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14.8: Three-body coupled linear oscillator systems

Chapter 14.7 discussed parallel and series arrangements of two coupled oscillators. Extending from two to three coupled linear
oscillators introduces interesting new characteristics of coupled oscillator systems. For more than two coupled oscillators, coupled
oscillator systems separate into two classifications depending on whether each oscillator is coupled to the remaining n —1
oscillators, or when the coupling is only to the nearest neighbors as illustrated below.

Example 14.8.1: Three plane pendula; mean-field linear coupling
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Figure 14.8.1: Three plane pendula with complete linear coupling.

Consider three identical pendula with mass m and length b, suspended from a common support that yields slightly to
pendulum motion leading to a coupling between all three pendula as illustrated in the adjacent figure. Assume that the motion
of the three pendula all are in the same plane. This case is analogous to the piano where three strings in the treble section are
coupled by the slightly-yielding common bridge plus sounding board leading to coupling between each of the three coupled
oscillators. This case illustrates the important concept of degeneracy.

The generalized coordinates are the angles 61, 65, and 65. Assume that the support yields such that the actual deflection angle
for pendulum 1 is

£
0, =0; —5(02 +63)

where the coupling coefficient € is small and involves all the pendula, not just the nearest neighbors. Assume that the same
coupling relation exists for the other angle coordinates. The gravitational potential energy of each pendulum is given by

1

U; =mgb(1—cosf;) =~ Emgbﬁf

assuming the small angle approximation. Ignoring terms of order 2 gives that the potential energy
mgb mgb
U = T5m (02 + 62 +02) = o= (63 + 68 + 63 — 26010, — 260105 — 2e065)

The kinetic energy evaluated at the equilibrium location is

1 N2 1 N2 1 .\ 2

T=5m(b01) +5m(b0:) +5m (bds)

The next stage is to evaluate the {T} and {V'} tensors

1 0 0 1 —e —¢
T=mb’{0 1 0p V=mghq - 1 —¢
0 0 1 - —€ 1

The third stage is to evaluate the secular determinant which can be written as

j —£ —€
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mgb r 0
—€ —£ 1— 22

https://phys.libretexts.org/@go/page/14255


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14255?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/14%3A_Coupled_Linear_Oscillators/14.08%3A_Three-body_coupled_linear_oscillator_systems

LibreTextsw

Expanding and factoring gives

The roots are

wlz\/%\/1+a w2:\/%\/1+6 UJ3:\/%\/1—28

This case results in two degenerate eigenfrequencies, w; = wo while wjg is the lowest eigenfrequency.

The eigenvectors can be determined by substitution of the eigenfrequencies into

n

> (Vi —wiTy)aj =0

J

Consider the lowest eigenfrequency ws, i.e. 7 = 3, for kK = 1, and substitute for ws = \/% v1—2e gives

2ca13 —€ag3 —€eaz3 =0
while forr =3, k=2
—€ay3 +2cags3 —eagz3 =0
Solving these gives
Q13 = 23 = as3
Assuming that the eigenfunction is normalized to unity
aty +a3;+ai; =1
then for the third eigenvector as
o 1
a13 = a3 = az3 = %
This solution corresponds to all three pendula oscillating in phase with the same amplitude, that is, a coherent oscillation.

Derivation of the eigenfunctions for the other two eigenfrequencies is complicated because of the degeneracy w; = ws , there
are only five independent equations to specify the six unknowns for the eigenvectors a; and ay. That is, the eigenvectors can
be chosen freely as long as the orthogonality and normalization are satisfied. For example, setting as; = 0, to remove the
indeterminacy, results in the a matrix

12 e
@={-13 6 v
1 1
0 —3v6 g\/g
and thus the solution is given by
1 1 1
01 5\/5 E\/f_; g\/g T
B p =9 —3vV2 /6 33 72
03 0 -1v6 13 3

The normal modes are obtained by taking the inverse matrix {a} ' and using {n} = {a} " {6}. Note that since {a} is real
and orthogonal, then {a} ! equals the transpose of {a}. That is;
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m %\/i %\/6 %\/g 91
=4 —3V2 V6 31V3 )16,
3 0 —3v6 33 03

The normal mode 73 has eigenfrequency

and eigenvector
1
V3

This corresponds to the in-phase oscillation of all three pendula.

3 (61,62,63)

The other two degenerate solutions are
1 1
m=—=(01,—02,0) m2=—(01,62,—263)
2 6
with eigenvalues

W1 =Wy = %\/I—FE

These two degenerate normal modes correspond to two pendula oscillating out of phase with the same amplitude, or two
oscillating in phase with the same amplitude and the third out of phase with twice the amplitude. An important result of this toy
model is that the most symmetric mode 73 is pushed far from all the other modes. Note that for this example, the coherent
mode a3 corresponds to the center-of-mass oscillation with no relative motion between the three pendula. This is in contrast to
the eigenvectors a; and ay which both correspond to relative motion of the pendula such that there is zero center-of-mass
motion. This mean-field coupling behavior is exhibited by collective motion in nuclei as discussed in example 14.12.1

Example 14.8.2: Three plane pendula; nearest-neighbor coupling

Figure 14.8.2: Three plane pendula with nearest-neighbour coupling.

There is a large and important class of coupled oscillators where the coupling is only between nearest neighbors; a crystalline
lattice is a classic example. A toy model for such a system is the case of three identical pendula coupled by two identical
springs, where only the nearest neighbors are coupled as shown in the adjacent figure. Assume the identical pendula are of
length b and mass m. As in the last example, the kinetic energy evaluated at the equilibrium location is

1 . 1 . 1 .
T = —mb20; + =mb?05 + =mb*6;
2 2 2
The gravitational potential energy of each pendulum equals mgb(1 — cos6) ~ %mgbe2 thus
1
Ugraw = 5mgb(67 +6; +65)

while the potential energy in the springs is given by

1 1
Uspring = 5%()2 [(02 —01)2 + (63 —02)2] = 5%()2 [0% +20§ +0§ —260105 — 20293]
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Thus the total potential energy is given by
1 1
U= Emgb(of +602 +63)+ Emb2 (62 + 262 + 62 — 20,0, — 26,0;]
The Lagrangian then becomes
L o952 52 42\ 1 22, L g2 L 22 2
L= Emb (01 +6, +03) — §(mgb+nb 0] + 5(mgb+2/~cb )05 + E(mgb—kﬂb )05 — kb” (6105 + 6205)

Using this in the Euler-Lagrange equations gives the equations of motion

mb0, — (mgb + kb)6; + kb*0y =0
mb*0, — (mgb + 2kb%)0 + kb* (1 +63) =0
mb*03 — (mgb + Kkb*)0s + kb* 0y =0

The general analytic approach requires the 7" and V' energy tensors given by

100 mgb + kb? —Kb? 0
T=mb’{0 1 0, V= —Kb? mgb + 2kb? —Kkb?
0 0 1 0 —kb? mgb + Kkb?

Note that in contrast to the prior case of three fully-coupled pendula, for the nearest neighbor case the potential energy tensor
{V} is non-zero only on the diagonal and +1 components parallel to the diagonal.

The third stage is to evaluate the secular determinant of the (V — w?T') matrix, that is

mgb + kb? —w?mb? —Kb? 0
—Kb? mgb + 2kb? — w?mb? —kb? =0
0 —Kb? mgb + kb? —w?mb?

This results in the characteristic equation
(mgb — w*mb?)(mgb + kb —w?mb?)(mgb + 3kb? — w*mb?) =0

which results in the three non-degenerate eigenfrequencies for the normal modes.
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Figure 14.8.3: Normal modes of three plane pendula with nearest-neighbour coupling.
The normal modes are similar to the prior case of complete linear coupling, as shown in the adjacent figure.
w) = \/% This lowest mode 7; involves the three pendula oscillating in phase such that the springs are not stretched or
compressed thus the period of this coherent oscillation is the same as an independent pendulum of mass m and length b. That
is
1
1= 7
n /3

Wy = /% + - . This second mode 7, has the central mass stationary with the outer pendula oscillating with the same

(01)02a 63)

amplitude and out of phase. That is
1
V2

w3 =4/ % + 3;’“ . This third mode 73 involves the outer pendula in phase with the same amplitude while the central pendulum

2 (Ola 0’ _03)

oscillating with angle 63 = —26, . That is

M3 = i(491, —26,,05)
V6
Similar to the prior case of three completely-coupled pendula, the coherent normal mode 77; corresponds to an oscillation of
the center-of-mass with no relative motion, while 772 and 773 correspond to relative motion of the pendula with stationary center
of mass motion. In contrast to the prior example of complete coupling, for nearest neighbor coupling the two higher lying
solutions are not degenerate. That is, the nearest neighbor coupling solutions differ from when all masses are linearly coupled.
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It is interesting to note that this example combines two coupling mechanisms that can be used to predict the solutions for two
extreme cases by switching off one of these coupling mechanisms. Switching off the coupling springs, by setting x = 0, makes

all three normal frequencies degenerate with w; = ws = w3 = \/% . This corresponds to three independent identical pendula

each with frequency w = \/% . Also the three linear combinations 7, 72, 73 also have this same frequency, in particular n;
corresponds to an in-phase oscillation of the three pendula. The three uncoupled pendula are independent and any combination
the three modes is allowed since the three frequencies are degenerate.

The other extreme is to let % =0, that is switch off the gravitational field or let b — co, then the only coupling is due to the
two springs. This results in w; =0 because there is no restoring force acting on the coherent motion of the three in-phase

coupled oscillators; as a result, oscillatory motion cannot be sustained since it corresponds to the center of mass oscillation
with no external forces acting which is spurious. That is, this spurious solution corresponds to constant linear translation.

Example 14.8.3: System of three bodies coupled by six springs

| |
Figure 14.8.4: System of three bodies coupled by six springs.

Consider the completely-coupled mechanical system shown in the adjacent figure.

1) The first stage is to determine the potential and kinetic energies using an appropriate set of generalized coordinates, which
here are x; and x5. The potential energy is the sum of the potential energies for each of the six springs
3 3 3
U= 5/‘&:1:% + imcg + Efm;% — KT1Ty — KL1XL3 — K23

while the kinetic energy is given by

1 1 1

T = —mi? 4+ —mz? + —mi?
2 2o

2) The second stage is to evaluate the potential energy V" and kinetic energy 7" tensors.

3k —K —kK M 0 0
V=< -k 3k —kK T=< 0 M 0
—k —Kk 3K 0 0 M

Note that for this case the kinetic energy tensor is diagonal whereas the potential energy tensor is nondiagonal and corresponds
to complete coupling of the three coordinates.

3) The third stage is to use the potential V" and kinetic 7" energy tensors to evaluate the secular determinant giving

(3k —muw?) —K —K
—K (8k —muw?) —K =0
—K —K (3x —muw?)

The expansion of this secular determinant yields
(k —mw?)(4k —mw?)(4k —mMw?) =0

The solution for this complete-coupled system has two degenerate eigenvalues.
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4) The fourth step is to insert these eigenfrequencies into the secular equation
> (Ve —wiTy)aj =0
J
to determine the coefficients a;,.

5) The final stage is to write the general coordinates in terms of the normal coordinates.

The result is that the angular frequency ws = 4 /2= corresponds to a normal mode for which the three masses oscillate in phase

corresponding to a center-of-mass oscillation with no relative motion of the masses.

1
Ny = — (21 +x2 +x3)

V3
For this coherent motion only one spring per mass is stretched resulting in the same frequency as one mass on a spring. The

other two solutions correspond to the three masses oscillating out of phase which implies all three springs are stretched and

thus the angular frequency is higher. Since the two eigenvalues w; =wy =2,/ are degenerate then there are only five

independent equations to specify the six unknowns for the degenerate eigenvalues. Thus it is possible to select a combination
of the eigenvectors n; and 72 such that the combination is orthogonal to 73. Choose a3; = 0 to removes the indeterminacy.
Then adding or subtracting gives that the normal modes are

1 1
m= E(«’ﬁ —z2+0) m= ﬁ(wl +1z9 —2x3)

These two degenerate normal modes correspond to relative motion of the masses with stationary center-of-mass.

This page titled 14.8: Three-body coupled linear oscillator systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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