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8.6: Routhian Reduction

Noether’s theorem states that if the coordinate g; is cyclic, and if the Lagrange multiplier plus generalized force contributions for
the 5 coordinates are zero, then the canonical momentum of the cyclic variable, pj, is a constant of motion as is discussed in
chapter 7.3. Therefore, both (g;, p;) are constants of motion for cyclic variables, and these constant (g;, p;) coordinates can be
factored out of the Hamiltonian H(p,q,t). This reduces the number of degrees of freedom included in the Hamiltonian. For this
reason, cyclic variables are called ignorable variables in Hamiltonian mechanics. This advantage does not apply to the (g, g j)
variables used in Lagrangian mechanics since ¢ is not a constant of motion for a cyclic coordinate. The ability to eliminate the
cyclic variables as unknowns in the Hamiltonian is a valuable advantage of Hamiltonian mechanics that is exploited extensively for
solving problems, as is described in chapter 15.

It is advantageous to have the ability to exploit both the Lagrangian and Hamiltonian formulations simultaneously when handling
systems that involve a mixture of cyclic and non-cyclic coordinates. The equations of motion for each independent generalized
coordinate can be derived independently of the remaining generalized coordinates. Thus it is possible to select either the
Hamiltonian or the Lagrangian formulations for each generalized coordinate, independent of what is used for the other generalized
coordinates. Routh devised an elegant, and useful, hybrid technique that separates the cyclic and non-cyclic generalized coordinates
in order to simultaneously exploit the differing advantages of both the Hamiltonian and Lagrangian formulations of classical
mechanics. The Routhian reduction approach partitions the Z?:l p;q; kinetic energy term in the Hamiltonian into a cyclic group,
plus a non-cyclic group, i.e.

n S n—s
H(qi, . Pty -5 Pnst) = 3 pidi— L= _ pidi+ Y pidi—L (8.6.1)
=1 cyclic noncyclic

Routh’s clever idea was to define a new function, called the Routhian , that include only one of the two partitions of the kinetic
energy terms. This makes the Routhian a Hamiltonian for the coordinates for which the kinetic energy terms are included, while the
Routhian acts like a negative Lagrangian for the coordinates where the kinetic energy term is omitted. This book defines two

Routhians.
m
Rcyclic(qla“':Qn;q.lw"7qs;ps+1a"“’pn;t) = Zpiq.i_L (862)
cyclic
s
Rnoncyclic(qla"'aQn;pla'"7ps;q‘s+17""aq.n;t) = Z pZQ1_L (863)
noncyclic

The first, Routhian, called Rycic, includes the kinetic energy terms only for the cyclic variables, and behaves like a Hamiltonian
for the cyclic variables, and behaves like a Lagrangian for the non-cyclic variables. The second Routhian, called Ry,on—cyclic,
includes the kinetic energy terms for only the non-cyclic variables, and behaves like a Hamiltonian for the non-cyclic variables, and
behaves like a negative Lagrangian for the cyclic variables. These two Routhians complement each other in that they make the
Routhian either a Hamiltonian for the cyclic variables, or the converse where the Routhian is a Hamiltonian for the non-cyclic
variables. The Routhians use (g;, ¢;) to denote those coordinates for which the Routhian behaves like a Lagrangian, and (g;, p;) for
those coordinates where the Routhian behaves like a Hamiltonian. For uniformity, it is assumed that the degrees of freedom
between 1 <7 < s are non-cyclic, while those between s +1 <¢ <n are ignorable cyclic coordinates.

The Routhian is a hybrid of Lagrangian and Hamiltonian mechanics. Some textbooks minimize discussion of the Routhian on the
grounds that this hybrid approach is not fundamental. However, the Routhian is used extensively in engineering in order to derive
the equations of motion for rotating systems. In addition it is used when dealing with rotating nuclei in nuclear physics, rotating
molecules in molecular physics, and rotating galaxies in astrophysics. The Routhian reduction technique provides a powerful way
to calculate the intrinsic properties for a rotating system in the rotating frame of reference. The Routhian approach is included in
this textbook because it plays an important role in practical applications of rotating systems, plus it nicely illustrates the relative
advantages of the Lagrangian and Hamiltonian formulations in mechanics.

Reyctic - Routhian is a Hamiltonian for the cyclic variables

The cyclic Routhian R,y is defined assuming that the variables between 1 <7 < s are non-cyclic, where s =n —m , while the
m variables between s +1 <7 <n are ignorable cyclic coordinates. The cyclic Routhian Ry;. expresses the cyclic coordinates
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in terms of (g, p) which are required for use by Hamilton’s equations, while the non-cyclic variables are expressed in terms of
(g, ¢) for use by the Lagrange equations. That is, the cyclic Routhian Rey.;. is defined to be

m
Reyetic(quy -+ @n3 s+ A5 Pstts - Poit) = Z pig; — L (8.6.4)

cyclic

where the summation cyclic piq; is over only the m cyclic variables s +1 <¢ <n . Note that the Lagrangian can be split into the
cyclic and the non-cyclic parts

m
Rcyclic(qla ce ey Qqn; dla RN ds;szrla < ee ey Pnj t) = Z Pz‘h _Lcyclic _Lnoncyclic (865)
cyclic

The first two terms on the right can be combined to give the Hamiltonian Hyq;. for only the m cyclic variables,
t=s8+1,s+2,..,n ,thatis

Rcyclic(qla <oy Qn; (jla ceey és;ps+1a «eeyDn; t) = Hcyclic 7Lnoncyclic (866)
The Routhian Reyelic (g1, -+, Gnj G-+ G g5 Pstis - - - -y Pnj t)also can be written in an alternate form
m n S
Rcyclic(qla"'aqn;‘jl?'"7ds;ps+1;""7pn;t) = szq@_L:Zquz_L_ Z plq (867)
cyclic i=1 noncyclic

_ H-— Z Pidi (8.6.8)

noncyclic

which is expressed as the complete Hamiltonian minus the kinetic energy term for the noncyclic coordinates. The Routhian Reyci;c
behaves like a Hamiltonian for the m cyclic coordinates and behaves like a negative Lagrangian Ly,cyciic for all the s =n —m
noncyclic coordinatesi =1,2,...,s. Thus the equations of motion for the s non-cyclic variables are given using Lagrange’s
equations of motion, while the Routhian behaves like a Hamiltonian Hy;. for the m ignorable cyclic variables i = s+1,...,n.

Ignoring both the Lagrange multiplier and generalized forces, then the partitioned equations of motion for the non-cyclic and cyclic
generalized coordinates are given in Table 8.6.1.

Table 8.6.1: Equations of motion for the Routhian Ry

Lagrange equations Hamilton equations
Coordinates Noncyclic: 1 << s Cyclic: (s+1)<i<n
6Rcyclic _ 0Lm7ncyclic 0Rcyclic _
0g; - 0g; 0g; =P
Equations of motion
ORcyclic  OLnoneyclic ORcyclic
ag; ag; op 1
Thus there are m cyclic (ignorable) coordinates (g, p)s+1, - - - -, (g, p),, which obey Hamilton’s equations of motion, while the the
first s =n —m non-cyclic (non-ignorable) coordinates (g, q);,....,(q,q4), for 4=1,2,...,s obey Lagrange equations. The

solution for the cyclic variables is trivial since they are constants of motion and thus the Routhian Ryc;. has reduced the number
of equations of motion that must be solved from n to the s =n —m non-cyclic variables. This Routhian provides an especially
useful way to reduce the number of equations of motion for rotating systems.

Note that there are several definitions used to define the Routhian, for example some books define this Routhian as being the
negative of the definition used here so that it corresponds to a positive Lagrangian. However, this sign usually cancels when
deriving the equations of motion, thus the sign convention is unimportant if a consistent sign convention is used.

Rnoneyetic - Routhian is a Hamiltonian for the non-cyclic variables

The non-cyclic Routhian Ry, oncyciic complements R.yqic. Again the generalized coordinates between 1 <7 <'s are assumed to be
non-cyclic, while those between s+1 <4 <n are ignorable cyclic coordinates. However, the expression in terms of (g, p) and
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(g, ¢) are interchanged, that is, the cyclic variables are expressed in terms of (g, ¢) and the non-cyclic variables are expressed in
terms of (g, p) which is opposite of what was used for Reycic.

S
Rnoncyclic(qla---aqn;plw--7ps;qs+1a----7qn;t) = Z piq'ianoncyclichcyclic (869)

noncyclic

= Hnoncyclic - Lcyclic (8610)

It can be written in a frequently used form

S n m
Rnoncyclic(‘]la-~-aQn;pla---aps;Qs+17-~--a(jn;t) = Z piq'i_L:Zpiq‘i_L_Zpiq'i
i=1

noncyclic cyclic

m
- H-> pid; (86.11)
cyclic

This Routhian behaves like a Hamiltonian for the s non-cyclic variables which are expressed in terms of g and p appropriate for a
Hamiltonian. This Routhian writes the m cyclic coordinates in terms of g, and q, appropriate for a Lagrangian, which are treated
assuming the Routhian Ry is a negative Lagrangian for these cyclic variables as summarized in table 8.6.2.

Table 8.6.2: Equations of motion for the Routhian R,oncyciic

Hamilton equations Lagrange equations
Coordinates Noncyclic: 1 <3< s Cyclic: (s+1)<i<n
aRmmcyclic _ e 8Rﬂmcyclic _ BLcyclic
Jg; Pi 9g; 9g;
Equations of motion
aRnoncyclic . aRmmcyclic _ BLcyclic
Op; - e a‘ji dq i

This non-cyclic Routhian Ry, oncyciic is especially useful since it equals the Hamiltonian for the non-cyclic variables, that is, the
kinetic energy for motion of the cyclic variables has been removed. Note that since the cyclic variables are constants of motion,
then Ry oncyciic is @ constant of motion if H is a constant of motion. However, Ry oncyciic does not equal the total energy since the
coordinate transformation is time dependent, that is, R,,,ncyclic corresponds to the energy of the non-cyclic parts of the motion. For
example, when used to describe rotational motion, R, oncyciic COrresponds to the energy in the non-inertial rotating body-fixed
frame of reference. This is especially useful in treating rotating systems such as rotating galaxies, rotating machinery, molecules, or
rotating strongly-deformed nuclei as discussed in chapter 12.9.

The Lagrangian and Hamiltonian are the fundamental algebraic approaches to classical mechanics. The Routhian reduction method
is a valuable hybrid technique that exploits a trick to reduce the number of variables that have to be solved for complicated
problems encountered in science and engineering. The Routhian R,,,;cyciic provides the most useful approach for solving the
equations of motion for rotating molecules, deformed nuclei, or astrophysical objects in that it gives the Hamiltonian in the non-
inertial body-fixed rotating frame of reference ignoring the rotational energy of the frame. By contrast, the cyclic Routhian Ry
is especially useful to exploit Lagrangian mechanics for solving problems in rigid-body rotation such as the Tippe Top described in
example 14.23.2

Note that the Lagrangian, Hamiltonian, plus both the R;,oncyctic and Ryoncyelic Routhian’s, all are scalars under rotation, that is, they
are rotationally invariant. However, they may be expressed in terms of the coordinates in either the stationary or a rotating frame.
The major difference is that the Routhian includes only subsets of the kinetic energy term y Pjq j- The relative merits of using
Lagrangian, Hamiltonian, and both the R, sncyciic and Ryoncyciic Routhian reduction methods, are illustrated by the following
examples.
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Example 8.6.1: Spherical pendulum using Hamiltonian mechanics

mn
=

e |*> ™

Figure 8.6.1: Spherical pendulum

The spherical pendulum provides a simple test case for comparison of the use of Lagrangian mechanics, Hamiltonian
mechanics, and both approaches to Routhian reduction. The Lagrangian mechanics solution of the spherical pendulum is
described in example 6.8.7. The solution using Hamiltonian mechanics is given in this example followed by solutions using
both of the Routhian reduction approaches.

Consider the equations of motion of a spherical pendulum of mass m and length b. The generalized coordinates are 6, ¢ since
the length is fixed at » = b. The kinetic energy is

1 2 1 -2
T = —mb’0 + —mb?sin® 0¢
2 2
The potential energy U = —mgb cos € giving that
e 1 g2 1,y 2
L(r,9,¢,r,0,¢):§mb 0 —I—Emb sin“ 8¢ +mgbcosf

The generalized momenta are

. T, .
~ —mb?0 Dy = 6— = mb’sin® ¢
00 0¢

oL
Do = —

Since the system is conservative, and the transformation from rectangular to spherical coordinates does not depend explicitly
on time, then the Hamiltonian is conserved and equals the total energy. The generalized momenta allow the Hamiltonian to be

written as
P P
Hf(r, 6, ¢,prap«9,p¢) = 2mb? r omb? sin? 0 —mgbcosf
The equations of motion are
2
OH py cost
Dy = ——F~ = ———— —mgbsiné a
bo 00 2mb’sin®0 g (a)
. 0H
Pp= T 0 (b)
, _OH  pg
0 =——=——"_
ape mb2 (C)
.  OH Py
T e T e— d
¢ Opy  mb?sin®0 @)

Take the time derivative of Equation ¢ and use o to substitute for p, gives that
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2
. p¢cos0 qg .
g —— +Zsinf =0 e
m2btsin®g b (€)

Note that Equation b shows that ¢ is a cyclic coordinate. Thus

Dy = mb? sin’ 0(;'5 = constant

Py
mb? sin® 0
is a function of @, and thus in general it is not conserved. There are various solutions depending on the initial conditions. If
Pg = 0 then the pendulum is just the simple pendulum discussed previously that can oscillate, or rotate in the 8 direction. The
opposite extreme is where pp =0 where the pendulum rotates in the ¢ direction with constant §. In general the motion is a
complicated coupling of the 8 and ¢ motions.

that is the angular momentum about the vertical axis is conserved. Note that although py is a constant of motion, ¢ =

Example 8.6.2: Spherical pendulum using Reycic (7, 0, ¢, 7, é,p¢,)

The Lagrangian for the spherical pendulum is
R 1 92 1 9 . 9,32
L(r,0,¢,r,0,¢>):§mb 0 +§mb sin® 0¢ +mgbcos6

Note that the Lagrangian is independent of ¢, therefore ¢ is an ignorable variable with

, G G
" ep
Therefore py is a constant of motion equal to
L .
Dy = (9_ = mb? sin? (0]
o9
The Routhian Ryeic(r, 0, ¢, 7,0, ps) equals
Rcyclic(ra 07 ¢’7.'a0'ap¢) = p(ﬁ‘i’_L
1 . 1 . .
= — 5m6202 + Eme sin? 0¢2 +mgb cos § —mb? sin® 0¢2
2
1 21 Py
= ——mb*0” + ————— +mgbcosf
2 2 mb2?sin? 6 g

The Routhian Reyeic(r, 0, ¢, 7, 9, pg) behaves like a Hamiltonian for ¢, and like a Lagrangian L' = —Ryq;c for 6. Use of
Hamilton’s canonical equations for ¢ give

(]‘5 o a}2cyclic o Do
Opy mb? sin® 6
8 6Rcyclic -
—Py = 26 0
These two equations show that py is a constant of motion given by
mb? sin? O = Py = constant (a)

Note that the Hamiltonian only includes the kinetic energy for the ¢ motion which is a constant of motion, but this energy does
not equal the total energy. This solution is what is predicted by Noether’s theorem due to the symmetry of the Lagrangian
about the vertical ¢ axis.

Since Reyciic(r, 0, ¢, 7, é,p¢) behaves like a Lagrangian for 6 then the Lagrange equation for 6 is

o i 8Rcyclic . a-Rcyclic
Cdt 90 00

where the negative sign of the Lagrangian in Reyeic (7, 0, ¢, 7, 9,p¢) cancels. This leads to
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2
.. p5 cosf

mb?0 = —2—  _mgbsind

mb? sin® 6
that is
2
. p; cosf
§——2— +Ising=0 (8)

m2btsin®9 b
This result is identical to the one obtained using Lagrangian mechanics in example 7.8.7 and Hamiltonian mechanics given in
example 8.6.1. The Routhian R ;. simplified the problem to one degree of freedom 6 by absorbing into the Hamiltonian the
ignorable cyclic ¢ coordinate and its conserved conjugate momentum pg. Note that the central term in Equation 3 is the
centrifugal term which is due to rotation about the vertical axis. This term is zero for plane pendulum motion when py = 0.

Example 8.6.3: Spherical pendulum using Ry.oncyctic(Ts 6, Py, P, @)

For a rotational system the Routhian Rnomyclic(r, 0, ¢, pr, Dy, ) also can be used to project out the Hamiltonian for the active
variables in the rotating body-fixed frame of reference. Consider the spherical pendulum where the rotating frame is rotating
with angular velocity ¢. The Lagrangian for the spherical pendulum is

RN ST F T AN S PS
L(r,9,¢,r,0,¢>):§mb 0 —i—Emb sin®0¢ +mgbcos6

Note that the Lagrangian is independent of ¢, therefore ¢ is an ignorable variable with

. OL  0H
Po" 0~ o
Therefore py is a constant of motion equal to
OL ;
Pp=—= mb? sin? (0]
o9
The total Hamiltonian is given by
P P

H(”‘,9,¢,pr,po,p¢)ZZpidi—L —mgbcosf
i

© 2mb?  2mb?sin? 0
The Routhian for the rotating frame of reference H,,; is given by Equation 8.6.11, that is

n
Rnoncyclic(r7 0: ¢apr’p9a ¢) Zpi‘ji _p¢¢ —-L=H _p¢¢

i—1
2 2
Py Py :
= + —mgbcosf —
2mb2  2mb?sin’ 0 g Pod
pg 1 -2
= Smb? Emb2 sin®0¢~ —mgbcosf ()

This behaves like a negative Lagrangian for ¢ and a Hamiltonian for 6. The conjugate momenta are

oL _ 6Rnoncyclic

Py = — = - = mb? sin? qu)
’ 94 94

o 0L . 8-Rnoncyclic _

Pe= % o

that is, py is a constant of motion.

Hamilton’s equations of motion give
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aI%noncyclic Do

6 = = s
Opy mb? (9)
a-Rnoncyclic pé cosf
—Ppy = =— +mgbsinf €
po 00 mb?sin® 6 g ©
Equation ¢ gives that
29 —§— Po_
ot mb?
Inserting this into Equation ¢ gives
p? cosf
2 + I sinf = 0

m2btsin®g b
which is identical to the equation of motion o derived using Rcycii.. The Hamiltonian in the rotating frame is a constant of
motion given by -, but it does not include the total energy.

Note that these examples show that both forms of the Routhian, as well as the complete Lagrangian formalism, shown in
example 7.8.7, and complete Hamiltonian formalism, shown in example 8.6.1, all give the same equations of motion. This
illustrates that the Lagrangian, Hamiltonian, and Routhian mechanics all give the same equations of motion and this applies
both in the static inertial frame as well as a rotating frame since the Lagrangian, Hamiltonian and Routhian all are scalars under
rotation, that is, they are rotationally invariant.

Example 8.6.4: Single particle moving in a vertical plane under the influence of an inverse-square central force

The Lagrangian for a single particle of mass m, moving in a vertical plane and subject to a central inverse square central force,
is specified by two generalized coordinates, r, and 6.

=222t E
2 T

The ignorable coordinate is 8, since it is cyclic. Let the constant conjugate momentum be denoted by py = g—g =mr20 . Then

the corresponding cyclic Routhian is

P, 1 ., k

2mr: 2 r

Rcyclic(ra 07 7.",]76) :pﬁé —L=

This Routhian is the equivalent one-dimensional potential U(r) minus the kinetic energy of radial motion.

Applying Hamilton’s equation to the cyclic coordinate 6 gives

Py

=0
mr?

Pg=0
implying a solution
Py = mr2f =1
where the angular momentum [ is a constant.

The Lagrange-Euler equation can be applied to the non-cyclic coordinate

- i 8-Rcyclic . 8}zcyclic -0
~dt oOr or

where the negative sign of R ;. cancels. This leads to the radial solution

AL

2
. D k
mi— —— 4+ = =0
mrd  r?
where pg = which is a constant of motion in the centrifugal term. Thus the problem has been reduced to a one-dimensional
problem in radius r that is in a rotating frame of reference.
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