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11.9: Isotropic, linear, two-body, central force
Closed orbits occur for the two-dimensional linear oscillator when  is a rational fraction as discussed in chapter . Bertrand’s
Theorem states that the linear oscillator, and the inverse-square law (Kepler problem), are the only two-body central forces that
have single-valued, stable, closed orbits of the coupled radial and angular motion. The invariance of the eccentricity vector was
the underlying symmetry leading to single-valued, stable, closed orbits for the Kepler problem. It is interesting to explore the
symmetry that leads to stable closed orbits for the harmonic oscillator. For simplicity, this discussion will restrict discussion to the
isotropic, harmonic, two-body, central force where , for which the two-body, central force is linear

where  corresponds to a repulsive force and  to an attractive force. This isotropic harmonic force can be expressed in
terms of a spherical potential  where

Since this is a central two-body force, both the equivalent one-body representation, and the conservation of angular momentum, are
equally applicable to the harmonic two-body force. As discussed in section , since the two-body force is central, the motion is
confined to a plane, and thus the Lagrangian can be expressed in polar coordinates. In addition, since the force is spherically
symmetric, then the angular momentum is conserved. The orbit solutions are conic sections as described in chapter . The shape
of the orbit for the harmonic two-body central force can be derived using either polar or cartesian coordinates as illustrated below.

Polar coordinates

The origin of the equivalent orbit for the harmonic force will be found to be at the center of an ellipse, rather than the foci of the
ellipse as found for the inverse square law. The shape of the orbit can be defined using a Binet differential orbit equation that
employs the transformation

Then

The chain rule gives that

Substitute this into the Hamiltonian  equation , gives

Rearranging this equation gives

Addition of a constant to both sides of the equation completes the square

The right-hand side of Equation  is a constant. The solution of  must be a sine or cosine function with polar angle 
. That is
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That is,

Equation  corresponds to a closed orbit centered at the origin of the elliptical orbit as illustrated in Figure . The
eccentricity  of this closed orbit is given by

Equations ,  give that the eccentricity is related to the semi-major  and semi-minor  axes by

Note that for a repulsive force , then  leading to unbound hyperbolic or parabolic orbits centered on the origin. An
attractive force,  allows for bound elliptical, as well as unbound parabolic and hyperbolic orbits.

Figure : The elliptical equivalent trajectory for two bodies interacting via the linear, central force for eccentricity .
The left plot shows the elliptical spatial trajectory where the semi-major axis is assumed to be on the -axis and the angular
momentum , is out of the page. The force center is at the center of the ellipse. The right plot is a hodograph of the linear
momentum  for this trajectory.

Cartesian coordinates
The isotropic harmonic oscillator, expressed in terms of cartesian coordinates in the  plane of the orbit, is separable because
there is no direct coupling term between the  and  motion. That is. the center-of-mass Lagrangian in the  plane separates
into independent motion for  and .

Solutions for the independent coordinates, and their corresponding momenta, are

where . Therefore
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where

For a phase difference  this equation describes an ellipse centered at the origin which agrees with Equation 
that was derived using polar coordinates.

The two normal modes of the isotropic harmonic oscillator are degenerate, therefore  are equally good normal modes with two
corresponding total energies, , while the corresponding angular momentum  points in the  direction.

Figure  shows the closed elliptical equivalent orbit plus the corresponding momentum hodograph for the isotropic harmonic
two-body central force. Figures  and  contrast the differences between the elliptical orbits for the inverse-square
force, and those for the harmonic two-body central force. Although the orbits for bound systems with the harmonic two-body force,
and the inverse-square force, both lead to elliptical bound orbits, there are important differences. Both the radial motion and
momentum are two valued per cycle for the reflection-symmetric harmonic oscillator, whereas the radius and momentum have only
one maximum and one minimum per revolution for the inverse-square law. Although the inverse-square, and the isotropic,
harmonic, two-body central forces both lead to closed bound elliptical orbits for which the angular momentum is conserved and the
orbits are planar, there is another important difference between the orbits for these two interactions. The orbit equation for the
Kepler problem is expressed with respect to a foci of the elliptical equivalent orbit, as illustrated in Figure , whereas the
orbit equation for the isotropic harmonic oscillator orbit is expressed with respect to the center of the ellipse as illustrated in Figure 

.

Symmetry tensor 
The invariant vectors  and  provide a complete specification of the geometry of the bound orbits for the inverse square-law
Kepler system. It is interesting to search for a similar invariant that fully specifies the orbits for the isotropic harmonic central
force. In contrast to the Kepler problem, the harmonic force center is at the center of the elliptical orbit, and the orbit is reflection
symmetric with the radial and angular frequencies related by . Since the orbit is reflection-symmetric, the orientation of
the major axis of the orbit cannot be uniquely specified by a vector. Therefore, for the harmonic interaction it is necessary to
specify the orientation of the principal axis by the symmetry tensor. The symmetry of the isotropic harmonic, two-body, central
force leads to the symmetry tensor  which is an invariant of the motion analogous to the eccentricity vector . Like a rotation
matrix, the symmetry tensor defines the orientation, but not direction, of the major principal axis of the elliptical orbit. In the plane
of the polar orbit the  symmetry tensor  reduces to a  matrix having matrix elements defined to be,

The diagonal matrix elements , and  are constants of motion. The off-diagonal term is given by

The terms on the right-hand side of Equation  all are constants of motion, therefore  also is a constant of motion. Thus
the  symmetry tensor  can be reduced to a  symmetry tensor for which all the matrix elements are constants of
motion, and the trace of the symmetry tensor is equal to the total energy.
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In summary, the inverse-square, and harmonic oscillator two-body central interactions both lead to closed, elliptical equivalent
orbits, the plane of which is perpendicular to the conserved angular momentum vector. However, for the inverse-square force, the
origin of the equivalent orbit is at the focus of the ellipse and , whereas the origin is at the center of the ellipse and 

 for the harmonic force. As a consequence, the elliptical orbit is reflection symmetric for the harmonic force but not for
the inverse square force. The eccentricity vector and symmetry tensor both specify the major axes of these elliptical orbits, the
plane of which are perpendicular to the angular momentum vector. The eccentricity vector, and the symmetry tensor, both are
directly related to the eccentricity of the orbit and the total energy of the two-body system. Noether’s theorem states that the
invariance of the eccentricity vector and symmetry tensor, plus the corresponding closed orbits, are manifestations of underlying
symmetries. The dynamical  symmetry underlies the invariance of the symmetry tensor, whereas the dynamical  symmetry
underlies the invariance of the eccentricity vector. These symmetries lead to stable closed elliptical bound orbits only for these two
specific two-body central forces, and not for other two-body central forces.

This page titled 11.9: Isotropic, linear, two-body, central force is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

=ωr ωϕ

= 2ωr ωϕ

SU3 O4

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14113?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/11%3A_Conservative_two-body_Central_Forces/11.09%3A_Isotropic_linear_two-body_central_force
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/

