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19.8: Appendix - Vector Differential Calculus
This appendix reviews vector differential calculus which is used extensively in both classical mechanics and electromagnetism.

Scalar differential operators

Scalar field

Differential operators like time  do not change the rotational properties of scalars or proper vectors. A scalar operator 
acting on a scalar field , in a rotated coordinated frame  is unchanged.

Vector field

Similarly for a proper vector field

That is, differentiation of scalar or vector fields with respect to a scalar operator does not change the rotational behavior. In
particular, the scalar differentials of vectors continue to obey the rules of ordinary proper vectors. The scalar operator  is used for
calculation of velocity or acceleration.

Vector differential operators in cartesian coordinates
Vector differential operators, such as the gradient operator, are important in physics. The action of vector operators differ along
different orthogonal axes.

Scalar field

Consider a continuous, single-valued scalar function . Since

then the partial differential with respect to one component  of the vector  gives

The inverse rotation gives that

Therefore

Thus

That is the vector derivative acting of a scalar field transforms like a proper vector.

Define the gradient, or  operator, as
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where  is the unit vector along the  axis. In cartesian coordinates, the del vector operator is,

The gradient was applied to the gravitational and electrostatic potential to derive the corresponding field. For example, for
electrostatics it was shown that the gradient of the scalar electrostatic potential field  can be written in cartesian coordinates as

Note that the gradient of a scalar field produces a vector field. You are familiar with this if you are a skier in that the gravitational
force pulls you down the line of steepest descent for the ski slope.

Vector field

Another possible operation for the del operator is the scalar product with a vector. Using the definition of a scalar product in
cartesian coordinates gives

This scalar derivative of a vector field is called the divergence. Note that the scalar product produces a scalar field which is
invariant to rotation of the coordinate axes.

The vector product of the del operator with another vector, is called the curl which is used extensively in physics. It can be written
in the determinant form

By contrast to the scalar product, both the gradient of a scalar field, and the vector product, are vector fields for which the
components along the coordinate axes transform in a specific manner, such as to keep the length of the vector constant, as the
coordinate frame is rotated. The gradient, scalar and vector products with the  operator are the first order derivatives of fields
that occur most frequently in physics.

Second derivatives of fields also are used. Let us consider some possible combinations of the product of two del operators.

1) 

The scalar product of two del operators is a scalar under rotation. Evaluating the scalar product in cartesian coordinates gives

This also can be obtained without confusion by writing this product as;

where the scalar product of the del operator is a scalar, called the Laplacian , given by

The Laplacian operator is encountered frequently in physics.

2) 

Note that the vector product of two identical vectors
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∇ × (∇V ) = 0

A ×A = 0 (19.8.16)

∇ ×(∇V ) = 0 (19.8.17)
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This can be confirmed by evaluating the separate components along each axis.

3) 

This is zero because the cross-product is perpendicular to  and thus the dot product is zero.

4) 

The identity

can be used to give

since .

There are pitfalls in the discussion of second derivatives in that it is assumed that both del operators operate on the same variable,
otherwise the results are different.

Vector differential operators in curvilinear coordinates
As discussed in Appendix  there are many situations where the symmetries make it more convenient to use orthogonal
curvilinear coordinate systems rather than cartesian coordinates. Thus it is necessary to extend vector derivatives from cartesian to
curvilinear coordinates. Table  can be used for expressing vector derivatives in curvilinear coordinate systems.

Gradient

The gradient in curvilinear coordinates is

where the coefficients  are listed in table . For cylindrical coordinates this becomes

In spherical coordinates

Divergence

The divergence can be expressed as

In cylindrical coordinates the divergence is

In spherical coordinates the divergence is

Curl

∇ ⋅ (∇ × A) = 0

∇ ×A

∇ × (∇ × A) = ∇ ⋅ (∇ ⋅ A) − A∇2

A ×(B ×C) = B(A ⋅ C) −(A ⋅ B)C (19.8.18)

∇ ×(∇ ×A) = ∇ ⋅ (∇ ⋅ A) − A∇2 (19.8.19)

∇ ⋅ ∇ = ∇2

19.3

19.3.1

∇f = + +
1

h1

∂f

∂q1
q̂1

1

h2

∂f

∂q2
q̂2

1

h3

∂f

∂q3
q̂3 (19.8.20)

hi 19.3.1

∇f = + +
∂f

∂ρ
ρ̂

1

ρ

∂f

∂φ
φ̂

∂f

∂z
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In cylindrical coordinates the curl is

In spherical coordinates the curl is

Laplacian

Taking the divergence of the gradient of a scalar gives

The Laplacian of a scalar function  in cylindrical coordinates is

The Laplacian of a scalar function  in spherical coordinates is

The gradient, divergence, curl and Laplacian are used extensively in curvilinear coordinate systems when dealing with vector fields
in Newtonian mechanics, electromagnetism, and fluid flow.

This page titled 19.8: Appendix - Vector Differential Calculus is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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