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17.7: Lorentz-invariant formulations of Hamiltonian Mechanics

Extended Canonical Formalism

A Lorentz-invariant formulation of Hamiltonian mechanics can be developed that is built upon the extended Lagrangian formalism
assuming that the Hamiltonian and Lagrangian are related by a Legendre transformation. That is,

where the generalized momentum is defined by

Struckmeier[Str08] assumes that the definitions of the extended Lagrangian , and the extended Hamiltonian , are related by a
Legendre transformation, and are based on variational principles, analogous to the relation that exists between the conventional
Lagrangian  and Hamiltonian . The Legendre transformation requires defining the extended generalized (canonical)

momentum-energy four vector . The momentum components of the momentum-energy four vector 

 are given by the  components using either the conventional or the extended Lagrangians as given
in Equation 

The  component of the momentum-energy four vector is given by equation 

where  represents the instantaneous generalized energy of the conventional Hamiltonian at the point , but not the functional
form of . That is

Note that  does not give the function . Equations  and  give that

The extended Hamiltonian , in an extended phase space, can be defined by the Legendre transformation and the
four-vector  to be

where the  term has been written explicitly as  in Equation . The extended Hamiltonian  can carry

all the information on the dynamical system that is carried by the extended Lagrangian , if the Hesse matrix is non-
singular. That is, if
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If the extended Lagrangian  is not homogeneous in the  velocities , then the extended set of Euler-
Lagrange equations  is not redundant. Thus equation  is not an identity but it can be regarded as an implicit
equation that is always satisfied by the extended set of Euler-Lagrange equations. As a result, the Legendre transformation to an
extended Hamiltonian exists. That is, equation  is identical to the Legendre transform for  which was
shown to equal zero. Therefore

which means that the extended Hamiltonian  directly defines the restricted hypersurface on which the particle
motion is confined.

The extended canonical equations of motion, derived using the extended Hamiltonian  with the usual
Hamiltonian mechanics relations, are:

These canonical equations give that the total derivative of  with respect to , is

That is, in contrast to the total time derivative of , the total  derivative of the extended Hamiltonian 
 always vanishes, that is,  is autonomous which is ideal for use with

Hamilton’s equations of motion. The constraints give that , (Equation ) and ,
(Equation ) implying that the correlation between the extended and conventional Hamiltonians is given by

since only the term with  does not cancel in Equation . Equations  and  give that both the left and right-
hand sides of Equation  are zero while Equation  implies that  is a constant of motion,
that is,  is a cyclic variable for . Formally one can consider the extended Hamiltonian is a constant
which equals zero
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Equations ,  imply that  form a pair of canonically conjugate variables in addition to the newly-introduced
canonically-conjugate variables . Equation  shows that the motion in the  extended phase space is
constrained to the surface reflecting the fact that the observed system has one less degree of freedom than used by the extended
Hamiltonian.

In summary, the Lorentz-invariant extended canonical formalism leads to Hamilton’s first-order equations of motion in terms of
derivatives with respect to , where  is related to the proper time  for a relativistic system.

Extended Poisson Bracket representation

Struckmeier[Str08] investigated the usefulness of the extended formalism when applied to the Poisson bracket representation of
Hamiltonian mechanics. The extended Poisson bracket for two differentiable functions  and  is defined as

As for the conventional Poisson bracket discussed in chapter , the extended Poisson also leads to the fundamental Poisson
bracket relations

where . These are identical to the non-extended fundamental Poisson brackets.

The discussion of observables in Hamiltonian mechanics in chapter  can be trivially expanded to the extended Poisson
bracket representation. In particular, the total  derivative of the function  is given by

If  commutes with the extended Hamiltonian, that is, the Poisson bracket equals zero, and if , then . That is, the
observable  is a constant of motion.

Substitute the fundamental variables for  gives

where . These are Hamilton’s extended canonical equations of motion expressed in terms of the system evolution
parameter . The extended Poisson bracket representation is a trivial extension of the conventional canonical equations presented in
chapter .

Extended canonical transformation and Hamilton-Jacobi theory
Struckmeier[Str08] presented plausible extended versions of canonical transformation and Hamilton-Jacobi theories that can be
used to provide a Lorentz-invariant formulation of Hamiltonian mechanics for relativistic one-body systems. A detailed description
can be found in Struckmeier[Str08].

Validity of the extended Hamilton-Lagrange formalism

It has been shown that the extended Lagrangian and Hamiltonian formalism, based on the parametric model of Lanczos[La49],
leads to a plausible manifestly-covariant approach for the one-body system. The general features developed for handling
Lagrangian and Hamiltonian mechanics carry over to the Special Theory of Relativity assuming the use of a non-standard,
extended Lagrangian or Hamiltonian. This expansion of the range of validity of the well-known Hamiltonian and Lagrangian
mechanics into the relativistic domain is important, and reduces any Lorentz transformation to a canonical transformation. The
validity of this extended Hamilton-Lagrange formalism has been criticized, and problems exist extending this approach to the -
body system for . For example, as discussed by Goldstein[Go50] and Johns[Jo05], each of the  moving bodies have their
own world lines and momenta. Defining the total momentum  requires knowing simultaneously the momenta of the individual
bodies, but simultaneity is body dependent and thus even the total momentum is not a simple four vector. A general method is
required that will allow using a manifestly-covariant Lagrangian or Hamiltonian for the -body system. For the one-body system,
the extended Hamilton-Lagrange formalism provides a powerful and logical approach to exploit analytical mechanics in the
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relativistic domain that retains the form of the conventional Lagrangian/Hamiltonian formalisms. Note that Noether’s theorem
relating energy and time is readily apparent using the extended formalism.

The classical relativistic hydrogen atom was first solved by Sommerfeld in 1916. Sommerfeld used Bohr’s “old quantum
theory” plus Hamiltonian mechanics to make an important step in the development of quantum mechanics by obtaining the
first-order expressions for the fine structure of the hydrogen atom. As in the non-relativistic case, the motion is confined to a
plane allowing use of planar polar coordinates. Thus the relativistic Lagrangian is given by

The canonical momenta are given by

As for the non-relativistic case,  is a cyclic variable and thus the angular momentum  is conserved.

Figure : The advance of the perihelion of bound orbits due to the dependence of the relativistic mass on velocity.

The relativistic Hamiltonian for the Coulomb potential between an electron and the proton, assuming that the motion is
confined to a plane, which allows use of planar polar coordinates, leads to

The same equations of motion are obtained using Hamiltonian mechanics, that is:

Example : The Bohr-Sommerfeld hydrogen atom17.7.1
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The radial dependence can be solved using either Lagrangian or Hamiltonian mechanics, but the solution is non-trivial. Using
the same techniques applied to solve Kepler’s problem, leads to the radial solution

The apses are  for , , and  for . The perihelion advances

between cycles due to the change in relativistic mass during the trajectory as shown in (Figure ). This precession leads to
the fine structure observed in the optical spectra of the hydrogen atom. The same precession of the perihelion occurs for
planetary motion, however, there is a comparable size effect due to gravity that requires use of general relativity to compute the
trajectories.

Note that Greiner[Gr10] includes a reproduction of the Struckmeier paper[Str08].
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