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12.8: Coriolis Force
The Coriolis force was defined to be

where  is the velocity measured in the rotating (double-primed) frame. The Coriolis force is an interesting force; it is
perpendicular to both the axis of rotation and the velocity vector in the rotating frame, that is, it is analogous to the  Lorentz
magnetic force.

The understanding of the Coriolis effect is facilitated by considering the physics of a hockey puck sliding on a rotating frictionless
table. Assume that the table rotates with constant angular frequency  about the  axis. For this system the origin of the
rotating system is fixed, and the angular frequency is constant, thus  and  are zero. Also it is assumed that there are no
external forces acting on the hockey puck, thus the net acceleration of the puck sliding on the table, as seen in the rotating frame,
simplifies to

The centrifugal acceleration  is radially outwards while the Coriolis acceleration  is to the right. Integration
of the equations of motion can be used to calculate the trajectories in the rotating frame of reference.

Figure : Free-force motion of a hockey puck sliding on a rotating frictionless table of radius  that is rotating with constant
angular frequency  out of the page.

Figure  illustrates trajectories of the hockey puck in the rotating reference frame when no external forces are acting, that is,
in the inertial frame the puck moves in a straight line with constant velocity . In the rotating reference frame the Coriolis force
accelerates the puck to the right leading to trajectories that exhibit spiral motion. The apparent complicated trajectories are a result
of the observer being in the rotating frame for which that the straight inertial-frame trajectories of the moving puck exhibit a
spiralling trajectory in the rotating-frame.

The Coriolis force is the reason that winds circulate in an anticlockwise direction about low-pressure regions in the Earth’s northern
hemisphere. It also has important consequences in many activities on earth such as ballet dancing, ice skating, acrobatics, nuclear
and molecular rotation, and the motion of missiles.

Comparison of the relative merits of using a non-inertial frame versus an inertial frame is given by a spring pendulum attached
to an accelerating fulcrum. As shown in the figure, the spring pendulum comprises a mass  attached to a massless spring that
has a rest length  and spring constant . The system is in a vertical gravitational field  and the fulcrum of the pendulum is
accelerating vertically upwards with a constant acceleration . Assume that the spring pendulum oscillates only in the vertical 

 plane.
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Figure 

Inertial frame

This problem can be solved in the fixed inertial coordinate system with coordinates . These coordinates, and their time
derivatives, are given in terms of  and  by

Thus

The Lagrange equations of motion are given by

The generalized momenta are

These lead to the corresponding velocities of
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and thus the Hamiltonian is given by

The Hamilton equations of motion give that

These radial and angular velocities are the same as obtained using Lagrangian mechanics. The Hamilton equations for  and 
 are given by

Similarly

The transformation equations relating the generalized coordinates  are time dependent so the Hamiltonian  does not equal
the total energy . In addition neither the Lagrangian nor the Hamiltonian are conserved since they both are time dependent.
The fact that the Hamiltonian is not conserved is obvious since the whole system is accelerating upwards leading to increasing
kinetic and potential energies. Moreover, the time derivative of the angular momentum  is non-zero so the angular
momentum  is not conserved.

Non-inertial fulcrum frame
This system also can be addressed in the accelerating non-inertial fulcrum frame of reference which is fixed to the fulcrum of
the spring of the pendulum. In this non-inertial frame of reference, the acceleration of the frame can be taken into account
using an effective acceleration  which is added to the gravitational force; that is,  is replaced by an effective gravitational
force . Then the Lagrangian in the fulcrum frame simplifies to

The Lagrange equations of motion in the fulcrum frame are given by

These are identical to the Lagrange equations of motion derived in the inertial frame.

The  can be used to derive the momenta in the non-inertial fulcrum frame
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ṙ θ̇

(a+g)

r

Lfulcrum

p~r

p~θ

=

=

= m
∂Lfulcrum

∂ṙ
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which comprise only a part of the momenta derived in the inertial frame. These partial fulcrum momenta lead to a Hamiltonian
for the fulcum-frame of

Both  and  are time independent and thus the fulcrum Hamiltonian  is a constant of motion in the
fulcrum frame. However,  does not equal the total energy which is increasing with time due to the acceleration of the
fulcrum frame relative to the inertial frame. This example illustrates that use of non-inertial frames can simplify solution of
accelerating systems.

Figure 

Find the shape of the surface of liquid in a bucket that rotates with angular speed  as shown in the adjacent figure. Assume
that the liquid is at rest in the frame of the bucket. Therefore, in the coordinate system rotating with the bucket of liquid, the
centrifugal force is important whereas the Coriolis, translational, and transverse forces are zero. The external force

where  is the pressure which is perpendicular to the surface. At equilibrium the acceleration of the surface is zero that is

The effective gravitational force is

which must be perpendicular to the surface of the liquid since  is perpendicular to the surface of a fluid, and the net force is
zero. In cylindrical coordinates this can be written as

From the figure it can be deduced that

By integration

This is the equation of a paraboloid and corresponds to a parabolic gravitational equipotential energy surface. Astrophysicists
build large parabolic mirrors for telescopes by continuously spinning a large vat of glass while it solidifies. This is much easier
than grinding a large cylindrical block of glass into a parabolic shape.
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Example : Surface of rotating liquid12.8.2
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An interesting application of the Coriolis force is the problem of a spinning ice skater or ballet dancer. Her angular frequency
increases when she draws in her arms. The conventional explanation is that angular momentum is conserved in the absence of
any external forces which is correct. Thus since her moment of inertia decreases when she retracts her arms, her angular
velocity must increase to maintain a constant angular momentum . But this explanation does not address the question
as to what are the forces that cause the angular frequency to increase? The real radial forces the skater feels when she retracts
her arms cannot directly lead to angular acceleration since radial forces are perpendicular to the rotation. The following
derivation shows that the Coriolis force  acts tangentially to the radial retraction velocity of her arms leading to
the angular acceleration required to maintain constant angular momentum.

Consider that a mass  is moving radially at a velocity  then the Coriolis force in the rotating frame is

This Coriolis force leads to an angular acceleration of the mass of

that is, the rotational frequency decreases if the radius is increased. Note that, as shown in equation , . This
nonzero value of  obviously leads to an azimuthal force in addition to the Coriolis force. Consider the rate of change of
angular momentum for the rotating mass  assuming that the angular momentum comes purely from the rotation . Then in
the rotating frame

Substituting Equation  for  in the second term gives

That is, the two terms cancel. Thus the angular momentum is conserved for this case where the velocity is radial. Note that,
since  is assumed to be colinear with , then it is the same in both the stationary and rotating frames of reference and thus
angular momentum is conserved in both frames. In addition, in the fixed frame, the angular momentum is conserved if no
external torques are acting as assumed above.

Note that the rotational energy is

Also the angular momentum is conserved, that is

Substituting  in the rotational energy gives

Therefore the rotational energy actually increases as the moment of inertia decreases when the ice skater pulls her arms close to
her body. This increase in rotational energy is provided by the work done as the dancer pulls her arms inward against the
centrifugal force.

This page titled 12.8: Coriolis Force is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via
source content that was edited to the style and standards of the LibreTexts platform.
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