame, plus the vector
displacement measured in this rotating (double-primed) frame. It is always possible to make such a decomposition of the
displacement as long as the vector sum can be written as

Since  then the time differential of the displacement, Equation , can be written as

The important conclusion is that a velocity measured in a non-rotating reference frame  can be expressed as the sum of

the velocity , measured relative to a rotating frame, plus the term  which accounts for the rotation of the frame.
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The division of the  vector into two parts, a part due to rotation of the frame plus a part with respect to the rotating frame, is
valid for any vector as shown below.

General vector in a rotating, non-translating, reference frame

Consider an arbitrary vector  which can be expressed in terms of components along the three unit vector basis  in the fixed
inertial frame as

Neglecting translational motion, then it can be expressed in terms of the three unit vectors in the non-inertial rotating frame unit
vector basis  as

Since the unit basis vectors  are constant in the rotating frame, that is,

then the time derivatives of  in the rotating coordinate system  can be written as

The inertial-frame time derivative taken with components along the rotating coordinate basis , Equation , is

Substitute the unit vector  for  in Equation , plus using Equation , gives that

Substitute this into the second term of Equation  gives

This important identity relates the time derivatives of any vector expressed in both the inertial frame and the rotating non-inertial
frame bases. Note that the  term originates from the fact that the unit basis vectors of the rotating reference frame are time
dependent with respect to the non-rotating frame basis vectors as given by Equation . Equation  is used extensively
for problems involving rotating frames. For example, for the special case where , then Equation  relates the velocity
vectors in the fixed and rotating frames as given in Equation .

Another example is the vector 

That is, the angular acceleration  has the same value in both the fixed and rotating frames of reference.
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ê
rot
i

= 0( )
dê
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12.4: Reference Frame Undergoing Rotation Plus Translation
Consider the case where the system is accelerating in translation as well as rotating, that is, the primed frame is the non-rotating
translating frame. The position vector  is taken with respect to the inertial fixed unprimed frame which can be written in terms
of the fixed unit basis vectors . This  vector can be written as the vector sum of the translational motion 
of the origin of the rotating system with respect to the fixed frame, plus the position  with respect to this translating primed
frame basis

The time differential is

The vector  is the position with respect to the translating frame of reference which can be expressed in terms of the unit vectors 

.

Equation  takes into account the translational motion of the moving primed frame basis. Now, assuming that the double
primed frame rotates about the origin of the moving primed frame, then the net displacement with respect to the original inertial
frame basis can be combined with equation  leading to the relation

Here the double-primed frame is both rotating and translating. Vectors in this frame are expressed in terms of the unit basis vectors 

.

Expressed as velocities, Equation  can be written as

where:

 is the velocity measured with respect to the inertial (unprimed) frame basis.
 is the velocity of the origin of the non-inertial translating (primed) frame basis with respect to the origin of the inertial

(unprimed) frame basis.
 is the velocity of the particle with respect to the non-inertial rotating (double-primed) frame basis the origin of which is

both translating and rotating.
 is the motion of the rotating (double-primed) frame with respect to the linearly-translating (primed) frame basis. Thus

this relation takes into account both the translational velocity plus rotation of the reference coordinate frame basis vectors.
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12.5: Newton’s Law of Motion in a Non-Inertial Frame
The acceleration of the system in the rotating inertial frame can be derived by differentiating the general velocity relation for ,
Equation , in the fixed frame basis which gives

Now we wish to use the general transformation to a rotating frame basis which requires inclusion of the time dependence of the
unit vectors in the rotating frame, that is,

Using Equations , ,  gives

where the acceleration in the rotating frame is  while the velocity is  and  is with respect to

the fixed frame.

Newton’s laws of motion are obeyed in the inertial frame, that is

In the double-primed frame, which may be both rotating and accelerating in translation, one can ascribe an effective force  that
obeys an effective Newton’s law for the acceleration  in the rotating frame

Note that the effective force  comprises the physical force  minus four non-inertial forces that are introduced to correct
for the fact that the rotating reference frame is a non-inertial frame.
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12.6: Lagrangian Mechanics in a Non-Inertial Frame
The above derivation of the equations of motion in the rotating frame is based on Newtonian mechanics. Lagrangian mechanics provides
another derivation of these equations of motion for a rotating frame of reference by exploiting the fact that the Lagrangian is a scalar which is
frame independent, that is, it is invariant to rotation of the frame of reference.

The Lagrangian in any frame is given by

The scalar product  is the same in any rotated frame and can be evaluated in terms of the rotating frame variables using the same
decomposition of the translational plus rotational motion as used previously and given in equation .

Equation  decomposes the velocity in the fixed inertial frame  into four vector terms, the translational velocity  of the
translating frame, the velocity in the rotating-translating frame , and rotational velocity . Using equations  and ,
plus appendix equation  for the triple products, gives that the Lagrangian evaluated using  equals

This can be used to derive the canonical momentum in the rotating frame

The Lagrange equations can be used to derive the equations of motion in terms of the variables evaluated in the rotating reference frame. The
required Lagrange derivatives are

and

where the scalar triple product, equation , has been used. Thus the Lagrange equations give for the rotating frame basis that

The external force is identified as . Equation  can be used to transform between the fixed and the rotating bases.

This leads to an effective force in the non-inertial translating plus rotating frame that corresponds to an effective Newtonian force of

where  is expressed in the fixed frame. The derivation of Equation  using Lagrangian mechanics, confirms the identical formula 
 derived using Newtonian mechanics.

The four correction terms for the non-inertial frame basis correspond to the following effective forces.

Translational acceleration:  is the usual inertial force experienced in a linearly accelerating frame of reference, and
where  is with respect to the fixed frame.
Coriolis force:  This is a new type of inertial force that is present only when a particle is moving in the rotating
frame. This force is proportional to the velocity in the rotating frame and is independent of the position in the rotating frame
Centrifugal force:  This is due to the centripetal acceleration of the particle owing to the rotation of the
moving axis about the axis of rotation.
Transverse (azimuthal) force:  This is a straightforward term due to acceleration of the particle due to the angular
acceleration of the rotating axes.

The above inertial forces are correction terms arising from trying to extend Newton’s laws of motion to a non-inertial frame involving both
translation and rotation. These correction forces are often referred to as “fictitious” forces. However, these non-inertial forces are very real
when located in the non-inertial frame. Since the centrifugal and Coriolis terms are unusual they are discussed below.
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12.7: Centrifugal Force
The centrifugal force was defined as

Note that

therefore the centrifugal force is perpendicular to the axis of rotation. Using the vector identity, equation  allows the
centrifugal force to be written as

For the case where the radius  is perpendicular to  then  and thus for this special case

The centrifugal force is experienced when riding in a car driven rapidly around a bend. The passenger experiences an apparent
centrifugal (center fleeing) force that thrusts them to the outside of the bend relative to the inside of the turning car. In reality,
relative to the fixed inertial frame, i.e. the road, the friction between the car tires and the road is changing the direction of the car
towards the inside of the bend and the car seat is causing the centripetal (center seeking) acceleration of the passenger. A bucket of
water attached to a rope can be swung around in a vertical plane without spilling any water if the centrifugal force exceeds the
gravitation force at the top of the trajectory.

Figure : Centrifugal force.

This page titled 12.7: Centrifugal Force is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline
via source content that was edited to the style and standards of the LibreTexts platform.
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12.8: Coriolis Force
The Coriolis force was defined to be

where  is the velocity measured in the rotating (double-primed) frame. The Coriolis force is an interesting force; it is
perpendicular to both the axis of rotation and the velocity vector in the rotating frame, that is, it is analogous to the  Lorentz
magnetic force.

The understanding of the Coriolis effect is facilitated by considering the physics of a hockey puck sliding on a rotating frictionless
table. Assume that the table rotates with constant angular frequency  about the  axis. For this system the origin of the
rotating system is fixed, and the angular frequency is constant, thus  and  are zero. Also it is assumed that there are no
external forces acting on the hockey puck, thus the net acceleration of the puck sliding on the table, as seen in the rotating frame,
simplifies to

The centrifugal acceleration  is radially outwards while the Coriolis acceleration  is to the right. Integration
of the equations of motion can be used to calculate the trajectories in the rotating frame of reference.

Figure : Free-force motion of a hockey puck sliding on a rotating frictionless table of radius  that is rotating with constant
angular frequency  out of the page.

Figure  illustrates trajectories of the hockey puck in the rotating reference frame when no external forces are acting, that is,
in the inertial frame the puck moves in a straight line with constant velocity . In the rotating reference frame the Coriolis force
accelerates the puck to the right leading to trajectories that exhibit spiral motion. The apparent complicated trajectories are a result
of the observer being in the rotating frame for which that the straight inertial-frame trajectories of the moving puck exhibit a
spiralling trajectory in the rotating-frame.

The Coriolis force is the reason that winds circulate in an anticlockwise direction about low-pressure regions in the Earth’s northern
hemisphere. It also has important consequences in many activities on earth such as ballet dancing, ice skating, acrobatics, nuclear
and molecular rotation, and the motion of missiles.

Comparison of the relative merits of using a non-inertial frame versus an inertial frame is given by a spring pendulum attached
to an accelerating fulcrum. As shown in the figure, the spring pendulum comprises a mass  attached to a massless spring that
has a rest length  and spring constant . The system is in a vertical gravitational field  and the fulcrum of the pendulum is
accelerating vertically upwards with a constant acceleration . Assume that the spring pendulum oscillates only in the vertical 

 plane.
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rot (12.8.1)
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Figure 

Inertial frame

This problem can be solved in the fixed inertial coordinate system with coordinates . These coordinates, and their time
derivatives, are given in terms of  and  by

Thus

The Lagrange equations of motion are given by

The generalized momenta are

These lead to the corresponding velocities of
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=
∂L

∂θ̇

= m +matr sinθr2 θ̇

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14138?pdf


12.8.3 https://phys.libretexts.org/@go/page/14138

and thus the Hamiltonian is given by

The Hamilton equations of motion give that

These radial and angular velocities are the same as obtained using Lagrangian mechanics. The Hamilton equations for  and 
 are given by

Similarly

The transformation equations relating the generalized coordinates  are time dependent so the Hamiltonian  does not equal
the total energy . In addition neither the Lagrangian nor the Hamiltonian are conserved since they both are time dependent.
The fact that the Hamiltonian is not conserved is obvious since the whole system is accelerating upwards leading to increasing
kinetic and potential energies. Moreover, the time derivative of the angular momentum  is non-zero so the angular
momentum  is not conserved.

Non-inertial fulcrum frame
This system also can be addressed in the accelerating non-inertial fulcrum frame of reference which is fixed to the fulcrum of
the spring of the pendulum. In this non-inertial frame of reference, the acceleration of the frame can be taken into account
using an effective acceleration  which is added to the gravitational force; that is,  is replaced by an effective gravitational
force . Then the Lagrangian in the fulcrum frame simplifies to

The Lagrange equations of motion in the fulcrum frame are given by

These are identical to the Lagrange equations of motion derived in the inertial frame.

The  can be used to derive the momenta in the non-inertial fulcrum frame
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which comprise only a part of the momenta derived in the inertial frame. These partial fulcrum momenta lead to a Hamiltonian
for the fulcum-frame of

Both  and  are time independent and thus the fulcrum Hamiltonian  is a constant of motion in the
fulcrum frame. However,  does not equal the total energy which is increasing with time due to the acceleration of the
fulcrum frame relative to the inertial frame. This example illustrates that use of non-inertial frames can simplify solution of
accelerating systems.

Figure 

Find the shape of the surface of liquid in a bucket that rotates with angular speed  as shown in the adjacent figure. Assume
that the liquid is at rest in the frame of the bucket. Therefore, in the coordinate system rotating with the bucket of liquid, the
centrifugal force is important whereas the Coriolis, translational, and transverse forces are zero. The external force

where  is the pressure which is perpendicular to the surface. At equilibrium the acceleration of the surface is zero that is

The effective gravitational force is

which must be perpendicular to the surface of the liquid since  is perpendicular to the surface of a fluid, and the net force is
zero. In cylindrical coordinates this can be written as

From the figure it can be deduced that

By integration

This is the equation of a paraboloid and corresponds to a parabolic gravitational equipotential energy surface. Astrophysicists
build large parabolic mirrors for telescopes by continuously spinning a large vat of glass while it solidifies. This is much easier
than grinding a large cylindrical block of glass into a parabolic shape.
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An interesting application of the Coriolis force is the problem of a spinning ice skater or ballet dancer. Her angular frequency
increases when she draws in her arms. The conventional explanation is that angular momentum is conserved in the absence of
any external forces which is correct. Thus since her moment of inertia decreases when she retracts her arms, her angular
velocity must increase to maintain a constant angular momentum . But this explanation does not address the question
as to what are the forces that cause the angular frequency to increase? The real radial forces the skater feels when she retracts
her arms cannot directly lead to angular acceleration since radial forces are perpendicular to the rotation. The following
derivation shows that the Coriolis force  acts tangentially to the radial retraction velocity of her arms leading to
the angular acceleration required to maintain constant angular momentum.

Consider that a mass  is moving radially at a velocity  then the Coriolis force in the rotating frame is

This Coriolis force leads to an angular acceleration of the mass of

that is, the rotational frequency decreases if the radius is increased. Note that, as shown in equation , . This
nonzero value of  obviously leads to an azimuthal force in addition to the Coriolis force. Consider the rate of change of
angular momentum for the rotating mass  assuming that the angular momentum comes purely from the rotation . Then in
the rotating frame

Substituting Equation  for  in the second term gives

That is, the two terms cancel. Thus the angular momentum is conserved for this case where the velocity is radial. Note that,
since  is assumed to be colinear with , then it is the same in both the stationary and rotating frames of reference and thus
angular momentum is conserved in both frames. In addition, in the fixed frame, the angular momentum is conserved if no
external torques are acting as assumed above.

Note that the rotational energy is

Also the angular momentum is conserved, that is

Substituting  in the rotational energy gives

Therefore the rotational energy actually increases as the moment of inertia decreases when the ice skater pulls her arms close to
her body. This increase in rotational energy is provided by the work done as the dancer pulls her arms inward against the
centrifugal force.

This page titled 12.8: Coriolis Force is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via
source content that was edited to the style and standards of the LibreTexts platform.
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12.9: Routhian Reduction for Rotating Systems
The Routhian reduction technique, that was introduced in chapter , is a hybrid variational approach. It was devised by Routh to handle
the cyclic and non-cyclic variables separately in order to simultaneously exploit the differing advantages of the Hamiltonian and
Lagrangian formulations. The Routhian reduction technique is a powerful method for handling rotating systems ranging from galaxies to
molecules, or deformed nuclei, as well as rotating machinery in engineering. A valuable feature of the Hamiltonian formulation is that it
allows elimination of cyclic variables which reduces the number of degrees of freedom to be handled. As a consequence, cyclic variables
are called ignorable variables in Hamiltonian mechanics. The Lagrangian, the Hamiltonian and the Routhian all are scalars under rotation
and thus are invariant to rotation of the frame of reference. Note that often there are only two cyclic variables for a rotating system, that
is,  and the corresponding canonical total angular momentum .

As mentioned in chapter , there are two possible Routhians that are useful for handling rotation frames of reference. For rotating
systems the cyclic Routhian  simplifies to

This Routhian behaves like a Hamiltonian for the ignorable cyclic coordinates . Simultaneously it behaves like a negative Lagrangian
 for all the other coordinates.

The non-cyclic Routhian  complements  in that it is defined as

This non-cyclic Routhian behaves like a Hamiltonian for all the non-cyclic variables and behaves like a negative Lagrangian for the two
cyclic variables . Since the cyclic variables are constants of motion, then  is a constant of motion that equals the energy in
the rotating frame if  is a constant of motion. However,  does not equal the total energy since the coordinate transformation is
time dependent, that is, the Routhian  corresponds to the energy of the non-cyclic parts of the motion.

For example, the Routhian  for a system that is being cranked about the  axis at some fixed angular frequency , with
corresponding total angular momentum , can be written as

Note that  is a constant of motion if , which is the case when the system is being cranked at a constant angular
frequency. However the Hamiltonian in the rotating frame  is given by  since the coordinate
transformation is time dependent. The canonical Hamilton equations for the fourth and fifth terms in the bracket can be identified with the
Coriolis force , while the last term in the bracket is identified with the centrifugal force. That is, define

where the gradient of  gives the usual centrifugal force.

The Routhian reduction method is used extensively in science and engineering to describe rotational motion of rigid bodies, molecules,
deformed nuclei, and astrophysical objects. The cyclic variables describe the rotation of the frame and thus the Routhian 

 corresponds to the Hamiltonian for the non-cyclic variables in the rotating frame.
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Figure : Cranked plane pendulum that is cranked around the vertical axis with angular velocity .

The cranked plane pendulum, which is also called the rotating plane pendulum, comprises a plane pendulum that is cranked around a
vertical axis at a constant angular velocity  as determined by some external drive mechanism. The parameters are illustrated in
the adjacent figure. The cranked pendulum nicely illustrates the advantages of working in a non-inertial rotating frame for a driven
rotating system. Although the cranked plane pendulum looks similar to the spherical pendulum, there is one very important
difference; for the spherical pendulum  is a constant of motion and thus the angular velocity varies with , i.e. 

, whereas for the cranked plane pendulum, the constant of motion is  and thus the angular momentum varies with
, i.e. . For the cranked plane pendulum, the energy must flow into and out of the cranking drive system that is

providing the constraint force to satisfy the equation of constraint

The easiest way to solve the equations of motion for the cranked plane pendulum is to use generalized coordinates to absorb the
equation of constraint and applied constraint torque. This is done by incorporating the  constraint explicitly in the Lagrangian
or Hamiltonian and solving for just  in the rotating frame.

Assuming that , and using generalized coordinates to absorb the cranking constraint forces, then the Lagrangian for the
cranked pendulum can be written as.

The momentum conjugate to  is

Consider the Routhian  which acts as a Hamiltonian  in the rotating frame

Note that if  is constant, then  is a constant of motion for rotation about the  axis since it is independent of . Also 

 thus the energy in the rotating non-inertial frame of the pendulum  is a constant
of motion, but it does not equal the total energy since the rotating coordinate transformation is time dependent. The driver that cranks
the system at a constant  provides or absorbs the energy  as  changes in order to maintain a constant .

The Routhian  can be used to derive the equations of motion using Hamiltonian mechanics.

Since , then the equation of motion is
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Assuming that , then Equation  leads to linear harmonic oscillator solutions about a minimum at  if the term in

brackets is positive. That is, when the bracket  then equation  corresponds to a harmonic oscillator with

angular velocity  given by

The adjacent figure shows the phase-space diagrams for a plane pendulum rotating about a vertical axis at angular velocity  for (a) 

 and (b) . The upper phase plot shows small  when the square bracket of Equation  is positive and the the phase

space trajectories are ellipses around the stable equilibrium point . As  increases the bracket becomes smaller and changes sign
when . For larger  the bracket is negative leading to hyperbolic phase space trajectories around the 
equilibrium point, that is, an unstable equilibrium point. However, new stable equilibrium points now occur at angles 

 where . That is, the equilibrium point  undergoes bifurcation as illustrated in the lower figure.
These new equilibrium points are stable as illustrated by the elliptical trajectories around these points. It is interesting that these new
equilibrium points  move to larger angles given by  beyond the bifurcation point at . For low energy the
mass oscillates about the minimum at  whereas the motion becomes more complicated for higher energy. The bifurcation
corresponds to symmetry breaking since, under spatial reflection, the equilibrium point is unchanged at low rotational frequencies but
it transforms from  to  once the solution bifurcates, that is, the symmetry is broken. Also chaos can occur at the separatrix
that separates the bifurcation. Note that either the Lagrange multiplier approach, or the generalized force approach, can be used to
determine the applied torque required to ensure a constant  for the cranked pendulum.

Figure : Phase-space diagrams for the plane pendulum cranked at angular velocity  about a vertical axis. Figure  is for
 while  is for .

Consider the rotation of axially-symmetric, prolate-deformed nucleus. Many nuclei have a prolate spheroidal shape, (the shape of a
rugby ball) and they rotate perpendicular to the symmetry axis. In the non-inertial body-fixed frame, pairs of nucleons, each with
angular momentum , are bound in orbits with the projection of the angular momentum along the symmetry axis being conserved
with value , which is a cyclic variable. Since the nucleus is of dimensions  , quantization is important and the
quantized binding energies of the individual nucleons are separated by spacings  .
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Figure : Schematic diagram for the strong coupling of a nucleon to the deformation axis. The projection of  on the symmetry
axis is , and the projection of  is . For axial symmetry Noether’s theroem gives that the projection of the angular momentum 
on the symmetry axis is a conserved quantity.

The Lagrangian and Hamiltonian are scalars and can be evaluated in any coordinate frame of reference. It is most useful to calculate
the Hamiltonian for a deformed body in the non-inertial rotating body-fixed frame of reference. The bodyfixed Hamiltonian
corresponds to the Routhian 

where it is assumed that the deformed nucleus has the symmetry axis along the  direction and rotates about the  axis. Since the
Routhian is for a non-inertial rotating frame of reference it does not include the total energy but, if the shape is constant in time, then 

 and the corresponding body-fixed Hamiltonian are conserved and the energy levels for the nucleons bound in the
spheroidal potential well can be calculated using a conventional quantum mechanical model.

For a prolate spheroidal deformed potential well, the nucleon orbits that have the angular momentum nearly aligned to the symmetry
axis correspond to nucleon trajectories that are restricted to the narrowest part of the spheroid, whereas trajectories with the angular
momentum vector close to perpendicular to the symmetry axis have trajectories that probe the largest radii of the spheroid. The
Heisenberg Uncertainty Principle, mentioned in chapter , describes how orbits restricted to the smallest dimension will have
the highest linear momentum, and corresponding kinetic energy, and vise versa for the larger sized orbits. Thus the binding energy of
different nucleon trajectories in the spheroidal potential well depends on the angle between the angular momentum vector and the
symmetry axis of the spheroid as well as the deformation of the spheroid. A quantal nuclear model Hamiltonian is solved for assumed
spheroidal-shaped potential wells. The corresponding orbits each have angular momenta  for which the projection of the angular
momentum along the symmetry axis  is conserved, but the projection of  in the laboratory frame  is not conserved since the
potential well is not spherically symmetric. However, the total Hamiltonian is spherically symmetric in the laboratory frame, which is
satisfied by allowing the deformed spheroidal potential well to rotate freely in the laboratory frame, and then , , and  all are
conserved quantities. The attractive residual nucleon-nucleon pairing interaction results in pairs of nucleons being bound in time-
reversed orbits , that is, with resultant total spin zero, in this spheroidal nuclear potential. Excitation of an even-even nucleus
can break one pair and then the total projection of the angular momentum along the symmetry axis is , depending on
whether the projections are parallel or antiparallel. More excitation energy can break several pairs and the projections continue to be
additive. The binding energies calculated in the spheroidal potential well must be added to the rotational energy  to get
the total energy, where  is the moment of inertia. Nuclear structure measurements are in good agreement with the predictions of
nuclear structure calculations that employ the Routhian approach.

For clarity sections  to  of this chapter adopted a naming convention that uses unprimed coordinates with the subscript 
for the inertial frame of reference, primed coordinates with the subscript  for the translating coordinates, and double-primed
coordinates with the subscript  for the translating plus rotating frame. For brevity the subsequent discussion omits the redundant
subscripts , ,  since the single and double prime superscripts completely define the moving and rotating frames of reference.

This page titled 12.9: Routhian Reduction for Rotating Systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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12.10: Effective gravitational force near the surface of the Earth
Consider that the translational acceleration of the center of the Earth can be neglected, and thus a set of non-rotating axes through
the center of the Earth can be assumed to be approximately an inertial frame. The effects of the motion of the Earth around the Sun,
or the motion of the Solar system in our Galaxy, are small compared with the effects due to the rotation of the Earth.

Figure : Rotating frame at the surface of the Earth.

Consider a rotating frame attached to the surface of the earth as shown in Figure . The vector with respect to the center of
the Earth  can be decomposed into a vector to the origin of the reference frame fixed to the surface of the Earth , plus the vector
with respect to this surface reference frame .

If the external force is separated into the gravitational term , plus some other physical force , then the acceleration in the non-
inertial surface frame of reference is

But

since in the rotating frame . Also the acceleration

since . Substituting this into the above equation gives

where  is with respect to the center of the Earth. This is as expected directly from equation . Since the angular frequency
of the earth is a constant then . Thus the acceleration can be written as

The term in the square brackets combines the gravitational acceleration plus the centrifugal acceleration.
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A measurement of the Earth’s gravitational acceleration actually measures the term in the square brackets in Equation , that
is, an effective gravitational acceleration where

near the surface of the earth . The effective gravitational force does not point towards the center of the Earth as shown in
Figure . A plumb line points, or an object falls, in the direction of . The shape of the earth is such that the Earth’s
surface is perpendicular to . This is the reason why the earth is distorted into an oblate ellipsoid, that is, it is flattened at the
poles.

Figure : Effective gravitational acceleration.

The angle  between  and the line pointing to the center of the earth is dependent on the latitude . Note that the
colatitude  is taken to be zero at the North pole whereas the latitude  is taken to be zero at the equator. The angle  can be
estimated by assuming that , then the centrifugal term then can be approximated by

This is quite small for the Earth since   and  , leading to a correction term 
 . Since

and

Then the angle  between  and  is given by

This has a maximum value at  which is .

This page titled 12.10: Effective gravitational force near the surface of the Earth is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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12.11: Free Motion on the Earth
The calculation of trajectories for objects as they move near the surface of the earth is frequently required for many applications.
Such calculations require inclusion of the noninertial Coriolis force.

Figure : Rotating frame fixed on the surface of the Earth.

In the frame of reference fixed to the earth’s surface, assuming that air resistance and other forces can be neglected, then the
acceleration equals

Neglect the centrifugal correction term since it is very small, that is, let . Using the coordinate axis shown in Figure 
, the surface-frame vectors have components

and

Thus the Coriolis term is

Therefore the equations of motion are

That is, the components of this equation of motion are

Integrating these differential equations gives
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where  are the initial velocities. Substituting the above velocity relations into the equation of motion for  gives

The last term  is small and can be neglected leading to a simple uncoupled second-order differential equation in . Integrating
this twice assuming that , plus the fact that  and  are constant, gives

Similarly,

Consider the following special cases;

Assume that an object falls a height  starting from rest at , , , . Then

Substituting for  gives

Thus the object drifts eastward as a consequence of the earth’s rotation. Note that relative to the fixed frame it is obvious that
the angular velocity of the body must increase as it falls to compensate for the reduced distance from the axis of rotation in
order to ensure that the angular momentum is conserved.

An upward fired projectile with initial velocities  and  leads to the relations

Solving for  when  gives , and . Also since the maximum height  that the projectile reaches is related by

then the final deflection is

Thus the body drifts westwards.
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For motion in the horizontal  plane the deflection is always to the right in the northern hemisphere of the Earth since the

vertical component of  is upwards and thus  points to the right. In the southern hemisphere the vertical component

of  is downward and thus  points to the left. This is also shown using the above relations for the case of a
projectile fired upwards in an easterly direction with components . The resultant displacements are

Similarly,

The trajectory is non-planar and, in the northern hemisphere, the projectile drifts to the right, that is southerly.

In the battle of the River de la Plata, during World War 2, the gunners on the British light cruisers Exeter, Ajax and Achilles
found that their accurately aimed salvos against the German pocket battleship Graf Spee were falling 100 yards to the left. The
designers of the gun sighting mechanisms had corrected for the Coriolis effect assuming the ships would fight at latitudes near
50  north, not 50  south.

This page titled 12.11: Free Motion on the Earth is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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12.12: Weather systems
Weather systems on Earth provide a classic example of motion in a rotating coordinate system. In the northern hemisphere, air
flowing into a low-pressure region is deflected to the right causing counterclockwise circulation, whereas air flowing out of a high-
pressure region is deflected to the right causing a clockwise circulation. Trade winds on the Earth result from air rising or sinking
due to thermal activity combined with the Coriolis effect. Similar behavior is observed on other planets such as the Red Spot on
Jupiter.

For a fluid or gas, equation  can be written in terms of the fluid density  in the form

where the translational acceleration , the gravitational force, and the azimuthal acceleration  terms are ignored. The
external force per unit volume equals the pressure gradient  while  is the rotation vector of the earth.

In fluid flow, the Rossby number  is defined to be

For large dimensional pressure systems in the atmosphere, e.g.  , the Rossby number is  and thus the
Coriolis force dominates and the radial acceleration can be neglected. This leads to a flow velocity   which is
perpendicular to the pressure gradient , that is, the air flows horizontally parallel to the isobars of constant pressure which is
called geostrophic flow. For much smaller dimension systems, such as at the wall of a hurricane,  , and  , the
Rossby number  and the Coriolis effect plays a much less significant role compared to the balance between the radial
centrifugal forces and the pressure gradient. The same situation of the Coriolis forces being insignificant occurs for most small-
scale vortices such as tornadoes, typical thermal vortices in the atmosphere, and for water draining a bath tub.

Low-pressure systems:

It is interesting to analyze the motion of air circulating around a low pressure region at large radii where the motion is tangential.
As shown in Figure , a parcel of air circulating anticlockwise around the low with velocity  involves a pressure difference 

 acting on the surface area , plus the centrifugal and Coriolis forces. Assuming that these forces are balanced such that 
, then Equation  simplifies to

where the latitude . Thus the force equation can be written

It is apparent that the combined outward Coriolis force plus outward centrifugal force, acting on the circulating air, can support a
large pressure gradient.

Figure : Air flow and pressures around a lowpressure region.

The tangential velocity  can be obtained by solving this equation to give
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Note that the velocity equals zero when  assuming that  is finite. That is, the velocity reaches a maximum at a radius

which occurs at the wall of the eye of the circulating low-pressure system.

Figure : Hurricane Katrina over the Gulf of Mexico on 28 August 2005. [Published by the NOAA]

Low pressure regions are produced by heating of air causing it to rise and resulting in an inflow of air to replace the rising air.
Hurricanes form over warm water when the temperature exceeds 26  and the moisture levels are above average. They are created
at latitudes between 10  −15  where the sea is warmest, but not closer to the equator where the Coriolis force drops to zero. About
90% of the heating of the air comes from the latent heat of vaporization due to the rising warm moist air condensing into water
droplets in the cloud similar to what occurs in thunderstorms. For hurricanes in the northern hemisphere, the air circulates
anticlockwise inwards. Near the wall of the eye of the hurricane, the air rises rapidly to high altitudes at which it then flows
clockwise and outwards and subsequently back down in the outer reaches of the hurricane. Both the wind velocity and pressure are
low inside the eye which can be cloud free. The strongest winds are in vortex surrounding the eye of the hurricane, while weak
winds exist in the counter-rotating vortex of sinking air that occurs far outside the hurricane.

Figure  shows the satellite picture of the hurricane Katrina, recorded on 28 August 2005. The eye of the hurricane is readily
apparent in this picture. The central pressure was 90200  (902 ) compared with the standard atmospheric pressure of
101300  (1013 ). This 111  pressure difference produced steady winds in Katrina of 280  ( 175 ) with
gusts up to 344  which resulted in 1833 fatalities.

Tornadoes are another example of a vortex low-pressure system that are the opposite extreme in both size and duration compared
with a hurricane. Tornadoes may last only  minutes and be quite small in radius. Pressure drops of up to 100  have been
recorded, but since they may only be a few 100 meters in diameter, the pressure gradient can be much higher than for hurricanes
leading to localized winds thought to approach 500 . Unfortunately, the instrumentation and buildings hit by a tornado often
are destroyed making study difficult. Note that the the pressure gradient in small diameter of rope tornadoes is much more
destructive than for larger 1/4 mile diameter tornadoes, which results in stronger winds.

v= −rω sinλ(rω sinλ +)2 r

ρ

dP

dr

− −−−−−−−−−−−−−−

√ (12.12.5)

r = 0 dP

dr

= (1 + )rpeakvel
1

4

1

ρω sinλ

dP

dr
(12.12.6)

12.12.2

∘C
∘ ∘

12.12.2

N/m2 mb

N/m2 mb mb km/hr mph

km/hr

∼ 10 mb

km/hr

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14144?pdf


12.12.3 https://phys.libretexts.org/@go/page/14144

High-pressure systems:
In contrast to low-pressure systems, high-pressure systems are very different in that the Coriolis force points inward opposing the
outward pressure gradient and centrifugal force. That is,

which gives that

This implies that the maximum pressure gradient plus centrifugal force supported by the Coriolis force is

As a consequence, high pressure regions tend to have weak pressure gradients and light winds in contrast to the large pressure
gradients plus concomitant damaging winds possible for low pressure systems.

The circulation behavior, exhibited by weather patterns, also applies to ocean currents and other liquid flow on earth. However, the
residual angular momentum of the liquid often can overcome the Coriolis terms. Thus often it will be found experimentally that
water exiting the bathtub does not circulate anticlockwise in the northern hemisphere as predicted by the Coriolis force. This is
because it was not stationary originally, but rotating slowly.

Reliable prediction of weather is an extremely difficult, complicated and challenging task, which is of considerable importance in
modern life. As discussed in chapter , fluid flow can be much more complicated than assumed in this discussion of air flow
and weather. Both turbulent and laminar flow are possible. As a consequence, computer simulations of weather phenomena are
difficult because the air flow can be turbulent and the transition from order to chaotic flow is very sensitive to the initial conditions.
Typically the air flow can involve both macroscopic ordered coherent structures over a wide dynamic range of dimensions,
coexisting with chaotic regions. Computer simulations of fluid flow often are performed based on Lagrangian mechanics to exploit
the scalar properties of the Lagrangian. Ordered coherent structures, ranging from microscopic bubbles to hurricanes, can be
recognized by exploiting Lyapunov exponents to identify the ordered motion buried in the underlying chaos. Thus the techniques
discussed in classical mechanics are of considerable importance outside of physics.

This page titled 12.12: Weather systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline
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12.13: Foucault pendulum
A classic example of motion in non-inertial frames is the rotation of the Foucault pendulum on the surface of the earth. The
Foucault pendulum is a spherical pendulum with a long suspension that oscillates in the  plane with sufficiently small
amplitude that the vertical velocity  is negligible.

Figure : Foucault pendulum.

Assume that the pendulum is a simple pendulum of length  and mass  as shown in Figure . The equation of motion is
given by

where  is the acceleration produced by the tension in the pendulum suspension and the rotation vector of the earth is designated
by  to avoid confusion with the oscillation frequency of the pendulum . The effective gravitational acceleration  is given by

that is, the true gravitational field  corrected for the centrifugal force.

Assume the small angle approximation for the pendulum deflection angle , then  and , thus .
Then has shown in Figure , the horizontal components of the restoring force are

Since  is vertical, and neglecting terms involving , then evaluating the cross product in Equation  simplifies to

where  is the colatitude which is related to the latitude  by

The natural angular frequency of the simple pendulum is

while the  component of the earth’s angular velocity is

Thus equations  and  can be written as
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ż

12.13.1

l m 12.13.1

= g + −2Ω ×r̈
T

m
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These are two coupled equations that can be solved by making a coordinate transformation.

Define a new coordinate that is a complex number

Multiply the second of the coupled equations  by  and add to the first equation gives

which can be written as a differential equation for 

Note that the complex number  contains the same information regarding the position in the  plane as equations .
The plot of  in the complex plane, the Argand diagram, is a birds-eye view of the position coordinates  of the pendulum.
This second-order homogeneous differential equation has two independent solutions that can be derived by guessing a solution of
the form

Substituting Equation  into  gives that

That is

If the angular velocity of the pendulum , then

Thus the solution is of the form

This can be written as

where the phase  and amplitude  depend on the initial conditions. Thus the plane of oscillation of the pendulum is defined by the
ratio of the  and  coordinates, that is the phase angle . This phase angle rotates with angular velocity  where

At the north pole the earth rotates under the pendulum with angular velocity  and the axis of the pendulum is fixed in an inertial
frame of reference. At lower latitudes, the pendulum precesses at the lower angular frequency  that goes to zero at the
equator. For example, in Rochester, NY, , and therefore a Foucault pendulum precesses at . That is, the
pendulum precesses /day.

This page titled 12.13: Foucault pendulum is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
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12.E: Non-inertial reference frames (Exercises)
1. Consider a fixed reference frame  and a rotating frame . The origins of the two coordinate systems always coincide. By

carefully drawing a diagram, derive an expression relating the coordinates of a point  in the two systems. (This was covered in
Chapter , but it is worth reviewing now.

2. The effective force observed in a rotating coordinate system is given by equation .
1. What is the significance of each term in this expression?
2. Suppose you wanted to measure the gravitational force, both magnitude and direction, on a body of mass  at rest on the

surface of the Earth. What terms in the effective force can be neglected?
3. Suppose you wanted to calculate the deflection of a projectile fired horizontally along the Earth’s surface. What terms in the

effective force can be neglected?
4. Suppose you wanted to calculate the effective force on a small block of mass  placed on a frictionless turntable rotating

with a time-dependent angular velocity . What terms in the effective force can be neglected?
3. A plumb line is carried along in a moving train, with  the mass of the plumb bob. Neglect any effects due to the rotation of

the Earth and work in the noninertial frame of reference of the train.

1. Find the tension in the cord and the deflection from the local vertical if the train is moving with constant acceleration .
2. Find the tension in the cord and the deflection from the local vertical if the train is rounding a curve of radius  with

constant speed .
4. A bead on a rotating rod is free to slide without friction. The rod has a length  and rotates about its end with angular velocity 

. The bead is initially released from rest (relative to the rod) at the midpoint of the rod.
1. Find the displacement of the bead along the wire as a function of time.
2. Find the time when the bead leaves the end of the rod.
3. Find the velocity (relative to the rod) of the bead when it leaves the end of the rod.

5. Here is a “thought experiment” for you to consider. Suppose you are in a small sailboat of mass  at the Earth’s equator. At the
equator there is very little wind (this is known as the “equatorial doldrums”), so your sailboat is, more or less, sitting still. You
have a small anchor of mass  on deck and a single mast of height  in the middle of the boat. How can you use the anchor to
put the boat into motion? In which direction will the boat move?

6. Does water really flow in the other direction when you flush a toilet in the southern hemisphere? What (if anything) does the
Coriolis force have to do with this?

7. We are presently at a latitude  (with respect to the equator) and Earth is rotating with constant angular velocity . Consider the
following two scenarios: Scenario A: A particle is thrown upward with initial speed . Scenario B: An identical particle is
dropped (at rest) from the maximum height of the particle in Scenario A. Circle all the true statements regarding the Coriolis
deflection assuming that the particles have landed for a) and b), .
1. (a) The magnitude is greater in A than in B.
2. (b) The direction in A and B are the same.
3. (c) The direction in A does not change throughout flight.

8. If a projectile is fired due east from a point on the surface of the Earth at a northern latitude  with a velocity of magnitude 
and at an inclination to the horizontal of , show that the lateral deflection when the projectile strikes the Earth is

where  is the rotation frequency of the Earth.

9. Obtain an expression for the angular deviation of a particle projected from the North Pole in a path that lies close to the surface
of the earth. Is the deviation significant for a missile that makes a 4800-km flight in 10 minutes? What is the ”miss distance” if
the missile is aimed directly at the target? Is the miss difference greater for a 19300-km flight at the same velocity?

10. An automobile drag racer drives a car with acceleration  and instantaneous velocity . The tires of radius  are not slipping.
Derive which point on the tire has the greatest acceleration relative to the ground. What is this acceleration?

11. Shot towers were popular in the eighteenth and nineteenth centuries for dropping melted lead down tall towers to form spheres
for bullets. The lead solidified while falling and often landed in water to cool the lead bullets. Many such shot towers were built
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in New York State. Assume a shot tower was constructed at latitude  , and that the lead fell a distance of  . In what
direction and by how far did the lead bullets land from the direct vertical?

This page titled 12.E: Non-inertial reference frames (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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12.S: Non-inertial reference frames (Summary)
This chapter has focussed on describing motion in non-inertial frames of reference. It has been shown that the force and
acceleration in non-inertial frames can be related using either Newtonian or Lagrangian mechanics by introducing additional
inertial forces in the non-inertial reference frame.

Translational acceleration of a reference frame
In a primed frame, that is undergoing translational acceleration , the motion in this non-inertial frame can be calculated by
addition of an inertial force , that leads to an equation of motion

Note that the primed frame is an inertial frame if .

Rotating reference frame
It was shown that the time derivatives of a general vector  in both an inertial frame and a rotating reference frame are related by

where the  term originates from the fact that the unit vectors in the rotating reference frame are time dependent with respect
to the inertial frame.

Reference frame undergoing both rotation and translation

Both Newtonian and Lagrangian mechanics were used to show that for the case of translational acceleration plus rotation, the
effective force in the non-inertial (double-primed) frame can be written as

These inertial correction forces result from describing the system using a non-inertial frame. These inertial forces are felt when in
the rotating-translating frame of reference. Thus the notion of these inertial forces can be very useful for solving problems in non-
inertial frames. For the case of rotating frames, two important inertial forces are the centrifugal force, , and the
Coriolis force .

Routhian reduction for rotating systems

It was shown that for non-inertial systems, identical equations of motion are derived using Newtonian, Lagrangian, Hamiltonian,
and Routhian mechanics.

Terrestrial manifestations of rotation
Examples of motion in rotating frames presented in the chapter included projectile motion with respect to the surface of the Earth,
rotation alignment of nucleons in rotating nuclei, and weather phenomena.

This page titled 12.S: Non-inertial reference frames (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.1: Introduction to Rigid-body Rotation
Rigid-body rotation features prominently in science, engineering, and sports. Prior chapters have focussed primarily on motion of
point particles. This chapter extends the discussion to motion of finite-sized rigid bodies. A rigid body is a collection of particles
where the relative separations remain rigidly fixed. In real life, there is always some motion between individual atoms, but usually
this microscopic motion can be neglected when describing macroscopic properties. Note that the concept of perfect rigidity has
limitations in the theory of relativity since information cannot travel faster than the velocity of light, and thus signals cannot be
transmitted instantaneously between the ends of a rigid body which is implied if the body had perfect rigidity.

The description of rigid-body rotation is most easily handled by specifying the properties of the body in the rotating body-fixed
coordinate frame whereas the observables are measured in the stationary inertial laboratory coordinate frame. In the body-fixed
coordinate frame, the primary observable for classical mechanics is the inertia tensor of the rigid body which is well defined and
independent of the rotational motion. By contrast, in the stationary inertial frame the observables depend sensitively on the details
of the rotational motion. For example, when observed in the stationary fixed frame, rapid rotation of a long thin cylindrical pencil
about the longitudinal symmetry axis gives a time-averaged shape of the pencil that looks like a thin cylinder, whereas the time-
averaged shape is a flat disk for rotation about an axis perpendicular to the symmetry axis of the pencil. In spite of this, the pencil
always has the same unique inertia tensor in the body-fixed frame. Thus the best solution for describing rotation of a rigid body is
to use a rotation matrix that transforms from the stationary fixed frame to the instantaneous body-fixed frame for which the
moment of inertia tensor can be evaluated. Moreover, the problem can be greatly simplified by transforming to a body-fixed
coordinate frame that is aligned with any symmetry axes of the body since then the inertia tensor can be diagonal; this is called a
principal axis system.

Rigid-body rotation can be broken into the following two classifications.

1) Rotation about a fixed axis:

A body can be constrained to rotate about an axis that has a fixed location and orientation relative to the body. The hinged door is a
typical example. Rotation about a fixed axis is straightforward since the axis of rotation, plus the moment of inertia about this axis,
are well defined and this case was discussed in chapter .

2) Rotation about a point
A body can be constrained to rotate about a fixed point of the body but the orientation of this rotation axis about this point is
unconstrained. One example is rotation of an object flying freely in space which can rotate about the center of mass with any
orientation. Another example is a child’s spinning top which has one point constrained to touch the ground but the orientation of
the rotation axis is undefined.

The prior discussion in chapter  showed that rigid-body rotation is more complicated than assumed in introductory
treatments of rigid-body rotation. It is necessary to expand the concept of moment of inertia to the concept of the inertia tensor,
plus the fact that the angular momentum may not point along the rotation axis. The most general case requires consideration of
rotation about a body-fixed point where the orientation of the axis of rotation is unconstrained. The concept of the inertia tensor of
a rotating body is crucial for describing rigid-body motion. It will be shown that working in the body-fixed coordinate frame of a
rotating body allows a description of the equations of motion in terms of the inertia tensor for a given point of the body, and that it
is possible to rotate the body-fixed coordinate system into a principal axis system where the inertia tensor is diagonal. For any
principal axis, the angular momentum is parallel to the angular velocity if it is aligned with a principal axis. The use of a principal
axis system greatly simplifies treatment of rigid-body rotation and exploits the powerful and elegant matrix algebra mentioned in
appendix .

The following discussion of rigid-body rotation is broken into three topics, (1) the inertia tensor of the rigid body, (2) the
transformation between the rotating body-fixed coordinate system and the laboratory frame, i.e., the Euler angles specifying the
orientation of the body-fixed coordinate frame with respect to the laboratory frame, and (3) Lagrange and Euler’s equations of
motion for rigid-bodies. This is followed by a discussion of practical applications.
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13.2: Rigid-body Coordinates
Motion of a rigid body is a special case for motion of the -body system when the relative positions of the  bodies are related. It
was shown in chapter  that the motion of a rigid body can be broken into a combination of a linear translation of some point in the
body, plus rotation of the body about an axis through that point. This is called Chasles’ Theorem. Thus the position of every
particle in the rigid body is fixed with respect to one point in the body. If the fixed point of the body is chosen to be the center of
mass, then, as discussed in chapter , it is possible to separate the kinetic energy, linear momentum, and angular momentum into
the center-of-mass motion, plus the motion about the center of mass. Thus the behavior of the body can be described completely
using only six independent coordinates governed by six equations of motion, three for translation and three for rotation.

Referred to an inertial frame, the translational motion of the center of mass is governed by

while the rotational motion about the center of mass is determined by

where the external force  and external torque  are identified separately from the internal forces acting between the particles
in the rigid body. It will be assumed that the internal forces are central and thus do not contribute to the angular momentum.

The location of any fixed point in the body, such as the center of mass, can be specified by three generalized cartesian coordinates
with respect to a fixed frame. The rotation of the body-fixed axis system about this fixed point in the body can be described in
terms of three independent angles with respect to the fixed frame. There are several possible sets of orthogonal angles that can be
used to describe the rotation. This book uses the Euler angles  which correspond first to a rotation  about the -axis, then a
rotation  about the  axis subsequent to the first rotation, and finally a rotation  about the new  axis following the first two
rotations. The Euler angles will be discussed in detail following introduction of the inertia tensor and angular momentum.
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13.3: Rigid-body Rotation about a Body-Fixed Point
With respect to some point  fixed in the body coordinate system, the angular momentum of the body  is given by

There are two especially convenient choices for the fixed point . If no point in the body is fixed with respect to an inertial
coordinate system, then it is best to choose  as the center of mass. If one point of the body is fixed with respect to a fixed inertial
coordinate system, such as a point on the ground where a child’s spinning top touches, then it is best to choose this stationary point
as the body-fixed point .

Figure : Infinitessimal displacement  in the primed frame, broken into a part  due to rotation of the primed frame plus
a part  due to displacement with respect to this rotating frame.

Consider a rigid body composed of  particles of mass  where . As discussed in chapter , if the body
rotates with an instantaneous angular velocity  about some fixed point, with respect to the body-fixed coordinate system, and this
point has an instantaneous translational velocity  with respect to the fixed (inertial) coordinate system, see Figure , then the
instantaneous velocity  of the  particle in the fixed frame of reference is given by

However, for a rigid body, the velocity of a body-fixed point with respect to the body is zero, that is , thus

Consider the translational velocity of the body-fixed point  to be zero, i.e.  and let , then . These
assumptions allow the linear momentum of the particle  to be written as

Therefore

Using the vector identity

leads to
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The angular momentum can be expressed in terms of components of  and  relative to the body-fixed frame. The following
formulae can be written more compactly if , in the rotating body-fixed frame, is written in the form 

 where the axes are defined by the numbers  rather than . In this notation, the angular
momentum is written in component form as

Assume the Kronecker delta relation

where

Substitute  in  gives
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13.4: Inertia Tensor
The square bracket term in  is called the moment of inertia tensor, , which is usually referred to as the inertia tensor

In most cases it is more useful to express the components of the inertia tensor in an integral form over the mass distribution rather
than a summation for  discrete bodies. That is,

The inertia tensor is easier to understand when written in cartesian coordinates  rather than in the form 
. Then, the diagonal moments of inertia of the inertia tensor are

while the off-diagonal products of inertia are

Note that the products of inertia are symmetric in that

The above notation for the inertia tensor allows the angular momentum  to be written as

Expanded in cartesian coordinates

Note that every fixed point in a body has a specific inertia tensor. The components of the inertia tensor at a specified point depend
on the orientation of the coordinate frame whose origin is located at the specified fixed point. For example, the inertia tensor for a
cube is very different when the fixed point is at the center of mass compared with when the fixed point is at a corner of the cube.
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13.5: Matrix and Tensor Formulations of Rigid-Body Rotation
The prior notation is clumsy and can be streamlined by use of matrix methods. Write the inertia tensor in a matrix form as

The angular velocity and angular momentum both can be written as a column vectors, that is

As discussed in appendix , Equation  now can be written in tensor notation as an inner product of the form

Note that the above notation uses boldface for the inertia tensor , implying a rank-2 tensor representation, while the angular
velocity  and the angular momentum  are written as column vectors. The inertia tensor is a 9-component rank-2 tensor defined
as the ratio of the angular momentum vector  and the angular velocity .

Note that, as described in appendix , the inner product of a vector , which is the rank 1 tensor, and a rank 2 tensor , leads
to the vector . This compact notation exploits the fact that the matrix and tensor representation are completely equivalent, and are
ideally suited to the description of rigid-body rotation.
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13.6: Principal Axis System
The inertia tensor is a real symmetric matrix because of the symmetry given by equation . A property of real symmetric
matrices is that there exists an orientation of the coordinate frame, with its origin at the chosen body-fixed point , such that the
inertia tensor is diagonal. The coordinate system for which the inertia tensor is diagonal is called the Principal axis system which
has three perpendicular principal axes. Thus, in the principal axis system, the inertia tensor has the form

where  are real numbers, which are called the principal moments of inertia of the body, and are usually written as . When the
angular velocity vector  points along any principal axis unit vector , then the angular momentum  is parallel to  and the
magnitude of the principal moment of inertia about this principal axis is given by the relation

The principal axes are fixed relative to the shape of the rigid body and they are invariant to the orientation of the body-fixed
coordinate system used to evaluate the inertia tensor. The advantage of having the bodyfixed coordinate frame aligned with the
principal axis coordinate frame is that then the inertia tensor is diagonal, which greatly simplifies the matrix algebra. Even when
the body-fixed coordinate system is not aligned with the principal axis frame, if the angular velocity is specified to point along a
principal axis then the corresponding moment of inertia will be given by .

In principle it is possible to locate the principal axes by varying the orientation of the angular velocity vector  to find those
orientations for which the angular momentum  and angular velocity  are parallel which characterizes the principal axes.
However, the best approach is to diagonalize the inertia tensor.
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13.7: Diagonalize the Inertia Tensor
Finding the three principal axes involves diagonalizing the inertia tensor, which is the classic eigenvalue problem discussed in
appendix . Solution of the eigenvalue problem for rigid-body motion corresponds to a rotation of the coordinate frame to the
principal axes resulting in the matrix

where  comprises the three-valued eigenvalues, while the corresponding vector  is the eigenvector. Appendix  gives the
solution of the matrix relation

where  are three-valued eigen values for the principal axis moments of inertia, and  is the unity tensor, equation .

Rewriting  gives

This is a matrix equation of the form  where  is a  matrix and  is a vector with values . The matrix
equation  really corresponds to three simultaneous equations for the three numbers . It is a well-known
property of equations like  that they have a non-zero solution if, and only if, the determinant  is zero, that is

This is called the characteristic equation, or secular equation for the matrix . The determinant involved is a cubic equation in
the value of  that gives the three principal moments of inertia. Inserting one of the three values of  into equation  gives
the corresponding eigenvector . Applying the above eigenvalue problem to rigid-body rotation corresponds to requiring that some
arbitrary set of body-fixed axes be the principal axes of inertia. This is obtained by rotating the body-fixed axis system such that

or

These equations have a non-trivial solution for the ratios  since the determinant vanishes, that is

The expansion of this determinant leads to a cubic equation with three roots for . This is the secular equation for  whose
eigenvalues are the principal moments of inertia.

The directions of the principal axes, that is the eigenvectors, can be found by substituting the corresponding solution for  into the
prior equation. Thus for eigensolution  the eigenvector is given by solving

These equations are solved for the ratios  which are the direction numbers of the principle axis system
corresponding to solution . This principal axis system is defined relative to the original coordinate system. This procedure is
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repeated to find the orientation of the other two mutually perpendicular principal axes.
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13.8: Parallel-Axis Theorem
The values of the components of the inertia tensor depend on both the location and the orientation about which the body rotates
relative to the body-fixed coordinate system. The parallel-axis theorem is valuable for relating the inertia tensor for rotation about
parallel axes passing through different points fixed with respect to the rigid body. For example, one may wish to relate the inertia
tensor through the center of mass to another location that is constrained to remain stationary, like the tip of the spinning top.

Figure : Transformation between two parallel body-coordinate systems, O and Q.

Consider the mass  at the location  with respect to the origin of the center of mass body-fixed coordinate system .
Transform to an arbitrary but parallel body-fixed coordinate system , that is, the coordinate axes have the same orientation as the
center of mass coordinate system. The location of the mass  with respect to this arbitrary coordinate system is .
That is, the general vectors for the two coordinates systems are related by

where  is the vector connecting the origins of the coordinate systems  and  illustrated in Figure . The elements of the inertia
tensor with respect to axis system , are given by equation  to be

The components along the three axes for each of the two coordinate systems are related by

Substituting these into the above inertia tensor relation gives

The first summation on the right-hand side corresponds to the elements  of the inertia tensor in the center-of-mass frame. Thus the
terms can be regrouped to give

However, each term in the last bracket involves a sum of the form . Take the coordinate system  to be with respect to the
center of mass for which

This also applies to each component , that is

13.8.1

α r = ( , , )x1 x2 x3 O

Q

α R = ( , , )X1 X2 X3

R = a+r (13.8.1)

a O Q 13.8.1
Q (13.4.1)

≡ [ ( )− ]Jij ∑
α

N

mα δij ∑
k

3

X2
α,k Xα,iXα,j (13.8.2)

= +Xi ai xi (13.8.3)

Jij = [ ( )−( + ) ( + )]∑
α

N

mα δij ∑
k

3

( + )xα,k ai
2

xα,i ai xα,j ai

= [ ( )− ]+ [ ( (2 + ))−( + + )]∑
α

N

mα δij ∑
k

3

x2
α,k xα,ixα,j ∑

α

N

mα δij ∑
k

3

xα,kak a2
k aixα,j ajxα,i aiaj

(13.8.4)

Iij

≡ + ( − )+ [2 − − ]Jij Iij ∑
α

N

mα δij∑
k

3

a2
k aiaj ∑

α

N

mα δij∑
k

3

xα,kak aixα,j ajxα,i (13.8.5)

∑N
α mαxα,k O

= 0∑
α

N

mαr
′ (13.8.6)

k

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14178?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/13%3A_Rigid-body_Rotation/13.08%3A_Parallel-Axis_Theorem


13.8.2 https://phys.libretexts.org/@go/page/14178

Therefore all of the terms in the last bracket cancel leaving

But  and , thus

where  is the center-of-mass inertia tensor. This is the general form of Steiner’s parallel-axis theorem.

As an example, the moment of inertia around the  axis is given by

which corresponds to the elementary statement that the difference in the moments of inertia equals the mass of the body multiplied by
the square of the distance between the parallel axes, . Note that the minimum moment of inertia of a body is  which is about
the center of mass.

The complicated expressions for the inertia tensor can be understood using the example of a uniform solid cube with side ,
density , and mass , rotating about different axes. Assume that the origin of the coordinate system  is at the center of
mass with the axes perpendicular to the centers of the faces of the cube.

Figure : Inertia tensor of a uniform solid cube of side  about the center of mass  and a corner of the cube . The vector 
is the vector distance between  and .

The components of the inertia tensor can be calculated using  written as an integral over the mass distribution rather than
a summation.

Thus

By symmetry the diagonal moments of inertia about each face are identical. Similarly the products of inertia are given by

Thus the inertia tensor is given by

= 0∑
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mαxα,k (13.8.7)

≡ + ( − )Jij Iij ∑
α

N

mα δij∑
k

3

a2
k aiaj (13.8.8)

= M∑N
α mα =∑3

k a
2
k

a2

≡ +M( − )Jij Iij a2δij aiaj (13.8.9)

Iij

X1

≡ +M(( + + ) − ) = +M( + )J11 I11 a2
1 a2

2 a3
3 δ11 a2

1 I11 a2
2 a2

3 (13.8.10)

,x1 X1 Iij

Example : Inertia Tensor of a Solid Cube Rotating about the Center of Mass13.8.1

b

ρ M = ρb3 O

13.8.2 b O Q a

O Q

(13.4.2)

= ∫ ρ( )( ( )− ) dVIij r
′ δij ∑

k

3

x2
k xixj

I11 = ρ ( + )d d d∫
b/2

−b/2
∫

b/2

−b/2
∫

b/2

−b/2
x2

2 x2
3 x3 x2 x1

= ρ = M = =
1

6
b5 1

6
b2 I22 I33

= −ρ ( )d d d = 0I12 ∫
b/2

−b/2
∫

b/2

−b/2
∫

b/2

−b/2
x1x2 x3 x2 x1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14178?pdf


13.8.3 https://phys.libretexts.org/@go/page/14178

Note that this inertia tensor is diagonal implying that this is the principal axis system. In this case all three principal moments of
inertia are identical and perpendicular to the centers of the faces of the cube. This is as expected from the symmetry of the cubic
geometry.

Direct calculation
Let one corner of the cube be the origin of the coordinate system  and assume that the three adjacent sides of the cube lie along
the coordinate axes. The components of the inertia tensor can be calculated using . Thus

Thus, evaluating all the nine components gives

Parallel-axis theorem
This inertia tensor also can be calculated using the parallel-axis theorem to relate the moment of inertia about the corner, to that at
the center of mass. As shown in Figure , the vector  has components

Applying the parallel-axis theorem gives

and similarly for  and . The off-diagonal terms are given by

Thus the inertia tensor, transposed from the center of mass, to the corner of the cube is

This inertia tensor about the corner of the cube, is the same as that obtained by direct integration.

Principal moments of inertia

The coordinate axis frame used for rotation about the corner of the cube is not a principal axis frame. Therefore let us diagonalize
the inertia tensor to find the principal axis frame and the principal moments of inertia about a corner. To achieve this requires
solving the secular determinant
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The value of a determinant is not affected by adding or subtracting any row or column from any other row or column. Subtract
row 1 from row 2 gives

The determinant of this matrix is straightforward to evaluate and equals

Thus the roots are

The identical roots  imply that the principal axis associated with  must be a symmetry axis. The orientation
can be found by substituting  into the above equation

where the second subscript 1 attached to  signifies that this solution corresponds to . This gives

Solving these three equations gives the unit vector for the first principal axis for which  to be . This

can be repeated to find the other two principal axes by substituting . This gives for the second principal moment 

This results in three identical equations for the components of  but all three equations are the same, namely

This does not uniquely determine the direction of . However, it does imply that  corresponding to the second principal axis has
the property that

that is, any direction of  that is perpendicular to  is acceptable. In other words; any two orthogonal unit vectors  and  that
are perpendicular to  are acceptable. This ambiguity exists whenever two eigenvalues are equal; the three principal axes are only
uniquely defined if all three eigenvalues are different. The same ambiguity exist when all three eigenvalues are identical as occurs
for the principal moments of inertia about the center-of-mass of a uniform solid cube. This explains why the principal moment of
inertia for the diagonal of the cube, that passes through the center of mass, has the same moment as when the principal axes pass
through the center of the faces of the cube.

This page titled 13.8: Parallel-Axis Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.9: Perpendicular-axis Theorem for Plane Laminae
Rigid-body rotation of thin plane laminae objects is encountered frequently. Examples of such laminae bodies are a plane sheet of
metal, a thin door, a bicycle wheel, a thin envelope or book. Deriving the inertia tensor for a plane lamina is relatively simple
because there are limits on the possible relative magnitude of the principal moments of inertia. Consider that the principal axis are
along the  coordinate axes. Then the sum of two principal moments of inertia about the center of mass are

Note that for any body the three principal moments of inertia must satisfy the triangle rule that the sum of any pair must exceed or
equal the third. Moreover, if the body is a thin lamina with thickness , that is, a thin plate in the  plane, then

This perpendicular-axis theorem can be very useful for solving problems involving rotation of plane laminae.

The opposite of a plane laminae is a long thin cylindrical needle of mass , length , and radius . Along the symmetry axis the
principal moments are  as , while perpendicular to the symmetry axis . These satisfy the
triangle rule.

The hula hoop is a thin plane circular ring or radius  and mass . Assume that the symmetry axis of the circular ring is the 3
axis.

a. The principal moments of inertia about the center of mass: The principal moment of inertia along the 3 axis is .
Then Equation  plus symmetry tells us that the two principal moments of inertia in the plane of the hula hoop must
be .

b. The principal moments of inertia about the periphery of the ring: Using the Parallel-axis theorem tells us that the moment
perpendicular to the plane of the hula hoop . In the plane of the hoop the moment tangential to the hoop is 

 and the moment radial to the hoop . The hula dancer often swings the hoop about the
periphery and perpendicular to the plane by swinging their hips. Another movement is jumping through the hoop by
rotating the hoop tangential to the periphery. Calculation of such maneuvers requires knowledge of these principal moments
of inertia.

Consider a thin rectangular book of mass , width  and length  with thickness  and . About the center of mass
the inertia tensor perpendicular to the plane of the book is . The other two moments are  and 

 which satisfy Equation .

This page titled 13.9: Perpendicular-axis Theorem for Plane Laminae is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.10: General Properties of the Inertia Tensor

Inertial Equivalence

The elements of the inertia tensor, the values of the principal moments of inertia, and the orientation of the principal axes for a rigid
body, all depend on the choice of origin for the system. Recall that for the kinetic energy to be separable into translational and
rotational portions, the origin of the body coordinate system must coincide with the center of mass of the body. However, for any
choice of the origin of any body, there always exists an orientation of the axes that diagonalizes the inertia tensor.

The inertial properties of a body for rotation about a specific body-fixed location is defined completely by only three principal
moments of inertia irrespective of the detailed shape of the body. As a result, the inertial properties of any body about a body-fixed
point are equivalent to that of an ellipsoid that has the same three principal moments of inertia. The symmetry properties of this
equivalent ellipsoidal body define the symmetry of the inertial properties of the body. If a body has some simple symmetry then
usually it is obvious as to what will be the principal axes of the body.

Spherical Top: 

A spherical top is a body having three degenerate principal moments of inertia. Such a body has the same symmetry as the inertia
tensor about the center of a uniform sphere. For a sphere it is obvious from the symmetry that any orientation of three mutually
orthogonal axes about the center of the uniform sphere are equally good principal axes. For a uniform cube the principal axes of the
inertia tensor about the center of mass were shown to be aligned such that they pass through the center of each face, and the three
principal moments are identical; that is, inertially it is equivalent to a spherical top. A less obvious consequence of the spherical
symmetry is that any orientation of three mutually perpendicular axes about the center of mass of a uniform cube is an equally good
principal axis system.

Symmetric Top: 

The equivalent ellipsoid for a body with two degenerate principal moments of inertia is a spheroid which has cylindrical symmetry
with the cylindrical axis aligned along the third axis. A body with  is a prolate spheroid while a body with 

 is an oblate spheroid. Examples with a prolate spheroidal equivalent inertial shape are a rugby ball, pencil, or a
baseball bat. Examples of an oblate spheroid are an orange, or a frisbee. A uniform sphere, or a uniform cube, rotating about a point
displaced from the center-of-mass also behave inertially like a symmetric top. The cylindrical symmetry of the equivalent spheroid
makes it obvious that any mutually perpendicular axes that are normal to the axis of cylindrical symmetry are equally good
principal axes even when the cross section in the  plane is square as opposed to circular.

A rotor is a diatomic-molecule shaped body which is a special case of a symmetric top where , and . The rotation of
a rotor is perpendicular to the symmetry axis since the rotational energy and angular momentum about the symmetry axis are zero
because the principal moment of inertia about the symmetry axis is zero.

Asymmetric Top: 

A body where all three principal moments of inertia are distinct, , is called an asymmetric top. Some molecules, and
nuclei have asymmetric, triaxially-deformed, shapes.

Orthogonality of principal axes
The body-fixed principal axes comprise an orthogonal set, for which the vectors  and  are simply related. Components of  and

 can be taken along the three body-fixed axes denoted by . Thus for the  principal moment 

Written in terms of the inertia tensor

Similarly the  principal moment can be written as
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Multiply the Equation  by  and sum over  gives

Similarly multiplying Equation  by  and summing over  gives

The left-hand sides of these equations are identical since the inertia tensor is symmetric, that is . Therefore subtracting
these equations gives

That is

or

If  then

which implies that the  and  principal axes are perpendicular. However, if  then Equation  does not require
that , that is, these axes are not necessarily perpendicular, but, with no loss of generality, these two axes can be chosen
to be perpendicular with any orientation in the plane perpendicular to the symmetry axis.

1. Summarizing the above discussion, the inertia tensor has the following properties.
2. Diagonalization may be accomplished by an appropriate rotation of the axes in the body.
3. The principal moments (eigenvalues) and principal axes (eigenvectors) are obtained as roots of the secular determinant and are

real.
4. The principal axes (eigenvectors) are real and orthogonal.
5. For a symmetric top with two identical principal moments of inertia, any orientation of two orthogonal axes perpendicular to

the symmetry axis are satisfactory eigenvectors.
6. For a spherical top with three identical principal moment of inertia, the principal axes system can have any orientation with

respect to the origin.

This page titled 13.10: General Properties of the Inertia Tensor is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
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13.11: Angular Momentum and Angular Velocity Vectors
The angular momentum is a primary observable for rotation. As discussed in chapter , the angular momentum  is compactly
and elegantly written in matrix form using the tensor algebra relation

where  is the angular velocity,  the inertia tensor, and  the corresponding angular momentum.

Two important consequences of Equation  are that:

The angular momentum  and angular velocity  are not necessarily colinear.
In general the Principal axis system of the rotating rigid body is not aligned with either the angular momentum or angular
velocity vectors.

An exception to these statements occurs when the angular velocity  is aligned along a principal axes for which the inertia tensor is
diagonal, i.e. , and then both  and  point along this principal axis. In general the angular momentum  and angular
velocity  precess around each other. An important special case is for torque-free systems where Noether’s theorem implies that
the angular momentum vector  is conserved both in magnitude and amplitude. In this case, the angular velocity , and the
Principal axis system, both precesses around the angular momentum vector . That is, the body appears to tumble with respect to
the laboratory fixed frame. Understanding rigid-body rotation requires care not to confuse the body-fixed Principal axis coordinate
frame, used to determine the inertia tensor, and the fixed laboratory frame where the motion is observed.

It is illustrative to use the inertia tensors of a uniform cube to compute the angular momentum for any applied angular velocity
vector  using Equation . If the angular velocity is along the  axis, then using the inertia tensor for a solid cube,
derived earlier, in Equation  gives the angular momentum to be

This shows that  and  are colinear and thus the  axis is a principal axis. By symmetry, the  and  body fixed axis also
must be principal axes.

Consider that the body is rotated about a diagonal of the cube for which the center of mass will be on the rotation axis. Then

the angular velocity vector is written as  where the components of  with the angular

velocity magnitude .
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Note that  and  again are colinear showing it also is a principal axis. Moreover, the magnitude of  is identical for
orientations of the rotation axes  passing through the center of mass when centered on either one face, or the diagonal, of the
cube implying that the principal moments of inertia about these axes are identical. This illustrates the important property that,
when the three principal moments of inertia are identical, then any orientation of the coordinate system is an equally good
principal axis system. That is, this corresponds to the spherical top where all orientations are principal axes, not just along the
obvious symmetry axes.

Let us repeat the above exercise for rotation about one corner of the cube. Consider that the angular velocity is along the 
axis. Then example  gives the angular momentum to be

The angular momentum is far from being aligned with the axis , that is, it is not a principal axis.

Consider that the body is rotated with the angular velocity aligned along a diagonal of the cube through the center of mass on

this axis. Then the angular velocity is written as  where the components of  ensuring that

the magnitude equals .

This is a principal axis since  and  again are colinear and the angular momentum is the same as for any axis through the
center of mass of a uniform solid cube due to the high symmetry of the cube. If the angular velocity is perpendicular to the
diagonal of the cube, then, for either of these perpendicular axes, the relation between  and  is given by
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Note that this must be a principal axis for rotation about a corner of the cube since  and  are colinear. The angular
momentum is the same for both possible orientations of  that are perpendicular to the diagonal through the center of mass.
Diagonalizing the inertia tensor in example  also gave the above result with the symmetry axis along the diagonal of
the cube.

This example illustrates that it is not necessary to diagonalize the inertia tensor matrix to obtain the principal axes. The corner
of the cube has three mutually perpendicular principal axes independent of the choice of a body-fixed coordinate frame. The
advantage of the principal axis coordinate frame is that the inertia tensor is diagonal making evaluation of the angular
momentum trivial. That is, there is no physics associated with the orientation chosen for the body-fixed coordinate frame, this
frame only determines the ratio of the components of the inertia tensor along the chosen coordinates. Note that, if a body has
an obvious symmetry, then intuition is a powerful way to identify the principal axis frame.

This page titled 13.11: Angular Momentum and Angular Velocity Vectors is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.12: Kinetic Energy of Rotating Rigid Body
An important observable is the kinetic energy of rotation of a rigid body. Consider a rigid body composed of  particles of mass 

 where . If the body rotates with an instantaneous angular velocity  about some fixed point, with respect to
the body coordinate system, and this point has an instantaneous translational velocity  with respect to the fixed (inertial)
coordinate system, see Figure , then the instantaneous velocity  of the  particle in the fixed frame of reference is given
by

However, for a rigid body, the velocity of a body-fixed point with respect to the body is zero, that is , thus

The total kinetic energy is given by

This is a general expression for the kinetic energy that is valid for any choice of the origin from which the body-fixed vectors 
are measured. However, if the origin is chosen to be the center of mass, then, and only then, the middle term cancels. That is, since 

 is independent of the specific particle, then

But the definition of the center of mass is

and  in the body-fixed frame if the selected point in the body is the center of mass. Thus, when using the center of mass
frame, the middle term of Equation  is zero. Therefore, for the center of mass frame, the kinetic energy separates into two
terms in the body-fixed frame

where

The vector identity

can be used to simplify 

The rotational kinetic energy  can be expressed in terms of components of  and  in the body-fixed frame. Also the
following formulae are greatly simplified if  in the rotating body-fixed frame is written in the form 

N

mα α = 1, 2, 3, … N ω

V

13.3.1 vα αth

= V + +ω ×vα v′′
α r′

α (13.12.1)

= 0v
′′
α

= V +ω ×vα r′
α (13.12.2)

T =

=

⋅ = (V +ω × ) ⋅ (V +ω × )∑
α

N 1

2
mαvα vα ∑

α

N 1

2
mα r′

α r′
α

+ V ⋅ ω × + (ω × ) ⋅ (ω × )
1

2
∑

α

N

mαV 2 ∑
i

N

mα r′
α

1

2
∑

α

N

mα r′
α r′

α (13.12.3)

r′
α

V ⋅ ω

V ⋅ ω × = V ⋅ ω ×( )∑
α

N

mα r′
α ∑

α

N

mαr′
α (13.12.4)

= MR∑
α

mαr
′ (13.12.5)

R = 0

13.12.3

T = +Ttrans Trot (13.12.6)

=Ttrans

1

2
∑

α

N

mαV 2 (13.12.7)

= (ω × ) ⋅ (ω × )Trot

1

2
∑

α

N

mi r′
α r′

α

(A ×B) ⋅ (A ×B) = −(A ⋅ BA2B2 )2 (13.12.8)

Trot

= [ −(ω ⋅ ]Trot

1

2
∑

α

N

mα ω2r′2
α r

′
α)2 (13.12.9)

Trot ω r′
α

= ( , , )r′
α xα yα zα

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14184?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/13%3A_Rigid-body_Rotation/13.12%3A_Kinetic_Energy_of_Rotating_Rigid_Body


13.12.2 https://phys.libretexts.org/@go/page/14184

 where the axes are defined by the numbers  rather than . In this notation the rotational kinetic
energy is written as

Assume the Kronecker delta relation

where  if  and  if .

Then the kinetic energy can be written more compactly

The term in the outer square brackets is the inertia tensor defined in equation  for a discrete body. The inertia tensor
components for a continuous body are given by equation .

Thus the rotational component of the kinetic energy can be written in terms of the inertia tensor as

Note that when the inertia tensor is diagonal, then the evaluation of the kinetic energy simplifies to

which is the familiar relation in terms of the scalar moment of inertia  discussed in elementary mechanics.

Equation  also can be factored in terms of the angular momentum .

As mentioned earlier, tensor algebra is an elegant and compact way of expressing such matrix operations. Thus it is possible to
express the rotational kinetic energy as

where the rotational energy  is a scalar. Using equation  the rotational component of the kinetic energy also can be
written as
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which is the same as given by . It is interesting to realize that even though  is the inner product of a tensor and
a vector, it is a vector as illustrated by the fact that the inner product  is a scalar. Note that the
translational kinetic energy  must be added to the rotational kinetic energy  to get the total kinetic energy as given by
Equation .

This page titled 13.12: Kinetic Energy of Rotating Rigid Body is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.13: Euler Angles
The description of rigid-body rotation is greatly facilitated by transforming from the space-fixed coordinate frame  to a
rotating body-fixed coordinate frame  for which the inertia tensor is diagonal. Appendix  introduced the rotation matrix

 which can be used to rotate between the space-fixed coordinate system, which is stationary, and the instantaneous bodyfixed
frame which is rotating with respect to the spacefixed frame. The transformation can be represented by a matrix equation

where the space-fixed system is identified by unit vectors  while  defines unit vectors in the rotated body-fixed
system. The rotation matrix  completely describes the instantaneous relative orientation of the two systems. Rigid-body rotation
requires three independent angular parameters that specify the orientation of the rigid body such that the corresponding orthogonal
transformation matrix is proper, that is, it has a determinant  as given by equation .

Figure : The  sequence of rotations  corresponding to the Eulerian angles . The first rotation 
about the space-fixed  axis (blue) is from the -axis (blue) to the line of nodes  (green). The second rotation  about the line of
nodes (green) is from the space-fixed  axis (blue) to the body-fixed 3-axis (red). The third rotation  about the body-fixed 3-axis
(red) is from the line of nodes (green) to the body-fixed 1 axis (red).

As discussed in Appendix , the 9 component rotation matrix involves only three independent angles. There are many possible
choices for these three angles. It is convenient to use the Euler angles,  (also called Eulerian angles) shown in Figure 

.  The Euler angles are generated by a series of three rotations that rotate from the space-fixed  system to the
bodyfixed  system. The rotation must be such that the space-fixed  axis rotates by an angle  to align with the body-fixed
3 axis. This can be performed by rotating through an angle  about the  direction, where  and  designate the unit
vectors along the “ ” axes of the space and body fixed frames respectively. The unit vector  is the vector normal to the
plane defined by the  and  unit vectors and this unit vector  is called the line of nodes. The chosen convention is that
the unit vector  is along the “ ” axis of an intermediate-axis frame designated by , that is, the unit vector 

 plus the unit vectors  and  are in the same plane as the  and  unit vectors. The sequence of three rotations is
performed as summarized below.

1) Rotation  about the space-fixed  axis from the space  axis to the line of nodes :
The first rotation  is in a right-handed direction through an angle  about the space-fixed  axis. Since the
rotation takes place in the  plane, the transformation matrix is
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′

ẑ
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This leads to the intermediate coordinate system  where the rotated  axis now is colinear with the  axis of the
intermediate frame, that is, the line of nodes.

The precession angular velocity  is the rate of change of angle of the line of nodes with respect to the space  axis about the space-
fixed  axis.

2) Rotation  about the line of nodes  from the space  axis to the body-fixed  axis:
The second rotation

is in a right-handed direction through the angle  about the  axis (line of nodes) so that the “ ” axis becomes colinear with the
body-fixed  axis. Because the rotation now is in the  plane, the transformation matrix is

The line of nodes which is at the intersection of the space-fixed and body-fixed planes, shown in Figure , points in the 
 direction. The new “ ” axis now is the body-fixed  axis. The angular velocity  is the rate of change of angle of the

body-fixed -axis relative to the space-fixed -axis about the line of nodes.

3) Rotation  about the body-fixed  axis from the line of nodes to the body-fixed  axis:
The third rotation

is in a right-handed direction through the angle  about the new body-fixed  axis. This third rotation transforms the rotated
intermediate  frame to final body-fixed coordinate system . The transformation matrix is

The spin angular velocity  is the rate of change of the angle of the body-fixed -axis with respect to the line of nodes about the
body-fixed  axis.

The total rotation matrix  is given by

Thus the complete rotation from the space-fixed  axis system to the body-fixed  axis system is given by

where  is given by the triple product Equation  leading to the rotation matrix

The inverse transformation from the body-fixed axis system to the space-fixed axis system is given by
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where the inverse matrix  equals the transposed rotation matrix , that is,

Taking the product  shows that the rotation matrix is a proper, orthogonal, unit matrix.

The use of three different coordinate systems, space-fixed, the intermediate line of nodes, and the body-fixed frame can be confusing
at first glance. Basically the angle  specifies the rotation about the space-fixed  axis between the space-fixed  axis and the line of
nodes of the Euler angle intermediate frame. The angle  specifies the rotation about the body-fixed 3 axis between the line of nodes
and the body-fixed 1 axis. Note that although the space-fixed and body-fixed axes systems each are orthogonal, the Euler angle basis
in general is not orthogonal. For rigid-body rotation the rotation angle  about the space-fixed  axis is time dependent, that is, the
line of nodes is rotating with an angular velocity  with respect to the space-fixed coordinate frame. Similarly the body-fixed
coordinate frame is rotating about the body-fixed 3 axis with angular velocity  relative to the line of nodes.

The definition of the Euler angles can be confusing, therefore it is useful to illustrate their use for a rotational transformation of
a primed frame  to an unprimed frame . Assume the first rotation about the  axis, is 

Let the second rotation be  about the line of nodes, that is, the intermediate ” axis. Then

Let the third rotation be  about the  axis.

Thus the net rotation corresponds to 

The space-fixed coordinate frame and the body-fixed coordinate frames are unambiguously defined, that is, the space-fixed frame is
stationary while the body-fixed frame is the principal-axis frame of the body. There are several possible intermediate frames that can
be used to define the Euler angles. The  sequence of rotations, used here, is used in most physics textbooks in classical
mechanics. Unfortunately scientists and engineers use slightly different conventions for defining the Euler angles. As discussed in
Appendix A of "Classical Mechanics" by Goldstein, nuclear and particle physicists have adopted the  sequence of
rotations while the US and UK aerodynamicists have adopted a  sequence of rotations.

This page titled 13.13: Euler Angles is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via
source content that was edited to the style and standards of the LibreTexts platform.
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13.14: Angular Velocity

Angular velocity 

It is useful to relate the rigid-body equations of motion in the space-fixed  coordinate system to those in the body-fixed 
 coordinate system where the principal axis inertia tensor is defined. It was shown in appendix  that an

infinitessimal rotation can be represented by a vector. Thus the time derivatives of these rotation angles can be associated with the
components of the angular velocity , where the precession , the nutation , and the spin . Unfortunately the
coordinates  are with respect to mixed coordinate frames and thus are not orthogonal axes. That is, the Euler angular
velocities are expressed in different coordinate frames, where the precession  is around the space-fixed  axis measured relative
to the -axis, the spin  is around the body-fixed  axis relative to the rotating line-of-nodes, and the nutation  is the angular
velocity between the  and  axes and points along the instantaneous line-of-nodes in the  direction. By reference to
Figure  it can be seen that the components along the body-fixed axes are as given in Table .

Table : Euler angular velocity components in the body-fixed frame

Precession Nutation Spin 

Note that the precession angular velocity  is the angular velocity that the body-fixed  and  axes precess around the space-
fixed  axis. Table  gives the Euler angular velocities required to calculate the components of the angular velocity  for the
body-fixed  axis system. Collecting the individual components of , gives the components of the angular velocity of the
body, relative to the space-fixed axes, in the body-fixed axis system 

The angular velocity of the body about the body-fixed -axis, , is the sum of the projection of the precession angular velocity of
the line-of-nodes  with respect to the space-fixed -axis, plus the angular velocity  of the body-fixed 3-axis with respect to the
rotating line-of-nodes.

Similarly, the components of the body angular velocity  for the space-fixed axis system  can be derived to be

Note that when  then the Euler angles are singular in that the space-fixed  axis is parallel with the body-fixed 3 axis and
there is no way of distinguishing between precession  and spin , leading to . When  then the  axis and
3 axis are antiparallel and . The other special case is when  for which the Euler angle system is
orthogonal and the space-fixed , that is, it equals the precession, while the body-fixed , that is, it equals the spin.
When the Euler angle basis is not orthogonal then equations  -  and  -  are needed for expressing the
Euler equations of motion in either the body-fixed frame or the space-fixed frame respectively.

Equations  -  for the components of the angular velocity in the body-fixed frame can be expressed in terms of the
Euler angle velocities in a matrix form as

ω

( , , )x̂ ŷ ẑ

( , , )ê1 ê2 ê3 19.4

ω =ωϕ ϕ̇ =ωθ θ̇ =ωψ ψ̇

(ϕ, θ, ψ)

ϕ̇ ẑ
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Note that the transformation matrix is not orthogonal which is to be expected since the Euler angular velocities are about axes that
do not form a rectangular system of coordinates. Similarly equations  -  for the angular velocity in the space-fixed
frame can be expressed in terms of the Euler angle velocities in matrix form as

This page titled 13.14: Angular Velocity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline
via source content that was edited to the style and standards of the LibreTexts platform.
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13.15: Kinetic energy in terms of Euler angular velocities
The kinetic energy is a scalar quantity and thus is the same in both stationary and rotating frames of reference. It is much easier to
evaluate the kinetic energy in the rotating Principal-axis frame since the inertia tensor is diagonal in the Principal-axis frame as
given in equation 

Using equation  for the body-fixed angular velocities gives the rotational kinetic energy in terms of the Euler
angular velocities and principal-frame moments of inertia to be

This page titled 13.15: Kinetic energy in terms of Euler angular velocities is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.16: Rotational Invariants
The scalar properties of a rotating body, such as mass , Lagrangian , and Hamiltonian , are rotationally invariant, that is, they
are the same in any body-fixed or laboratory-fixed coordinate frame. This fact also applies to scalar products of all vector
observables such as angular momentum. For example the scalar product

where  is the root mean square value of the angular momentum. An example of a scalar invariant is the scalar product of the
angular velocity

where  is the mean square angular velocity. The scalar product  can be calculated using the Euler-angle velocities for
the body-fixed frame, equations , to be

Similarly, the scalar product can be calculated using the Euler angle velocities for the space-fixed frame using equations 
.

This shows the obvious result that the scalar product  is invariant to rotations of the coordinate frame, that is, it is
identical when evaluated in either the space-fixed, or body-fixed frames.

Note that for , the  and  axes are parallel, and perpendicular to the  axis, then

For the case when , the  and  axes are antiparallel, and perpendicular to the  axis, then

For the case when , the , , and  axes are mutually perpendicular, that is, orthogonal, and then

The time-averaged shape of a rapidly-rotating body, as seen in the fixed inertial frame, is very different from the actual shape of the
body, and this difference depends on the rotational frequency. For example, a pencil rotating rapidly about an axis perpendicular to
the body-fixed symmetry axis has an average shape that is a flat disk in the laboratory frame which bears little resemblance to a
pencil. The actual shape of the pencil could be determined by taking high-speed photographs which display the instantaneous body-
fixed shape of the object at given times. Unfortunately for fast rotation, such as rotation of a molecule or a nucleus, it is not
possible to take photographs with sufficient speed and spatial resolution to observe the instantaneous shape of the rotating body.
What is measured is the average shape of the body as seen in the fixed laboratory frame. In principle the shape observed in the
fixed inertial frame can be related to the shape in the body-fixed frame, but this requires knowing the body-fixed shape which in
general is not known. For example, a deformed nucleus may be both vibrating and rotating about some triaxially deformed average
shape which is a function of the rotational frequency. This is not apparent from the shapes measured in the fixed frame for each of
the excited states.

The fact that scalar products are rotationally invariant, provides a powerful means of transforming products of observables in the
body-fixed frame, to those in the laboratory frame. In 1971 Cline developed a powerful model-independent method that utilizes
rotationally-invariant products of the electromagnetic quadrupole operator  to relate the electromagnetic  properties for the
observed levels of a rotating nucleus measured in the laboratory frame, to the electromagnetic  properties of the deformed
rotating nucleus measured in the body-fixed frame.[Cli71, Cli72, Cli86] The method uses the fact that scalar products of the
electromagnetic multipole operators are rotationally invariant. This allows transforming scalar products of a complete set of
measured electromagnetic matrix elements, measured in the laboratory frame, into the electromagnetic properties in the body-fixed
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frame of the rotating nucleus. These rotational invariants provide a model-independent determination of the magnitude, triaxiality,
and vibrational amplitudes of the average shapes in the body-fixed frame for individual observed nuclear states that may be
undergoing both rotation and vibration. When the bombarding energy is below the Coulomb barrier, the scattering of a projectile
nucleus by a target nucleus is due purely to the electromagnetic interaction since the distance of closest approach exceeds the range
of the nuclear force. For such pure Coulomb collisions, the electromagnetic excitation of collective nuclei populates many excited
states with cross sections that are a direct measure of the  matrix elements. These measured matrix elements are precisely those
required to evaluate, in the laboratory frame, the  rotational invariants from which it is possible to deduce the intrinsic
quadrupole shapes of the rotating-vibrating nuclear states in the body-fixed frame[Cli86].
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13.17: Euler’s equations of motion for rigid-body rotation
Rigid-body rotation can be confusing in that two coordinate frames are involved and, in general, the angular velocity and angular
momentum are not aligned. The motion of the rigid body is observed in the space-fixed inertial frame whereas it is simpler to
calculate the equations of motion in the body-fixed principal axis frame, for which the inertia tensor is known and is constant. The
rigid body is rotating with angular velocity vector , which is not aligned with the angular momentum . For torque-free angular
momentum,  is conserved and has a fixed orientation in the space-fixed axis system. Euler’s equations of motion, presented
below, are given in the body-fixed frame for which the inertial tensor is known since this simplifies solution of the equations of
motion. However, this solution has to be rotated back into the space-fixed frame to describe the rotational motion as seen by an
observer in the inertial frame.

This chapter has introduced the inertial properties of a rigid body, as well as the Euler angles for transforming between the body-
fixed and inertial frames of reference. This has prepared the stage for solving the equations of motion for rigid-body motion,
namely, the dynamics of rotational motion about a body-fixed point under the action of external forces. The Euler angles are used
to specify the instantaneous orientation of the rigid body.

In Newtonian mechanics, the rotational motion is governed by the equivalent Newton’s second law given in terms of the external
torque  and angular momentum 

Note that this relation is expressed in the inertial space-fixed frame of reference, not the non-inertial body-fixed frame. The
subscript  is added to emphasize that this equation is written in the inertial space-fixed frame of reference. However, as
already discussed, it is much more convenient to transform from the space-fixed inertial frame to the body-fixed frame for which
the inertia tensor of the rigid body is known. Thus the next stage is to express the rotational motion in terms of the body-fixed
frame of reference. For simplicity, translational motion will be ignored.

The rate of change of angular momentum can be written in terms of the body-fixed value, using the transformation from the space-
fixed inertial frame  to the rotating frame  as given in chapter ,

However, the body axis  is chosen to be the principal axis such that

where the principal moments of inertia are written as . Thus the equation of motion can be written using the body-fixed
coordinate system as

where the components in the body-fixed axes are given by

These are the Euler equations for rigid body in a force field expressed in the body-fixed coordinate frame. They are applicable
for any applied external torque .

The motion of a rigid body depends on the structure of the body only via the three principal moments of inertia , , and . Thus
all bodies having the same principal moments of inertia will behave exactly the same even though the bodies may have very
different shapes. As discussed earlier, the simplest geometrical shape of a body having three different principal moments is a
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homogeneous ellipsoid. Thus, the rigid-body motion often is described in terms of the equivalent ellipsoid that has the same
principal moments.

A deficiency of Euler’s equations is that the solutions yield the time variation of  as seen from the body-fixed reference frame
axes, and not in the observers fixed inertial coordinate frame. Similarly the components of the external torques in the Euler
equations are given with respect to the body-fixed axis system which implies that the orientation of the body is already known.
Thus for non-zero external torques the problem cannot be solved until the the orientation is known in order to determine the
components . However, these difficulties disappear when the external torques are zero, or if the motion of the body is known
and it is required to compute the applied torques necessary to produce such motion.

This page titled 13.17: Euler’s equations of motion for rigid-body rotation is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.18: Lagrange equations of motion for rigid-body rotation
The Euler equations of motion were derived using Newtonian concepts of torque and angular momentum. It is of interest to derive
the equations of motion using Lagrangian mechanics. It is convenient to use a generalized torque  and assume that  in the
Lagrange-Euler equations. Note that the generalized force is a torque since the corresponding generalized coordinate is an angle,
and the conjugate momentum is angular momentum. If the body-fixed frame of reference is chosen to be the principal axes system,
then, since the inertia tensor is diagonal in the principal axis frame, the kinetic energy is given in terms of the principal moments of
inertia as

Using the Euler angles as generalized coordinates, then the Lagrange equation for the specific case of the  coordinate and
including a generalized force  gives

which can be expressed as

Equation  gives

Differentiating the angular velocity components in the body-fixed frame, equations  give

Table 

Substituting these into the Lagrange Equation  gives

since the  and  axes are colinear. This can be rewritten as

Any axis could have been designated the  axis, thus the above equation can be generalized to all three axes to give

These are the Euler’s equations given previously in . Note that although  is the equation of motion for the 
coordinate, this is not true for the  and  rotations which are not along the body-fixed  and  axes as given in table .
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Example : Rotation of a dumbbell13.18.1
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Figure : Rotation of a dumbbell.

Consider the motion of the symmetric dumbbell shown in the adjacent figure. Let . Let the body-fixed
coordinate system have its origin at  and symmetry axis  be along the weightless shaft toward  and . The
angular momentum is given by

Because  is perpendicular to the shaft, and  rotates around  as the shaft rotates, let  be along .

If  is the angle between  and the shaft, the components of  are

Assume that the principal moments of the dumbbell are

Thus the angular momentum is given by

which is consistent with the angular momentum being along the  axis.

Using Euler’s equations, and assuming that the angular velocity is constant, i.e. , then the components of the torque
required to satisfy this motion are

That is, this motion can only occur in the presence of the above applied torque which is in the direction , that is, mutually
perpendicular to  and . This torque can be written as .
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13.19: Hamiltonian equations of motion for rigid-body rotation
The Hamiltonian equations of motion are expressed in terms of the Euler angles plus their corresponding canonical angular
momenta  in contrast to Lagrangian mechanics which is based on the Euler angles plus their corresponding
angular velocities . The Hamiltonian approach is conveniently expressed in terms of a set of Andoyer-Deprit
action-angle coordinates that include the three Euler angles, specifying the orientation of the body-fixed frame, plus the
corresponding three angles specifying the orientation of the spin frame of reference. This phase space approach[Dep67] can be
employed for calculations of rotational motion in celestial mechanics that can include spin-orbit coupling. This Hamiltonian
approach is beyond the scope of the present textbook.

This page titled 13.19: Hamiltonian equations of motion for rigid-body rotation is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.20: Torque-free rotation of an inertially-symmetric rigid rotor

Euler's equations of motion

There are many situations where one has rigid-body motion free of external torques, that is, . The tumbling motion of a
jugglers baton, a diver, a rotating galaxy, or a frisbee, are examples of rigid-body rotation. For torque-free rotation, the body will
rotate about the center of mass, and thus the inertia tensor with respect to the center of mass is required. An inertially-symmetric
rigid body has two identical principal moments of inertia with , and provides a simple example that illustrates the
underlying motion. The force-free Euler equations for the symmetric body in the body-fixed principal axis system are given by

where  and  apply.

Figure : The force-free symmetric top angular velocity  precesses on a conical trajectory about the body-fixed symmetry
axis .

Note that for torque-free motion of an inertially symmetric body Equation  implies that , i.e.  is a constant of
motion and thus is a cyclic variable for the symmetric rigid body.

Equations  and  can be written as two coupled equations

where the precession angular velocity  with respect to the body-fixed frame is defined to be

Combining the time derivatives of equations  and  leads to two uncoupled equations

These are the differential equations for a harmonic oscillator with solutions

These equations describe a vector  rotating in a circle of radius  about an axis perpendicular to , that is, rotating in the 
 plane with angular frequency . Note that
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which is a constant. In addition  is constant, therefore the magnitude of the total angular velocity

The motion of the torque-free symmetric body is that the angular velocity  precesses around the symmetry axis  of the body at
an angle  with a constant precession frequency  with respect to the body-fixed frame as shown in Figure . Thus, to an
observer on the body,  traces out a cone around the body-fixed symmetry axis. Note from  that the vectors  and 
are parallel when  is positive, that is,  (oblate shape) and antiparallel if  (prolate shape).

For the system considered, the orientation of the angular momentum vector  must be stationary in the space-fixed inertial frame
since the system is torque free, that is,  is a constant of motion. Also we have that the projection of the angular momentum on the
body-fixed symmetry axis is a constant of motion, that is, it is a cyclic variable. Thus

Understanding the relation between the angular momentum and angular velocity is facilitated by considering another constant of
motion for the torque-free symmetric rotor, namely the rotational kinetic energy.

Since  is a constant for torque-free motion, and also the magnitude of  was shown to be constant, therefore the angle between
these two vectors must be a constant to ensure that also  constant. That is,  precesses around  at a constant
angle  such that the projection of  onto  is constant. Note that

and, for a symmetric rotor,

since  for the symmetric rotor. Because  for a symmetric top then ,  and  are coplanar.

Figure  shows the geometry of the motion for both oblate and prolate axially-deformed bodies. To an observer in the space-
fixed inertial frame, the angular velocity  traces out a cone that precesses with angular velocity  around the space fixed  axis
called the space cone. For convenience, Figure  assumes that  and the space-fixed inertial frame  axis are colinear. The
angular velocity  also traces out the body cone as it precesses about the body-fixed  axis. Since ,  and  are coplanar, then
the  vector is at the intersection of the space and body cones as the body cone rolls around the space cone. That is, the space and
body cones have one generatrix in common which coincides with . As shown in Figure , for a needle the body cone
appears to roll without slipping on the outside of the space cone at the precessional velocity of . By contrast, as shown in
Figure  for an oblate (disc-shaped) symmetric top the space cone rolls inside the body cone and the precession  is faster
than .

Since no external torques are acting for torque-free motion, then the magnitude and direction of the total angular momentum are
conserved. The description of the motion is simplified if  is taken to be along the space-fixed  axis, then the Euler angle  is the
angle between the body-fixed basis vector  and space-fixed basis vector . If at some instant in the body frame, it is assumed that

 is aligned in the plane of ,  and , then

If  is the angle between the angular velocity  and the body-fixed  axis, then at the same instant
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Figure : Torque-free rotation of symmetric tops; (a) circular flat disk, (b) circular rod. The space-fixed and body-fixed
cones are shown by fine lines. The space-fixed axis system is designated by the unit vectors  and the body-fixed principal
axis system by unit vectors .

The components of the angular momentum also can be derived from  to give

Equations  and  give two relations for the ratio , that is,

For a prolate spheroid  therefore  while  and  have opposite signs.

For a oblate spheroid  therefore  while  and  have the same sign.

The sense of precession can be understood if the body cone rolls without slipping on the outside of the space cone with  in the
opposite orientation to  for the prolate case, while for the oblate case the space cone rolls inside the body cone with  and 
oriented in similar directions. Note from  that  if , that is ,  and the  axis are aligned corresponding to a
principal axis. Similarly,  if , then again  and  are aligned corresponding to them being principal axes.

Lagrangian mechanics has been used to calculate the motion with respect to the body-fixed principal axis system. However, the
motion needs to be known relative to the space-fixed inertial frame where the motion is observed. This transformation can be done
using the following relation

since the unit vector  is stationary in the body-fixed frame. The vector product of  and  gives

therefore

The angular momentum equals . Since  is perpendicular to the  axis, then for the case with ,
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Thus the angular momentum for a torque-free symmetric rigid rotor comprises two components, one being the perpendicular
component that precesses around , and the other is .

In the space-fixed frame assume that the  axis is colinear with . Then taking the scalar product of  and , using Equation 
 gives

The first term on the right is zero and thus Equation  and  give

The time dependence of the rotation of the body-fixed symmetry axis with respect to the space-fixed axis system can be obtained
by taking the vector product  using Equation  and using equation  to expand the triple vector product,

since . Moreover , and , since they are perpendicular, then

This equation shows that the body-fixed symmetry axis  precesses around the , where  is a constant of motion for torque-free
rotation. The true rotational angular velocity  in the space-fixed frame, given by equations , can be evaluated using
Equation . Remembering that it was assumed that  is in the  direction, that is, , then

That is, the symmetry axis of the axially-symmetric rigid rotor makes an angle  to the angular momentum vector  and precesses
around  with a constant angular velocity  while the axial spin of the rigid body has a constant value . Thus, in the
precessing frame, the rigid body appears to rotate about its fixed symmetry axis with a constant angular velocity 

. The precession of the symmetry axis looks like a wobble superimposed on the spinning

motion about the body-fixed symmetry axis. The angular precession rate in the space-fixed frame can be deduced by using the fact
that

Then using Equation  allows Equation  to be written as

which gives the precession rate about the space-fixed axis in terms of the angular velocity . Note that the precession rate  if
, that is, for oblate shapes, and  if , that is, for prolate shapes.
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Lagrange equations of motion
It is interesting to compare the equations of motion for torque-free rotation of an inertially-symmetric rigid rotor derived using
Lagrange mechanics with that derived previously using Euler’s equations based on Newtonian mechanics. Assume that the
principal moments about the fixed point of the symmetric top are  and that the kinetic energy equals the rotational
kinetic energy, that is, it is assumed that the translational kinetic energy . Then the kinetic energy is given by

Equations  for the body-fixed frame give

Therefore

and

Therefore the kinetic energy is

Since the system is torque free, the scalar potential energy  can be assumed to be zero, and then the Lagrangian equals

The angular momentum about the space-fixed  axis  is conjugate to . From Lagrange’s equations

that is, the angular momentum about the space-fixed  axis,  is a constant of motion given by

Similarly, the angular momentum about the body-fixed  axis is conjugate to . From Lagrange’s equations

that is,  is a constant of motion given by

The above two relations derived from the Lagrangian can be solved to give the precession angular velocity  about the space-fixed
 axis

and the spin about the body-fixed  axis  which is given by

= ≠I1 I2 I3

= 0Ttrans

T = = ( + ) +
1

2
∑
i

Iiω
2
i

1

2
I1 ω2

1 ω2
2

1

2
I3ω

2
3 (13.20.32)

(13.14.1 −13.14.3)

= = θ ψ+2ϕ sinθ sinψ cosψ+ ψω2
1 ( sinθ sinψ+ cosψ)ϕ̇ θ̇

2

ϕ̇
2

sin2 sin2 θ̇ θ̇
2

cos2 (13.20.33)

= = θ ψ−2ϕ sinθ sinψ cosψ+ ψω2
2 ( sinθcosψ− sinψ)ϕ̇ θ̇

2

ϕ̇
2

sin2 cos2 θ̇ θ̇
2

sin2 (13.20.34)

+ = θ+ω2
1 ω2

2 ϕ̇
2

sin2 θ̇
2

(13.20.35)

=ω2
3 ( cosθ+ )ϕ̇ ψ̇

2

(13.20.36)

T = ( θ+ )+
1

2
I1 ϕ̇

2
sin2 θ̇

2 1

2
I3( cosθ+ )ϕ̇ ψ̇

2

(13.20.37)

U

L = ( θ+ )+
1

2
I1 ϕ̇

2
sin2 θ̇

2 1

2
I3( cosθ+ )ϕ̇ ψ̇

2

(13.20.38)

z pϕ ϕ

= = 0ṗϕ
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Since  and  are constants of motion, then the precessional angular velocity  about the space-fixed  axis, and the spin
angular velocity , which is the spin frequency about the body-fixed  axis, are constants that depend directly on , . and .

There is one additional constant of motion available if no dissipative forces act on the system, that is, energy conservation which
implies that the total energy

will be a constant of motion. But the second term on the right-hand side also is a constant of motion since  and  both are
constants, that is

Thus energy conservation implies that the first term on the right-hand side also must be a constant given by

These results are identical to those given in equations  and  which were derived using Euler’s equations. These
results illustrate that the underlying physics of the torque-free rigid rotor is more easily extracted using Lagrangian mechanics
rather than using the Euler-angle approach of Newtonian mechanics.

Table  lists the precession and spin angular velocities, in the space-fixed frame, for torque-free rotation of three extreme
symmetric-top geometries spinning with constant angular momentum  when the motion is slightly perturbed such that  is at
a small angle  to the symmetry axis. Note that this assumes the perpendicular axis theorem, equation  which states
that for a thin laminae  giving, for a thin circular disk,  and thus .

Rigid-body symmetric shape Principal moment ratio Precession rate Spin rate 

Symmetric needle 0 0

Sphere 1 0

Thin circular disk 2

Table : Precession and spin rates for torque-free axial rotation of symmetric rigid rotors

The precession angular velocity in the space frame ranges between 0 to  depending on whether the body-fixed spin angular
velocity is aligned or anti-aligned with the rotational frequency . For an extreme prolate spheroid , the body-fixed spin
angular velocity  which cancels the angular velocity  of the rotating frame resulting in a zero precession angular
velocity of the body-fixed  axis around the space-fixed frame. The spin  in the body-fixed frame for the rigid sphere 

, and thus the precession rate of the body-fixed  axis of the sphere around the space-fixed frame equals . For oblate

spheroids and thin disks, such as a frisbee,  making the body-fixed precession angular velocity  which adds to
the angular velocity  and increases the precession rate up to  as seen in the space-fixed frame. This illustrates that the spin
angular velocity can add constructively or destructively with the angular velocity .

In his autobiography Surely You’re Joking Mr Feynman, he wrote " I was in the [Cornell] cafeteria and some guy, fooling around,
throws a plate in the air. As the plate went up in the air I saw it wobble, and noticed that the red medallion of Cornell on the plate
going around. It was pretty obvious to me that the medallion went around faster than the wobbling. I started to figure out the
motion of the rotating plate. I discovered that when the angle is very slight, the medallion rotates twice as fast as the wobble rate. It
came out of a very complicated equation!". The quoted ratio  is incorrect, it should be . Benjamin Chao in Physics
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Today of February 1989 speculated that Feynman’s error in inverting the factor of two might be "in keeping with the spirit of the
author and the book, another practical joke meant for those who do physics without experimenting". He pointed out that this story
occurred on page 157 of a book of length 314 pages . Observe the dependence of the ratio of wobble to rotation angular
velocities on the tilt angle .

This page titled 13.20: Torque-free rotation of an inertially-symmetric rigid rotor is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.21: Torque-free rotation of an asymmetric rigid rotor
The Euler equations of motion for the case of torque-free rotation of an asymmetric (triaxial) rigid rotor about the center of mass,
with principal moments of inertia , lead to more complicated motion than for the symmetric rigid rotor.  The general
features of the motion of the asymmetric rotor can be deduced using the conservation of angular momentum and rotational kinetic
energy.

Figure : Rotation of an asymmetric rigid rotor. The dark lines correspond to contours of constant total rotational kinetic
energy T, which has an ellipsoidal shape, projected onto the angular momentum L sphere in the body-fixed frame.

Assuming that the external torques are zero then the Euler equations of motion can be written as

Since  for , then Equation  gives

Multiply the first equation by , the second by  and the third by  and sum, which gives

The bracket is equivalent to  which implies that the total rotational angular momentum  is a constant of
motion as expected for this torque-free system, even though the individual components  may vary. That is

Note that equation  is the equation of a sphere of radius .

Multiply the first equation of  by , the second by , and the third by , and sum gives

Divide  by  gives . This implies that the total rotational kinetic energy , given by

is a constant of motion as expected when there are no external torques and zero energy dissipation. Note that  is the
equation of an ellipsoid.

Equations  and  both must be satisfied by the rotational motion for any value of the total angular momentum  and
kinetic energy . Fig  shows a graphical representation of the intersection of the  sphere and  ellipsoid as seen in the
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body-fixed frame. The angular momentum vector  must follow the constant-energy contours given by where the -ellipsoids
intersect the -sphere, shown for the case where . Note that the precession of the angular momentum vector 
follows a trajectory that has closed paths that circle around the principal axis with the smallest , that is, , or the principal axis
with the maximum , that is, . However, the angular momentum vector does not have a stable minimum for precession around
the intermediate principal moment of inertia axis . In addition to the precession, the angular momentum vector  executes
nutation, that is a nodding of the angle . For any fixed value of , the kinetic energy has upper and lower bounds given by

Thus, for a given value of , when , the orientation of  in the body-fixed frame is either  or 
, that is, aligned with the  axis along which the principal moment of inertia is largest. For slightly higher kinetic energy

the trajectory of  follows closed paths precessing around . When the kinetic energy  the angular momentum vector 
follows either of the two thin-line trajectories each of which are a separatrix. These do not have closed orbits around  and they
separate the closed solutions around either  or . For higher kinetic energy the precessing angular momentum vector follows
closed trajectories around  and becomes fully aligned with  at the upper-bound kinetic energy.

Note that for the special case when , then the asymmetric rigid rotor equals the symmetric rigid rotor for which the
solutions of Euler’s equations were solved exactly in chapter . For the symmetric rigid rotor the -ellipsoid becomes a
spheroid aligned with the symmetry axis and thus the intersections with the -sphere lead to circular paths around the  body-
fixed principal axis, while the separatrix circles the equator corresponding to the  axis separating clockwise and anticlockwise
precession about . This discussion shows that energy, plus angular momentum conservation, provide the general features of the
solution for the torque-free symmetric top that are in agreement with those derived using Euler’s equations of motion.

Similar discussions of the freely-rotating asymmetric top are given by Landau and Lifshitz [La60] and by Gregory [Gr06].

This page titled 13.21: Torque-free rotation of an asymmetric rigid rotor is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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L ê3

ê3
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13.22: Stability of torque-free rotation of an asymmetric body
It is of interest to extend the prior discussion to address the stability of an asymmetric rigid rotor undergoing force-free rotation
close to a principal axes, that is, when subject to small perturbations. Consider the case of a general asymmetric rigid body with 

. Let the system start with rotation about the  axis, that is, the principal axis associated with the moment of inertia 
. Then

Consider that a small perturbation is applied causing the angular velocity vector to be

where  are very small. The Euler equations  become

Assuming that the product  in the first equation is negligible, then , that is,  is constant.

The other two equations can be solved to give

Take the time derivative of the first equation

and substitute for  gives

The solution of this equation is

where

Note that since it was assumed that , then  is real. The solution for  therefore represents a stable oscillatory
motion with precession frequency . The identical result is obtained for . Thus the motion corresponds to a
stable minimum about the  axis with oscillations about the  minimum with period.

Permuting the indices gives that for perturbations applied to rotation about either the 2 or 3 axes give precession frequencies
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λ, μ (13.21.1)

( − )λμ − = 0I2 I3 I1ω̇1

( − )μ − = 0I3 I1 ω1 I2λ̇

( − ) λ − = 0I1 I2 ω1 I3μ̇

λμ = 0ω̇1 ω1

=( )μλ̇
( − )I3 I1

I2
ω1 (13.22.3)

=( )λμ̇
( − )I1 I2

I3
ω1 (13.22.4)

=( )λ̈
( − )I3 I1

I2
ω1 μ̇ (13.22.5)

μ̇

+( )λ = 0λ̈
( − )( − )I1 I3 I1 I2

I2I3
ω2

1 (13.22.6)

λ(t) = A +Bei tΩ1λ e−i tΩ1λ (13.22.7)

=Ω1λ ω1
( − )( − )I1 I3 I1 I2

I2I3

− −−−−−−−−−−−−−

√ (13.22.8)

> >I3 I2 I1 Ω1λ λ(t)
Ω1λ = =Ω1μ Ω1λ Ω1
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Since  then  and  are real while  is imaginary. Thus, whereas rotation about either the  or the  axes are
stable, the imaginary solution about  corresponds to a perturbation increasing with time. Thus, only rotation about the largest or
smallest moments of inertia are stable. Moreover for the symmetric rigid rotor, with , stability exists only about the
symmetry axis  independent on whether the body is prolate or oblate. This result was implied from the discussion of energy and
angular momentum conservation in chapter . Friction was not included in the above discussion. In the presence of dissipative
forces, such as friction or drag, only rotation about the principal axis corresponding to the maximum moment of inertia is stable.

Stability of rigid-body rotation has broad applications to rotation of satellites, molecules and nuclei. The first U.S. satellite,
Explorer 1, was launched in 1958 with the rotation axis aligned with the cylindrical axis which was the minimum principal moment
of inertia. After a few hours the satellite started tumbling with increasing amplitude due to a flexible antenna dissipating and
transferring energy to the perpendicular axis which had the largest moment of inertia. Torque-free motion of a deformed rigid body
is a ubiquitous phenomena in many branches of science, engineering, and sports as illustrated by the following examples.

Figure : Principal rotation axes for the center of mass of a tennis racket. The 1 and 2 -axes are in the plane of the racket
head and the 3 axis is perpendicular to the plane of the racket head.

A tennis racquet is an asymmetric body that exhibits the above rotational behavior. Assume that the head of a tennis racquet is
a uniform thin circular disk of radius  and mass  which is attached to a cylindrical handle of diameter , length ,
and mass  as shown in the figure. The principle moments of inertia about the three axes through the center-of-mass can be
calculated by addition of the moments for the circular disk and the cylindrical handle and using both the parallel-axis and the
perpendicular-axis theorems.

Axis Head Handle Racquet

1

2

3

Table 

Note that . Inserting these principle moments of inertia into equations -
 gives the following precession frequencies

The imaginary precession frequency  about the 1 axis implies unstable rotation leading to tumbling whereas the minimum
moment  and maximum moment  imply stable rotation about the 2 and 3 axes. This rotational behavior is easily
demonstrated by throwing a tennis racquet and is called the tennis racquet theorem. The center of percussion, example 
is another important inertial property of a tennis racquet.
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Some nuclei and molecules have average shapes that have significant asymmetric deformation leading to interesting quantal
analogs of the rotational properties of an asymmetrically-deformed rigid body. The major difference between a quantal and a
classical rotor is that the energies, and angular momentum are quantized, rather than being continuously variable quantities.
Otherwise, the quantal rotors exhibit general features similar to the classical analog. Studies [Cli86] of the rotational behavior
of asymmetrically-deformed nuclei exploit three aspects of classical mechanics, namely classical Coulomb trajectories,
rotational invariants, and the properties of ellipsoidal rigid-bodies.

Ellipsoidal deformation can be specified by the dimensions along each of the three principle axes. Bohr and Mottelson
parameterized the ellipsoidal deformation in terms of three parameters,  which is the radius of the equivalent sphere, 
which is a measure of the magnitude of the ellipsoidal deformation from the sphere, and  which specifies the deviation of the
shape from axial symmetry. The ellipsoidal intrinsic shape can be expressed in terms of the deviation from the equivalent
sphere by the equation

where  is a Laplace spherical harmonic defined as

and  is an associated Legendre function of . Spherical harmonics are the angular portion of a set of solutions to
Laplace’s equation. Represented in a system of spherical coordinates, Laplace’s spherical harmonics  are a specific
set of spherical harmonics that form an orthogonal system. Spherical harmonics are important in many theoretical and practical
applications.

In the principal axis frame of the body, there are three non-zero quadrupole deformation parameters which can be written in
terms of the deformation parameters  where , , and . Using these

in equations  give the three semi-axis dimensions in the principal axis frame, (primed frame),

Note that for , then  while , that is the body has prolate deformation

with the symmetry axis along the 3 axis. The same prolate shape is obtained for  and  with the prolate symmetry

axes along the 1 and 2 axes respectively. For  then  while , that is the

body has oblate deformation with the symmetry axis along the 2 axis. The same oblate shape is obtained for  and 
with the oblate symmetry axes along the 3 and 1 axes respectively. For other values of  the shape is ellipsoidal.

For the asymmetric deformed rigid body, the rotational Hamiltonian can be expressed in the form[Dav58]

where the rotational angular momentum is . The principal moments of inertia are related by the triaxiality parameter 
which they assumed is identical to the shape parameter . For axial symmetry the moment of inertia about the symmetry axis is
taken to be zero for a quantal system since rotation of the potential well about the symmetry axis corresponds to no change in
the potential well, or corresponding rotation of the bound nucleons. That is, the nucleus is not a rigid body, the nucleons only
rotate to the extent that the ellipsoidal potential well is cranked around such that the nucleons must follow the rotation of the
potential well. In addition, vibrational modes coexist about the average asymmetric deformation, plus octupole deformation
often coexists with the above quadrupole deformed modes.

Example : Rotation of asymmetrically-deformed nuclei13.22.2
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13.23: Symmetric rigid rotor subject to torque about a fixed point
The motion of a symmetric top rotating in a gravitational field, with one point at a fixed location, is encountered frequently in
rotational motion. Examples are the gyroscope and a child’s spinning top. Rotation of a rigid rotor subject to torque about a fixed
point, is a case where it is necessary to take the inertia tensor with respect to the fixed point in the body, and not at the center of
mass.

Figure : Symmetric top spinning about one fixed point.

Consider the geometry, shown in Figure , where the symmetric top of mass  is spinning about a fixed tip that is displaced
by a distance  from the center of mass. The tip of the top is assumed to be at the origin of both the space-fixed frame  and
the body-fixed frame . Assume that the translational velocity is zero and let the principal moments about the fixed point of
the symmetric top be .

The Lagrange equations of motion can be derived assuming that the kinetic energy equals the rotational kinetic energy, that is, it is
assumed that the translational kinetic energy . Then the kinetic energy of an inertially-symmetric rigid rotor can be
derived for the torque-free symmetric top as given in equation  to be

Since the potential energy is  then the Lagrangian equals

The angular momentum about the space-fixed  axis  is conjugate to . From Lagrange’s equations

that is,  is a constant of motion given by the generalized momentum

where  is the angular momentum projection along the space-fixed  axis.

Similarly, the angular momentum about the body-fixed 3 axis is conjugate to . From Lagrange’s equations,

that is,  is a constant of motion given by the generalized momentum
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where  is the angular momentum projection along the body-fixed 3 axis. The above two relations can be solved to give the
precessional angular velocity  about the space-fixed  axis

and the spin angular velocity  about the body-fixed  axis

Since  and  are constants of motion, i.e. , then these rotational angular velocities depend on only , . and .

Figure : Effective potential diagram for a spinning symmetric top as a function of theta.
There is one further constant of motion available if no frictional forces act on the system, that is, energy conservation. This implies
that the total energy

will be a constant of motion. But the middle term on the right-hand side also is a constant of motion

Thus energy conservation can be rewritten by defining an energy  where

This can be written as

which can be expressed as

where  is an effective potential
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The effective potential  is shown in Figure . It is clear that the motion of a symmetric top with effective energy  is
confined to angles . Note that the above result also is obtained if the Routhian is used, rather than the Lagrangian, as
mentioned in chapter , and defined by equation . That is, the Routhian can be written as

The Routhian  acts like a Hamiltonian for the  and  variables which are constants of motion, and
thus are ignorable variables. The Routhian acts as the negative Lagrangian for the remaining variable , with rotational kinetic

energy  and effective potential energy 

The equation of motion describing the system in the rotating frame is given by one Lagrange equation

The negative sign of the Routhian cancels out when used in the Lagrange equation. Thus, in the rotating frame of reference, the
system is reduced to a single degree of freedom, the nutation angle , with effective energy  given by equations  - 

.

Figure : Nutational motion of the body-fixed symmetry axis projected onto the space-fixed unit sphere. The three case are
(a)  never vanishes, (b)  at  (c)  changes sign between  and ,

The motion of the symmetric top is simplest at the minimum value of the effective potential curve, where , at which the
nutation  is restricted to a single value . The motion is a steady precession at a fixed angle of inclination, that is, the
“sleeping top”. Solving for  gives that

If , then to ensure that the solution is real requires a minimum value of the angular momentum on the body-fixed axis of 
. If  then there is no minimum angular momentum projection on the body-fixed axis. There are two

possible solutions to the quadratic relation corresponding to either a slow or fast precessional frequency. Usually the slow
precession is observed.

For the general case, where , the nutation angle  between the space-fixed and body-fixed 3 axes varies in the range 
. This axis exhibits a nodding variation which is called nutation. Figure  shows the projection of the body-

fixed symmetry axis on the unit sphere in the space-fixed frame. Note that the observed nutation behavior depends on the relative
sizes of  and . For certain values, the precession  changes sign between the two limiting values of  producing a
looping motion as shown in Figure . Another condition is where the precession is zero for  producing a cusp at  as
illustrated in Figure . This behavior can be demonstrated using the gyroscope or the symmetric top.
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Figure : Jack comprises six bodies of mass  at each end of orthogonal arms of length 

The game “Jacks” is played using metal Jacks, each of which comprises six equal masses  at the opposite ends of orthogonal
axes of length . Consider one jack spinning around the body-fixed 3−axis with the lower mass at a fixed point on the ground,
and with a steady precession around the space-fixed vertical axis  with angle  as shown. Assume that the body-fixed axes
align with the arms of the jack.

The principal moments of inertia about one mass is given by the parallel axis theorem to be 
and .

In the rotating body-fixed frame the torque due to gravity has components

and the components of the angular velocity are

Using Euler’s equations  for the above components of  and  in the body-fixed frame, gives

Equation  relates the spin about the 3 axis, the precession, and the angle to the vertical , that is

where  is the spin and  is the precession angular velocity.

If the spin axis is nearly vertical,  and thus  and . Multiply Equation     and using
the equations of the components of  gives

The bracket must be positive to have stable sinusoidal oscillations. That is, the spin angular velocity  required for the jack to
spin about a stable vertical axis is given by.

Example : The Spinning "Jack"13.23.1
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This example illustrates the conditions required for stable rotation of any axially-symmetric top.

Figure : The geometry of the Tippe Top of radius  spinning on a horizontal surface with slipping friction acting
between the top and the horizontal plane. The center of mass is a distance  from the center of the spherical section along the
axis of symmetry of the top.

The Tippe Top comprises a section of a sphere, to which a short cylindrical rod is mounted on the planar section, as illustrated.
When the Tippe Top is spun on a horizontal surface this top exhibits the perverse behavior of transitioning from rotation with
the spherical head resting on the horizontal surface, to flipping over such that it rotates resting on its elongated cylindrical rod.
The orientation of angular momentum remains roughly vertical as expected from conservation of angular momentum. This
implies that the rotation with respect to the body-fixed axes must invert as the top inverts. The center of mass is raised when
the top inverts; the additional potential energy is provided by a reduction in the rotational kinetic energy.

The Tippe Top behavior was first discovered in the 1890’s but adequate solutions of the equations of motion have only been
developed since the 1950’s. Since the top precesses around the vertical axis, the point of contact is not on the symmetry axis of
the top. Sliding friction between the surface of the spinning top and the horizontal surface provides a torque that causes the
precession of the top to increase and eventually flip up onto the cylindrical peg. The Tippe Top is typical of many phenomena
in physics where the underlying physics principle can be recognized but a detailed and rigorous solution can be complicated.

The system has five degrees of freedom,  which specify the location on the horizontal plane, plus the three Euler angles 
. The paper by Cohen[Coh77] explains the motion in terms of Euler angles using the laboratory to body-fixed

transformation relation. It shows that friction plays a pivotal role in the motion contrary to some earlier claims. Ciocci and
Langerock[Cio07] used the Routhian  to reduce the number of degrees of freedom from 5 to 2, namely  which is the tilt
angle, and  which is the orientation of the tilt. This Routhian  is a Lagrangian in two dimension that was used to
derive the equations of motion via the Lagrange Euler equation

where the  are generalized torques about the 2 angles that take into account the sliding frictional forces. This
sophisticated Routhian reduction approach provides an exhaustive and refined solution for the Tippe Top and confirms that
sliding friction plays a key role in the unusual behavior of the Tippe Top.

This page titled 13.23: Symmetric rigid rotor subject to torque about a fixed point is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.24: The Rolling Wheel
As discussed in chapter , the rolling wheel is a non-holonomic system that is simple in principle, but in practice the solution can
be complicated, as illustrated by the Tippe Top. Chapter  discussed the motion of a symmetric top rotating about a fixed point
on the symmetry axis when subject to a torque. The rolling wheel involves rotation of a symmetric rigid body that is subject to
torques. However, the point of contact of the wheel with a static plane is on the periphery of the wheel, and friction at the point of
contact is assumed to ensure zero slip. Note that friction is necessary to ensure that the rotating object rolls without slipping, but the
frictional force does no work for pure rolling of an undeformable rigid wheel.

The coordinate system employed is shown in Figure . For simplicity it is better to use a moving coordinate frame 
that is fixed to the orientation of the wheel with the origin at the center of mass of the wheel, but this moving reference frame does
not include the angular velocity  of the disk about the  axis. That is, the moving  frame has angular velocities

The frame fixed in the rotating wheel must include the additional angular velocity of the disk  about the  axis, that is

where  designates the angular velocity of the rotating disk, while  designates the rotation of the moving frame .

The principle moments of inertia of a thin circular disk are related by the perpendicular axis theorem (chapter )

Since  for a uniform disk, therefore .

Equation  can be used to relate the vector forces  in the space-fixed frame to the rate of change of momenta in the
moving frame .

This leads to the following relations for the three components in the moving frame

where  are the reactive forces acting shown in Figure .

5.7

13.23

13.24.1 (1, 2, 3)
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Figure : Uniform disk rolling on a horizontal plane as viewed in the (a) fixed frame, and (b) rolling disk frame. The space-
fixed axis system is , while the moving reference frame  is centered at the center of mass of the disk with the 
axes in the plane of the disk. The disk is rotating with a uniform angular velocity  about the  axis and rolling in the direction that
is at an angle  relative to the  axis.

Similarly, the torques  in the space-fixed frame can be related to the rate of change of angular momentum by

where . This leads to the following relations for the three torque equations in the moving frame

The rolling constraints are

where . Combining equations , ,  gives

These are the torque equations about the point of contact .

Introduction of equations  and  into Equation  expresses the equations of motion in terms of the Euler angles
to be

Equations  are non-linear, and a closed-form solution is possible only for limited cases such as when .

Note that the above equations of motion also can be derived using Lagrangian mechanics knowing that
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The differential equations of constraint can be derived from equations  to be

Use of generalized forces plus the Lagrange-Euler equations  can be used to derive the equations of motion and solve for
the components of the constraint force , , and .

A circular wheel rolling in a vertical plane at high angular velocity initially rolls in a straight line and remains vertical.
However, below a certain angular velocity, gyroscopic forces become weaker and the wheel will tip sideways and veer rapidly
from the initial direction. It is interesting to estimate the minimum angular velocity of the disk such that it does not start to tip
over sideways.

Note that equations  are satisfied for ,  and  constant. Assume a small disturbance causes the tilt
angle to be  where  is small and that  is non-zero but small, that is  and  are small. Keeping only terms
to first order in the third of equations , and integrating gives

The first two of equations  become

Integrating Equation  gives

Inserting  into  gives

Equation  has a stable oscillatory solution when the square bracket in positive, that is,

which gives the minimum angular velocity required for stable rolling motion. For angular velocity less than the minimum, the
square bracket in Equation  is negative leading to an exponentially decaying and divergent solution. For a uniform disk the
perpendicular axis theorem gives  for which Equation  gives

Therefore the critical linear velocity of the wheel is

The bicycle wheel provides a common example of the tipping of a rolling wheel. For the typical   radius of a bicycle
wheel, this gives a critical velocity of    .
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Example : Tipping stability of a rolling wheel13.24.1
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The stability of the bicycle is sensitive to the castor and other aspects of the steering geometry of the front wheel, in addition to the
gyroscopic effects. Excellent articles on this sub ject have been written by D.E.H. Jones Physics Today 23(4) (1970) 34, and also by
J. Lowell & H.D. McKell, American Journal of Physics 50 (1982) 1106.

This page titled 13.24: The Rolling Wheel is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.

4

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/30811?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/13%3A_Rigid-body_Rotation/13.24%3A_The_Rolling_Wheel
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/


13.25.1 https://phys.libretexts.org/@go/page/30812

13.25: Dynamic balancing of wheels
For rotating machinery It is crucial that rotors be both statically and dynamically balanced. Static balance means that the center of
mass is on the axis of rotation. Dynamic balance means that the axis of rotation is a principal axis.

For example, consider the symmetric rotor that has its symmetry axis at an angle  to the axis of rotation. In this case the system is
statically balanced since the center of gravity is on the axis of rotation. However, the rotation axis is at an angle  to the symmetry
axis. This implies that the axle has to provide a torque to maintain rotation that is not along a principal axis. If you distort the front
wheel of your car by hitting it sideways against the sidewalk curb, or if the wheel is not dynamically balanced, then you will find
that the steering wheel can vibrate wildly at certain speeds due to the torques caused by dynamic imbalance shaking the steering
mechanism. This can be especially bad when the rotation frequency is close to a resonant frequency of the suspension system.
Insist that your automobile wheels are dynamically balanced when you change tires, static balancing will not eliminate the dynamic
imbalance forces. Another example is that the ailerons, rudder, and elevator on aircraft usually are dynamically balanced to stop the
build up of oscillations that can couple to flexing and flutter of the airframe which can lead to airframe failure.

Figure : Rotation of circular disk about an axis that is at an angle  to the symmetry axis of the circular disk.

A homogeneous circular disk of mass , and radius , rotates with constant angular velocity  about a body-fixed axis
passing through the center of the circular disk as shown in the adjacent figure. The rotation axis is inclined at an angle  to the
symmetry axis of the circular disk by bearings on both sides of the disk spaced a distance  apart. Determine the forces on the
bearings.

Choose the body-fixed axes such that  is along the symmetry axis of the circular disk, and  points in the plane of the disk
symmetry axis and the rotation axis. These axes are the principal axes for which the inertia tensor can be calculated to be

Note that for this thin plane laminae disk .

The components of the angular velocity vector  along the three body-fixed axes are given by

Since it is assumed that  then substituting into Euler’s equations  gives the torques acting to be

That is, the torque is in the  direction. Thus the forces  on the bearings can be calculated since , thus

ϕ
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Example : Forces on the bearings of a rotating circular disk13.25.1
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Estimate the size of these forces for the front wheel of your car travelling at   if the rotation axis is displaced by 
from the symmetry axis of the wheel.

Figure : Forward two-and-a-half somersaults with two twists demonstrates unequivocally that a diver can initiate
continuous twisting in midair. In the illustrated maneuver the diver does more than one full somersault before he starts to twist. To
maintain the twisting the diver does not have to move his legs.[Fro80]

This page titled 13.25: Dynamic balancing of wheels is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.26: Rotation of Deformable Bodies
The discussion in this chapter has assumed that the rotating body is a rigid body. However, there is a broad and important class of
problems in classical mechanics where the rotating body is deformable that leads to intriguing new phenomena. The classic
example is the cat, which, if dropped upside down with zero angular momentum, is able to distort its body plus tail in order to
rotate such that it lands on its feet in spite of the fact that there are no external torques acting and thus the angular momentum is
conserved. Another example is the high diver doing a forward two—and-a-half somersault with two twists.[Fro80] Once the diver
leaves the board then the total angular momentum must be conserved since there are no external torques acting on the system. The
diver begins a somersault by rotating about a horizontal axis which is a principal axis that is perpendicular to the axis of his body
passing through his hips. Initially the angular momentum, and angular velocity, are parallel and point perpendicular to the
symmetry axis. Initially the diver goes into a tuck which greatly reduces his moment of inertia along the axis of his somersault
which concomitantly increases his angular velocity about this axis and he performs one full somersault prior to initiating twisting.
Then the diver twists its body and moves its arms to destroy the axial symmetry of his body which changes the direction of the
principal axes of the inertia tensor. This causes the angular velocity to change in both direction and magnitude such that the angular
momentum remains conserved. The angular velocity now is no longer parallel to the angular momentum resulting in a component
along the length of the body causing it to twist while somersaulting. This twisting motion will continue until the symmetry of the
diver’s body is restored which is done just before entering the water. By skilled timing, and body movement, the diver restores the
symmetry of his body to the optimum orientation for entering the water. Such phenomena involving deformable bodies are
important to motion of ballet dancers, jugglers, astronauts in space, and satellite motion. The above rotational phenomena would be
impossible if the cat or diver were rigid bodies having a fixed inertia tensor. Calculation of the dynamics of the motion of
deformable bodies is complicated and beyond the scope of this book, but the concept of a time dependent transformation of the
inertia tensor underlies the subsequent motion. The theory is complicated since it is difficult even to quantify what corresponds to
rotation as the body morphs from one shape to another. Further information on this topic can be found in the literature. [Fro80]

This page titled 13.26: Rotation of Deformable Bodies is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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13.E: Rigid-body Rotation (Exercises)
1. A hollow spherical shell has a mass  and radius .

a. Calculate the inertia tensor for a set of coordinates whose origin is at the center of mass of the shell.
b. Now suppose that the shell is rolling without slipping toward a step of height , where . The shell has a linear velocity .

What is the angular momentum of the shell relative to the tip of the step?
c. The shell now strikes the tip of the step inelastically (so that the point of contact sticks to the step, but the shell can still rotate

about the tip of the step). What is the angular momentum of the shell immediately after contact?
d. Finally, find the minimum velocity which enables the shell to surmount the step. Express your result in terms of , , , and .

2. The vectors , , and  constitute a set of orthogonal right-handed axes. The vectors , , and  are
also perpendicular to one another.

a. Write out the set of direction cosines relating the new axes to the old.
b. How are the Eulerian angles defined? Describe this transformation by a set of Eulerian angles.

3. A torsional pendulum consists of a vertical wire attached to a mass which can rotate about the vertical axis. Consider three
torsional pendula which consist of identical wires from which identical homogeneous solid cubes are hung. One cube is hung from
a corner, one from midway along an edge, and one from the middle of a face as shown. What are the ratios of the periods of the
three pendula?

Figure 

4. A dumbbell comprises two equal point masses  connected by a massless rigid rod of length  which is constrained to rotate
about an axle fixed to the center of the rod at an angle  as shown in the figure. The center of the rod is at the origin of the
coordinates, the axle along the -axis, and the dumbbell lies in the  plane at . The angular velocity  is a constant in
time and is directed along the  axis.

a. Calculate all elements of the inertia tensor. Be sure to specify the coordinate system used.
b. Using the calculated inertia tensor find the angular momentum of the dumbbell in the laboratory frame as a function of time.
c. Using the equation , calculate the angular momentum and show that it it is equal to the answer of part (b).
d. Calculate the torque on the axle as a function of time.
e. Calculate the kinetic energy of the dumbbell.

Figure 

5. A heavy symmetric top has a mass  with the center of mass a distance  from the fixed point about which it spins and 
. The top is precessing at a steady angular velocity  about the vertical space-fixed  axis. What is the minimum spin 

 about the body-fixed symmetry axis, that is, the 3 axis assuming that the 3 axis is inclined at an angle  with respect to the
vertical  axis. Solve the problem at the instant when the  axes all are in the same plane as shown in the figure.
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Figure 

6. Consider an object with the center of mass is at the origin and inertia tensor,

a. Determine the principal moments of inertia and the principal axes. Guess the object.
b. Determine the rotation matrix  and compute . Do the diagonal elements match with your results from (a)? Note:

columns of  are eigenvectors of .
c. Assume . Determine  in the rotating coordinate system. Are  and  in the same direction? What does this

mean?
d. Repeat (c) for . What is different and why?

e. For which case will there be a non-zero torque required?
f. Determine the rotational kinetic energy for the case ?

7. Consider a wheel (solid disk) of mass  and radius . The wheel is subject to angular velocities  where  is normal
to the surface and .

Figure 

a. Choose a set of principal axes by observation.
b. Determine the angular velocities and angular momentum along the principal axes. Note:  and .
c. Determine the torque.
d. Determine the rotation matrix that rotates the fixed coordinate system to the body coordinate system.

8. Determine the principal moments of inertia of an ellipsoid given by the equation,

9. Determine the principal moments of inertia of a sphere of radius  with a cavity of radius  located  from the center of the
sphere.

10. Three equal masses  form the vertices of an equilateral triangle of side length . Assume that the masses are located at 

, , and , such that the center-of-mass is located at the origin.

a. Determine the principal moments of inertia and principal axes.
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Now consider the same system rotated  about the -axis. Assume that the masses are located at , 

, and , respectively.

a. Determine the principal moments of inertia and principal axes.
b. Could you have answered (b) without explicitly determining the inertia tensor? How?

11. Calculate the moments of inertia  for a homogeneous cone of mass  whose height is  and whose base has a radius 
. Choose the -axis along the symmetry axis of the cone.

a. Choose the origin at the apex of the cone, and calculate the elements of the inertia tensor.
b. Make a transformation such that the center of mass of the cone is the origin and find the principal moments of inertia.

12. Four masses, all of mass , lie in the  plane at positions . These are joined
by massless rods to form a rigid body

a. Find the inertial tensor, using the  axes as a reference system. Exhibit the tensor as a matrix.
b. Consider a direction given by the unit vector  that lies equally between the positive  axes; that is it makes equal angles

with these three directions. Find the moment of inertia for rotation about this  axis.
c. Given that at a certain time  the angular velocity vector lies along the above direction , find, for that instant, the angle

between the angular momentum vector and .

13. A homogeneous cube, each edge of which has a length , initially is in a position of unstable equilibrium with one edge of the
cube in contact with a horizontal plane. The cube then is given a small displacement causing it to tip over and fall. Show that the
angular velocity of the cube when one face strikes the plane is given by

where  if the edge cannot slide on the plane, and where  if sliding can occur without friction.

14. A symmetric body moves without the influence of forces or torques. Let  be the symmetry axis of the body and  be along 
. The angle between  and  is . Let  and  initially be in the  plane. What is the angular velocity of the symmetry

axis about  in terms of , , , and ?

15. Consider a thin rectangular plate with dimensions  by  and mass . Determine the torque necessary to rotate the thin plate
with angular velocity  about a diagonal. Explain the physical behavior for the case when .
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13.S: Rigid-body Rotation (Summary)
This chapter has introduced the important, topic of rigid-body rotation which has many applications in physics, engineering, sports,
etc.

Inertia tensor
The concept of the inertia tensor was introduced where the 9 components of the inertia tensor are given by

Steiner’s parallel-axis theorem

relates the inertia tensor about the center-of-mass to that about parallel axis system not through the center of mass.

Diagonalization of the inertia tensor about any point was used to find the corresponding Principal axes of the rigid body.

Angular momentum

The angular momentum  for rigid-body rotation is expressed in terms of the inertia tensor and angular frequency  by

Rotational kinetic energy
The rotational kinetic energy is

Euler angles
The Euler angles relate the space-fixed and body-fixed principal axes. The angular velocity  expressed in terms of the Euler
angles has components for the angular velocity in the body-fixed axis system 

Similarly, the components of the angular velocity for the space-fixed axis system  are

Rotational invariants
The powerful concept of the rotational invariance of scalar properties was introduced. Important examples of rotational invariants
are the Hamiltonian, Lagrangian, and Routhian.
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Euler equations of motion for rigid-body motion
The dynamics of rigid-body rotational motion was explored and the Euler equations of motion were derived using both Newtonian
and Lagrangian mechanics.

Lagrange equations of motion for rigid-body motion

The Euler equations of motion for rigid-body motion, given in Equation , were derived using the Lagrange-Euler equations.

Torque-free motion of rigid bodies
The Euler equations and Lagrangian mechanics were used to study torque-free rotation of both symmetric and asymmetric bodies
including discussion of the stability of torquefree rotation.

Rotating symmetric body subject to a torque

The complicated motion exhibited by a symmetric top, that is spinning about one fixed point and subject to a torque, was
introduced and solved using Lagrangian mechanics.

The rolling wheel
The non-holonomic motion of rolling wheels was introduced, as well as the importance of static and dynamic balancing of rotating
machinery..

Rotation of deformable bodies
The complicated non-holonomic motion involving rotation of deformable bodies was introduced.

This page titled 13.S: Rigid-body Rotation (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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14.1: Introduction to Coupled Linear Oscillators
Chapter  discussed the behavior of a single linearly-damped linear oscillator subject to a harmonic force. No account was taken
for the influence of the single oscillator on the driver for the case of forced oscillations. Many systems in nature comprise
complicated free or forced oscillations of coupled-oscillator systems. Examples of coupled oscillators are; automobile suspension
systems, electronic circuits, electromagnetic fields, musical instruments, atoms bound in a crystal, neural circuits in the brain,
networks of pacemaker cells in the heart, etc. Energy can be transferred back and forth between coupled oscillators as the motion
evolves. However, it is possible to describe the motion of coupled linear oscillators in terms of a sum over independent normal
coordinates, i.e. normal modes, even though the motion may be very complicated. These normal modes are constructed from the
original coordinates in such a way that the normal modes are uncoupled. The topic of finding the normal modes of coupled
oscillator systems is a ubiquitous problem encountered in all branches of science and engineering. As discussed in chapter ,
oscillatory motion of non-linear systems can be complicated. Fortunately most oscillatory systems are approximately linear when
the amplitude of oscillation is small. This discussion assumes that the oscillation amplitudes are sufficiently small to ensure
linearity.

This page titled 14.1: Introduction to Coupled Linear Oscillators is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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14.2: Two Coupled Linear Oscillators
Consider the two-coupled linear oscillator, shown in Figure , which comprises two identical masses each connected to fixed
locations by identical springs having a force constant . A spring with force constant  couples the two oscillators. The
equilibrium lengths of the outer two springs are  while that of the coupling spring is . The problem is simplified by restricting the
motion to be along the line connecting the masses and assuming fixed endpoints. The small displacements of  and  are taken
to be  and  with respect to the equilibrium positions  and  respectively. The restoring force on  is 

 while the restoring force on  is . This coupled double-oscillator system exhibits
basic features of coupled linear oscillator systems.

Figure : Two coupled linear oscillators. The equilibrium spring-lengths are  for the outer springs and  for the coupling
spring. The displacement from the stable locations are given by  and . The separation between the two masses is  and the
location of the center-of-mass is .

Assuming , then the equations of motion are

Assume that the motion for these coupled equations is oscillatory with a solution of the form

where the constants  may be complex to take into account both the magnitude and phase. Substituting these possible solutions
into the equations of motion gives

Collecting terms, and cancelling the common exponential factor, gives

The existence of a non-trivial solution of these two simultaneous equations requires that the determinant of the coefficients of 
and  must vanish, that is

The expansion of this secular determinant yields

Solving for  gives

That is, there are two characteristic frequencies (or eigenfrequencies) for the system
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Since superposition applies for these linear equations, then the general solution can be written as a sum of the terms that account
for the two possible values of .

Figure : Displacement of each of two coupled linear harmonic oscillators with  and  in
relative units.

Figure  shows the solutions for a case where  and , in arbitrary units, with the initial condition that , and

. The two characteristic frequencies are  and . The characteristic beats phenomenon is

exhibited where the envelope over one complete cycle of the low frequency encompasses several higher frequency oscillations.
That is, the solution is

while

The energy in the two-coupled oscillators flows back and forth between the coupled oscillators as illustrated in Figure .

A better understanding of the energy flow occurring between the two coupled oscillators is given by using a 
configuration-space plot, shown in Figure . The flow of energy occurring between the two coupled oscillators can be
represented by choosing normal-mode coordinates  and  that are rotated by  with respect to the spatial coordinates 

. These normal-mode coordinates  correspond to the two normal modes of the coupled double-oscillator system.
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14.3: Normal Modes
The normal modes of the two-coupled oscillator system are obtained by a transformation to a pair of normal coordinates 
that are independent and correspond to the two normal modes. The pair of normal coordinates for this case are

that is

Substitute these into the equations of motion , gives

Adding and subtracting these two equations gives

Note that the two coordinates  and  are uncoupled and therefore are independent. The solutions of these equations are

where  corresponds to angular frequencies , and  corresponds to . The two coordinates  and  are called the normal
coordinates and the two solutions are the normal modes with corresponding angular frequencies,  and .

Figure : Motion of two coupled harmonic oscillators in the  spatial configuration space and in terms of the normal
modes . Initial conditions are .

The  axes of the two normal modes correspond to a rotation of  in configuration space, Figure . The initial
conditions chosen correspond to  and thus both modes are excited with equal intensity. Note that there are 5 lobes along
the  axis versus 4 lobes along the  axis reflecting the ratio of the eigenfrequencies  and . Also note that the diamond shape
of the motion in the  configuration space illustrates that the extrema amplitudes for  are a maximum when  is zero,
and vise versa. This is equivalent to the statement that the energies in the two modes are coupled with the energy for the first
oscillator being a maximum when the energy is a minimum for the second oscillator, and vise versa. By contrast, in the 
configuration space, the motion is bounded by a rectangle parallel to the  axes reflecting the fact that the extrema
amplitudes, and corresponding energies, for the  normal mode are constant and independent of the motion for the  normal
mode, and vise versa. The decoupling of the two normal modes is best illustrated by considering the case when only one of these
two normal modes is excited. For the initial conditions , and , then . That is, only the 

 normal mode is excited with frequency  which corresponds to motion confined to the  axis of Figure .
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Figure : Normal modes for two coupled oscillators.

As shown in Figure ,  is the antisymmetric mode in which the two masses oscillate out of phase such as to keep the
center of mass of the two masses stationary. For the initial conditions , and , then , that is,
only the  normal mode is excited. The  normal mode is the symmetric mode where the two masses oscillate in phase with
frequency ; it corresponds to motion along the  axis. For the symmetric phase, both masses move together leading to a
constant extension of the coupling spring. As a result the frequency  of the symmetric mode  is lower than the frequency 
of the asymmetric mode . That is, the asymmetric mode is stiffer since all three springs provide active restoring forces,
compared to the symmetric mode where the coupling spring is uncompressed. In general, for attractive forces the lowest frequency
always occurs for the mode with the highest symmetry

This page titled 14.3: Normal Modes is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline
via source content that was edited to the style and standards of the LibreTexts platform.
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14.4: Center of Mass Oscillations
Transforming the coordinates into the center of mass of the two oscillating masses elucidates an interesting feature of the normal
modes for the two-coupled linear oscillator. As illustrated in Figure , the center-of-mass coordinate for the two mass
system is

while the relative separation distance is

That is, the two normal modes are

The  mode, which has angular frequency  corresponds to an oscillations of the relative separation , while the

center-of-mass location  is stationary. By contrast, the  mode, with angular frequency  corresponds to an

oscillation of the center of mass  with the relative separation  being a constant.

Figure : Time dependence of the center-of-mass  and relative separation  for two coupled linear oscillators assuming
spring constants of  and .

Figure  illustrates the decoupled center-of-mass , and relative motions  for both normal modes of the coupled double-
oscillator system. The difference in angular frequencies and amplitudes is readily apparent. It is of interest to consider the special

case where the spring constant  for the two outside springs. Then the angular frequencies are  and  for the

two normal modes. When  the  mode is a spurious center-of-mass mode since it corresponds to an oscillation with 
in spite of the fact that there are no forces acting on the center of mass. That is, the center-of-mass momentum must be a constant
of motion. This spurious center-of-mass oscillation is a consequence of measuring the displacements  with respect to an
arbitrary external reference that is not related to the center of mass of the coupled system. Spurious center-of-mass modes are
encountered frequently in many-body coupled oscillator systems such as molecules and nuclei. In such cases it is necessary to
project out the center-of-mass motion to eliminate such spurious solutions as will be discussed later.

This page titled 14.4: Center of Mass Oscillations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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14.5: Weak Coupling
If one of the two coupled linear oscillator masses is held fixed, then the other free mass will oscillate with a frequency.

The effect of coupling of the two oscillators is to split the degeneracy of the frequency for each mass to

Thus the degeneracy is broken, and the two normal modes have frequencies straddling the single-oscillator frequency.

It is interesting to consider the case where the coupling is weak because this situation occurs frequently in nature. The coupling is
weak if the coupling constant . Then

where

Thus

The natural frequency of a single oscillator was shown to be

that is

Thus the frequencies for the normal modes for weak coupling can be written as

while

That is the two solutions are split equally spaced about the single uncoupled oscillator value given by Equation . Note that
the single uncoupled oscillator frequency  depends on the coupling strength .

This splitting of the characteristic frequencies is a feature exhibited by many systems of  identical oscillators where half of the
frequencies are shifted upwards and half downward. If  is odd, then the central frequency is unshifted as illustrated for the case of 

. An example of this behavior is the Zeeman effect where the magnetic field couples the atomic motion resulting in a
hyperfine splitting of the energy levels of the form illustrated.
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Figure : Normal-mode frequencies for  and  weakly-coupled oscillators.

There are myriad examples involving weakly-coupled oscillators applied to musical instruments, physics, and engineering. Weakly
coupled oscillators are a dominant theme throughout biology as illustrated by congregations of synchronously flashing fireflies,
crickets that chirp in unison, an audience clapping at the end of a performance, networks of pacemaker cells in the heart, insulin-
secreting cells in the pancreas, and neural networks in the brain and spinal cord that control rhythmic behaviors such as breathing,
walking, and eating. Synchronous motion of a large number of weakly-coupled oscillators often leads to large collective motion of
weakly-coupled systems as discussed in chapter 

The grand piano provides an excellent example of a weakly-coupled harmonic oscillator system that has normal modes. There
are either two or three parallel strings per note that are stretched tightly parallel to the top of the horizontal sounding board.
The strings press downwards on the bridge that is attached to the top of the sounding board. The strings for each note are
excited when struck vertically upwards by a single hammer. In the base section of the piano each note comprises two strings
tuned to nearly the same frequency. The coupling of the motion of the strings is via the bridge plus sounding board. Normally,
the hammer strikes both strings simultaneously exciting the vertical symmetric mode, not the vertical antisymmetric mode. The
bridge is connected to the sounding board which moves the largest amount for the symmetric mode where both strings move
the bridge in phase. This strong coupling produces a loud sound. The antisymmetric mode does not move the sounding board
much since the strings at the bridge move out of phase. Consequently, the symmetric mode, that is strongly coupled to the
sounding board, damps out more rapidly than the antisymmetric mode which is weakly coupled to the sound board and thus
has a longer time constant for decay since the radiated sound energy is lower than the symmetric mode.

Figure : Schematic diagram of the action for a grand piano, including the strings, bridge and sounding board. Note that
there are either two or three parallel strings per note all hit by a single hammer.

The una-corda pedal (soft pedal) for a grand piano moves the action sideways such that the hammer strikes only one of the two
strings, or two of the three strings, resulting in both the symmetric and antisymmetric modes being excited equally. The una-
corda pedal produces a characteristically different tone than when the hammer simultaneously hits all the strings; that is, it
produces a smaller transient component. The symmetric mode rapidly damps due to energy propagation by the sounding board.
Thus the longer lasting antisymmetric mode becomes more prominent when both modes are equally excited using the una-
corda pedal. The symmetric and antisymmetric modes have slightly different frequencies and produce beats which also
contributes to the different timbre produced using the una-corda pedal. For the mid and upper frequency range, the piano has
three strings per note which have one symmetric mode and two separate antisymmetric modes. To further complicate matters,
the strings also can oscillate horizontally which couples weakly to the bridge plus sounding board. The strengths that these
different modes are excited depend on subtle differences in the shape and roughness of the hammer head striking the strings.
Primarily the hammer excites the two vertical modes rather than the horizontal modes.
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14.6: General Analytic Theory for Coupled Linear Oscillators
The discussion of a coupled double-oscillator system in Section  has shown that it is possible to select symmetric and
antisymmetric normal modes that are independent and each have characteristic frequencies. The normal coordinates for these two
normal modes correspond to linear superpositions of the spatial amplitudes of the two oscillators and can be obtained by a rotation
into the appropriate normal coordinate system. Extension of this to systems comprising  coupled linear oscillators, requires
development of a general analytic theory, that is capable of finding the normal modes and their eigenvalues and eigenvectors. As
illustrated for the double oscillator, the solution of many coupled linear oscillators is a classic eigenvalue problem where one has to
rotate to the principal axis system to project out the normal modes. The following discussion presents a general approach to the
problem of finding the normal coordinates for a system of  coupled linear oscillators.

Consider a conservative system of  coupled oscillators, described in terms of generalized coordinates  and  with subscript 
 for a system with  degrees of freedom. The coupled oscillators are assumed to have a stable equilibrium with

generalized coordinates  at equilibrium. In addition, it is assumed that the oscillation amplitudes are sufficiently small to ensure
that the system is linear.

For the equilibrium position , the Lagrange equations must satisfy

Every non-zero term of the form  in Lagrange’s equations must contain at least either  or  which are zero at equilibrium;

thus all such terms vanish at equilibrium. At equilibrium

where the subscript  designates at equilibrium.

Kinetic energy tensor T
In chapter  it was shown that, in terms of fixed rectangular coordinates, the kinetic energy for  bodies, with  generalized
coordinates, is expressed as

Expressing these in terms of generalized coordinates  where , then the generalized velocities are
given by

As discussed in chapter , if the system is scleronomic then the partial derivative

Thus the kinetic energy, Equation , of a scleronomic system can be written as a homogeneous quadratic function of the
generalized velocities

where the components of the kinetic energy tensor  are
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Note that if the velocities  correspond to translational velocity, then the kinetic energy tensor  corresponds to an effective mass
tensor, whereas if the velocities correspond to angular rotational velocities, then the kinetic energy tensor  corresponds to the
inertia tensor.

It is possible to make an expansion of the  about the equilibrium values of the form

Only the first-order term will be kept since the second and higher terms are of the same order as the higher order terms ignored in

the Taylor expansion of the potential. Thus, at the equilibrium point, assume that  where .

Potential energy tensor V
Equations  plus  imply that

where .

Make a Taylor expansion about equilibrium for the potential energy, assuming for simplicity that the coordinates have been
translated to ensure that  at equilibrium. This gives

The linear term is zero since  at the equilibrium point, and without loss of generality, the potential can be measured

with respect to . Assume that the amplitudes are small, then the expansion can be restricted to the quadratic term, corresponding
to the simple linear oscillator potential

That is

where the components of the potential energy tensor  are defined as

Note that the order of differentiation is unimportant and thus the quantity  is symmetric

The motion of the system has been specified for small oscillations around the equilibrium position and it has been shown that 
 has a minimum value at equilibrium which is taken to be zero for convenience.

In conclusion, equations  and  give

where the components of the kinetic energy tensor  and potential energy tensor  are

q̇ T

T

Tjk

( , , . . ) = ( ) + +. . .Tjk q1 q2 qn Tjk qi0 ∑
l

( )
∂Tjk

∂ql 0

ql (14.6.8)

= 0( )∂T
∂qk 0

k = 1, 2, 3, . . .n

14.6.2 14.6.8

= 0( )
∂U

∂qk 0

(14.6.9)

k = 1, 2, 3, . . .n

= 0qk

U( , , . . ) = + + +. .q1 q2 qn U0 ∑
k

( )
∂U

∂qk 0

qk
1

2
∑
j,k

( )
U∂2

∂ ∂qj qk 0

qjqk (14.6.10)

= 0( )∂U

∂qk 0

U0

U( , , . . ) − = ( , , . . ) = =q1 q2 qn U0 U ′ q1 q2 qn
1

2
∑
j,k

( )
U∂2

∂ ∂qj qk 0

qjqk
1

2
∑
j,k

Vjkqjqk (14.6.11)

( , , . . ) =U ′ q1 q2 qn
1

2
∑
j,k

Vjkqjqk (14.6.12)

V

≡Vjk ( )
∂2U ′

∂ ∂qj qk 0

(14.6.13)

Vjk

=Vjk Vkj (14.6.14)

( , , . . . )U ′ q1 q2 qn

14.6.6 14.6.12

T =
1

2
∑
j,k

n

Tjk q̇ j q̇ k (14.6.15)

=U ′ 1

2
∑
j,k

n

Vjkqjqk (14.6.16)

T V

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9640?pdf


14.6.3 https://phys.libretexts.org/@go/page/9640

Note that  and  may have different units, but all the terms in the summations for both  and , have units of energy. The 
and  values are evaluated at the equilibrium point, and thus both  and  are  arrays of values evaluated at the
equilibrium location.

Equations of motion
Both the kinetic energy and potential energy terms are products of the coordinates leading to a set of coupled equations that are
complicated to solve. The problem is greatly simplified by selecting a set of normal coordinates for which both  and  are
diagonal, then the coupling terms disappear. Thus a coordinate transformation must be found that simultaneously diagonalizes 
and  in order to obtain a set of normal coordinates.

The kinetic energy  is only a function of generalized velocities  while the conservative potential energy is only a function of the
generalized coordinates . Thus the Lagrange equations

reduce to

But

and

Thus the Lagrange equations reduce to the following set of equations of motion,

For each , where , there exists a set of  second-order linear homogeneous differential equations with constant
coefficients. Since the system is oscillatory, it is natural to try a solution of the form

Assuming that the system is conservative, then this implies that  is real, since an imaginary term for  would lead to an
exponential damping term. The arbitrary constants are the real amplitude  and the phase . Substitution of this trial solution for
each  leads to a set of equations

where the common factor  has been removed. Equation  corresponds to a set of  linear homogeneous algebraic
equations that the  amplitudes must satisfy for each . For a non-trivial solution to exist, the determinant of the coefficients must
vanish, that is
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where the symmetry  has been included. This is the standard eigenvalue problem for which the above determinant gives
the secular equation or the characteristic equation. It is an equation of degree  in . The  roots of this equation are  where 

 are the characteristic frequencies or eigenfrequencies of the normal modes.

Substitution of  into Equation  determines the ratio  for this solution which defines the
components of the -dimensional eigenvector . That is, solution of the secular equations have determined the eigenvalues and
eigenvectors of the  solutions of the coupled-channel system.

Superposition
The equations of motion  are linear equations that satisfy superposition. Thus the most general solution 

 can be a superposition of the  eigenvectors , that is

Only the real part of  is meaningful, that is,

Thus the most general solution of these linear equations involves a sum over the eigenvectors of the system which are cosine
functions of the corresponding eigenfrequencies.

Eigenfunction Orthonormality
It can be shown that the eigenvectors are orthogonal. In addition, the above procedure only determines ratios of amplitudes, thus
there is an indeterminacy that can be used to normalize the . Thus the eigenvectors form an orthonormal set. Orthonormality of
the eigenfunctions for the rank 3 inertia tensor was illustrated in chapter . Similar arguments apply that allow extending
orthonormality to higher rank cases such that for -body coupled oscillators.

The eigenfunction orthogonality for  coupled oscillators can be proved by writing Equation  for both the  root and the
 root. That is,

Multiply Equation  by  and sum over . Similarly multiply Equation  by  and sum over . These summations
lead to

Note that the left-hand sides of these two equations are identical. Thus taking the difference between these equations gives

Note that if , that is, assuming that the eigenfrequencies are not degenerate, then to ensure that Equation  is
zero requires that
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This shows that the eigenfunctions are orthogonal. If the eigenfrequencies are degenerate, i.e. , then, with no loss of
generality, the axes  and  can be chosen to be orthogonal.

The eigenfunction normalization can be chosen freely since only ratios of the eigenfunction components  are determined when
 is used in Equation . The kinetic energy, given by Equation  must be positive, or zero for the case of a static

system. That is

Use the time derivative of Equation  to determine  and insert into Equation  gives that the kinetic energy is

For the diagonal term 

Since the term in the square brackets must be positive, then

Since this sum must be a positive number, and the magnitude of the amplitudes can be chosen freely, then it is possible to
normalize the eigenfunction amplitudes to unity. That is, choose that

The orthogonality equation,  and the normalization Equation  can be combined into a single orthonormalization
equation

This has shown that the eigenvectors form an orthonormal set.

Since the  component of the  eigenvector is , then the  eigenvector can be written in the form

where  are the unit vectors for the generalized coordinates.

Normal coordinates
The above general solution of the coupled-oscillator problem is best expressed in terms of the normal coordinates which are
independent. It is more transparent if the superposition of the normal modes are written in the form

where the complex factor  includes the arbitrary scale factor to allow for arbitrary amplitudes  as well as the fact that the
amplitudes  have been normalized and the phase factor  has been chosen.
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then Equation  can be written as

Equation  can be expressed schematically as the matrix multiplication

The  are the normal coordinates which can be expressed in the form

Each normal mode  corresponds to a single eigenfrequency,  which satisfies the linear oscillator equation
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14.7: Two-body coupled oscillator systems
The two-body coupled oscillator is the simplest coupled-oscillator system that illustrates the general features of coupled oscillators.
The following four examples involve parallel and series couplings of two linear oscillators or two plane pendula.

The coupled double-oscillator problem, Figure  discussed in chapter , can be used to demonstrate that the general
analytic theory gives the same solution as obtained by direct solution of the equations of motion in chapter .

1) The first stage is to determine the potential and kinetic energies using an appropriate set of generalized coordinates, which
here are  and . The potential energy is

while the kinetic energy is given by

2) The second stage is to evaluate the potential energy  and kinetic energy  tensors. The potential energy tensor  is
nondiagonal since  gives

That is, the potential energy tensor  is

Similarly, the kinetic energy is given by

Since  and  then the kinetic energy tensor  is

Note that for this case, the kinetic energy tensor  equals the mass tensor, which is diagonal, whereas the potential energy
tensor equals the spring constant tensor, which is nondiagonal.

3) The third stage is to use the potential energy  and kinetic energy  tensors to evaluate the secular determinant using
equations 

The expansion of this secular determinant yields

That is

Solving for  gives

Example : Two coupled linear oscillators14.7.1
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The solutions are

which is the same as derived previously, (equations ).

4) The fourth step is to insert either one of these eigenfrequencies into the secular equation

Consider the secular equation  for 

Then for the first eigenfrequency , that is, , 

which simplifies to

Similarly, for the other eigenfrequency , that is, , 

which simplifies to

5) The final stage is to write the general coordinates in terms of the normal coordinates . Thus

and

Adding or subtracting gives that the normal modes are

Thus the symmetric normal mode  corresponds to an oscillation of the center-of-mass with the lower frequency .

This frequency is the same as for one single mass on a spring of spring constant  which is as expected since they vibrate in

unison and thus the coupling spring force does not act. The antisymmetric mode  has the higher frequency 

since the restoring force includes both the main spring plus the coupling spring.

The above example illustrates that the general analytic theory for coupled linear oscillators gives the same answer as obtained in
chapter  using Newton’s equations of motion. However, the general analytic theory is a more powerful technique for solving
complicated coupled oscillator systems. Thus the general analytic theory will be used for solving all the following coupled
oscillator problems.
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Figure : Two equal masses series-coupled by two equal springs.

Consider the series-coupled system shown in the figure.

1) The first stage is to determine the potential and kinetic energies using an appropriate set of generalized coordinates, which
here are  and . The potential energy is

while the kinetic energy is given by

2) The second stage is to evaluate the potential energy  and mass  tensors. The potential energy tensor  is nondiagonal
since  gives

That is, the potential energy tensor  is

Similarly, since the kinetic energy is given by

then  and . Thus the kinetic energy tensor  is

Note that for this case the kinetic energy tensor is diagonal whereas the potential energy tensor is nondiagonal.

3) The third stage is to use the potential energy  and kinetic energy  tensors to evaluate the secular determinant using
equation 

The expansion of this secular determinant yields

That is

Example : Two equal masses series-coupled by two equal springs14.7.2
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The solutions are

4) The fourth step is to insert these eigenfrequencies into the secular equation 

Consider  in the above equation

Then for eigenfrequency , that is, , 

Similarly, for , 

5) The final stage is to write the general coordinates in terms of the normal coordinates .

Thus

and

Adding or subtracting gives that the normal modes are

Thus the symmetric normal mode has the lower frequency . The antisymmetric mode has the frequency 

 since both springs provide the restoring force. This case is interesting in that for both normal modes, the

amplitudes for the motion of the two masses are different.
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Figure : Two parallel-coupled plane pendula.

Consider the coupled double pendulum system shown in the adjacent figure, which comprises two parallel plane pendula
weakly coupled by a spring. The angles  and  are chosen to be the generalized coordinates and the potential energy is
chosen to be zero at equilibrium. Then the kinetic energy is

As discussed in chapter , it is necessary to make the small-angle approximation in order to make the equations of motion for
the simple pendulum linear and solvable analytically. That is,

assuming the small angle approximation  and .

The second stage is to evaluate the kinetic energy  and potential energy  tensors

Note that for this case the kinetic energy tensor is diagonal whereas the potential energy tensor is nondiagonal.

The third stage is to evaluate the secular determinant

which gives the characteristic equation

or

The two solutions are

The fourth step is to insert these eigenfrequencies into equation 

Consider 

Then for the first eigenfrequency, , the subscripts are , 

14.7.2
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which simplifies to

Similarly, for , 

which simplifies to

The final stage is to write the general coordinates in terms of the normal coordinates

and

Adding or subtracting these equations gives that the normal modes are

As for the case of the double oscillator discussed in example , the symmetric normal mode corresponds to an oscillation

of the center-of-mass, with zero relative motion of the two pendula, which has the lower frequency . This frequency

is the same as for one independent pendulum as expected since they vibrate in unison and thus the only restoring force is
gravity. The antisymmetric mode corresponds to relative motion of the two pendula with stationary center-of-mass and has the

frequency  since the restoring force includes both the coupling spring and gravity.

This example introduces the role of degeneracy which occurs in this system if the coupling of the pendula is zero, that is, 

, leading to both frequencies being equal, i.e. . When , then both  and  are diagonal and

thus in the  space the two pendula are independent normal modes. However, the symmetric and asymmetric normal
modes, as derived above, are equally good normal modes. In fact, since the modes are degenerate, any linear combination of
the motion of the independent pendula are equally good normal modes and thus one can use any set of orthogonal normal
modes to describe the motion.

Figure : Two series-coupled plane pendula.

The double-pendula system comprises one plane pendulum attached to the end of another plane pendulum both oscillating in
the same plane. The kinetic and potential energies for this system are given in example  to be
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Example : The series-coupled double plane pendula14.7.4
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a) Small-amplitude linear regime
Use of the small-angle approximation makes this system linear and solvable analytically. That is,  and  become

Thus the kinetic energy and potential energy tensors are

Note that  is nondiagonal, whereas  is diagonal which is opposite to the case of the two parallel-coupled plane pendula.

 
Figure

: Normal modes for two series-coupled plane pendula.

The solution of this case is simpler if it is assumed that  and . Then

where  which is the frequency of a single pendulum.

The next stage is to evaluate the secular determinant

The eigenvalues are

As shown in the adjacent figure, the normal modes for this system are

The second mass has a  larger amplitude that is in phase for solution 1 and out of phase for solution 2.
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b) Large amplitude chaotic regime
Stachowiak and Okada [Sta05] used computer simulations to numerically analyze the behavior of this system with increase in
the oscillation amplitudes. Poincaré sections, bifurcation diagrams, and Lyapunov exponents all confirm that this system
evolves from regular normal-mode oscillatory behavior in the linear regime at low energy, to chaotic behavior at high
excitation energies where non-linearity dominates. This behavior is analogous to that of the driven, linearly-damped, harmonic
pendulum described in chapter 

This page titled 14.7: Two-body coupled oscillator systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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14.8: Three-body coupled linear oscillator systems
Chapter  discussed parallel and series arrangements of two coupled oscillators. Extending from two to three coupled linear
oscillators introduces interesting new characteristics of coupled oscillator systems. For more than two coupled oscillators, coupled
oscillator systems separate into two classifications depending on whether each oscillator is coupled to the remaining 
oscillators, or when the coupling is only to the nearest neighbors as illustrated below.

Figure : Three plane pendula with complete linear coupling.

Consider three identical pendula with mass  and length , suspended from a common support that yields slightly to
pendulum motion leading to a coupling between all three pendula as illustrated in the adjacent figure. Assume that the motion
of the three pendula all are in the same plane. This case is analogous to the piano where three strings in the treble section are
coupled by the slightly-yielding common bridge plus sounding board leading to coupling between each of the three coupled
oscillators. This case illustrates the important concept of degeneracy.

The generalized coordinates are the angles , , and . Assume that the support yields such that the actual deflection angle
for pendulum 1 is

where the coupling coefficient  is small and involves all the pendula, not just the nearest neighbors. Assume that the same
coupling relation exists for the other angle coordinates. The gravitational potential energy of each pendulum is given by

assuming the small angle approximation. Ignoring terms of order  gives that the potential energy

The kinetic energy evaluated at the equilibrium location is

The next stage is to evaluate the  and  tensors

The third stage is to evaluate the secular determinant which can be written as

14.7

n −1

Example : Three plane pendula; mean-field linear coupling14.8.1
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Expanding and factoring gives

The roots are

This case results in two degenerate eigenfrequencies,  while  is the lowest eigenfrequency.

The eigenvectors can be determined by substitution of the eigenfrequencies into

Consider the lowest eigenfrequency , i.e. , for , and substitute for  gives

while for , 

Solving these gives

Assuming that the eigenfunction is normalized to unity

then for the third eigenvector 

This solution corresponds to all three pendula oscillating in phase with the same amplitude, that is, a coherent oscillation.

Derivation of the eigenfunctions for the other two eigenfrequencies is complicated because of the degeneracy , there
are only five independent equations to specify the six unknowns for the eigenvectors  and . That is, the eigenvectors can
be chosen freely as long as the orthogonality and normalization are satisfied. For example, setting , to remove the
indeterminacy, results in the  matrix

and thus the solution is given by

The normal modes are obtained by taking the inverse matrix  and using . Note that since  is real
and orthogonal, then  equals the transpose of . That is;
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The normal mode  has eigenfrequency

and eigenvector

This corresponds to the in-phase oscillation of all three pendula.

The other two degenerate solutions are

with eigenvalues

These two degenerate normal modes correspond to two pendula oscillating out of phase with the same amplitude, or two
oscillating in phase with the same amplitude and the third out of phase with twice the amplitude. An important result of this toy
model is that the most symmetric mode  is pushed far from all the other modes. Note that for this example, the coherent
mode  corresponds to the center-of-mass oscillation with no relative motion between the three pendula. This is in contrast to
the eigenvectors  and  which both correspond to relative motion of the pendula such that there is zero center-of-mass
motion. This mean-field coupling behavior is exhibited by collective motion in nuclei as discussed in example .

Figure : Three plane pendula with nearest-neighbour coupling.

There is a large and important class of coupled oscillators where the coupling is only between nearest neighbors; a crystalline
lattice is a classic example. A toy model for such a system is the case of three identical pendula coupled by two identical
springs, where only the nearest neighbors are coupled as shown in the adjacent figure. Assume the identical pendula are of
length  and mass . As in the last example, the kinetic energy evaluated at the equilibrium location is

The gravitational potential energy of each pendulum equals  thus

while the potential energy in the springs is given by
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Thus the total potential energy is given by

The Lagrangian then becomes

Using this in the Euler-Lagrange equations gives the equations of motion

The general analytic approach requires the  and  energy tensors given by

Note that in contrast to the prior case of three fully-coupled pendula, for the nearest neighbor case the potential energy tensor 
 is non-zero only on the diagonal and  components parallel to the diagonal.

The third stage is to evaluate the secular determinant of the  matrix, that is

This results in the characteristic equation

which results in the three non-degenerate eigenfrequencies for the normal modes.
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Figure : Normal modes of three plane pendula with nearest-neighbour coupling.

The normal modes are similar to the prior case of complete linear coupling, as shown in the adjacent figure.

 This lowest mode  involves the three pendula oscillating in phase such that the springs are not stretched or

compressed thus the period of this coherent oscillation is the same as an independent pendulum of mass  and length . That
is

. This second mode  has the central mass stationary with the outer pendula oscillating with the same

amplitude and out of phase. That is

. This third mode  involves the outer pendula in phase with the same amplitude while the central pendulum

oscillating with angle . That is

Similar to the prior case of three completely-coupled pendula, the coherent normal mode  corresponds to an oscillation of
the center-of-mass with no relative motion, while  and  correspond to relative motion of the pendula with stationary center
of mass motion. In contrast to the prior example of complete coupling, for nearest neighbor coupling the two higher lying
solutions are not degenerate. That is, the nearest neighbor coupling solutions differ from when all masses are linearly coupled.
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It is interesting to note that this example combines two coupling mechanisms that can be used to predict the solutions for two
extreme cases by switching off one of these coupling mechanisms. Switching off the coupling springs, by setting , makes

all three normal frequencies degenerate with . This corresponds to three independent identical pendula

each with frequency . Also the three linear combinations  also have this same frequency, in particular 

corresponds to an in-phase oscillation of the three pendula. The three uncoupled pendula are independent and any combination
the three modes is allowed since the three frequencies are degenerate.

The other extreme is to let , that is switch off the gravitational field or let , then the only coupling is due to the
two springs. This results in  because there is no restoring force acting on the coherent motion of the three in-phase
coupled oscillators; as a result, oscillatory motion cannot be sustained since it corresponds to the center of mass oscillation
with no external forces acting which is spurious. That is, this spurious solution corresponds to constant linear translation.

Figure : System of three bodies coupled by six springs.

Consider the completely-coupled mechanical system shown in the adjacent figure.

1) The first stage is to determine the potential and kinetic energies using an appropriate set of generalized coordinates, which
here are  and . The potential energy is the sum of the potential energies for each of the six springs

while the kinetic energy is given by

2) The second stage is to evaluate the potential energy  and kinetic energy  tensors.

Note that for this case the kinetic energy tensor is diagonal whereas the potential energy tensor is nondiagonal and corresponds
to complete coupling of the three coordinates.

3) The third stage is to use the potential  and kinetic  energy tensors to evaluate the secular determinant giving

The expansion of this secular determinant yields

The solution for this complete-coupled system has two degenerate eigenvalues.
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ẋ2

1

1

2
ẋ2
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4) The fourth step is to insert these eigenfrequencies into the secular equation

to determine the coefficients .

5) The final stage is to write the general coordinates in terms of the normal coordinates.

The result is that the angular frequency  corresponds to a normal mode for which the three masses oscillate in phase

corresponding to a center-of-mass oscillation with no relative motion of the masses.

For this coherent motion only one spring per mass is stretched resulting in the same frequency as one mass on a spring. The
other two solutions correspond to the three masses oscillating out of phase which implies all three springs are stretched and
thus the angular frequency is higher. Since the two eigenvalues  are degenerate then there are only five

independent equations to specify the six unknowns for the degenerate eigenvalues. Thus it is possible to select a combination
of the eigenvectors  and  such that the combination is orthogonal to . Choose  to removes the indeterminacy.
Then adding or subtracting gives that the normal modes are

These two degenerate normal modes correspond to relative motion of the masses with stationary center-of-mass.

This page titled 14.8: Three-body coupled linear oscillator systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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14.9: Molecular coupled oscillator systems
There are many examples of coupled oscillations in atomic and molecular physics most of which involve nearest-neighbor
coupling. The following two examples are for molecular coupled oscillators. The triatomic molecule is a typical linearly-coupled
molecular oscillator. The benzene molecule is an elementary example of a ring structure coupled oscillator.

Molecules provide excellent examples of vibrational modes involving nearest neighbor coupling. Depending on the atomic
structure, triatomic molecules can be either linear, like CO , or bent like water, H O which has a bend angle of . A
molecule with  atoms has  degrees of freedom. There are three degrees of freedom for translation and three degrees of
freedom for rotation leaving  degrees of freedom for vibrations. A triatomic molecule has three vibrational modes, two
longitudinal and one transverse. Consider the normal modes for vibration of the linear molecule CO

Longitudinal modes

The coordinate system used is illustrated in the adjacent figure.

The Lagrangian for this system is

Evaluating the kinetic energy tensor gives

while the potential energy tensor gives

The secular equation becomes

Note that the same answer is obtained using Newtonian mechanics. That is, the force equation gives

Let the solution be of the form

Substitute this solution gives

This leads to the same secular determinant as given above with the matrix elements clustered along the diagonal for nearest-
neighbor problems.
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Figure : Normal modes of a linear triatomic molecule

Expanding the determinant and collecting terms yields

Equating either of the three factors to zero gives

The solutions are:

1) ; This solution gives . This mode is not an oscillation at all, but is a pure translation of the system as
a whole as shown in the adjacent figure. There is no change in the restoring forces since the system moves such as not to
change the length of the springs, that is, they stay in their equilibrium positions. This motion corresponds to a spurious
oscillation of the center of mass that results from referencing the three atom locations with respect to some fixed reference
point. This reference point should have been chosen as the center of mass since the motion of the center-of-mass already has
been taken into account separately. Spurious center of mass oscillations occur any time that the reference point is not at the
center of mass for an isolated system with no external forces acting.

2) : This solution corresponds to  and is shown in the adjacent figure. The central mass 

remains stationary while the two end masses vibrate longitudinally in opposite directions with the same amplitude. This mode
has a stationary center of mass. For CO  the electrical geometry is O C O . Mode 2 for CO  does not radiate
electromagnetically because the center of charge is stationary with respect to the center of mass, that is, the electric dipole
moment is constant.

3) : This solution corresponds to . As shown in the adjacent figure, this motion

corresponds to the two end masses vibrating in unison while the central mass vibrates oppositely with a different amplitude
such that the center-of-mass is stationary. This CO  mode does radiate electromagnetically since it corresponds to an
oscillating electric dipole.

It is interesting to note that the ratio  for CO  and the ratio of the two modes is independent of the potential energy
tensor . That is
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Transverse modes
The solutions are:

4) . This is the only non-spurious transverse mode  which corresponds to the two outside masses

vibrating in unison transverse to the symmetry axis while the central mass vibrates oppositely. This mode radiates electric
dipole radiation since the electric dipole is oscillating.

5) . This transverse solution  has all three nuclei vibrating in unison transverse to the symmetry axis and corresponds
to a spurious center of mass oscillation.

6) . This transverse solution  corresponds to a stationary central mass with the two outside masses vibrating
oppositely. This corresponds to a rotational oscillation of the molecule which is spurious since there are no torques acting on
the molecule for a central force. Rotational motion usually is taken into account separately.

The normal modes for the bent triatomic molecule are similar except that the oscillator coupling strength is reduced by the
factor  where  is the bend angle.

The benzene ring comprises six carbon atoms bound in a plane hexagonal ring. A classical analog of the benzene ring
comprises 6 identical masses  on a frictionless ring bound by 6 identical springs with linear spring constant , as illustrated
in the adjacent figure. Consider only the in-plane motion, then the kinetic energy is given by

The potential energy equals

where . Thus the kinetic energy and potential energy tensors are given by

This nearest-neighbor system includes non-zero  and  elements due to the ring structure. Define  then
the solution of the set of linear homogeneous equations requires that

that is
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Figure 

The eigenvalues and eigenfunctions are given in the table

Normal modes

1 2

2 1

3 1

4 -1

5 -1

6 -2 0

Table : Classical analog of a benzene molecular ring.

Note the following properties of the normal modes and their frequencies.

: Adjacent masses vibrate 180  out of phase, thus each spring has maximal compression or extension, leading to the
energy of this normal mode being the highest.

: These two solutions are degenerate and correspond to two pairs of masses vibrating out of phase while the third pair
of masses are stationary. Thus the energy of this normal mode is slightly lower than the  normal mode. Any combination
of these degenerate normal modes are equally good solutions.

: From the figure it can be seen that both of these solutions correspond to a center of mass oscillation and thus these
modes are spurious.

: This vibrational mode has zero energy corresponding to zero restoring force and all six masses moving uniformly in the
same direction. This mode corresponds to the rotation of the benzene molecule about the symmetry axis of the ring which
usually is taken into account assuming a separate rotational component.

This classical analog of the benzene molecule is interesting because it simultaneously exhibits degenerate normal modes,
spurious center of mass oscillation, and a rotational mode.

This page titled 14.9: Molecular coupled oscillator systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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14.10: Discrete Lattice Chain
Crystalline lattices and linear molecules are important classes of coupled oscillator systems where nearest neighbor interactions
dominate. A crystalline lattice comprises thousands of coupled oscillators in a three dimensional matrix with atomic spacing of a
few . Even though a full description of the dynamics of crystalline lattices demands a quantal treatment, a classical
treatment is of interest since classical mechanics underlies many features of the motion of atoms in a crystalline lattice. The linear
discrete lattice chain is the simplest example of many-body coupled oscillator systems that can illuminate the physics underlying a
range of interesting phenomena in solid-state physics. As illustrated in example , the linear approximation usually is
applicable for small-amplitude displacements of nearest-neighbor interacting systems which greatly simplifies treatment of the
lattice chain. The linear discrete lattice chain involves three independent polarization modes, one longitudinal mode, plus two
perpendicular transverse modes. The  degrees of freedom for the  atoms, on a discrete linear lattice chain, are partitioned with 

 degrees of freedom for each of the three polarization modes. These three polarization modes each have  normal modes, or 
travelling waves, and exhibit quantization, dispersion, and can have a complex wave number.

Longitudinal Motion
The equations of motion for longitudinal modes of the lattice chain can be derived by considering a linear chain of  identical
masses, of mass , separated by a uniform spacing  as shown in Figure . Assume that the  masses are coupled by 
springs, with spring constant , where both ends of the chain are fixed, that is, the displacements  and velocities 

. The force required to stretch a length  of the chain a longitudinal displacements,  for mass , is .
Thus the potential energy for stretching the spring for segment  is . The total potential and kinetic
energies are

Figure : Portion of a lattice chain of identical masses  connected by identical springs of spring constant . The
displacement of the  mass from the equilibrium position is  assumed to be positive to the right.

Since  the kinetic energy and Lagrangian can be extended to , that is, the Lagrangian can be written as

Using this Lagrangian in the Lagrange-Euler equations gives the following second-order equation of motion for longitudinal
oscillations

where  and where

Transverse motion
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Figure : Transverse motion of a linear discrete lattice chain

The equations of motion for transverse motion on a linear discrete lattice chain, illustrated in Figure , can be derived by
considering the displacements  of the  mass for  identical masses, with mass , separated by equal spacings  and assuming

that the tension in the string is . Assuming that the transverse deflections  are small, then the  to  spring is

stretched to a length

Thus the incremental stretching is

The work done against the tension  is  per segment. Thus the total potential energy is

where  and  are identically zero.

The kinetic energy is

Since , the kinetic energy and Lagrangian summations can be extended to , that is

Using this Lagrangian in the Lagrange Euler equations gives the following second-order equation of motion for transverse
oscillations

where  and

The normal modes for the transverse modes comprise standing waves that satisfy the same boundary conditions as for the
longitudinal modes. The  equations of motion for longitudinal motion, Equation , or transverse motion, Equation 

, are identical in form. The major difference is that  for the transverse normal modes  differs from that for

the longitudinal modes which is . Thus the following discussion of the normal modes on a discrete lattice chain is

identical in form for both transverse and longitudinal waves.
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Normal modes
The normal modes of the  equations of motion on the discrete lattice chain, are either longitudinal or transverse standing waves
that satisfy the boundary conditions at the extreme ends of the lattice chain. The solutions can be given by assuming that the 
identical masses on the chain oscillate with a common frequency . Then the displacement amplitude for the  mass can be
written in the form

where the amplitude  can be complex. Substitution into the preceding  equations of motion, , , yields the
following recursion relation

where . Note that the boundary conditions,  and  require that .

The above recursion relation corresponds to a system of  homogeneous algebraic equations with  unknowns . A
non-trivial solution is given by setting the determinant of its coefficients equal to zero

This secular determinant corresponds to the special case of nearest neighbor interactions with the kinetic energy tensor  being
diagonal and the potential energy tensor  involving coupling only to adjacent masses. The secular determinant is of order  and
thus determines exactly  eigen frequencies  for each polarization mode.

For large , the solution of this problem is more efficiently obtained by using a recursion relation approach, rather than solving the
above secular determinant. The trick is to assume that the phase differences  between the motion of adjacent masses all are
identical for a given polarization. Then the amplitude for the  mass for the  frequency mode  is of the form

Insert the above into the recursion relation  gives

which reduces to

that is

where .

Now it is necessary to determine the phase angle  which can be done by applying the boundary conditions for standing waves on
the lattice chain. These boundary conditions for stationary modes require that the ends of the lattice chain are nodes, that is 

. Using the fact that only the real part of  has physical meaning, leads to the amplitude for the  mass for
the  mode to be

The boundary condition  requires that the phase . That is

where .
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The boundary condition for , gives

Therefore

where . That is

where  is the total length of the discrete lattice chain.

The  eigen frequencies for a given polarization are given by

where the corresponding wavenumber  is given by

This implies that the normal modes are quantized with half-wavelengths .

Figure : Plots of the maximal vibrational amplitudes  for the  frequency sinusoidal mode, versus distance along the
chain, for transverse normal modes of a vibrating discrete lattice with . Only  are distinct modes because 

 is a null mode. Note that the modes with  shown dashed, duplicate the locations of the mass
displacement given by the lower-order modes.

Combining equations  and  gives the maximum amplitudes for the eigenvectors to be

For  independent linear oscillators there are only  independent normal modes, that is, for  the sine function in
Equation  must be zero. Beyond  the equations do not describe physically new situations. This is illustrated by
Figure  which shows the transverse modes of a lattice chain with . There are only  independent normal modes
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of this system since  corresponds to a null mode with all . Also note that the solutions for ,
shown dashed, replicate the mass locations of modes with , that is, the modes with  are replicas of the lower-order
modes.

Note that  has a maximum value  since the sine function cannot exceed unity. This leads to a maximum frequency 
, called the cut-off frequency, which occurs when . That is, the null-mode occurs when  for which

Equation  equals zero. The range of  quantized normal modes that can occur is intuitive. That is, the longest half-

wavelength  equals the total length of the discrete lattice chain. The shortest half-wavelength  is
set by the lattice spacing. Thus the discrete wavenumbers of the normal modes, for each polarization, range from  to  where 

 is an integer.

Assuming real , the normal coordinate  and corresponding frequency  are,

Equations  and  give the angular frequency and displacement. Note that superposition applies since this system is
linear. Therefore the most general solution for each polarization can be any superposition of the form

Travelling waves
Travelling waves are equally good solutions of the equations of motion ,  as are the normal modes. Travelling
waves on the one-dimensional lattice chain will be of the form

where the distance along the chain , that is, it is quantized in units of the cell spacing , with  being an integer. The
positive sign in the exponent corresponds to a wave travelling in the  direction while the negative sign corresponds to a wave
travelling in the  direction. The velocity of a fixed phase of the travelling wave must satisfy that  is a constant. This will
occur if the phase velocity of the wave is given by

The wave has a frequency  and wavelength , thus the phase velocity .

Inserting the travelling wave  into the transverse equation of motion  for the discrete lattice chain gives

where . That is

The phase  is determined by the Born-von Karman periodic boundary condition that assumes that the chain is duplicated
indefinitely on either side of . Thus, for  discrete masses,  must satisfy the condition that . That is

That is

Note that the periodic boundary condition gives  discrete modes for wavenumbers between
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Thus Equation  becomes

Equation  is a dispersion relation that is identical to Equation  derived during the discussion of the normal modes
of the lattice chain. This confirms that the travelling waves on the lattice chain are equally good solutions as the normal standing-
wave modes. Clearly, superposition of the standing-wave normal modes can lead to travelling waves and vice versa.

Dispersion

Figure : Plot of the dispersion curve (  versus ) for a monoatomic linear lattice chain subject to only nearest neighbor
interactions. The first Brillouin zone is the segment between  which covers all independent solutions.

The lattice chain is an interesting example of a dispersive system in that  is a function of . Figure  shows a plot of the
dispersion curve (  versus ) for a monoatomic linear lattice chain subject to only nearest neighbor interactions. Note that 
depends linearly on  for small  and that  at the boundaries of the first Brillouin zone.

The lattice chain has a phase velocity for the  wave given by

while the group velocity is

Note that in the limit when , the phase velocity and group velocity are identical, that is, .

Complex wavenumber

The maximum allowed frequency, which is called the cut-off frequency, , occurs when , that is, . That is,
the minimum half-wavelength equals the spacing  between the discrete masses. At the cut-off frequency, the phase velocity is 

 and the group velocity .

It is interesting to note that  can exceed the cut-off frequency  if  is assumed to be complex, that is, if

Then

To ensure that  is real, the imaginary term must be zero, that is
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that is, , and the dispersion relation between  and  for  becomes

which increases with . Thus, when  then the amplitude of the wave is of the form

which corresponds to a spatially damped oscillatory wave with phase velocity

and damping factor .

There are many examples in physics where the wavenumber is complex as exhibited by the discrete lattice chain for . Other
examples are electromagnetic waves in conductors or plasma (example ), matter waves tunnelling through a potential barrier,
or standing waves on musical instruments which have a complex wavenumber  due to damping.

This simple toy model of the discrete linear lattice chain has illustrated that classical mechanics explains many features of the
many-body nearest-neighbor coupled linear oscillator system, including normal modes, standing and travelling waves, cut-off
frequency dispersion, and complex wavenumber. These phenomena feature prominently in applications of the quantal discrete
coupled-oscillator system to solid-state physics.

This page titled 14.10: Discrete Lattice Chain is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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14.11: Damped Coupled Linear Oscillators
The discussion of coupled linear oscillators has neglected non-conservative damping forces which always exist to some extent in
physical systems. In general, dissipative forces are non linear which greatly complicates solving the equations of motion for such
coupled oscillator systems. However, for some systems the dissipative forces depend linearly on velocity which allows use of the
Rayleigh dissipation function, described in chapter . The most general definition of the Rayleigh dissipation function, ,
was given to be

For this special case, it was shown in chapter  that the Lagrange equations can be written in terms of the Rayleigh dissipation
function as

where  are generalized forces acting on the system that are not absorbed into the potential . Using equations , 
, and , allows the equations of motion for damped coupled linear oscillators to be written in a matrix form as

where the symmetric matrices , , and  are positive definite for positive definite systems. Rayleigh pointed out that in
the special case where the damping matrix  is a linear combination of the  and  matrices, then the matrix  is
diagonal leading to a separation of the damped system into normal modes. As discussed in chapter 4 many systems in nature are
linear for small amplitude oscillations allowing use of the Rayleigh dissipation function which provides an analytic solution.
However, in general, except for when  is small, this separation into normal modes is not possible for damped systems and the
solutions must be obtained numerically.

The following example illustrates approaches used to handle linearly-damped coupled-oscillator systems.

Figure : Two linearly-damped coupled linear oscillators.

Consider the two coupled oscillator system shown where the two carts have spring constants  and linear damping
constants . As discussed in example , the kinetic energy tensor is given by

and the potential energy is given by

Similarly the Rayleigh dissipation function has the form

Inserting equations , , and  into Equation  gives the two equations of motion to be
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When the drag is zero the solution of these two coupled equations can be separated into two independent normal modes of the
system as described earlier. Usually it is not possible to separate the motion into decoupled normal modes except for certain
cases where the dissipative forces can be described by Rayleigh’s dissipation function.

This page titled 14.11: Damped Coupled Linear Oscillators is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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14.12: Collective Synchronization of Coupled Oscillators
Collective synchronization of coupled oscillators is a multifaceted phenomenon where large ensembles of coupled oscillators, with
comparable natural frequencies, self synchronize leading to coherent collective modes of motion. Biological examples include
congregations of synchronously flashing fireflies, crickets that chirp in unison, an audience clapping at the end of a performance,
networks of pacemaker cells in the heart, insulin-secreting cells in the pancreas, as well as neural networks in the brain and spinal
cord that control rhythmic behaviors such as breathing, walking, and eating. Example 14.13 illustrates an application to nuclei.

An ensemble of coupled oscillators will have a frequency distribution with a finite width. It is interesting to elucidate how an
ensemble of coupled oscillators, that have a finite width frequency distribution, can self synchronize their motion to a unique
common frequency, and how that synchronization is maintained over long time periods. The answers to these issues provide insight
into the dynamics of coupled oscillators.

The discussion of coupled oscillators has implicitly assumed  identical undamped linear oscillators that have identical, infinitely-
sharp, natural frequencies . In nature typical coupled oscillators can have a finitewidth frequency distribution  about some
average value, due to the natural variability of the oscillator parameters for biological systems, the manufacturing tolerances for
mechanical oscillators, or the natural Lorentzian frequency distribution associated with the uncertainty principle that occurs even
for atomic clocks where the oscillator frequencies are defined directly by the physical constants. Assume that the ensemble of
coupled oscillators has a frequency distribution  about some average value.

Undamped linear oscillators have elliptical closed-path trajectories in phase space whereas dissipation leads to a spiral attractor
unless the system is driven such as to preserve the total energy. As described in chapter  many systems in nature, especially
biological systems, have closed limit cycles in phase space where the energy lost to dissipation is replenished by a driving
mechanism. The simplest systems for understanding collective synchronization of coupled oscillators are those that involve closed
limit cycles in phase space.

N. Wiener first recognized the ubiquity of collective synchronization in the natural world, but his mathematical approach, based on
Fourier integrals, was not suited to this problem. A more fruitful approach was pioneered in 1975 by an undergraduate student A.T.
Winfree[Win67] who recognized that the long-time behavior of a large ensemble of limit-cycle oscillators can be characterized in
the simplest terms by considering only the phase of closed phase-space trajectories. He assumed that the instantaneous state of an
ensemble of oscillators can be represented by points distributed around the circular phase-space diagram shown in Figure .
For uncoupled oscillators these points will be distributed randomly around the circle, whereas coupling of the oscillators will result
in a spatial correlation of the points. That is, the dynamics of the phases can be visualized as a swarm of points running around the
unit circle in the complex plane of the phase space diagram. The complex order parameter of this swarm can be defined to be the
magnitude and phase of the centroid of this swarm

Figure : Order parameter for weakly-coupled oscillators.

The centroid of the ensemble of points on the phase diagram has a magnitude , designating the offset of the centroid from the
center of the circular phase diagram, and  which is the phase of this centroid. A uniform distribution of points around the unit
circle will lead to a centroid . Correlated motion leads to a bunching of the points around some phase value leading to a non-
zero centroid  and angle . If the swarm acts like a fully-coupled single oscillator then  with an appropriate phase .

The Kuramoto model[Kur75, Str00] incorporates Winfree’s intuition by mapping the limit cycles onto a simple circular phase
diagram and incorporating the long-term dynamics of coupled oscillators in terms of the relative phases for a mean-field system.
That is, the angular velocity of the phase  for the  oscillator is
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Figure : Kuramoto model of collective synchronization of coupled oscillators. The left and center plots show the time and
coupling strength dependence of the order parameter . The right plot shows the frequency dependence including coupling (solid
line) and without coupling (dashed line).

where . Kuramoto recognized that mean-field coupling was the most tractable system to solve, that is, a system where
the coupling is applicable equally to all the oscillators. Moreover, he assumed an equally-weighted, pure sinusoidal coupling for the
coupling term  between the coupled oscillators. That is, he assumed

where  is the coupling strength, and the factor  ensures that the model is well behaved as . Kuramoto assumed
that the frequency distribution  was unimodular and symmetric about the mean frequency , that is .

This problem can be simplified by exploiting the rotational symmetry and transforming to a frame of reference that is rotating at an
angular frequency . That is, use the transformation  where  is measured in the rotating frame. This makes 
unimodular with a symmetric frequency distribution about . The phase velocity in this rotating frame is

Kuramoto observed that the phase-space distribution can be expressed in terms of the order parameters  in that Equation 
 can be multiplied on both sides by  to give

Equating the imaginary parts yields

This allows Equation  to be written as

for . Equation  reflects the mean-field aspect of the model in that each oscillator  is attracted to the phase of
the mean field  rather than to the phase of another individual oscillator.

Simulations showed that the evolution of the order parameter with coupling strength  is as illustrated in Figure . This
simulation shows (1) for all , when below a certain threshold , the order parameter decays to an incoherent jitter as expected
for random scatter of  points. (2) When  this incoherent state becomes unstable and the order parameter  grows
exponentially reflecting the nucleation of small clusters of oscillators that are mutually synchronized. (3) The population of
individual oscillators splits into two groups. The oscillators near the center of the distribution lock together in phase at the mean
angular frequency  and co-rotate with average phase , whereas those frequencies lying further from the center continue to
rotate independently at their natural frequencies and drift relative to the coherent cluster frequency . As a consequence this mixed
state is only partially synchronized as illustrated on the right side of Figure . The synchronized fraction has a -function
behavior for the frequency distribution which grows in intensity with further increase in . The unsynchronized component has
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nearly the original frequency distribution  except that it is depleted in the region of the locked frequency due to strength
absorbed by the -function component.

Kuramoto’s toy model nicely illustrates the essential features of the evolution of collective synchronization with coupling strength.
It has been applied to the study neuronal synchronization in the brain[Cum07]. The model illustrates that the collective
synchronization of coupled oscillators leads to a component that has a single frequency for correlated motion which can be much
narrower than the inherent frequency distribution of the ensemble of coupled oscillators.

The nucleus is an unusual quantal system that involves the coupled motion of the many nucleons. It exhibits features
characteristic of the many-body classical coupled oscillator with coupling between all the valence nucleons. Nuclear structure
can be described by a shell model of individual nucleons bound in weakly interacting orbits in a central average mean field that
is produced by the summed attraction of all the nucleons in the nucleus. However, nuclei also exhibit features characteristic of
collective rotation and vibration of a quantal fluid. For example, beautiful rotational bands up to spin over  are observed in
heavy nuclei. These rotational bands are similar to those observed in the rotational structure of diatomic molecules. Actinide
nuclei also can fission into two large fragments which is another manifestation of collective motion.

The essential general feature of weakly-coupled identical oscillators is illustrated by the solutions of the three linearly-coupled
identical oscillators where the most symmetric state is displaced in frequency from the remaining states. For  identical
oscillators, one state is displaced significantly in energy from the remaining  degenerate states. This most symmetric state
is pushed downwards in energy if the residual coupling force is attractive, and it is pushed upwards if the coupling force is
repulsive. This symmetric state corresponds to the coherent oscillation of all the coupled oscillators, and carries all of the
strength for the corresponding dominant multipole for the coupling force. In the nucleus this state corresponds to coherent
shape oscillations of many nucleons.

The weak residual electric quadrupole and octupole nucleon-nucleon correlations in the nucleon-nucleon interactions generate
collective quadrupole and octupole motion in nuclei. The collective synchronization of such coherent quadrupole and octupole
excitation leads to collective bands of states, that correspond to synchronized in-phase motion of the protons and neutrons in
the valence oscillator shell. These modes correspond to rotations and vibrations about the center of mass. The attractive
residual nucleon-nucleon interaction couples the many individual particle excitations in a given shell producing one coherent
state that is pushed downwards in energy far from the remaining  degenerate states. This coherent state involves
correlated motion of the nucleons that corresponds to a macroscopic oscillation of a charged fluid. For nonclosed shell nuclei
like , the dominant quadrupole multipole in the residual nucleon-nucleon interaction leads to the ground state being a
coherent state corresponding to  protons plus  neutrons oscillating in phase. The collective motion of the charged
protons leads to electromagnetic  radiation with a transition decay amplitude being about 16 times larger than for a single
proton. This corresponds to radiative decay probability being enhanced by a factor of  relative to radiation by a single
proton. This collective state corresponds to a macroscopic quadrupole deformation at low excitation energies that exhibits both
collective rotational and vibrational degrees of freedom. This coherent state is analogous to the correlated flow of individual
water molecules in a tidal wave. The weaker octupole term in the residual interaction leads to an octupole [pear-shaped]
coupled oscillator coherent state lying slightly above the quadrupole coherent state. In contrast to the rotational motion of
strongly-deformed quadrupole-deformed nuclei, the octupole deformation exhibits more vibrational-like properties than
rotational motion of a charged tidal wave. Hamiltonian mechanics, based on the Routhian , is used to make
theoretical model calculations of the nuclear structure of  in the rotating body-fixed frame for comparison with the
experimental data.

This page titled 14.12: Collective Synchronization of Coupled Oscillators is shared under a CC BY-NC-SA 4.0 license and was authored,
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14.E: Coupled linear oscillators (Exercises)
1. Two particles, each with mass , move in one dimension in a region near a local minimum of the potential energy where the
potential energy is approximately given by

where  is a constant.

a. Determine the frequencies of oscillation.
b. Determine the normal coordinates.

2. What is degeneracy? When does it arise?

3. The Lagrangian of three coupled oscillators is given by:

Find  for the following initial conditions (at ):

4. A mechanical analog of the benzene molecule comprises a discrete lattice chain of 6 point masses  connected in a plane
hexagonal ring by 6 identical springs each with spring constant  and length .

a. List the wave numbers of the allowed undamped longitudinal standing waves.
b. Calculate the phase velocity and group velocity for longitudinal travelling waves on the ring.
c. Determine the time dependence of a longitudinal standing wave for a angular frequency , that is, twice the cut-off

frequency.

5. Consider a one dimensional, two-mass, three-spring system governed by the matrix ,

such that ,

a. Determine the eigenfrequencies and normal coordinates.
b. Choose a set of initial conditions such that the system oscillates at its highest eigenfrequency.
c. Determine the solutions  and .

6. Four identical masses  are connected by four identical springs, spring constant , and constrained to move on a frictionless
circle of radius  as shown on the left in the figure.

a. How many normal modes of small oscillation are there?
b. What are the eigenfrequencies of the small oscillations?
c. Describe the motion of the four masses for each eigenfrequency.

Figure 

7. Consider the two identical coupled oscillators given on the right in the figure assuming . Let both oscillators be
linearly damped with a damping constant . A force  is applied to mass . Write down the pair of coupled
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differential equations that describe the motion. Obtain a solution by expressing the differential equations in terms of the normal
coordinates. Show that the normal coordinates  and  exhibit resonance peaks at the characteristic frequencies  and 
respectively.

Figure 

8. As shown on the left below the mass  moves horizontally along a frictionless rail. A pendulum is hung from  with a
weightless rod of length  with a mass  at its end.

a. Prove that the eigenfrequencies are

b. Describe the normal modes.

Figure 
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14.S: Coupled linear oscillators (Summary)
This chapter has focussed on many—body coupled linear oscillator systems which are a ubiquitous feature in nature. A summary of
the main conclusions are the following.

Normal modes
It was shown that coupled linear oscillators exhibit normal modes and normal coordinates that correspond to independent modes of
oscillation with characteristic eigenfrequencies .

General analytic theory for coupled linear oscillators
Lagrangian mechanics was used to derive the general analytic procedure for solution of the many-body coupled oscillator problem
which reduces to the conventional eigenvalue problem. A summary of the procedure for solving coupled oscillator problems is as
follows:.

1) Choose generalized coordinates  and evaluate  and .

and

where the components of the  and  tensors are

and

2) Determine the eigenvalues  using the secular determinant.

3) The eigenvectors are obtained by inserting the eigenvalues  into

4) From the initial conditions determine the complex scale factors  where

5) Determine the normal coordinates where each  is a normal mode. The normal coordinates can be expressed as

Few-body coupled oscillator systems
The general analytic theory was used to determine the solutions for parallel and series couplings of two and three linear oscillators.
The phenomena observed include degenerate and non-degenerate eigenvalues and spurious center-of-mass oscillatory modes.
There are two broad classifications for three or more coupled oscillators, that is, either complete coupling of all oscillators, or
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coupling of the nearest-neighbor oscillators. It is observed that the eigenvalue corresponding to the most coherent motion of the
coupled oscillators corresponds to the most collective motion and its eigenvalue is displaced the most in energy from the remaining
eigenvalues. For some systems this coherent collective mode corresponded to a center-of-mass motion with no internal excitation
of the other modes, while the other eigenvalues corresponded to modes with internal excitation of the oscillators such that the
center of mass is stationary. The above procedure has been applied to two classification of coupling, complete coupling of many
oscillators, and nearest neighbor coupling. Both degenerate and spurious center-of-mass modes were observed. Strong collective
shape degrees of freedom in nuclei are examples of complete coupling due to the weak residual interactions between nucleons in
the nucleus. It was seen that, for many coupled oscillators, one coherent state separates from the other states and this coherent state
carries the bulk of the collective strength.

Discrete lattice chain
Transverse and longitudinal modes of motion on the discrete lattice chain were discussed because of the important role it plays in
nature, such as in crystalline lattice structures. Both normal modes and travelling waves were discussed including the phenomena
of dispersion and cut-off frequencies. Molecules and the crystalline lattice chains are examples where nearest neighbor coupling is
manifest. It was shown that, for the −oscillator discrete lattice chain, there are only  independent longitudinal modes plus 
modes for the two transverse polarizations, and that the angular frequency  that is, a cut-off frequency exists.

Damped coupled linear oscillators

It was shown that linearly-damped coupled oscillator systems can be solved analytically using the concept of the Rayleigh
dissipation function.

Collective synchronization of coupled oscillators
The Kuramoto schematic phase model was used to illustrate how weak residual forces can cause collective synchronization of the
motion of many coupled oscillators. This is applicable to many large coupled systems such as nuclei, molecules, and biological
systems.
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15.1: Introduction to Advanced Hamiltonian Mechanics
This study of classical mechanics has involved climbing a vast mountain of knowledge, while the pathway to the top has led us to
elegant and beautiful theories that underlie much of modern physics. Being so close to the summit provides the opportunity to take
a few extra steps in order to provide a glimpse of applications to physics at the summit. These are described in chapters .

Hamilton’s development of Hamiltonian mechanics in 1834 is the crowning achievement for applying variational principles to
classical mechanics. A fundamental advantage of Hamiltonian mechanics is that it uses the conjugate coordinates , plus time ,
which is a considerable advantage in most branches of physics and engineering. Compared to Lagrangian mechanics, Hamiltonian
mechanics has a significantly broader arsenal of powerful techniques that can be exploited to obtain an analytical solution of the
integrals of the motion for complicated systems. In addition, Hamiltonian dynamics provides a means of determining the unknown
variables for which the solution assumes a soluble form, and is ideal for study of the fundamental underlying physics in
applications to fields such as quantum or statistical physics. As a consequence, Hamiltonian mechanics has become the preeminent
variational approach used in modern physics. This chapter introduces the following four techniques in Hamiltonian mechanics:

1. the elegant Poisson bracket representation of Hamiltonian mechanics, which played a pivotal role in the development of
quantum theory;

2. the powerful Hamilton-Jacobi theory coupled with Jacobi’s development of canonical transformation theory;
3. action-angle variable theory; and
4. canonical perturbation theory.

Prior to further development of the theory of Hamiltonian mechanics, it is useful to summarize the major formula relevant to
Hamiltonian mechanics that have been presented in chapters , , and .

Action functional :
As discussed in chapter , Hamiltonian mechanics is built upon Hamilton’s action functional

Hamilton’s Principle of least action states that

Generalized momentum :
In chapter , the generalized (canonical) momentum was defined in terms of the Lagrangian  to be

Chapter  defined the generalized momentum in terms of the action functional  to be

Generalized energy :

Jacobi’s Generalized Energy  was defined in equation  as

Hamiltonian function:
The Hamiltonian  was defined in terms of the generalized energy  plus the generalized momentum. That is

15 −18

q, p t

7 8 9

S

9.2

S(q, p, t) = L(q, , t)dt∫
t2

t1

q̇ (15.1.1)

δS(q, p, t) = δ L(q, , t)dt = 0∫
t2

t1

q̇ (15.1.2)

p

7.2 L

≡pi
∂L(q, , t)q̇

∂q̇ i

(15.1.3)

9.2 S

=pj
∂S(q, p, t)

∂qj
(15.1.4)

h(q, , t)q̇

h(q, , t)q̇ (7.7.6)

h(q, , t) ≡ ( )−L(q, , t)q̇ ∑
j

q̇ j

∂L(q, , t)q̇

∂q̇ j

q̇ (15.1.5)

H(q, p, t) h(q, , t)q̇

H(q, p, t) ≡ h(q, , t) = −L(q, , t) = p ⋅ −L(q, , t)q̇ ∑
j

pj q̇ j q̇ q̇ q̇ (15.1.6)
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where  correspond to -dimensional vectors, e.g.  and the scalar product . Chapter 
used a Legendre transformation to derive this relation between the Hamiltonian and Lagrangian functions. Note that whereas the
Lagrangian  is expressed in terms of the coordinates , plus conjugate velocities , the Hamiltonian  is
expressed in terms of the coordinates  plus their conjugate momenta . For scleronomic systems, plus assuming the standard
Lagrangian, then equations  and  give that the Hamiltonian simplifies to equal the total mechanical energy, that is, 

.

Generalized energy theorem:
The equations of motion lead to the generalized energy theorem which states that the time dependence of the Hamiltonian is related
to the time dependence of the Lagrangian.

Note that if all the generalized non-potential forces and Lagrange multiplier terms are zero, and if the Lagrangian is not an explicit
function of time, then the Hamiltonian is a constant of motion.

Hamilton’s equations of motion:

Chapter  showed that a Legendre transform plus the Lagrange-Euler equations led to Hamilton’s equations of motion. Hamilton
derived these equations of motion directly from the action functional, as shown in chapter .

Note the symmetry of Hamilton’s two canonical equations. The canonical variables  are treated as independent canonical
variables. Lagrange was the first to derive the canonical equations but he did not recognize them as a basic set of equations of
motion. Hamilton derived the canonical equations of motion from his fundamental variational principle and made them the basis
for a far-reaching theory of dynamics. Hamilton’s equations give  first-order differential equations for  for each of the 
degrees of freedom. Lagrange’s equations give  second-order differential equations for the variables .

Hamilton-Jacobi equation:
Hamilton used Hamilton’s Principle to derive the Hamilton-Jacobi equation .

The solution of Hamilton’s equations is trivial if the Hamiltonian is a constant of motion, or when a set of generalized coordinates
can be identified for which all the coordinates  are constant, or are cyclic (also called ignorable coordinates). Jacobi developed
the mathematical framework of canonical transformations required to exploit the Hamilton-Jacobi equation.

This page titled 15.1: Introduction to Advanced Hamiltonian Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

q, p n q ≡ ( , , . . . , )q1 q2 qn p ⋅ =q̇ ∑i pi q̇ i 8.2

L(q, , t)q̇ q q̇ H(q, p, t)

q p

(7.9.4) (7.6.13)
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= [ + (q, t)]−
dH(q, p, t)
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j

q̇ j QEXC
j ∑

k=1

m

λk
∂gk

∂qj

∂L(q, , t)q̇

∂t
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8.3

9.2

=q̇ j

∂H(q, p, t)

∂pj
(15.1.8)

= − (q, p, t) +[ + ]ṗj
∂H

∂qj
∑
k=1

m

λk
∂gk
∂qj

QEXC
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= −
∂H(q, p, t)

∂t
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∂t
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15.2: Poisson bracket Representation of Hamiltonian Mechanics

Poisson Brackets

Poisson brackets were developed by Poisson, who was a student of Lagrange. Hamilton’s canonical equations of motion describe
the time evolution of the canonical variables  in phase space. Jacobi showed that the framework of Hamiltonian mechanics
can be restated in terms of the elegant and powerful Poisson bracket formalism. The Poisson bracket representation of Hamiltonian
mechanics provides a direct link between classical mechanics and quantum mechanics.

The Poisson bracket of any two continuous functions of generalized coordinates  and , is defined to be

Note that the above definition of the Poisson bracket, written using the common brace notation, leads to the following identity,
antisymmetry, linearity, Leibniz rules, and Jacobi Identity.

where , , and  are functions of the canonical variables plus time. Jacobi’s identity;  states that the sum of the cyclic
permutation of the double Poisson brackets of three functions is zero. Jacobi’s identity plays a useful role in Hamiltonian
mechanics as will be shown.

Fundamental Poisson Brackets
The Poisson brackets of the canonical variables themselves are called the fundamental Poisson brackets. They are

In summary, the fundamental Poisson brackets equal

Note that the Poisson bracket is antisymmetric under interchange in  and . It is interesting that the only non-zero fundamental
Poisson bracket is for conjugate variables where , that is

Poisson bracket invariance to canonical transformations
The Poisson brackets are invariant under a canonical transformation from one set of canonical variables  to a new set of
canonical variables  where  and . This is shown by transforming Equation  to the
new variables by the following derivation

(q, p)

F (p, q) G(p, q)

{F ,G ≡ ( − )}qp ∑
i

∂F

∂qi

∂G

∂pi

∂F

∂pi

∂G

∂qi
(15.2.1)

{F ,F}

{F ,G}

{G,F +Y }

{G,FY }

0

= 0

= −{G,F}

= {G,F} +{G,Y }

= {G,F}Y +F{G,Y }

= {F , {G,Y }} +{G, {Y ,F}} +{Y {F ,G}}

(15.2.2)

(15.2.3)

(15.2.4)

(15.2.5)

(15.2.6)

G H Y 15.2.6

{ , = ( − ) = ( ⋅ 0 −0 ⋅ ) = 0qk ql}qp ∑
i

∂qk
∂qi

∂ql
∂pi

∂qk
∂pi

∂ql
∂qi

∑
i

δki δli (15.2.7)

{ , = ( − ) = (0 ⋅ − ⋅ 0) = 0pk pl}qp ∑
i

∂pk
∂qi

∂pl
∂pi

∂pk
∂pi

∂pl
∂qi

∑
i

δli δki (15.2.8)

{ , = ( − ) = ( ⋅ −0 ⋅ 0) =qk pl}qp ∑
i

∂qk
∂qi

∂pl
∂pi

∂qk
∂pi

∂pl
∂qi

∑
i

δki δli δkl (15.2.9)

{ , = 0qk ql}qp (15.2.10)

{ , = 0pk pl}qp (15.2.11)

{ , = −{ , =qk pl}qp pl qk}qp δkl (15.2.12)

p q

k = l

{ , = 1qk pk}pq (15.2.13)

( , )qk pk
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The terms can be rearranged to give

Let  and replace  by , and use the fact that the fundamental Poisson brackets  and ,
then Equation  reduces to

That is

Similarly

leading to

Substituting equations  and  into Equation  gives

Thus the canonical variable subscripts  and  can be ignored since the Poisson bracket is invariant to any canonical
transformation of canonical variables. The counter argument is that if the Poisson bracket is independent of the transformation, then
the transformation is canonical.

The independence of Poisson brackets to canonical transformations can be used to test if a transformation is canonical. Assume
that the transformation equations between two sets of coordinates are given by

Evaluating the Poisson brackets gives ,  while

Therefore if  are canonical with a Poisson bracket , then so are  since .

Since it has been shown that this transformation is canonical, it is possible to go further and determine the function that
generates this transformation. Solving the transformation equations for  and  give

{F ,G}qp = ( − )∑
j

∂F

∂qj

∂G

∂pj

∂F

∂pj

∂G

∂qj

= ( ( + )− ( + ))∑
jk

∂F

∂qj

∂G

∂Qk

∂Qk

∂pj

∂G

∂Pk

∂Pk

∂pj

∂F

∂pj

∂G

∂Qk

∂Qk

∂qj

∂G

∂Pk

∂Pk

∂qj

(15.2.14)

(15.2.15)

{F ,G = ( {F , + {F , )}qp ∑
k

∂G

∂Qk

Qk}qp
∂G

∂Pk

Pk}qp (15.2.16)

F = Qk G F { , = 0Qk Qj}qp { , =Qk Pj}qp δjk
15.2.14

{ ,F = ( { , } + { , }) =Qk }qp ∑
j

∂F

∂Qj

Qk Qj

∂F

∂Pj

Qk Pj ∑
j

∂F

∂Pj

δjk (15.2.17)

{F , } = −Qk

∂F

∂Pk

(15.2.18)

{ ,F = ( { , + { , )Pk }qp ∑
j

∂F

∂Qj

Pk Qj}qp
∂F

∂Pj

Pk Pj}qp (15.2.19)

{F , =Pk}qp
∂F

∂Qk

(15.2.20)

15.2.18 15.2.20 15.2.16

{F ,G = ( − ) = {F ,G}qp ∑
k

∂F

∂Qk

∂G

∂Pk

∂F

∂Pk

∂G

∂Qk

}QP (15.2.21)

(q, p) (Q,P )

Example : Check that a transformation is canonical15.2.1
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Since the transformation is canonical, there exists a generating function  such that

The transformation function  can be obtained using

This then gives that the required generating function is

This example illustrates how to determine a useful generating function and prove that the transformation is canonical.

Correspondence of the Commutator and the Poisson Bracket

In classical mechanics there is a formal correspondence between the Poisson bracket and the commutator. This can be shown by
deriving the Poisson Bracket of four functions taken in two pairs. The derivation requires deriving the two possible Poisson
Brackets involving three functions.

These two Poisson Brackets for three functions can be used to derive the Poisson Bracket of four functions, taken in pairs. This can
be accomplished two ways using either Equation  or .

The alternative approach gives

These two alternate derivations give different relations for the same Poisson Bracket. Equating the alternative equations 
and  gives that

This can be factored into separate relations, the left-hand side for body 1, and the right-hand side for body 2.

Since the left-hand ratio holds for  independent of , and vise versa, then they must equal a constant  that does not
depend on , does not depend on , and  must commute with . That is,  must be a constant number
independent of these variables.

q = p P = 2 ( −1) tanp( −1)eQ
2

sec2 eQ eQ

(Q, p)F3

q = − P = −
∂F3

∂p

∂F3

∂Q

(Q, p)F3

d (Q, p) = dQ+ dp = −PdQ−qdpF3
∂F3

∂Q

∂F3

∂p

= −d [ ] tanp− d tanp = −d [ tanp]( −1)eQ
2

( −1)eQ
2

( −1)eQ
2

(Q, p) = tanpF3 ( −1)eQ
2

{ ,G}F1F2 = [( + ) −( + ) ]∑
j

∂F1

∂qj
F2 F1

∂F2

∂qj

∂G

∂pj

∂F1

∂pj
F2 F1

∂F2

∂pj

∂G

∂qj

= { ,G} + { ,G}F1 F2 F1 F2

(15.2.22)

(15.2.23)

{F , } = {F , } + {F , }G1G2 G1 G2 G1 G2 (15.2.24)

15.2.23 15.2.24

{ , } = { , } + { , }F1F2 G1G2 F1 G1G2 F2 F1 F2 G1G2

= [{ , } + { , }] + [{ , } + { , }]F1 G1 G2 G1 F1 G2 F2 F1 F2 G1 G2 G1 F2 G2

= { , } + { , } + { , } + { , }F1 G1 G2F2 G1 F1 G2 F2 F1 F2 G1 G2 F1G1 F2 G2

(15.2.25)

{ , } = { , } + { , }F1F2 G1G2 F1F2 G1 G2 G1 F1F2 G2

= { , } + { , } + { , } + { , }F1 G1 F2G2 F1 F2 G1 G2 G1 F1 G2 F2 G1F1 F2 G2

(15.2.26)

15.2.25
15.2.26

{ , }( − ) = ( − ){ , }F1 G1 F2G2 G2F2 F1G1 G1F1 F2 G2

= = λ
( − )F1G1 G1F1

{ , }F1 G1

( − )F2G2 G2F2

{ , }F2 G2
(15.2.27)

,F1 G1 ,F2 G2 λ

,F1 G1 ,F2 G2 λ ( − )F1G1 G1F1 λ

( − ) = λ{ , } ≡ λ ( − )F1G1 G1F1 F1 G1 ∑
i

∂F1

∂qi

∂G1

∂pi

∂F1

∂pi

∂G1

∂qi
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Equation  is an especially important result which states that to within a multiplicative constant number , there is a one-to-
one correspondence between the Poisson Bracket and the commutator of two independent functions. An important implication is
that if two functions,  have a Poisson Bracket that is zero, then the commutator of the two functions also must be zero, that is, 

 and  commute.

Consider the special case where the variables  and  correspond to the fundamental canonical variables, . Then the
commutators of the fundamental canonical variables are given by

In 1925, Paul Dirac, a 23-year old graduate student at Bristol, recognized that the formal correspondence between the Poisson
bracket in classical mechanics, and the corresponding commutator, provides a logical and consistent way to bridge the chasm
between the Hamiltonian formulation of classical mechanics, and quantum mechanics. He realized that making the assumption that
the constant , leads to Heisenberg’s fundamental commutation relations in quantum mechanics, as is discussed in chapter 

. Assuming that  provides a logical and consistent way that builds quantization directly into classical mechanics,
rather than using ad-hoc, case-dependent, hypotheses as was used by the older quantum theory of Bohr.

Observables in Hamiltonian mechanics

Poisson brackets, and the corresponding commutation relations, are especially useful for elucidating which observables are
constants of motion, and whether any two observables can be measured simultaneously and exactly. The properties of any
observable are determined by the following two criteria.

Time dependence:

The total time differential of a function  is defined by

Hamilton’s canonical equations give that

Substituting these in the above relation gives

that is

This important equation states that the total time derivative of any function  can be expressed in terms of the partial time
derivative plus the Poisson bracket of  with the Hamiltonian.

Any observable  will be a constant of motion if , and thus Equation  gives

That is, it is a constant of motion when

15.2.28 λ

FiGk

Fi Gk

F1 G1 ( , )qk pl

− = λ{ , } = λqkpl plqk qk pl δkl (15.2.29)

− = λ{ , } = 0qkql qlqk qk ql (15.2.30)

− = λ{ , } = 0pkpl plpk pk pl (15.2.31)

λ ≡ iℏ
18.3.1 λ ≡ iℏ

G( , , t)qi pi

= + ( + )
dG

dt

∂G

∂t
∑
i

∂G

∂qi
q̇ i

∂G

∂pi
ṗ i (15.2.32)

=q̇ i

∂H

∂pi
(15.2.33)

= −ṗ i
∂H

∂qi
(15.2.34)

= + ( − )
dG

dt

∂G

∂t
∑
i

∂G

∂qi

∂H

∂pi

∂G

∂pi

∂H

∂qi

= +{G,H}
dG

dt

∂G

∂t
(15.2.35)

G(q, p, t)
G(q, p, t)

G(p, q, t) = 0dG

dt
15.2.35

+{G,H} = 0
∂G

∂t
(If G is a constant of motion)

= {H,G}
∂G

∂t
(15.2.36)
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Moreover, this can be extended further to the statement that if the constant of motion  is not explicitly time dependent then

The Poisson bracket with the Hamiltonian is zero for a constant of motion  that is not explicitly time dependent. Often it is more
useful to turn this statement around with the statement that if , and , then , implying that  is a
constant of motion.

Independence

Consider two observables  and . The independence of these two observables is determined by the Poisson
bracket

If this Poisson bracket is zero, that is, if the two observables  and  commute, then their values are independent
and can be measured independently. However, if the Poisson bracket , that is  and  do not commute,
then  and  are correlated since interchanging the order of the Poisson bracket changes the sign which implies that the measured
value for  depends on whether  is simultaneously measured.

A useful property of Poisson brackets is that if  and  both are constants of motion, then the double Poisson bracket 
. This can be proved using Jacobi’s identity

If  and , then , that is, the Poisson bracket  commutes with . Note that if  and
 do not depend explicitly on time, that is , then combining equations  and  leads to Poisson’s

Theorem that relates the total time derivatives.

This implies that if  and  are invariants, that is , then the Poisson bracket  is an invariant if  and  are
not explicitly time dependent.

Angular momentum, , provides an example of the use of Poisson brackets to elucidate which observables can be determined
simultaneously. Consider that the Hamiltonian is time independent with a spherically symmetric potential . Then it is best
to treat such a spherically symmetric potential using spherical coordinates since the Hamiltonian is independent of both  and 

.

The Poisson Brackets in classical mechanics can be used to tell us if two observables will commute. Since  is time
independent, then the Hamiltonian in spherical coordinates is

Evaluate the Poisson bracket using the above Hamiltonian gives

Since  is not an explicit function of time, , then , that is, the angular momentum about the  axis  is
a constant of motion.

The Poisson bracket of the total angular momentum  commutes with the Hamiltonian, that is

G

{G,H} = 0 (15.2.37)

G

{G,H} = 0 = 0∂G
∂t

= 0dG

dt
G

F (p, q, t) G(p, q, t)

{F ,G} = −{G,F} (15.2.38)

F (p, q, t) G(p, q, t)
{F ,G} ≠ 0 F (p, q, t) G(p, q, t)

F G

F G

F G

{H, {F ,G}} = 0

{F , {G,H}} +{G, {H,F}} +{H, {F ,G}} = 0 (15.2.39)

{G,H} = 0 {F ,H} = 0 {H, {F ,G}} = 0 {F ,G} H F

G = = 0∂F
∂t

∂G
∂t

15.2.35 15.2.39

{F ,G} ={ ,G}+{F , }
d

dt

dF

dt

dG

dt
(15.2.40)

F G = = 0dF

dt

dG

dt
{F ,G} F G

Example : Angular momentum15.2.2
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H = T +U = ( + + )+U(r)
1

2m
p2
r

p2
θ

r2

p2
ϕ

θr2 sin2

{ ,H} = 0pϕ
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∂pϕ

∂t
= 0

dpϕ

dt
z =Lz pϕ

L2

{ ,H} ={ + ,H} = 0L2 p2
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Since the total angular momentum  is not explicitly time dependent, then it also must be a constant of motion.
Note that Noether’s theorem gives that both the angular momenta  and  are constants of motion. Also since the Poisson
brackets are

then Jacobi’s identity, Equation , can be used to imply that

That is, the Poisson bracket  is a constant of motion. Note that if  and  commute, that is, , then
they can be measured simultaneously with unlimited accuracy, and this also satisfies that  commutes with .

The  components of the angular momentum  are given by

Evaluate the Poisson bracket

Similarly, Poisson brackets for  are

where , , and  are taken in a right-handed cyclic order. This usually is written in the form

where the Levi-Civita density  equals zero if two of the  indices are identical, otherwise it is +1 for a cyclic permutation
of , and −1 for a non-cyclic permutation.

Note that since these Poisson brackets are nonzero, the components of the angular momentum  do not commute and
thus simultaneously they cannot be measured precisely. Thus we see that although  and  are simultaneous constants of
motion, where the subscript  can be either , , or , only one component  can be measured simultaneously with . This
behavior is exhibited by rigid-body rotation where the body precesses around one component of the total angular momentum, 

, such that the total angular momentum, , plus the component along one axis,  are constants of motion. Then 
 is constant but not the individual  or .

Hamilton’s equations of motion
An especially important application of Poisson brackets is that Hamilton’s canonical equations of motion can be expressed directly
in the Poisson bracket form. The Poisson bracket representation of Hamiltonian mechanics has important implications to quantum
mechanics as will be described in chapter .

= +L2 p2
θ

p2
ϕ

θsin2

L2 Lz

{ ,H} = 0Lz

{ ,H} = 0L2

15.2.6

{H, { , }} = 0L2 Lz

{ , }L2 Lz L2 Lz { , } = 0L2 Lz
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n
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n
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∂xi
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∂pz,i
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{ , } =Lx Ly Lz

{ , } =Ly Lz Lx

{ , } =Lz Lx Ly

x y z

{ , } =Li Lj ϵijkLk

ϵijk ijk

i, j, k

, ,Lx Ly Lz

L2 Li

i x y z Li L2

Lz L2 Lz

+ = −L2
x L2

y L2 L2
z Lx Ly

18

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9650?pdf


15.2.7 https://phys.libretexts.org/@go/page/9650

In Equation  assume that  is a fundamental coordinate, that is, . Since  is not explicitly time dependent, then

That is

Similarly consider the fundamental canonical momentum . Since it is not explicitly time dependent, then

That is

Thus, it is seen that the Poisson bracket form of the equations of motion includes the Hamilton equations of motion. That is,

The above shows that the full structure of Hamilton’s equations of motion can be expressed directly in terms of Poisson brackets.

The elegant formulation of Poisson brackets has the same form in all canonical coordinates as the Hamiltonian formulation.
However, the normal Hamilton canonical equations in classical mechanics assume implicitly that one can specify the exact position
and momentum of a particle simultaneously at any point in time which is applicable only to classical mechanics variables that are
continuous functions of the coordinates, and not to quantized systems. The important feature of the Poisson Bracket representation
of Hamilton’s equations is that it generalizes Hamilton’s equations into a form ,  where the Poisson bracket is
equally consistent with both classical and quantum mechanics in that it allows for non-commuting canonical variables and
Heisenberg’s Uncertainty Principle. Thus the generalization of Hamilton’s equations, via use of the Poisson brackets, provides one
of the most powerful analytic tools applicable to both classical and quantal dynamics. It played a pivotal role in derivation of
quantum theory as described in chapter .

Consider a charge , and mass , in a constant electromagnetic fields with scalar potential  and vector potential . Chapter 
 showed that the Lagrangian for electromagnetism can be written as

15.2.35 G G≡ ,qk qk

dqk

dt
= +{ ,H}

∂qk
∂t

qk

= 0 + ( − )∑
i

∂qk
∂qi

∂H

∂pi

∂qk
∂pi

∂H

∂qi

= ( −0 ⋅ )∑
i

δik
∂H

∂pi

∂H

∂qi

=
∂H

∂pk

(15.2.41)

(15.2.42)

= { ,H} =q̇ k qk
∂H

∂pk
(15.2.43)

G≡ pk

dpk

dt
= +{ ,H}

∂pk
∂t

pk

= 0 + ( − )∑
i

∂qk
∂qi

∂H

∂pi

∂qk
∂pi

∂H

∂qi

= (0 − ⋅ )∑
i

∂H

∂pi
δik

∂H

∂qi

=
∂H

∂qk

(15.2.44)

(15.2.45)

= { ,H} =ṗk pk
∂H

∂qk
(15.2.46)

= { ,H} =q̇ k qk
∂H

∂pk
(15.2.47)

= { ,H} = −ṗk pk
∂H

∂qk
(15.2.48)

15.2.47 15.2.48
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Example : Lorentz force in electromagnetism15.2.3
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The generalized momentum then is given by

Thus the Hamiltonian can be written as

The Hamilton equations of motion give

and

Define the magnetic field to be

and the electric field to be

then the Lorentz force can be written as

Assume that one is dealing with traveling waves of the form  for a one-dimensional conservative system of
many identical coupled linear oscillators. Then evaluating the following Poisson brackets gives

Thus , , , and  are constants of motion. However,

Thus one cannot simultaneously measure the conjugate variables  or . This is the Uncertainty Principle that is
manifest by all forms of wave motion in classical and quantal mechanics as discussed in chapter .

Consider a mass  bound by an anisotropic, two-dimensional, linear oscillator potential. As discussed in chapter , the
motion can be described as lying entirely in the  plane that is perpendicular to the angular momentum . It is interesting
to derive the equations of motion for this system using the Poisson bracket representation of Hamiltonian mechanics.

The kinetic energy is given by

L = m ⋅ −q(Φ −A ⋅ )
1

2
ẋ ẋ ẋ

p = = m +qA
∂L

∂ẋ
ẋ

H = (p ⋅ ) −L = +qΦẋ
(p −qA)2

2m

= {x,H} =ẋ
(p −qA)

m

= {p,H} = −q∇Φ + (p −qA) ×(∇ ×A)ṗ
q

m

B ≡ ∇ ×A

E = −∇Φ −
∂A

∂t

F = = q(E + ×B)ṗ ẋ

Example : Wavemotion15.2.4

Ψ = Aei( x −ωt)
1
m px

{ ,H} = 0px

{x,H} = 0

{ω,H} = 0

{t,H} = 0

px x ω t

{ , x} ≠ 0px

{ω, t} ≠ 0

( x)px (ω, t)
3.11

Example : Two-dimensional, anisotropic, linear oscillator15.2.5
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The linear binding is reproduced assuming a quadratic scalar potential energy of the form

where  is the anharmonic strength that coupled the modes of the isotropic linear oscillator.

a) NORMAL MODES

As discussed in chapter , a transformation to the normal modes of the system is given by using variables  where 
 and , that is

Express the kinetic and potential energies in terms of the new coordinates gives

Note that the coordinate transformation makes the Lagrangian separable, that is

where

This shows that that the transformation has separated the system into two normal modes that are harmonic oscillators with
angular frequencies

Note that the non-isotropic harmonic oscillator reduces to the isotropic linear oscillator when .

b) HAMILTONIAN

The canonical momenta are given by

The definition of the Hamiltonian gives

Note that this can be factored as

where

T ( , ) = m ( + )ẋ ẏ
1

2
ẋ2 ẏ2

U(x, y) = k ( + )+ηxy
1

2
x2 y2

η

14 (α, β)
α ≡ (x+y)1

2√
β ≡ (x−y)1

2√

x ≡ (α+β) y ≡ (α−β)
1

2
–

√

1

2
–

√

T ( , ) = m [ + ]= m( + )ẋ ẏ
1

4
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2
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2 1

2
α̇2 β̇

2

U = k [(α+β +(α−β ] + η ( − ) = (k+η) + (k−η)
1

4
)2 )2 1

2
α2 β2 1

2
α2 1

2
β2

L = m( + )− (k+η) + (k−η) = +
1

2
α̇2 β̇

2 1

2
α2 1

2
β2 Lα Lβ

= m − (k+η) = m − (k−η)Lα

1

2
α̇2 1

2
α2Lβ

1

2
β̇

2 1

2
β2

= =ω1
k+η

m

− −−−−
√ ω2

k−η

m

− −−−−
√

η = 0

= = mpα
∂L

∂α̇
α̇
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∂β̇
β̇

H = + −L = ( + )+ (k+η) + (k−η)pαα̇ pββ̇
1

2m
p2
α p2

β

1

2
α2 1

2
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H = +Hα Hβ
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Using the Poisson Bracket expression for the time dependence, Equation , and using the fact that the Hamiltonian is not
explicitly time dependent, that is, , gives

Similarly . This implies that the Hamiltonians for both normal modes,  and , are time-independent constants of
motion which are equal to the total energy for each mode.

c) ANGULAR MOMENTUM

The angular momentum for motion in the  plane is perpendicular to the  plane with a magnitude of

The time dependence of the angular momentum is given by

Note that if , then the two eigenfrequencies, are degenerate, , that is, the system reduces to the isotropic
harmonic oscillator in the  plane that was discussed in chapter . In addition,  for , that is, the angular
momentum  in the  plane is a constant of motion when .

d) SYMMETRY TENSOR

The symmetry tensor was defined in chapter  to be

where  and  can correspond to either  or . The symmetry tensor defines the orientation of the major axis of the elliptical
orbit for the two-dimensional, isotropic, linear oscillator as described in chapter .

The isotropic oscillator has been shown to have two normal modes that are degenerate, therefore  and  are equally good
normal modes. The Hamiltonian showed that, for , the Hamiltonian gives that the total energy is conserved, as well as the
energies for each of the two normal modes which are.

Consider the matrix element

where  each can represent  or . Then for each matrix element

That is, each matrix element , commutes with the Hamiltonian

Thus the Poisson Brackets representation of Hamiltonian mechanics has been used to prove that the symmetry tensor 
 is a constant of motion for the isotropic harmonic oscillator. That is, all the elements , , and 

15.2.35

= 0∂H
∂t

= +{ ,H} = 0 +{ , + } = { , }
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dt

∂Hα

∂t
Hα Hα Hα Hβ Hα Hβ

= + − − = 0
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∂β
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Hα Hβ

αβ αβ
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 of the symmetric tensor  commute with the Hamiltonian.

Note that the three constants of motion, ,  and , for the isotropic, two-dimensional, linear oscillator, form a closed
algebra under the Poisson Bracket formalism.

Chapter  showed that Hamilton’s eccentricity vector for the inverse square-law attractive force,

is a constant of motion that specifies the major axis of the elliptical orbit. The eccentricity vector for the inverse-square-law
force can be investigated using Poisson Brackets as was done for the symmetry tensor above. It can be shown that

Note that the bracket on the right-hand side of Equation  equals the Hamiltonian  for the inverse square-law attractive force,
and thus the Poisson bracket equals

For the Hamiltonian  it can be shown that the Poisson bracket

That is, the eccentricity vector commutes with the Hamiltonian and thus it is a constant of motion. Previously this result was
obtained directly using the equations of motion as given in equation . Note that the three constants of motion, ,  and

 form a closed algebra under the Poisson Bracket formalism similar to the triad of constants of motion, ,  and  that
occur for the two-dimensional, isotropic linear oscillator described above. Examples  and  illustrate that the
Poisson Brackets representation of Hamiltonian mechanics is a powerful probe of the underlying physics, as well as confirming
the results obtained directly from the equations of motion as described in chapter  and .

Liouville's Theorem
Liouvilles Theorem illustrates an application of Poisson Brackets to Hamiltonian phase space that has important implications for
statistical physics. The trajectory of a single particle in phase space is completely determined by the equations of motion if the
initial conditions are known. However, many-body systems have so many degrees of freedom it becomes impractical to solve all
the equations of motion of the many bodies. An example is a statistical ensemble in a gas, a plasma, or a beam of particles. Usually
it is not possible to specify the exact point in phase space for such complicated systems. However, it is possible to define an
ensemble of points in phase space that encompasses all possible trajectories for the complicated system. That is, the statistical
distribution of particles in phase space can be specified.

A′
αβ A

′

L A′ H

Example : The eccentricity vector15.2.6
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a H
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Figure : Infinitessimal element of area in phase space

Consider a density  of representative points in  phase space. The number  of systems in the volume element  is

where it is assumed that the infinitessimal volume element  contains many possible
systems so that  can be considered a continuous distribution. For the conjugate variables  shown in Figure , the
number of representative points moving across the left-hand edge into the area per unit time is

The number of representative points flowing out of the area along the right-hand edge is

Hence the net increase in  in the infinitessimal rectangular element  due to flow in the horizontal direction is

Similarly, the net gain due to flow in the vertical direction is

Thus the total increase in the element  per unit time is therefore

Assume that the total number of points must be conserved, then the total increase in the number of points inside the element 
must equal the net changes in  on the infinitessimal surface element per unit time. That is

Thus summing over all possible values of  gives

or

Inserting Hamilton’s canonical equations into both brackets and differentiating the last bracket results in

15.2.1

ρ (q, p) N dv

N = ρdv (15.2.49)

dv= d , d . . . . d , d , d . . . . dq1 q2 qs p1 p2 ps
ρ ( , )qi pi 15.2.1

ρ dq̇ i pi (15.2.50)

[ρ + (ρ )d ]dq̇ i

∂

∂qi
q̇ i qi pi (15.2.51)

ρ d dqi pi

− (ρ )d d
∂

∂qi
q̇ i qi pi (15.2.52)

− (ρ )d d
∂

∂pi
ṗ i pi qi (15.2.53)

d dqi pi

−[ (ρ ) + (ρ )]d d
∂

∂qi
q̇ i

∂

∂pi
ṗ i pi qi (15.2.54)

d dqi pi
ρ

( ) d d
∂ρ

∂t
qi pi (15.2.55)

i

+ [ (ρ ) + (ρ )]= 0
∂ρ

∂t
∑
i

∂

∂qi
q̇ i

∂

∂pi
ṗ i (15.2.56)

+ [ + ]+ρ [ + ]= 0
∂ρ

∂t
∑
i

q̇ i

∂ρ

∂qi
ṗ i

∂ρ

∂pi
∑
i

∂ṗ i
∂pi
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The two terms in the last bracket cancel and thus

However, this just equals , therefore

This is called Liouville’s theorem which states that the rate of change of density of representative points vanishes, that is, the
density of points is a constant in the Hamiltonian phase space along a specific trajectory. Liouville’s theorem means that the system
acts like an incompressible fluid that moves such as to occupy an equal volume in phase space at every instant, even though the
shape of the phase-space volume may change, that is, the phase-space density of the fluid remains constant. Equation  is
another illustration of the basic Poisson bracket relation  and the usefulness of Poisson brackets in physics.

Liouville’s theorem is crucially important to statistical mechanics of ensembles where the exact knowledge of the system is
unknown, only statistical averages are known. An example is in focussing of beams of charged particles by beam handling systems.
At a focus of the beam, the transverse width in  is minimized, while the width in  is largest since the beam is converging to the
focus, whereas a parallel beam has maximum width  and minimum spreading width . However, the product  remains
constant throughout the focussing system. For a two dimensional beam, this applies equally for the  and  coordinates, etc. It is
obvious that the final beam quality for any beam transport system is ultimately limited by the emittance of the source of the beam,
that is, the initial area of the phase space distribution. Note that Liouville’s theorem only applies to Hamiltonian  phase
space, not to  Lagrangian state space. As a consequence, Hamiltonian dynamics, rather than Lagrange dynamics, is used to
discuss ensembles in statistical physics.

Note that Liouville’s theorem is applicable only for conservative systems, that is, where Hamilton’s equations of motion apply. For
dissipative systems the phase space volume shrinks with time rather than being a constant of the motion.

This page titled 15.2: Poisson bracket Representation of Hamiltonian Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

+ [ − ]+ρ [ − ]= 0
∂ρ

∂t
∑
i

∂H

∂pi

∂ρ

∂qi

∂H

∂qi

∂ρ

∂pi
∑
i

H∂2

∂ ∂pi qi

H∂2

∂ ∂pi qi
(15.2.58)

+ [ − ]= +{ρ,H} = 0
∂ρ

∂t
∑
i

∂H

∂pi

∂ρ

∂qi

∂H

∂qi

∂ρ

∂pi

∂ρ

∂t
(15.2.59)

dρ

dt

= +{ρ,H} = 0
dρ

dt

∂ρ

∂t
(15.2.60)

15.2.60
15.2.35

x px
x px xpx

y py

−qi pi
x− ẋ
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15.3: Canonical Transformations in Hamiltonian Mechanics
Hamiltonian mechanics is an especially elegant and powerful way to derive the equations of motion for complicated systems.
Unfortunately, integrating the equations of motion to derive a solution can be a challenge. Hamilton recognized this difficulty, so he
proposed using generating functions to make canonical transformations which transform the equations into a known soluble form.
Jacobi, a contemporary mathematician, recognized the importance of Hamilton’s pioneering developments in Hamiltonian
mechanics, and therefore he developed a sophisticated mathematical framework for exploiting the generating function formalism in
order to make the canonical transformations required to solve Hamilton’s equations of motion.

In the Lagrange formulation, transforming coordinates  to cyclic generalized coordinates , simplifies finding the
Euler-Lagrange equations of motion. For the Hamiltonian formulation, the concept of coordinate transformations is extended to
include simultaneous canonical transformation of both the spatial coordinates  and the conjugate momenta  from  to 

, where both of the canonical variables are treated equally in the transformation. Compared to Lagrangian mechanics,
Hamiltonian mechanics has twice as many variables which is an asset, rather than a liability, since it widens the realm of possible
canonical transformations.

Hamiltonian mechanics has the advantage that generating functions can be exploited to make canonical transformations to find
solutions, which avoids having to use direct integration. Canonical transformations are the foundation of Hamiltonian mechanics;
they underlie Hamilton-Jacobi theory and action-angle variable theory, both of which are powerful means for exploiting
Hamiltonian mechanics to solve problems in physics and engineering. The concept underlying canonical transformations is that, if
the equations of motion are simplified by using a new set of generalized variables , compared to using the original set of
variables , then an advantage has been gained. The solution, expressed in terms of the generalized variables , can be
transformed back to express the solution in terms of the original coordinates, .

Only a specialized subset of transformations will be considered, namely canonical transformations that preserve the canonical
form of Hamilton’s equations of motion. That is, given that the original set of variables  satisfy Hamilton’s equations

for some Hamiltonian , then the transformation to coordinates  is canonical if, and only if,
there exists a function  such that the  and  are still governed by Hamilton’s equations. That is,

where  plays the role of the Hamiltonian for the new variables. Note that  may be very different from the old
Hamiltonian . The invariance of the Poisson bracket to canonical transformations, chapter , provides a powerful test
that the transformation is canonical.

Hamilton’s Principle of least action, discussed in chapter , states that

Similarly, applying Hamilton’s Principle of least action to the new Lagrangian  gives

The discussion of gauge-invariant Lagrangians, chapter , showed that  and  can be related by the total time derivative of a
generating function  where

The generating function  can be any well-behaved function with continuous second derivatives of both the old and new canonical
variables , , ,  and . Thus the integrands of  and  are related by

( , )qi q̇ i ( , )Qi Q̇i

qi pi ( , )qi pi
( , )Qi Pi

(Q, P)
(q, p) (Q, P)

(q, p)

( , )qi pi

= − =q̇
∂H(q, p, t)

∂p
ṗ

∂H(q, p, t)

∂q
(15.3.1)

H(q, p, t) ( , , t), ( , , t)Qi qk pk Pi qk pk
H(Q, P, t) P Q

= − =Q̇
∂H(Q, P, t)

∂P
Ṗ

∂H(Q, P, t)

∂Q
(15.3.2)

H(Q, P, t) H(Q, P, t)
H(q, p, t) 15.2

9

δS = δ L(q, , t)dt = δ [p ⋅ −H(q, p, t)]dt = 0∫
t2

t1

q̇ ∫
t2

t1

q̇ (15.3.3)

L(Q, , t)Q̇

δS = δ L(Q, , t)dt = δ [P ⋅ −H(Q, P, t)]dt = 0∫
t2

t1

Q̇ ∫
t2

t1

Q̇ (15.3.4)

9.3 L L

F

=L−L
dF

dt
(15.3.5)

F
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where  is a possible scale transformation. A scale transformation, such as changing units, is trivial, and will be assumed to be
absorbed into the coordinates, making . Assuming that  is called an extended canonical transformation.

Generating functions

The generating function  has to be chosen such that the transformation from the initial variables  to the final variables 
 is a canonical transformation. The chosen generating function contributes to  only if it is a function of the old plus

new variables. The four possible types of generating functions of the first kind, are , , , and 
. These four generating functions lead to relatively simple canonical transformations, are shown below.

Type 1: :

The total time derivative of the generating function  is given by

Insert Equation  into Equation , and assume that the trivial scale factor , then

Assume that the generating function  determines the canonical variables  and  to be

then the terms in each square bracket cancel, leading to the required canonical transformation

Type 2: :

The total time derivative of the generating function  is given by

Insert this into Equation , and assume that the trivial scale factor , then

Assume that the generating function  determines the canonical variables  and  to be

then the terms in brackets cancel, leading to the required transformation

Type 3: :

The total time derivative of the generating function  is given by

Insert this into Equation , and assume that the trivial scale factor , then

p ⋅ −H(q, p, t) = λ [P ⋅ −H(Q, P, t)]+q̇ Q̇
dF

dt
(15.3.6)

λ

λ = 1 λ ≠ 1

F (q, p)
(Q, P) 15.3.6

(q, Q, t)F1 (q, P, t)F2 (p, Q, t)F3

(p, P, t)F4

F = (q,Q, t)F1

F = (q, Q, t)F1

= [ ⋅ + ⋅ ]+
dF (q, Q, t)

dt

∂ (q, Q, t)F1

∂q
q̇

∂ (q, Q, t)F1

∂Q
Q̇

∂ (q, Q, t)F1

∂t
(15.3.7)

15.3.7 15.3.6 λ = 1

[p − ] ⋅ −H(q, p, t) = [P+ ] ⋅ −H(Q, P, t) +
∂ (q, Q, t)F1

∂q
q̇

∂ (q, Q, t)F1

∂Q
Q̇

∂ (q, Q, t)F1

∂t

F1 p P

p = P = −
∂ (q, Q, t)F1

∂q

∂ (q, Q, t)F1

∂Q
(15.3.8)

H(Q, P, t) = H(q, p, t) +
∂ (q, Q, t)F1

∂t
(15.3.9)

F = (q,P, t) − Q ⋅ PF2

F = (q, P, t) −Q ⋅ PF2

= [ ⋅ + ⋅ −P ⋅ − ⋅ Q]+
dF

dt

∂ (q, P, t)F2

∂q
q̇

∂ (q, P, t)F2

∂P
ṗ Q̇ Ṗ

∂ (q, P, t)F2

∂t
(15.3.10)

15.3.6 λ = 1

(p − ) ⋅ −H(q, p, t) = P ⋅ −P ⋅ +[ −Q] ⋅ −H(Q, P, t) +
∂ (q, P, t)F2

∂q
q̇ Q̇ Q̇

∂ (q, P, t)F2

∂P
Ṗ

∂ (q, P, t)F2

∂t

F2 p Q

p = Q =
∂ (q, P, t)F2

∂q

∂ (q, P, t)F2

∂P
(15.3.11)

H(Q, P, t) = H(q, p, t) +
∂ (q, P, t)F2

∂t
(15.3.12)

F = (p,Q, t) + q ⋅ pF3

F = (p, Q, t) +q ⋅ pF3

= [ ⋅ + ⋅ + ⋅ p +q ⋅ ]+
dF

dt

∂ (p, Q, t)F3

∂p
ṗ

∂ (p, Q, t)F3

∂Q
Q̇ q̇ ṗ

∂ (p, Q, t)F3

∂t
(15.3.13)

15.3.6 λ = 1
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Assume that the generating function  determines the canonical variables  and  to be

then the terms in brackets cancel, leading to the required transformation

Type 4: :

The total time derivative of the generating function  is given by

Insert this into Equation , and assume that the trivial scale factor , then

Assume that the generating function  determines the canonical variables  and  to be

then the terms in brackets cancel, leading to the required transformation

Note that the last three generating functions require the inclusion of additional bilinear products of , , ,  in order for the terms
to cancel to give the required result. The addition of the bilinear terms, ensures that the resultant generating function  is the same
using any of the four generating functions , , , . Frequently the  generating function is the most convenient.
The four possible generating functions of the first kind, given above, are related by Legendre transformations. A canonical
transformation does not have to conform to only one of the four generating functions  for all the degrees of freedom, they can be
a mixture of different flavors for the different degrees of freedom. The properties of the generating functions are summarized in
table .

Table : Canonical transformation generating functions

Generating function Generating function derivatives Trivial special examples

The partial derivatives of the generating functions  determine the corresponding conjugate variables not explicitly included in the
generating function . Note that, for the first trivial example , the old momenta become the new coordinates, ,
and vice versa, . This illustrates that it is better to name them “conjugate variables” rather than “momenta” and
“coordinates”.

In summary, Jacobi has developed a mathematical framework for finding the generating function  required to make a canonical
transformation to a new Hamiltonian , that has a known solution. That is,

−[q + ] ⋅ −H(q, p, t) = [P+ ] ⋅ −H(Q, P, t) +
∂ (p, Q, t)F3

∂p
ṗ

∂ (p, Q, t)F3

∂Q
Q̇

∂ (p, Q, t)F3

∂t

F3 q P

q = − P = −
∂ (p, Q, t)F3

∂p

∂ (p, Q, t)F3

∂Q
(15.3.14)

H(Q, P, t) = H(q, p, t) +
∂ (p, Q, t)F3

∂t
(15.3.15)

F = (p,P, t) + q ⋅ p − Q ⋅ PF4

F = (p, P, t) +q ⋅ p −Q ⋅ PF4

= [ ⋅ + ⋅ + ⋅ p +q ⋅ − ⋅ P−Q ⋅ ]+
dF

dt

∂ (p, P, t)F4

∂p
ṗ

∂ (p, P, t)F4

∂P
ṗ q̇ ṗ Q̇ Ṗ

∂ (p, P, t)F4

∂t
(15.3.16)

15.3.6 λ = 1

−[q + ] ⋅ −H(q, p, t) = [ −Q] ⋅ −H(Q, P, t) +
∂ (p, P, t)F4

∂p
ṗ

∂ (p, P, t)F4

∂P
Ṗ

∂ (p, P, t)F4

∂t

F4 q Q

q = − Q =
∂ (p, P, t)F4

∂p

∂ (p, P, t)F4

∂P
(15.3.17)

H(Q, P, t) = H(q, p, t) +
∂ (p, P, t)F4

∂t
(15.3.18)

q p Q P

F

F1 F2 F3 F4 (q, P, t)F2

Fk

15.3.1

15.3.1

F = (q, Q, t)F1 = = −pi
∂F1

∂qi
Pi

∂F1

∂Qi
= = = −F1 qiQi Qi pi Pi qi

F = (q, P, t) − Q ⋅ PF2 = =pi
∂F2

∂qi
Qi

∂F2

∂Pi
= = =F2 qiPi Qi qi Pi pi

F = (p, Q, t) + q ⋅ pF3 = − = −qi
∂F3

∂pi
Pi

∂F3

∂Qi
= = − = −F3 piQi Qi qi Pi pi

F = (p, P, t) + q ⋅ p − Q ⋅ PF4 = − =qi
∂F4

∂pi
Qi

∂F4

∂Pi
= = = −F4 piPi Qi pi Pi qi

Fi

Fi =F1 qiQi =Qi pi
= −Pi qi

F

H(Q, P, t)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9651?pdf


15.3.4 https://phys.libretexts.org/@go/page/9651

When  is a constant, then a solution has been obtained. The inverse transformation for this solution 
 now can be used to express the final solution in terms of the original variables of the system.

Note the special case when , then Equation  has been reduced to the Hamilton-Jacobi relation 

In this case, the generating function  determines the action functional  required to solve the Hamilton-Jacobi equation 
). Since Equation  has transformed the Hamiltonian , for which , then

the solution  for the Hamiltonian  is obtained easily. This approach underlies Hamilton-Jacobi theory
presented in chapter .

Applications of Canonical Transformations
The canonical transformation procedure may appear unnecessarily complicated for solving the examples given in this book, but it
is essential for solving the complicated systems that occur in nature. For example, canonical transformations can be used to
transform time-dependent, (non-autonomous) Hamiltonians to time-independent, (autonomous) Hamiltonians for which the
solutions are known. Example  describes such a system. Canonical transformations provide a remarkably powerful approach
for solving the equations of motion in Hamiltonian mechanics, especially when using the Hamilton-Jacobi approach discussed in
chapter .

The identity transformation  satisfies  if the following relations are satisfied , 

, . Note that the new and old coordinates are identical, hence  generates the identity
transformation .

Consider the point transformation  where  is some function of . This transformation satisfies 

 if the following relations are satisfied , , . Point transformations
correspond to point-to-point transformations of coordinates.

The identity transformation  satisfies  if the following relations are satisfied , 

,  That is, the coordinates and momenta have been interchanged.

Consider an infinitessimal point canonical transformation, that is infinitesimally close to a point identity.

satisfies  if the following relations are satisfied

Thus the infinitessimal changes in  and  are given by

H(Q, P, t) = H(q, p, t) +
∂F

∂t
(15.3.19)

H(Q, P, t)
Q(t), P(t) → q(t), p(t)

H(Q, P, t) = 0 15.3.19 15.3.20

H(q, p, t) + = 0
∂S

∂t
(15.3.20)

F S

(15.4.23) 15.3.19 H(q, p, t) →H(Q, P, t) H(Q, P, t) = 0
Q(t), P(t) H(Q, P, t) = 0

15.4

15.6.2

15.4

Example : The identity canonical transformation15.3.1

(q, P) = q ⋅ PF2 15.3.19 = =pi
∂F2

∂qi
Pi

= =Qi
∂F2

∂Pi
qi H= H =F2 qiPi

= , =qi Qi pi Pi

Example : The point canonical transformation15.3.2

(q ⋅ P) = f(q, t) ⋅ PF2 f(q, t) q

15.3.19 = = ( )Qi
∂F2

∂Pi
fi qi = =pi

∂F2

∂qi

∂ ( ,t)fi qi

∂qi
H= H

Example : The exchange canonical transformation15.3.3

(q, Q) = q ⋅ QF1 15.3.19 = =pi
∂F1

∂qi
Qi

= − = −Pi
∂F1

∂Qi

qi H= H

Example : Infinitessimal point canonical transformation15.3.4

(q ⋅ P, t) = q ⋅ P+ ϵG(q, P, t)F2

15.3.19

= = + ϵQi

∂F2

∂Pi

qi
∂G(q, P, t)

∂Pi

= = + ϵpi
∂F2

∂qi
Pi

∂G(q, P, t)

∂qi

qi pi
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Thus  is the generator of the infinitessimal canonical transformation.

The classic one-dimensional harmonic oscillator provides an example of the use of canonical transformations. Consider the
Hamiltonian where  then

This form of the Hamiltonian is a sum of two squares suggesting a canonical transformation for which  is cyclic in a new
coordinate. A guess for a canonical transformation is of the form  which is of the  type where 

equals . Using  gives

Solving for the coordinates  yields

Inserting these into  gives

which implies that  is a cyclic coordinate.

The Hamiltonian is conservative, since it does not explicitly depend on time, and it equals the total energy since the
transformation to generalized coordinates is time independent. Thus

Since

then

Substituting  into  gives the well known solution of the one-dimensional harmonic oscillator

This page titled 15.3: Canonical Transformations in Hamiltonian Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

δ (q, p, t) = − = ϵ = ϵ +O( )qi Qi qi
∂G(q, P, t)

∂Pi

∂G(q, P, t)

∂pi
ϵ2

δ (q, p, t) = − = −ϵ = −ϵ +O( )pi Pi pi
∂G(q, P, t)

∂qi

∂G(q, P, t)

∂pi
ϵ2

G(q, P, t)

Example : 1-D harmonic oscillator via a cononical transformation15.3.5

=ω2 k
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H = + = ( + )
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2
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2m
p2 m2ω2q2

H

p = mωq cotQ (q, Q)F1 F1

(q, Q) = cotQF1
mωq2

2
15.3.8

p = = mωq cotQ
∂ (q,Q)F1

∂qi

P = − =
∂ (q,Q)F1

∂Q

m

2

ωq2

Qsin2

(p, q)

q = sinQ
2P

mω

− −−−
√ (a)

p = cosQ2mωP
− −−−−

√ (b)

H

H= ωP ( Q+ Q) = ωPcos2 sin2

Q

H= E = ωP

= = ωQ̇
∂H

∂P
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2E
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15.4: Hamilton-Jacobi Theory
Hamilton used the Principle of Least Action to derive the Hamilton-Jacobi relation (chapter )

where  refer to the  variables  and  is the action functional. Integration of this first-order
partial differential equation is non trivial which is a major handicap for practical exploitation of the Hamilton-Jacobi equation. This
stimulated Jacobi to develop the mathematical framework for canonical transformation that are required to solve the Hamilton-
Jacobi equation. Jacobi’s approach is to exploit generating functions for making a canonical transformation to a new Hamiltonian 

 that equals zero.

The generating function for solving the Hamilton-Jacobi equation then equals the action functional .

The Hamilton-Jacobi theory is based on selecting a canonical transformation to new coordinates  all of which are either
constant, or the  are cyclic, which implies that the corresponding momenta  are constants. In either case, a solution to the
equations of motion is obtained. A remarkable feature of Hamilton-Jacobi theory is that the canonical transformation is completely
characterized by a single generating function, . The canonical equations likewise are characterized by a single Hamiltonian
function, . Moreover, the generating function , and Hamiltonian function , are linked together by Equation . The
underlying goal of Hamilton-Jacobi theory is to transform the Hamiltonian to a known form such that the canonical equations
become directly integrable. Since this transformation depends on a single scalar function, the problem is reduced to solving a single
partial differential equation.

Time-dependent Hamiltonian

Jacobi’s complete integral 

The principle underlying Jacobi’s approach to Hamilton-Jacobi theory is to provide a recipe for finding the generating function 
 needed to transform the Hamiltonian  to the new Hamiltonian  using Equation . When the

derivatives of the transformed Hamiltonian  are zero, then the equations of motion become

and thus  and  are constants of motion. The new Hamiltonian  must be related to the original Hamiltonian  by a canonical
transformation for which

Equations  and  are automatically satisfied if the new Hamiltonian  since then Equation  gives that the
generating function  satisfies Equation .

Any of the four types of generating function can be used. Jacobi chose the type 2 generating function as being the most useful for
many practical cases, that is,  which is called Jacobi’s complete integral.

For generating functions  and  the generalized momenta are derived from the action by the derivative

Use this generalized momentum to replace  in the Hamiltonian , given in Equation , leads to the Hamilton-Jacobi
equation expressed in terms of the action .

15.3

H(q, p, t) + = 0
∂S

∂t
(15.4.1)

q, p 1 ≤ i ≤ n ,qi pi S( ( ), , ( ), )qj t1 t1 qj t2 t2

H(Q, P, t)

H(Q, P, t) = H(q, p, t) + = 0
∂S

∂t
(15.4.2)

S

(Q,P , t)
Qi Pi

S

H S H 15.4.1

S( , , t)qi Pi

F = S H(q, p, t) H(Q, P, t) 15.4.2
H(Q, P, t)

= = 0Q̇i

∂H

∂Pi

(15.4.3)

= − = 0Ṗ i

∂H

∂Qi

(15.4.4)

Qi Pi H H

H(Q, P, t) = H(q, p, t) +
∂S

∂t
(15.4.5)

15.4.3 15.4.4 H = 0 15.4.5
S 15.4.2

S( , , t)qi Pi

F1 F2

=pi
∂S

∂qi
(15.4.6)

pi H 15.4.5
S
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The Hamilton-Jacobi equation, , can be written more compactly using tensors  and  to designate  and 
 respectively. That is

Equation  is a first-order partial differential equation in  variables which are the old spatial coordinates  plus time .
The new momenta  have not been specified except that they are constants since .

Assume the existence of a solution of  of the form  where the generalized momenta 
 plus  are the  independent constants of integration in the transformed frame. One constant of integration

is irrelevant to the solution since only partial derivatives of  with respect to  and  are involved. Thus, if  is a
solution of the first-order partial differential equation, then so is  where  is a constant. Thus it can be assumed that one of
the  constants of integration is just an additive constant which can be ignored leading effectively to a solution

where none of the  independent constants are solely additive. Such generating function solutions are called complete solutions of
the first-order partial differential equations since all constants of integration are known.

It is possible to assume that the  generalized momenta,  are constants , where the  are the constants. This allows the
generalized momentum to be written as

Similarly, Hamilton’s equations of motion give the conjugate coordinate , where  are constants. That is

The above procedure has determined the complete set of  constants . It is possible to invert the canonical
transformation to express the above solution, which is expressed in terms of  and , back to the original
coordinates, that is,  and momenta  which is the required solution.

Hamilton’s principle function 

Hamilton’s approach to solving the Hamilton-Jacobi Equation  is to seek a canonical transformation from variables  at
time , to a new set of constant quantities, which may be the initial values  at time . Hamilton’s principle function 

 is the generating function for this canonical transformation from the variables  at time t to the initial variables
 at time . Hamilton’s principle function  is directly related to Jacobi’s complete integral .

Note that  is the generating function of a canonical transformation from the present time  variables to the initial 
, whereas Jacobi’s  is the generating function of a canonical transformation from the present  variables to the

constant variables . For the Hamilton approach, the canonical transformation can be accomplished in two steps
using  by first transforming from  at time , to , then transforming from  to . That is, this two-
step process corresponds to

Hamilton’s principle function  is related to Jacobi’s complete integral , and it will not be discussed further
in this book.

Time-independent Hamiltonian
Frequently the Hamiltonian does not explicitly depend on time. For the standard Lagrangian with time-independent constraints and
transformation, then  which is the total energy. For this case, the Hamilton-Jacobi equation simplifies to give

H( , . . . ; , . . . , ; t) + = 0q1 qn
∂S

∂q1

∂S

∂qn

∂S

∂t
(15.4.7)

15.4.7 q ∇S ( , . . )q1 qn

, . . . ,∂S
∂q1

∂S
∂qn

H(q, ∇S, t) + = 0
∂S

∂t
(15.4.8)

15.4.8 n+1 qi t

Pi H = 0

15.4.8 S( , , t) = S( , . . ; , . . ; t)qi Pi q1 qn α1 αn+1

= , , . . . .αPi α1 α2 t n+1
S( , , t)qi Pi qi t S

S+α α

n+1

S( , , t) = S( , . . . . . ; , . . . . . ; t)qi Pi q1 qn α1 αn (15.4.9)

n

n Pi αi αi

=pi
∂S(q, α, t)

∂qi
(15.4.10)

Q = β βi

= =Qi βi
∂S(q, α, t)

∂αi

(15.4.11)

2n (Q = β, P = α)
=Qi βi =Pi αi

= (α, β, t)qj qj = (α, β, t)pj pj

( , t; )SH qi qoto

15.4.8 (p, q)
t ( , )q0 p0 t = 0

( , t; )SH qi qoto (q, p)
( , )q0 p0 t0 ( , t; )SH qi qoto S( , , t)qi Pi

SH (q, p, t)
( , , )q0 p0 t0 S (q, p, t)

(Q = β, P = α)
S (q, p, t) t (β, α) (β, α) ( , , )q0 p0 t0

(q, t; ) = S(q, α, t) −S( , α, )SH qoto q0 t0 (15.4.12)

(q, t; )SH qoto S(q, α, t)

H(q, p, t) = E

= −H(q, p, t) = −E(α)
∂S

∂t
(15.4.13)
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The integration of the time dependence is trivial, and thus the action integral for a time-independent Hamiltonian equals

That is, the action integral has separated into a time independent term  which is called Hamilton’s characteristic
function plus a time-dependent term . Thus using equations ,  gives that the generalized momentum is

The physical significance of Hamilton’s characteristic function  can be understood by taking the total time derivative

Taking the time integral then gives

Note that this equals the abbreviated action described in chapter , that is .

Inserting the action  into the Hamilton-Jacobi equation  gives

This is called the time-independent Hamilton-Jacobi equation. Usually it is convenient to have  equal the total energy.
However, sometimes it is more convenient to exclude the  energy  in the set, in which case ;
the Routhian exploits this feature.

The equations of the canonical transformation expressed in terms of  are

These equations show that Hamilton’s characteristic function  is itself the generating function of a time-independent
canonical transformation from the old variables  to a set of new variables

Table  summarizes the time-dependent and time-independent forms of the Hamilton-Jacobi equation.

Hamiltonian Time dependent Time independent 

Transformed Hamiltonian  is cyclic

Canonical transformed variables All  are constants of motion All  are constants of motion

Transformed equations of motion
, therefore 

, therefore 

, therefore 

, therefore 

Generating function Jacobi’s complete integral Characteristic Function 

Hamilton-Jacobi equation

Transformation equations

Table : Hamilton-Jacobi formulations

S(q, α, t) = W (q, α) −E(α)t (15.4.14)

W (q, α)
−E(α)t 15.4.10 15.4.14

=pi
∂W (q, α)

∂qi
(15.4.15)

W (q, α)

= =
dW

dt
∑
i

∂W (q, α)

∂qi
q̇ i ∑

i

pi q̇ i

W (q, α) = ∫ ∑ dt = ∫ ∑ dpi q̇ i pi qi (15.4.16)

9.2.3 W (q, α) = (q, α)S0

S(q, α) (15.2.1)

H(q; ) = E(α)
∂W (q, α)

∂q
(15.4.17)

E

kth E( )αk E = E( , , . . . −1)α1 α2 αk

W (q, α)

= + t =pi
∂W (q, α)

∂qi
βi

∂E(α)

∂αi

∂W (q, α)

∂αi

(15.4.18)

W (q, α)
(q, p)

= + t =Qi βi
∂E(α)

∂αi

Pi αi (15.4.19)

15.4.1

H(q, p, t) H(q, p)

H = 0 H

QiPi Pi

= = 0Q̇i
∂H

∂Pi
=Qi βi

= − = 0Ṗ i
∂H

∂Qi

=Pi αi

= =Q̇i
∂H

∂Pi
vi = t +Qi vi βi

= − = 0Ṗ i
∂H

∂Qi

=Pi αi

S(q, P, t) W(q, P)

H( , . . . ; , . . . , ; t) + = 0q1 qn
∂S
∂q1

∂S
∂qn

∂S
∂t

H( , . . . ; , . . . , ) = Eq1 qn
∂W
∂q1

∂W
∂qn

=pi
∂S
∂qi

= =Qi
∂S

∂αi
βi

=pi
∂W
∂qi

= = t +Qi
∂W

∂αi
vi βi

15.4.1
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Separation of variables
Exploitation of the Hamilton-Jacobi theory requires finding a suitable action function . When the Hamiltonian is time
independent, then Equation  shows that the time dependence of the action integral separates out from the dependence on the
spatial variables. For many systems, the Hamilton’s characteristic function  separates into a simple sum of terms each of
which is a function of a single variable. That is,

where each function in the summation on the right depends only on a single variable. Then Equation  reduces to

where  is the constant denoting the total energy.

Hamilton’s characteristic function  can be used with equations , , , , and  to derive

which has reduced the problem to a simple sum of one-dimensional first-order differential equations.

If the  variable is cyclic, then the Hamiltonian is not a function of  and the  term in Hamilton’s characteristic function equals
 which separates out from the summation in Equation . That is, all cyclic variables can be factored out of 

 which greatly simplifies solution of the Hamilton-Jacobi equation. As a consequence, the ability of the Hamilton-Jacobi
method to make a canonical transformation to separate the system into many cyclic or independent variables, which can be solved
trivially, is a remarkably powerful way for solving the equations of motion in Hamiltonian mechanics.

Consider the motion of a free particle of mass  in a force-free region. Then Equation  reduces to

Since no forces act, and the momentum , thus the Hamilton-Jacobi equation reduces to

The Hamiltonian is time independent, thus Equation  applies

Since the Hamiltonian does not explicitly depend on the coordinates , then the coordinates are cyclic and separation of
the variables, , gives that the action

For Equation  to be a solution of Equation  requires that

Therefore

S

15.4.14
W (q, P)

W (q, α) = ( ) + ( ) +⋯ ⋅ ⋅ ( )W1 q1 W2 q2 Wn qn (15.4.20)

15.4.13

H( , . . . ; , . . . , ) = Eq1 qn
∂W

∂q1

∂W

∂qn
(15.4.21)

E

W (q, P) 15.4.14 15.4.15 15.4.3 15.4.4 15.4.5

= =pi
∂W (q, α)

∂qi
Qi

∂W (q, α)

∂Pi

(15.4.22)

= = 0 = = 0Q̇i

∂H

∂Pi

Ṗ i

∂H

∂Qi

(15.4.23)

H = H + = H −E = 0
∂S

∂t
(15.4.24)

ith qi ith

=Wi αiqi 15.4.20
W (q, α)

Example : Free particle15.4.1

m 15.4.5

H( , . . . ; , . . . , ; t) + = 0q1 qn
∂S

∂q1

∂S

∂qn

∂S

∂t

p = ∇S

S+ = 0
1

2m
∇2 ∂S

∂t
(A)

15.4.14

S(q, t) = W (q, α) −E(α)t

(x, y, z)
15.4.20

S = α ⋅ r −Et (B)

B A

E =
1

2m
α2 (C)

S = α ⋅ r − t
1

2m
α2 (D)
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Since

the equation of motion and the conjugate momentum are given by

Thus the Hamilton-Jacobi relation has given both the equation of motion and the linear momentum .

The Hamiltonian is

Since the system is conservative, then the Hamilton-Jacobi equation can be written in terms of Hamilton’s characteristic
function 

Assuming that the variables can be separated  leads to

Thus by integration the total  equals

Therefore using  gives

If  is the position of the particle at time  then , and from 

= = r − tQ̇
∂S

∂α

α

m

r = + t p = ∇S = αQ̇
α

m

p

Example : Point particle in a uniform gravitational field15.4.2

H = ( + + ) +mgz
1

2m
p2
x p2

y p2
z

W

E = [ + + ] +mgz
1

2m
( )

∂W

∂x

2

( )
∂W

∂y

2

( )
∂W

∂z

2

W = X(x) +Y (y) +Z(z)

= =px
∂X(x)

∂x
αx

= =py
∂Y (y)

∂y
αy

= =pz
∂Z(z)

∂z
2m(E−mgz) − −α2

x α2
y

− −−−−−−−−−−−−−−−−−−
√

W

W = dx+ dy+ ( )dz∫
x

x0

αx ∫
y

y0

αy ∫
z

z0

2m(E−mgz) − −α2
x α2

y

− −−−−−−−−−−−−−−−−−−
√

15.4.19

= t− =βz t0 ∫
z

z0

mdz

2m(E−mgz) − −α2
x α2

y

− −−−−−−−−−−−−−−−−−−
√

=  constant  = (x− ) −βx x0 ∫
z

z0

dzαx

2m(E−mgz) − −α2
x α2

y

− −−−−−−−−−−−−−−−−−−
√

=  constant  = (y− ) −βy y0 ∫
z

z0

dzαy

2m(E−mgz) − −α2
x α2

y

− −−−−−−−−−−−−−−−−−−
√

, ,x0 y0 z0 t = t0 = = 0βx βy 15.4.19

x− = ( ) (t− )x0
αx

m
t0

y− = ( ) (t− )y0
αy

m
t0
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This corresponds to a parabola as should be expected for this trivial example.

As discussed in example  the Hamiltonian for the one-dimensional harmonic oscillator can be written as

assuming it is conservative and where .

Hamilton’s characteristic function  can be used where

Inserting the generalized momentum  into the Hamiltonian gives

Integration of this equation gives

That is

Note that

This can be integrated to give

That is

This is the familiar solution of the undamped harmonic oscillator.

The problem of a particle acted upon by a central force occurs frequently in physics. Consider the mass  acted upon by a
time-independent central potential energy . The Hamiltonian is time independent and can be written in spherical
coordinates as

z− = (t− ) − g(t−z0

⎛

⎝
⎜

2m(E−mgz) − −α2
x α2

y

− −−−−−−−−−−−−−−−−−−
√

m

⎞

⎠
⎟ t0

1

2
t0)2

Example : One-dimensional harmonic oscillator15.4.3

15.3.5

H = ( + ) = E
1

2m
p2 m2ω2q2

ω = k

m

−−
√

W

S(q,E, t) = W (q,E) −Et

=pi
∂W

∂qi

pi

( + ) = E
1

2m
[ ]

∂W

∂q

2

m2ω2q2

W = ∫ dq2mE
− −−−

√ 1 −
mω2q2

2E

− −−−−−−−−
√

S = ∫ dq −Et2mE
− −−−

√ 1 −
mω2q2

2E

− −−−−−−−−
√

= ∫ − t
∂S(q,E, t)

∂E

2m

E

− −−−
√

dq

1 −
mω2q2

2E

− −−−−−−−
√

t = arcsin(q )+
1

ω

mω2

2E

− −−−
√ t0

q = sinω(t− )
2E

mω2

− −−−
√ t0

Example : The central force problem15.4.4

m

U(r)
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The time-independent Hamilton-Jacobi equation is conservative, thus

Try a separable solution for Hamilton’s characteristic function  of the form

The Hamilton-Jacobi equation then becomes

This can be rearranged into the form

The left-hand side is independent of  whereas the right-hand side is independent of  and . Both sides must equal a constant
which is set to equal , that is

The equation in  and  can be rearranged in the form

The left-hand side is independent of  and the right-hand side is independent of  so both must equal a constant which is set to
be 

The variables now are completely separated and, by rearrangement plus integration, one obtains

Substituting these into  gives

H = ( + + )+U(r) = E
1

2m
p2
r

1

r2
p2
θ

1

θr2 sin2
p2
ψ

[ + + ] +U(r) = E
1

2m
( )

∂W

∂r

2 1

r2
( )

∂W

∂θ

2 1

θr2 sin2
( )

∂W

∂ϕ

2

W

W = R(r) +Θ(θ) +Φ(ϕ)

[ + + ] +U(r) = E
1

2m
( )

∂R

∂r

2
1

r2
( )

∂Θ

∂θ

2
1

θr2 sin2
( )

∂Φ

∂ϕ

2

2m θ{ [ + ] +U(r) +E} = −r2 sin2 1

2m
( )

∂R

∂r

2
1

r2
( )

∂Θ

∂θ

2

( )
∂Φ

∂ϕ

2

ϕ r θ

−L2
z

[ + ] +U(r) + = E
1

2m
( )

∂R

∂r

2
1

r2
( )

∂Θ

∂θ

2
L2
z

2m θr2 sin2

=( )
∂Φ

∂ϕ

2

L2
z

r θ

2m [ +U(r) −E] = −[ + ]r2 1

2m
( )

∂R

∂r

2

( )
∂Θ

∂θ

2 L2
z

θsin2

θ r

−L2

+U(r) + = E
1

2m
( )

∂R

∂r

2 L2

2mr2

+ =( )
∂Θ

∂θ

2 L2
z

θsin2
L2

R(r) = ∫ dr2m
−−−

√ E−U(r) −
L2

2mr2

− −−−−−−−−−−−−−

√

Θ(θ) = ∫ dθ−L2 L2
z

θsin2

− −−−−−−−−

√

Φ(ϕ) = ϕLz

W = R(r) +Θ(θ) +Φ(ϕ)

W = ∫ dr+∫ dθ+ ϕ2m
−−−

√ E−U(r) −
L2

2mr2

− −−−−−−−−−−−−−

√ −L2 L2
z

θsin2

− −−−−−−−−

√ Lz
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Hamilton’s characteristic function  is the generating function from coordinates  to new coordinates,
which are cyclic, and new momenta that are constant and taken to be the separation constants .

Similarly, using  gives the new coordinates 

These equations lead to the elliptical, parabolic, or hyperbolic orbits discussed in chapter .

A canonical treatment of the linearly-damped harmonic oscillator provides an example that combines use of non-standard
Lagrangian and Hamiltonians, a canonical transformation to an autonomous system, and use of Hamilton-Jacobi theory to
solve this transformed system. It shows that Hamilton-Jacobi theory can be used to determine directly the solutions for the
linearly-damped harmonic oscillator.

Non-standard Hamiltonian:

In chapter , the equation of motion for the linearly-damped, one-dimensional, harmonic oscillator was given to be

Example  showed that three non-standard Lagrangians give equation of motion  when used with the standard Euler-
Lagrange variational equations. One of these was the Bateman[Bat31] time-dependent Lagrangian

This Lagrangian gave the generalized momentum to be

which was used with equation  to derive the Hamiltonian

Note that both the Lagrangian and Hamiltonian are explicitly time dependent and thus they are not conserved quantities. This is
as expected for this dissipative system.

W (r, θ,ϕ, , , )pr pθ pϕ
E,L,Lz

= =pr
∂W

∂r
2m
−−−

√ E−U(r) −
L2

2mr2

− −−−−−−−−−−−−−

√

= =pθ
∂W

∂θ
−L2 L2

z

θsin2

− −−−−−−−−

√

= =pϕ
∂W

∂ϕ
Lz

15.4.22 E,L,Lz

+ t = = ∫βE
∂W

∂E

m

2

−−−
√

dr

E−U(r) − L2

2mr2

− −−−−−−−−−−−−
√

= = ∫ ( )+∫βL
∂W

∂L
2m
−−−

√
dr

E−U(r) − L2

2mr2

− −−−−−−−−−−−−
√

−L

2mr2

Ldθ

−L2 L2
z

θsin2

− −−−−−−−
√

= = ∫ ( )+ϕβLz

∂W

∂Lz

dθ

−L2 L2
z

θsin2

− −−−−−−−
√

−L

2mr2

11

Example : Linearly-damped, one-dimensional, harmonic oscillator15.4.5

3.5

[ +Γ + q] = 0
m

2
q̈ q̇ ω2

0 (a)

10.5.1 α

(q, , t) = [ − ]L2 q̇
m

2
eΓt q̇ 2 ω2

0q
2 (b)

p = = m
∂L2

∂q̇
q̇ eΓt (c)

(15.1.3)

(q, p, t) = p − (q, , t) = + mH2 q̇ L2 q̇ e−Γt p2

2m

1

2
ω2

0q
2eΓt (d)
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Hamilton-Jacobi theory:

The form of the non-autonomous Hamiltonian  suggests use of the generating function for a canonical transformation to an
autonomous Hamiltonian, for which  is a constant of motion.

Then the canonical transformation gives

Insert this canonical transformation into the above Hamiltonian leads to the transformed Hamiltonian that is autonomous.

That is, the transformed Hamiltonian  is not explicitly time dependent, and thus is conserved. Expressed in the
original canonical variables , the transformed Hamiltonian 

is a constant of motion which was not readily apparent when using the original Hamiltonian. This unexpected result illustrates
the usefulness of canonical transformations for solving dissipative systems. The Hamilton-Jacobi theory now can be used to
solve the equations of motion for the transformed variables  plus the transformed Hamiltonian . The
derivative of the generating function

Use Equation  to substitute for  in the Hamiltonian  (Equation ), then the Hamilton-Jacobi method gives

This equation is separable as described in  and thus let

where  is a separation constant. Then

To simplify the equations define the variable x as

then Equation  can be written as

where  and . Assume initial conditions  and 

For this case the separation constant , therefore . Note that Equation  is a simple second-order algebraic relation,
the solution of which is

d
H

S(q,P , t) = (q,P , t) = qP = QPF2 e
Γt
2 (d)

p = = P
∂S

∂q
e

Γt

2 (e)

Q = = q
∂S

∂P
e

Γt

2

H(Q,P , t) = (q, p, t) + = + QP +H2
∂F2

∂t

P 2

2m

Γ

2

mω2
0

2
Q2 (f)

H(Q,P , t)
(q, p) H(Q,P , t)

H(Q,P , t) = + qp+ q2
p2

2m
e−Γt Γ

2

mω2
0

2
eΓt

(Q,P ) H(Q,P , t)

= P
∂S

∂Q
(g)

g P H(Q,P , t) f

+ Q + + = 0
1

2m
( )

∂S

∂Q

2
Γ

2

∂S

∂Q

mω2
0

2
Q2 ∂S

∂t

15.4.20

S(Q,α, t) = W (Q,α) −αt

α

[ +ΓQ + ] = α
1

2m
( )

∂W

∂Q

2 ∂W

∂Q

mω2
0

2
Q2 (h)

x ≡ Qmω0
− −−−

√ (i)

h

+Ax +( −B) = 0( )
∂W

∂x

2
∂W

∂x
x2 (j)

A = Γ
ω0

B = 2α
ω0

q(0) = q0 (0) = 0q̇

α > 0 B > 0 j
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The choice of the sign is irrelevant for this case and thus the positive sign is chosen. There are three possible cases for the
solution depending on whether the square-root term is real, zero, or imaginary.

Case 1: , that is, 

Define  Then Equation  can be integrated to give

and

This integral gives

where

Transforming back to the original variable  gives

where  and  are given by the initial conditions. Equation  is identical to the solution for the underdamped linearly-damped
linear oscillator given previously in equation .

Case 2: , that is, 

In this case  and thus Equation  simplifies to

and

Therefore the solution is

where  and  are constants given by the initial conditions. This is the solution for the critically-damped linearly-damped,
linear oscillator given previously in equation .

Case 3: , that is, 

Define a real constant  where , then

= − ±
∂W

∂x

αx

2
B−[1 − ]( )

A

2

2

x2

− −−−−−−−−−−−−−−−−

⎷


 (k)

< 1A
2

< 1λ
2mω0

C = [1 −( ]A
2

)2
− −−−−−−−−

√ k

S = −αt− +∫ dx
Ax2

4
(B− )C 2x2
− −−−−−−−−

√ (l)

β = = −t+ ∫
∂S

∂α

1

ω0

dx

(B− )C 2x2− −−−−−−−−
√

si ( ) = C (t+β) ≡ ωt+δn−1 Cx

B
−−

√
ω0

ω = C = =ω0 ω0 1 −( )
Γ

2ω0

2
− −−−−−−−−−

√ −ω2
0 ( )

Γ

2

2
− −−−−−−−−−

√ (m)

q

q(t) = G sin(ωt+δ)e− Γt

2 (n)

G δ m
(3.5.12)

= 1A

2
= 1Γ

2ω0

C = = 0[1 −( ]A

2
)2

− −−−−−−−−
√ k

S = −αt− +x
Ax2

4
B
−−

√

β = = −t+
∂S

∂α

x

ω0 B
−−

√

q(t) = (F +Gt)e− Γt

2 (o)

F G

(3.5.15)

> 1A

2
> 1Γ

2ω0

D D = = iC[( −1]A

2
)2

− −−−−−−−−
√

S = −αt− +∫ dx
Ax2

4
(B+ )D2x2
− −−−−−−−−

√
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Then

This last integral gives

where

Then the original variable gives

This is the classic solution of the overdamped linearly-damped, linear harmonic oscillator given previously in equation 
      . The canonical transformation from a non-autonomous to an autonomous system allowed use of Hamiltonian

mechanics to solve the damped oscillator problem.

Note that this example used Bateman’s non-standard Lagrangian, and corresponding Hamiltonian, for handling a dissipative
linear oscillator system where the dissipation depends linearly on velocity. This nonstandard Lagrangian led to the correct
equations of motion and solutions when applied using either the time-dependent Lagrangian, or time-dependent Hamiltonian,
and these solutions agree with those given in chapter  which were derived using Newtonian mechanics.

Visual representation of the action function .

Figure : Surfaces of constant action integral S (dashed lines) and the corresponding particle momenta (solid lines) with
arrows showing the direction.

The important role of the action integral  can be illuminated by considering the case of a single point mass  moving in a time
independent potential . Then the action reduces to

Let . The momentum components are given by

which corresponds to

That is, the time-independent Hamilton-Jacobi equation is

β = = −t+ ∫
∂S

∂α

1

ω0

dx

(B+ )D2x2− −−−−−−−−√

( ) = D (t+β) ≡ ωt+δsinh−1 Dx

B
−−

√
ω0

ω = C =ω0 ω0 −1( )
λ

2mω0

2
− −−−−−−−−−−−

√

q(t) = G sinh(ωt+δ)e−
Γt

2
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This implies that the particle momentum is given by the gradient of Hamilton’s characteristic function and is perpendicular to
surfaces of constant  as illustrated in Figure . The constant  surfaces are time dependent as given by Equation .
Thus, if at time  the equi-action surface , then at  the same surface  now
coincides with the  surface etc. That is, the equi-action surfaces move through space separately from the motion of the
single point mass.

The above pictorial representation is analogous to the situation for motion of a wavefront for electromagnetic waves in optics, or

matter waves in quantum physics where the wave equation separates into the form . Hamilton’s goal was
to create a unified theory for optics that was equally applicable to particle motion in classical mechanics. Thus the optical-
mechanical analogy of the Hamilton-Jacobi theory has culminated in a universal theory that describes wave-particle duality; this
was a Holy Grail of classical mechanics since Newton’s time. It played an important role in development of the Schrödinger
representation of quantum mechanics.

Advantages of Hamilton-Jacobi theory

Initially, only a few scientists, like Jacobi, recognized the advantages of Hamiltonian mechanics. In 1843 Jacobi made some
brilliant mathematical developments in Hamilton-Jacobi theory that greatly enhanced exploitation of Hamiltonian mechanics.
Hamilton-Jacobi theory now serves as a foundation for contemporary physics, such as quantum and statistical mechanics. A major
advantage of Hamilton-Jacobi theory, compared to other formulations of analytic mechanics, is that it provides a single, first-order
partial differential equation for the action , which is a function of the  generalized coordinates  and time . The generalized
momenta no longer appear explicitly in the Hamiltonian in equations , . Note that the generalized momentum do not
explicitly appear in the equivalent Euler-Lagrange equations of Lagrangian mechanics, but these comprise a system of  second-
order, partial differential equations for the time evolution of the generalized coordinate . Hamilton’s equations of motion are a
system of  first-order equations for the time evolution of the generalized coordinates and their conjugate momenta.

An important advantage of the Hamilton-Jacobi theory is that it provides a formulation of classical mechanics in which motion of a
particle can be represented by a wave. In this sense, the Hamilton-Jacobi equation fulfilled a long-held goal of theoretical physics,
that dates back to Johann Bernoulli, of finding an analogy between the propagation of light and the motion of a particle. This goal
motivated Hamilton to develop Hamiltonian mechanics. A consequence of this wave-particle analogy is that the Hamilton-Jacobi
formalism featured prominently in the derivation of the Schrödinger equation during the development of quantum-wave mechanics.

This page titled 15.4: Hamilton-Jacobi Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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15.5: Action-angle Variables

Canonical transformation

Systems possessing periodic solutions are a ubiquitous feature in physics. The periodic motion can be either an oscillation, for
which the trajectory in phase space is a closed loop (libration), or rolling (rotational) motion as discussed in chapter . For many
problems involving periodic motion, the interest often lies in the frequencies of motion rather than the detailed shape of the
trajectories in phase space. The action-angle variable approach uses a canonical transformation to action and angle variables which
provide a powerful, and elegant method to exploit Hamiltonian mechanics. In particular, it can determine the frequencies of periodic
motion without having to calculate the exact trajectories for the motion. This method was introduced by the French astronomer Ch.
E. Delaunay(1816 − 1872) for applications to orbits in celestial mechanics, but it has equally important applications beyond celestial
mechanics such as to bound solutions of the atom in quantum mechanics.

The action-angle method replaces the momenta in the Hamilton-Jacobi procedure by the action phase integral for the closed loop
(libration) trajectory in phase space defined by

where for each cyclic variable the integral is taken over one complete period of oscillation. The cyclic variable  is called the
action variable where

The canonical variable to the action variable  is the angle variable . Note that the name “action variable” is used to differentiate 
from the action functional  which has the same units; i.e. angular momentum.

The general principle underlying the use of action-angle variables is illustrated by considering one body, of mass , subject to a
one-dimensional bound conservative potential energy . The Hamiltonian is given by

This bound system has a  phase space contour for each energy .

For an oscillatory system the two-valued momentum of Equation  is non-trivial to handle. By contrast, the area  of
the closed loop in phase space is a single-valued scalar quantity that depends on  and . Moreover, Liouville’s theorem states
that the area of the closed contour in phase space  is invariant to canonical transformations. These facts suggest the use of
a new pair of conjugate variables, , where  uniquely labels the trajectory, and corresponding area, of a closed loop in
phase space for each value of , and the single-valued function  is a corresponding angle that specifies the exact point along the
phase-space contour as illustrated in Fig .

For simplicity consider the linear harmonic oscillator where

Then the Hamiltonian,  equals

Hamilton’s equations of motion give that

3.4
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The solution of equations  and  is of the form

where , and  are integration constants. For the harmonic oscillator, equations  and  correspond to the usual
elliptical contours in phase space, as illustrated in Figure .

Figure : The potential energy , (upper) and corresponding phase space  (middle)
for the harmonic oscillator at four equally spaced total energies . The corresponding action-
angles  resulting from a canonical transformation of this system are shown in the lower
plot.

The action-angle canonical transformation involves making the transform

where  is defined by Equation  and the angle  being the corresponding canonical angle. The logical approach to this
canonical transformation for the harmonic oscillator is to define  and  in terms of  and 

Note that the Poisson bracket is unity

15.5.7 15.5.8

q = C cos(ω(t− ))t0 (15.5.9)

p = −mωC sinω(t− )t0 (15.5.10)

C t0 15.5.9 15.5.10
15.5.1

15.5.1 V (q) (p, q)
E

(Iϕ)

(q, p) → (ϕ, I) (15.5.11)

I 15.5.2 ϕ

q p ϕ I

q = cosϕ
2I

mω

− −−−
√ (15.5.12)

p = sinϕ2mIω
− −−−−

√ (15.5.13)

[q, p = 1](ϕ,I)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9653?pdf


15.5.3 https://phys.libretexts.org/@go/page/9653

which implies that the above transformation is canonical, and thus the phase space area  is conserved.

For this canonical transformation the transformed Hamiltonian  is

Note that this Hamiltonian is a constant that is independent of the angle , and thus Hamilton’s equations of motion give

Thus we have mapped the harmonic oscillator to new coordinates  where

That is, the phase space has been mapped from ellipses, with area proportional to  in the  phase space, to a cylindrical 
phase space where  are constant values that are independent of the angle, while  increases linearly with time. Thus the
variables  are periodic with modulus .

The period  of the periodic oscillatory motion is given simply by  which is the well known result for the harmonic
oscillator. Note that the action-angle variable canonical transformation has determined the frequency of the periodic motion without
solving the detailed trajectory of the motion.

The above example of the harmonic oscillator has shown that, for integrable periodic systems, it is possible to identify a canonical
transformation to  such that the Hamiltonian is independent of the angle  which specifies the instantaneous location on the
constant energy contour . If the phase space contour is a separatrix, then it divides phase space into invariant regions containing
phase-space contours with differing behavior. The action-angle variables are not useful for separatrix contours. For rolling motion,
the system rotates with continuously increasing, or decreasing angle, and there is no natural boundary for the action angle variable
since the phase space trajectory is continuous and not closed. However, the action-angle approach still is valid if the motion
involves periodic as well as rolling motion.

The example of the one-dimensional, one-body, harmonic oscillator can be expanded to the more general case for many bodies in
three dimensions. This is illustrated by considering multiple periodic systems for which the Hamiltonian is conservative and where
the equations of the canonical transformation are separable. The generalized momenta then can be written as

for which each  is a function of  and the  integration constants 

The momentum  represents the trajectory of the system in the  phase space that is characterized by
Hamilton’s characteristic function . Combining equations ,  gives

Since  is merely a variable of integration, each active action variable  is a function of the  constants of integration in the
Hamilton-Jacobi equation. Because of the independence of the separable-variable pairs , the  form  independent
functions of the , and hence are suitable for use as a new set of constant momenta. Thus the characteristic function  can be
written as

I(E) ≡ ∮ pdq1
2π
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while the Hamiltonian is only a function of the momenta 

The generalized coordinate, conjugate to , is known as the angle variable  which is defined by the transformation equation

The corresponding equation of motion for  is given by

where  are constant functions of the action variables  with a solution

that is, they are linear functions of time. The constants  can be identified with the frequencies of the multiple periodic motions.

The action-angle variables appear to be no different than a particular set of transformed coordinates. Their merit appears when the
physical interpretation is assigned to . Consider the change  as the  are changed infinitesimally

The derivative with respect to  vanishes except for the  component of . Thus Equation  reduces to

Therefore, the total change in , as the system goes through one complete cycle is

where  is outside the integral since the  are constants for cyclic motion. Thus  where  is the period for one
cycle of oscillation, where the angular frequency  is given by

Thus the frequency  associated with the periodic motion is the reciprocal of the period . The secret here is that the derivative of 
 with respect to the action variable  given by Equation  directly determines the frequency of the periodic motion without

the need to solve the complete equations of motion. Note that multiple periodic motion can be represented by a Fourier expansion of
the form

Although the action-angle approach to Hamilton-Jacobi theory does not produce complete equations of motion, it does provide the
frequency decomposition that often is the physics of interest. The reason that the powerful action-angle variable approach has been
introduced here is that it is used extensively in celestial mechanics. The action-angle concept also played a key role in the
development of quantum mechanics, in that Sommerfeld recognized that Bohr’s ad hoc assumption that angular momentum is
quantized, could be expressed in terms of quantization of the angle variable as is mentioned in chapter .

Adiabatic invariance of the action variables
When the Hamiltonian depends on time it can be quite difficult to solve for the motion because it is difficult to find constants of
motion for time-dependent systems. However, if the time dependence is sufficiently slow, that is, if the motion is adiabatic, then
there exist dynamical variables that are almost constant which can be used to solve for the motion. In particular, such approximate
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Wj qj J1 Jn (15.5.24)
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constants are the familiar action-angle integrals. The adiabatic invariance of the action variables played an important role in the
development of quantum mechanics during the 1911 Solvay Conference. This was a time when physicists were grappling with the
concepts of quantum mechanics. Einstein used the following classical mechanics example of adiabatic invariance, applied to the
simple pendulum, in order to illustrate the concept of adiabatic invariance of the action. This example demonstrates the power of
using action-angle variables.

Consider that the pendulum is made up of a point mass  suspended from a pivot by a light string of length  that is swinging
freely in a vertical plane. Derive the dependence of the amplitude of the oscillations , assuming  is small, if the string is very
slowly shortened by a factor of 2, that is, assume that the change in length during one period of the oscillation is very small. The
tension in the string  is given by

Let the pendulum angle be oscillatory

Then the average mean square amplitude and velocity over one period are

Since, for the simple pendulum, , then the tension in the string

Assuming that  is a small angle, and that the change in length  is very small during one period , then the work done is

while the change in internal oscillator energy is

The work done must balance the increment in internal energy therefore

or

Therefore it follows that

or

Thus shortening the length of the pendulum string from  to  adiabatically corresponds to the amplitude increasing by a
factor 1.68.

Example : Adiabatic invariance for the simple pendulum15.5.1

M L

θ θ

T

T = Mg⟨cosθ⟩+⟨ ⟩
ML2 θ̇

2

L

θ = cos(ωt+ )θ0 φ0

⟨ ⟩ =  ⟨[ cos(ωt+ ) ⟩ =θ2 θ0 φ0 ]2
θ2

0

2

⟨ ⟩ =  ⟨[− ω sin(ωt+ ) ⟩ =θ̇
2

θ0 φ0 ]2
ω2θ2

0

2

=ω2 g

L

T = Mg(1 −  ) +ML⟨ ⟩ = Mg(1 + )
⟨ ⟩θ2

2
θ̇

2 θ2
0

4

θ0 −ΔL τ

ΔW = TΔL = −MgΔL−Mg ΔL
θ2

0

4
(a)

Δ(−MgL cos ) = Δ [−MgL(1 − )] = −MgΔL+ MgΔ(L ) = −MgΔL+ Mg ΔL+MgL Δθ0
θ2

0

2

1

2
θ2

0

1

2
θ2

0 θ0 θ0 (b)

L Δ + = 0θ0 θ0
3 ΔLθ2

0

4

L Δ ln( ) = 0θ2
0 θ0L

3

4

( ) =  constantθ0L
3

4 (c)

∝θ0 L− 3

4

L L

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9653?pdf


15.5.6 https://phys.libretexts.org/@go/page/9653

Consider the action-angle integral for one closed period  for this problem

where that last step is due to Equation .

The above example shows that the action integral , that is, it is invariant to an adiabatic change. In retrospect this
result is as expected in that the action integral should be minimized.

This page titled 15.5: Action-angle Variables is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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15.6: Canonical Perturbation Theory
Most examples in classical mechanics discussed so far have been capable of exact solutions. In real life, the majority of problems
cannot be solved exactly. For example, in celestial mechanics the two-body Kepler problem can be solved exactly, but solution of
the three-body problem is intractable. Typical systems in celestial mechanics are never as simple as the two-body Kepler system
because of the influence of additional bodies. Fortunately in most cases the influence of additional bodies is sufficiently small to
allow use of perturbation theory. That is, the restricted three-body approximation can be employed for which the system is reduced
to considering it as an exactly solvable two-body problem, subject to a small perturbation to this solvable two-body system. Note
that even though the change in the Hamiltonian due to the perturbing term may be small, the impact on the motion can be
especially large near a resonance.

Consider the Hamiltonian, subject to a time-dependent perturbation, is written as

where  designates the unperturbed Hamiltonian and  designates the perturbing term. For the unperturbed
system the Hamilton-Jacobi equation is given by

where  is the generating function for the canonical transformation . The perturbed  remains a
canonical transformation, but the transformed Hamiltonian . That is,

The equations of motion satisfied by the transformed variables now are

These equations remain as difficult to solve as the full Hamiltonian. However, the perturbation technique assumes that  is
small, and that one can neglect the change of  over the perturbing interval. Therefore, to a first approximation, the
unperturbed values of  and  can be used in equations . A detailed explanation of canonical perturbation theory is
presented in chapter  of Goldstein[Go50].

(a) Consider first the Hamilton-Jacobi equation for the generating function  for the case of a single free particle
subject to the Hamiltonian . Find the canonical transformation  and  where  and  are the
transformed coordinate and momentum respectively.

The Hamilton-Jacobi equation

Using  in the Hamiltonian  gives

Since  does not depend on  explicitly, then the two terms on the left hand side of the equation can be set equal to 
respectively, where  is at most a function of . Then the generating function is

Set  then the generating function can be written as
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Example : Harmonic oscillator perturbation15.6.1
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The constant  can be identified with the new momentum . Then the transformation equations become

That is

which corresponds to motion with a uniform velocity  in the  system.

(b) Consider that the Hamiltonian is perturbed by addition of potential  which corresponds to the harmonic oscillator.
Then

Consider the transformed Hamiltonian

Hamilton’s equations of motion

give that

These two equations can be solved to give

which is the equation of a harmonic oscillator showing that  is harmonic of the form  where  are
constants of motion. Thus

The transformation equations then give

Hence the solution for the perturbed system is harmonic, which is to be expected since the potential has a quadratic
dependence of position.

Use of canonical perturbation theory in celestial mechanics has been exploited by Professor Alice Quillen and her group. They
combine use of action-angle variables and Hamilton-Jacobi theory to investigate the role of Lindblad resonance to planetary
motion, and also for stellar motion in galaxies. A Lindblad resonance is an orbital resonance in which the orbital period of a
celestial body is a simple multiple of some forcing frequency. Even for very weak perturbing forces, such resonance behavior
can lead to orbit capture and chaotic motion.

For planetary motion the planet masses are about  that of the central star, so the perturbations to Kepler orbits are small.
However, Lindblad resonance for planetary motion led to Saturn’s rings which result from perturbations produced by the
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moons of Saturn that skulpt and clear dust rings. Stellar orbits in disk galaxies are perturbed a few percent by non axially-
symmetric galactic features such as spiral arms or bars. Lindblad resonances perturb stellar motion and drive spiral density
waves at distances from the center of a galactic disk where the natural frequency of the radial component of a star’s orbital
velocity is close to the frequency of the fluctuations in the gravitational field due to passage through spiral arms or bars. If a
stars orbital speed around a galactic center is greater than that of the part of a spiral arm through which it is traversing, then an
inner Lindblad resonance occurs which speeds up the star’s orbital speed moving the orbit outwards. If the orbital speed is less
than that of a spiral arm, an inner Lindblad resonance occurs causing inward movement of the orbit.
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15.7: Symplectic Representation
The Hamilton’s first-order equations of motion are symmetric if the generalized and constraint force terms, in equation ,
are excluded.

This stimulated attempts to treat the canonical variables  in a symmetric form using group theory. Some graduate textbooks
in classical mechanics have adopted use of symplectic symmetry in order to unify the presentation of Hamiltonian mechanics. For a
system of  degrees of freedom, a column matrix  is constructed that has  elements where

Therefore the column matrix

The symplectic matrix  is defined as being a  by  skew-symmetric, orthogonal matrix that is broken into four  null or
unit matrices according to the scheme

where  is the -dimension null matrix, for which all elements are zero. Also  is the -dimensional unit matrix, for which the
diagonal matrix elements are unity and all off-diagonal matrix elements are zero. The  matrix accounts for the opposite signs used
in the equations for  and . The symplectic representation allows the Hamilton’s equations of motion to be written in the compact
form

This textbook does not use the elegant symplectic representation since this representation ignores the important generalized forces
and Lagrange multiplier forces.

This page titled 15.7: Symplectic Representation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

(15.1.9)

= − =q̇
∂H

∂p
ṗ
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15.8: Comparison of the Lagrangian and Hamiltonian Formulations

Common features

The discussion of Lagrangian and Hamiltonian dynamics has illustrated the power of such algebraic formulations. Both approaches
are based on application of variational principles to scalar energy which gives the freedom to concentrate solely on active forces
and to ignore internal forces. Both methods can handle manybody systems and exploit canonical transformations, which are
impractical or impossible using the vectorial Newtonian mechanics. These algebraic approaches simplify the calculation of the
motion for constrained systems by representing the vector force fields, as well as the corresponding equations of motion, in terms
of either the Lagrangian function  or the action functional  which are related by the definite integral

The Lagrangian function , and the action functional , are scalar functions under rotation, but they determine the
vector force fields and the corresponding equations of motion. Thus the use of rotationally-invariant functions  and 

 provide a simple representation of the vector force fields. This is analogous to the use of scalar potential fields  to
represent the electrostatic and gravitational vector force fields. Like scalar potential fields, Lagrangian and Hamiltonian mechanics
represents the observables as derivatives of  and , and the absolute values of  and  are
undefined; only differences in  and  are observable. For example, the generalized momenta are given by the
derivatives  and . The physical significance of the least action  is illustrated when the canonically

transformed momenta  is a constant. Then the generalized momenta and the Hamilton-Jacobi equation, imply that the total
time derivative of the action equals

The indefinite integral of this equation reproduces the definite integral  to within an arbitrary constant, i.e.

Lagrangian Formulation

Consider a system with  independent generalized coordinates, plus  constraint forces that are not required to be known. The
Lagrangian approach can reduce the system to a minimal system of  independent generalized coordinates leading to 

 second-order differential equations. By comparison, the Newtonian approach uses  unknowns. Alternatively, the
Lagrange multipliers approach allows determination of the holonomic constraint forces resulting in  second order
equations to determine  unknowns. The Lagrangian potential function is limited to conservative forces, but generalized
forces can be used to handle non-conservative and non-holonomic forces. The advantage of the Lagrange equations of motion is
that they can deal with any type of force, conservative or non-conservative, and they directly determine  rather than  which
then requires relating  to . The Lagrange approach is superior to the Hamiltonian approach if a numerical solution is required for
typical undergraduate problems in classical mechanics. However, Hamiltonian mechanics has a clear advantage for addressing
more profound and philosophical questions in physics.

Hamiltonian Formulation
For a system with  independent generalized coordinates, and  constraint forces, the Hamiltonian approach determines  first-
order differential equations. In contrast to Lagrangian mechanics, where the Lagrangian is a function of the coordinates and their
velocities, the Hamiltonian uses the variables  and , rather than velocity. The Hamiltonian has twice as many independent
variables as the Lagrangian which is a great advantage, not a disadvantage, since it broadens the realm of possible transformations
that can be used to simplify the solutions. Hamiltonian mechanics uses the conjugate coordinates , corresponding to phase
space. This is an advantage in most branches of physics and engineering. Compared to Lagrangian mechanics, Hamiltonian
mechanics has a significantly broader arsenal of powerful techniques that can be exploited to obtain an analytical solution of the
integrals of the motion for complicated systems. These techniques include, the Poisson bracket formulation, canonical
transformations, the Hamilton-Jacobi approach, the action-angle variables, and canonical perturbation theory. In addition,
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Hamiltonian dynamics provides a means of determining the unknown variables for which the solution assumes a soluble form, and
it is ideal for study of the fundamental underlying physics in applications to other fields such as quantum or statistical physics.
However, the Hamiltonian approach endemically assumes that the system is conservative putting it at a disadvantage with respect
to the Lagrangian approach. The appealing symmetry of the Hamiltonian equations, plus their ability to utilize canonical
transformations, makes it the formalism of choice for examination of system dynamics. For example, Hamilton-Jacobi theory,
action-angle variables and canonical perturbation theory are used extensively to solve complicated multibody orbit perturbations in
celestial mechanics by finding a canonical transformation that transforms the perturbed Hamiltonian to a solved unperturbed
Hamiltonian.

The Hamiltonian formalism features prominently in quantum mechanics since there are well established rules for transforming the
classical coordinates and momenta into linear operators used in quantum mechanics. The variables  used in Lagrangian
mechanics do not have simple analogs in quantum physics. As a consequence, the Poisson bracket formulation, and action-angle
variables of Hamiltonian mechanics played a key role in development of matrix mechanics by Heisenberg, Born, and Dirac, while
the Hamilton-Jacobi formulation played a key role in development of Schrödinger’s wave mechanics. Similarly, Hamiltonian
mechanics is the preeminent variational approached used in statistical mechanics.
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15.E: Advanced Hamiltonian Mechanics (Exercises)
1. Poisson brackets are a powerful means of elucidating when observables are constant of motion and whether two observables can
be simultaneously measured with unlimited precision. Consider a spherically symmetric Hamiltonian

for a mass  where  is a central potential. Use the Poisson bracket plus the time dependence to determine the following:

a. Does  commute with  and is it a constant of motion?

b. Does  commute with  and is it a constant of motion?
c. Does  commute with  and is it a constant of motion?
d. Does  commute with  and what does the result imply?

2. Consider the Poisson brackets for angular momentum 

a. Show , where the Levi-Cevita tensor is,

b. Show .
c. Show . The following identity may be useful: .
d. Show .

3. Consider the Hamiltonian of a two-dimensional harmonic oscillator,

What condition is satisfied if  a conserved quantity?

4. Consider the motion of a particle of mass  in an isotropic harmonic oscillator potential  and take the orbital plane to
be the  plane. The Hamiltonian is then

Introduce the three quantities

with . Use Poisson brackets to solve the following:

a. Show that  for  proving that  are constants of motion.
b. Show that

so that  have the same Poisson bracket relations as the components of a 3-dimensional angular momentum.
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5. Assume that the transformation equations between the two sets of coordinates  and  are

a. Assuming that  are canonical variables, i.e. , show directly from the above transformation equations that  are
canonical variables.

b. Show that the generating function that generates this transformation between the two sets of canonical variables is

6. Consider a bound two-body system comprising a mass  in an orbit at a distance  from a mass . The attractive central force
binding the two-body system is

where  is negative. Use Poisson brackets to prove that the eccentricity vector  is a conserved quantity.

7. Consider the case of a single mass m where the Hamiltonian .

a. Use the generating function  to solve the Hamilton-Jacobi equation with the canonical transformation 
and  and determine the equations relating the  variables to the transformed coordinate and momentum 

.
b. If there is a perturbing Hamiltonian , then  will not be constant. Express the transformed Hamiltonian  (using

the transformation given above in terms of , , and ). Solve for  and  and show that the perturbed solution 
,  is simple harmonic.
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15.S: Advanced Hamiltonian mechanics (Summary)
This chapter has gone beyond what is normally covered in an undergraduate course in classical mechanics, in order to illustrate the
power of the remarkable arsenal of methods available for solution of the equations of motion using Hamiltonian mechanics. This
has included the Poisson bracket representation of Hamiltonian formulation of mechanics, canonical transformations, Hamilton-
Jacobi theory, action-angle variables, and canonical perturbation theory. The purpose was to illustrate the power of variational
principles in Hamiltonian mechanics and how they relate to fields such as quantum mechanics and astronomy. The following are
the key points made in this chapter.

Poisson brackets:
The elegant and powerful Poisson bracket formalism of Hamiltonian mechanics was introduced. The Poisson bracket of any two
continuous functions of generalized coordinates  and , is defined to be

The fundamental Poisson brackets equal

The Poisson bracket is invariant to a canonical transformation from  to . That is

There is a one-to-one correspondence between the commutator and Poisson Bracket of two independent functions,

where  is an independent constant. In particular  commute of the Poisson Bracket .

Poisson Bracket representation of Hamiltonian mechanics:
It has been shown that the Poisson bracket formalism contains the Hamiltonian equations of motion and is invariant to canonical
transformations. Also this formalism extends Hamilton’s canonical equations to non-commuting canonical variables. Hamilton’s
equations of motion can be expressed directly in terms of the Poisson brackets

An important result is that the total time derivative of any operator is given by

Poisson brackets provide a powerful means of determining which observables are time independent and whether different
observables can be measured simultaneously with unlimited precision. It was shown that the Poisson bracket is invariant to
canonical transformations, which is a valuable feature for Hamiltonian mechanics. Poisson brackets were used to prove Liouville’s
theorem which plays an important role in the use of Hamiltonian phase space in statistical mechanics. The Poisson bracket is
equally applicable to continuous solutions in classical mechanics as well as discrete solutions in quantized systems.
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∂H

∂qk
(15.S.8)

= +{G,H}
dG

dt

∂G

∂t
(15.S.9)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14244?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/15%3A_Advanced_Hamiltonian_Mechanics/15.S%3A_Advanced_Hamiltonian_mechanics_(Summary)


15.S.2 https://phys.libretexts.org/@go/page/14244

Canonical transformations:
A transformation between a canonical set of variables  with Hamiltonian  to another set of canonical variable 

 with Hamiltonian  can be achieved using a generating functions  such that

Possible generating functions are summarized in the following table.

Generating function Generating function derivatives Trivial special case

Table 

If the canonical transformation makes  then the conjugate variables  are constants of motion. Similarly if 
 is a cyclic function then the corresponding  are constants of motion.

Hamilton-Jacobi theory:
Hamilton-Jacobi theory determines the generating function required to perform canonical transformations that leads to a powerful
method for obtaining the equations of motion for a system. The Hamilton-Jacobi theory uses the action function  as a
generating function, and the canonical momentum is given by

This can be used to replace  in the Hamiltonian  leading to the Hamilton-Jacobi equation

Solutions of the Hamilton-Jacobi equation were obtained by separation of variables. The close optical-mechanical analogy of the
Hamilton-Jacobi theory is an important advantage of this formalism that led to it playing a pivotal role in the development of wave
mechanics by Schrödinger.

Action-angle variables:
The action-angle variables exploits a canonical transformation from  where

For periodic motion the phase-space trajectory is closed with area given by  and this area is conserved for the above canonical
transformation. For a conserved Hamiltonian the action variable  is independent of the angle variable . The time dependence of
the angle variable  directly determines the frequency of the periodic motion without recourse to calculation of the detailed
trajectory of the periodic motion.

Canonical perturbation theory:

Canonical perturbation theory is a valuable method of handling multibody interactions. The adiabatic invariance of the action-angle
variables provides a powerful approach for exploiting canonical perturbation theory.
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Comparison of Lagrangian and Hamiltonian formulations:
The remarkable power, and intellectual beauty, provided by use of variational principles to exploit the underlying principles of
natural economy in nature, has had a long and rich history. It has led to profound developments in many branches of theoretical
physics. However, it is noted that although the above algebraic formulations of classical mechanics have been used for over two
centuries, the important limitations of these algebraic formulations to non-linear systems remain a challenge that still is being
addressed.

It has been shown that the Lagrangian and Hamiltonian formulations represent the vector force fields, and the corresponding
equations of motion, in terms of the Lagrangian function , or the action functional , which are scalars under
rotation. The Lagrangian function  is related to the action functional  by

These functions are analogous to electric potential, in that the observables are derived by taking derivatives of the Lagrangian
function  or the action functional . The Lagrangian formulation is more convenient for deriving the equations
of motion for simple mechanical systems. The Hamiltonian formulation has a greater arsenal of techniques for solving complicated
problems plus it uses the canonical variables  which are the variables of choice for applications to quantum mechanics and
statistical mechanics.
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16.1: Introduction
Lagrangian and Hamiltonian mechanics have been used to determine the equations of motion for discrete systems having a finite
number of discrete variables  where . There are important classes of systems where it is more convenient to treat the
system as being continuous. For example, the interatomic spacing in solids is a few  which is negligible compared with the
size of typical macroscopic, three-dimensional solid objects. As a consequence, for wavelengths much greater than the atomic
spacing in solids, it is useful to treat macroscopic crystalline lattice systems as continuous three-dimensional uniform solids, rather
than as three-dimensional discrete lattice chains. Fluid and gas dynamics are other examples of continuous mechanical systems.
Another important class of continuous systems involves the theory of fields, such as electromagnetic fields. Lagrangian and
Hamiltonian mechanics of the continua extend classical mechanics into the advanced topic of field theory. This chapter goes
beyond the scope of a typical undergraduate classical mechanics course in order to provide a brief glimpse of how Lagrangian and
Hamiltonian mechanics can underlie advanced and important aspects of the mechanics of the continua, including field theory.

Figure : Rubber bands are one type of elastic solid that can be described with continuous formalism. (CC BY-SA 3.0; Bill
Ebbesen)
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16.2: The Continuous Uniform Linear Chain
The Lagrangian for the discrete lattice chain, for longitudinal modes, is given by equation  to be

where the  masses are attached in series to  identical springs of length  and spring constant . Assume that the spring has a
uniform cross-section area  and length . Then each spring volume element  has a mass , that is, the volume mass
density  or . Chapter  will show that the spring constant  where  is Young’s modulus,  is the
cross sectional area of the chain element, and  is the length of the element. Then the spring constant can be written as .
Therefore Equation  can be expressed as a sum over volume elements 

In the limit that  and the spacing , then the summation in Equation  can be written as a volume integral
where  is the distance along the linear chain and the volume element . Then the Lagrangian can be written as the
integral over the volume element  rather than a summation over . That is,

The discrete-chain coordinate  is assumed to be a continuous function  for the uniform chain. Thus the integral form of
the Lagrangian can be expressed as

where the function  is called the Lagrangian density defined by

The variable  in the Lagrangian density is not a generalized coordinate; it only serves the role of a continuous index played
previously by the index . For the discrete case, each value of  defined a different generalized coordinate . Now for each value
of  there is a continuous function  which is a function of both position and time.

Lagrange’s equations of motion applied to the continuous Lagrangian in Equation  gives

This is the familiar wave equation in one dimension for a longitudinal wave on the continuous chain with a phase velocity

The continuous linear chain also can exhibit transverse modes which have a Lagrangian density were the Young’s modulus  is
replaced by the tension  in the chain, and  is replaced by the linear mass density  of the chain, leading to a phase velocity for a
transverse wave .

This page titled 16.2: The Continuous Uniform Linear Chain is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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16.3: The Lagrangian density formulation for continuous systems

One spatial dimension

In general the Lagrangian density can be a function of , and . It is of interest that Hamilton’s principle leads to a
set of partial differential equations of motion, based on the Lagrangian density, that are analogous to the Lagrange equations of
motion for discrete systems. When deriving the Lagrangian equations of motion in terms of the Lagrangian density using
Hamilton’s principle, the notation is simplified if the system is limited to one spatial coordinate . In addition, it is convenient to
use the compact notation where the spatial derivative is written  and the time derivative is , and the one-

dimensional Lagrangian density is assumed to be a function . The appearance of the derivative  as an
argument of the Lagrange density is a consequence of the continuous dependence of  on . In principle, higher-order derivatives
could occur but they do not arise in most problems of physical interest.

Assuming that the one spatial dimension is , then Hamilton’s principle of least action can be expressed in terms of the Lagrangian
density as

Following the same approach used in chapter , it is assumed that the stationary path for the action integral is described by the
function . Define a neighboring function using a parametric representation  such that when , the extremum
function  yields the stationary action integral .

Assume that an infinitessimal fraction  of a neighboring function  is added to the extremum path . That is, assume

where it is assumed that both the extremum function  and the auxiliary function  are well behaved functions of  and 
, with continuous first derivatives, and that  at  and  because, for all possible paths, the function 

 must be identical with  at the end points of the path, i.e. .

A parametric family of curves , as a function of the admixture coefficient , is described by the function

Then Hamilton’s principle requires that the action integral be a stationary function value for , that is,  is independent of 
which is satisfied if

Equations , ,and  give the partial differentials

Integration by parts in both the  and  terms in Equation , plus using the fact that  at both end
points, yields
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Therefore Hamilton’s principle, Equation  becomes

Since the auxiliary function  is arbitrary, then the integrand term in the square brackets of Equation  must equal zero.
That is,

Equation  gives the equations of motion in terms of the Lagrangian density that has been derived based on Hamilton’s
principle.

Three spatial dimensions
Equation  expresses the Lagrangian as an integral of the Lagrangian density over a single continuous index  where
the Lagrangian density is a function . The derivation of the Lagrangian equations of motion in terms of the
Lagrangian density for three spatial dimensions involves the straightforward addition of the , and  coordinates. That is, in three
dimensions the vector displacement is expressed by the vector  and the Lagrangian density is related to the Lagrangian
by integration over three dimensions. That is, they are related by the equation

where, in cartesian coordinates, the volume element . The Lagrangian density is a function 
where the one field quantity  has been extended to a spatial vector  and the spatial derivatives  have been
transformed into . Applying the method used for the one-dimensional spatial system, to the three-dimensional system, leads
to the following set of equations of motion

where the  spatial derivatives have been written explicitly for clarity.

Note that the equations of motion, Equation , treat the spatial and time coordinates symmetrically. This symmetry between
space and time is unchanged by multiplying the spatial and time coordinate by arbitrary numerical factors. This suggests the
possibility of introducing a four-dimensional coordinate system

where the parameter  is freely chosen. Using this 4-dimensional formalism allows Equation  to be written more compactly
as

As discussed in chapter , relativistic mechanics treats time and space symmetrically, that is, a four-dimensional vector 
 can be used that treats time and the three spatial dimensions symmetrically and equally. This four-dimensional space-

time formulation allows the first four terms in Equation  to be condensed into a single term which illustrates the symmetry
underlying Equation . If the Lagrangian density is Lorentz invariant, and if , then Equation  is covariant.
Thus the Lagrangian density formulation is ideally suited to the development of relativistically covariant descriptions of fields.

dt = − ( ) dt∫
t2

t1

∂L

∂q̇

∂q̇

∂ϵ
∫

t2

t1

∂

∂t

∂L

∂q̇

∂q

∂ϵ
(16.3.10)

dx = − ( ) dx∫
x2

x1

∂L

∂q ′

∂q ′

∂ϵ
∫

x2

x1

∂

∂x

∂L

∂q ′

∂q

∂ϵ
(16.3.11)

16.3.6

= [ − ( )− ( )]η(x, t)dxdt = 0
∂S(ϵ)

∂ϵ
∫

t2

t1

∫
x2

x1

∂L

∂q

∂

∂t

∂L

∂q̇

∂

∂x

∂L

∂q ′
(16.3.12)

η(x, t) 16.3.12

( )+ ( )− = 0
∂

∂t

∂L

∂q̇

∂

∂x

∂L

∂q ′

∂L

∂q
(16.3.13)

16.3.13

(16.2.4) q(x, t)

L(q, , , x, t)
dq

dt

dq

dx

y z

q(x, y, z, t)

L = ∫ L(q, , ∇ ⋅ q, x, y, z, t)dτ
dq

dt
(16.3.14)

dτ = dxdydz L(q, , ∇ ⋅ q, x, y, z, t)
dq

dt

q(x, t) q(x, y, z, t) q ′

∇ ⋅ q

+ + + − = 0
∂

∂t

⎛

⎝

∂L

∂q

∂t

⎞

⎠

∂

∂x

⎛

⎝

∂L

∂q

∂x

⎞

⎠

∂

∂y

⎛

⎝
⎜

∂L

∂q

∂y

⎞

⎠
⎟

∂

∂z

⎛

⎝

∂L

∂q

∂z

⎞

⎠

∂L

∂q
(16.3.15)

x, y, z

16.3.15

≡ {x, y, z,αt}ϕu

α 16.3.15

− = 0∑
μ

4 ∂

∂ϕu

⎛

⎝
⎜

∂L

∂q

∂ϕu

⎞

⎠
⎟

∂L

∂q
(16.3.16)

17

q(x, y, z, t)

16.3.15

16.3.16 α = ic 16.3.16

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9658?pdf


16.3.3 https://phys.libretexts.org/@go/page/9658

This page titled 16.3: The Lagrangian density formulation for continuous systems is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9658?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/16%3A_Analytical_Formulations_for_Continuous_Systems/16.03%3A_The_Lagrangian_density_formulation_for_continuous_systems
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/


16.4.1 https://phys.libretexts.org/@go/page/9659

16.4: The Hamiltonian density formulation for continuous systems
Chapter  illustrated, in general terms, how field theory can be expressed in a Lagrangian formulation via use of the Lagrange
density. It is equally possible to obtain a Hamiltonian formulation for continuous systems analogous to that obtained for discrete
systems. As summarized in chapter , the Hamiltonian and Hamilton’s canonical equations of motion are related directly to the
Lagrangian by use of a Legendre transformation. The Hamiltonian is defined as being

The generalized momentum is defined to be

Equation  allows the Hamiltonian  to be written in terms of the conjugate momenta as

where the Lagrangian has been partitioned into the terms for each of the individual coordinates, that is, 
.

In the limit that the coordinates  are continuous, then the summation in Equation  can be transformed into a volume
integral over the Lagrangian density . In addition, a momentum density can be represented by the vector field  where

Then the obvious definition of the Hamiltonian density  is

where the Hamiltonian density is defined to be

Unfortunately the Hamiltonian density formulation does not treat space and time symmetrically making it more difficult to develop
relativistically covariant descriptions of fields. Hamilton’s principle can be used to derive the Hamilton equations of motion in
terms of the Hamiltonian density analogous to the approach used to derive the Lagrangian density equations of motion. As
described in Classical Mechanics  edition by Goldstein, the resultant Hamilton equations of motion for one dimension are

Note that Equation  differs from that for discontinuous systems.
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16.5: Linear Elastic Solids
Elasticity is a property of matter where the atomic forces in matter act to restore the shape of a solid when distorted due to the
application of external forces. A perfectly elastic material returns to its original shape if the external force producing the
deformation is removed. Materials are elastic when the external forces do not exceed the elastic limit. Above the elastic limit,
solids can exhibit plastic flow and concomitant heat dissipation. Such non-elastic behavior in solids occurs when they are subject to
strong external forces.

The discussion of linear systems, in chapters  and , focussed on one dimensional systems, such as the linear chain, where the
transverse rigidity of the chain was ignored. An extension of the one-dimensional linear chain to two-dimensional membranes, such
as a drum skin, is straightforward if the membrane is thin enough so that the rigidity of the membrane can be ignored. Elasticity for
three-dimensional solids requires accounting for the strong elastic forces exerted against any change in shape in addition to elastic
forces opposing change in volume. The stiffness of solids to changes in shape, or volume, is best represented using the concepts of
stress and strain.

Forces in matter can be divided into two classes;

1. body forces, such as gravity, which act on each volume element, and
2. surface forces which are the forces that act on both sides of any infinitessimal surface element inside the solid.

Surface forces can have components along the normal to the infinitessimal surface, as well as shear components in the plane of the
surface element. Typically solids are elastic to both normal and shear components of the surface forces whereas shear forces in
liquids and gases lead to fluid flow plus viscous forces due to energy dissipation. As described below, the forces acting on an
infinitessimal surface element are best expressed in terms of the stress tensor, while the relative distortion of the shape, or volume,
of the body are best expressed in terms of the strain tensor. The moduli of elasticity relate the ratio of the corresponding stress and
strain tensors. The moduli of elasticity are constant in linear elastic solids and thus the stress is proportional to the strain providing
that the strains do not exceed the elastic limit.

Stress tensor

Consider an infinitessimal surface area  of an arbitrary closed volume element  inside the medium. The surface area element
is defined as a vector  where  is the outward normal to the closed surface that encloses the volume element. Assume
that  is the force element exerted by the outside on the material inside the volume element. The stress tensor  is defined as the
ratio of  and  where the force vector  is given by the inner product of the stress tensor  and the surface element vector 

. That is,

Since both  and  are vectors, then Equation  implies that the stress tensor must be a second-rank tensor as described in
appendix , that is, the stress tensor is analogous to the rotation matrix or the inertia tensor. Note that if  and  are
colinear, then the stress tensor  reduces to the conventional pressure . The general stress tensor equals the momentum flux
density and has the dimensions of pressure.

Strain tensor

Forces applied to a solid body can lead to translational, or rotational acceleration, in addition to changing the shape or volume of
the body. Elastic forces do not act when an overall displacement  of an infinitessimal volume occurs, such as is involved in
translational or rotational motion. Elastic forces act to oppose position-dependent differences in the displacement vector , that is,
the strain depends on the tensor product . For an elastic medium, the strain depends only on the applied stress and not on the
prior loading history.

Consider that the matter at the location  is subject to an elastic displacement , and similarly at a displaced location 
 where  are cartesian coordinates. The net relative displacement between  and  is given by

Ignoring the second order term  equation gives that the  component of  is

3 14
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Define the elements of the strain tensor to be given by

then

Thus the strain tensor  is a rank-2 tensor defined as the ratio of the strain vector  and the infinitessimal area vector .

where the component form of the rank -2 strain tensor is

The potential-energy density for linear elastic forces is quadratic in the strain components. That is, it is of the form

where  is a rank-4 tensor. No preferential directions remain for a homogeneous isotropic elastic body which allows for two
contractions, thereby reducing the potential energy density to the inner product

Moduli of elasticity
The modulus of elasticity of a body is defined to be the slope of the stress-strain curve and thus, in principle, it is a complicated
rank-4 tensor that characterizes the elastic properties of a material. Thus the general theory of elasticity is complicated because the
elastic properties depend on the orientation of the microscopic composition of the elastic matter. The theory simplifies considerably
for homogeneous, isotropic linear materials below the elastic limit, where the strain is proportional to the applied stress. That is, the
modulus of elasticity then reduces by contractions to a constant scalar value that depends on the properties of the matter involved.

The potential energy density for homogeneous, isotropic, linear material, Equation , can be separated into diagonal and off-
diagonal components of the strain tensor. That is,

The diagonal first term is the dilation term which corresponds to changes in the volume with no changes in shape. The off-diagonal
second term involves the shear terms that correspond to changes of the shape of the body that also changes the volume. The
constants  and  are Lamé’s moduli of elasticity which are positive. The various moduli of elasticity, corresponding to different
distortions in the shape and volume of any solid body, can be derived from Lamé’s moduli for the material.

The components of the elastic forces can be derived from the gradient of the elastic potential energy, Equation  by use of
Gauss’ law plus vector differential calculus. The components of the elastic force, derived from the strain tensor , can be
associated with the corresponding components of the stress tensor . Thus, for homogeneous isotropic linear materials, the
components of the stress tensor are related to the strain tensor by the relation

d = ( + ) d dξi ∑
k

1

2

dξi

dxk

dξk

dxi
xi xk (16.5.3)

= ( + )σik
1

2

dξi

dxk

dξk

dxi
(16.5.4)

d = d dξi ∑
k

σik xi xk (16.5.5)

σ ξ dA

dξ = σ ⋅ dA (16.5.6)
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1
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∣

∣
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∣
∣
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dx1
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dx3
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dx3

dξ3

dx3

∣

∣
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∣
∣
∣
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U =∑
ijkl

1

2
Cijklσijσkl (16.5.8)

Cijkl

U = (∑
ik

1

2
Dik σik)2 (16.5.9)

16.5.9

U = [λ ( +2μ ( ]
1

2
∑
i

σii)
2 ∑

ik
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where it has been assumed that . The two moduli of elasticity  and  are material-dependent constants. Equation 
can be written in tensor notation as

where  is the trace of the strain tensor and  is the identity matrix.

Equation  can be inverted to give the strain tensor components in terms of the stress tensor components.

The various moduli of elasticity relate combinations of different stress and strain tensor components. The following five elastic
moduli are used frequently to describe elasticity in homogeneous isotropic media, and all are related to Lamé’s two moduli of
elasticity.

1) Young’s modulus  describes tensile elasticity which is axial stiffness of the length of a body to deformation along the axis of
the applied tensile force.

2) Bulk modulus  defines the relative dilation or compression of a bodies volume to pressure applied uniformly in all
directions.

The bulk modulus is an extension of Young’s modulus to three dimensions and typically is larger than . The inverse of the bulk
modulus is called the compressibility of the material.

3) Shear modulus  describes the shear stiffness of a body to volume-preserving shear deformations. The shear strain  becomes a
deformation angle given by the ratio of the displacement along the axis of the shear force and the perpendicular moment arm. The
shear modulus  equals Lamé’s constant . That is,

4) Poisson’s ratio  is the negative ratio of the transverse to axial strain. It is a measure of the volume conserving tendency of a
body to contract in the directions perpendicular to the axis along which it is stretched. In terms of Lamé’s constants, Poisson’s ratio
equals

Note that for a stable, isotropic elastic material, Poisson’s ratio is bounded between  to ensure that the ,  and 
moduli have positive values. At the incompressible limit, , and the bulk modulus and Lame parameter  are infinite, that is,
the compressibility is zero. Typical solids have Poisson’s ratios of  if hard and  if soft.

The stiffness of elastic solids in terms of the elastic moduli of solids can be complicated due to the geometry and composition of
solid bodies. Often it is more convenient to express the stiffness in terms of the spring constant  where

The spring constant is inversely proportional to the length of the spring because the strain of the material is defined to be the
fractional deformation, not the absolute deformation.

= λ +μ( + ) = λ +2μTij δij∑
k

∂ξk

∂xk

dξi

dxj

dξj

dxi
δij∑

k

σkk σij (16.5.11)

=σij σji λ μ 16.5.11

T = λtr(σ)I +2μσ (16.5.12)

tr(σ) I

16.5.12

= [ − ]σij
1

2μ
Tij

λ

(3λ+2μ)
∑
k

Tkkδij (16.5.13)

E

E ≡ =
T11

σ11

μ(3λ+2μ)

(λ+μ)
(16.5.14)

B = ΔV

V

B = λ+ μ
2

3
(16.5.15)

E

G σ

G μ

G= μ (16.5.16)

ν

ν =
λ

2(λ+μ)
(16.5.17)
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κ
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16.5.4 Equations of motion in a uniform elastic media
The divergence theorem  relates the volume integral of the divergence of  to the vector force density  acting on the closed
surface.

That is, the inner product of the del operator, , and the rank-2 stress tensor , give the vector force density . This force acting

on the enclosed mass , for the closed volume, leads to an acceleration . Thus

Use Equation  to relate the stress tensor  to the moduli of elasticity gives

where . In general this equation is difficult to solve. However, for the simple case of a plane wave in the  direction,
the problem reduces to the following three equations

Equation  corresponds to a longitudinal wave travelling with velocity . Equations , 

correspond to two perpendicular transverse waves travelling with velocity . This illustrates the important fact that

longitudinal waves travel faster than transverse waves in an elastic solid. Seismic waves in the Earth, generated by earthquakes,
exhibit this property. Note that shearing stresses do not exist in ideal liquids and gases since they cannot maintain shear forces and
thus .

This page titled 16.5: Linear Elastic Solids is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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16.6: Electromagnetic Field Theory

Maxwell stress tensor

Analytical formulations for continuous systems, developed for describing elasticity, are generally applicable when applied to other
fields, such as the electromagnetic field. The use of the Maxwell’s stress tensor , to describe momentum in the electromagnetic
field, is an important example of the application of continuum mechanics in field theory.

The Lorentz force can be written as

where the force density  is defined to be

Maxwell’s equations

can be used to eliminate the charge and current densities in Equation 

Vector calculus gives that

while Faraday’s law gives

Equation  allows Equation  to be rewritten as

Equation  can be inserted into Equation . In addition, a term  can be added since  which
allows equation 16.60 to be written in the symmetric form

Using the vector identity

Let , then

That is

Similarly

T

F = ∫ ρ(E +v ×B)dτ = ∫ (ρE +J ×B)dτ = ∫ fdτ (16.6.1)

f

f = (ρE +J ×B) (16.6.2)

ρ = ∇ ⋅ E J = ∇ ×B −ϵ0
1

μ0
ϵ0

∂E

∂t
(16.6.3)

16.6.1

f = (∇ ⋅ E)E +( ∇ ×B − )×Bϵ0
1

μ0
ϵ0

∂E

∂t
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(E ×B) = ×B +E ×
∂

∂t

∂E

∂t

∂B

∂t
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= −∇ ×E
∂B

∂t
(16.6.6)
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1
μ0

∇ ⋅ B = 0
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Inserting equations  and  into Equation  gives

This complicated formula can be simplified by defining the rank-2 Maxwell stress tensor  which has components

The inner product of the del operator and the Maxwell stress tensor is a vector with  components of

The above definition of the Maxwell stress tensor, plus the Poynting vector , allows the force density Equation 
 to be written in the form

The divergence theorem allows the total force, acting of the volume , to be written in the form

Note that, if the Poynting vector is time independent, then the second term in Equation  is zero and the Maxwell stress
tensor  is the force per unit area, (stress) acting on the surface. The fact that  is a rank-2 tensor is apparent since the stress
represents the ratio of the force-density vector  and the infinitessimal area vector , which do not necessarily point in the same
directions.

Momentum in the electromagnetic field
Chapter  showed that the electromagnetic field carries a linear momentum  where  is the charge on a body and  is the
electromagnetic vector potential. It is useful to use the Maxwell stress tensor to express the momentum density directly in terms of
the electric and magnetic fields.

Newton’s law of motion can be used to write equation Equation  as

where  is the total mechanical linear momentum of the volume . Equation  implies that the electromagnetic field carries
a linear momentum

The  term in Equation  is the momentum per unit time flowing into the closed surface. In field theory it can be
useful to describe the behavior in terms of the momentum flux density . Thus the momentum flux density  in the
electromagnetic field is

Then Equation  implies that the total momentum flux density  is related to Maxwell’s stress tensor by

B ×(∇ ×B) = ∇( ) −(B ⋅ ∇)B
1

2
B2 (16.6.13)

16.6.12 16.6.13 16.6.9
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2
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That is, like the elasticity stress tensor, the divergence of Maxwell’s stress tensor  equals the rate of change of the total
momentum density, that is,  is the momentum flux density.

This discussion of the Maxwell stress tensor and its relation to momentum in the electromagnetic field illustrates the role that
analytical formulations of classical mechanics can play in field theory

This page titled 16.6: Electromagnetic Field Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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16.7: Ideal Fluid Dynamics
The distinction between a solid and a fluid is that a fluid flows under shear stress whereas the elasticity of solids oppose distortion
and flow. Shear stress in a fluid is opposed by dissipative viscous forces, which depend on velocity, as opposed to elastic solids
where the shear stress is opposed by the elastic forces which depend on the displacement. An ideal fluid is one where the viscous
forces are negligible, and thus the shear stress Lamé parameter .

Continuity Equation
Fluid dynamics requires a different philosophical approach than that used to describe the motion of an ensemble of known solid
bodies. The prior discussions of classical mechanics used, as variables, the coordinates of each member of an ensemble of particles
with known masses. This approach is not viable for fluids which involve an enormous number of individual atoms as the
fundamental bodies of the fluid. The best philosophical approach for describing fluid dynamics is to employ continuum mechanics
using definite fixed volume elements  and describe the fluid in terms of macroscopic variables of the fluid such as mass density 

, pressure , and fluid velocity .

Conservation of fluid mass requires that the rate of change of mass in a fixed volume must equal the net inflow of mass.

Using the divergence theorem  allows this to be written as

Mass conservation must hold for any arbitrary volume, therefore the continuity equation can be written in the differential form

Euler’s hydrodynamic equation

The fluid surrounding a volume  exerts a net force  that equals the surface integral of the pressure . This force can be
transformed to a volume integral of . The net force then will lead to an acceleration of the volume element. That is

Thus the force density  is given by

Note that the acceleration  in Equation  refers to the rate of change of velocity for individual atoms in the fluid, not the
rate of change of fluid velocity at a fixed point in space. These two accelerations are related by noting that, during the time , the
change in velocity  of a given fluid particle is composed of two parts, namely

1. the change during  in the velocity at a fixed point in space, and
2. the difference between the velocities at that same instant in time at two points displaced a distance  apart, where  is the

distance moved by a given fluid particle during the time .

The first part is given by  at a given point  in space. The second part equals

Thus

Divide both sides by  gives that the acceleration of the atoms in the fluid equals

μ = 0

dτ

ρ P v

ρdτ +∮ ρv ⋅ da = 0
d

dt
∫
τ

(16.7.1)

(H2)

( +∇ ⋅ (ρv)) dτ = 0∫
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∂ρ

∂t
(16.7.2)

+∇ ⋅ (ρv) = 0
∂ρ
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(16.7.3)
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F = −∮ Pda = −∫ ∇Pdτ = ∫ ρ dτ
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(16.7.4)

f
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Substitute Equation  into  gives

This is Euler’s equation for hydrodynamics. The two terms on the left represent the acceleration in the individual fluid components
while the right-hand side lists the force density producing the acceleration.

Additional forces can be added to the right-hand side. For example, the gravitational force density  can be expressed in terms of
the gravitational scalar potential  to be

Inclusion of the gravitational field force density in Euler’s equation gives

Irrotational flow and Bernoulli’s equation

Streamlined flow corresponds to irrotational flow, that is, . Since irrotational flow is curl free, the velocity streamlines
can be represented by a scalar potential field . That is

This scalar potential field  can be used to derive the vector velocity field for irrotational flow.

Note that the  term in Euler’s Equation  can be rewritten using the vector identity

Inserting Equation  into Euler’s Equation  then gives.

Potential flow corresponds to time independent irrotational flow, that is, both  and . For potential flow Equation
 reduces to

which implies that

This is the famous Bernoulli’s equation that relates the interplay of the fluid velocity, pressure and gravitational energy. Bernoulli’s
equation plays important roles in both hydrodynamics and aerodynamics.

Gas flow

Fluid dynamics applied to gases is a straightforward extension of fluid dynamics that employs standard thermodynamical concepts.
The following example illustrates the application of fluid mechanics for calculating the velocity of sound in a gas.

Propagation of acoustic waves in a gas provides an example of using the three-dimensional Lagrangian density. Only
longitudinal waves occur in a gas and the velocity is given by thermodynamics of the gas. Let the displacement of each gas
molecule be designated by the general coordinate  with corresponding velocity . Let the gas density be , then the kinetic
energy density  of an infinitessimal volume of gas  is given by

= +(v ⋅ ∇)v
dv

dt

∂v

∂t
(16.7.8)

16.7.8 16.7.5

+(v ⋅ ∇)v = − ∇P
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1
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V

ρg = −ρ∇V (16.7.10)

+(v ⋅ ∇)v = − ∇(P +ρV )
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∂t

1

ρ
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∇ ×v = 0

ϕ

v = −∇ϕ (16.7.12)

ϕ

(v ⋅ ∇)v 16.7.11

(v ⋅ ∇)v = ∇( ) −v ×∇ ×v
1

2
v2 (16.7.13)

16.7.13 16.7.11

= v ×∇ ×v − ∇( ρ +P +ρV)
∂v

∂t

1

ρ

1

2
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= 0∂v

∂t
∇ ×v = 0

16.7.14

∇( ρ +P +ρV) = 0
1

2
v2
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1

2
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Example : Acoustic Waves in a Gas16.7.1
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The rapid contractions and expansions of the gas in an acoustic wave occur adiabatically such that the product  is a
constant, where

Therefore the change in potential energy density  is given to second order by

Since the volume and density are related by

then the fractional change in the density  is related to the density by

This implies that the potential energy density  is given by

The mass flowing out of the volume  must equal the fractional change in density of the volume, that is

The divergence theorem gives that

Thus the density  is given by minus the divergence of 

This allows the potential energy density to be written as

Combining the kinetic energy density and the potential energy density gives the complete Lagrangian density for an acoustic
wave in a gas to be

Inserting this Lagrangian density in the corresponding equations of motion, equation , gives that

where  and  are the ambient pressure and density of the gas. This is the wave equation where the phase velocity of sound
is given by
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16.8: Viscous Fluid Dynamics
Viscous fluid dynamics is a branch of classical mechanics that plays a pivotal role in a wide range of aspects of life, such as blood
flow in human anatomy, weather, hydraulic engineering, and transportation by land, sea, and air. Viscous fluid flow provides
natures most common manifestation of nonlinearity and turbulence in classical mechanics, and provides an excellent illustration of
possible solutions of non-linear equations of motion introduced in chapter . A detailed description of turbulence remains a
challenging problem and this subject has the reputation of being the last great unsolved problem in classical mechanics. There is an
apocryphal story that Werner Heisenberg was asked, if given the opportunity, what would he like to ask God. His reply was “When
I meet God, I am going to ask him two questions: Why relativity? and why turbulence?, I really believe he will only have an
answer to the first”.

In contrast to solids, fluids do not have elastic restoring forces to support shear stress because the fluid flows. Shear stresses in
fluids are balance by viscous forces which are velocity dependent. There are two mechanisms that lead to shear stress acting
between adjacent fluid layers in relative motion. The first mechanism involves laminar flow where the viscous forces produce shear
stress between adjacent layers of the fluid which are moving parallel along adjacent streamlines at differing velocities. Viscous
forces typically dominate laminar flow. High viscosity fluids like honey exhibit laminar flow and are more difficult to stir or pour
compared with low-viscosity fluids like water. The second mechanism involves turbulent flow where shear stress is due to
momentum transfer between adjacent layers when the flow breaks up into large-scale coherent vortex structures which carry most
of the kinetic energy. These eddies lead to transverse motion that transfers momentum plus heat between adjacent layers and leads
to higher drag. The wing-tip vortex produced by the wing tip of an aircraft is an example of a dynamically-distinct, large-scale,
coherent vortex structure which has considerable angular momentum and decays by fragmentation into a cascade of smaller scale
structures.

Navier-Stokes equation
Viscous forces acting on the small-scale coherent structures eventually dissipate the energy in turbulent motion. The viscous drag
can be handled in terms of a stress tensor  analogous to its use when accounting for the elastic restoring forces in elasticity as
discussed in chapter . That is, the viscous force density is related to the deceleration of the volume element by

where the components of the stress tensor are

Note that the stress tensor gives the momentum flux density tensor, which involves a diagonal term proportional to pressure , plus
a viscous drag term that is is proportional to the product of two velocities.

The Navier-Stokes equations are the fundamental equations characterizing fluid flow. They are based on application of Newton’s
second law of motion to fluids together with the assumption that the fluid stress is the sum of a diffusing viscous term plus a
pressure term. Combining Euler’s equation, , with  gives the Navier-Stokes equation

where  is the fluid density,  is the flow velocity vector,  the pressure,  is the shear stress tensor viscous drag term, and 
represents external body forces per unit volume such as gravity acting on the fluid. For incompressible flow the stress tensor term
simplifies to . Then the Navier-Stokes equation simplifies to

where  is the viscosity drag term. The left-hand side of Equation  represents the rate of change of momentum per unit
volume while the right-hand side represents the summation of the forces per unit volume that are acting.

The Navier-Stokes equations are nonlinear due to the  term as well as being a function of velocity. This non-linearity
leads to a wide spectrum of dynamic behavior ranging from ordered laminar flow to chaotic turbulence. Numerical solution of the
Navier-Stokes equations is extremely difficult because of the wide dynamic range of the dimensions of the coherent structures
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involved in turbulent motion. For example, simulation calculations require use of a high resolution mesh which is a challenge to the
capabilities of current generation computers.

The microscopic boundary condition at the interface of the solid and fluid is that the fluid molecules have zero average tangential
velocity relative to the normal to the solid-fluid interface. This implies that there is a boundary layer for which there is a gradient in
the tangential velocity of the fluid between the solid-fluid interface and the free-steam velocity. This velocity gradient produces
vorticity in the fluid. When the viscous forces are negligible then the angular momentum in any coherent vortex structure is
conserved leading to the vortex motion being preserved as it propagates.

Reynolds number

Fluid flow can be characterized by the Reynolds number Re which is a dimensionless number that is a measure of the ratio of the
inertial forces  to viscous forces . That is,

where  is the relative velocity between the free fluid flow and the solid surface,  is a characteristic linear dimension,  is the
dynamic viscosity of the fluid,  is the kinematic viscosity , and  is the density of the fluid. The Law of Similarity implies
that at a given Reynolds number, for a specific shaped solid body, the fluid flow behaves identically independent of the size of the
body. Thus one can use small models in wind tunnels, or water-flow tanks, to accurately model fluid flow that can be scaled up to a
full-sized aircraft or boats by scaling  and  to give the same Reynolds number.

Laminar and turbulent fluid flow

Fluid flow over a cylinder illustrates the general features of fluid flow. The drag force  acting on a cylinder of diameter  and
length , with the cylindrical axis perpendicular to the fluid flow, is given by

where  is the coefficient of drag. Figure  shows the dependence of the drag coefficient  as a function of the
Reynolds number, for fluid flow that is transverse to a smooth circular cylinder. The lower part of Figure  shows the
streamlines for flow around the cylinder at various Reynolds numbers for the points identified by the letters , , , , and  on
the plot of the drag coefficient versus Reynolds number for a smooth cylinder.
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Figure : Upper: The dependence of the coefficient of drag  on Reynolds number Re for fluid flow perpendicular to a
smooth circular cylinder of diameter  and length . Lower: Typical flow patterns for flow past a circular cylinder at various
Reynolds numbers as indicated in the upper figure.

A) At low velocities, where Re , the flow is laminar around the cylinder in that the low vorticity is damped by the viscous
forces and the  term in Equation  can be ignored. The coefficient of drag  varies inversely with Re leading to the drag
forces that are roughly linear with velocity as described in chapter . The size and velocities of raindrops in a light rain
shower correspond to such Reynolds numbers.

B) For  the flow has two turbulent vortices immediately behind the body in the wake of the cylinder, but the flow
still is primarily laminar as illustrated.

C) For  the pair of vortices peel off alternately producing a regular periodic sequence of vortices although the flow
still is laminar. This vortex sheet is called a von Kármán vortex sheet for which the velocity at a given position, relative to the
cylinder, is time dependent in contrast to the situation at lower Reynolds numbers.

D) For  viscous forces are negligible relative to the inertial effects of the vortices and boundary-layer vortices
have less time to diffuse into the larger region of the fluid, thus the boundary layer is thinner. The boundary-layer flow exhibits a
small scale chaotic turbulence in three dimensions superimposed on regular alternating vortex structures. In this range  is
roughly constant and thus the drag forces are proportional to the square of the velocity. This regime of Reynold numbers
corresponds to typical velocities of moving automobiles.

E) For Re , which is typical of a flying aircraft, the inertial effects dominate except in the narrow boundary layer close to the
solid-fluid interface. The chaotic region works its way further forward on the cylinder reducing the volume of the chaotic turbulent
boundary layer which results in a significant decreases in . For a sailplane wing flying at about  , the boundary layer at
the leading edge of the cylinder reduces to the order of a millimeter in thickness at the leading edge and a centimeter at the trailing
edge. At these Reynold’s numbers the airflow comprises a thin boundary layer, where viscous effects are important, plus fluid flow
in the bulk of the fluid where the vortex inertial terms dominate and viscous forces can be ignored. That is, the viscous stress tensor
term , on the right-hand side of Equation , can be ignored, and the Navier-Stokes equation reduces to the simpler Euler
equation for such inviscid fluid flow.
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The importance of the inertia of the vortices is illustrated by the persistence of the vortex structure and turbulence over a wide
range of length scales characteristic of turbulent flow. The dynamic range of the dimension of coherent vortex structures is
enormous. For example, in the atmosphere the vortex size ranges from   in diameter for hurricanes down to   in thin
boundary layers adjacent to an aircraft wing. The transition from laminar to turbulent flow is illustrated by water flow over the hull
of a ship which involves laminar flow at the bow followed by turbulent flow behind the bow wave and at the stern of the ship. The
broad extent of the white foam of seawater along the side and the stern of a ship illustrates the considerable energy dissipation
produced by the turbulence. The boundary layer of a stalled aircraft wing is another example. At a high angle of attack, the airflow
on the lower surface of the wing remains laminar, that is, the stream velocity profile, relative to the wing, increases smoothly from
zero at the wing surface outwards until it meets the ambient air velocity on the outer surface of the boundary layer which is the
order of a millimeter thick. The flow on the top surface of the wing initially is laminar before becoming turbulent at which point the
boundary layer rapidly increases in thickness. Further back the airflow detaches from the wing surface and large-scale vortex
structures lead to a wide boundary layer comparable in thickness to the chord of the wing with vortex motion that leads to the
airflow reversing its direction adjacent to the upper surface of the wing which greatly increases drag. When the vortices begin to
shed off the bounded surface they do so at a certain frequency which can cause vibrations that can lead to structural failure if the
frequency of the shedding vortices is close to the resonance frequency of the structure.

Considerable time and effort are expended by aerodynamicists and hydrodynamicists designing aircraft wings and ship hulls to
maximize the length of laminar region of the boundary layer to minimize drag. When the Reynolds number is large the slightest
imperfections in the shape of wing, such as a speck of dust, can trigger the transition from laminar to turbulent flow. The
boundaries between adjacent large-scale coherent structures are sensitively identified in computer simulations by large divergence
of the streamlines at any separatrix. A large positive, finite-time, Lyapunov exponent identifies divergence of the streamlines which
occurs at a separatrix between adjacent large-scale coherent vortex structures, whereas the Lyapunov exponents are negative for
converging streamlines within any coherent structure. Computations of turbulent flow often combine the use of finite-time
Lyapunov exponents to identify coherent structures, plus Lagrangian mechanics for the equations of motion since the Lagrangian is
a scalar function, it is frame independent, and it gives far better results for fluid motion than using Newtonian mechanics. Thus the
Lagrangian approach in the continua is used extensively for calculations in aerodynamics, hydrodynamics, and studies of
atmospheric phenomena such as convection, hurricanes, tornadoes, etc.

This page titled 16.8: Viscous Fluid Dynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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16.9: Summary and Implications
The goal of this chapter is to provide a glimpse into the classical mechanics of the continua which introduces the Lagrangian
density and Hamiltonian density formulations of classical mechanics.

Lagrangian density formulation

In three dimensional Lagrangian density  is related to the Lagrangian  by taking the volume integral of
the Lagrangian density.

Applying Hamilton’s Principle to the three-dimensional Lagrangian density leads to the following set of differential equations of
motion

Hamiltonian density formulation
In the limit that the coordinates  are continuous, then the Hamiltonian density can be expressed in terms of a volume integral
over the momentum density  and the Lagrangian density  where

Then the obvious definition of the Hamiltonian density  is

where the Hamiltonian density is given by

These Lagrangian and Hamiltonian density formulations are of considerable importance to field theory and fluid mechanics.

Linear elastic solids
The theory of continuous systems was applied to the case of linear elastic solids. The stress tensor  is a rank 2 tensor defined as
the ratio of the force vector  and the surface element vector . That is, the force vector is given by the inner product of the
stress tensor  and the surface element vector .

The strain tensor  also is a rank 2 tensor defined as the ratio of the strain vector  and infinitessimal area .

where the component form of the rank 2 strain tensor is

The modulus of elasticity is defined as the slope of the stress-strain curve. For linear, homogeneous, elastic matter, the potential
energy density  separates into diagonal and off-diagonal components of the strain tensor
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where the constants  and  are Lamé’s moduli of elasticity which are positive. The stress tensor is related to the strain tensor by

Electromagnetic field theory
The rank 2 Maxwell stress tensor  has components

The divergence theorem allows the total electromagnetic force, acting of the volume , to be written as

The total momentum flux density is given by

where the electromagnetic field momentum density is given by the Poynting vector  as .

Ideal fluid dynamics
Mass conservation leads to the continuity equation

Euler’s hydrodynamic equation gives

where  is the scalar gravitational potential. If the flow is irrotational and time independent then

Viscous fluid dynamics
For incompressible flow the stress tensor term simplifies to . Then the Navier-Stokes equation becomes

where  is the viscosity drag term. The left-hand side of Equation  represents the rate of change of momentum per unit
volume while the right-hand side represents the summation of the forces per unit volume that are acting.

The Reynolds number is a dimensionless number that characterizes the ratio of inertial forces to viscous forces in a viscous
medium. The evolution of flow from laminar flow to turbulent flow, with increase of Reynolds number, was discussed.

The classical mechanics of continuous fields encompasses a remarkably broad range of phenomena with important applications to
laminar and turbulent fluid flow, gravitation, electromagnetism, relativity, and quantum fields.

This page titled 16.9: Summary and Implications is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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17.1: Introduction to Relativistic Mechanics
Newtonian mechanics incorporates the Newtonian concept of the complete separation of space and time. This theory reigned
supreme from inception, in 1687, until November 1905 when Einstein pioneered the Special Theory of Relativity. Relativistic
mechanics undermines the Newtonian concepts of absoluteness of time that is inherent to Newton’s formulation, as well as when
recast in the Lagrangian and Hamiltonian formulations of classical mechanics. Relativistic mechanics has had a profound impact on
twentieth-century physics and the philosophy of science. Classical mechanics is an approximation of relativistic mechanics that is
valid for velocities much less than the velocity of light in vacuum. The term “relativity” refers to the fact that physical
measurements are always made relative to some chosen reference frame. Naively one may think that the transformation between
different reference frames is trivial and contains little underlying physics. However, Einstein showed that the results of
measurements depend on the choice of coordinate system, which revolutionized our concept of space and time.

Einstein’s work on relativistic mechanics comprised two major advances. The first advance is the 1905 Special Theory of
Relativity which refers to nonaccelerating frames of reference. The second major advance was the 1916 General Theory of
Relativity which considers accelerating frames of reference and their relation to gravity. The Special Theory is a limiting case of
the General Theory of Relativity. The mathematically complex General Theory of Relativity is required for describing accelerating
frames, gravity, plus related topics like Black Holes, or extremely accurate time measurements inherent to the Global Positioning
System. The present discussion will focus primarily on the mathematically simple Special Theory of Relativity since it
encompasses most of the physics encountered in atomic, nuclear and high energy physics. This chapter uses the basic concepts of
the Special Theory of Relativity to investigate the implications of extending Newtonian, Lagrangian and Hamiltonian formulations
of classical mechanics into the relativistic domain. The Lorentz-invariant extended Hamiltonian and Lagrangian formalisms are
introduced since they are applicable to the Special Theory of Relativity. The General Theory of Relativity incorporates the
gravitational force as a geodesic phenomena in a four-dimensional Reimannian structure based on space, time, and matter. A
superficial outline is given to the fundamental concepts and evidence that underlie the General Theory of Relativity.
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17.2: Galilean Invariance
As discussed in chapter , an inertial frame is one in which Newton’s Laws of motion apply. Inertial frames are non-accelerating
frames so that pseudo forces are not induced. All reference frames moving at constant velocity relative to an inertial reference, are
inertial frames. Newton’s Laws of nature are the same in all inertial frames of reference and therefore there is no way of
determining absolute motion because no inertial frame is preferred over any other. This is called Galilean-Newtonian invariance.
Galilean invariance assumes that the concepts of space and time are completely separable. Time is assumed to be an absolute
quantity that is invariant to transformations between coordinate systems in relative motion. Also the element of length is the same
in different Galilean frames of reference.

Figure : Motion of the primed frame along the  axis with velocity  relative to the parallel unprimed frame.

Consider two coordinate systems shown in Figure , where the primed frame is moving along the  axis of the fixed
unprimed frame. A Galilean transformation implies that the following relations apply;

Note that at any instant , the infinitessimal units of length in the two systems are identical since

These are the mathematical expression of the Newtonian idea of space and time. An immediate consequence of the Galilean
transformation is that the velocity of light must differ in different inertial reference frames.

At the end of the 19  century physicists thought they had discovered a way of identifying an absolute inertial frame of reference,
that is, it must be the frame of the medium that transmits light in vacuum. Maxwell’s laws of electromagnetism predict that
electromagnetic radiation in vacuum travels at  . Maxwell did not address in what frame of

reference that this speed applied. In the nineteenth century all wave phenomena were transmitted by some medium, such as waves
on a string, water waves, sound waves in air. Physicists thus envisioned that light was transmitted by some unobserved medium
which they called the ether. This ether had mystical properties, it existed everywhere, even in outer space, and yet had no other
observed consequences. The ether obviously should be the absolute frame of reference.

In the 1880's, Michelson and Morley performed an experiment in Cleveland to try to detect this ether. They transmitted light back
and forth along two perpendicular paths in an interferometer, shown in Figure , and assumed that the earth’s motion about
the sun led to movement through the ether.
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Figure : The Michelson interferometer used for the Michelson-Morley experiment. Interference of the two beams of coherent
light leads to fringes that depends on the differences in phase along the two paths.

The time taken to travel a return trip takes longer in a moving medium, if the medium moves in the direction of the motion,
compared to travel in a stationary medium. For example, you lose more time moving against a headwind than you gain travelling
back with the wind. The time difference , for a round trip to a distance , between travelling in the direction of motion in the
ether, versus travelling the same distance perpendicular to the movement in the ether, is given by  where  is the
relative velocity of the ether and  is the velocity of light.

Interference fringes between perpendicular light beams in an optical interferometer provides an extremely sensitive measure of this
time difference. Michelson and Morley observed no measurable time difference at any time during the year, that is, the relative
motion of the earth within the ether is less than  the velocity of the earth around the sun. Their conclusion was either, that the
ether was dragged along with the earth, or the velocity of light was dependent on the velocity of the source, but these did not jibe
with other observations. Their disappointment at the failure of this experiment to detect evidence for an absolute inertial frame is
important and confounded physicists for two decades until Einstein’s Special Theory of Relativity explained the result.
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17.3: Special Theory of Relativity

Einstein Postulates
In November 1905, at the age of 26, Einstein published a seminal paper entitled ”On the electrodynamics of moving bodies”. He
considered the relation between space and time in inertial frames of reference that are in relative motion. In this paper he made the
following postulates.

1. The laws of nature are the same in all inertial frames of reference.
2. The velocity of light in vacuum is the same in all inertial frames of reference.

Note that Einstein’s first postulate, coupled with Maxwell’s equations, leads to the statement that the velocity of light in vacuum is
a universal constant. Thus the second postulate is unnecessary since it is an obvious consequence of the first postulate plus
Maxwell’s equations which are basic laws of physics. This second postulate explained the null result of the Michelson-Morley
experiment. However, it was not this experimental result that led Einstein to the theory of special relativity; he deduced the Special
Theory of Relativity from consideration of Maxwell’s equations of electromagnetism. Although Einstein’s postulates appear
reasonable, they lead to the following surprising implications.

Lorentz transformation
Galilean invariance leads to violation of the Einstein postulate that the velocity of light is a universal constant in all frames of
reference. It is necessary to assume a new transformation law that renders physical laws relativistically invariant. Maxwell’s
equations are relativistically invariant, which led to some electromagnetic phenomena that could not be explained using Galilean
invariance. In 1904 Lorentz proposed a new transformation to replace the Galilean transformation in order to explain such
electromagnetic phenomena. Einstein’s genius was that he derived the transformation, that had been proposed by Lorentz, directly
from the postulates of the Special Theory of Relativity. The Lorentz transformation satisfies Einstein’s theory of relativity, and has
been confirmed to be correct by many experiments.

For the geometry shown in Figure , the Lorentz transformations are:

where the Lorentz  factor

The inverse transformations are
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Figure : The dependence of the Lorentz  factor on .

The Lorentz  factor, defined above, is the key feature differentiating the Lorentz transformations from the Galilean transformation.
Note that ; also  as  and increases to infinity as  as illustrated in Figure . A useful fact that will
be used later is that for ;

Note that for  then  and the Lorentz transformation is identical to the Galilean transformation.

Figure : The observer and mirror are at rest in the left-hand frame (a). The light beam takes a time  to travel to the
mirror. In the right-hand frame (b) the source and mirror are travelling at a velocity  relative to the observer. The light travels
further in the right-hand frame of reference (b) than is the stationary frame (a). Since Einstein states that the velocity of light is the
same in both frames of reference then the time interval must by larger in frame (b) since the light travels further than in (a).

Time Dilation
Consider that a clock is fixed at  in a moving frame and measures the time interval between two events in the moving frame, i.e. 

. According to the Lorentz transformation, the times in the fixed frame are given by:

Thus the time interval is given by:

The time between events in the rest frame of the clock,  is called the proper time which always is the shortest time
measured for a given event and is represented by the symbol . That is

Note that the time interval for any other frame of reference, moving with respect to the clock frame, will show larger time intervals
because  which implies that the fixed frame perceives that the moving clock is slow by the factor .
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The plausibility of this time dilation can be understood by looking at the simple geometry of the space ship example shown in
Figure . Pretend that the clock in the proper frame of the space ship is based on the time for the light to travel to and from the
mirror in the space ship. In this proper frame the light has the shortest distance to travel, and the proper transit time is

In the fixed frame, , the component of velocity in the direction of the mirror is  using the Pythagorus theorem, assuming
that the light cannot travel faster the . Thus the transit time towards and back from the mirror must be

which is the predicted time dilation.

There are many experimental verifications of time dilation in physics. For example, a stationary muon has a mean lifetime of 
 , whereas the lifetime of a fast moving muon, produced in the upper atmosphere by high-energy cosmic rays, was

observed in 1941 to be longer and given by  as described in example . In 1972 Hafely and Keating used four accurate
cesium atomic clocks to confirm time dilation. Two clocks were flown on regularly scheduled airlines travelling around the World,
one westward and the other eastward. The other two clocks were used for reference. The westward moving clock was slow by 

  compared to the predicted value of  . The Global Positioning System of 24 geosynchronous satellites is
used for locating positions to within a few meters. It has an accuracy of a few nanoseconds which requires allowance for time
dilation and is a daily tribute to the correctness of Einstein’s Theory of Relativity.

Length Contraction
The Lorentz transformation leads to a contraction of the apparent length of an object in a moving frame as seen from a fixed frame.
The length of a ruler in its own frame of reference is called the proper length. Consider an accurately measured rod of known
proper length  that is, at rest in the moving primed frame. The locations of both ends of this rod are measured at a
given time in the stationary frame, , by taking a photograph of the moving rod. The corresponding locations in the moving
frame are:

Since , the measured lengths in the two frames are related by:

That is, the lengths are related by:

Note that the moving rod appears shorter in the direction of motion. As  the apparent length shrinks to zero in the direction of
motion while the dimensions perpendicular to the direction of motion are unchanged. This is called the Lorentz contraction. If you
could ride your bicycle at close to the speed of light, you would observe that stationary cars, buildings, people, all would appear to
be squeezed thin along the direction that you are travelling. Also objects that are further away down any side street would be
distorted in the direction of travel. A photograph taken by a stationary observer would show the moving bicycle to be Lorentz
contracted along the direction of travel and the stationary objects would be normal.

Simultaneity
The Lorentz transformations imply a new philosophy of space and time. A surprising consequence is that the concept of
simultaneity is frame dependent in contrast to the prediction of Newtonian mechanics.

Consider that two events occur in frame  at  and . In frame  these two events occur at  and .
From the Lorentz transformation the time difference is
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If an event is simultaneous in frame , that is  then

Thus the event is not simultaneous in frame  if . That is, an event that is simultaneous in one frame is not
simultaneous in the other frame if the events are spatially separated. The equivalent statement is that for two clocks, spatially
separated by a distance , which are synchronized in their rest frame, then in a moving frame they are not simultaneous.

Einstein discussed the problem of lightning striking both ends of a railway carriage that is moving at a velocity . Assume that the
lightning strikes both the front and rear of the carriage simultaneously, according to a stationary observer. A woman riding in the
center of the train will se the lightning flash arrive from the front of the carriage before the wavefront from the rear of the carriage
arrives since the carriage is moving towards the approaching wavefront and away from the wavefront from the rear of the train. If
the length of the carriage is , then the time difference between the light flash from front and rear of the carriage will be 

. As a consequence she observes that the two signals are not simultaneous. Thus a photograph of a rapidly moving
body will appear to have a shorter distance. The relativistic snake discussed in chapter , exercise 1 is a similar example of the
role of simultaneity in relativistic mechanics.

Many people had trouble comprehending time dilation and Lorentz contraction predicted by the Special Theory of Relativity.
The predictions appear to be crazy, but there are many examples where time dilation and Lorentz contraction are observed
experimentally such as the decay in flight of the muon. At rest, the muon decays with a mean lifetime of  . Muons are
created high in the atmosphere due to cosmic ray bombardment. A typical muon travels at  which corresponds to 

. Time dilation implies that the lifetime of the moving muon in the earth’s frame of reference is  . The speed of the
muon is essentially  in both frames of reference, and it would travel   in   and   in  . In fact, it is
observed that the muon does travel, on average,   in the earth frame of reference before decaying. Is this inconsistent
with the view of someone travelling with the muon? In the muon’s moving frame, the lifetime is only  , but the Lorentz
contraction of distance means that   in the earth frame appears to be only   in the muon moving frame; a distance
it travels is  . Thus in both frames of reference we have consistent explanations, that is, the muon travels the height of the
mountain in one lifetime.

The relativistic Doppler effect is encountered frequently in physics and astronomy. Consider monochromatic electromagnetic
radiation from a source, such as a star, that is moving towards the detector at a velocity . During the time  in the frame of
the receiver, the source emits  cycles of the sinusoidal waveform. Thus the length of this waveform, as seen by the receiver, is

 which equals

The frequency as measured by the receiver is

According to the source, it emits  waves of frequency  during the proper time interval , that is

This proper time interval , in the source frame, corresponds to a time interval  in the receiver frame where

Thus the frequency measured by the receiver is
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where . This formula for source and receiver approaching each other also gives the correct answer for source and
receiver receding if the sign of  is changed.

This relativistic Doppler Effect accounts for the red shift observed for light emitted by receding stars and galaxies, as well as
many examples in atomic and nuclear physics involving moving sources of electromagnetic radiation.

A problem that troubled physicists for many years is called the twin paradox. Consider two identical twins, Jack and Jill.
Assume that Jill travels in a space ship at a speed of  for 20 years, as measured by Jack’s clock, and then returns taking
another 20 years, according to Jack. Thus, Jack has aged 40 years by the time his twin sister returns home. However, Jill’s
clock measures  years for each half of the trip so that she thinks she travelled for 10 years total time according to her
clock. Thus she has aged only 10 years on the trip, that is, now she is 30 years younger that her twin brother. Note that,
according to Jill, the distance she travelled out and back was  the distance according to Jack, so she perceives no
inconsistency in her clock, and the speed of the space ship. This was called a paradox because some people claimed that Jill
will perceive that the earth and Jack moved away at the same relative speed in the opposite direction and thus according to Jill,
Jack should be 30 years younger, not her. Moreover, some claimed that this problem is symmetric and therefore both twins
must still be the same age since there is no way of telling who was moving away from whom. This argument is incorrect
because Jill was able to sense that she accelerated to  which destroys the symmetry argument. The effect is observed with
accelerated beams of unstable nuclei such as the muon and was confirmed by the results of the experiment where cesium
atomic clocks were flown around the Earth. Thus the Twin paradox is not a paradox; the fact is that Jill will be younger than
her twin brother.

This page titled 17.3: Special Theory of Relativity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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17.4: Relativistic Kinematics

Velocity Transformations

Consider the two parallel coordinate frames with the primed frame moving at a velocity  along the  axis as shown in Figure 
. Velocities of an object measured in both frames are defined to be

Using the Lorentz transformations ,  between the two frames moving with relative velocity  along the  axis,
gives that the velocity along the  axis is

Similarly we get the velocities along the perpendicular  and  axes to be

When  these velocity transformations become the usual Galilean relations for velocity addition. Do not confuse  and 

with ; that is,  and  are the velocities of some object measured in the unprimed and primed frames of reference respectively,
whereas  is the relative velocity of the origin of one frame with respect to the origin of the other frame.

Momentum
Using the classical definition of momentum, that is , the linear momentum is not conserved using the above relativistic
velocity transformations if the mass  is a scalar quantity. This problem originates from the fact that both  and  have non-trivial

transformations and thus  is frame dependent.

Linear momentum conservation can be retained by redefining momentum in a form that is identical in all frames of reference, that
is by referring to the proper time  as measured in the rest frame of the moving object. Therefore we define relativistic linear
momentum as

But we know the time dilation relation

Note that the  in this relation refers to the velocity  between the moving object and the frame; this is quite different from the 

 which refers to the transformation between the two frames of reference. Thus the new relativistic definition of

momentum is
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The relativistic definition of linear momentum is the same as the classical definition with the rest mass  replaced by the
relativistic mass .

Center of momentum coordinate system

The classical relations for handling the kinematics of colliding objects, carry over to special relativity when the relativistic
definition of linear momentum, Equation , is assumed. That is, one can continue to apply conservation of linear momentum.
However, there is one important conceptual difference for relativistic dynamics in that the center of mass no longer is a meaningful
concept due to the interrelation of mass and energy. However, this problem is eliminated by considering the center of momentum
coordinate system which, as in the non-relativistic case, is the frame where the total linear momentum of the system is zero. Using
the concept of center of momentum incorporates the formalism of classical non-relativistic kinematics.

Force

Newton’s second law  is covariant under a Galilean transformation. In special relativity this definition also applies using

the relativistic definition of momentum . The fact that the relativistic momentum  is conserved in the force-free situation, leads
naturally to using the definition of force to be

Then the relativistic momentum is conserved if .

Energy
The classical definition of work done is defined by

Assume , let  and insert the relativistic force relation in Equation , gives

Integrate by parts, followed by algebraic manipulation, gives
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then Equation  can be written as

This is the famous Einstein relativistic energy that relates the equivalence of mass and energy. The total relativistic energy  is a
conserved quantity in nature. It is an extension of the conservation of energy and manifestations of the equivalence of energy and
mass occur extensively in the real world.

In nuclear physics we often convert mass to energy and back again to mass. For example, gamma rays with energies greater than 
 , which are pure electromagnetic energy, can be converted to an electron plus positron both of which have rest mass.

The positron can then annihilate a different electron in another atom resulting in emission of two   gamma rays in back to
back directions to conserve linear momentum. A dramatic example of Einstein’s equation is a nuclear reactor. One gram of
material, the mass of a paper clip, provides  joules. This is the daily output of a   nuclear power station or
the explosive power of the Nagasaki or Hiroshima bombs.

As the velocity of a particle  approaches , then  and the relativistic mass  both approach infinity. This means that the force
needed to accelerate the mass also approaches infinity, and thus no particle can exceed the velocity of light. The energy continues
to increase not by increasing the velocity but by increase of the relativistic mass. Although the relativistic relation for kinetic
energy is quite different from the Newtonian relation, the Newtonian form is obtained for the case of  in that

An especially useful relativistic relation that can be derived from the above is

This is useful because it provides a simple relation between total energy of a particle and its relativistic linear momentum plus rest
energy.

Consider a rocket, having initial mass , is accelerated in a straight line in free space by exhausting propellant at a constant
speed  relative to the rocket. Let  be the speed of the rocket relative to it’s initial rest frame , when its rest mass has
decreased to . At this instant the rocket is at rest in the inertial frame . At a proper time  the rest mass is 
and it has acquired a velocity increment  relative to  and propellant of rest mass  has been expelled with velocity 
relative to . At proper time  in  the rest mass is . At the time , energy conservation requires that

At the same instant, conservation of linear momentum requires

To first order these two equations simplify to

Therefore

E ≡ mγu c2 (17.4.17)

17.4.15
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(17.4.19)

E

1.022MeV

511 keV

E = 9 ×1013 1 GWatt

v c γ γm

u ≪ c

T = −m
mc2

1 −
u2

c2

− −−−−−
√

c2

= m (1 + +⋯) −mc2 1

2

u2

c2
c2

= m
1

2
u2

(17.4.20)
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Example : Rocket Propulsion17.4.1
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The velocity increment  in frame  can be transformed back to frame  using equation , that is

Equations  and  yield a differential equation for  of

Integrate the left-hand side between  and  and the right-hand side between  and  gives

This reduces to

When  this equation reduces to the non-relativistic answer given in equation .

Note that, until recently, the rest mass was denoted by  and the relativistic mass was referred to as . Modern texts denote the
rest mass by  and the relativistic mass by . This book follows the modern nomenclature for rest mass to avoid confusion.

This page titled 17.4: Relativistic Kinematics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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17.5: Geometry of Space-time

Four-Dimensional Space-Time

In 1906 Poincaré showed that the Lorentz transformation can be regarded as a rotation in a 4-dimensional Euclidean space-time
introduced by adding an imaginary fourth space-time coordinate  to the three real spatial coordinates. In 1908 Minkowski
reformulated Einstein’s Special Theory of Relativity in this 4-dimensional Euclidean space-time vector space and concluded that
the spatial variables , where , plus the time  are equivalent variables and should be treated equally using a
covariant representation of both space and time. The idea of using an imaginary time axis  to make space-time Euclidean was
elegant, but it obscured the non-Euclidean nature of space-time as well as causing difficulties when generalized to non-inertial
accelerating frames in the General Theory of Relativity. As a consequence, the use of the imaginary  has been abandoned in
modern work. Minkowski developed an alternative non-Euclidean metric that treats all four coordinates  as a four-
dimensional Minkowski metric with all coordinates being real, and introduces the required minus sign explicitly.

Analogous to the usual 3-dimensional cartesian coordinates, the displacement four vector  is defined using the four components
along the four unit vectors in either the unprimed or primed coordinate frames.

The convention used is that greek subscripts (covariant) or superscripts (contravariant) designate a four vector with . The
covariant unit vectors  are written with the subscript  which has 4 values . As described in appendix , using
the Einstein convention the components are written with the contravariant superscript  where the time axis , while the
spatial coordinates, expressed in cartesian coordinates, are , , and . With respect to a different (primed) unit
vector basis , the displacement must be unchanged as given by Equation . In addition, Equation  shows that the
magnitude  of the displacement four vector is invariant to a Lorentz transformation.

The most general Lorentz transformation between inertial coordinate systems  and , in relative motion with velocity ,
assuming that the two sets of axes are aligned, and that their origins overlap when , is given by the symmetric matrix 
where

This Lorentz transformation of the four vector  components can be written in matrix form as

Assuming that the two sets of axes are aligned, then the elements of the Lorentz transformation  are given by

where  and  and assuming that the origin of  transforms to the origin of  at .

For the case illustrated in Figure , where the corresponding axes of the two frames are parallel and in relative motion with
velocity  in the  direction, then the Lorentz transformation matrix  reduces to

ict

qi (i = 1, 2, 3) = ictq0

ict

ict

(ct, x, y, z)

ds

ds = d +d +d +dx0 ê0 x1 ê1 x2 ê2 x3 ê3
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This Lorentz transformation matrix is called a standard boost since it only boosts from one frame to another parallel frame. In
general a rotation matrix also is incorporated into the transformation matrix  for the spatial variables.

Four-vector scalar products
Scalar products of vectors and tensors usually are invariant to rotations in three-dimensional space providing an easy way to solve
problems. The scalar, or inner, product of two four vectors is defined by

The correct sign of the inner product is obtained by inclusion of the Minkowski metric  defined by

that is, it can be represented by the matrix

The sign convention used in the Minkowski metric, Equation , has been chosen with the time coordinate  positive
which makes  for objects moving at less than the speed of light and corresponds to  being real.

The presence of the Minkowski metric matrix, in the inner product of four vectors, complicates General Relativity and thus the
Einstein convention has been adopted where the components of the contravariant four-vector  are written with superscripts .
See also appendix . The corresponding covariant four-vector components are written with the subscript  which is related to
the contravariant four-vector components  using the  component of the covariant Minkowski metric matrix . That is

The contravariant metric component  is defined as the  component of the inverse metric matrix  where

where  is the four-vector identity matrix. The contravariant components of the four vector can be expressed in terms of the
covariant components as

Thus equations  and  can be used to transform between covariant and contravariant four vectors, that is, to raise or
lower the index .

The scalar inner product of two four vectors can be written compactly as the scalar product of a covariant four vector and a
contravariant four vector. The Minkowski metric matrix can be absorbed into either  or  thus
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If this covariant expression is Lorentz invariant in one coordinate system, then it is Lorentz invariant in all coordinate systems
obtained by proper Lorentz transformations.

The scalar inner product of the invariant space-time interval is an especially important example.

This is invariant to a Lorentz transformation as can be shown by applying the Lorentz standard boost transformation given above.
In particular, if  is the rest frame of the clock, then the invariant space-time interval  is simply given by the proper time
interval .

Minkowski Space-Time
Figure  illustrates a three-dimensional  representation of the 4−dimensional space-time diagram where it is
assumed that . The fact that the velocity of light has a fixed velocity leads to the concept of the light cone defined by the
locus of .

Figure : The light cone in the , ,  space is defined by the condition  and divides space-time
into the forward and backward light cones, with  and  respectively; the interiors of the forward and backward light cones
are called absolute future and absolute past.

Inside the light cone

The vertex of the cones represent the present. Locations inside the upper cone represent the future while the past is represented by
locations inside the lower cone. Note that  inside both the future and past light cones. Thus the
space-time interval  is real and positive for the future, whereas it is real and negative for the past relative to the vertex of the
light cone. A world line is the trajectory a particle follows is a function of time in Minkowski space. In the interior of the future
light cone  and, since it is real, it can be asserted unambiguously that any point inside this forward cone must occur later
than at the vertex of the cone, that is, it is the absolute future. A Lorentz transformation can rotate Minkowski space such that the
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axis  goes through any point within this light cone and then the “world line” is pure time like. Similarly, any point inside the
backward light cone unambiguously occurred before the vertex, i.e. it is absolute past.

Outside the Light Cone

Outside of the light cone, has

and thus  is imaginary and is called space like. A spacelike plane hypersurface in spatial coordinates is shown for the present
time in the unprimed frame. A rotation in Minkowski space can be made to  such that the space-like hypersurface now is tilted
relative to the hypersurface shown and thus any point  outside the light cone can be made to occur later, simultaneous, or earlier
than at the vertex depending on the orientation of the space-like hypersurface. This startling situation implies that the time ordering
of two points, each outside the others light cone, can be reversed which has profound implications related to the concept of
simultaneity and the notion of causality.

For the special case of two events lying on the light cone:

and thus these events are separated by a light ray travelling at velocity . Only events separated by time-like intervals can be
connected causally. The world line of a particle must lie within its light cone. The division of intervals into space-like and time-
like, because of their invariance, is an absolute concept. That is, it is independent of the frame of reference.

The concept of proper time can be expanded by considering a clock at rest in frame  which is moving with uniform velocity 
with respect to a rest frame . The clock at rest in the  frame measures the proper time , then the time observed in the fixed
frame can be obtained by looking at the interval . Because of the invariance of the interval,  then

That is,

that is  which satisfies the normal expression for time dilation, .

Momentum-energy four vector

The previous four-vector discussion can be elegantly exploited using the covariant Minkowski space-time representation.
Separating the spatial and time of the differential four vector gives

Remember that the square of the four-dimensional space-time element of length  is invariant , and is simply related to
the proper time element . Thus the scalar product

Thus the proper time is an invariant.

The ratio of the four-vector element  and the invariant proper time interval , is a four-vector called the four-vector velocity 
where
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where  is the particle velocity, and .

The four-vector momentum  can be obtained from the four-vector velocity by multiplying it by the scalar rest mass 

However,

thus the momentum four vector can be written as

where the vector  represents the three spatial components of the relativistic momentum. It is interesting to realize that the Theory
of Relativity couples not only the spatial and time coordinates, but also, it couples their conjugate variables linear momentum 
and total energy, .

An additional feature of this momentum-energy four vector , is that the scalar inner product  is invariant to Lorentz
transformations and equals  in the rest frame

which leads to the well-known equation

The Lorentz transformation matrix  can be applied to 

The Lorentz invariant four-vector representation is illustrated by applying the Lorentz transformation shown in Figure ,
which gives, , , , and .

Older textbooks, such as all editions of Marion, and the first two editions of Goldstein, use the Euclidean Poincaré 4-dimensional
space-time with the imaginary time axis . About half the scientific community, and modern physics textbooks including this
textbook, and the 3  edition of Goldstein, use the Bjorken - Drell , sign convention given in Equation  where 

, and  are the spatial coordinates. The other half of the community, including mathematicians and gravitation
physicists, use the opposite , sign convention. Further confusion is caused by a few books that assign the time axis  to
be  rather than .

This page titled 17.5: Geometry of Space-time is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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17.6: Lorentz-Invariant Formulation of Lagrangian Mechanics

Parametric Formulation

The Lagrangian and Hamiltonian formalisms in classical mechanics are based on the Newtonian concept of absolute time  which
serves as the system evolution parameter in Hamilton’s Principle. This approach violates the Special Theory of Relativity. The
extended Lagrangian and Hamiltonian formalism is a parametric approach, pioneered by Lanczos[La49], that introduces a system
evolution parameter  that serves as the independent variable in the action integral, and all the space-time variables  are
dependent on the evolution parameter . This extended Lagrangian and Hamiltonian formalism renders it to a form that is
compatible with the Special Theory of Relativity. The importance of the Lorentz-invariant extended formulation of Lagrangian and
Hamiltonian mechanics has been recognized for decades.[La49, Go50, Sy60] Recently there has been a resurgence of interest in the
extended Lagrangian and Hamiltonian formalism stimulated by the papers of Struckmeier[Str05, Str08] and this formalism has
featured prominently in recent textbooks by Johns[Jo05] and Greiner[Gr10]. This parametric approach develops manifestly-
covariant Lagrangian and Hamiltonian formalisms that treat equally all  space-time canonical variables. It provides a
plausible manifestly-covariant Lagrangian for the one-body system, but serious problems exist extending this to the -body
system when . Generalizing the Lagrangian and Hamiltonian formalisms into the domain of the Special Theory of Relativity
is of fundamental importance to physics, while the parametric approach gives insight into the philosophy underlying use of
variational methods in classical mechanics.

In conventional Lagrangian mechanics, the equations of motion for the  generalized coordinates are derived by minimizing the
action integral, that is, Hamilton’s Principle.

where  denotes the conventional Lagrangian. This approach implicitly assumes the Newtonian concept of absolute
time  which is chosen to be the independent variable that characterizes the evolution parameter of the system. The actual path 

 the system follows is defined by the extremum of the action integral  which leads to the corresponding Euler-
Lagrange equations. This assumption is contrary to the Theory of Relativity which requires that the space and time variables be
treated equally, that is, the Lagrangian formalism must be covariant.

Extended Lagrangian
Lanczos[La49] proposed making the Lagrangian covariant by introducing a general evolution parameter , and treating the time as
a dependent variable  on an equal footing with the configuration space variables . That is, the time becomes a dependent
variable  similar to the spatial variables  where . The dynamical system then is described as motion
confined to a hypersurface within an extended space where the value of the extended Hamiltonian and the evolution parameter 
constitute an additional pair of canonically conjugate variables in the extended space. That is, the canonical momentum ,
corresponding to , is  similar to the momentum-energy four vector, equation .

An extended Lagrangian  can be defined which can be written compactly as  where the
index  denotes the entire range of space-time variables.

This extended Lagrangian can be used in an extended action functional  to give an extended version of Hamilton’s
Principle

The conventional action , and extended action , address alternate characterizations of the same underlying physical system, and
thus the action principle implies that  must hold simultaneously. That is,

As discussed in chapter , there is a continuous spectrum of equivalent gauge-invariant Lagrangians for which the Euler-
Lagrange equations lead to identical equations of motion. Equation  is satisfied if the conventional and extended Lagrangians
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are related by

where  is a continuous function of  and  that has continuous second derivatives. It is acceptable to assume that 

, then the extended and conventional Lagrangians have a unique relation requiring no simultaneous transformation of
the dynamical variables. That is, assume

Note that the time derivative of  can be expressed in terms of the  derivatives by

Thus, for a conventional Lagrangian with  variables, the corresponding extended Lagrangian is a function of  variables
while the conventional and extended Lagrangians are related using equations , and .

The derivatives of the relation between the extended and conventional Lagrangians lead to

where  since the  time derivatives are written explicitly in equations , .

Equations  — , summed over the extended range  of time and spatial dynamical variables, imply

Equation  can be written in the form

If the extended Lagrangian  is homogeneous to first order in the  variables , then Euler’s theorem on
homogeneous functions trivially implies the relation given in Equation . Struckmeier[Str08] identified a subtle but
important point that if  is not homogeneous in , then Equation  is not an identity but is an implicit equation that is
always satisfied as the system evolves according to the solution of the extended Euler-Lagrange equations. Then Equation  is
satisfied without it being a homogeneous form in the  velocities . This introduces a new class of non-homogeneous
Lagrangians. The relativistic free particle, discussed in example , is a case of a non-homogeneous extended Lagrangian.

Extended generalized momenta

The generalized momentum is defined by

L(q, , t, ) = L(q, , t) +
dq

ds

dt

ds

dq

dt

dt

ds

dΛ(q, t)

ds
(17.6.4)

Λ(q, t) q t

= 0
dΛ(q,t)

ds

L(q, , t, ) = L(q, , t)
dq

ds

dt

ds

dq

dt

dt

ds
(17.6.5)

q s

=
dq
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dq/ds

dt/ds
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dt
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∂L

∂ ( )dqμ
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∂ ( )dqμ
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∂ ( )dt
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μ=1

n ∂L

∂ ( )dqμ

dt

dqμ

dt
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1 ≤ μ ≤ n μ = 0 17.6.8 17.6.10
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n
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∂ ( )
dqμ

dt

dqμ

dt
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n
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dqμ
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Assume that the definitions of the extended Lagrangian , and the extended Hamiltonian , are related by a Legendre
transformation, and are based on variational principles, analogous to the relation that exists between the conventional Lagrangian 
and Hamiltonian . The Legendre transformation requires defining the extended generalized (canonical) momentum-energy four

vector . The momentum components of the momentum-energy four vector  are given by
the  components using Equation .

The  component of the momentum-energy four vector can be derived by recognizing that the right-hand side of Equation 
 is equal to . That is, the corresponding generalized momentum , that is conjugate to , is given by

Extended Lagrange equations of motion

By direct analogy with the non-relativistic action integral , the extremum for the relativistic action integral  is
obtained using the Euler-Lagrange equations derived from Equation  where the independent variable is . This implies that
for 

where the extended generalized force  shown on the right-hand side of Equation , accounts for all forces not included
in the potential energy term in the Lagrangian. The extended generalized force  can be factored into two terms as discussed in
chapter , equation . The Lagrange multiplier term includes  holonomic constraint forces where the 
holonomic constraints, which do no work, are expressed in terms of the  algebraic equations of holonomic constraint . The 

 term includes the remaining constraint forces and generalized forces that are not included in the Lagrange multiplier term or
the potential energy term of the Lagrangian.

For the case where , since , then Equation  reduces to

These Euler-Lagrange equations of motion ,  determine the  generalized coordinates , plus 
 in terms of the independent variable .

If the holonomic equations of constraint are time independent, that is  and if , then the  term of the Euler-
Lagrange equations simplifies to

One interpretation is to select  to be primary. Then  is derived from  using Equation  and  must satisfy the identity
given by Equation  while the Euler-Lagrange equations containing  yield an identity which implies that  does not
provide an equation of motion in terms of . Conversely, if  is chosen to be primary, then  is no longer a homogeneous
function and Equation  serves as a constraint on the motion that can be used to deduce , while  yields a non-trivial
equation of motion in terms of . In both cases the occurrence of a constraint surface results from the fact that the extended

=pμ
∂L

∂ ( )∂qμ

∂t

(17.6.13)

L H

L
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1 ≤ μ ≤ n 17.6.9
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∂L

∂ ( )
dqμ

ds
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∂ ( )
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μ = 0
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⎠
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space has  variables to describe  degrees of freedom, that is, one more degree of freedom than required for the actual
system.

The standard Lagrangian  is not Lorentz invariant. The extended Lagrangian  introduces the
independent variable  which treats both the space variables  and time variable  equally. This can be achieved
by defining the non-standard Lagrangian

The constant third term in the bracket is included to ensure that the extended Lagrangian converges to the standard Lagrangian
in the limit .

Note that the extended Lagrangian  is not homogeneous to first order in the velocities  as is required. Equation 
must be used to ensure that Equation  is homogeneous. That is, it must satisfy the constraint relation

Inserting  into the extended Lagrangian  yields that the square bracket in Equation  must equal 2. Thus

The constraint Equation  implies that

Using Equation  gives that the relativistic Lagrangian is

Equation  is the conventional relativistic Lagrangian derived by assuming that the system evolution parameter  is
transformed to be along the world line , where the invariant length  replaces the proper time interval

The definition of the generalized (canonical) momentum

leads to the relativistic expression for momentum given in equation .

The relativistic Lagrangian is an important example of a non-standard Lagrangian. Equation  does not equal the difference
between the kinetic and potential energies, that is, the relativistic expression for kinetic energy is given by  to be

The non-standard relativistic Lagrangian  can be used with the Euler-Lagrange equations to derive the second-order equations
of motion for both relativistic and non-relativistic problems within the Special Theory of Relativity.

2n+2 2n+1

Example : Lagrangian for a relativistic free particle17.6.1
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s q(s) = ct(s)q0

L(q, , t, ) = m [ − −1]
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√
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γ
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L
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γ
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γ
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A charged particle moving at relativistic speed in an external electromagnetic field provides an example of the use of the
relativistic Lagrangian.

In the discussion of classical mechanics it was shown that the velocity-dependent Lorentz force can be absorbed into the scalar
electric potential  plus the vector magnetic potential . That is, the potential energy is given by equation  to be 

. Including this in the Lagrangian, , gives

The three spatial partial derivatives can be written in vector notation as

and the generalized momentum is given by

which is identical to the non-relativistic answer given by equation 7.6. That is, it includes the momentum of the
electromagnetic field plus the classical linear momentum of the moving particle.

The total time derivative of the generalized momentum is

where the last term is given by the chain rule

Using equations , ,  in the Euler-Lagrange equation gives

Collecting terms and using the well-known vector-product identity, plus the definition , gives

If we adopt the definition that the relativistic canonical momentum is  then the left hand side is the relativistic force
while the right-hand side is the well-known Lorentz force of electromagnetism. Thus the extended Lagrangian formulation
correctly reproduces the well-known Lorentz force for a charged particle moving in an electromagnetic field.

Chapters  and  reproduce the Struckmeier presentation.[Str08]

These formula involve total and partial derivatives with respect to both time,  and parameter . For clarity, the derivatives are
written out in full because Lanczos[La49] and Johns[Jo05] use the opposite convention for the dot and prime superscripts as
abbreviations for the differentials with respect to  and . The blackboard bold format is used to designate the extended versions of
the action , Lagrangian  and Hamiltonian .

Example : Relativistic particle in an external elctromagnetic field17.6.2

Φ A (17.3.4)
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17.7: Lorentz-invariant formulations of Hamiltonian Mechanics

Extended Canonical Formalism

A Lorentz-invariant formulation of Hamiltonian mechanics can be developed that is built upon the extended Lagrangian formalism
assuming that the Hamiltonian and Lagrangian are related by a Legendre transformation. That is,

where the generalized momentum is defined by

Struckmeier[Str08] assumes that the definitions of the extended Lagrangian , and the extended Hamiltonian , are related by a
Legendre transformation, and are based on variational principles, analogous to the relation that exists between the conventional
Lagrangian  and Hamiltonian . The Legendre transformation requires defining the extended generalized (canonical)

momentum-energy four vector . The momentum components of the momentum-energy four vector 

 are given by the  components using either the conventional or the extended Lagrangians as given
in Equation 

The  component of the momentum-energy four vector is given by equation 

where  represents the instantaneous generalized energy of the conventional Hamiltonian at the point , but not the functional
form of . That is

Note that  does not give the function . Equations  and  give that

The extended Hamiltonian , in an extended phase space, can be defined by the Legendre transformation and the
four-vector  to be

where the  term has been written explicitly as  in Equation . The extended Hamiltonian  can carry

all the information on the dynamical system that is carried by the extended Lagrangian , if the Hesse matrix is non-
singular. That is, if

H(q, p, t) = −L(q, , t)∑
μ=1

n

pμ
∂qμ

∂t

∂q

∂t
(17.7.1)
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dqμ
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If the extended Lagrangian  is not homogeneous in the  velocities , then the extended set of Euler-
Lagrange equations  is not redundant. Thus equation  is not an identity but it can be regarded as an implicit
equation that is always satisfied by the extended set of Euler-Lagrange equations. As a result, the Legendre transformation to an
extended Hamiltonian exists. That is, equation  is identical to the Legendre transform for  which was
shown to equal zero. Therefore

which means that the extended Hamiltonian  directly defines the restricted hypersurface on which the particle
motion is confined.

The extended canonical equations of motion, derived using the extended Hamiltonian  with the usual
Hamiltonian mechanics relations, are:

These canonical equations give that the total derivative of  with respect to , is

That is, in contrast to the total time derivative of , the total  derivative of the extended Hamiltonian 
 always vanishes, that is,  is autonomous which is ideal for use with

Hamilton’s equations of motion. The constraints give that , (Equation ) and ,
(Equation ) implying that the correlation between the extended and conventional Hamiltonians is given by

since only the term with  does not cancel in Equation . Equations  and  give that both the left and right-
hand sides of Equation  are zero while Equation  implies that  is a constant of motion,
that is,  is a cyclic variable for . Formally one can consider the extended Hamiltonian is a constant
which equals zero

det  ≠ 0
⎛

⎝
⎜

L∂2

∂ ( )∂ ( )dqμ
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dqν
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⎞

⎠
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Equations ,  imply that  form a pair of canonically conjugate variables in addition to the newly-introduced
canonically-conjugate variables . Equation  shows that the motion in the  extended phase space is
constrained to the surface reflecting the fact that the observed system has one less degree of freedom than used by the extended
Hamiltonian.

In summary, the Lorentz-invariant extended canonical formalism leads to Hamilton’s first-order equations of motion in terms of
derivatives with respect to , where  is related to the proper time  for a relativistic system.

Extended Poisson Bracket representation

Struckmeier[Str08] investigated the usefulness of the extended formalism when applied to the Poisson bracket representation of
Hamiltonian mechanics. The extended Poisson bracket for two differentiable functions  and  is defined as

As for the conventional Poisson bracket discussed in chapter , the extended Poisson also leads to the fundamental Poisson
bracket relations

where . These are identical to the non-extended fundamental Poisson brackets.

The discussion of observables in Hamiltonian mechanics in chapter  can be trivially expanded to the extended Poisson
bracket representation. In particular, the total  derivative of the function  is given by

If  commutes with the extended Hamiltonian, that is, the Poisson bracket equals zero, and if , then . That is, the
observable  is a constant of motion.

Substitute the fundamental variables for  gives

where . These are Hamilton’s extended canonical equations of motion expressed in terms of the system evolution
parameter . The extended Poisson bracket representation is a trivial extension of the conventional canonical equations presented in
chapter .

Extended canonical transformation and Hamilton-Jacobi theory
Struckmeier[Str08] presented plausible extended versions of canonical transformation and Hamilton-Jacobi theories that can be
used to provide a Lorentz-invariant formulation of Hamiltonian mechanics for relativistic one-body systems. A detailed description
can be found in Struckmeier[Str08].

Validity of the extended Hamilton-Lagrange formalism

It has been shown that the extended Lagrangian and Hamiltonian formalism, based on the parametric model of Lanczos[La49],
leads to a plausible manifestly-covariant approach for the one-body system. The general features developed for handling
Lagrangian and Hamiltonian mechanics carry over to the Special Theory of Relativity assuming the use of a non-standard,
extended Lagrangian or Hamiltonian. This expansion of the range of validity of the well-known Hamiltonian and Lagrangian
mechanics into the relativistic domain is important, and reduces any Lorentz transformation to a canonical transformation. The
validity of this extended Hamilton-Lagrange formalism has been criticized, and problems exist extending this approach to the -
body system for . For example, as discussed by Goldstein[Go50] and Johns[Jo05], each of the  moving bodies have their
own world lines and momenta. Defining the total momentum  requires knowing simultaneously the momenta of the individual
bodies, but simultaneity is body dependent and thus even the total momentum is not a simple four vector. A general method is
required that will allow using a manifestly-covariant Lagrangian or Hamiltonian for the -body system. For the one-body system,
the extended Hamilton-Lagrange formalism provides a powerful and logical approach to exploit analytical mechanics in the
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relativistic domain that retains the form of the conventional Lagrangian/Hamiltonian formalisms. Note that Noether’s theorem
relating energy and time is readily apparent using the extended formalism.

The classical relativistic hydrogen atom was first solved by Sommerfeld in 1916. Sommerfeld used Bohr’s “old quantum
theory” plus Hamiltonian mechanics to make an important step in the development of quantum mechanics by obtaining the
first-order expressions for the fine structure of the hydrogen atom. As in the non-relativistic case, the motion is confined to a
plane allowing use of planar polar coordinates. Thus the relativistic Lagrangian is given by

The canonical momenta are given by

As for the non-relativistic case,  is a cyclic variable and thus the angular momentum  is conserved.

Figure : The advance of the perihelion of bound orbits due to the dependence of the relativistic mass on velocity.

The relativistic Hamiltonian for the Coulomb potential between an electron and the proton, assuming that the motion is
confined to a plane, which allows use of planar polar coordinates, leads to

The same equations of motion are obtained using Hamiltonian mechanics, that is:

Example : The Bohr-Sommerfeld hydrogen atom17.7.1
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The radial dependence can be solved using either Lagrangian or Hamiltonian mechanics, but the solution is non-trivial. Using
the same techniques applied to solve Kepler’s problem, leads to the radial solution

The apses are  for , , and  for . The perihelion advances

between cycles due to the change in relativistic mass during the trajectory as shown in (Figure ). This precession leads to
the fine structure observed in the optical spectra of the hydrogen atom. The same precession of the perihelion occurs for
planetary motion, however, there is a comparable size effect due to gravity that requires use of general relativity to compute the
trajectories.

Note that Greiner[Gr10] includes a reproduction of the Struckmeier paper[Str08].
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17.8: The General Theory of Relativity
The Special Theory of Relativity is restricted to inertial frames that are in uniform non-accelerated motion, and are assumed to
exist over all of space-time. In 1916 Einstein published the General Theory of Relativity which expands the scope of relativistic
mechanics to include non-inertial accelerating frames plus a unified theory of gravitation. The General Theory of Relativity
incorporates both the Special Theory of Relativity as well as Newton’s Law of Universal Gravitation. It provides a unified theory
of gravitation that is a geometric property of space and time. In particular, the curvature of space-time is directly related to the four-
momentum of matter and radiation. Unfortunately, Einstein’s equations of general relativity are nonlinear partial differential
equations that are difficult to solve exactly, and the theory requires knowledge of Riemannian geometry that goes beyond the scope
of this book. However, it is useful to summarize the fundamental concepts upon which the theory is based, and some of the
observable implications since the General Theory of Relativity is an important branch of classical mechanics.

The Fundamental Concepts
The development of general relativity by Einstein was strongly influenced by the following five principles.

Mach’s Principle

The 1883 work "The Science of Mechanics" by the philosopher/physicist, Ernst Mach, criticized Newton’s concept of an absolute
frame of reference, and suggested that local physical laws are determined by the large-scale structure of the universe. The concept
is that local motion of a rotating frame is determined by the large-scale distribution of matter, that is, relative to the fixed stars.
Einstein’s interpretation of Mach’s statement was that the inertial properties of a body is determined by the presence of other bodies
in the universe, and he named this concept Mach’s Principle. Mach’s Principle has never been developed into a quantitative
physical theory that would explain a mechanism by which the large-scale distribution of matter can produce such an effect. 

Equivalence Principle

The equivalence principle comprises closely-related concepts dealing with the equivalence of gravitational and inertial mass. The
weak equivalence principle states that the inertial mass and gravitational mass of a body are identical, leading to acceleration that
is independent of the nature of the body. This experimental fact usually is attributed to Galileo. Recent measurements have shown
that this weak equivalence principle is obeyed to a sensitivity of . Einstein’s equivalence principle states that the
outcome of any local non-gravitational experiment, in a freely falling laboratory, is independent of the velocity of the laboratory
and its location in space-time. This principle implies that the result of local experiments must be independent of the velocity of the
apparatus. Einstein’s equivalence principle has been tested by searching for variations of dimensionless fundamental constants such
as the fine structure constant. The strong equivalence principle combines the weak equivalence and Einstein equivalence
principles, and implies that the gravitational constant is constant everywhere in the universe. The strong equivalence principle
suggests that gravity is geometrical in nature and does not involve any fifth force in nature. Einstein’s General Theory of Relativity
satisfies the strong equivalence principle. Tests of the strong equivalence principle have involved searches for variations in the
gravitational constant  and masses of fundamental particles throughout the life of the universe.

Principle of Covariance

A physical law expressed in a covariant formulation has the same mathematical form in all coordinate systems, and is usually
expressed in terms of tensor fields. Maxwell’s equations of electromagnetism are an example of such a covariant formulation. In
the Special Theory of Relativity, the Lorentz, rotational, translational and reflection transformations between inertial coordinate
frames all are covariant. The covariant quantities are the 4-scalars, and 4-vectors in Minkowski space-time. Einstein recognized
that the principle of covariance, that is built into the Special Theory of Relativity, should apply equally to accelerated relative
motion in the General Theory of Relativity. He exploited tensor calculus to extend the Lorentz covariance to the more general local
covariance in the General Theory of Relativity. The reduction locally of the general metric tensor to the Minkowski metric
corresponds to free-falling motion, that is geodesic motion, and thus encompasses gravitation. Unified field theory involves
attempts to extend the General Theory of Relativity to incorporate other physical phenomena within a covariant framework in a
purely geometric representation in space-time.

Correspondence principle

The Correspondence Principle states that the predictions of any new scientific theory must reduce to the pre dictions of well
established earlier theories under circumstances for which the preceding theory was known to be valid. This also is referred to as
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the "correspondence limit". The Correspondence Principle is an important concept used both in quantum mechanics and relativistic
mechanics. Einstein’s Special Theory of Relativity satisfies the Correspondence Principle because it reduces to classical mechanics
in the limit of velocities small compared to the speed of light. The Correspondence Principle requires that the Gen eral Theory of
Relativity must reduce to the Special Theory of Relativity for inertial frames, and should approximate Newton’s Theory of
Gravitation in weak fields and at low velocities.

Principle of Minimal Gravitational Coupling

The principle of minimal gravitational coupling requires that the total Lagrangian for the field equations of general relativity
consist of two additive parts, one part corresponding to the free gravitational Lagrangian, and the other part to external source fields
in curved space-time. That is, no terms explicitly containing the curvature of space-time should be added in the extension from the
special to general theories of relativity.

Einstein’s postulates for the General Theory of Relativity
Einstein realized that the Equivalence Principle relating the gravitational and inertial masses implies that the constancy of the
velocity of light in vacuum cannot hold in the presence of a gravitational field. That is, the Minkowskian line element must be
replaced by a more general line element that takes gravity into account. Einstein proposed that the Minkowskian line element in
four-dimensional space-time, be replaced by introducing a four-dimensional Riemannian geometrical structure where space, time,
and matter are combined. As described by Lancos[La49], [Har03], [Mu08] this astonishingly bold proposal implies that planetary
motion is described as purely a geodesic phenomenon in a certain four-space of Riemannian structure, where the geodesic is the
equation of a curve on a manifold for any possible set of coordinates. This implies that the concept of "gravitational force" is
discarded, and planetary motion is a manifestation of a pure geodesic phenomenon for forceless motion in a four-dimensional
Riemannian structure.

Chapter  showed that the Lagrangian and Hamiltonian representations of variational mechanics are powerful approaches for
determining the equation governing geodesic constrained motion. In addition, these representations are independent of the chosen
frame of reference as required by the General Theory of Relativity. Thus variational mechanics is the preeminent theoretical
representation of the General Theory of Relativity and the predictions are consistent with the fundamental concepts described in
chapter . 

To summarize, the Special Theory of Relativity implies that the Newtonian concepts of absolute frame of reference and separation
of space and time are invalid. The General Theory of Relativity goes beyond the Special Theory by implying that the gravitational
force, and the resultant planetary motion, can be described as pure geodesic phenomena for forceless motion in a four-dimensional
Riemannian structure.

Experimental evidence
The evidence in support of Einstein’s Theory of General Relativity is compelling. The following are typical experimental
manifestations of the General Theory of Relativity. 

Kepler problem

In 1915 Einstein showed that relativistic mechanics explained the anomalous advance of the perihelion of the planet mercury, that
is, the axes of the elliptical Kepler orbit precess. Example  discusses the analogue of this effect for the Bohr-Sommerfeld
hydrogen atom.

Deflection of light

Eddington travelled to the island of Príncipe, near Africa, to watch the solar eclipse of 29 May 1919. During the eclipse, he took
pictures of the stars in the region around the Sun. According to the theory of general relativity, stars with light rays that passed near
the Sun would appear to have been slightly shifted because their light had been curved by the sun’s gravitational field. This effect is
noticeable only during eclipses, since otherwise the Sun’s brightness obscures the affected stars. The results confirmed Einstein’s
prediction of the deflection of light in a gravitational field which made Einstein famous. 

Gravitational lensing

The deflection of light by the gravitational attraction of a massive object situated between a distant star and the observer results in
the observation of multiple images of the distant quasar. 
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Gravitational time dilation and frequency shift

Processes occurring in a high gravitation field are slower than in a weak gravitational field; this is called gravitational time dilation.
In addition, light climbing out of a gravitational well is red shifted. The gravitational time dilation has been measured many times
and the continued operation of the Global Position System provides an ongoing validation. The gravitational red shift has been
confirmed in the laboratory using the precise Mössbauer effect in nuclear physics. Tests in stronger gravitational fields are provided
by studies of binary pulsars. All of these measurements confirm the general theory of relativity. 

Gravitational waves detection

In 1916 Einstein predicted the existence of gravitational waves on the basis of the theory of general relativity. The first implied
detection of gravitational waves were made in 1976 by Hulse and Taylor who detected a decrease in the orbital period due to
significant energy loss which presumably was associated with emission of gravity waves by the compact neutron star in the binary
pulsar . The most compelling direct evidence for observation of a gravitational wave was made on 15 September
2015 by the LIGO Laser Interferometer Gravitational-Wave Observatories. The waveform detected by the two LIGO observatories
matched the predictions of General Relativity for gravitational waves emanating from the inward spiral plus merger of a pair of
black holes of around 36 and 29 solar masses, followed by the resultant binary black hole. The gravitational wave emitted by this
cataclysmic merger reached Earth as a ripple in space-time that changed the length of the   LIGO arm by a thousandth of the
width of the proton. The gravitational energy emitted was  solar masses. A second observation of gravitational waves was
made on 26 December 2015, and four similar observations were made during 2017. The detection of such miniscule changes in
space-time is a truly remarkable achievement. This direct detection of gravitational waves resulted in the award of the 2017 Nobel
Prize to Rainer Weiss, Barry Barish, and Kip Thorn. 

Black holes

If the mass to radius ratio of a massive object becomes sufficiently large, general relativity predicts formation of a black hole,
which is a region of space from which neither light nor matter can escape. A supermassive black hole, with a mass that is 

 solar masses, is thought to have played an important role in formation of the M87 galaxy. This black hole at the core of
the massive elliptical M87 galaxy was observed April 2017 by the Event Horizon Telescope (EHT). Figure  shows a
polarized light image of this black hole, revealing a ring-like structure consistent with synchrotron emission from relativistic
electrons that are gyrating around the inner edge of a vortex of magnetic field lines in the vicinity of the event horizon. (The
Astrophysical Journal Letters, 910:L12, 20 March 2021).
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Figure : Polarized-light image of the M87 black hole
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17.9: Implications of Relativistic Theory to Classical Mechanics
Einstein’s theories of relativity have had an enormous impact on twentieth century physics and the philosophy of science.
Relativistic mechanics is crucial to an understanding of the physics of the atom, nucleus and the substructure of the nucleons, but
the impacts are minimal in everyday experience. As a consequence the enormous philosophical implications of Einstein’s theories
of relativity may not be as readily apparent as other major developments during the 20  century. In spite of this, it is important to
be cognizant of the consequences of these theories of nature. The Special Theory of Relativity replaces Newton’s Laws of motion;
i.e. Newton’s law is only an approximation applicable for low velocities. The General Theory of Relativity replaces Newton’s Law
of Gravitation and provides a natural explanation of the equivalence principle. Einstein’s theories of relativity imply a profound and
fundamental change in the view of the separation of space, time, and mass, that contradicts the basic tenets that are the foundation
of Newtonian mechanics. The Newtonian concepts of absolute frame of reference, plus the separation of space, time, and mass, are
invalid at high velocities. Lagrangian and Hamiltonian variational approaches to classical mechanics provide the formalism
necessary for handling relativistic mechanics. The present chapter has shown that logical extensions of Lagrangian and
Hamiltonian mechanics lead to the relativistically-invariant extended Lagrangian and Hamiltonian formulations of mechanics
which is adequate for handling one-body systems within the Special Theory of Relativity. However, major unsolved problems
remain applying these formulations to systems having more than one body. 

This page titled 17.9: Implications of Relativistic Theory to Classical Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored,
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17.E: Relativistic Mechanics (Exercises)
1. A relativistic snake of proper length   is travelling to the right across a butcher’s table at . You hold two meat
cleavers, one in each hand which are   apart. You strike the table simultaneously with both cleavers at the moment when the
left cleaver lands just behind the tail of the snake. You rationalize that since the snake is moving with , then the length of
the snake is Lorentz contracted by the factor  and thus the Lorentz-contracted length of the snake is   and thus will not
be harmed. However, the snake reasons that relative to it the cleavers are moving at  and thus are only   apart when
they strike the   long snake and thus it will be severed. Use the Lorentz transformation to resolve this paradox.

2. Explain what is meant by the following statement: “Lorentz transformations are orthogonal transformations in Minkowski
space.”

3. Which of the following are invariant quantities in space-time?

a. Energy
b. Momentum
c. Mass
d. Force
e. Charge
f. The length of a vector
g. The length of a four-vector

4. What does it mean for two events to have a spacelike interval? What does it mean for them to have a timelike interval? Draw a
picture to support your answer. In which case can events be causally connected?

5. A supply rocket flies past two markers on the Space Station that are   apart in a time of   as measured by an observer
on the Space station.

a. What is the separation of the two markers as seen by the pilot riding in the supply rocket?
b. What is the elapsed time as measured by the pilot in the supply rocket?
c. What are the speeds calculated by the observer in the Space Station and the pilot of the supply rocket?

6. The Compton effect involves a photon of incident energy  being scattered by an electron of mass  which initially is
stationary. The photon scattered at an angle  with respect to the incident photon has a final energy . Using the special theory of
relativity derive a formula that related  and  to .

7. Pair creation involves production of an electron-positron pair by a photon. Show that such a process is impossible unless some
other body, such as a nucleus, is involved. Suppose that the nucleus has a mass  and the electron mass . What is the minimum
energy that the photon must have in order to produce an electron-positron pair?

8. A  meson of rest energy   decays into a  meson of rest energy   and a neutrino of zero rest energy. Find
the kinetic energies of the  meson and the neutrino into which the  meson decays while at rest.

This page titled 17.E: Relativistic Mechanics (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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17.S: Relativistic Mechanics (Summary)

Special Theory of Relativity

The Special Theory of Relativity is based on Einstein’s postulates;

1. The laws of nature are the same in all inertial frames of reference.
2. The velocity of light in vacuum is the same in all inertial frames of reference.

For a primed frame moving along the  axis with velocity  Einstein’s postulates imply the following Lorentz transformations
between the moving (primed) and stationary (unprimed) frames

Table 

where the Lorentz  factor 

Lorentz transformations were used to illustrate Lorentz contraction, time dilation, and simultaneity. An elementary review was
given of relativistic kinematics including discussion of velocity transformation, linear momentum, center-of-momentum frame,
forces and energy.

Geometry of space-time

The concepts of four-dimensional space-time were introduced. A discussion of four-vector scalar products introduced the use of
contravariant and covariant tensors plus the Minkowski metric  where the scalar product was defined. The Minkowski
representation of space time and the momentum-energy four vector also were introduced.

Lorentz-invariant formulation of Lagrangian mechanics
The Lorentz-invariant extended Lagrangian formalism, developed by Struckmeier[Str08], based on the parametric approach
pioneered by Lanczos[La49], provides a viable Lorentz-invariant extension of conventional Lagrangian mechanics that is
applicable for one-body motion in the realm of the Special Theory of Relativity.

Lorentz-invariant formulation of Hamiltonian mechanics

The Lorentz-invariant extended Hamiltonian formalism, developed by Struckmeier based on the parametric approach pioneered by
Lanczos, was introduced. It provides a viable Lorentz-invariant extension of conventional Hamiltonian mechanics that is applicable
for one-body motion in the realm of the Special Theory of Relativity. In particular, it was shown that the Lorentz-invariant
extended Hamiltonian is conserved making it ideally suited for solving complicated systems using Hamiltonian mechanics via use
of the Poisson-bracket representation of Hamiltonian mechanics, canonical transformations, and the Hamilton-Jacobi techniques.

The General Theory of Relativity
An elementary summary was given of the fundamental concepts of the General Theory of Relativity and the resultant unified
description of the gravitational force plus planetary motion as geodesic motion in a four-dimensional Riemannian structure.
Variational mechanics were shown to be ideally suited to applications of the General Theory of Relativity.

Philosophical implications
Newton’s equations of motion, and his Law of Gravitation, that reigned supreme from 1687 to 1905, have been toppled from the
throne by Einstein’s theories of relativistic mechanics. By contrast, the complete independence to coordinate frames in Lagrangian,
and Hamiltonian formulations of classical mechanics, plus the underlying Principle of Least Action, are equally valid in both the
relativistic and non-relativistic regimes. As a consequence, relativistic Lagrangian and Hamiltonian formulations underlie much of
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modern physics, especially quantum physics, which explains why relativistic mechanics plays such an important role in classical
dynamics.
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Thumbnail: Depiction of a hydrogen atom with size of central proton shown, and the atomic diameter shown as about twice the
Bohr model radius (image not to scale). (Public Domain; Bensaccount).      
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18.1: Introduction to Quantum Physics
Classical mechanics, including extensions to relativistic velocities, embrace an unusually broad range of topics ranging from
astrophysics to nuclear and particle physics, from one-body to many-body statistical mechanics. It is interesting to discuss the role
of classical mechanics in the development of quantum mechanics which plays a crucial role in physics. A valid question is “why
discuss quantum mechanics in a classical mechanics course?”. The answer is that quantum mechanics supersedes classical
mechanics as the fundamental theory of mechanics. Classical mechanics is an approximation applicable for situations where
quantization is unimportant. Thus there must be a correspondence principle that relates quantum mechanics to classical mechanics,
analogous to the relation between relativistic and non-relativistic mechanics. It is illuminating to study the role played by the
Hamiltonian formulation of classical mechanics in the development of quantal theory and statistical mechanics. The Hamiltonian
formulation is expressed in terms of the phase-space variables  for which there are well-established rules for transforming to
quantal linear operators.

This page titled 18.1: Introduction to Quantum Physics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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18.2: Brief summary of the origins of quantum theory
The last decade of the  century saw the culmination of classical physics. By 1900 scientists thought that the basic laws of
mechanics, electromagnetism, and statistical mechanics were understood and worried that future physics would be reduced to
confirming theories to the fifth decimal place, with few major new discoveries to be made. However, technical developments such
as photography, vacuum pumps, induction coil, etc., led to important discoveries that revolutionized physics and toppled classical
mechanics from its throne at the beginning of the  century. Table  summarizes some of the major milestones leading up
to the development of quantum mechanics.

Max Planck searched for an explanation of the spectral shape of the black-body electromagnetic radiation. He found an
interpolation between two conflicting theories, one that reproduced the short wavelength behavior, and the other the long
wavelength behavior. Planck’s interpolation required assuming that electromagnetic radiation was not emitted with a continuous
range of energies, but that electromagnetic radiation is emitted in discrete bundles of energy called quanta. In December 1900 he
presented his theory which reproduced precisely the measured black body spectral distribution by assuming that the energy carried
by a single quantum must be an integer multiple of :

where  is the frequency of the electromagnetic radiation and Planck’s constant,   was the best fit parameter
of the interpolation. That is, Planck assumed that energy comes in discrete bundles of energy equal to  which are called quanta.
By making this extreme assumption, in an act of desperation, Planck was able to reproduce the experimental black body radiation
spectrum. The assumption that energy was exchanged in bundles hinted that the classical laws of physics were inadequate in the
microscopic domain. The older generation physicists initially refused to believe Planck’s hypothesis which underlies quantum
theory. It was the new generation physicists, like Einstein, Bohr, Heisenberg, Born, Schrödinger, and Dirac, who developed
Planck’s hypothesis leading to the revolutionary quantum theory.

In 1905, Einstein predicted the existence of the photon, derived the theory of specific heat, as well as deriving the Theory of
Special Relativity. It is remarkable to realize that he developed these three revolutionary theories in one year, when he was only 26
years old. Einstein uncovered an inconsistency in Planck’s derivation of the black body spectral distribution in that it assumed the
statistical part of the energy is quantized, whereas the electromagnetic radiation assumed Maxwell’s equations with oscillator
energies being continuous. Planck demanded that light of frequency  be packaged in quanta whose energies were multiples of ,
but Planck never thought that light would have particle-like behavior. Newton believed that light involved corpuscles, and
Hamilton developed the Hamilton-Jacobi theory seeking to describe light in terms of the corpuscle theory. However, Maxwell had
convinced physicists that light was a wave phenomena; interference plus diffraction effects were convincing manifestations of the
wave-like properties of light. In order to reproduce Planck’s prediction, Einstein had to treat black-body radiation as if it consisted
of a gas of photons, each photon having energy . This was a revolutionary concept that returned to Newton’s corpuscle
theory of light. Einstein realized that there were direct tests of his photon hypothesis, one of which is the photo-electric effect.
According to Einstein, each photon has an energy , in contrast to the classical case where the energy of the photoelectron
depends on the intensity of the light. Einstein predicted that the ejected electron will have a kinetic energy

where  is the work function which is the energy needed to remove an electron from a solid.

Many older scientists, including Planck, accepted Einstein’s theory of relativity but were skeptical of the photon concept, even after
Einstein’s photon concept was vindicated in 1915 by Millikan who showed that, as predicted, the energy of the ejected
photoelectron depended on the frequency, and not intensity, of the light. In 1923 Compton’s demonstrated that electromagnetic
radiation scattered by free electrons obeyed simple two-body scattering laws which finally convinced the many skeptics of the
existence of the photon.

Date Author Development

1887 Hertz Discovered the photo-electric effect

1895 Röntgen Discovered x-rays

Table : Chronology of the development of quantum mechanics

19th

20th 18.2.1
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Date Author Development

1896 Becquerel Discovered radioactivity

1897 J.J. Thomson
Discovered the first fundamental particle,

the electron

1898 Pierre & Marie Curie
Showed that thorium is radioactive which

founded nuclear physics

1900 Planck
Quantization  explained the black-

body spectrum

1905 Einstein Theory of special relativity

1905 Einstein Predicted the existence of the photon

1906 Einstein
Used Planck’s constant to explain specific

heats of solids

1909 Millikan
The oil drop experiment measured the

charge on the electron

1911 Rutherford
Discovered the atomic nucleus with radius 

 

1912 Bohr
Bohr model of the atom explained the

quantized states of hydrogen

1914 Moseley
X-ray spectra determined the atomic

number of the elements.

1915 Millikan
Used the photo-electric effect to confirm

the photon hypothesis.

1915 Wilson-Sommerfeld
Proposed quantization of the action-angle

integral

1921 Stern-Gerlach
Observed space quantization in non-

uniform magnetic field

1923 Compton
Compton scattering of x-rays confirmed the

photon hypothesis

1924 de Broglie
Postulated wave-particle duality for matter

and EM waves

1924 Bohr
Explicit statement of the correspondence

principle

1925 Pauli Postulated the exclusion principle

1925 Goudsmit-Uhlenbeck
Postulated the spin of the electron of 

1925 Heisenberg
Matrix mechanics representation of

quantum theory

1925 Dirac
Related Poisson brackets and commutation

relations

1926 Schrödinger Wave mechanics

1927 G.P. Thomson/Davisson
Electron diffraction proved wave nature of

electron

E = hν

10−15 m

s = ℏ1
2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9671?pdf


18.2.3 https://phys.libretexts.org/@go/page/9671

Date Author Development

1928 Dirac
Developed the Dirac relativistic wave

equation

Bohr model of the atom

The Rutherford scattering experiment, performed at Manchester in 1911, discovered that the Au atom comprised a positively
charge nucleus of radius   which is much smaller than the   radius of the Au atom. Stimulated by this
discovery, Niels Bohr joined Rutherford at Manchester in 1912 where he developed the Bohr model of the atom. This theory was
remarkably successful in spite of having serious inconsistencies and deficiencies. Bohr’s model assumptions were:

1. Electromagnetic radiation is quantized with .
2. Electromagnetic radiation exhibits behavior characteristic of the emission of photons with energy  and momentum 

. That is, it exhibits both wave-like and particle-like behavior.
3. Electrons are in stationary orbits that do not radiate, which contradicts the predictions of classical electromagnetism.
4. The orbits are quantized such that the electron angular momentum is an integer multiple of .
5. Atomic electromagnetic radiation is emitted with photon energy equal to the difference in binding energy between the two

atomic levels involved. 

The first two assumptions are due to Planck and Einstein, while the last three were made by Niels Bohr.

The deficiencies of the Bohr model were the philosophical problems of violating the tenets of classical physics in explaining
hydrogen-like atoms, that is, the theory was prescriptive, not deductive. The Bohr model was based implicitly on the assumption
that quantum theory contains classical mechanics as a limiting case. Bohr explicitly stated this assumption which he called the
correspondence principle, and which played a pivotal role in the development of the older quantum theory. In 1924 Bohr justified
the inconsistencies of the old quantum theory by writing “As frequently emphasized, these principles, although they are formulated
by the help of classical conceptions, are to be regarded purely as laws of quantum theory, which give us, not withstanding the
formal nature of quantum theory, a hope in the future of a consistent theory, which at the same time reproduces the characteristic
features of quantum theory, important for its applicability, and, nevertheless, can be regarded as a rational generalization of
classical electrodynamics.”

The old quantum theory was remarkably successful in reproducing the black-body spectrum, specific heats of solids, the hydrogen
atom, and the periodic table of the elements. Unfortunately, from a methodological point of view, the theory was a hodgepodge of
hypotheses, principles, theorems, and computational recipes, rather than a logical consistent theory. Every problem was first solved
in terms of classical mechanics, and then would pass through a mysterious quantization procedure involving the correspondence
principle. Although built on the foundation of classical mechanics, it required Bohr’s hypotheses which violated the laws of
classical mechanics and predictions of Maxwell’s equations.

Quantization
By 1912 Planck, and others, had abandoned the concept that quantum theory was a branch of classical mechanics, and were
searching to see if classical mechanics was a special case of a more general quantum physics, or quantum physics was a science
altogether outside of classical mechanics. Also they were trying to find a consistent and rational reason for quantization to replace
the ad hoc assumption of Bohr.

In 1912 Sommerfeld proposed that, in every elementary process, the atom gains or loses a definite amount of action between times 
 and  of

where  is the quantal analogue of the classical action function. It has been shown that the classical principle of least action states
that the action function is stationary for small variations of the trajectory. In 1915 Wilson and Sommerfeld recognized that the
quantization of angular momentum could be expressed in terms of the action-angle integral, that is equation . They
postulated that, for every coordinate, the action-angle variable is quantized

≈ 10−14 m 1.35 ×10−10 m

E = hν
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p = hν
c

= ℏh

2π
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where the action-angle variable integral is over one complete period of the motion. That is, they postulated that Hamilton’s phase
space is quantized, but the microscopic granularity is such that the quantization is only manifest for atomic-sized domains. That is, 

 is a small integer for atomic systems in contrast to  for the Earth-Sun two-body system.

Sommerfeld recognized that quantization of more than one degree of freedom is needed to obtain a more accurate description of the
hydrogen atom. Sommerfeld reproduced the experimental data by assuming quantization of the three degrees of freedom,

and solving Hamilton-Jacobi theory by separation of variables. In 1916 the Bohr-Sommerfeld model solved the classical orbits for
the hydrogen atom, including relativistic corrections as described in example . This reproduced fine structure observed in the
optical spectra of hydrogen. The use of the canonical transformation to action-angle variables proved to be the ideal approach for
solving many such problems in quantum mechanics. In 1921, Stern and Gerlach demonstrated space quantization by observing the
splitting of atomic beams deflected by non-uniform magnetic fields. This result was a major triumph for quantum theory.
Sommerfeld declared that “With their bold experimental method, Stern and Gerlach demonstrated not only the existence of space
quantization, they also proved the atomic nature of the magnetic moment, its quantum-theoretic origin, and its relation to the
atomic structure of electricity.”

In 1925, Pauli’s Exclusion Principle proposed that no more than one electron can have identical quantum numbers and that the
atomic electronic state is specified by four quantum numbers. Two students, Goudsmit and Uhlenbeck suggested that a fourth two-
valued quantum number was the electron spin of . This provided a plausible explanation for the structure of multi-electron
atoms.

Wave-particle duality

In his 1924 doctoral thesis, Prince Louis de Broglie proposed the hypothesis of wave-particle duality which was a pivotal
development in quantum theory. de Broglie used the classical concept of a matter wavepacket, analogous to classical wave packets
discussed in chapter . He assumed that both the group and signal velocities of a matter wave packet must equal the velocity of
the corresponding particle. By analogy with Einstein’s relation for the photon, and using the Theory of Special Relativity, de
Broglie assumed that

The group velocity is required to equal the velocity of the mass

This gives

Integration of this equation assuming that  when , then gives

This relation, derived by de Broglie, is required to ensure that the particle travels at the group velocity of the wave packet
characterizing the particle. Note that although the relations used to characterize the matter waves are purely classical, the physical
content of such waves is beyond classical physics. In 1927 C. Davisson and G.P. Thomson independently observed electron
diffraction confirming wave/particle duality for the electron. Ironically, J.J. Thomson discovered that the electron was a particle,
whereas his son attributed it to an electron wave.

∮ d = nhpk qk (18.2.4)

n n ≈ 1064
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Heisenberg developed the modern matrix formulation of quantum theory in 1925; he was 24 years old at the time. A few months
later Schrödinger’s developed wave mechanics based on de Broglie’s concept of wave-particle duality. The matrix mechanics, and
wave mechanics, quantum theories are radically different. Heisenberg’s algebraic approach employs non-commuting quantities and
unfamiliar mathematical techniques that emphasized the discreteness characteristic of the corpuscle aspect. In contrast, Schrödinger
used the familiar analytical approach that is an extension of classical laws of motion and waves which stressed the element of
continuity.

This page titled 18.2: Brief summary of the origins of quantum theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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18.3: Hamiltonian in Quantum Theory

Heisenberg’s Matrix-Mechanics Representation

The algebraic Heisenberg representation of quantum theory is analogous to the algebraic Hamiltonian representation of classical
mechanics, and shows best how quantum theory evolved from, and is related to, classical mechanics. Heisenberg decided to ignore
the prevailing conceptual theories, such as classical mechanics, and based his quantum theory on observables. This approach was
influenced by the success of Bohr’s older quantum theory and Einstein’s theory of relativity. He abandoned the classical notions
that the canonical variables  can be measured directly and simultaneously. Secondly he wished to absorb the correspondence
principle directly into the theory instead of it being an ad hoc procedure tailored to each application. Heisenberg considered the
Fourier decomposition of transition amplitudes between discrete states and found that the product of the conjugate variables do not
commute. Heisenberg derived, for the first time, the correct energy levels of the one-dimensional harmonic oscillator as 

 which was a significant achievement. Born recognized that Heisenberg’s strange multiplication and
commutation rules for two variables, corresponded to matrix algebra. Prior to 1925, matrix algebra was an obscure branch of pure
mathematics not known or used by the physics community. Heisenberg, Born, and the young mathematician Jordan, developed the
commutation rules of matrix mechanics. Heisenberg’s approach represents the classical position and momentum coordinates  by
matrices  and , with corresponding matrix elements  and . Born showed that the trace of the matrix

gives the Hamiltonian function  of the matrices  and  which leads to Hamilton’s canonical equations

Heisenberg and Born also showed that the commutator of  equals

Born realized that Equation  is the only fundamental equation for introducing  into the theory in a logical and consistent
way.

Chapter  discussed the formal correspondence between the Poisson bracket, defined in chapter , and the commutator in
classical mechanics. It was shown that the commutator of two functions equals a constant multiplicative factor  times the
corresponding Poisson Bracket. That is

where the multiplicative factor  is a number independent of , and the commutator.

In 1925, Paul Dirac, a 23-year old graduate student at Bristol, recognized the crucial importance of the above correspondence
between the commutator and the Poisson Bracket of two functions, to relating classical mechanics and quantum mechanics. Dirac
noted that if the constant  is assigned the value , then Equation  directly relates Heisenberg’s commutation relations
between the fundamental canonical variables  to the corresponding classical Poisson Bracket . That is,

Dirac recognized that the correspondence between the classical Poisson bracket, and quantum commutator, given by Equation 
, provides a logical and consistent way that builds quantization directly into the theory, rather than using an ad-hoc, case-

dependent, hypothesis as used by the older quantum theory of Bohr. The basis of Dirac’s quantization principle, involves replacing
the classical Poisson Bracket,  by the commutator, . That is,
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Hamilton’s canonical equations, as introduced in chapter , are only applicable to classical mechanics since they assume that the
exact position and conjugate momentum can be specified both exactly and simultaneously which contradicts the Heisenberg’s
Uncertainty Principle. In contrast, the Poisson bracket generalization of Hamilton’s equations allows for non-commuting variables
plus the corresponding uncertainty principle. That is, the transformation from classical mechanics to quantum mechanics can be
accomplished simply by replacing the classical Poisson Bracket by the quantum commutator, as proposed by Dirac. The formal
analogy between classical Hamiltonian mechanics, and the Heisenberg representation of quantum mechanics is strikingly apparent
using the correspondence between the Poisson Bracket representation of Hamiltonian mechanics and Heisenberg’s matrix
mechanics.

The direct relation between the quantum commutator, and the corresponding classical Poisson Bracket, applies to many
observables. For example, the quantum analogs of Hamilton’s equations of motion are given by use of Hamilton’s equations of
motion, , , and replacing each Poisson Bracket by the corresponding commutator. That is

Chapter  discussed the time dependence of observables in Hamiltonian mechanics. Equation  gave the total time
derivative of any observable  to be

Equation  can be used to replace the Poisson Bracket by the quantum commutator, which gives the corresponding time
dependence of observables in quantum physics.

In quantum mechanics, Equation  is called the Heisenberg equation. Note that if the observable  is chosen to be a
fundamental canonical variable, then  and equation  reduces to Hamilton’s equations  and .

The analogies between classical mechanics and quantum mechanics extend further. For example, if  is a constant of motion, that
is , then Heisenberg’s equation of motion gives

Moreover, if  is not an explicit function of time, then

That is, the transition to quantum physics shows that, if  is a constant of motion, and is not explicitly time dependent, then 
commutes with the Hamiltonian .

The above discussion has illustrated the close and beautiful correspondence between the Poisson Bracket representation of classical
Hamiltonian mechanics, and the Heisenberg representation of quantum mechanics. Dirac provided the elegant and simple
correspondence principle connecting the Poisson bracket representation of classical Hamiltonian mechanics, to the Heisenberg
representation of quantum mechanics.

Schrödinger’s Wave-Mechanics Representation
The wave mechanics formulation of quantum mechanics, by the Austrian theorist Schrödinger, was built on the wave-particle
duality concept that was proposed in 1924 by Louis de Broglie. Schrödinger developed his wave mechanics representation of
quantum physics a year after the development of matrix mechanics by Heisenberg and Born. The Schrödinger wave equation is
based on the non-relativistic Hamilton-Jacobi representation of a wave equation, melded with the operator formalism of Born and
Wiener. The 39-year old Schrödinger was an expert in classical mechanics and wave theory, which was invaluable when he
developed the important Schrödinger equation. As mentioned in chapter , the Hamilton-Jacobi theory is a formalism of
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classical mechanics that allows the motion of a particle to be represented by a wave. That is, the wavefronts are surfaces of constant
action , and the particle momenta are normal to these constant-action surfaces, that is, . The wave-particle duality of
Hamilton-Jacobi theory is a natural way to handle the wave-particle duality proposed by de Broglie.

Consider the classical Hamilton-Jacobi equation for one body, given by .

If the Hamiltonian is time independent, then equation  gives that

The integration of the time dependence is trivial, and thus the action integral for a time-independent Hamiltonian is

A formal transformation gives

Consider that the classical time-independent Hamiltonian, for motion of a single particle, is represented by the Hamilton-Jacobi
equation.

Substitute for  leads to the classical Hamilton-Jacobi relation in terms of the action 

By analogy with the Hamilton-Jacobi equation, Schrödinger proposed the quantum operator equation

where  is an operator given by

In 1926, Max Born and Norbert Wiener introduced the operator formalism into matrix mechanics for prediction of observables and
this has become an integral part of quantum theory. In the operator formalism, the observables are represented by operators that
project the corresponding observable from the wavefunction. That is, the quantum operator formalism for the assumed momentum
and energy operators, that operate on the wavefunction , are

Formal transformations of  and  in the Hamiltonian  leads to the time-independent Schrödinger equation

Assume that the wavefunction is of the form

where the action  gives the phase of the wavefront, and  the amplitude of the wave, as described in chapter . The time
dependence, that characterizes the motion of the wavefront, is contained in the time dependence of . This form for the
wavefunction has the advantage that the wavefunction frequently factors into a product of terms, e.g.  which

S p = ∇S

18.3.11

+H(q, ∇S, t) = 0
∂S

∂t
(18.3.15)

(15.4.2)

= −H(q, p, t) = −E(α)
∂S

∂t
(18.3.16)

S(q, α, t) = W (q, α) −E(α)t (18.3.17)

E = − p = ∇S
∂S

∂t
(18.3.18)

H = +U(q) = −
p2

2μ

∂S

∂t
(18.3.19)

p S

(∇S ⋅ ∇S) +U(q) = −
1

2μ

∂S

∂t
(18.3.20)

iℏ = ψ
∂ψ

∂t
Ĥ (18.3.21)

Ĥ

= − +U(r)Ĥ
ℏ2

2μ
∇2 (18.3.22)

ψ

= E = −pj
ℏ

i

∂

∂qj

ℏ

i

∂

∂t
(18.3.23)

p E 18.3.17

− +U(q)ψ = Eψ
ℏ2

2μ

ψ∂2

∂q2
(18.3.24)

ψ = Ae
iS

ℏ (18.3.25)
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corresponds to a summation of the exponents . This summation form is exploited by separation of the
variables, as discussed in chapter .

Insert  defined by  into Equation , plus using the fact that

leads to

Note that if Planck’s constant , then the imaginary term in Equation  is zero, leading to  being real, and
identical to the Hamilton-Jacobi result, Equation . The fact that Equation  equals the Hamilton-Jacobi equation in
the limit , illustrates the close analogy between the waveparticle duality of the classical Hamilton-Jacobi theory, and de
Broglie’s wave-particle duality in Schrödinger’s quantum wave-mechanics representation.

The Schrödinger approach was accepted in 1925 and exploited extensively with tremendous success, since it is much easier to
grasp conceptually than is the algebraic approach of Heisenberg. Initially there was much conflict between the proponents of these
two contradictory approaches, but this was resolved by Schrödinger who showed in 1926 that there is a formal mathematical
identity between wave mechanics and matrix mechanics. That is, these two quantal representations of Hamiltonian mechanics are
equivalent, even though they are built on either the Poisson bracket representation, or the Hamilton-Jacobi representation. Wave
mechanics is based intimately on the quantization rule of the action variable. Heisenberg’s Uncertainty Principle is automatically
satisfied by Schrödinger’s wave mechanics since the uncertainty principle is a feature of all wave motion, as described in chapter .

In 1928 Dirac developed a relativistic wave equation which includes spin as an integral part. This Dirac equation remains the
fundamental wave equation of quantum mechanics. Unfortunately it is difficult to apply.

Today the powerful and efficient Heisenberg representation is the dominant approach used in the field of physics, whereas chemists
tend to prefer the more intuitive Schrödinger wave mechanics approach. In either case, the important role of Hamiltonian
mechanics in quantum theory is undeniable.

This page titled 18.3: Hamiltonian in Quantum Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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− = (∇S ⋅ ∇S) +U(q) − S = E
∂S

∂t

1
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18.4: Lagrangian Representation in Quantum Theory
The classical notion of canonical coordinates and momenta, has a simple quantum analog which has allowed the Hamiltonian
theory of classical mechanics, that is based on canonical coordinates, to serve as the foundation for the development of quantum
mechanics. The alternative Lagrangian formulation for classical dynamics is described in terms of coordinates and velocities,
instead of coordinates and momenta. The Lagrangian and Hamiltonian formulations are closely related, and it may appear that the
Lagrangian approach is more fundamental. The Lagrangian method allows collecting together all the equations of motion and
expressing them as stationary properties of the action integral, and thus it may appear desirable to base quantum mechanics on the
Lagrangian theory of classical mechanics. Unfortunately, the Lagrangian equations of motion involve partial derivatives with
respect to coordinates, and their velocities, and the meaning ascribed to such derivatives is difficult in quantum mechanics. The
close correspondence between Poisson brackets and the commutation rules leads naturally to Hamiltonian mechanics. However,
Dirac showed that Lagrangian mechanics can be carried over to quantum mechanics using canonical transformations such that the
classical Lagrangian is considered to be a function of coordinates at time  and  rather than of coordinates and velocities.

The motivation for Feynman’s 1942 Ph.D thesis, entitled “The Principle of Least Action in Quantum Mechanics”, was to quantize
the classical action at a distance in electrodynamics. This theory adopted an overall space-time viewpoint for which the classical
Hamiltonian approach, as used in conventional formulations of quantum mechanics, is inapplicable. Feynman used the Lagrangian,
plus the principle of least action, to underlie his development of quantum field theory. To paraphrase Feynman’s Nobel Lecture, he
used a physical approach that is quite different from the customary Hamiltonian point of view for which the system is discussed in
great detail as a function of time. That is, you have the field at this moment, then a differential equation gives you the field at a later
moment and so on; that is, the Hamiltonian approach is a time differential method. In Feynman’s least-action approach the action
describes the character of the path throughout all of space and time. The behavior of nature is determined by saying that the whole
space-time path has a certain character. The use of action involves both advanced and retarded terms that make it difficult to
transform back to the Hamiltonian form. The Feynman space-time approach is far beyond the scope of this course. This topic will
be developed in advanced graduate courses on quantum field theory

This page titled 18.4: Lagrangian Representation in Quantum Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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18.5: Correspondence Principle
The Correspondence Principle implies that any new theory in physics must reduce to preceding theories that have been proven to
be valid. For example, Einstein’s Special Theory of Relativity satisfies the Correspondence Principle since it reduces to classical
mechanics for velocities small compared with the velocity of light. Similarly, the General Theory of Relativity reduces to Newton’s
Law of Gravitation in the limit of weak gravitational fields. Bohr’s Correspondence Principle requires that the predictions of
quantum mechanics must reproduce the predictions of classical physics in the limit of large quantum numbers. Bohr’s
Correspondence Principle played a pivotal role in the development of the old quantum theory, from it’s inception in 1912, until
1925 when the old quantum theory was superseded by the current matrix and wave mechanics representations of quantum
mechanics.

Quantum theory now is a well-established field of physics that is equally as fundamental as is classical mechanics. The
Correspondence Principle now is used to project out the analogous classical-mechanics phenomena that underlie the observed
properties of quantal systems. For example, this book has studied the classical-mechanics analogs of the observed behavior for
typical quantal systems, such as the vibrational and rotational modes of the molecule, and the vibrational modes of the crystalline
lattice. The nucleus is the epitome of a many-body, strongly-interacting, quantal system. Example  showed that there is a
close correspondence between classical-mechanics predictions, and quantal predictions, for both the rotational and vibrational
collective modes of the nucleus, as well as for the single-particle motion of the nucleons in the nuclear mean field, such as the onset
of Coriolis-induced alignment. This use of the Correspondence Principle can provide considerable insight into the underlying
classical physics embedded in quantal systems.

This page titled 18.5: Correspondence Principle is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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18.S: The Transition to Quantum Physics (Summary)
The important point of this discussion is that variational formulations of classical mechanics provide a rational, and direct basis, for
the development of quantum mechanics. It has been shown that the final form of quantum mechanics is closely related to the
Hamiltonian formulation of classical mechanics. Quantum mechanics supersedes classical mechanics as the fundamental theory of
mechanics in that classical mechanics only applies for situations where quantization is unimportant, and is the limiting case of
quantum mechanics when  which is in agreement with the Bohr’s Correspondence Principle. The Dirac relativistic theory of
quantum mechanics is the ultimate quantal theory for the relativistic regime.

This discussion has barely scratched the surface of the correspondence between classical and quantal mechanics, which goes far
beyond the scope of this course. The goal of this chapter is to illustrate that classical mechanics, in particular, Hamiltonian
mechanics, underlies much of what you will learn in your quantum physics courses. An interesting similarity between quantum
mechanics and classical mechanics is that physicists usually use the more visual Schrödinger wave representation in order to
describe quantum physics to the non-expert, which is analogous to the similar use of Newtonian physics in classical mechanics.
However, practicing physicists invariably use the more abstract Heisenberg matrix mechanics to solve problems in quantum
mechanics, analogous to widespread use of the variational approach in classical mechanics, because the analytical approaches are
more powerful and have fundamental advantages. Quantal problems in molecular, atomic, nuclear, and subnuclear systems, usually
involve finding the normal modes of a quantal system, that is, finding the eigen-energies, eigen-functions, spin, parity, and other
observables for the discrete quantized levels. Solving the equations of motion for the modes of quantal systems is similar to solving
the many-body coupled-oscillator problem in classical mechanics, where it was shown that use of matrix mechanics is the most
powerful representation. It is ironic that the introduction of matrix methods to classical mechanics is a by-product of the
development of matrix mechanics by Heisenberg, Born and Jordan. This illustrates that classical mechanics not only played a
pivotal role in the development of quantum mechanics, but it also has benefitted considerably from the development of quantum
mechanics; that is, the synergistic relation between these two complementary branches of physics has been beneficial to both
classical and quantum mechanics.

Recommended reading
“Quantum Mechanics” by P.A.M. Dirac, Oxford Press, 1947,

“Conceptual Development of Quantum Mechanics” by Max Jammer, Mc Graw Hill 1966.
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19.1: Introduction
Development of classical mechanics has involved a close and synergistic interweaving of physics and mathematics, that continues
to play a key role in these fields. The concepts of scalar and vector fields play a pivotal role in describing the force fields and
particle motion in both the Newtonian formulation of classical mechanics and electromagnetism. Thus it is imperative that you be
familiar with the sophisticated mathematical formalism used to treat multivariate scalar and vector fields in classical mechanics.
Ordinary and partial differential equations up to second order, as well as integration of algebraic and trigonometric functions play a
major role in classical mechanics. It is assumed that you already have a working knowledge of differential and integral calculus in
sufficient depth to handle this material. Computer codes, such as Mathematica, MatLab, and Maple, or symbolic calculators, can be
used to obtain mathematical solutions for complicated cases.

The following 9 appendices provide brief summaries of matrix algebra, vector algebra, orthogonal coordinate systems, coordinate
transformations, tensor algebra, multivariate calculus, vector differential plus integral calculus, Fourier analysis and time-sampled
waveform analysis. The manipulation of scalar and vector fields is greatly facilitated by transforming to orthogonal curvilinear
coordinate systems that match the symmetries of the problem. These appendices discuss how to account for the time dependence of
the orthogonal unit vectors for curvilinear coordinate systems. It is assumed that, except for coordinate transformations and tensor
algebra, you have been introduced to these topics in linear algebra and other physics courses, and thus the purpose of these
appendices is to serve as a reference plus brief review.
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19.2: Appendix - Matrix Algebra

Matrices

Matrix algebra provides an elegant and powerful representation of multivariate operators, and coordinate transformations that
feature prominently in classical mechanics. For example they play a pivotal role in finding the eigenvalues and eigenfunctions for
coupled equations that occur in rigid-body rotation, and coupled oscillator systems. An understanding of the role of matrix
mechanics in classical mechanics facilitates understanding of the equally important role played by matrix mechanics in quantal
physics.

It is interesting that although determinants were used by physicists in the late  century, and the concept of matrix algebra was
developed by Arthur Cayley in England in 1855, many of these ideas were the work of Hamilton, and the discussion of matrix
algebra was buried in a more general discussion of determinants. Matrix algebra was an esoteric branch of mathematics, little
known by the physics community, until 1925 when Heisenberg proposed his innovative new quantum theory. The striking feature
of this new theory was its representation of physical quantities by sets of time-dependent complex numbers and a peculiar
multiplication rule. Max Born recognized that Heisenberg’s multiplication rule is just the standard “row times column”
multiplication rule of matrix algebra; a topic that he had encountered as a young student in a mathematics course. In 1924 Richard
Courant had just completed the first volume of the new text Methods of Mathematical Physics during which Pascual Jordan had
served as his young assistant working on matrix manipulation. Fortuitously, Jordan and Born happened to share a carriage on a
train to Hanover during which Jordan overheard Born talk about his problems trying to work with matrices. Jordan introduced
himself to Born and offered to help. This led to publication, in September 1925, of the famous Born-Jordan paper[Bor25a] that
gave the first rigorous formulation of matrix mechanics in physics. This was followed in November by the Born-Heisenberg-Jordan
sequel[Bor25b] that established a logical consistent general method for solving matrix mechanics problems plus a connection
between the mathematics of matrix mechanics and linear algebra. Matrix algebra developed into an important tool in mathematics
and physics during World War 2 and now it is an integral part of undergraduate linear algebra courses.

Most applications of matrix algebra in this book are restricted to real, symmetric, square matrices. The size of a matrix is defined
by the rank, which equals the row rank and column rank, i.e. the number of independent row vectors or column vectors in the
square matrix. It is presumed that you have studied matrices in a linear algebra course. Thus the goal of this review is to list simple
manipulation of symmetric matrices and matrix diagonalization that will be used in this course. You are referred to a linear algebra
textbook if you need further details.

Matrix definition

A matrix is a rectangular array of numbers with  rows and  columns. The notation used for an element of a matrix is 
where  designates the row and  designates the column of this matrix element in the matrix . Convention denotes a matrix  as

Matrices can be square, , or rectangular . Matrices having only one row or column are called row or column
vectors respectively, and need only a single subscript label. For example,

Matrix manipulation

Matrices are defined to obey certain rules for matrix manipulation as given below.

1) Multiplication of a matrix by a scalar  simply multiplies each matrix element by .

19th

M N Aij

i j A A

A ≡

⎛

⎝

⎜⎜⎜⎜⎜
⎜⎜

A11

A21

:

A(M−1)1

AM1

A12

A22

:

A(M−1)2

AM2

…

. .

Aij

. .

…

A1(N−1)

A2(N−1)

:

A(M−1)(N−1)

AM(N−1)

A1N

A2N

:

A(M−1)N

AMN

⎞

⎠

⎟⎟⎟⎟⎟
⎟⎟

(19.2.1)

M = N M ≠ N

A =

⎛

⎝

⎜⎜⎜⎜⎜⎜

A1

A2

:

AM−1

AM

⎞

⎠

⎟⎟⎟⎟⎟⎟
(19.2.2)

λ λ

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9685?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/19%3A_Mathematical_Methods_for_Classical_Mechanics/19.02%3A_Appendix_-_Matrix_Algebra


19.2.2 https://phys.libretexts.org/@go/page/9685

2) Addition of two matrices  and  having the same rank, i.e. the number of columns, is given by

3) Multiplication of a matrix  by a matrix  is defined only if the number of columns in  equals the number of rows in . The
product matrix  is given by the matrix product

For example, if both  and  are rank three symmetric matrices then

In general, multiplication of matrices  and  is noncommutative, i.e.

In the special case when  then the matrices are said to commute.

Transposed matrix 

The transpose of a matrix  will be denoted by  and is given by interchanging rows and columns, that is

The transpose of a column vector is a row vector. Note that older texts use the symbol  for the transpose.

Identity (unity) matrix 

The identity (unity) matrix  is diagonal with diagonal elements equal to 1, that is

where the Kronecker delta symbol is defined by

Inverse matrix 

If a matrix is non-singular, that is, its determinant is non-zero, then it is possible to define an inverse matrix . A square matrix
has an inverse matrix for which the product

Orthogonal matrix

A matrix with real elements is orthogonal if

That is

= λCij Aij (19.2.3)
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=Iij δij (19.2.9)

δik = 0

= 1

 if i ≠ k

 if i = k

(19.2.10)

A−1

A−1

A ⋅ = IA−1 (19.2.11)

=AT A−1 (19.2.12)
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Adjoint matrix 

For a matrix with complex elements, the adjoint matrix, denoted by  is defined as the transpose of the complex conjugate

Hermitian matrix

The Hermitian conjugate of a complex matrix  is denoted as  and is defined as

Therefore

A matrix is Hermitian if it is equal to its adjoint

that is

A matrix that is both Hermitian and has real elements is a symmetric matrix since complex conjugation has no effect.

Unitary matrix

A matrix with complex elements is unitary if its inverse is equal to the adjoint matrix

which is equivalent to

A unitary matrix with real elements is an orthogonal matrix as given in Equation .

Trace of a square matrix 

The trace of a square matrix, denoted by , is defined as the sum of the diagonal matrix elements.

Inner product of column vectors

Real vectors

The generalization of the scalar (dot) product in Euclidean space is called the inner product. Exploiting the rules of matrix
multiplication requires taking the transpose of the first column vector to form a row vector which then is multiplied by the second
column vector using the conventional rules for matrix multiplication. That is, for rank  vectors

For rank  this inner product agrees with the conventional definition of the scalar product and gives a result that is a scalar.
For the special case when  then the two matrices are called orthogonal. The magnitude squared of a column vector is
given by the inner product

= =∑
k

( )AT
ik
Akj ∑

k

AkiAkj δij (19.2.13)

A
†

A†

=( )A†
ij

A∗
ji (19.2.14)

H H†

= = (H† ( )HT ∗
H∗)T (19.2.15)

=H
†
ij H ∗

ji (19.2.16)

= HH† (19.2.17)

= =H
†
ij H ∗

ji Hij (19.2.18)

=U† U−1 (19.2.19)

U = IU† (19.2.20)

19.2.12

T rA

TrA

TrA =∑
i=1

N

Aii (19.2.21)

N

[X] ⋅ [Y] = ⋅ = [X [Y] = ( ) =

⎛

⎝

⎜
⎜⎜

X1

X2

:

XN

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

Y1

Y2

:

YN

⎞

⎠

⎟
⎟⎟

]T X1 X2 . . XN

⎛

⎝

⎜
⎜⎜

Y1

Y2

:

YN

⎞

⎠

⎟
⎟⎟

∑
i=1

N

XiYi (19.2.22)

N = 3
[A] ⋅ [B] = 0
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Note that this is only positive.

Complex vectors

For vectors having complex matrix elements the inner product is generalized to a form that is consistent with Equation 
when the column vector matrix elements are real.

For the special case

Determinants

Definition

The determinant of a square matrix with  rows equals a single number derived using the matrix elements of the matrix. The
determinant is denoted as  or  where

where  is the permutation index which is either even or odd depending on the number of permutations required to
go from the normal order  to the sequence .

For example for  the determinant is

Properties
1. The value of a determinant , if

a. all elements of a row (column) are zero.
b. all elements of a row (column) are identical with, or multiples of, the corresponding elements of another row (column).

2. The value of a determinant is unchanged if

a. rows and columns are interchanged.
b. a linear combination of any number of rows is added to any one row.

3. The value of a determinant changes sign if two rows, or any two columns, are interchanged.
4. Transposing a square matrix does not change its determinant. 
5. If any row (column) is multiplied by a constant factor then the value of the determinant is multiplied by the same factor.
6. The determinant of a diagonal matrix equals the product of the diagonal matrix elements. That is, when  then 

7. The determinant of the identity (unity) matrix .
8. The determinant of the null matrix, for which all matrix elements are zero, 
9. A singular matrix has a determinant equal to zero.

10. If each element of any row (column) appears as the sum (difference) of two or more quantities, then the determinant can be
written as a sum (difference) of two or more determinants of the same order. For example for order ,

[X] ⋅ [X] = ( ≥ 0∑
i=1

N

Xi)
2 (19.2.23)

19.2.22

[X ⋅ [Y] = [X [Y] = ( ) =]∗ ]† X∗
1

X∗
2

. . X∗
N−1

X∗
N

⎛

⎝

⎜⎜⎜⎜⎜⎜

Y1

Y2

:

YN−1

YN

⎞

⎠

⎟⎟⎟⎟⎟⎟
∑
i=1

N

X∗
i Yi (19.2.24)

[X ⋅ [X] = [X [X] = ≥ 0]∗ ]† ∑
i=1

N

X∗
i Xi (19.2.25)

N

det A |A|

|A| = ε( , , … . ) …∑
j=1

N

j1 j2 jN A1j1
A2j2

ANjN
(19.2.26)

ε( , , … . )j1 j2 jN
(1, 2, 3, …N) ( … )j1j2j3 jN

N = 3

|A| = + + − − −A11A22A33 A12A23A31 A13A21A32 A13A22A31 A11A23A32 A12A21A33 (19.2.27)

|A| = 0

= |A|∣∣A
T ∣∣

= λiAij δij
|A| = …λ1λ2λ3 λN

|I| = 1
|0| = 0

N = 2
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11. A determinant of a matrix product equals the product of the determinants. That is, if  then 

Cofactor of a square matrix

For a square matrix having  rows the cofactor is obtained by removing the  row and the  column and then collapsing the
remaining matrix elements into a square matrix with  rows while preserving the order of the matrix elements. This is called
the complementary minor which is denoted as . The matrix elements of the cofactor square matrix  are obtained by
multiplying the determinant of the  complementary minor by the phase factor . That is

The cofactor matrix has the property that

Cofactors are used to expand the determinant of a square matrix in order to evaluate the determinant.

Inverse of a non-singular matrix

The  matrix elements of the inverse matrix  of a non-singular matrix  are given by the ratio of the cofactor  and the
determinant , that is

Equations  and  can be used to evaluate the  element of the matrix product 

This agrees with Equation  that .

The inverse of rank 2 or 3 matrices is required frequently when determining the eigen-solutions for rigidbody rotation, or coupled
oscillator, problems in classical mechanics as described in chapters  and . Therefore it is convenient to list explicitly the
inverse matrices for both rank 2 and rank 3 matrices.

Inverse for rank 2 matrices:

where the determinant of  is written explicitly in Equation .

Inverse for rank 3 matrices:

where the functions , are equal to rank 2 determinants listed in Equation .

= ±
∣

∣
∣

±A11 B11

A21

±A12 B12

A22

∣

∣
∣

∣

∣
∣
A11

A21

A12

A22

∣

∣
∣

∣

∣
∣
B11

A21

B12

A22

∣

∣
∣

C = AB |C| = |A||B|

N ith jth

N −1

A(ij) a

(ij) (−1)i+j

= (−1aij )i+j ∣∣A
(ij)∣∣ (19.2.28)

= |A| =∑
k=1

N

Aikajk δij ∑
k=1

N

Akiakj (19.2.29)

(i, j) A−1 A aji
|A|

=A−1
ij

1

|A|
aji (19.2.30)

19.2.28 19.2.29 i, j ( A)A−1

= = = |A| = =( A)A−1
ij

∑
k=1

N

A−1
ik Akj

1

|A|
∑
k=1

N

ajiAkj

1

|A|
δji δij Iij (19.2.31)

19.2.11 A ⋅ = IA−1

11 12

= = [ ] = [ ]A−1 [ ]
a

c

b

d

−1
1

|A|

d

−c

−b

a

1

(ad−bc)

d

−c

−b

a
(19.2.32)

A 19.2.32

= = =A−1
⎡

⎣
⎢
a

d

g

b

e

h

c

f

i

⎤

⎦
⎥

−1

1

|A|

⎡

⎣
⎢
A

D

G

B

E

H

C

F

I

⎤

⎦
⎥

T

1

|A|

⎡

⎣
⎢
A

B

C

D

E

F

G

H

I

⎤

⎦
⎥

=
1

aA+bB+cC

⎡

⎣
⎢

A = (ei−fh)

B = −(di−fg)

C = (dh−eg)

D = −(bi−ch)

E = (ai−cg)

F = −(ah−bg)

G= (bf −ce)

H = −(af −cd)

I = (ae−bd)

⎤

⎦
⎥

(19.2.33)

A,B,C,D,E,F ,G,H, I 19.2.33
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Reduction of a matrix to diagonal form
Solving coupled linear equations can be reduced to diagonalization of a matrix. Consider the matrix  operating on the vector 
to produce a vector , that are expressed as components with respect to the unprimed coordinate frame, i.e.

Consider that the unitary real matrix  with rank , rotates the -dimensional un-primed coordinate frame into the primed
coordinate frame such that ,  and  are transformed to ,  and  in the rotated primed coordinate frame. Then

With respect to the primed coordinate frame Equation  becomes

using the fact that the identity matrix  since the rotation matrix in  dimensions is orthogonal.

Thus we have that the rotated matrix

Let us assume that this transformed matrix is diagonal, then it can be written as the product of the unit matrix  and a vector of
scalar numbers called the characteristic roots  as

using the fact that  then gives

Let both sides of Equation  act on  which gives

or

This represents a set of  homogeneous linear algebraic equations in  unknowns  where  is a set of characteristic roots,
(eigenvalues) with corresponding eigenfunctions . Ignoring the trivial case of  being zero, then  requires that the
secular determinant of the bracket be zero, that is

The determinant can be expanded and factored into the form

where the  eigenvalues are  of the matrix .

The eigenvectors  corresponding to each eigenvalue are determined by substituting a given eigenvalue  into the relation

If all the eigenvalues are distinct, i.e. different, then this set of  equations completely determines the ratio of the components of
each eigenvector along the axes of the coordinate frame. However, when two or more eigenvalues are identical, then the reduction
to a true diagonal form is not possible and one has the freedom to select an appropriate eigenvector that is orthogonal to the
remaining axes.

In summary, the matrix can only be fully diagonalized if

A X

Y

A ⋅ X = Y (19.2.34)

R n n

A X Y A′ X′ Y′

= R ⋅ XX′

= R ⋅ YY′
(19.2.35)

19.2.34

R ⋅ (A ⋅ X) = R ⋅ Y (19.2.36)

R ⋅ A ⋅ ⋅ R ⋅ X = R ⋅ YR−1 (19.2.37)

R ⋅ A ⋅ ⋅ = ⋅ =R−1 X′ A′ X′ Y′ (19.2.38)

I = R ⋅ = R ⋅R−1 RT n

= R ⋅ A ⋅A′ RT (19.2.39)

I

λ

= R ⋅ A ⋅ = λIA′ RT (19.2.40)

=RT R−1

⋅ (λI) = ⋅RT A′ RT (19.2.41)

19.2.41 X′

λI ⋅ = ⋅X′ A′ X′ (19.2.42)

[λI− ] = 0A′ X′ (19.2.43)

n n X′ λ

X′ X′ 19.2.43

|λI− | = 0A′ (19.2.44)

(λ− )(λ− )(λ− ) … . (λ− ) = 0λ1 λ2 λ3 λn (19.2.45)

n λ = , , …λ1 λ2 λn A′

X′ λi

⋅ ⋅ = [ ]X′T A′ X′ λiδij (19.2.46)

n
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(a) all the eigenvalues are distinct,

(b) the real matrix is symmetric,

(c) it is unitary.

A frequent application of matrices in classical mechanics is for solving a system of homogeneous linear equations of the form

Making the following definitions

Then the set of linear equations can be written in a compact form using the matrices

which can be solved using Equation . Ensure that you are able to diagonalize a matrices with rank 2 and 3. You can use
Mathematica, Maple, MatLab, or other such mathematical computer programs to diagonalize larger matrices.

Consider the matrix

The secular determinant is given by 

This expands to

Thus the three eigen values are .

To find each eigenvectors we substitute the corresponding eigenvalue into Equation .

The eigenvalue  yields  and . Thus the eigen vector is . The eigenvalue  yields 

 and . Thus the eigen vector is . The eigenvalue  yields  and . Thus the eigen

A11x1

A11x1

… . .

An1x1

+A12x2

+A12x2

… …

+An2x2

… …

… …

… . .

… . .

+A1nxn

+A1nxn

… . .

+Annxn

=

=

=

=

0

0

… .

0

(19.2.47)

A =

⎛

⎝

⎜⎜
⎜

A11

A21

…

An1

A12

A22

…

An2

…

…

…

…

A1n

A2n

…

Ann

⎞

⎠

⎟⎟
⎟

(19.2.48)

X =

⎛

⎝

⎜⎜
⎜

x1

x2

…

xn

⎞

⎠

⎟⎟
⎟

(19.2.49)

A ⋅ X = 0 (19.2.50)

19.2.43

Example : Eigenvalues and eigenvectors of a real symmetric matrix19.2.1

A =
⎛

⎝
⎜

0

1

0

1

0

0

0

0

0

⎞

⎠
⎟

19.2.42

= 0

∣

∣

∣
∣

−λ

1

0

1

−λ

0

0

0

−λ

∣

∣

∣
∣

−λ(λ+1)(λ−1) = 0

λ = −1, 0, 1

19.2.48

=
⎛

⎝
⎜

−λ

1

0

1

−λ

0

0

0

−λ

⎞

⎠
⎟
⎛

⎝
⎜

x

y

z

⎞

⎠
⎟

⎛

⎝
⎜

0

0

0

⎞

⎠
⎟

λ = −1 x+y = 0 z = 0 = ( , , 0)r1
1

2√
−1

2√
λ = 0

x = 0 y = 0 = (0, 0, 1)r2 λ = 1 −x+y = 0 z = 0
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vector is . The orthogonality of these three eigen vectors, which correspond to three distinct eigenvalues, can

be verified.

This page titled 19.2: Appendix - Matrix Algebra is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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19.3: Appendix - Vector algebra

Linear operations

The important force fields in classical mechanics, namely, gravitation, electric, and magnetic, are vector fields that have a position-
dependent magnitude and direction. Thus, it is useful to summarize the algebra of vector fields.

A vector  has both a magnitude  and a direction defined by the unit vector , that is, the vector can be written as a bold
character  where

where by convention the implied modulus sign is omitted. The hat symbol on the vector  designates that this is a unit vector with
modulus .

Vector force fields are assumed to be linear, and consequently they obey the principle of superposition, are commutative,
associative, and distributive as illustrated below for three vectors  plus a scalar multiplier .

The manipulation of vectors is greatly facilitated by use of components along an orthogonal coordinate system defined by three
orthogonal unit vectors . For example the cartesian coordinate system is defined by three unit vectors which, by
convention, are called .

Scalar product

Multiplication of two vectors can produce a 9−component tensor that can be represented by a  matrix as discussed in
appendix . There are two special cases for vector multiplication that are important for vector algebra; the first is the scalar
product, and the second is the vector product.

The scalar product of two vectors is defined to be

where  is the angle between the two vectors. It is a scalar and thus is independent of the orientation of the coordinate axis system.
Note that the scalar product commutes, is distributive, and associative with a scalar multiplier, that is

Note that  and if  and  are perpendicular then  and thus 

If the three unit vectors  form an orthonormal basis, that is, they are orthogonal unit vectors, then from equations 
 and 

If  is the unit vector for the vector  then the scalar product of a vector  with one of these unit vectors  gives the cosine of the
angle between the vector  and , that is

where the cosines are called the direction cosines since they define the direction of the vector a with respect to each orthogonal
basis unit vector. Moreover,  is the component of  along the  axis. Thus the three components of
the vector  is fully defined by the magnitude  and the direction cosines, corresponding to the angles . That is,

a |a| êa

a

a = a ⋅ êa (19.3.1)

êa

| | = 1êa

a, b, c γ

a±b

a+(b +c)

γ(a+b)

= ±b +a

= (a+b) +c

= γa+γb

(19.3.2)

(19.3.3)

(19.3.4)

( , , )ê1 ê2 ê3

( , , )î ĵ k̂

3 ×3

19.5

a ⋅ b = |a||b| cosθ (19.3.5)

θ

a ⋅ b = b ⋅ a

a ⋅ (b +c) = a ⋅ b +a ⋅ c

(λa) ⋅ b = λ(b ⋅ a)

(19.3.6)

a ⋅ a = |a|2 a b cosθ = 0 a ⋅ b = 0

( , , )ê1 ê2 ê3

19.3.5 19.3.6

⋅ =êi êk δik (19.3.7)

â a a ên

a ên

a ⋅ = |a|( ⋅ ) = |a| cosαê1 â ê1

a ⋅ = |a|( ⋅ ) = |a| cosβê2 â ê2

a ⋅ = |a|( ⋅ ) = |a| cosγê3 â ê3

(19.3.8)

a ⋅ = |a| ⋅ = |a| cosαê1 â ê1 a ê1

a |a| α, β, γ
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If the three unit vectors  form an orthonormal basis then the vector is fully defined by

Consider two vectors

Then using 

where  is the angle between the two vectors. In particular, since the direction cosine , then Equation  gives

Note that when  then  gives

Vector product
The vector product of two vectors is defined to be

where  is the angle between the vectors and  is a unit vector perpendicular to the plane defined by  and  such that the unit

vectors  obey a right-handed screw rule. The vector product acts like a pseudovector which comprises a normal vector

multiplied by a sign factor that depends on the handedness of the system as described in appendix .

The components of  are defined by the relation

where the (Levi-Civita) permutation symbol  has the following properties

For example, if the three unit vectors  form an orthonormal basis, then , i.e.

The vector product anticommutes in that

However, it is distributive and associative with a scalar multiplier

Note that when  then  and in particular, .

Consider two vectors

= |a|( ⋅ ) = |a| cosαa1 â ê1

= |a|( ⋅ ) = |a| cosβa2 â ê2

= |a|( ⋅ ) = |a| cosγa3 â ê3

(19.3.9)

( , , )ê1 ê2 ê3

a = + +a1 ê1 a2 ê2 a3 ê3 (19.3.10)

a = + +a1 ê1 a2 ê2 a3 ê3

b = + +b1 ê1 b2 ê2 b3 ê3

19.3.7

a ⋅ b = + + = |a||b| cosθa1b1 a2b2 a3b3 (19.3.11)

θ cos =αa
a1

|a|
19.3.11

cosθ = cos cos +cos cos +cos cosαa αb βa βb γa γb (19.3.12)

θ = 0 19.3.12

α+ β+ γ = 1cos2 cos2 cos2 (19.3.13)

c = a×b = |a||b| sinθn̂ (19.3.14)

θ n̂ a b

( , , )â b̂ n̂

19.4.3

c

≡ci ∑
jk

εijkajbk (19.3.15)

εijk

= 0εijk

= +1εijk

= −1εijk

 if an index is equal to any another index

 if i, j, k,  form an even permutation of 1, 2, 3

 if i, j, k,  form an odd permutation of 1, 2, 3

(19.3.16)

( , , )ê1 ê2 ê3 ≡êi ∑jk εijk êj êk

× =ê1 ê2 ê3

× = −ê2 ê1 ê3

× = 0ê1 ê1

× =ê2 ê3 ê1

× = −ê3 ê2 ê1

× = 0ê2 ê2

× =ê3 ê1 ê2

× = −ê1 ê3 ê2

× = 0ê3 ê0

(19.3.17)

(19.3.18)

(19.3.19)

a×b = −b ×a (19.3.20)

a×(b +c) = a×b +a×c (19.3.21)

(λa) ×b = λ(a×b) (19.3.22)

sinθ = 0 a×b = 0 a×a = 0
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Then using equations  and  − 

where  is the angle between the two vectors and the determinant is evaluated for the top row. Examples of vector products are
torque , angular momentum , and the magnetic force .

Triple products
The following scalar and vector triple products can be formed from the product of three vectors and are used frequently.

Scalar triple products

There are several permutations of scalar triple products of three vectors  that are identical.

That is, the scalar product is invariant to cyclic permutations of the three vectors but changes sign for interchange of two vectors.
The scalar product is unchanged by swapping the scalar  and vector .

Because of the symmetry the scalar triple product can be denoted as  and

The scalar triple product can be written in terms of the components using a determinant

Vector triple product

The vector triple product  is a vector. Since  is perpendicular to the plane of , then  must lie in
the plane containing . Therefore the triple product can be expanded in terms of , as given by the following identity

Problems
1. Partition the following exercises among your collaborators. Once you have completed your problem, check with a classmate
before writing it on the board. After you have verified that you have found the correct solution, write your answer in the space
provided on the board, taking care to include the steps that you used to arrive at your solution. The following information is
needed.

Calculate each of the following

1. 7. 

2. Component of  along 8. 

a = + +a1 ê1 a2 ê2 a3 ê3

b = + +b1 ê1 b2 ê2 b3 ê3

19.3.14 19.3.17 19.3.19

a×b = |a||b| sinθ = = ( − ) + ( − ) + ( − )

∣

∣

∣
∣

ê1

a1

b1

ê2

a2

b2

ê3

a3

b3

∣

∣

∣
∣ ê1 a2b3 a3b2 ê2 a3b1 a1b3 ê3 a1b2 a2b1

θ

N = r ×F L = r ×p = qv ×BFB

[a, b, c]

a ⋅ (b ×c) = c ⋅ (a×b) = b ⋅ (c ×a) = (a×b) ⋅ c = −a ⋅ (c ×b) (19.3.23)

(dot) (cross)

[a, b, c]

[a, b, c] > 0

[a, b, c] = 0

[a, b, c] < 0

 if [a, b, c] is right-handed

 if [a, b, c] is coplanar

 if [a, b, c] is left-handed

(19.3.24)

[a, b, c] =

∣

∣

∣
∣

a1

b1

c1

a2

b2

c2

a3

b3

c3

∣

∣

∣
∣ (19.3.25)

a×(b ×c) (b ×c) b, c a×(b ×c)

b, c b, c

a×(b ×c) = (a ⋅ c)b −(a ⋅ b)c (19.3.26)

a = 3i + 2j− 9k b = −2i + 3k c = −2i + j− 6k d = i + 9j+ 4k

E =
⎛

⎝
⎜

2

3

−2

7

1

0

−4

−2

5

⎞

⎠
⎟ F = ( )

3

5

4

6
G =

⎛

⎝
⎜

2

7

−1

−4

1

1

⎞

⎠
⎟ H =

⎛

⎝
⎜

−8

−4

−1

−1

2

0

−3

−2

0

⎞

⎠
⎟

|a − (b + 3c)| (EH)T

c a |HE|
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3. Angle between  and 9. 

4. 10. 

5. 11. 

6. 12. 

2. For what values of  are the vectors  and  perpendicular?

3. Show that the triple scalar product  can be written as

Show also that the product is unaffected by interchange of the scalar and vector product operations or by change in the order of 
 as long as they are in cyclic order, that is

Therefore we may use the notation  to denote the triple scalar product. Finally give a geometric interpretation of  by
computing the volume of the parallelepiped defined by the three vectors .

This page titled 19.3: Appendix - Vector algebra is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

c d EHG

(b × d) ⋅ a EG− HG

(b × d) × a EH − HT ET

b × (d × a) F−1

a A = 2a −2 +aî ĵ k̂ B = a +2a +2î ĵ k̂

(A×B) ⋅C

(A ×B) ⋅ C =

∣

∣

∣
∣

A1

B1

C1

A2

B2

C2

A3

B3

C3

∣

∣

∣
∣

A,B,C

(A ×B) ⋅ C = A ⋅ (B ×C) = B ⋅ (C ×A) = (C ×A) ⋅ B

ABC ABC
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19.4: Appendix - Orthogonal Coordinate Systems
The methods of vector analysis provide a convenient representation of physical laws. However, the manipulation of scalar and vector fields is greatly facilitated by use of
components with respect to an orthogonal coordinate system such as the following.

Cartesian coordinates 
Cartesian coordinates (rectangular) provide the simplest orthogonal rectangular coordinate system. The unit vectors specifying the direction along the three orthogonal axes
are taken to be . In cartesian coordinates scalar and vector functions are written as

Calculation of the time derivatives of the position vector is especially simple using cartesian coordinates because the unit vectors  are constant and independent in
time. That is;

Since the time derivatives of the unit vectors are all zero then the velocity  reduces to the partial time derivatives of , , and . That is,

Similarly the acceleration is given by

Curvilinear coordinate systems

There are many examples in physics where the symmetry of the problem makes it more convenient to solve motion at a point  using non-cartesian curvilinear
coordinate systems. For example, problems having spherical symmetry are most conveniently handled using a spherical coordinate system  with the origin at the
center of spherical symmetry. Such problems occur frequently in electrostatics and gravitation; e.g. solutions of the atom, or planetary systems. Note that a cartesian
coordinate system still is required to define the origin plus the polar and azimuthal angles . Using spherical coordinates for a spherically symmetry system allows the
problem to be factored into a cyclic angular part, the solution which involves spherical harmonics that are common to all such spherically-symmetric problems, plus a one-
dimensional radial part that contains the specifics of the particular spherically-symmetric potential. Similarly, for problems involving cylindrical symmetry, it is much more
convenient to use a cylindrical coordinate system . Again it is necessary to use a cartesian coordinate system to define the origin and angle . Motion in a plane
can be handled using two dimensional polar coordinates.

Curvilinear coordinate systems introduce a complication in that the unit vectors are time dependent in contrast to cartesian coordinate system where the unit vectors 
 are independent and constant in time. The introduction of this time dependence warrants further discussion.

Each of the three axes  in curvilinear coordinate systems can be expressed in cartesian coordinates  as surfaces of constant  given by the function

where , , or . An element of length  perpendicular to the surface  is the distance between the surfaces  and  which can be expressed as

where  is a function of . In cartesian coordinates , , and  are all unity. The unit-length vectors , , , are perpendicular to the respective , , 
surfaces, and are oriented to have increasing indices such that . The correspondence of the curvilinear coordinates, unit vectors, and transform coefficients to
cartesian, polar, cylindrical and spherical coordinates is given in Table .

Curvilinear

Cartesian 1 1 1

Polar 1

Cylindrical 1 1

Spherical 1

Table : Curvilinear coordinates

The differential distance and volume elements are given by

These are evaluated below for polar, cylindrical, and spherical coordinates.

Two-dimensional polar coordinates 

The complication and implications of time-dependent unit vectors are best illustrated by considering twodimensional polar coordinates which is the simplest curvilinear
coordinate system. Polar coordinates are a special case of cylindrical coordinates, when  is held fixed, or a special case of spherical coordinate system, when  is held
fixed.

Consider the motion of a point  as it moves along a curve  such that in the time interval  it moves from  to  as shown in Figure . The two-
dimensional polar coordinates have unit vectors , which are orthogonal and change from , to , in the time . Note that for these polar coordinates the

(x, y, z)

( , , )î ĵ k̂

ϕ = ϕ(x, y, z) (19.4.1)

r = x +y +zî ĵ k̂ (19.4.2)

( , , )î ĵ k̂

= = = 0
d î

dt

d ĵ

dt

dk̂

dt

=ṙ dr
dt

x y z

= + +ṙ ẋ î ẏ ĵ ż k̂ (19.4.3)

= + +r̈ ẍ î ÿ ĵ z̈ k̂ (19.4.4)

P (x, y, z)

(r, θ,ϕ)

θ,ϕ

(ρ,ϕ, z) ϕ

( , , )î ĵ k̂

qi (x, y, z) qi

= (x, y, z)qi fi (19.4.5)

i = 1 2 3 dsi qi qi +dqi qi

d = dsi hi qi (19.4.6)

hi ( , , )q1 q2 q3 h1 h2 h3 q̂ 1 q̂ 2 q̂ 3 q1 q2 q3

× =q̂1 q̂2 q̂3

19.4.1

q1 q2 q3 q̂1 q̂2 q̂3 h1 h2 h3

x y z î ĵ k̂

r θ r̂ θ̂ r

ρ φ z ρ̂ φ̂ ẑ ρ

r θ φ r̂ θ̂ φ̂ r r sin θ

19.4.1

ds = d +d +d = d + d + ds1q̂1 s2q̂2 s3q̂3 h1 q1q̂1 h2 q2q̂2 h3 q3q̂3 (19.4.7)

dτ = d d d = (d d d )s1 s2 s3 h1h2h3 q1 q2 q3 (19.4.8)

(r,θ)

z ϕ

P s(t) dt P (1) P (2) 19.4.1

,r̂ θ̂ ,r̂1 θ̂1 ,r̂2 θ̂2 dt
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angle unit vector  is taken to be tangential to the rotation since this is the direction of motion of a point on the circumference at radius .

The net changes shown in figure of Table  are

since the unit vector  is a constant with . Note that the infinitessimal  is perpendicular to the unit vector , that is,  points in the tangential direction .

Similarly, the infinitessimal

which is perpendicular to the tangential  unit vector and therefore points in the direction . The minus sign causes  to be directed in the opposite direction to .

The net distance element  is given by

This agrees with the prediction obtained using Table .

The time derivatives of the unit vectors are given by equations  and  to be,

Note that the time derivatives of unit vectors are perpendicular to the corresponding unit vector, and the unit vectors are coupled.

Consider that the velocity  is expressed as

The velocity is resolved into a radial component  and an angular, transverse, component .

Similarly the acceleration is given by

where the  term is the effective centripetal acceleration while the  term is called the Coriolis term. For the case when , then the first bracket in 
is the centripetal acceleration while the second bracket is the tangential acceleration.

This discussion has shown that in contrast to the time independence of the cartesian unit basis vectors, the unit basis vectors for curvilinear coordinates are time dependent
which leads to components of the velocity and acceleration involving coupled coordinates.

Coordinates

Distance element

Area element

Unit vectors

Time derivatives of unit vectors

Velocity

Kinetic energy

Acceleration

Table : Differential relations plus a diagram of the unit vectors for 2-dimensional polar coordinates.

θ̂ r

19.4.2

d = − = d = | |dθ = dθr̂ r̂2 r̂1 r̂ r̂ θ̂ θ̂ (19.4.9)

r̂ | | = 1r̂ dr̂ r̂ dr̂ θ̂

d = − = d = −dθθ̂ θ̂2 θ̂1 θ̂ r̂ (19.4.10)

θ̂ −r̂ −dθr̂ r̂

ds

ds = dr +rd = dr +rdθr̂ r̂ r̂ θ̂ (19.4.11)

19.4.1

19.4.9 19.4.10

=
dr̂

dt

dθ

dt
θ̂ (19.4.12)

= −
dθ̂

dt

dθ

dt
r̂ (19.4.13)

v

v = = (r ) = +r = +r
dr

dt

d

dt
r̂

dr

dt
r̂

dr̂

dt
ṙ r̂ θ̇ θ̂ (19.4.14)

ṙ rθ̇

a = = + + +r +r
dv

dt

dṙ

dt
r̂ ṙ

dr̂

dt

dr

dt
θ̇ θ̂

dθ̇

dt
θ̂ θ̇

dθ̂

dt

= ( −r ) +( θ+2 )r̈ θ̇
2

r̂ r̈ ṙ θ̇ θ̂

(19.4.15)

rθ̇
2
r̂ 2ṙ θ̇ θ̂ = = 0ṙ r̈ 19.4.15

r, θ

ds = dr + rdθr̂ θ̂

da = rdrdθ

= cos θ+ sin θr̂ î ĵ

= − sin θ+ cos θθ̂ î ĵ

=d r̂
dt

θ̇ θ̂

= −dθ̂

dt
θ̇ r̂

v = + rṙ r̂ θ̇ θ̂

( + )m

2
ṙ

2
r2 θ̇

2

a = ( − r ) +(r + 2 )r̈ θ̇
2

r̂ θ̈ ṙ θ̇ θ̂

19.4.2
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Figure : Diagram for Table .

Cylindrical Coordinates 

The three-dimensional cylindrical coordinates  are obtained by adding the motion along the symmetry axis  to the case for polar coordinates. The unit basis
vectors are shown in Table  where the angular unit vector  is taken to be tangential corresponding to the direction a point on the circumference would move. The
distance and volume elements, the cartesian coordinate components of the cylindrical unit basis vectors, and the unit vector time derivatives are shown in Table . The
time dependence of the unit vectors is used to derive the acceleration. As for the two-dimensional polar coordinates, the  and  direction components of the acceleration
for cylindrical coordinates are coupled functions of , , , , and .

Coordinates

Distance element

Volume element

Unit vectors

Time derivatives of unit vectors

Velocity

Kinetic energy

Acceleration

Table : Differential relations plus a diagram of the unit vectors for cylindrical coordinates.

Figure : Diagram for Table .

Spherical Coordinates 

The three dimensional spherical coordinates, can be treated the same way as for cylindrical coordinates. The unit basis vectors are shown in Table  where the angular
unit vectors  and  are taken to be tangential corresponding to the direction a point on the circumference moves for a positive rotation angle.

19.4.1 19.4.2

(ρ,ϕ,z)

(ρ,ϕ, z) ẑ

19.4.3 ϕ̂

19.4.3

ρ̂ θ̂

ρ ρ̇ ρ̈ ϕ̇ ϕ̈

ρ, ϕ, θ

ds = dρ + ρdϕ + dzρ̂ ϕ̂ ẑ

dv = ρdρdϕdz

= cosϕ + sinϕρ̂ î ĵ

= − sinϕ + cosϕϕ̂ î ĵ

=ẑ k̂

=
dρ̂

dt
ϕ̇ϕ̂

= −
dϕ̂

dt
ϕ̇ρ̂

= 0dẑ
dt

v = + ρ +ρ̇ρ̂ ϕ̇ϕ̂ ż ẑ

( + + )m

2
ρ̇

2
ρ2ϕ̇

2
ż

2

a = ( − ρ ) +(ρ + 2 ) +ρ̈ ϕ̇
2

ρ̂ ϕ̈ ρ̇ϕ̇ ϕ̂ z̈ ẑ

19.4.3

19.4.2 19.4.3

(r,θ,ϕ)

19.4.4

θ̂ ϕ̂
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Coordinates

Distance element

Volume element

Unit vectors

Time derivatives of unit vectors

Velocity

Kinetic energy

Acceleration

Table : Differential relations plus a diagram of the unit vectors for spherical coordinates.

Figure : Diagram for Table .

The distance and volume elements, the cartesian coordinate components of the spherical unit basis vectors, and the unit vector time derivatives are shown in the table given
in Figure . The time dependence of the unit vectors is used to derive the acceleration. As for the case of cylindrical coordinates, the , , and  components of the
acceleration involve coupling of the coordinates and their time derivatives.

It is important to note that the angular unit vectors  and  are taken to be tangential to the circles of rotation. However, for discussion of angular velocity of angular
momentum it is more convenient to use the axes of rotation defined by  and  for specifying the vector properties which is perpendicular to the unit vectors 
and . Be careful not to confuse the unit vectors  and  with those used for the angular velocities  and .

Frenet-Serret coordinates
The cartesian, polar, cylindrical, or spherical curvilinear coordinate systems, all are orthogonal coordinate systems that are fixed in space. There are situations where it is
more convenient to use the Frenet-Serret coordinates which comprise an orthogonal coordinate system that is fixed to the particle that is moving along a continuous,
differentiable, trajectory in three-dimensional Euclidean space. Let  represent a monotonically increasing arc-length along the trajectory of the particle motion as a
function of time . The Frenet-Serret coordinates, shown in Figure , are the three instantaneous orthogonal unit vectors , , and  where the tangent unit vector  is
the instantaneous tangent to the curve, the normal unit vector  is in the plane of curvature of the trajectory pointing towards the center of the instantaneous radius of
curvature and is perpendicular to the tangent unit vector , while the binormal unit vector is  which is the perpendicular to the plane of curvature and is mutually
perpendicular to the other two Frenet-Serrat unit vectors. The Frenet-Serret unit vectors are defined by the relations

The curvature  where  is the radius of curvature and  is the torsion that can be either positive or negative. For increasing , a non-zero curvature  implies that the

triad of unit vectors rotate in a right-handed sense about . If the torsion  is positive (negative) the triad of unit vectors rotates in right (left) handed sense about .

Distance element

Table : The differential relations plus a diagram of the corresponding unit vectors for the Frenet-Serret coordinate system.

r, θ, ϕ

ds = dr + rdθ + r sin θdϕr̂ θ̂ ϕ̂

dv = sin θdrdθdϕr2

= sin θ cosϕ + sin θ cosϕ + cos θr̂ î ĵ k̂

= cos θ cosϕ + cos θ sinϕ − sin θθ̂ î ĵ k̂

= − sinϕ + cosϕϕ̂ î ĵ

= + sin θd r̂
dt

θ̂ θ̇ ϕ̂ϕ̇

= − + cos θdθ̂

dt
r̂θ̇ ϕ̂ϕ̇

= − sin θ− cos θ
dϕ̂

dt
r̂ϕ̇ θ̂ ϕ̇

v = + r + r sin θṙ r̂ θ̇ θ̂ ϕ̇ ϕ̂

( + + θ )m

2
ṙ

2
r2 θ̇

2
r2 sin2 ϕ̇

2

a = ( − r − r θ) +(r + 2 − r sin θ cos θ) +(r sin θ+ 2 sin θr̈ θ̇
2

ϕ̇
2

sin2 r̂ θ̈ ṙ θ̇ ϕ̇
2

θ̂ ϕ̈ ṙϕ̇

19.4.4

19.4.3 19.4.4

19.4.3 r̂ θ̂ ϕ̂

θ̂ ϕ̂

×r̂ θ̂ ×r̂ ϕ̂ θ̂

ϕ̂ θ̂ ϕ̂ θ̇ ϕ̇

s(t)

t 19.4.4 t̂ n̂ b̂ t̂

n̂

t̂ = ×b̂ t̂ n̂

= κ
d t̂

ds
n̂ (19.4.16)

= −τ
db̂

ds
n̂ (19.4.17)

= −κ +τ
dn̂

ds
t̂ b̂ (19.4.18)

κ = 1
ρ

ρ τ s κ

b̂ τ t̂

ds(t) = dt = v(t)dtt̂ ∣
∣
dr(t)

dt

∣
∣ t̂

19.4.5
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Unit vectors

Time derivatives of unit vectors

Velocity

Acceleration

Figure : Diagram for Table .

The above equations also can be rewritten in the form using a new unit rotation vector  where

Then equations −  are transformed to

In general the Frenet-Serret unit vectors are time dependent. If the curvature  then the curve is a straight line and  and  are not well defined. If the torsion is zero
then the trajectory lies in a plane. Note that a helix has constant curvature and constant torsion.

The rate of change of a general vector field  along the trajectory can be written as

The Frenet-Serret coordinates are used in the life sciences to describe the motion of a moving organism in a viscous medium. The Frenet-Serret coordinates also have
applications to General Relativity.

Problems
1. The goal of this problem is to help you understand the origin of the equations that relate two different coordinate systems. Refer to diagrams for cylindrical and spherical
coordinates as your teaching assistant explains how to arrive at expressions for , , and  in terms of , , and  and how to derive expressions for the velocity and
acceleration vectors in cylindrical coordinates. Now try to relate spherical and rectangular coordinate systems. Your group should derive expressions relating the
coordinates of the two systems, expressions relating the unit vectors and their time derivatives of the two systems, and finally, expressions for the velocity and acceleration
in spherical coordinates.

This page titled 19.4: Appendix - Orthogonal Coordinate Systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content
that was edited to the style and standards of the LibreTexts platform.

(t) =t̂
v(t)

|v(t)|

(t) =n̂
d /dtt̂

d /dt∣
∣ t̂ ∣
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19.4.4 19.4.5

ω

ω = τ +κt̂ b̂ (19.4.19)

19.4.16 19.4.18

= ω ×
d t̂

ds
t̂ (19.4.20)

= ω ×
dn̂

ds
n̂ (19.4.21)

= ω ×
db̂

ds
b̂ (19.4.22)

κ = 0 n̂ b̂

E

=( + + )+ω ×E
dE

ds

dEt

ds
t̂

dEn

ds
n̂

dEb
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b̂ (19.4.23)

x1 x2 x3 ρ ϕ z

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9687?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/19%3A_Mathematical_Methods_for_Classical_Mechanics/19.04%3A_Appendix_-_Orthogonal_Coordinate_Systems
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/


19.5.1 https://phys.libretexts.org/@go/page/9688

19.5: Appendix - Coordinate transformations
Coordinate systems can be translated, or rotated with respect to each other as well as being subject to spatial inversion or time
reversal. Scalars, vectors, and tensors are defined by their transformation properties under rotation, spatial inversion and time
reversal, and thus such transformations play a pivotal role in physics.

Translational transformations
Translational transformations are involved frequently for transforming between the center of mass and laboratory frames for
reaction kinematics as well as when performing vector addition of central forces for the cases where the centers are displaced. Both
the classical Galilean transformation or the relativistic Lorentz transformation are handled the same way. Consider two parallel
orthonormal coordinate frames where the origin of  is displaced by a time dependent vector  from the origin of
frame . Then the Galilean transformation for a vector  in frame  to  in frame  is given by

The velocities for a moving frame are given by the vector difference of the velocity in a stationary frame, and the velocity of the
origin of the moving frame. Linear accelerations can be handled similarly.

Rotational transformations

Rotation matrix

Rotational transformations of the coordinate system are used extensively in physics. The transformation properties of fields under
rotation define the scalar and vector properties of fields, as well as rotational symmetry and conservation of angular momentum.

Rotation of the coordinate frame does not change the value of any scalar observable such as mass, temperature etc. That is,
transformation of a scalar quantity is invariant under coordinate rotation from .

By contrast, the components of a vector along the coordinate axes change under rotation of the coordinate axes. This difference in
transformation properties under rotation between a scalar and a vector is important and defines both scalars and a vectors.

Matrix mechanics, described in appendix , provides the most convenient way to handle coordinate rotations. The
transformation matrix, between coordinate systems having differing orientations is called the rotation matrix. This transforms the
components of any vector with respect to one coordinate frame to the components with respect to a second coordinate frame rotated
with respect to the first frame.

Assume a point  has coordinates  with respect to a certain coordinate system. Consider rotation to another coordinate
frame for which the point  has coordinates  and assume that the origins of both frames coincide. Rotation of a frame
does not change the vector, only the vector components of the unit basis states. Therefore

Note that if one designates that the unit vectors for the unprimed coordinate frame are  and for the primed coordinate
frame , then taking the scalar product of Equation  sequentially with each of the unit base vectors 
leads to the following three relations

Note that the  are the direction cosines as defined by the scalar product of two unit vectors for axes , that is, they are the
cosine of the angle between the two unit vectors.

Equation  can be written in matrix form as

where the “ ” means the inner matrix product of the rotation matrix  and the vector  where

( , , )F ′ x′ y′ z′ a(t)
F (x, y, z) r F r′ F ′

r( , , ) = r(x, y, z) +a(t)x′ y′ z′ (19.5.1)

x, y, z → , ,x′ y′ z′

ϕ( ) = ϕ(xyz)x′y′z′ (19.5.2)

19.1

P ( , , )x1 x2 x3

P ( , , )x′
1 x′

2 x′
3

x = + + = + +ê
′
1x

′
1 ê

′
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′
2 ê

′
3x

′
3 ê1x1 ê2x2 ê3x3 (19.5.3)
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1 ê1 x1 ê
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1 ê3 x3
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′
2 ê1 x1 ê

′
2 ê2 x2 ê

′
2 ê3 x3

= ( ⋅ ) +( ⋅ ) +( ⋅ )x′
3 ê

′
3 ê1 x1 ê
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( ⋅ )ê
′
i êj i, j

19.5.4
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The inverse procedure is obtained by multiplying Equation  successively by one of the unit basis vectors  leading
to three equations

Equation  can be written in matrix form as

where  is the transpose of .

Note that substituting Equation  into Equation  gives

Thus

where  is the identity matrix. This implies that the rotation matrix  is orthogonal with .

It is convenient to rename the elements of the rotation matrix to be

so that the rotation matrix is written more compactly as

and Equation  becomes

Consider an arbitrary rotation through an angle . Equations  and  can be used to relate six of the nine quantities 
in the rotation matrix, so only three of the quantities are independent. That is, because of Equation  we have three equations
which ensure that the transformation is unitary.

Also requiring that the axes be orthogonal gives three equations

These six relations can be expressed as

The fact that the rotation matrix should have three independent quantities is due to the fact that all rotations can be expressed in
terms of rotations about three orthogonal axes.

≡ x ≡ λ ≡x′
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⎝
⎜

x′
1

x′
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⎠
⎟
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⋅ê
′
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⋅ê
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1 ê3

⋅ê
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⋅ê
′
3 ê3
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⎟⎟ (19.5.6)

19.5.3 ( , , )ê1 ê2 ê3

= ( ⋅ ) +( ⋅ ) +( ⋅ )x1 ê1 ê
′
1 x′

1 ê1 ê
′
2 x′

2 ê1 ê
′
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3
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19.5.7

x = ⋅λ
T x′ (19.5.8)

λ
T

λ

19.5.5 19.5.8

x = ⋅ (λ ⋅ x) = ( ⋅ λ) ⋅ xλ
T

λ
T (19.5.9)

( ⋅ λ) = Iλ
T

I λ =λ
T

λ
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≡ ( ⋅ )λij ê
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i êj (19.5.10)
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Consider a point  in the unprimed coordinate system. Consider the same point  in the
primed coordinate system which has been rotated by an angle  about the  axis as shown. The direction cosines 

 can be determined from the figure to be the following

1 1 0 1

1 2 90 0

1 3 90 0

2 1 90 0

2 2 60 0.500

2 3 90-60 0.866

3 1 90 0

3 2 90+60 -0.866

3 3 60 0.500

Table 

Figure 

Thus the rotation matrix is

The transform point  therefore is given by

Note that the radial coordinate . That is, the rotational transformation is unitary and thus the magnitude of the
vector is unchanged.

Example 19.5.1
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Consider the rotation matrix

The product

which implies that  is orthogonal.

Finite rotations

Figure : Order of two finite rotations for a parallelepiped.

Consider two finite  rotations  and  illustrated in Figure . The  rotation is  around the  axis in a right-
handed direction as shown. In such a rotation the axes transform to  and the rotation matrix is

The second rotation  is a right-handed rotation about the  axis which formerly was the  axis. Then 
 and the rotation matrix is

Consider the product of these two finite rotations which corresponds to a single rotation matrix 

That is:

Example : Proof that a rotation matrix is orthogonal19.5.2
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λAB

=λAB λBλA (19.5.17)
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Now consider that the order of these two rotations is reversed.

That is:

An entirely different orientation results as illustrated in Figure .

This behavior of finite rotations is a consequence of the fact that finite rotations do not commute, that is, reversing the order does
not give the same answer. Thus, if we associate the vectors  and  with these rotations, then it implies that the vector product 

. That is, for finite rotation matrices, the product does not behave like for true vectors since they do not commute.

Infinitessimal rotations

Figure : Infinitessimal rotation

Infinitessimal rotations do not suffer from the noncommutation defect of finite rotations. If the position vector of a point changes
from  to  then the geometrical situation is represented correctly by

where  is a quantity whose magnitude is equal to the infinitessimal rotation angle and which has a direction along the
instantaneous axis of rotation as illustrated in Figure .

The infinitessimal angle  is a vector which is shown by proving that two infinitessimal rotations  and  commute. The
change in position vectors of the point are

and

Thus the final position vector for  followed by  is

Assuming that the second-order infinitessimals can be ignored gives

Consider now the inverse order of rotations.

=λBA λAλB (19.5.19)
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19.5.2

A B

AB ≠ BA

19.5.3

r r +δr

δr = δθ×r (19.5.21)

δθ

19.5.3

δθ δθ1 δθ2

δ = δ ×rr1 θ1 (19.5.22)

δ = δ ×(r +δ )r2 θ2 r1 (19.5.23)

δθ1 δθ2

r +δ +δ = r +δ ×r +δ ×(r +δ )r1 r2 θ1 θ2 r1 (19.5.24)

r +δ +δ = r +δ ×r +δ ×rr1 r2 θ1 θ2 (19.5.25)
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Again, neglecting the second-order infinitessimals gives

Note that the products of these two infinitessimal rotations,  and  are identical. That is, assuming that second-order
infinitessimals can be neglected, then the infinitessimal rotations commute, and thus  and  are correctly represented by
vectors.

The fact that  is a vector allows angular velocity to be represented by a vector. That is, angular velocity is the ratio of an
infinitessimal rotation to an infinitessimal time.

Note that this implies that the velocity of the point can be expressed as

Proper and improper rotations

The requirement that the coordinate axes be orthogonal, and that the transformation be unitary, leads to the relation between the
components of the rotation matrix.

It was shown in equation  that, for such an orthogonal matrix, the inverse matrix  equals the transposed matrix 

Inserting the orthogonality relation for the rotation matrix leads to the fact that the square of the determinant of the rotation matrix
equals one,

that is

A proper rotation is the rotation of a normal vector and has

An improper rotation corresponds to

An improper rotation implies a rotation plus a spatial reflection which cannot be achieved by any combination of only rotations.

Consider the cross product of two vectors . It can be shown that the cross product behaves under rotation as:

For all proper rotations the determinant of  and thus the cross product also acts like a proper vector under rotation. This is
not true for improper rotations where .

Spatial inversion transformation

Spatial inversion, that is, mirror reflection, corresponds to reflection of all coordinate vectors, , , and .
Such a transformation corresponds to the transformation matrix

r +δ +δ = r +δ ×r +δ ×(r +δ )r2 r1 θ2 θ1 r2 (19.5.26)

r +δ +δ = r +δ ×r +δ ×rr2 r1 θ2 θ1 (19.5.27)

19.5.25 19.5.27
δθ1 δθ2

δθ

ω =
δθ

δt
(19.5.28)

v = = ×r = ω ×r
δr

δt

δθ

δt
(19.5.29)

=∑
j

λijλkj δik (19.5.30)

(19.1.12) λ−1 λT

=λ
−1

λ
T

|λ = 1|
2

(19.5.31)

|λ| = ±1 (19.5.32)

|λ| = +1 (19.5.33)

|λ| = −1 (19.5.34)

c = a×b

= |λ|c′
i ∑

j

λijcj (19.5.35)

λ = +1
|λ| = −1

= −î î = −ĵ ĵ = −k̂ k̂
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Figure : Inversion of an object corresponds to reflection about the origin of all axes.

Thus , that is, it corresponds to an improper rotation. A spatial inversion for two vectors  and  correspond to

That is, normal polar vectors change sign under spatial reflection. However, the cross product  does not change sign
under spatial inversion since the product of the two minus signs is positive. That is,

Thus the cross product behaves differently from a polar vector. This improper behavior is characteristic of an axial vector, which
also is called a pseudovector.

Examples of pseudovectors are angular momentum, spin, magnetic field etc. These pseudovectors are defined using the right-hand
rule and thus have handedness. For a right-handed system

Changing to a left-handed system leads to

That is, handedness corresponds to a definite ordering of the cross product. Proper orthogonal transformations are said to preserve
chirality (Greek for handedness) of a coordinate system.

An example of the use of the right-handed system is the usual definition of cartesian unit vectors,

An obvious question to be asked, is the handedness of a coordinate system merely a mathematical curiosity or does it have some
deep underlying significance? Consider the Lorentz force

Since force and velocity are proper vectors then the magnetic  field must be a pseudo vector. Note that calculation of the  field
occurs only in cross products such as,

where the current density  is a proper vector. Another example is the Biot-Savart Law which expresses  as

Thus even though  is a pseudo vector, the force  remains a proper vector. Thus if a left-handed coordinate definition of 
 is used in , and  in , then the same final physical result would be obtained.

It was long thought that the laws of physics were symmetric with respect to spatial inversion ( i.e. mirror reflection), meaning that
the choice between a left-handed and right-handed representations (chirality) was arbitrary. This is true for gravitational,
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19.5.4

|λ| = −1 A(r) B(r)

A(r) = −A(−r)

B(r) = −B(−r)

(19.5.37)

C = A ×B

C(r) = +C(−r) (19.5.38)

= A ×BCR (19.5.39)

= B ×A = −A ×BCL (19.5.40)

× =î ĵ k̂ (19.5.41)

F = q(E +v ×B) (19.5.42)

B B

∇ ×B = μj (19.5.43)

j B

dB =
Iμo

4π

dl ×r

r2
(19.5.44)

B F

=BL
Iμo

4π
r×dl

r2 19.5.44 F = q(E + ×v)BL 19.5.42
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electromagnetic and the strong force, and is called the conservation of parity. The fourth fundamental force in nature, the weak
force, violates parity and favours handedness. It turns out that right-handed ordinary matter is symmetrical with left-handed
antimatter.

In addition to the two flavours of vectors, one has scalars and pseudoscalars defined by:

An example of a pseudoscalar is the scalar product 

Time reversal transformation

The basic laws of classical mechanics are invariant to the sense of the direction of time. Under time reversal the vector  is
unchanged while both momentum  and time  change sign under time reversal, thus the time derivative  is invariant to

time reversal; that is, the force is unchanged and Newton’s Laws  are invariant under time reversal. Since the force can be
expressed as the gradient of a scalar potential for a conservative field, then the potential also remains unchanged. That is

It is necessary to introduce tensor algebra, given in appendix , prior to discussion of the transformation properties of
observables which is the topic of appendix .

Exercises
1. Suppose the -axis of a rectangular coordinate system is rotated by  away from the -axis around the -axis.

(a) Find the corresponding transformation matrix. Try to do this by drawing a diagram instead of going to the book or the notes for
a formula.

(b) Is this an orthogonal matrix? If so, show that it satisfies the main properties of an orthogonal matrix. If not, explain why it fails
to be orthogonal.

(c) Does this matrix represent a proper or an improper rotation? How do you know?

2. When you were first introduced to vectors, you most likely were told that a scalar is a quantity that is defined by a magnitude,
while a vector has both a magnitude and a direction. While this is certainly true, there is another, more sophisticated way to define
a scalar quantity and a vector quantity: through their transformation properties. A scalar quantity transforms as  while a
vector quantity transforms as . To show that the scalar product does indeed transform as a scalar, note that:

Now you will show that the vector product transforms as a vector. Begin by writing out what you are trying to show explicitly and
show it to the teaching assistant. Once the teaching assistant has confirmed that you have the correct expression, try to prove it. The
vector product is a bit more difficult to work with than the scalar product, so your teaching assistant is prepared to give you a hint if
you get stuck.

3. Suppose you have two rectangular coordinate systems that share a common origin, but one system is rotated by an angle  with
respect to the other. To describe this rotation, you have made use of the rotation matrix . (I’m changing the notation slightly to
put the emphasis on the angle of rotation.)

(a) Verify that the product of two rotation matrices  is in itself a rotation matrix.

(b) In abstract algebra, a group  is defined as a set of elements  together with a binary operation  acting on that set such that
four properties are satisfied:

i. (Closure) For any two elements  and  in the group , the product of the elements,  is also in the group .

ϕ(r) = +ϕ(−r) (19.5.45)

ϕ(r) = −ϕ(−r) (19.5.46)

A ⋅ (B ×C)

r

p t F =
dp

dt

F =
dp

dt

= −∇U(r) = F
dp

dt
(19.5.47)

19.5
19.5.5
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i ∑j λijAj

⋅ = = ( )( ) = ( )A′ B′ ∑
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′
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i
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j
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k

λikBk ∑
j,k

∑
i

λijλik AjBk

= ( ) = = A ⋅ B∑
j
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ii. (Associativity) For any three elements  of the group , .

iii. (Existence of Identity) The group  contains an identity element  such that  for all .

iv. (Existence of Inverses) For each element , there exists an inverse element  such that .

Show that if the product  denotes the product of two matrices, then the set of rotation matrices together with  forms a group. This
group is known as the special orthogonal group in two dimensions, also known as .

(c) Is this group commutative? In abstract algebra, a commutative group is called an abelian group.

4. When you look in a mirror the image of you appears left-to-right reversed, that is, the image of your left ear appears to be the
right ear of the image and vise versa. Explain why the image is left-right reversed rather than up-down reversed or reversed about
some other axis; i.e. explain what breaks the symmetry that leads to these properties of the mirror image.

5. Find the transformation matrix that rotates the axis  of a rectangular coordinate system  toward  around the  axis.

6. For simplicity, take  to be a two-dimensional transformation matrix. Show by direct expansion that .

This page titled 19.5: Appendix - Coordinate transformations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

, ,gi gj gk G ( ∗ ) ∗ = ∗ ( ∗ )gi gj gk gi gj gk
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19.6: Appendix - Tensor Algebra

Tensors

Mathematically scalars and vectors are the first two members of a hierarchy of entities, called tensors, that behave under
coordinate transformations as described in appendix . The use of the tensor notation provides a compact and elegant way to
handle transformations in physics.

A scalar is a rank 0 tensor with one component, that is invariant under change of the coordinate system.

A vector is a rank 1 tensor which has three components, that transform under rotation according to matrix relation

where  is the rotation matrix. Equation  can be written in the suffix form as

The above definitions of scalars and vectors can be subsumed into a class of entities called tensors of rank  that have 
components. A scalar is a tensor of rank , with only  component, whereas a vector has rank , that is, the vector 
has one suffix  and  components.

A second-order tensor  has rank  with two suffixes, that is, it has  components that transform under rotation as

For second-order tensors, the transformation formula given by Equation  can be written more compactly using matrices.
Thus the second-order tensor can be written as a  matrix

The rotational transformation given in Equation  can be written in the form

where  are the matrix elements of the transposed matrix . The summations in  can be expressed in both the tensor and
conventional matrix form as the matrix product

Equation  defines the rotational properties of a spherical tensor.

Tensor products

Tensor outer product

Tensor products feature prominently when using tensors to represent transformations. A second-order tensor  can be formed by
using the tensor product, also called outer product, of two vectors  and  which, written in suffix form, is

In component form the matrix elements of this matrix are given by

19.4

ϕ( ) = ϕ(xyz)x′y′z′ (19.6.1)

= λ ⋅ xx′ (19.6.2)

λ 19.6.2

=x′
i ∑

j=1

3

λijxj (19.6.3)
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This second-order tensor product has a rank , that is, it equals the sum of the ranks of the two vectors. Equation  is
called a dyad since it was derived by taking the dyadic product of two vectors. In general, multiplication, or division, of two vectors
leads to second-order tensors. Note that this second-order tensor product completes the triad of tensors possible taking the product
of two vectors. That is, the scalar product , has rank , the vector product , rank  and the tensor product 
has rank  .

Higher-order tensors can be created by taking more complicated tensor products. For example, a rank-3 tensor can be created by
taking the tensor outer product of the rank-2 tensor  and a vector  which, for a dyadic tensor, can be written as the tensor
product of three vectors. That is,

In summary, the rank of the tensor product equals the sum of the ranks of the tensors included in the tensor product.

Tensor Inner Product

The lowest rank tensor product, which is called the inner product, is obtained by taking the tensor product of two tensors for the
special case where one index is repeated, and taking the sum over this repeated index. Summing over this repeated index, which is
called contraction, removes the two indices for which the index is repeated, resulting in a tensor that has rank  equal to the sum of
the ranks minus 2 for one contraction. That is, the product tensor has rank .

The simplest example is the inner product of two vectors which has rank , that is, it is the scalar product that
equals the trace of the inner product matrix, and this inner product is commutative.

An especially important case is the inner product of a rank-2 dyad , given by Equation , with a vector , that is, the
inner product . Written in component form, the inner product is

The scalar product  is a scalar number, and thus the inner-product tensor is the vector  renormalized by the magnitude of the
scalar product . That is, it has a rank . Thus the inner product of this rank-2 tensor with a vector gives a
vector. The inner product of a rank-2 tensor with a rank-1 tensor is used in this book for handling the rotation matrix, the inertia
tensor for rigid-body rotation, and for the stress and the strain tensors used to describe elasticity in solids.

The displacement gradient tensor provides an example of the use of the matrix representation to manipulate tensors. Let 
 be a vector field expressed in a cartesian basis. The definition of the gradient  gives that

Calculating the components of  in terms of  gives

Using index notation this can be written as

The second-rank gradient tensor  can be represented in the matrix form as

=Tij aibj (19.6.9)

r = 2 19.6.8

a ⋅ b r = 0 a×b r = 1 a⊗b
1 r = 2

Tij ck

= =Tijk Tijck aibjck (19.6.10)

r

r = + −2r1 r2
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a⊗b 19.6.8 c

T = a⊗b ⋅ c

=( ) = (a ⋅ b)∑
i

3

aibicj ∑
i

3

aibi cj cj (19.6.11)

a ⋅ b c

a ⋅ b r = 2 +1 −2 = 1

Example : Displacement gradient tensor19.6.1
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Then the vector  can be expressed compactly as the inner product of  and , that is

Tensor Properties
In principle one must distinguish between a  square matrix, and the tensor component representations of a rank-2 tensor.
However, as illustrated by the previous discussion, for orthogonal transformations, the tensor components of the second rank tensor
transform identically with the matrix components. Thus functionally, the matrix formulation and tensor representations are
identical. As a consequence, all the terminology and operations used in matrix mechanics are equally applicable to the tensor
representation.

The tensor representation of the rotation matrix provides the simplest example of the equivalence of the matrix and tensor
representations of transformations. Appendix  showed that the unitary rotation matrix , acting on a vector  transforms it to
the vector  that is rotated with respect to . That is, the transformation is

where

Appendix  showed that the rotation matrix  requires 9 components to fully specify the transformation from the initial 3-
component vector  to the rotated vector . The rotation tensor is a dyad as well as being unitary and dimensionless. Note that
Equation  is an example of the inner product of a rank−2 rotation tensor acting on a vector leading to a another vector that
is rotated with respect to the first vector.

In general, rank-2 tensors have dimensions and are not unitary. For example, the angular velocity vector  and the angular
momentum vector  are related by the inner product of the inertia tensor  and . That is

The inertia tensor has dimensions of  and relates two very different vector observables. The stress tensor and the
strain tensor, discussed in chapter , provide another example of second-order tensors that are used to transform one vector
observable to another vector observable analogous to the case of the rotation matrix or the inertia tensor.

Note that pseudo-tensors can be used to make a rotational transformation plus a change in the sign. That is, they lead to a parity
inversion.

The tensor notation is used extensively in physics since it provides a powerful, elegant, and compact representation for describing
transformations.

Contravariant and covariant tensors
In general the configuration space used to specify a dynamical system is not a Euclidean space in that there may not be a system of
coordinates for which the distance between any two neighboring points can be represented by the sum of the squares of the
coordinate differentials. For example, a set of cartesian coordinate does not exist for the two-dimension motion of a single particle
constrained to the curved surface of a fixed sphere. Such curved spaces need to be represented in terms of Riemannian geometry
rather than Euclidean geometry. Curved configuration spaces occur in some branches of physics such as Einstein’s General Theory
of Relativity.
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⋅ê
′
1 ê2
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3 ê2

⋅ê
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Tensors have transformation properties that can be either contravariant or covariant. Consider a set of generalized coordinates 
that are a function of the coordinates . Then infinitessimal changes  will lead to infinitessimal changes  where

Contravariant components of a tensor transform according to the relation

Equation  relates the contravariant components in the unprimed and primed frames.

Derivatives of a scalar function , such as

That is, covariant components of the tensor transform according to the relation

It is important to differentiate between contravariant and covariant vectors. The superscript/subscript convention for distinguishing
between these two flavours of tensors is given in table 

denotes a contravariant vector

denotes a covariant vector

Table : Einstein notation for tensors.

In linear algebra one can map from one coordinate system to another as illustrated in appendix . That is, the tensor  can be
expressed as components with respect to either the unprimed or primed coordinate frames

For a −dimensional manifold the unit basis column vectors  transform according to the transformation matrix 

Since the tensor  is independent of the coordinate basis, the components of  must have the opposite transform

This normal vector  is called a “contravariant vector” because it transforms contrary to the basis column vector transformation.

The inverse of Equation  gives that the column vector element

Consider the case of a gradient with respect to the coordinate  in both the unprimed and primed bases. Using the chain rule for the
partial derivative then the component of the gradient in the primed frame can be expanded as

That is, the gradient transforms as

That is, a gradient transforms as a covariant vector, like the unit vectors, whereas a vector  is contravariant under
transformation.

q ′
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d = dq ′n ∑
m

∂q ′n

∂qm
qm (19.6.15)
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Normally the basis is orthonormal, , and thus there is no difference between contravariant and covariant vectors.
However, for curved coordinate systems, such as non-Euclidean geometry in the General Theory of Relativity, the covariant and
contravariant vectors behave differently.

The Einstein convention is extended to apply to matrices by writing the elements of the matrix  as  while the elements of the
transposed matrix  are written as . The matrix product for  with a contravariant vector  is written as

where the summation over  effectively cancels the identical superscript and subscript .

Similarly a covariant vector, such as a gradient, is written as,

Again the summation cancels the  superscript and subscript. The Kronecker delta symbol is written as

Generalized inner product

The generalized definition of an inner product is

where  is a unitary matrix called a covariant metric. The covariant metric transforms a contravariant to a covariant tensor. For
example the matrix element of a covariant tensor  can be written as

By association of the covariant metric with either of the vectors in the inner product gives

Similarly it can be defined in terms of an orthogonal contravariant metric  where

Then

Association of the contravariant metric with one of the vectors in the inner product gives the inner product

For most situations in this book the metric  is diagonal and unitary.

Transformation Properties of Observables

In physics, observables can be represented by spherical tensors which specify the angular momentum and parity characteristics of
the observable, and the tensor rank is independent of the time dependence. The transformation properties of these tensors, coupled
with their time-reversal invariance, specify the fundamental characteristics of the observables.

Table  summarizes the transformation properties under rotation, spatial inversion and time reversal for observables
encountered in classical mechanics and electrodynamics. Note that observables can be scalar, vector, pseudovector, or second-order
tensors, under rotation, and even or odd under either space inversion or time inversion. For example, in classical mechanics the
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inertia tensor  relates the angular velocity vector  to the angular momentum vector  by taking the inner product . In
general  is not diagonal and thus the angular momentum is not parallel to the angular velocity . A similar example in
electrodynamics is the dielectric tensor  which relates the displacement field  to the electric field  by . For
anisotropic crystal media  is not diagonal leading to the electric field vectors  and  not being parallel.

As discussed in chapter , Noether’s Theorem states that symmetries of the transformation properties lead to important
conservation laws. The behavior of classical systems under rotation relates to the conservation of angular momentum, the behavior
under spatial inversion relates to parity conservation, and time-reversal invariance relates to conservation of energy. That is,
conservative forces conserve energy and are time-reversal invariant.

Physical Observable  
Rotation (Tensor

rank)
Space inversion Time reversal Name

1) Classical
Mechanics

     

Mass density 0 Even Even Scalar

Kinetic energy 0 Even Even Scalar

Potential energy 0 Even Even Scalar

Lagrangian 0 Even Even Scalar

Hamiltonian 0 Even Even Scalar

Gravitational
potential

0 Even Even Scalar

Coordinate 1 Odd Even Vector

Velocity 1 Odd Odd Vector

Momentum 1 Odd Odd Vector

Angular momentum 1 Even Odd Pseudovector

Force 1 Odd Even Vector

Torque 1 Even Even Pseudovector

Gravitational field 1 Odd Even Vector

Inertia tensor 2 Even Even Tensor

Elasticity stress
tensor

2 Even Even Tensor

      

2)
Electromagnetism

     

Charge density 0 Even Even Scalar

Current density 1 Odd Odd Vector

Electric field 1 Odd Even Vector

Polarization 1 Odd Even Vector

Displacement 1 Odd Even Vector

Magnetic  field 1 Even Odd Pseudovector

Table : Transformation properties of scalar, vector, pseudovector, and tensor observables under rotation, spatial inversion, and time
reversal

I ω L L = I ⋅ ω

I ω

K D E D = K ⋅ E

K E D
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/2mp2

U(r)

L
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F
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Physical Observable  
Rotation (Tensor

rank)
Space inversion Time reversal Name

Magnetization 1 Even Odd Pseudovector

Magnetic  field 1 Even Odd Pseudovector

Poynting vector 1 Odd Odd Vector

Dielectric tensor 2 Even Even Tensor

Maxwell stress
tensor

2 Even Even Tensor

References
The common convention is to denote the scalar product as , the vector product as , and tensor product as .

Based on table 6.1 in "Classical Electrodynamics"  edition, by J.D. Jackson [Jac75]
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19.7: Appendix - Aspects of Multivariate Calculus
Multivariate calculus provides the framework for handling systems having many variables associated with each of several bodies. It
is assumed that the reader has studied linear differential equations plus multivariate calculus and thus has been exposed to the
calculus used in classical mechanics. Chapter  of this book introduced variational calculus which covers several important aspects
of multivariate calculus such as Euler’s variational calculus and Lagrange multipliers. This appendix provides a brief review of a
selection of other aspects of multivariate calculus that feature prominently in classical mechanics.

Partial Differentiation
The extension of the derivative to multivariate calculus involves use of partial derivatives. The partial derivative with respect to the
variable  of a multivariate function  involves taking the normal one-variable derivative with respect to 
assuming that the other  variables are held constant. That is,

where it will be assumed that the function  is a continuously-differentiable function to  order, then all partial derivatives of
that order or less are independent of the order in which they are performed. That is,

The chain rule for partial differentiation gives that

The total differential of a multivariate function  is

This can be extended to higher-order derivatives using the operator formalism

Linear Operators
The linear operator notation provides a powerful, elegant, and compact way to express, and apply, the equations of multivariate
calculus; it is used extensively in mathematics and physics. The linear operators typically comprise partial derivatives that act on
scalar, vector, or tensor fields. Table  lists a few elementary examples of the use of linear operators in this textbook. The first
four linear operators involve the widely used del operator  to generate the gradient, divergence and curl as described in
appendices  and . The fifth and sixth linear operators act on the Lagrangian in Lagrangian mechanics applications. The
final two linear operators act on the wavefunction for wave mechanics.

Name Partial derivative Field Action

Gradient Scalar potential 

Divergence Vector field 

Curl Vector field 

Table : Examples of linear operators used in this textbook.

5

xi f( , , . . . . , )x1 x2 xN xi
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= [ ]
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∂xi
lim

→0hi
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Name Partial derivative Field Action

Laplacian Scalar potential 

Euler-Lagrange Scalar Lagrangian 

Canonical momentum Scalar Lagrangian 

Canonical momentum Wavefunction 

Hamiltonian Wavefunction 

There are three ways of expressing operations such as addition, multiplication, transposition or inversion of operations that are
completely equivalent because they all are based on the same principles of linear algebra. For example, a transformation  acting
on a vector  can produce the vector . The simplest way to express this transformation is in terms of components

Another way is to use matrix mechanics where the  matrix  transforms the column vector  to the column vector ,
that is,

The third approach is to assume an operator  acts on the vector 

In classical mechanics, and quantum mechanics, these three equivalent approaches are used and exploited extensively and
interchangeably. In particular the rules of matrix manipulation, that are given in appendix , are synonymous, and equivalent to,
those that apply for operator manipulation. If the operator is complex then the operator properties are summarized as follows.

The generalization of the transpose for complex operators is the Hermitian conjugate 

Note also that

The generalization of a symmetric matrix is Hermitian, that is,  is equal to its Hermitian conjugate

For a real matrix the complex conjugation has no effect so the matrix is real and symmetric.

The generalization of orthogonal is unitary for which the operator is unitary if it is non-singular and

which implies

Transformation Jacobian
The Jacobian determinant, which is usually called the Jacobian, is used extensively in mechanics for both rotational and
translational coordinate transformations. The Jacobian determinant is defined as being the ratio of the -dimensional volume
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element  in one coordinate system, to the volume element  in the second coordinate system. That is

Transformation of integrals

Consider a coordinate transformation for the integral of the function  to the integral of a function 
where . The coordinate transformation of the integral equation can be expressed in terms of the Jacobian 

Transformation of differential equations

The differential cross sections for scattering can be defined either by the number of a definite kind of particle/per event, going into
the volume element in momentum space , or by the number going into the solid angle element having momentum
between  and . That is, the first definition can be written as a differential equation

As shown in table , , that is, the Jacobian equals . Thus Equation  can be
written as

The differential cross section is defined by

where the  factor is absorbed into the cross section and the solid angle term is factored out

Properties of the Jacobian

In classical mechanics the Jacobian often is extended from 3 dimensions to -dimensional transformations. The Jacobian is unity
for unitary transformations such as rotations and linear translations which implies that the volume element is preserved. It will be
shown that this also is true for a certain class of transformations in classical mechanics that are called canonical transformations.
The Jacobian transforms the local density to be correct for any scale transformations such as transforming linear dimensions from
centimeters to inches.

Consider the transform in the three-dimensional integral  under transformation from cartesian
coordinates  to spherical coordinates . The transformation is governed by the geometric relations 

. For this transformation the Jacobian determinant equals

d d . . . dx1 x2 xn d d . . . dy1 y2 yn

J ( … ) ≡ =y1y2 yn
∂ ∂ … ∂x1 x2 xn

∂ ∂ … ∂y1 y2 yn

∣

∣

∣
∣
∣
∣
∣
∣
∣
∣

∂x1

∂y1

∂x2

∂y1

⋮
∂xn
∂y1

∂x1

∂y2

∂x2

∂y2

⋮
∂xn
∂y2

…

⋯

⋮

…

∂x1

∂yn
∂x2

∂yn

⋮
∂xn
∂yn

∣

∣

∣
∣
∣
∣
∣
∣
∣
∣

(19.7.14)

f( , , . . )x1 x2 xn g( , , . . . )y1 y2 yn
= h( , , . . . )yi x1 x2 xn

J( . . . )y1y2 yn

∫ f ( , , … )d d … dx1 x2 xn x1 x2 xn

∫ f ( , , … ) d d … dx1 x2 xn
∂ ∂ … ∂x1 x2 xn

∂ ∂ … ∂y1 y2 yn
y1 y2 yn

= ∫ g ( , , … )d d … d =y1 y2 yn y1 y2 yn

= ∫ f ( , , . . )J ( , , … )d d … dy1 y2 yn y1 y2 yn y1 y2 yn

(19.7.15)

d d dp1 p2 p3

p p+dp

d d d = dpdθdϕ
S( , , )∂3 p1 p2 p3

∂ ∂ ∂p1 p2 p3
p1 p2 p3

S( (pθϕ), (pθϕ), (pθϕ))∂3 p1 p2 p3

∂ ∂ ∂p1 p2 p3

∂( , , )p1 p2 p3

∂(p, θ,ϕ)
(19.7.16)

19.3.4 d d d = sinθdpdθdϕp1 p2 p3 p2 sinθp2 19.7.16

d d d = [ ] (sinθdpdθdϕ) = dpdΩ
S( , , )∂3 p1 p2 p3

∂ ∂ ∂p1 p2 p3
p1 p2 p3

S∂3

∂ ∂ ∂p1 p2 p3
p2 σ(p, θ,ϕ)∂2

∂p∂Ω
(19.7.17)

≡
σ(p, θ,ϕ)∂2

∂p∂Ω
S∂3

∂ ∂ ∂p1 p2 p3
p2 (19.7.18)

p2

n

Example : Jacobian for transform from cartesian to spherical coordinates19.7.1

∫( , , )d d dx1 x2 x3 x1 x2 x3

( , , )x1 x2 x3 (r, θ,ϕ)
= r sinθcosϕ, = r sinθ sinϕ, = r cosθx1 x2 x3

J(r, θ,ϕ) = = sinθ
∣

∣

∣
∣

sinθcosϕ
sinθ sinϕ

cosθ

r cosθcosϕ
r cosθ sinϕ

−r sinθ

−r sinθ sinϕ
r sinθcosϕ

0

∣

∣

∣
∣ r2
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Thus the three-dimensional volume integral transforms to

which is the well-known volume integral in spherical coordinates.

Legendre transformation

Hamiltonian mechanics can be derived directly from Lagrange mechanics by considering the Legendre transformation between the
conjugate variables  and . Such a derivation is of considerable importance in that it shows that Hamiltonian
mechanics is based on the same variational principles as those used to derive Lagrangian mechanics; that is d’Alembert’s Principle
or Hamilton’s Principle. The general problem of converting Lagrange’s equations into the Hamiltonian form hinges on the
inversion of equation  that defines the generalized momentum . This inversion is simplified by the fact that  is the
first partial derivative of the Lagrangian  which is a scalar function.

Consider transformations between two functions  and  where  and  are the active variables related by the
functional form

and where  designates passive variables and  is the first-order derivative of , i.e. the gradient, with respect
to the components of the vector . The Legendre transform states that the inverse formula can always be written in the form

where the function  is related to  by the symmetric relation

and where the scalar product .

Furthermore the derivatives with respect to all the passive variables  are related by

The relationship between the functions  and  is symmetrical and each is said to be the Legendre transform of the
other.

Exercises
1. Below you will find a set of integrals. Your teaching assistant will divide you into groups and each group will be assigned one
integral to work on. Once your group has solved the integral, write the solution on the board in the space provided by the teaching
assistant.

(a) 

(b) 

(c)  where  and  is the sphere .

(d)  where  and  is the surface defined by the paraboloid , where .

This page titled 19.7: Appendix - Aspects of Multivariate Calculus is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

∫ f( , , )d d d = ∫ f(r, θ,ϕ)J(r, θ,ϕ)drdθdϕ = ∫ f(r, θ,ϕ) sinθdrdθdϕx1 x2 x3 x1 x2 x3 r2

(q, , t)q̇ (q, p, t)

(8.1.3) p (8.1.3)
L(q, , t)q̇

F (u, w) G(v, w) u v

v = F (u, w)∇u (19.7.19)

w F (u, w)∇u F (u, w)
u

u = G(v, w)∇v (19.7.20)

G(v, w) F (u, w)

G(v, w) +F (u, w) = u ⋅ v (19.7.21)

u ⋅ v =∑N
i=1 uivi

{ }wi

F (u, w) = − G(v, w)∇w ∇w (19.7.22)

F (u, w) G(v, w)

sinθdrdθdϕ∫ 2π
0 ∫ π/4

0 ∫ cos θ
0 r2

∫( − )dt
ṙ

r

rṙ

r2

A ⋅ da∫
S

A = x +y +zî ĵ k̂ S + + = 9x2 y2 z2

(∇ ×A) ⋅ da∫
S

A = y +z +xî ĵ k̂ S z = 1 − −x2 y2 z ≥ 0
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19.8: Appendix - Vector Differential Calculus
This appendix reviews vector differential calculus which is used extensively in both classical mechanics and electromagnetism.

Scalar differential operators

Scalar field

Differential operators like time  do not change the rotational properties of scalars or proper vectors. A scalar operator 
acting on a scalar field , in a rotated coordinated frame  is unchanged.

Vector field

Similarly for a proper vector field

That is, differentiation of scalar or vector fields with respect to a scalar operator does not change the rotational behavior. In
particular, the scalar differentials of vectors continue to obey the rules of ordinary proper vectors. The scalar operator  is used for
calculation of velocity or acceleration.

Vector differential operators in cartesian coordinates
Vector differential operators, such as the gradient operator, are important in physics. The action of vector operators differ along
different orthogonal axes.

Scalar field

Consider a continuous, single-valued scalar function . Since

then the partial differential with respect to one component  of the vector  gives

The inverse rotation gives that

Therefore

Thus

That is the vector derivative acting of a scalar field transforms like a proper vector.

Define the gradient, or  operator, as

( )d

dt

d

ds

ϕ(xyz) ( )ϕ′ x′y′z′

=
dϕ′

ds

dϕ

ds
(19.8.1)

=
dA′

i

ds
∑
j

λij
dAj

ds
(19.8.2)

∂

∂t

ϕ( , , )xi xj xk

= ϕϕ′ (19.8.3)

xi x′

=
∂ϕ′

∂x′
i

∑
j

∂ϕ

∂xj

∂xj

∂x′
i

(19.8.4)

=xj ∑
k

λkjx′
k (19.8.5)

= = =
∂xj

∂x′
i

∑
k

λkj
∂x′

k

∂x′
i

∑
k

λkjδik λij (19.8.6)

=
∂ϕ′

∂x′
i

∑
j

λij
∂ϕ

∂xj
(19.8.7)

∇

∇ ≡∑
i

eî

∂

∂xi
(19.8.8)
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where  is the unit vector along the  axis. In cartesian coordinates, the del vector operator is,

The gradient was applied to the gravitational and electrostatic potential to derive the corresponding field. For example, for
electrostatics it was shown that the gradient of the scalar electrostatic potential field  can be written in cartesian coordinates as

Note that the gradient of a scalar field produces a vector field. You are familiar with this if you are a skier in that the gravitational
force pulls you down the line of steepest descent for the ski slope.

Vector field

Another possible operation for the del operator is the scalar product with a vector. Using the definition of a scalar product in
cartesian coordinates gives

This scalar derivative of a vector field is called the divergence. Note that the scalar product produces a scalar field which is
invariant to rotation of the coordinate axes.

The vector product of the del operator with another vector, is called the curl which is used extensively in physics. It can be written
in the determinant form

By contrast to the scalar product, both the gradient of a scalar field, and the vector product, are vector fields for which the
components along the coordinate axes transform in a specific manner, such as to keep the length of the vector constant, as the
coordinate frame is rotated. The gradient, scalar and vector products with the  operator are the first order derivatives of fields
that occur most frequently in physics.

Second derivatives of fields also are used. Let us consider some possible combinations of the product of two del operators.

1) 

The scalar product of two del operators is a scalar under rotation. Evaluating the scalar product in cartesian coordinates gives

This also can be obtained without confusion by writing this product as;

where the scalar product of the del operator is a scalar, called the Laplacian , given by

The Laplacian operator is encountered frequently in physics.

2) 

Note that the vector product of two identical vectors

Therefore

eî xi

∇ ≡ + +î
∂

∂x
ĵ

∂

∂y
k̂

∂

∂z
(19.8.9)

V

E = −∇V (19.8.10)

∇ ⋅ A = ⋅ + ⋅ + ⋅ = + +î î
∂Ax

∂x
ĵ ĵ

∂Ay

∂y
k̂ k̂

∂Az

∂z

∂Ax

∂x

∂Ay

∂y

∂Az

∂z
(19.8.11)

∇ ×A =

∣

∣

∣
∣
∣

î
∂

∂x

Ax

ĵ
∂
∂y

Ay

k̂
∂
∂z

Az

∣

∣

∣
∣
∣

(19.8.12)

∇

∇ ⋅ (∇V ) = V∇2

( + + ) ⋅( + + ) = + +î
∂

∂x
ĵ

∂

∂y
k̂

∂

∂z
î

∂V

∂x
ĵ

∂V

∂y
k̂

∂V

∂z

V∂2

∂x2

V∂2

∂y2

V∂2

∂z2
(19.8.13)

∇ ⋅ (∇V ) = ∇ ⋅ ∇V = (∇ ⋅ ∇)V (19.8.14)

∇2

∇ ⋅ ∇ = ≡ + +∇2 ∂2

∂x2

∂2

∂y2

∂2

∂z2
(19.8.15)

∇ × (∇V ) = 0

A ×A = 0 (19.8.16)

∇ ×(∇V ) = 0 (19.8.17)
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This can be confirmed by evaluating the separate components along each axis.

3) 

This is zero because the cross-product is perpendicular to  and thus the dot product is zero.

4) 

The identity

can be used to give

since .

There are pitfalls in the discussion of second derivatives in that it is assumed that both del operators operate on the same variable,
otherwise the results are different.

Vector differential operators in curvilinear coordinates
As discussed in Appendix  there are many situations where the symmetries make it more convenient to use orthogonal
curvilinear coordinate systems rather than cartesian coordinates. Thus it is necessary to extend vector derivatives from cartesian to
curvilinear coordinates. Table  can be used for expressing vector derivatives in curvilinear coordinate systems.

Gradient

The gradient in curvilinear coordinates is

where the coefficients  are listed in table . For cylindrical coordinates this becomes

In spherical coordinates

Divergence

The divergence can be expressed as

In cylindrical coordinates the divergence is

In spherical coordinates the divergence is

Curl

∇ ⋅ (∇ × A) = 0

∇ ×A

∇ × (∇ × A) = ∇ ⋅ (∇ ⋅ A) − A∇2

A ×(B ×C) = B(A ⋅ C) −(A ⋅ B)C (19.8.18)

∇ ×(∇ ×A) = ∇ ⋅ (∇ ⋅ A) − A∇2 (19.8.19)

∇ ⋅ ∇ = ∇2

19.3

19.3.1

∇f = + +
1

h1

∂f

∂q1
q̂1

1

h2

∂f

∂q2
q̂2

1

h3

∂f

∂q3
q̂3 (19.8.20)

hi 19.3.1

∇f = + +
∂f

∂ρ
ρ̂

1

ρ

∂f

∂φ
φ̂

∂f

∂z
ẑ (19.8.21)

∇f = + +
∂f

∂r
r̂

1

r

∂f

∂θ
θ̂

1

r sinθ

∂f

∂φ
φ̂ (19.8.22)

∇ ⋅ A = [ ( ) + ( ) + ( )]
1

h1h2h3

∂

∂q1
A1h2h3

∂

∂q2
A2h3h1

∂

∂q3
A3h1h2 (19.8.23)

∇ ⋅ A = (ρ ) + + = + + +
1

ρ

∂

∂ρ
Aρ

1

ρ

∂Aφ

∂φ

∂Az

∂z

Aρ

ρ

∂Aρ

∂ρ

1

ρ

∂Aφ

∂φ

∂Az

∂z
(19.8.24)

∇ ⋅ A = [ ( sinθ)+ ( r sinθ) + ( r)]
1

sinθr2

∂

∂r
Arr

2 ∂

∂θ
Aθ

∂

∂φ
Aφ (19.8.25)

∇ ×A =
1

h1h2h3

∣

∣

∣
∣
∣

h1q̂1

∂

∂q1

h1A1

h2q̂2

∂

∂q2

h2A2

h3q̂3

∂
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∣

∣

∣
∣
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(19.8.26)
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In cylindrical coordinates the curl is

In spherical coordinates the curl is

Laplacian

Taking the divergence of the gradient of a scalar gives

The Laplacian of a scalar function  in cylindrical coordinates is

The Laplacian of a scalar function  in spherical coordinates is

The gradient, divergence, curl and Laplacian are used extensively in curvilinear coordinate systems when dealing with vector fields
in Newtonian mechanics, electromagnetism, and fluid flow.

This page titled 19.8: Appendix - Vector Differential Calculus is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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∂
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∇ ×A =
1

sinθr2

∣

∣

∣
∣
∣
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f = ∇ ⋅ ∇f = [ ( )+ ( )+ ( )]∇2 1

h1h2h3

∂

∂q1

h2h3

h1

∂f

∂q1

∂

∂q2

h3h1

h2

∂f

∂q2

∂

∂q3

h1h2

h3

∂f

∂q3
(19.8.29)

f

f = (ρ )+ +∇2 1

ρ

∂

∂ρ

∂f

∂ρ

1

ρ2

f∂2

∂φ2

f∂2

∂z2
(19.8.30)

f

f = ( )+ (sinθ )+∇2 1

r2

∂

∂r
r2 ∂f

∂r

1

sinθr2

∂

∂θ

∂f

∂θ

1

sinθr2
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(19.8.31)
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19.9: Appendix - Vector Integral Calculus
Field equations, such as for electromagnetic and gravitational fields, require both line integrals, and surface integrals, of vector
fields to evaluate potential, flux and circulation. These require use of the gradient, the Divergence Theorem and Stokes Theorem
which are discussed in the following sections.

Line integral of the gradient of a scalar field
The change  in a scalar field for an infinitessimal step  along a path can be written as

since the gradient of , that is, , is the rate of change of  with . Discussions of gravitational and electrostatic potential
show that the line integral between points  and  is given in terms of the del operator by

This relates the difference in values of a scalar field at two points to the line integral of the dot product of the gradient with the
element of the line integral.

Divergence Theorem

Flux of a vector field for Gaussian surface

Figure : A volume V enclosed by a closed surface S is cut into two pieces at the surface . This gives V  enclosed by S
and V  enclosed by S .

Consider the flux  of a vector field  for a closed surface, usually called a Gaussian surface,  shown in Figure .

If the enclosed volume is cut in to two pieces enclosed by surfaces  and . The flux through the
surface  common to both  and  are equal and in the same direction. Then the net flux through the sum of  and  is
given by

since the contributions of the common surface  cancel in that the flux out of  is equal and opposite to the flux into  over the
surface . That is, independent of how many times the volume enclosed by  is subdivided, the net flux for the sum of all the
Gaussian surfaces enclosing these subdivisions of the volume, still equals .

Consider that the volume enclosed by  is subdivided into  subdivisions where , then even though  as 
, the sum over surfaces of all the infinitessimal volumes remains unchanged

ΔV dl

ΔV = (∇V ) ⋅ dl (19.9.1)

V ∇V V dl

a b

− = (∇V ) ⋅ dlVb Va ∫
b

a

(19.9.2)

19.9.1 Sab 1 1

1 2

Φ F S 19.9.1

Φ = F ⋅ dS∮
S

(19.9.3)

= +S1 Sa Sab = +S2 Sb Sab

Sab S1 S2 S1 S2

F ⋅ dS + F ⋅ dS = F ⋅ dS∮
S1

∮
S2

∮
S

(19.9.4)

Sab S1 S2

Sab S

F ⋅ dS∮
S

S N N → ∞ F ⋅ dS → 0∮
Si

N → ∞

Φ = F ⋅ dS = F ⋅ dS∮
S

∑
i

N→∞

∮
Si

(19.9.5)
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Thus we can take the limit of a sum of an infinite number of infinitessimal volumes as is needed to obtain a differential form. The
surface integral for each infinitessimal volume will equal zero which is not useful, that is  as . However,
the flux per unit volume has a finite value as . This ratio is called the divergence of the vector field;

where  is the infinitessimal volume enclosed by surface . The divergence of the vector field is a scalar quantity.

Thus the sum of flux over all infinitessimal subdivisions of the volume enclosed by a closed surface  equals

In the limit , , this becomes the integral;

This is called the Divergence Theorem or Gauss’s Theorem. To avoid confusion with Gauss’s law in electrostatics, it will be
referred to as the Divergence theorem.

Divergence in Cartesian Coordinates

Figure : Computation of flux out of an infinitessimal rectangular box, , , .

Consider the special case of an infinitessimal rectangular box, size  shown in Figure . Consider the net flux for
the  component  entering the surface  at location .

The net flux of the  component out of the surface at  is

Thus the net flux out of the box due to the z component of F is

Adding the similar  and  components for  gives

This gives that the divergence of the vector field  is

F ⋅ dS → 0∮
Si

N → ∞

N → ∞

divF = LimΔ →0τi

F ⋅ dS∮
Si

Δτi
(19.9.6)

Δτi Si

S

Φ = F ⋅ dS = Δ = divFΔ∮
S

∑
i

N→∞ F ⋅ dS∮
Si

Δτi
τi ∑

i

N→∞

τi (19.9.7)

N → ∞ Δ → 0τi

Φ = F ⋅ dS = divFdτ∮
S

∫
Enclosed volume

(19.9.8)

19.9.2 Δx Δy Δz

Δx, Δy, Δz 19.9.2
z Fz ΔxΔy (x, y, z)

Δ =( + + )ΔxΔyΦin
z Fz

Δx

2

∂Fz

∂x

Δy

2

∂Fz

∂y
(19.9.9)

z z+Δz

Δ =( +Δz + + )ΔxΔyΦout
z Fz

∂Fz

∂z

Δx

2

∂Fz

∂x

Δy

2

∂Fz

∂y
(19.9.10)

Δ = Δ −Δ = ΔxΔyΔzΦz Φout
z Φin

z

∂Fz

∂z
(19.9.11)

x y ΔΦ

ΔΦ =( + + )ΔxΔyΔz
∂Fx

∂x

∂Fy

∂y

∂Fz

∂z
(19.9.12)
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since . But the right hand side of the equation equals the scalar product , that is,

The divergence is a scalar quantity. The physical meaning of the divergence is that it gives the net flux per unit volume flowing out
of an infinitessimal volume. A positive divergence corresponds to a net outflow of flux from the infinitessimal volume at any
location while a negative divergence implies a net inflow of flux to this infinitessimal volume.

It was shown that for an infinitessimal rectangular box

Integrating over the finite volume enclosed by the surface  gives

This is another way of expressing the Divergence theorem

The divergence theorem, developed by Gauss, is of considerable importance, it relates the surface integral of a vector field, that is,
the outgoing flux, to a volume integral of  over the enclosed volume.

As an example of the usefulness of this relation, consider the Gauss’s law for the flux in Maxwell’s equations.

Gauss’ Law for the electric field

But the divergence relation gives that

Combining these gives

This is true independent of the shape of the surface or enclosed volume, leading to the differential form of Maxwell’s first law,
that is Gauss’s law for the electric field.

The differential form of Gauss’s law relates  to the charge density  at that same location. This is much easier to evaluate
than a surface and volume integral required using the integral form of Gauss’s law.

Gauss’s law for magnetism

divF = Li =( + + )mΔ →0τi

F ⋅ dS∮
Si

Δτi

∂Fx

∂x

∂Fy

∂y

∂Fz

∂z
(19.9.13)

Δτ = ΔxΔyΔz ∇ ⋅ F

divF = ∇ ⋅ F (19.9.14)

ΔΦ =( + + )ΔxΔyΔz = ∇ ⋅ FΔτ
∂Fx

∂x

∂Fy

∂y

∂Fz

∂z
(19.9.15)

S

Φ = F ⋅ dS = ∇ ⋅ Fdτ∮
S

∫

Enclosed

volume

(19.9.16)

Φ = F ⋅ dS = divFdτ∮
S

∫

Enclosed

volume

(19.9.17)

∇ ⋅ F

Example : Maxwell's Flux Equations19.9.1

= E ⋅ dS = ρdτΦE ∮
Closed surface

1

ε0
∫
enclosed volume

= E ⋅ dS = ∇ ⋅ EdτΦE ∮
S

∫
Enclosed volume

E ⋅ dS = ∇ ⋅ Edτ = ρdτ∮
Closed surface

∫
Enclosed volume

1

ε0
∫
enclosed volume

∇ ⋅E =
ρ

ε0

∇ ⋅ E ρ

= B ⋅ dS = 0ΦB ∮
Closed surface
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Using the divergence theorem gives that

This is true independent of the shape of the Gaussian surface leading to the differential form of Gauss’s law for 

That is, the local value of the divergence of  is zero everywhere.

Buoyancy in fluids provides an example of the use of flux in physics. Consider a fluid of density  in a gravitational field 
 where the  axis points in the opposite direction to the gravitational force. Pressure equals force per unit area

and is a scalar quantity. For a conservative fluid system, in static equilibrium, the net work done per unit area for an
infinitessimal displacement  is zero. The net pressure force per unit area is the difference 
while the net change in gravitational potential energy is . Thus energy conservation gives

which can be expanded as

Integrating the net forces normal to the surface over any closed surface enclosing an empty volume, inside the fluid, gives a net
buoyancy force on this volume that simplifies using the Divergence theorem

Using equations  leads to the net buoyancy force

The right hand side of this equation equals minus the weight of the displaced fluid. That is, the buoyancy force equals the
weight of the fluid displaced by the empty volume. Note that this proof applies both to compressible fluids, where the density
depends on pressure, as well as to incompressible fluids where the density is constant. It also applies to situations where local
gravity  is position dependent. If an object of mass  is completely submerged then the net force on the object is 

. If the object floats on the surface of a fluid then the buoyancy force must be calculated
separately for the volume under the fluid surface and the upper volume above the fluid surface. The buoyancy due to displaced
air usually is negligible since the density of air is about  times that of fluids such as water.

Stokes Theorem

The curl

Maxwell’s laws relate the circulation of the field around a closed loop to the rate of change of flux through the surface bounded by
the closed loop. It is possible to write these integral equations in a differential form as follows.

Consider the line integral around a closed loop  shown in Figure .

If this area is subdivided into two areas enclosed by loops  and , then the sum of the line integrals is the same

= B ⋅ dS = ∇ ⋅ Bdτ = 0ΦB ∮
Closed surface

∫
Enclosed volume

B

∇ ⋅ B = 0

B

Example : Buoyancy forces in fluids19.9.2

ρ(z)
(z) = −g(z)ḡ ẑ z

dr P (r+dr) −P (r) = ∇P ⋅ dr
ρ(z) (z) ⋅ drḡ

[∇P +ρ(z) (z)] ⋅ dr = 0ḡ

= −ρ(z)g(z)
dP

dz

= = 0
dP

dx

dP

dy

(A)

∮ F ⋅ dS = ∮ Pd ⋅ dS = ∮ PdS = ( + + ) dτŜ ∫
Enclosed vol

dP

dx

dP

dy

dP

dz

A

∮ F ⋅ dS = dτ = − ρ(z)g(z)dτ∫
Enclosed vol

dP

dz
∫
Enclosed vol

g M

Mg− ρ(z)g(z)dτ∫
Enclosed vol

10−3

C 19.9.3

C1 C2

F ⋅ dl = F ⋅ dl + F ⋅ dl∮
C

∮
C1

∮
C2

(19.9.18)
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because the contributions along the common boundary cancel since they are taken in opposite directions if  and  both are
taken in the same direction. Note that the line integral, and corresponding enclosed area,

are vector quantities related by the right-hand rule and this must be taken into account when subdividing the area. Thus the area can
be subdivided into an infinite number of pieces for which

where  is the infinitessimal area bounded by the closed sub-loop  and  is the normal component of this area pointing
along the  direction which is the direction along which the line integral points.

Figure : The circulation around a path is equal to the sum of the circulations around subareas made by subdividing the area.

The component of the curl of the vector function along the direction  is defined to be

Thus the line integral can be written as

The product , that is, this is true independent of the direction of the infinitessimal loop. Thus the above relation leads to
Stokes Theorem

This relates the line integral to a surface integral over a surface bounded by the loop.

Curl in cartesian coordinates

Consider the infinitessimal rectangle  pointing in the  direction shown in Figure .

C1 C2

F ⋅ dl = F ⋅ dl = Δ ⋅∮
C

∑
i

N→∞

∮
Ci

∑
i

N→∞ F ⋅ dl∮Ci

Δ ⋅Si n̂
Si n̂ (19.9.19)

ΔSi Ci Δ ⋅Si n̂

n̂

19.9.3

n̂

(curlF) ⋅ ≡ Lin̂ mΔS→0 ∑
i

N→∞ F ⋅ dl∮Ci

Δ ⋅Si n̂
(19.9.20)

F ⋅ dl = Δ ⋅∮
C

∑
i

N→∞ F ⋅ dl∮
Ci

Δ ⋅Si n̂
Si n̂

= ∫ [(curlF) ⋅ ]d ⋅n̂ Si n̂

(19.9.21)

⋅ = 1n̂ n̂

F ⋅ dl = (curlF) ⋅ dS∮
C

∫
Area bounded by C

(19.9.22)

ΔxΔy k̂ 19.9.4
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Figure : Circulation around an infinitessimal rectangle  in the z direction.

The line integral, taken in a right-handed way around  gives

Thus since  the  component of the curl is given by

The same argument for the component of the curl in the  direction is given by

Similarly the same argument for the component of the curl in the  direction is given by

Thus combining the three components of the curl gives

Note that cross-product of the del operator with the vector  is

which is identical to the right hand side of the relation for the curl in cartesian coordinates. That is;

Therefore Stokes Theorem can be rewritten as

The physics meaning of the curl is that it is the circulation, or rotation, for an infinitessimal loop at any location. The word curl is
German for rotation.

19.9.4 ΔxΔy

k̂

F ⋅ dl = Δx+( + Δx)−( + Δy)− Δy =( − )ΔxΔy∮
C

Fx Fy

∂Fy

∂x
Fx

∂Fx

∂y
Fy

∂Fy

∂x

∂Fx

∂y
(19.9.23)

ΔxΔy = ΔSz z

(curlF) ⋅ = =( − )k̂
F ⋅ dl∮

Ci

Δ ⋅Si n̂

∂Fy

∂x

∂Fx

∂y
(19.9.24)

y

(curlF) ⋅ =( − )ĵ
∂Fx

∂z

∂Fz

∂x
(19.9.25)

x

(curlF) ⋅ =( − )î
∂Fz

∂y

∂Fy

∂z
(19.9.26)

curlF =( − ) +( − ) +( − )
∂Fz

∂y

∂Fy

∂z
î

∂Fx

∂z

∂Fz

∂x
ĵ

∂Fy

∂x

∂Fx

∂y
k̂ (19.9.27)

F

∇ ×F =

∣

∣

∣
∣
∣

î

∂
∂x

Fx

ĵ

∂
∂y

Fy

k̂

∂
∂z

Fz

∣

∣

∣
∣
∣

(19.9.28)

∇ ×F = curlF
→

(19.9.29)

F ⋅ dl = (curlF) ⋅ dS = (∇ ×F ) ⋅ dS∮
C

∫
Area bounded by C

∫
Area bounded by C

(19.9.30)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/32464?pdf


19.9.7 https://phys.libretexts.org/@go/page/32464

As an example of the use of the curl, consider Faraday’s Law

Using Stokes Theorem gives

These two relations are independent of the shape of the closed loop, thus we obtain Faraday’s Law in the differential form

A differential form of the Ampère-Maxwell law also can be obtained from

Using Stokes Theorem

Again this is independent of the shape of the loop and thus we obtain Ampère-Maxwell law in differential form

The differential forms of Maxwell’s circulation relations are easier to apply than the integral equations because the differential
form relates the curl to the time derivatives at the same specific location.

Potential formulations of curl-free and divergence-free fields
Interesting consequences result from the Divergence theorem and Stokes Theorem for vector fields that are either curl-free or
divergence-free. In particular two theorems result from the second derivatives of a vector field.

Theorem 1 - Curl-free (irrotational) fields:

For curl-free fields

everywhere. This is automatically obeyed if the vector field is expressed as the gradient of a scalar field

since

That is, any curl-free vector field can be expressed in terms of the gradient of a scalar field.

The scalar field  is not unique, that is, any constant  can be added to  since , that is, the addition of the constant 
does not change the gradient. This independence to addition of a number to the scalar potential is called a gauge invariance
discussed in chapter , for which

That is, this gauge-invariant transformation does not change the observable . The electrostatic field  and the gravitation field 
are examples of irrotational fields that can be expressed as the gradient of scalar potentials.

Example : Maxwell's circulation equations19.9.3

E ⋅ dl = − ⋅ ∂S∫
Closed loop C

∫
surface bounded by C

∂B

∂t

E ⋅ dl = (∇ ×E) ⋅ dS∮
C

∫
Surface bounded by C

(∇ ×E) = −
∂B

∂t

B ⋅ dl = (j + ) ⋅ dS∫
Closed loop C

μ0 ∫
Bounded by C

ε0
∂E

∂t

B ⋅ dl = (∇ ×B) ⋅ dS∮
C

∫
Surface bounded by C

∇ ×B = j +μ0 μ0ε0
∂E

∂t

∇ ×F = 0 (19.9.31)

F = ∇ϕ (19.9.32)

∇ ×(∇ϕ) = 0 (19.9.33)

ϕ α ϕ ∇α = 0 α

13.2

F = ∇ = ∇(ϕ+α) = ∇ϕϕ′ (19.9.34)

F E g
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Theorem 2 - Divergence-free (solenoidal) fields:

For divergence-free fields

everywhere. This is automatically obeyed if the field  is expressed in terms of the curl of a vector field  such that

since . That is, any divergence-free vector field can be written as the curl of a related vector field.

As discussed in chapter , the vector potential  is not unique in that a gauge transformation can be made by adding the
gradient of any scalar field, that is, the gauge transformation  gives

This gauge invariance for transformation to the vector potential  does not change the observable vector field . The magnetic
field  is an example of a solenoidal field that can be expressed in terms of the curl of a vector potential .

Electromagnetic interactions are encountered frequently in classical mechanics so it is useful to discuss the use of potential
formulations of electrodynamics.

For electrostatics, Maxwell’s equations give that

Therefore theorem 1 states that it is possible to express this static electric field as the gradient of the scalar electric potential ,
where

For electrodynamics, Maxwell’s equations give that

Assume that the magnetic field can be expressed in the terms of the vector potential , then the above equation
becomes

Theorem 1 gives that this curl-less field can be expressed as the gradient of a scalar field, here taken to be the electric potential 
.

that is

Gauss’ law states that

which can be rewritten as

Similarly insertion of the vector potential  in Ampère’s Law gives

∇ ⋅ F = 0 (19.9.35)

F G

F = ∇ ×G (19.9.36)

∇ ⋅ ∇ ×G = 0

13.2 G

= G +∇φG′

F = ∇ × = ∇ ×(G +∇φ) = ∇ ×G.G′ (19.9.37)

G′ F

B A

Example : Electromagnetic fields19.9.4

∇ ×E = 0

V

E = −∇V

(∇ ×E) + = 0
∂B

∂t

B = ∇ ×A

∇ ×(E + ) = 0
∂A

∂t

V

(E + ) == −∇V
∂A

∂t

E = −(∇V + )
∂A

∂t

∇ ⋅ E =
ρ

ε0

∇ ⋅ E = − V − =∇
2 ∂(∇ ⋅ A)

∂t

ρ

ε0
(X)

A
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Using the vector identity  allows the above equation to be rewritten as

The use of the scalar potential  and vector potential  leads to two coupled equations  and . These coupled equations can
be transformed into two uncoupled equations by exploiting the freedom to make a gauge transformation for the vector potential
such that the middle brackets in both equations  and  are zero. That is, choosing the Lorentz gauge

simplifies equations  and  to be

The virtue of using the Lorentz gauge, rather than the Coulomb gauge , is that it separates the equations for the
scalar and vector potentials. Moreover, these two equations are the wave equations for these two potential fields corresponding
to a velocity . This example illustrates the power of using the concept of potentials in describing vector fields.

This page titled 19.9: Appendix - Vector Integral Calculus is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

∇ ×B = ∇ ×(∇ ×A) = j + = j − ∇( )− ( )μ0 μ0ε0
∂E

∂t
μ0 μ0ε0

∂V

∂t
μ0ε0

A∂2

∂t2

∇ ×(∇ ×A) = ∇(∇ ⋅ A) − A∇2

( A − ( ))−∇(∇ ⋅ A + ( )) = − j∇2 μ0ε0
A∂2

∂t2
μ0ε0

∂V

∂t
μ0 (Y)

V A X Y

X Y

∇ ⋅ A = − ( )μ0ε0
∂V

∂t

X Y

V − = −∇2 μ0ε0
V∂2

∂t2

ρ

ε0

A − ( ) = − j∇
2 μ0ε0

A∂2

∂t2
μ0

∇ ⋅ A = 0

c = 1
μ0ε0√
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19.10: Appendix - Waveform analysis

Harmonic Waveform Decomposition

Any linear system that is subject to a time-dependent forcing function , can be expressed as a linear superposition of
frequency-dependent solutions of the individual harmonic decomposition  of the forcing function. Similarly, any linear system
subject to a spatially-dependent forcing function  can be expressed as a linear superposition of the wavenumber-dependent
solutions of the individual harmonic decomposition  of the forcing function. Fourier analysis provides the mathematical
procedure for the transformation between the periodic waveforms and the harmonic content, that is, , or 

. Fourier’s theorem states that any arbitrary forcing function  can be decomposed into a sum of harmonic
terms. For example for a time-dependent periodic forcing function the decomposition can be a cosine series of the form

where  is the lowest (fundamental) frequency solution. For an aperiodic function a cosine decomposition can be of the form

Either of the complementary functions , or  are equivalent representations of the harmonic content that
can be used to describe signals and waves. The following two sections give an introduction to Fourier analysis.

Periodic systems and the Fourier series

Discrete solutions occur for systems when periodic boundary conditions exist. The response of periodic systems can be described
in either the time versus angular frequency domains, or equivalently, the spatial coordinate  versus the corresponding wave
number . For periodic systems this decomposition leads to the Fourier series where a generalized phase coordinate  can be used
to represent either the time or spatial coordinates, that is, with  or  respectively. The Fourier series relates the two
representations of the discrete wave solutions for such periodic systems.

Fourier’s theorem states that for a general periodic system any arbitrary forcing function  can be decomposed into a sum of
sinusoidal or cosinusoidal terms. The summation can be represented by three equivalent series expansions given below, where 

 or , and where  are the fundamental angular frequency and fundamental wave number respectively.

where  is an integer, and  are phase shifts fit to the initial conditions.

The normal modes of a discrete system form a complete set of solutions that satisfy the following orthogonality relation

where  is the Kronecker delta symbol defined in equation . Orthogonality can be used to determine the coefficients for
equations  to be

F (t)
a(ω)

F (x)
a( )kx

F (t) ⇔ a(ω)
F (x) ⇔ a( )kx F (t)

F (t) = cos(n t+ )∑
n=1

∞

αn ω0 ϕn (19.10.1)

ω0

F (t) = α(ω) cos(ωt+ϕ(ω))dω∫
∞

0
(19.10.2)

F (t) ⇔ a(ω) F (x) ⇔ a( )kx

x

kx ϕ

ϕ = tω0 ϕ = xkx

F (ϕ)

ϕ = tω0 ϕ = ⋅ rk0 ,ω0 k0

f(ϕ) = + [ cos(nϕ) + sin(nϕ)]
a0

2
∑
n=1

∞

an bn (19.10.3)

f(ϕ) = + cos(nϕ+ )
a0

2
∑
n=0

∞

cn φn (19.10.4)

f(ϕ) = + sin(nϕ+ )
a0

2
∑
n=0

∞

dn θn (19.10.5)

n ,φn θn

(ϕ) (ϕ)dϕ =∫
2π

0
fn fm cnδmn (19.10.6)

δmn (9.2.10)
19.10.3

= f(ϕ)dϕa0
1

π
∫

+π

−π

(19.10.7)

= f(ϕ) cos(nϕ)dϕan
1

π
∫

+π

−π

(19.10.8)
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Similarly the coefficients for  and  are related to the above coefficients by

Instead of the simple trigonometric form used in equations (  − ) the cosine and sine functions can be expanded into
the exponential form where

then Equation  becomes

where  is any integer and, from the orthogonality, the Fourier coefficients are given by

These coefficients are related to the cosine plus sine series amplitudes by

These results show that the coefficients of the exponential series are in general complex, and that they occur in conjugate pairs (that
is, the imaginary part of a coefficient  is equal but opposite in sign to that for the coefficient ). Although the introduction of
complex coefficients may appear unusual, it should be remembered that the real part of a pair of coefficients denotes the magnitude
of the cosine wave of the relevant frequency, and that the imaginary part denotes the magnitude of the sine wave. If a particular pair
of coefficients  and  are real, then the component at the frequency  is simply a cosine; if  and  are purely
imaginary, the component is just a sine; and if, as is the general case,  and  are complex, both cosine and a sine terms are
present.

The use of the exponential form of the Fourier series gives rise to the notion of ‘negative frequency’. Of course, 
is a wave of a single frequency  radians/second, and may be represented by a single line of height  in a normal spectral
diagram. However, using the exponential form of the Fourier series results in both positive and negative  components.

The coexistence of both negative and positive angular frequencies  can be understood by consideration of the Argand diagram
where the real component is plotted along the -axis and the imaginary component along the -axis. The function 
represents a vector of length  that rotates with an angular velocity  in a positive direction, that is counterclockwise, whereas, 

 represents the vector rotating in a negative direction, that is clockwise. Thus the sum of the two rotating vectors, according
to equations , leads to cancellation of the opposite components on the imaginary  axis and addition of the two 
real components on the  axis. Subtraction leads to cancellation of the real  components and addition of the imaginary  axis
components.

Aperiodic systems and the Fourier Transform

The Fourier transform (also called the Fourier integral) does for the non-repetitive signal waveform what the Fourier series does for
the repetitive signal. It was shown that the line spectrum of a recurrent periodic pulse waveform is modified as the pulse duration
decreases, assuming the period of the waveform (and hence its fundamental component) remains unchanged. Suppose now that the
duration of the pulses remain fixed but the separation between them increases, giving rise to an increasing period. In the limit, only
a single rectangular pulse remains, its neighbors having moved away on either side towards . In this case, the fundamental

= f(ϕ) sin(nϕ)dϕbn
1

π
∫

+π

−π

(19.10.9)

19.10.4 19.10.5

= = +c2
n d2

n a2
n b2

n

19.10.3 19.10.5

cosϕ = ( + )
1

2
eiϕ e−iϕ

sinϕ = ( − )
−i

2
eiϕ e−iϕ

(19.10.10)

19.10.3

f(ϕ) = ∑
n=−∞

∞

gne
inϕ (19.10.11)

n

= f(ϕ) dϕgn
1

2π
∫

+π

−π

enϕ (19.10.12)

= ( − i )gn
1

2
an bn (when n is positive)

= ( + i )gn
1

2
an bn (when n is negative)

an a−n

an a−n nω0 an a−n

an a−n

f(t) = cos tan ωn

= nωn ω0 an
ω

±ω

x y gne
+iωt

gn ω

gne
−iωt

19.10.3 y cosωtgn
x x y

±∞
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frequency  tends towards zero and the harmonics become extremely closely spaced and of vanishingly small amplitudes, that is,
the system approximates a continuous spectrum.

Mathematically, this situation may be expressed by modifications to the exponential form of the Fourier series already derived. Let
the phase factor  in Equation  then

where  is the period of the periodic force. Let , , and take the limit for , then Equation  can
be written as

Similarly making the same limit for  then  and Equation  becomes

Equation  shows how a non-repetitive time-domain wave form is related to its continuous spectrum. These are known as
Fourier integrals or Fourier transforms. They are of central importance for signal processing. For convenience the transforms often
are written in the operator formalism using the  symbol in the form

It is very important to grasp the significance of these two equations. The first tells us that the Fourier transform of the waveform 
 is continuously distributed in the frequency range between , whereas the second shows how, in effect, the waveform

may be synthesized from an infinite set of exponential functions of the form , each weighted by the relevant value of . It
is crucial to realize that this transformation can go either way equally, that is, from  to  or vice versa.

Consider a single isolated square pulse of width  that is described by the rectangular function  defined as

That is, assume that the amplitude of the pulse is unity between . Then the Fourier transform

which is an unnormalized  function. Note that the width of the pulse  leads to a frequency envelope that has
the first zeros at . Thus the product of these widths  which is independent of the width of the pulse,
that is  which is an example of the uncertainty principle which is applicable to all forms of wave motion.

The Dirac delta function, , is a pulse of extremely short duration and unit area at  and is zero at all other times.
That is,

ω0
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The Dirac function, which is sometimes referred to as the impulse function, has many important applications to physics and
signal processing. For example, a shell shot from a gun is given a mechanical impulse imparting a certain momentum to the
shell in a very short time. Other things being equal, one is interested only in the impulse imparted to the shell, that is, the time
integral of the force accelerating the shell in the gun, rather than the details of the time dependence of the force. Since the force
acts for a very short time the Dirac delta function can be employed in such problems.

As described in section  and appendix J, the Dirac delta function is employed in signal processing when signals are
sampled for short time intervals. The Fourier transform of the delta function is needed for discussion of sampling of signals

Since  essentially is constant over the infinitesimal time duration of the  function, and the time integral of the 
function is unity, thus the term  has unit magnitude for any value of  and has a phase shift of  radians. For 

 the phase shift is zero and thus the Fourier transform of a Dirac  function is . That is, this is a uniform
white spectrum for all values of .

Time-sampled waveform analysis
An alternative approach for unloosing periodic signals, that is complementary to the Fourier analysis harmonic decomposition, is
time-sampled (discrete-sample) waveform analysis where the signal amplitude is measured repetitively at regular time intervals in a
time-ordered sequence, that is, a sequence of samples of the instantaneous delta-function amplitudes is recorded. Typically an
amplitude-to-digital converter is used to digitize the amplitude for each measured sample and the digital numbers are recorded; this
process is called digital signal processing.

The general principles are best explained by first considering the response of a linear system to a step function impulse, followed
by a square impulse, and leading to the response of a -function impulsive driving force.

Figure : Response of a underdamped linear oscillator with , and  to the following impulsive force. (a) Step
function force  for  and  for . (b) Square-wave force where  for  for , and 
at other times. (c) Delta-function impulse .

Delta-function impulse response

Consider the damped oscillator equation

and assume that a step function is applied at time . That is;

where  is a constant. The initial conditions are that .

The transient or complementary solution is the solution of the linearly-damped harmonic oscillator

This is independent of the driving force and the solution is given in the chapter  discussion of the linearly-damped harmonic
oscillator.
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The particular, steady-state, solution is easy to obtain just by inspection since the force is a constant, that is, the particular solution
is

Taking the sum of the transient and particular solutions, using the initial conditions, gives the final solution to be

where . This functional form is shown in Figure . Note that the amplitude of the transient response

equals  at  to cancel the particular solution when it jumps to . The oscillatory behavior then is just that of the transient
response.

A square impulse can be generated by the superposition of two opposite-sign stepfunctions separated by a time  as shown in
Figure .

The square impulse can be taken to the limit where the width  is negligibly small relative to the response times of the system. It
can be shown that letting , but keeping the magnitude of the total impulse  finite for the impulse at time , leads to
the solution for the -function impulse occurring at 

This response to a delta function impulse is shown in Figure  for the case where . An example is the response when
the hammer strikes a piano string at .

Figure : Decomposition of the function  into a time-ordered sequence
of -function samples.

Green’s function waveform decomposition

The response of the linearly-damped linear oscillator to an delta function impulse, that has been expressed above, can be used to
exploit the powerful Green’s technique for decomposition of any general forcing function. That is, if the driven system is linear,
then the principle of superposition is applicable and allowing expression of the inhomogeneous part of the differential equation as
the sum of individual delta functions. That is;

As illustrated in Figure  discrete-time waveform analysis involves repeatedly sampling the instantaneous amplitude in a
regular and repetitive sequence of -function impulses. Since the superposition principle applies for this linear system then the
waveform can be described by a sum of an ordered series of deltafunction impulses where  is the time of an impulse. Integrating
over all the -function responses that have occurred at time , that is prior to the time of interest , leads to
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The Green’s function  is defined by

Superposition allows the summed response of the system to be written in an integral form

which gives the final time dependence of the forced system. This repetitive time-sampling approach avoids the need of using
Fourier analysis. Note that the Green’s function  includes implicitly the frequency of the free undamped linear oscillator 

, the free damped linear oscillator , as well as the damping coefficient . Access to the combination of fast

microcomputers coupled to fast digital sampling techniques has made digital signal sampling the pre-eminent technique for signal
recording of audio, video, and detector signal processing.

References
The only asymmetry in the Fourier transform relations comes from the  factor originating from the fact that by convention

physicists use the angular frequency  rather than the frequency . In order to restore symmetry many papers use the factor 
 in both relations rather than using the  factor in Equation  and unity in Equation .

This page titled 19.10: Appendix - Waveform analysis is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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x(t) = sin (t− )d t ≥∫
t

−∞

F ( )t′

mω1
e− (t− )Γ

2
t′

ω1 t′ t′ t′ (19.10.24)

G(t− )t′

G(t− ) = sin (t− ) t ≥t′ 1

mω1
e− (t− )

Γ

2
t′

ω1 t′ t′

= 0 t < t′

(19.10.25)

x(t) = F ( )G(t− )d∫
t

−∞
t′ t′ t′ (19.10.26)

G(t− )t′

ω0 ≡ω1 −(ω2
0

Γ
2

)2
− −−−−−−−

√ Γ

1 2π
ω = 2πν ν

1

2π√
1

2π
19.10.16 19.10.17

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/32465?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/19%3A_Mathematical_Methods_for_Classical_Mechanics/19.10%3A_Appendix_-_Waveform_analysis
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/


19.11.1 https://phys.libretexts.org/@go/page/33379

19.11: Bibliography

[1] SELECTION OF TEXTBOOKS ON CLASSICAL MECHANICS
[Ar78] V. I. Arnold, “Mathematical methods of Classical Mechanics”,  edition, Springer-Verlag (1978)

This textbook provides an elegant and advanced exposition of classical mechanics expressed in the language of differential
topology.

[Co50] H.C. Corben and P. Stehle, “Classical Mechanics”, John Wiley (1950)

This classic textbook covers the material at the same level and comparable scope as the present textbook.

[Fo05] G. R. Fowles, G. L. Cassiday, “Analytical Mechanics”. Thomson Brookes/Cole, Belmont, (2005)

An elementary undergraduate text that emphasizes computer simulations.

[Go50] H. Goldstein, “Classical Mechanics”, Addison-Wesley, Reading (1950)

This has remained the gold standard graduate textbook in classical mechanics since 1950. Goldstein’s book is the best graduate-
level reference to supplement the present textbook. The lack of worked examples is an impediment to using Goldstein for
undergraduate courses. The  edition, published by Goldstein, Poole, and Safko (2002), uses the symplectic notation that makes
the book less friendly to undergraduates. The Cline book adopts the nomenclature used by Goldstein to provide a consistent
presentation of the material.

[Gr06] R. D. Gregory, “Classical Mechanics”, Cambridge University Press

This outstanding, and original, introduction to analytical mechanics was written by a mathematician. It is ideal for the
undergraduate, but the breadth of the material covered is limited.

[Gr10] W. Greiner, “Classical Mechanics, Systems of particles and Hamiltonian Dynamics” ,  edition, Springer (2010). This
excellent modern graduate textbook is similar in scope and approach to the present text. Greiner includes many interesting worked
examples, as well as a reproduction of the Struckmeier[Str08] presentation of the extended Lagrangian and Hamiltonian mechanics
formalism of Lanczos[La49].

[Jo98] J. V. José and E. J. Saletan, “Classical Dynamics, A Contemporary Approach”, Cambridge University Press (1998)

This modern advanced graduate-level textbook emphasizes configuration manifolds and tangent bundles which makes it unsuitable
for use by most undergraduate students.

[Jo05] O. D. Johns, “Analytical Mechanics for Relativity and Quantum Mechanics”,  edition, Oxford University Press (2005).
Excellent modern graduate text that emphasizes the Lanczos[La49] parametric approach to Special Relativity. The Johns and Cline
textbooks were developed independently but are similar in scope and approach. For consistency, the name “generalized energy”,
which was introduced by Johns, has been adopted in the Cline textbook.

[Ki85] T.W.B. Kibble, F.H. Berkshire. “Classical Mechanics, (5th edition)”, Imperial College Press, London, 2004. Based on the
textbook written by Kibble that was published in 1966 by McGrawHill. The 4th and 5th editions were published jointly by Kibble
and Berkshire. This excellent and well-established textbook addresses the same undergraduate student audience as the present
textbook. This book covers the variational principles and applications with minimal discussion of the philosophical implications of
the variational approach.

[La10] O.L. De Lange and J. Pierrus, "Solved Problems in Classical Mechanics", Oxford University Press, 2010. Presents both
numerical and analytical solution of problems in classical mechanics.

[La49] C. Lanczos, “The Variational Principles of Mechanics”, University of Toronto Press, Toronto, (1949)

An outstanding graduate textbook that has been one of the founding pillars of the field since 1949. It gives an excellent introduction
to the philosophical aspects of the variational approach to classical mechanics, and introduces the extended formulations of
Lagrangian and Hamiltonian mechanics that are applicable to relativistic mechanics.

[La60] L. D. Landau, E. M. Lifshitz, “Mechanics”, Volume 1 of a Course in Theoretical Physics, Pergamon Press (1960)

An outstanding, succinct, description of analytical mechanics that is devoid of any superfluous text. This Course in Theoretical
Physics is a masterpiece of scientific writing and is an essential component of any physics library. The compactness and lack of

2
nd

3
rd

2
nd

2
nd

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/33379?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/19%3A_Mathematical_Methods_for_Classical_Mechanics/19.11%3A_Bibliography


19.11.2 https://phys.libretexts.org/@go/page/33379

examples makes this textbook less suitable for most undergraduate students.

[Li94] Yung-Kuo Lim, “Problems and Solutions on Mechanics” (1994)

This compendium of 408 solved problems, which are taken from graduate qualifying examinations in physics at several U.S.
universities, provides an invaluable resource that complements this textbook for study of Lagrangian and Hamiltonian mechanics.

[Ma65] J. B. Marion, “Classical Dynamics of Particles and Systems”, Academic Press, New York, (1965)

This excellent undergraduate text played a major role in introducing analytical mechanics to the undergraduate curriculum. It has
an outstanding collection of challenging problems. The  edition has been published by S. T. Thornton and J. B. Marion,
Thomson, Belmont, (2004).

[Me70] L. Meirovitch, “Methods of Analytical Dynamics”, McGraw-Hill New York, (1970)

An advanced engineering textbook that emphasizes solving practical problems, rather than the underlying theory.

[Mu08] H. J. W. Müller-Kirsten, “Classical Mechanics and Relativity”, World Scientific, Singapore, (2008)

This modern graduate-level textbook emphasizes relativistic mechanics making it an excellent complement to the present textbook.

[Pe82] I. Percival and D. Richards, “Introduction to Dynamics” Cambridge University Press, London, (1982)

Provides a clear presentation of Lagrangian and Hamiltonian mechanics, including canonical transformations, Hamilton-Jacobi
theory, and action-angle variables.

[Sy60] J.L. Synge, “Principles of Classical Mechanics and Field Theory” , Volume III/I of “Handbuck der Physik” Springer-
Verlag, Berlin (1960).

A classic graduate-level presentation of analytical mechanics.

[Th04] S.T. Thornton,   and J. B. Marion,  "Classical Dynamics of Particles and Systems",  edition. Brooks/Cole-Thomson
Learning, New York, (2004)

Thornton has expanded the outstanding collection of challenging problems in this popular classical mechanics book.

[2] GENERAL REFERENCES
[Bak96] L. Baker, J.P. Gollub, Chaotic Dynamics,  edition, 1996 (Cambridge University Press)

[Bat31] H. Bateman, Phys. Rev. 38 (1931) 815

[Bau31] P.S. Bauer, Proc. Natl. Acad. Sci. 17 (1931) 311

[Bor25a] M. Born and P. Jordan, Zur Quantenmechanik, Zeitschrift für Physik, 34, (1925) 858-888.

[Bor25b] M. Born, W. Heisenberg, and P. Jordan, Zur Quantenmechanik II, Zeitschrift für Physik, 35, (1925), 557-615,

[Boy08] R. W. Boyd, Nonlinear Optics,  edition, 2008 (Academic Press, NY)

[Bri14] L. Brillouin, Ann. Physik 44(1914)

[Bri60] L. Brillouin, Wave Propagation and Group Velocity, 1960 (Academic Press, New York)

[Cay1857] A. Cayley, Proc. Roy. Soc. London 8 (1857) 506

[Cei10] J.L. Cie´sli´nski, T. Nikiciuk, J. Phys. A:Math. Theor. 43 (2010) 175205

[Cio07] Ciocci and Langerock, Regular and Chaotic Dynamics, 12 (2007) 602

[Cli71] D. Cline, Proc. Orsay Coll. on Intermediate Nuclei, Ed. Foucher, Perrin, Veneroni, 4 (1971).

[Cli72] D. Cline and C. Flaum, Proc. of the Int. Conf. on Nuclear Structure Studies Using Electron Scattering, Sendai, Ed. Shoa,
Ui, 61 (1972).

[Cli86] D. Cline, Ann. Rev. Nucl. Part. Sci. 36, (1986) 683.

[Coh77] R.J. Cohen, Amer. J. of Phys. 45 (1977) 12

[Cra65] F.S. Crawford, Berkeley Physics Course 3; Waves, 1970 (Mc Graw Hill, New York)

[Cum07] D. Cumin, C.P. Unsworth, Physica D 226 (2007) 181

5
th

5
th

2
nd

3
rd

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/33379?pdf


19.11.3 https://phys.libretexts.org/@go/page/33379

[Dav58] A. S. Davydov and G. F. Filippov. Nuclear Physics, 8 (1958) 237

[Dek75] H. Dekker, Z. Physik, B21 (1975) 295

[Dep67] A. Deprit, American J. of Phys 35, no.5 424 (1967)

[Dir30] P.A.M. Dirac, Quantum Mechanics, Oxford University Press, (1930).

[Dou41] D. Douglas, Trans. Am. Math. Soc. 50 (1941) 71

[Fey84] R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures, (Addison-Wesley, Reading, MA,1984) Vol. 2, p17.5

[Fro80] C. Frohlich, Scientific American, 242 (1980) 154

[Gal13] C. R. Galley, Physical Review Letters, 11 (2013) 174301

[Gal14] C. R. Galley, D. Tsang, L.C. Stein, arXiv:1412.3082v1 [math-phys] 9 Dec 2014

[Har03] James B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Addison Wesley, 2003)

[Jac75] J.D. Jackson, Classical Electrodynamics,  edition , (Wiley, 1975)

[Kur75] International Symposium on Math. Problems in Theoretical Physics, Lecture Notes in Physics, Vol39 Springer, NY (1975)

[Mus08a] Z.E. Musielak, J. Phys. A. Math. Theor. 41 (2008) 055205

[Mus08b] Z.E. Musielak, D. Rouy, L.D. Swift, Chaos, Solitons, Fractals 38 (2008) 894

[Ray1881] J.W. Strutt,  Baron Rayleigh, Proc. London Math. Soc., s1-4 (1), (1881) 357

[Ray1887] J.W. Strutt,  Baron Rayleigh, The Theory of Sound, 1887 (Macmillan, London)

[Rou1860] E.J. Routh, Treatise on the dynamics of a system of rigid bodies, MacMillan (1860)

[Sim98] M. Simon, D. Cline, K. Vetter, et al, Unpublished

[Sta05] T. Stachowiak and T. Okada, Chaos, Solitons, and Fractals, 29 (2006) 417.

[Str00] S.H. Strogatz, Physica D43 (2000) 1

[Str05] J. Struckmeier, J. Phys. A: Math; Gen. 38 (2005) 1257

[Str08] J. Struckmeier, Int. J. of Mod. Phys. E18 (2008) 79

[Vir15] E.G. Virga, Phys, Rev. E91 (2015) 013203

[Win67] A.T. Winfree, J. Theoretical Biology 16 (1967) 15

This page titled 19.11: Bibliography is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via
source content that was edited to the style and standards of the LibreTexts platform.

2
nd

3
rd

3
rd

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/33379?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/19%3A_Mathematical_Methods_for_Classical_Mechanics/19.11%3A_Bibliography
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/


1 https://phys.libretexts.org/@go/page/9677

Epilogue
This book has introduced powerful analytical methods in physics that are based on applications of variational principles to
Hamilton’s Action Principle. These methods were pioneered in classical mechanics by Leibniz, Lagrange, Euler, Hamilton, and
Jacobi, during the remarkable Age of Enlightenment, and reached full fruition at the start of the  century.

Figure : Philosophical road map of the hierarchy of stages involved in analytical mechanics. Hamilton’s Action Principle is the
foundation of analytical mechanics. Stage 1 uses Hamilton’s Principle to derive the Lagrangian and Hamiltonian. Stage 2 uses
either the Lagrangian or Hamiltonian to derive the equations of motion for the system. Stage 3 uses these equations of motion to
solve for the actual motion using the assumed initial conditions. The Lagrangian approach can be derived directly based on
d’Alembert’s Principle. Newtonian mechanics can be derived directly based on Newton’s Laws of Motion.

The philosophical roadmap, shown above, illustrates the hierarchy of philosophical approaches available when using Hamilton’s
Action Principle to derive the equations of motion of a system. The primary  uses Hamilton’s Action functional, 

 to derive the Lagrangian, and Hamiltonian functionals.  provides the most fundamental and
sophisticated level of understanding and involves specifying all the active degrees of freedom, as well as the interactions involved. 

 uses the Lagrangian or Hamiltonian functionals, derived at , in order to derive the equations of motion for the
system of interest.  then uses the derived equations of motion to solve for the motion of the system, subject to a given set
of initial boundary conditions.

Newton postulated equations of motion for nonrelativistic classical mechanics that are identical to those derived by applying
variational principles to Hamilton’s Principle. However, Newton’s Laws of Motion are applicable only to nonrelativistic classical
mechanics, and cannot exploit the advantages of using the more fundamental Hamilton’s Action Principle, Lagrangian, and
Hamiltonian. Newtonian mechanics requires that all the active forces be included in the equations of motion, and involves dealing
with vector quantities which is more difficult than using the scalar functionals, action, Lagrangian, or Hamiltonian. Lagrangian
mechanics based on d’Alembert’s Principle does not exploit all the advantages provided by Hamilton’s Action Principle.

Considerable advantages result from deriving the equations of motion based on Hamilton’s Principle, rather than basing them on
the Newton’s postulated Laws of Motion. It is significantly easier to use variational principles to handle the scalar functionals,
action, Lagrangian, and Hamiltonian, rather than starting with Newton’s vector differential equations-of-motion. The three
hierarchical stages of analytical mechanics facilitate accommodating extra degrees of freedom, symmetries, constraints, and other
interactions. For example, the symmetries identified by Noether’s theorem are more easily recognized during the primary “action”
and secondary “Hamiltonian/Lagrangian” stages, rather than at the subsequent “equations-of-motion” stage. Constraint forces, and
approximations, introduced at the  or , are easier to implement than at the subsequent . The
correspondence of Hamilton’s Action in classical and quantal mechanics, as well as relativistic invariance, are crucial advantages
for using the analytical approach in relativistic mechanics, fluid motion, quantum, and field theory.

Philosophically, Newtonian mechanics is straightforward to understand since it uses vector differential equations of motion that
relate the instantaneous forces to the instantaneous accelerations. Moreover, the concepts of momentum plus force are intuitive to
visualize, and both cause and effect are embedded in Newtonian mechanics. Unfortunately, Newtonian mechanics is incompatible
with quantum physics, it violates the relativistic concepts of space-time, and fails to provide the unified description of the
gravitational force plus planetary motion as geodesic motion in a four-dimensional Riemannian structure.
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The remarkable philosophical implications embedded in applying variational principles to Hamilton’s Principle, are based on the
astonishing assumption that motion of a constrained system in nature follows a path that minimizes the action integral. As a
consequence, solving the equations of motion is reduced to finding the optimum path that minimizes the action integral. The fact
that nature follows optimization principles is nonintuitive, and was considered to be metaphysical by many scientists and
philosophers during the  century, which delayed full acceptance of analytical mechanics until the development of the Theory of
Relativity and quantum mechanics. Variational formulations now have become the preeminent approach in modern physics and
they have toppled Newtonian mechanics from the throne of classical mechanics that it occupied for two centuries.

The scope of this book extends beyond the typical classical mechanics textbook in order to illustrate how Lagrangian and
Hamiltonian dynamics provides the foundation upon which modern physics is built. Knowledge of analytical mechanics is essential
for the study of modern physics. The techniques and physics discussed in this book reappear in different guises in many fields, but
the basic physics is unchanged illustrating the intellectual beauty, the philosophical implications, and the unity of the field of
physics. The breadth of physics addressed by variational principles in classical mechanics, and the underlying unity of the field, are
epitomized by the wide range of dimensions, energies, and complexity involved. The dimensions range from as large as  , to
quantal analogues of classical mechanics of systems spanning in size down to the Planck length of  . Individual
particles have been detected with kinetic energies ranging from zero to greater than  eV. The complexity of classical mechanics
spans from one body to the statistical mechanics of many-body systems. As a consequence, analytical variational methods have
become the premier approach to describe systems from the very largest to the smallest, and from one-body to many-body
dynamical systems.

The goal of this book has been to illustrate the astonishing power of analytical variational methods for understanding the physics
underlying classical mechanics, as well as extensions to modern physics. However, the present narrative remains unfinished in that
fundamental philosophical and technical questions have not been addressed. For example, analytical mechanics is based on the
validity of the assumed principle of economy. This book has not addressed the philosophical question, “is the principle of economy
a fundamental law of nature, or is it a fortuitous consequence of the fundamental laws of nature?”

In summary, Hamilton’s action principle, which is built into Lagrangian and Hamiltonian mechanics, coupled with the availability
of a wide arsenal of variational principles and mathematical techniques, provides a remarkably powerful approach for deriving the
equations of motions required to determine the response of systems in a broad and diverse range of applications in science and
engineering.

19.1: Introduction by Douglas Cline is licensed CC BY-NC-SA 4.0. Original source: http://classicalmechanics.lib.rochester.edu.
Current page by Douglas Cline is licensed CC BY-NC-SA 4.0. Original source: http://classicalmechanics.lib.rochester.edu.
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Glossary
Abbreviated action | Abbreviated action is
defined to be

S0 ≡ ∫ tfti
n

∑
j
pjq̇jdt = ∫ tfti(L + H)dt = ∫ tfti2Tdt = ∫ tftip ⋅ δq.

This was anticipated by Leibniz in 1687 and
subsequently proposed by Maupertuis in 1744. It was
an early statement of Hamilton's Stationary Action
Principle.

Action-angle variables | A transformation to
action-angle variables is convenient for systems
involving periodic motion such as periodic oscillations
or closed trajectories in phase space. The action-phase
integral is especially useful for trajectories involving
periodic motion such as celestial orbits.

Adiabatic invariance | Finding constants for
time-dependent Hamiltonians is difficult. However, for
adiabatic motion the time dependence often can be
sufficiently slow to be ignored.

Apocenter | The furthest point for an orbiting body
from the center of attraction

Apsis | Denotes either of the extreme points in the
orbit of a planetary body about it's primary body. The
prefix for the shortest separation distance is peri and
apo for the longest separation.

Asymmetric rotor | A quadrupole-deformed body
for which the quadrupole deformation along the three
orthogonal axes are different. That is, it is a triaxially-
deformed quadrupole top.

Attractor | After many closed cycles in phase space,
non-linear oscillatory systems can converge to either a
point attractor or a limit cycle attractor.

Autonomous system | Independent, self-
governing, system subject to it's own laws and
schedule.

Barycenter | In astronomy the barycenter is the
center of mass of two or more bodies that orbit one
another.

Bernoulli | Pioneered development of the calculus of
variations including solving the theory of the catenary,
the brachistochrone, and Fermat's Principle.

Bertrand's theorem | Showed that the inverse
square law and linear harmonic oscillator are the only
radial dependences of the two-body problem that lead
to stable closed orbits.

Bifurcation diagram | Simplifies the presentation
of the dynamical motion of a periodic system by
sampling the location once per orbit period.

Black hole | A region of space where the
gravitational field is so intense that neither matter nor
radiation can escape.

Bohr | Neils Bohr was a Danish Nobel Prize winner
in Physics who pioneered the old quantum theory, the
correspondence principle, the early model of the atom,
nuclear fission, and nuclear fusion

Bohr-Sommerfeld atom | The first viable model
of the hydrogen atom that was based on classical
mechanics.

Brachistochrone | The path between two points for
which a body moves under gravity in the shortest
possible time. The mathematics was solved by
Bernoulli and Euler.

Brahe | Tycho Brahe was a Danish nobleman known
for his accurate and comprehensive astronomical
observations.

Bulk modulus | The bulk modulus is a measure of
the resistance to compression of a substance.

Buoyancy forces | Is the upward force exerted by a
fluid that opposes the weight of a partially or fully
immersed object.

Canonical coordinates | In classical mechanics
the canonical coordinates are q^{i} and p_{i} in phase
space. The canonical coordinates satisfy the
fundamental Poisson bracket relations \
{q^{i},q^{j}\}=0\qquad \qquad \
{p_{i},p_{j}\}=0\qquad \qquad \{q^{i},p_{j}\}=\delta
_{ij} \nonumber

Canonical equations of motion | Jacobi's name
for Hamilton's fundamental equations of motion and
the corresponding set of conjugate variables.

Canonical perturbation theory | Closed form
solutions of dynamical systems are rarely available.
However, some systems can be solved by the addition
of a small perturbation to a solvable problem.

Canonical transformation | In Hamiltonian
mechanics a canonical transformation is a change of
the canonical coordinates that preserves the form of
Hamiltonian mechanics.

Cartesian coordinates | A cartesian coordinate
system in a plane is one that is defined by a pair of
numerical coordinates.

Catenary | The shape assumed by an idealized
uniform chain that is hanging from both ends.

Cayley | Arthur Cayley was a prolific British
mathematician who developed the concept of matrix
algebra in 1855.

Center of mass | The center of mass of a
distribution of mass is a unique point where applied
forces do not lead to rotational torques.

Center of momentum | The center of momentum
frame is defined as the inertial frame for which the
sum of the linear momenta of all parts of the body is
zero.

Center of percussion | The center of percussion
of an extended body is the location where a
perpendicular impact will produce no reactive shock
on the pivot point.

Centrifugal force | The centrifugal force that a
body exhibits in a rotating frame is due to the inertia of
that the body moving in a straight line in the non-
rotating inertial frame.

Chaos | Random and unpredictable motion of a body.

Characteristic function | If the Hamiltonian does
not depend explicitly on time, then the Hamilton-
Jacobi equation separates into \mathbf{S(q,\alpha
,}t\mathbf{)=W(q,\alpha )-E(\alpha )}t \nonumber
where \mathbf{W(q,\alpha )} is Hamilton's
characteristic function for a time-independent
Hamiltonian.

Chasles' theorem | A rotation about any axis is
equivalent to a rotation through the same angle about
any axis parallel to it, together with a simple
translation in a direction perpendicular to the axis.

Collective synchronization | Collective
synchronization of many weakly-coupled oscillators is
discussed in the Kuramoto model.

Commutation relation | The commutator of two
elements of a ring is defined as [a,b]=ab-ba

Commute | In mathematics a binary operation is
commutative if changing the order of the operands
does not change the result.

Conjugate momentum | The conjugate
momentum associated with coordinate q_{j} is defined
to be \frac{\partial L}{\partial \dot{q}_{j}} \equiv
p_{j}

Conservation of angular momentum | When
the torque around an axis is zero then the angular
momentum about that axis is a constant of motion.

Conservation of linear momentum | The
linear momentum in a given direction is conserved if
no forces act in that same direction

Conservative forces | A conservative force is a
force for which the total work done moving a mass
between two points is independent of the path taken.

Constrained motion | Constrained motion occurs
when an object is forced to move in a restricted way.

Constraint forces | Constraint forces are the forces
applied to constrain the motion of a body.

Constraints geodesic | The constraint forces
applied to force a body to follow a certain trajectory.

Constraints geometric | Constraints applied to
ensure that a body follows a specified trajectory.

Constraints holonomic | Holonomic constrained
motion involves constraint forces that restrict the
motion according to algebraic relations that couple the
holonomic generalized coordinates.

Constraints isoperimetric | Isoperimetric
constraints often involve optimization of a functional
under an integral constraints, such as the Queen Dido
problem, example 5.9.

Constraints kinematic | Kinematic constraints
are constraints that restrict motion of rigid bodies that
decreases the number of active degrees of freedom.

Constraints nonholonomic | The nonholonomic
generalized coordinates are not coupled by algebraic
relations.

Constraints partial holonomic | One-sided
constraints involve examples such as partial-
holonomic systems where the active regime of the
constraint force applies only in one direction.

Constraints rheonomic | Rheonomic constraints
are explicitly time-dependent constraints.

Constraints scleronomic | Equations of
constraint that do not contain the time as an explicit
variable.

Continuity equation | A continuity equation is an
equation that relates conserved quantities, such as fluid
volume, that is being transported in fluid flow.

Contravariant tensor | Covariance and
contravariance of physical entities change with change
of basis. For example a change of scale from meters to
centimeters of the basis divides the reference axes by
100. Then the measured velocity vectors need to be
multiplied by 100. Vectors that change scale inversely
to changes of scale are called contravariant. By
contrast the gradient has units that are the inverse of
the distance and the components of these covectors
change in the same way as changes in scale and are
called covectors.

Coordinate systems; cartesian | Cartesian
coordinates in a plane specifies each location uniquely
by a pair of numerical coordinates which are the
distances to the point from two perpendicular axes.

Coordinate systems; curvilinear | In geometry
curvilinear coordinates correspond to a coordinate
system in Euclidean space where the coordinate lines
may be curved.
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Coordinate systems; polar | In mathematics the
polar coordinate system is a two-dimensional
coordinate system for which each point on a plane is
determined by a distance from a reference point and an
angle from the reference direction.

Coordinate systems; spherical | In mathematics
a spherical coordinate system is a coordinate system
for three-dimensional space where the location of the
point is specified by three numbers; the radial distance
of the point from a fixed origin r; the polar angle
measured from a fixed zenith \theta , and the azimuthal
angle \phi .

Coordinate transformations | A unitary rotation
accomplished by a rotation matrix acting upon the
coordinates.

Copernicus | Nicolaus Copernicus (1473-1543)
formulated a model of the universe that placed the
Sun, rather than the Earth, at the center of the universe

Correspondence principle | The correspondence
principle states that the behavior of systems that are
described by quantum theory, must reproduce classical
physics in the limit of large quantum numbers.

Coulomb excitation | Electromagnetic excitation
of the nucleus by the atomic electromagnetic fields
during an atomic collision.

Coupled oscillator | N-body coupled oscillator
systems normally have N independent oscillatory
modes involving complicated coordinated motion of
the N bodies, with each mode having different
characteristic frequencies.

Covariant tensor | Covariance, and
contravariance, of physical entities change with change
of basis. For example a change of scale from meters to
centimeters of the basis divides the reference axes by
100. Then the measured velocity vectors need to be
multiplied by 100. Such vectors change scale inversely
to changes of scale, and are called contravariant. By
contrast the gradient has units that are the inverse of
the distance and the components of these covectors,
change in the same way as changes in scale and are
called covectors.

Cut-off frequency | The maximum or minimum
frequency of an oscillatory system.

Cyclic coordinates | A cyclic coordinate is one
that does not explicitly appears in the Lagrangian. For
example, the momentum p_{k} is a constant of motion
if the conjugate coordinate q_{k} is cyclic, which is
Noether's theorem

Cyclic Routhian | The cyclic routhian behaves like
a Hamiltonian for the ignorable cyclic coordinates
\mathbf{\omega } and \mathbf{J}, while it behaves
like a negative Lagrangian for all other coordinates.

d'Alembert's Principle | d'Alembert's Principle
of virtual work states that a system of rigid bodies is in
dynamic equilibrium when the virtual work of the sum
of the applied forces, plus the inertial forces, is zero.
This extends the Principle of Virtual work to
dynamical systems.

de Broglie matter wave | In 1924 Louis de
Broglie's hypothesized that matter and energy should
be symmetrical implying that moving matter should
display wave-like properties.

Delta-function analysis | The Dirac delta
function (\delta-function) is a generalized function
introduced by Paul Dirac. The delta function is used to
model an idealized point mass or charge that is zero
except at zero where the function has an integral of
unity. That is it symbolizes a unit impulse.

Differential orbit equation | The differential
orbit equation relates the shape of the orbital motion,
in plane polar coordinates, to the radial dependence for
the two-body central force. A Binet coordinate
transformation can simplify the differential orbit
equation.

Dirac | Paul Dirac, a 23-year old graduate student
showed that the Poisson bracket representation of
Hamiltonian mechanics is consistent with the
Heisenberg equation representation of quantum
mechanics. He developed a relativistic theory of
quantum mechanics and predicted antiparticles.

Discrete lattice chain | Crystalline lattices and
linear molecules are important examples of discrete
lattice chains that primarily involve nearest neighbor
interactions.

Driven damped oscillator | The driven linearly-
damped linear oscillator provides the foundation for
lattice chains and molecular binding.

Eccentricity vector | The two-body central
interaction leads to two invariant first-order integrals,
namely the conservation of energy and the
conservation of angular momentum. For the special
case of the inverse-square law, there is a third
invariance which Hamilton called the eccentricity
vector which unambiguously defines the orientation
and direction of the major axis of the elliptical orbit..

Einstein | Albert Einstein (1879 - 1955), and Isaac
Newton are widely recognized as being among the
greatest physicists. Einstein developed both the Special
Theory of Relativity and the General Theory of
Relativity, both of which are of fundamental
importance in physics.

Einstein's general theory of relativity |
Einstein's General theory of Relativity, published in
1915, is the geometric theory of gravitation. It
correctly predicted the existence of black holes,
gravitational waves.

Einstein's special theory of relativity |
Einstein's Special theory of Relativity, published in
1905, states that (1) the laws of physics are invariant in
all inertial frames of reference, and (2) The speed of
light in vacuum is the same a constant of nature.

Elasticity | The degree of stretching or compression
of materials subject to tension or compression.

Euler | Leonhard Euler (1707 - 1783) was a brilliant
mathematican who made many remarkable
contributions to mathematics. He pioneered many
aspects of analytical mechanics.

Euler angles | The three Euler angles (\phi ,\theta
,\psi ) specify the rotation angle \phi about the space-
fixed axis, \theta about the line of nodes, and \psi about
the body-fixed 3 axis. These three angles are required
to rotate from the laboratory frame of reference to the
body-fixed frame of reference.

Euler's equations for rigid-body rotation |
The Euler equations of motion for a rigid-body is the
force field expressed in the body-fixed coordinate
frame assuming applied external torques
N_{1},N_{2}, and N_{3} acting about the three axes.
\begin{eqnarray*} I_{1}\dot{\omega}_{1}-\left(
I_{2}-I_{3}\right) \omega _{2}\omega _{3}
&=&N_{1} \\ I_{2}\dot{\omega}_{2}-\left( I_{3}-
I_{1}\right) \omega _{3}\omega _{1} &=&N_{2} \\
I_{3}\dot{\omega}_{3}-\left( I_{1}-I_{2}\right)
\omega _{1}\omega _{2} &=&N_{3}
\end{eqnarray*}

Euler's hydrodynamic equation | \frac{\partial
\mathbf{v}}{\partial t}+\left( \mathbf{v\cdot \nabla
}\right) \mathbf{v=-}\frac{1}{\rho }\mathbf{\nabla
}\left( P+\rho V\right) \nonumber

Euler-Lagrange equation | \left\{ \frac{d}
{dt}\left( \frac{\partial L}{\partial \dot{q}_{j}}\right)
- \frac{\partial L}{\partial q_{j}}\right\} =Q_{j}
\nonumber assuming that the n generalized forces
Q_{j} for the n generalized coordinates are
independent, and where n\geq j\geq 1.

Euler-Lagrange equation | A second-order
partial differential equation whose solutions are the
functions for which a given functional is stationary.

Fermat's principle | The transit time \tau of a light
beam between two locations A and B, in a medium
with position-dependent refractive index n(s), is given
by \tau =\int_{t_{A}}^{t_{B}}dt=\frac{1}
{c}\int_{A}^{B}n(s)ds \nonumber Fermat's Principle
predicts Snell's Law for refraction at an interface.

Fluid dynamics | The laminar and turbulent flow
of liquids and gases is the subject of fluid dynamics.

Four vector | An object comprising four orthogonal
components, such as three spatial components plus
time, used in Special Relativity.

Fourier analysis | Decomposition or synthesis of
the oscillatory components of a function.

Galilean invariance | The laws of motion are the
same in all inertial frames.

Gauge invariance | The standard Lagrangian is
indefinite with respect to 1) addition of a constant to
the scalar potential, 2) addition of a constant kinetic
energy, and 3) addition of a differentiable function
\Lambda (q_{i},t) that has continuous second
derivatives.

General theory of relativity | Einstein's General
theory of Relativity, published in 1915, is the
geometric theory of gravitation. It correctly predicted
the existence of black holes, gravitational waves.

Generalized energy theorem | \begin{equation}
\frac{dH\left( \mathbf{q,p,}t\right) }
{dt}=\frac{dh(\mathbf{q},\mathbf{\dot{q }},t)}
{dt}=\sum_{j}\dot{q}_{j}\left[
Q_{j}^{EXC}+\sum_{k=1}^{m}\lambda _{k}
\frac{\partial g_{k}}{\partial q_{j}}
(\mathbf{q},t)\right] -\frac{\partial L(
\mathbf{q},\mathbf{\dot{q}},t)}{\partial t}
\end{equation} The Hamiltonian H\left(
\mathbf{q,p,}t\right), and generalized energy h(
\mathbf{q},\mathbf{\dot{q}},t), both are constants of
motion if the Lagrangian is a constant of motion, and if
the external non-potential forces are zero. This is an
example of Noether's theorem, where the symmetry of
time independence leads to conservation of the
conjugate variable, which in this case is the
Hamiltonian or Generalized energy.

Geodesic | The shortest possible line between two
points on a curved surface.

Gravitational mass | The constant of
proportionality of the force experienced by matter in a
gravitational field

Gravitational wave | Disturbances in the
curvature of space-time generated by accelerations.

Hamilton's Principle Function | The modern
term "action functional" was called "Hamilton's
Principle Function" in older text books.

Hamilton's stationary-action principle |
Hamilton's Stationary Action Principle states that the
action functional is stationary with respect to change
of the variables, i.e. \delta S=\delta
\int_{t_{i}}^{t_{f}}L (\mathbf{q, \dot{q}}, t) dt=0.
\nonumber

Hamilton-Jacobi equation | A formulation of
mechanics that allows the motion of a particle to be
represented by a wave.
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Hamiltonian mechanics | Hamiltonian
mechanics describes the evolution of conservative
physical systems in terms of the Hamiltonian function,
which equals the total energy expressed in terms of
position and momentum

Heisenberg's Uncertainty Principle | This
principle states that the position \Delta x and
corresponding momentum \Delta p_{x} cannot be
measured simultaneously with arbitrary high precision.
That is, \Delta x\Delta p_{x}\geq \frac{\hslash }{2}.

Hodograph | A diagram that gives a pictorial
representation of the movement of a body or fluid. It
uses the locus of one end of a variable vector, with the
other end fixed. This was developed by Hamilton.

Holonomic constraints | Holonomic constrained
motion involves constraint forces that restrict the
motion according to algebraic relations that couple the
generalized coordinates.

Inertia tensor | The inertia tensor can be
represented by 3x3 square matrix which defines the
rotational properties of body. The individual
components of the I_{ij} matrix element are given by
I_{ij}\equiv \sum_{\alpha }^{N}m_{\alpha }\left[
\delta _{ij}\left( \sum_{k}^{3}x_{\alpha
,k}^{2}\right) -x_{\alpha ,i}x_{\alpha ,j}\right]
\nonumber

Inertial frame | An inertial frame is a frame of
reference that is not undergoing acceleration. In an
inertial frame, a body with zero forces acting moves at
constant velocity.

Inertial mass | The constant of proportionality of
the acceleration to the force applied to a body.

Jacobian | The Jacobian determinant is defined as
being the ratio of the n-dimensional volume element
dx_{1}dx_{2}...dx_{n} in one coordinate system, to
the volume element dy_{1} dy_{2} ...d y_{n} in the
second coordinate system. That is \begin{equation}
J(y_{1}y_{2}...y_{n})\equiv \frac{\partial
x_{1}\partial x_{2}...\partial x_{n}}{\partial
y_{1}\partial y_{2}...\partial y_{n}}=\left\vert
\begin{array}{cccc} \frac{\partial x_{1}}{\partial
y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & ... &
\frac{\partial x_{1}}{\partial y_{n}} \\ \frac{\partial
x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}
{\partial y_{2}} & ... & \frac{\partial x_{2}}{\partial
y_{n}} \\ \vdots & \vdots & \vdots & \vdots \\
\frac{\partial x_{n}}{\partial y_{1}} & \frac{\partial
x_{n}}{\partial y_{2}} & ... & \frac{\partial x_{n}}
{\partial y_{n}} \end{array} \right\vert \end{equation}

Lagrange | Joseph Louis Lagrange (1736-1813) was
an Italian mathematician who was a student of
Leonhard Euler and his work paralleled that of Euler.
In 1788 Lagrange published his monumental treatise
on analytical mechanics entitled "Mécanique
analytique" which describes his new, immensely
powerful, analytical technique that can solve any
mechanical problem without resorting to geometrical
considerations.

Lagrange multipliers | The n Lagrange equations,
plus the m equations of constraint, can be used to
explicitly determine the n generalized coordinates plus
the m constraint forces. That is, n+m unknowns are
determined. This Lagrange-multiplier approach is
discussed in chapter 5.9.

Lagrangian mechanics | An algebraic method to
derive the trajectory of a system by solution of the
Euler- Lagrange equations.The Lagrangian is
expressed in terms of position and velocity.

Lame' moduli | Lame's two moduli of elasticity
(\lambda, \mu) are material dependent.

Legendre transform | Converts functions of one
quantity; such as position, into functions of the
conjugate quantity such as momentum. Commonly
used to relate the Hamiltonian formalism and the
Lagrangian formalism.

Leibniz | Gottfried Wilhelm Leibniz (1646-1716)
was a contemporary of Newton. He independently
developed differential and integral calculus as well as
introductory elements of algebraic mechanics

Levi-Civita permutation symbol | In three
dimensions \varepsilon _{ijk}=+1 if (i,j,k) is cyclic,
\varepsilon _{ijk}=-1 if (i,j,k) is anticyclic, and
\varepsilon _{ijk}=0 if two indices are identical.

Liouville's theorem | Describes the conservation
of the density in phase-space distribution function,
which is constant along trajectories.

Lissajous figure | The Lissajous figure, first
discovered by Bowditch, graphically shows the
trajectory for complex harmonic motion.

Lorentz force | The Lorentz force predicts the
electromagnetic force acting on a moving point charge
q in electric and magnetic fields.

Lorentz relativistic transformation | The
Lorentz linear transformation, in Minkowski space,
provides a mathematical representation of spacetime in
Special Relativity.

Lyapunov exponent | A quantitative measure of
the instability of a trajectory relative to nearby
trajectories.

Mach's principle | Einstein assigned this
conjecture to Mach that describes how rotating objects
maintain an absolute rotating reference frame.

Matrix diagonalization | An nxn matrix can be
transformed to a diagonal form if it has n distinct
eigenvalues.

Matrix Hermitian | A square matrix is Hermitian
if, and only if, it is self-adjoint

Matrix identity | An identity matrix, for an order n
square matrix, is a diagonal matrix with ones on the
main diagonal.

Maupertuis | The Principle of Least Action (1744)
usually is attributed to Pierre Louis Maupertuis who
summized that nature is thrifty in all its action. He
based it on the earlier Leibniz assumption that \ \delta
\int 2T(t)dt=0. Euler (1744) made the more
fundamental assumption that \delta \int pdq=0.

Max Born | Max Born, a German physicist who
played a pivotal role with Heisenberg in development
of quantum matrix mechanics.

Maxwell's equations | James Maxwell formulated
the classical theory of electromagnetism in his 1865
publication, "A dynamical theory of the
Electromagnetic field" that unified, electricity,
magnetism, and electromagnetic waves.

Michelson Morley experiment | This work
showed that the velocity of light was unchanged by the
motion of the Earth leading to Einstein's Special
Theory of Relativity.

Minkowski metric | Minkowski space combines
three-dimensional Eucliden space plus time into a
four-dimensional manifold

Navier-Stokes equation | The Navier-Stokes
equations are a set of partial differential equations that
describe the motion of viscous fluids.

Newton's First-order integrals | (1) Linear
Momentum: \mathbf{F}_{i}=\frac{d\mathbf{p}_{i}}
{dt}\hspace{1in}\int_{1}^{2}\mathbf{F}_{i}dt=\int_
{1}^{2}\frac{d\mathbf{p}_{i}}{dt}dt=\left(
\mathbf{p}_{2}- \mathbf{p}_{1}\right) _{i}
\nonumber (2) Angular momentum:
\frac{d\mathbf{L}_{i}}{dt}=\mathbf{r}_{i}\times
\frac{d\mathbf{p}_{i}}{dt}=
\mathbf{N}_{i}\hspace{1in}\int_{1}^{2}\mathbf{N}
_{i}dt=\int_{1}^{2}\frac{d \mathbf{L}_{i}}
{dt}dt=\left( \mathbf{L}_{2}-\mathbf{L}_{1}\right)
_{i} \nonumber (3) Kinetic energy: Thus the
differential, and corresponding first integral, form of
the kinetic energy can be written as
\mathbf{F}_{i}=\frac{dT_{i}}
{d\mathbf{r}_{i}}\hspace{1in}\int_{1}^{2}\mathbf{
F}_{i}\cdot d\mathbf{r}_{i}=(T_{2}-T_{1})_{i}
\nonumber

Noether's theorem. | Noether's theorem states that
every differentiable symmetry of action of a physical
system leads to a corresponding conservation law.

Non-cyclic Routhian | The non-cyclic Routhian
complements the cyclic Routhian by behaving like a
Hamiltonian for the non-cyclic variables, and behaves
like a negative Lagrangian for the cyclic variable \
\mathbf{\omega } and \mathbf{J}. It is used
extensively in science and engineering to describe
rotational motion of rigid bodies.

Nonholonomic constraints | Nonholonomic
generalized coordinates are not coupled by algebraic
relations.

Noninertial frames | is a frame of reference that
undergoes acceleration with respect to an inertial
frame.

Norbert Weiner | He was an American
mathematician who established cybernetics.

Normal modes | A normal mode of an oscillatory
system is an independent pattern of motion for which
all parts move sinusoidally with the same frequency
and with a fixed relative phase.

Orbit equation | The orbit equation defines the
path of a body m_{2} orbiting around a central body
m_{1} without specifying position as a function of
time.

Orbit stability | An orbit is stable if the orbit
solution repeats each period.

Parallel-axis theorem | Also known as Steiner's
theorem, states that the moment of inertia about a point
that is a distance d from the center of mass, equals
I=I_{cm}+md^{2} where I_{cm} is the moment of
inertia about a parallel axis that intersects the center of
mass.

Pauli exclusion principle | The Pauli exclusion
principle states that no two electrons is the same atom
can have identical quantum numbers.

Pericenter | For astronomical orbits the periapsis is
the point of closest approach and apocenter the largest
separation distance.

Perpendicular axis theorem | The moment of
inertia of a plane lamina body about, an axis
perpendicular to the plane of the lamina, is equal to the
sum of the moments of inertia of the lamina about two
axes at right angles to each other, in its own plane
intersecting each other at a point where the
perpendicular axis passes through it.

Phase space | In a dynamical system, phase space is
a space for which all possible states can be represented
with each possible state corresponding to a unique
point is phase space. For mechanical systems the phase
space normally lists the position and momentum
variables as used by Hamiltonian mechanics.
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Phase velocity | The phase velocity is the velocity
that a wave front propagates in a medium. It is the
velocity of any one frequency component of the wave
measured with respect to a fixed point of the crest of
the wave.

Plane pendulum | A pendulum bob of mass m is
attached to a rigid mass-less rod of length l which
swings in a plane in the gravitational field.

Poincare chaos | Poincare was the first to
recognize the existence of chaos in the gravitational
three-body problem.

Poincare-Bendixson theorem | This is a
statement about the long-term behaviour for orbits of
continuous dynamical systems on the plane, cylinder,
or sphere. Given a differentiable real dynamical system
defined on an open subset of the plane, every non-
empty campact \omega \lim it of an orbit, is either a
fixed point, a periodic orbit, or a connected set.

Poisson brackets | The Poisson bracket of any two
continuous functions of generalized coordinates F(p,q)
and G(p,q), is defined to be \left[ F,G\right]
_{qp}\equiv \sum_{i}\left( \frac{\partial F}{\partial
q_{i}}\frac{\partial G}{\partial p_{i}}-\frac{ \partial
F}{\partial p_{i}}\frac{\partial G}{\partial
q_{i}}\right) \nonumber

Poisson's ratio | is the negative ratio of the
transverse to axial strain.

Potential theory | In physics, potential theory is
the study of harmonic functions. The name originated
in the 19^{th} century from the fact that the
gravitational and electrostatic fields could be modelled
using the concepts of either gravitational or
electrostatic potential.

Precession rate | In celestial mechanics, the apsidal
precession rate is the precession of the line connecting
the apsides.

Q-factor | In physics and engineering, the Q-factor
(quality factor) is a dimensionless parameter that
specifies the degree of damping of an oscillatory
system. The largest Q factors correspond to the
narrowest width of the frequency distribution while
small Q factors correspond to a wide frequency
distribution.

Queen Dido's problem | A story in Virgil's
Aeneid describes the legendary Queen of Carthage
who wishes to find the shape that maximizes an area
assuming a fixed perimeter.

Radius of gyration | Defined as the root mean
square distance of a point mass M object from the axis
of rotation, that corresponds to the actual moment of
inertia

Rayleigh dissipation function | Linear velocity-
dependent energy dissipation can be handled by use of
the Rayleigh dissipation function.

Reduced mass | Two-body interactions for the two-
body system can be handled using the one-body
representation which uses the concept of reduced
mass.

Refractive index | The velocity of light in a
medium equals the velocity of light in vacuum c
divided by the refractive index for the medium.

Relativistic Doppler effect | The relativistic
Doppler effect includes the change in frequency
caused by the relative motion of the source and
observer as predicted by the Special Theory of
Relativity.

Restricted holonomic systems | Systems with
constraints that are holonomic only for restricted
conditions, such as one-sided constraints.

Reynolds number | The Reynolds number is the
ratio of inertial forces to viscous forces in fluid flow.
For low Reynold's numbers, fluid flow tends to be
laminar, while for large Reynold's numbers, fluid flow
tends to be turbulent.

Rheonomic constraint | Rheonomic constraints
are explicitly time-dependent constraints.

Rotation matrix | A transformation matrix is a
square matrix that is used to perform a rotation in
Euclidean space.

Rotational invariant | An observable of a
physical system that remains unchanged under a
rotational transformation.

Rotational transformation | A transformation
matrix is a square matrix used to perform a rotation in
Euclidean space.

Routhian reduction | This is a hybrid formulation
of Lagrangian mechanics plus Hamiltonian mechanics
that was developed by Edward John Routh (1831-
1907). Some generalized coordinates are chosen to be
generalized velocities, while others are chosen to be
generalized momenta. The Routhian equations are
exactly the Hamiltonian equations for those
coordinates respresented by generalized momenta,
while the Lagrangian equations apply for the
coordinates represented by velocities. This is used
extensively for rotating systems in engineering.

Rutherford scattering | Lord Rutherford used
scattering of \alpha particles by a thin gold foil to
determine the size of the nucleus which led to
development of the Bohr model of the atom.

Schrödinger equation | A linear partial
differential equation that defines the wave function in
quantum mechanics. Dirac incorporated the wave
mechanics of Schrödinger and matrix mechanics of
Heisenberg into a single formulation of quantum
mechanics.

Scleronomic constraints | Equations of
constraint that do not contain time as an explicit
variable.

Shear modulus of elasticity | describes the shear
elasticity of a material.

Signal processing | The analysis, modification, and
synthesis for signal communication. It applies to
analog signals, continuous time, descrete time, digital,
nonlinear, and statistical, signal processing. This is an
important subject in information theory and
technology.

Signal velocity | The speed at which a wave carries
information. The signal velocity usually equals the
group velocity. However, there are situations where the
group velocity exceeds c, but the signal velocity is less
than c as predicted by Special Relativity.

Simultaneity | The time relation between two
events happening at the same time in a given reference
frame.

Slow light | Propagation of an optical pulse at a very
slow group velocity due to interaction with the
medium in which the light propagates.

Snell's Law | The relationship between the index of
refraction n and propagation angle \theta in a given
medium. n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}

Soliton | A soliton or solitary wave is a self-
reinforcing wave packet that maintains its shape while
it propagates at a constant velocity.

Sommerfeld quantum of action | The Bohr-
Sommerfeld old quantum theory assumed that the
classical action integral was quantized.

Spatial inversion transformation | This
transformation is a mirror reflection.

Special theory of relativity | Einstein's Special
theory of Relativity, published in 1905, states that (1)
the laws of physics are invariant in all inertial frames
of reference, and (2) The speed of light in vacuum is a
constant of nature.

Spherical coordinates | The spherical coordinates
used are r, \theta,\phi

Spherical pendulum | A mass m suspended from
a line of length l that is free to oscillate in two
dimensions \theta and \phi.

Spherical tensor | Spherical tensors operators are
used extensively to describe observables that involve a
spherical basis and spherical harmonics.

State space | The state space representation
(q_{i},\dot{q}_{i} ,t) is most valuable when
discussing Lagrangian mechanics.

Strain | The strain tensor is a geometric measure of
the physical deformation induced by stress imposed on
a continuous medium.

Stress | The elastic stress tensor is a measure of the
internal forces due to deformation of a continuous
medium.

Strong equivalence principle | implies that the
gravitational constant applies everywhere in the
universe.

Symmetric top | The symmetric top is a body that
has an axis of symmetry plus two identical moments of
inertia.

Symmetry tensor | The symmetry of the isotropic,
harmonic, two-body, central force leads to definition of
the symmetry tensor \mathbf{A\prime}, which is an
invariant of motion. It defines the orientation, but not
direction, of the major principle axis of the elliptical
orbit.

Teleology | Any philosophy that holds that final
causes exist in nature. That is, analogous to purposes
found in human actions, nature inherently tends toward
definite ends.

Three-body problem | This involves using the
initial locations and velocities of three bodies and
solving for their subsequent motion. In general no
closed-form solution exists for the three-body problem.
As a consequence the resulting dynamical behavior
can be chaotic for most initial conditions. .

Translational invariance | Translational
invariance implies that the properties do not change
following a translation. Noether's theorem implies that
spatial translational symmetry is equivalent to the
momentum conservation law.

Turbulent flow | In fluid mechanics, turbulent flow
usually is characterized by chaotic behavior of the
local pressure, plus flow velocity and direction. This
considerably increases drag compared to laminar fluid
flow.

Twin paradox | The Special Theory of Relativity,
considers two identical twins one of whom makes a
long journey at high speed and then returns home to
find that the twin who stayed home has aged much
more than the twin who travelled.

van der Pol oscillator | Van der Pol discovered
stable relaxation-oscillations in electrical circuits that
are exhibited by systems in both the physical and
biological sciences.

Vector differential operators | A vector
differential operator, designated by the \nabla symbol,
include the gradient, divergence, and curl of a
function.

Vector integral calculus | Vector is concerned
with differentiation and integration of vector fields.
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Virial theorem | In mechanics, the virial theorem
provides a general equation relating the average over
time of the total kinetic energy of a system.

Virtual work | Virtual work is used in the
application of the principle of least action.

Wave-particle duality | Wave-particle duality is a
concept used in quantum theory that every quantum
entity may be describe either as a particle or a wave.

Weak equivalence principle | This states that
the inertial and gravitational masses of a matter are
identical.

William Hamilton | Sir William Hamilton (1805-
1865) was an Irish mathermatican who developed both
the Lagrangian and Hamiltonian branches of algebraic
classical mechanics.

Young's modulus of elasticity | describes tensile
elasticity of a material.

Zeeman effect | The splitting of an atomic spectral
line due to the interaction of the magnetic moment of
an atom with the applied magnetic field. If the spin-
orbit interaction dominates then the atom precesses
about the total angular momentum J. However if the
external magnetic field dominates over the spin-orbit
coupling, then the magnetic splitting due to the atomic
spin becomes is less important.
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