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13.16: Rotational Invariants
The scalar properties of a rotating body, such as mass , Lagrangian , and Hamiltonian , are rotationally invariant, that is, they
are the same in any body-fixed or laboratory-fixed coordinate frame. This fact also applies to scalar products of all vector
observables such as angular momentum. For example the scalar product

where  is the root mean square value of the angular momentum. An example of a scalar invariant is the scalar product of the
angular velocity

where  is the mean square angular velocity. The scalar product  can be calculated using the Euler-angle velocities for
the body-fixed frame, equations , to be

Similarly, the scalar product can be calculated using the Euler angle velocities for the space-fixed frame using equations 
.

This shows the obvious result that the scalar product  is invariant to rotations of the coordinate frame, that is, it is
identical when evaluated in either the space-fixed, or body-fixed frames.

Note that for , the  and  axes are parallel, and perpendicular to the  axis, then

For the case when , the  and  axes are antiparallel, and perpendicular to the  axis, then

For the case when , the , , and  axes are mutually perpendicular, that is, orthogonal, and then

The time-averaged shape of a rapidly-rotating body, as seen in the fixed inertial frame, is very different from the actual shape of the
body, and this difference depends on the rotational frequency. For example, a pencil rotating rapidly about an axis perpendicular to
the body-fixed symmetry axis has an average shape that is a flat disk in the laboratory frame which bears little resemblance to a
pencil. The actual shape of the pencil could be determined by taking high-speed photographs which display the instantaneous body-
fixed shape of the object at given times. Unfortunately for fast rotation, such as rotation of a molecule or a nucleus, it is not
possible to take photographs with sufficient speed and spatial resolution to observe the instantaneous shape of the rotating body.
What is measured is the average shape of the body as seen in the fixed laboratory frame. In principle the shape observed in the
fixed inertial frame can be related to the shape in the body-fixed frame, but this requires knowing the body-fixed shape which in
general is not known. For example, a deformed nucleus may be both vibrating and rotating about some triaxially deformed average
shape which is a function of the rotational frequency. This is not apparent from the shapes measured in the fixed frame for each of
the excited states.

The fact that scalar products are rotationally invariant, provides a powerful means of transforming products of observables in the
body-fixed frame, to those in the laboratory frame. In 1971 Cline developed a powerful model-independent method that utilizes
rotationally-invariant products of the electromagnetic quadrupole operator  to relate the electromagnetic  properties for the
observed levels of a rotating nucleus measured in the laboratory frame, to the electromagnetic  properties of the deformed
rotating nucleus measured in the body-fixed frame.[Cli71, Cli72, Cli86] The method uses the fact that scalar products of the
electromagnetic multipole operators are rotationally invariant. This allows transforming scalar products of a complete set of
measured electromagnetic matrix elements, measured in the laboratory frame, into the electromagnetic properties in the body-fixed
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frame of the rotating nucleus. These rotational invariants provide a model-independent determination of the magnitude, triaxiality,
and vibrational amplitudes of the average shapes in the body-fixed frame for individual observed nuclear states that may be
undergoing both rotation and vibration. When the bombarding energy is below the Coulomb barrier, the scattering of a projectile
nucleus by a target nucleus is due purely to the electromagnetic interaction since the distance of closest approach exceeds the range
of the nuclear force. For such pure Coulomb collisions, the electromagnetic excitation of collective nuclei populates many excited
states with cross sections that are a direct measure of the  matrix elements. These measured matrix elements are precisely those
required to evaluate, in the laboratory frame, the  rotational invariants from which it is possible to deduce the intrinsic
quadrupole shapes of the rotating-vibrating nuclear states in the body-fixed frame[Cli86].
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