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3.5: Linearly-damped Free Linear Oscillator

General solution

All simple harmonic oscillations are damped to some degree due to energy dissipation via friction, viscous forces, or electrical
resistance etc. The motion of damped systems is not conservative since energy is dissipated as heat. As was discussed in chapter 
the damping force can be expressed as

where the velocity dependent function  can be complicated. Fortunately there is a very large class of problems in electricity
and magnetism, classical mechanics, molecular, atomic, and nuclear physics, where the damping force depends linearly on velocity
which greatly simplifies solution of the equations of motion. Therefore this chapter will discuss linear damping.

Consider the free simple harmonic oscillator, that is, assuming no oscillatory forcing function, with a linear damping term 
 where the parameter  is the damping factor. Then the equation of motion is

This can be rewritten as

where the damping parameter

and the characteristic angular frequency

The general solution to the linearly-damped free oscillator is obtained by inserting the complex trial solution . Then

This implies that

The solution is

The two solutions  are complex conjugates and thus the solutions of the damped free oscillator are

This can be written as

where
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Underdamped motion 

When  then the square root is real so the solution can be written taking the real part of  which gives that Equation 
equals

Where  and  are adjustable constants fit to the initial conditions. Therefore the velocity is given by

This is the damped sinusoidal oscillation illustrated in Figure -upper. The solution has the following characteristics:

a. The oscillation amplitude decreases exponentially with a time constant .

b. There is a small reduction in the frequency of the oscillation due to the damping leading to 

Figure : The amplitude-time dependence and state-space diagrams for the free linearly-damped harmonic oscillator. The upper
row shows the underdamped system for the case with damping . The lower row shows the overdamped  [solid
line] and critically damped  [dashed line] in both cases assuming that initially the system is at rest.

Figure : Real and imaginary solutions  of the damped harmonic oscillator. A phase transition occurs at . For 
 (dashed) the two solutions are complex conjugates and imaginary. For , (solid), there are two real solutions 

and  with widely different decay constants where  dominates the decay at long times.

Overdamped case 

In this case the square root of  is imaginary and can be expressed as . Therefore the solution is obtained
more naturally by using a real trial solution  in Equation  which leads to two roots
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Thus the exponentially damped decay has two time constants  and .

The time constant  thus the first term  in the bracket decays in a shorter time than the second term . As
illustrated in Figure  the decay rate, which is imaginary when underdamped, i.e.  bifurcates into two real values 
for overdamped, i.e. . At large times the dominant term when overdamped is for  which has the smallest decay rate, that
is, the longest decay constant . There is no oscillatory motion for the overdamped case, it slowly moves monotonically to
zero as shown in fig 3.5 lower. The amplitude decays away with a time constant that is longer than .

Critically damped 

This is the limiting case where  For this case the solution is of the form

This motion also is non-sinusoidal and evolves monotonically to zero. As shown in Figure  the critically-damped solution
goes to zero with the shortest time constant, that is, largest . Thus analog electric meters are built almost critically damped so the
needle moves to the new equilibrium value in the shortest time without oscillation.

It is useful to graphically represent the motion of the damped linear oscillator on either a state space  diagram or phase space 
 diagram as discussed in chapter . The state space plots for the undamped, overdamped, and critically-damped solutions

of the damped harmonic oscillator are shown in Figure . For underdamped motion the state space diagram spirals inwards to
the origin in contrast to critical or overdamped motion where the state and phase space diagrams move monotonically to zero.

Energy dissipation

The instantaneous energy is the sum of the instantaneous kinetic and potential energies

where  and  are given by the solution of the equation of motion. Consider the total energy of the underdamped system

where . The average total energy is given by substitution for  and  and taking the average over one cycle. Since

Then the velocity is given by

Inserting equations  and  into  gives a small amplitude oscillation about an exponential decay for the energy .
Averaging over one cycle and using the fact that , and , gives the time-averaged total
energy as

which can be written as

Note that the energy of the linearly damped free oscillator decays away exponentially with a time constant . That is, the
intensity has a time constant that is half the time constant for the decay of the amplitude of the transient response. Note that the
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average kinetic and potential energies are identical, as implied by the Virial theorem, and both decay away with the same time
constant. This relation between the mean life  for decay of the damped harmonic oscillator and the damping width term  occurs
frequently in physics.

The damping of an oscillator usually is characterized by a single parameter  called the Quality Factor where

The energy loss per radian is given by

where the numerator  is the frequency of the free damped linear oscillator.

Thus the Quality factor  equals

The larger the  factor, the less damped is the system, and the greater is the number of cycles of the oscillation in the damped wave
train. Chapter  shows that the longer the wave train, that is the higher is the  factor, the narrower is the frequency
distribution around the central value. The Mössbauer effect in nuclear physics provides a remarkably long wave train that can be
used to make high precision measurements. The high-  precision of the LIGO laser interferometer was used in the recent
successful search for gravity waves.

Oscillating system Typical Q factors

Earth, for earthquake wave 250-1400

Piano string 3000

Crystal in digital watch

Microwave cavity

Excited atom

Neutron star

LIGO laser

Mössbauer effect in nucleus

Table : Typical Q factors in nature.
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