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3.4: Geometrical Representations of Dynamical Motion
The powerful pattern-recognition capabilities of the human brain, coupled with geometrical representations of the motion of
dynamical systems, provide a sensitive probe of periodic motion. The geometry of the motion often can provide more insight into
the dynamics than inspection of mathematical functions. A system with  degrees of freedom is characterized by locations ,
velocities , and momenta , in addition to the time  and instantaneous energy . Geometrical representations of the
dynamical correlations are illustrated by the configuration space and phase space representations of these  variables.

Configuration space 

A configuration space plot shows the correlated motion of two spatial coordinates  and  averaged over time. An example is the
two-dimensional linear oscillator with two equations of motion and solutions

where . For unequal restoring force constants,  the trajectory executes complicated Lissajous figures that depend

on the angular frequencies  and the phase factor . When the ratio of the angular frequencies along the two axes is rational,
that is  is a rational fraction, then the curve will repeat at regular intervals as shown in Figure , and this shape depends on
the phase difference. Otherwise the trajectory gradually fills the whole rectangle.

Figure : Configuration plots of  where  and  at four different phase values . The curves are
called Lissajous figures

State space, 

Visualization of a trajectory is enhanced by correlation of configuration  and it’s corresponding velocity  which specifies the
direction of the motion. The state space representation  is especially valuable when discussing Lagrangian mechanics which is
based on the Lagrangian .

The free undamped harmonic oscillator provides a simple application of state space. Consider a mass  attached to a spring with
linear spring constant  for which the equation of motion is

By integration this gives

The first term in Equation  is the kinetic energy, the second term is the potential energy, and  is the total energy which is
conserved for this system. This equation can be expressed in terms of the state space coordinates as
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This corresponds to the equation of an ellipse for a state-space plot of  versus  as shown in Figure -upper. The elliptical
paths shown correspond to contours of constant total energy which is partitioned between kinetic and potential energy. For the
coordinate axis shown, the motion of a representative point will be in a clockwise direction as the total oscillator energy is
redistributed between potential to kinetic energy. The area of the ellipse is proportional to the total energy .

Phase space, 

Figure : State space (upper), and phase space (lower) diagrams, for the linear harmonic oscillator.

Phase space, which was introduced by J.W. Gibbs for the field of statistical mechanics, provides a fundamental graphical
representation in classical mechanics. The phase space coordinates  are the conjugate coordinates  and are fundamental
to Hamiltonian mechanics which is based on the Hamiltonian . For a conservative system, only one phase-space curve
passes through any point in phase space like the flow of an incompressible fluid. This makes phase space more useful than state
space where many curves pass through any location. Lanczos [La49] defined an extended phase space using four-dimensional
relativistic space-time as discussed in chapter .

Since  for the non-relativistic, one-dimensional, linear oscillator, then Equation  can be rewritten in the form

This is the equation of an ellipse in the phase space diagram shown in Fig. -lower which looks identical to Fig. -upper
since that the ordinate variable is multiplied by the constant . That is, the only difference is the phase-space coordinates 
replace the state-space coordinates . State space plots are used extensively in this chapter to describe oscillatory motion.
Although phase space is more fundamental, both state space and phase space plots provide useful representations for characterizing
and elucidating a wide variety of motion in classical mechanics. The following discussion of the undamped simple pendulum
illustrates the general features of state space.

Plane pendulum
Consider a simple plane pendulum of mass  attached to a string of length  in a uniform gravitational field . There is only one
generalized coordinate, . Since the moment of inertia of the simple plane-pendulum is  then the kinetic energy is

and the potential energy relative to the bottom dead center is

Thus the total energy equals
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where  is a constant of motion. Note that the angular momentum  is not a constant of motion since the angular acceleration 
explicitly depends on .

It is interesting to look at the solutions for the equation of motion for a plane pendulum on a  state space diagram shown in

Figure . The curves shown are equally-spaced contours of constant total energy. Note that the trajectories are ellipses only at
very small angles where , the contours are non-elliptical for higher amplitude oscillations. When the energy is in the
range   the motion corresponds to oscillations of the pendulum about . The center of the ellipse is at 
which is a stable equilibrium point for the oscillation. However, when  there is a phase change to rotational motion
about the horizontal axis, that is, the pendulum swings around and over top dead center, i.e. it rotates continuously in one direction
about the horizontal axis. The phase change occurs at  . and is designated by the separatrix trajectory.

Figure : State space diagram for a plane pendulum. The \theta axis is in units of  radians. Note that  and 
correspond to the same physical point, that is the phase diagram should be rolled into a cylinder connected at .

Figure  shows two cycles for  to better illustrate the cyclic nature of the phase diagram. The closed loops, shown as fine solid
lines, correspond to pendulum oscillations about  or  for  . The dashed lines show rolling motion for cases
where the total energy  . The broad solid line is the separatrix that separates the rolling and oscillatory motion. Note that
at the separatrix the kinetic energy and  are zero when the pendulum is at top dead center which occurs when . The point 

 is an unstable equilibrium characterized by phase lines that are hyperbolic to this unstable equilibrium point. Note that 
 and  correspond to the same physical point, that is, the phase diagram is better presented on a cylindrical phase space

representation since  is a cyclic variable that cycles around the cylinder whereas  oscillates equally about zero having both
positive and negative values. The state-space diagram can be wrapped around a cylinder, then the unstable and stable equilibrium
points will be at diametrically opposite locations on the surface of the cylinder at . For small oscillations about equilibrium,
also called librations, the correlation between  and  is given by the clockwise closed loops wrapped on the cylindrical surface,
whereas for energies   the positive  corresponds to counterclockwise rotations while the negative  corresponds to
clockwise rotations.

State-space diagrams will be used for describing oscillatory motion in chapters  and . Phase space is used in statistical mechanics
in order to handle the equations of motion for ensembles of  independent particles since momentum is more fundamental
than velocity. Rather than try to account separately for the motion of each particle for an ensemble, it is best to specify the region of
phase space containing the ensemble. If the number of particles is conserved, then every point in the initial phase space must
transform to corresponding points in the final phase space. This will be discussed in chapters  and .

A universal name for the  representation has not been adopted in the literature. Therefore this book has adopted the name
"state space". Lanczos [La49] uses the term "state space" to refer to the extended phase space  discussed in chapter .
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