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18.3: Hamiltonian in Quantum Theory

Heisenberg’s Matrix-Mechanics Representation

The algebraic Heisenberg representation of quantum theory is analogous to the algebraic Hamiltonian representation of classical
mechanics, and shows best how quantum theory evolved from, and is related to, classical mechanics. Heisenberg decided to ignore
the prevailing conceptual theories, such as classical mechanics, and based his quantum theory on observables. This approach was
influenced by the success of Bohr’s older quantum theory and Einstein’s theory of relativity. He abandoned the classical notions
that the canonical variables p, g can be measured directly and simultaneously. Secondly he wished to absorb the correspondence
principle directly into the theory instead of it being an ad hoc procedure tailored to each application. Heisenberg considered the
Fourier decomposition of transition amplitudes between discrete states and found that the product of the conjugate variables do not
commute. Heisenberg derived, for the first time, the correct energy levels of the one-dimensional harmonic oscillator as
E, = hw(n+ %) which was a significant achievement. Born recognized that Heisenberg’s strange multiplication and
commutation rules for two variables, corresponded to matrix algebra. Prior to 1925, matrix algebra was an obscure branch of pure
mathematics not known or used by the physics community. Heisenberg, Born, and the young mathematician Jordan, developed the
commutation rules of matrix mechanics. Heisenberg’s approach represents the classical position and momentum coordinates g, p by
matrices q and p, with corresponding matrix elements gy, e and p,,e™™*. Born showed that the trace of the matrix

H(pa)=pq—L (18.3.1)
gives the Hamiltonian function H(p, q) of the matrices q and p which leads to Hamilton’s canonical equations
. OH O0H
_ 21 - 18.3.2
a=3, P="74 ( )

Heisenberg and Born also showed that the commutator of q, p equals

akp1 — Pigr = thd (18.3.3)
arq —qqr =0
prpr —pipr =0

Born realized that Equation 18.3.3 is the only fundamental equation for introducing % into the theory in a logical and consistent
way.

Chapter 15.2.4 discussed the formal correspondence between the Poisson bracket, defined in chapter 15.3, and the commutator in
classical mechanics. It was shown that the commutator of two functions equals a constant multiplicative factor A times the
corresponding Poisson Bracket. That is

(F;Gr — Gy F)) = M Fj, Gi} (18.3.4)
where the multiplicative factor A is a number independent of F;, Gy, and the commutator.

In 1925, Paul Dirac, a 23-year old graduate student at Bristol, recognized the crucial importance of the above correspondence
between the commutator and the Poisson Bracket of two functions, to relating classical mechanics and quantum mechanics. Dirac
noted that if the constant A is assigned the value A = ¢k, then Equation 18.3.4 directly relates Heisenberg’s commutation relations
between the fundamental canonical variables (g;, p) to the corresponding classical Poisson Bracket {g;, py}. That is,

Pt —Piqr = ih{qx, P} = ihdy (18.3.5)
&%q — @ gk = ih{qr, @} =0 (18.3.6)
pep1 — pipk = ih{p, pi} =0 (18.3.7)

Dirac recognized that the correspondence between the classical Poisson bracket, and quantum commutator, given by Equation
18.3.4, provides a logical and consistent way that builds quantization directly into the theory, rather than using an ad-hoc, case-
dependent, hypothesis as used by the older quantum theory of Bohr. The basis of Dirac’s quantization principle, involves replacing
the classical Poisson Bracket, { F};, G } by the commutator, # (Fj, G, — Gy F;) . That is,

1
{F;,Gr} = h(Fij — G Fj) (18.3.8)
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Hamilton’s canonical equations, as introduced in chapter 15, are only applicable to classical mechanics since they assume that the
exact position and conjugate momentum can be specified both exactly and simultaneously which contradicts the Heisenberg’s
Uncertainty Principle. In contrast, the Poisson bracket generalization of Hamilton’s equations allows for non-commuting variables
plus the corresponding uncertainty principle. That is, the transformation from classical mechanics to quantum mechanics can be
accomplished simply by replacing the classical Poisson Bracket by the quantum commutator, as proposed by Dirac. The formal
analogy between classical Hamiltonian mechanics, and the Heisenberg representation of quantum mechanics is strikingly apparent
using the correspondence between the Poisson Bracket representation of Hamiltonian mechanics and Heisenberg’s matrix
mechanics.

The direct relation between the quantum commutator, and the corresponding classical Poisson Bracket, applies to many
observables. For example, the quantum analogs of Hamilton’s equations of motion are given by use of Hamilton’s equations of
motion, (15.2.42) (15.2.45) and replacing each Poisson Bracket by the corresponding commutator. That is
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Chapter 15.2.5 discussed the time dependence of observables in Hamiltonian mechanics. Equation (15.2.34) gave the total time
derivative of any observable G to be

dG G
G.H 18.3.11
o= o TG H} ( )

Equation 18.3.8 can be used to replace the Poisson Bracket by the quantum commutator, which gives the corresponding time
dependence of observables in quantum physics.

dG 0G 1
—_—= GH - HG 18.3.12
dt ot * zh( ) ( )

In quantum mechanics, Equation 18.3.12is called the Heisenberg equation. Note that if the observable G is chosen to be a

O _0_%

™ and equation (15.2.9)reduces to Hamilton’s equations 18.3.9and 18.3.10

fundamental canonical variable, then

The analogies between classical mechanics and quantum mechanics extend further. For example, if G is a constant of motion, that

is % =0, then Heisenberg’s equation of motion gives
é)G 1
GH-HG 18.3.13
3t ih ( )= ( )
Moreover, if G is not an explicit function of time, then
h(GH HG) (18.3.14)
i

That is, the transition to quantum physics shows that, if G is a constant of motion, and is not explicitly time dependent, then G
commutes with the Hamiltonian H.

The above discussion has illustrated the close and beautiful correspondence between the Poisson Bracket representation of classical
Hamiltonian mechanics, and the Heisenberg representation of quantum mechanics. Dirac provided the elegant and simple
correspondence principle connecting the Poisson bracket representation of classical Hamiltonian mechanics, to the Heisenberg
representation of quantum mechanics.

Schrodinger’'s Wave-Mechanics Representation

The wave mechanics formulation of quantum mechanics, by the Austrian theorist Schrodinger, was built on the wave-particle
duality concept that was proposed in 1924 by Louis de Broglie. Schrodinger developed his wave mechanics representation of
quantum physics a year after the development of matrix mechanics by Heisenberg and Born. The Schrédinger wave equation is
based on the non-relativistic Hamilton-Jacobi representation of a wave equation, melded with the operator formalism of Born and
Wiener. The 39-year old Schrédinger was an expert in classical mechanics and wave theory, which was invaluable when he
developed the important Schrédinger equation. As mentioned in chapter 15.4.4 the Hamilton-Jacobi theory is a formalism of
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classical mechanics that allows the motion of a particle to be represented by a wave. That is, the wavefronts are surfaces of constant
action .S, and the particle momenta are normal to these constant-action surfaces, that is, p = V.S. The wave-particle duality of
Hamilton-Jacobi theory is a natural way to handle the wave-particle duality proposed by de Broglie.

Consider the classical Hamilton-Jacobi equation for one body, given by 18.3.11.

08
E+H(q,VS’,t):O (18.3.15)
If the Hamiltonian is time independent, then equation (15.4.2) gives that
08
i —H(q,p,t) =—E(a) (18.3.16)
The integration of the time dependence is trivial, and thus the action integral for a time-independent Hamiltonian is
S(q, o, t) =W(q,a) — E(a)t (18.3.17)
A formal transformation gives
oS
E=— p=VS§S (18.3.18)
ot
Consider that the classical time-independent Hamiltonian, for motion of a single particle, is represented by the Hamilton-Jacobi
equation.
2
P a8
H=>—10U(q) = —— 18.3.19
v U= (18.3.19)
Substitute for p leads to the classical Hamilton-Jacobi relation in terms of the action S
1 08
—(VS-VS)+U(q)=—— 18.3.20
7 )+U(@) = - (18.3.20)
By analogy with the Hamilton-Jacobi equation, Schrédinger proposed the quantum operator equation
oY -
ih— =H 18.3.21
i = (18.3.21)
where H is an operator given by
N h2
H:—EVQ—FU(T) (18.3.22)

In 1926, Max Born and Norbert Wiener introduced the operator formalism into matrix mechanics for prediction of observables and
this has become an integral part of quantum theory. In the operator formalism, the observables are represented by operators that
project the corresponding observable from the wavefunction. That is, the quantum operator formalism for the assumed momentum
and energy operators, that operate on the wavefunction v, are

ho . B

=T = 18.3.23
p] 1 6q]~ 7 (9t ( )
Formal transformations of p and E in the Hamiltonian 18.3.17leads to the time-independent Schrédinger equation
h? 8%
————+U =F 18.3.24
3 et U@y =B (18.3.24)
Assume that the wavefunction is of the form
b= Aen (18.3.25)

where the action S gives the phase of the wavefront, and A the amplitude of the wave, as described in chapter 15.4.4 The time
dependence, that characterizes the motion of the wavefront, is contained in the time dependence of S. This form for the
wavefunction has the advantage that the wavefunction frequently factors into a product of terms, e.g. 1 = R(r)©(0)®(¢) which
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corresponds to a summation of the exponents S = W, + Wy + Wy, — Et . This summation form is exploited by separation of the
variables, as discussed in chapter 15.4.3

Insert ¢/ defined by 18.3.25into Equation 18.3.24 plus using the fact that

8% 0 [0y aS d (i 88 1 [(8S\> i 8%S
-~ wloa) m(ive) w(E) ha (18.3.26)
leads to
95 1 iR e
o T2 (VS VU@ -5 VS=F (18.3.27)

Note that if Planck’s constant A =0, then the imaginary term in Equation 18.3.27 is zero, leading to 18.3.27 being real, and
identical to the Hamilton-Jacobi result, Equation 18.3.2( The fact that Equation 18.3.26 equals the Hamilton-Jacobi equation in
the limit A — 0, illustrates the close analogy between the waveparticle duality of the classical Hamilton-Jacobi theory, and de
Broglie’s wave-particle duality in Schrédinger’s quantum wave-mechanics representation.

The Schrodinger approach was accepted in 1925 and exploited extensively with tremendous success, since it is much easier to
grasp conceptually than is the algebraic approach of Heisenberg. Initially there was much conflict between the proponents of these
two contradictory approaches, but this was resolved by Schrodinger who showed in 1926 that there is a formal mathematical
identity between wave mechanics and matrix mechanics. That is, these two quantal representations of Hamiltonian mechanics are
equivalent, even though they are built on either the Poisson bracket representation, or the Hamilton-Jacobi representation. Wave
mechanics is based intimately on the quantization rule of the action variable. Heisenberg’s Uncertainty Principle is automatically
satisfied by Schrédinger’s wave mechanics since the uncertainty principle is a feature of all wave motion, as described in chapter 3.

In 1928 Dirac developed a relativistic wave equation which includes spin as an integral part. This Dirac equation remains the
fundamental wave equation of quantum mechanics. Unfortunately it is difficult to apply.

Today the powerful and efficient Heisenberg representation is the dominant approach used in the field of physics, whereas chemists
tend to prefer the more intuitive Schrodinger wave mechanics approach. In either case, the important role of Hamiltonian
mechanics in quantum theory is undeniable.

This page titled 18.3: Hamiltonian in Quantum Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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