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19.4: Appendix - Orthogonal Coordinate Systems
The methods of vector analysis provide a convenient representation of physical laws. However, the manipulation of scalar and vector fields is greatly facilitated by use of
components with respect to an orthogonal coordinate system such as the following.

Cartesian coordinates 
Cartesian coordinates (rectangular) provide the simplest orthogonal rectangular coordinate system. The unit vectors specifying the direction along the three orthogonal axes
are taken to be . In cartesian coordinates scalar and vector functions are written as

Calculation of the time derivatives of the position vector is especially simple using cartesian coordinates because the unit vectors  are constant and independent in
time. That is;

Since the time derivatives of the unit vectors are all zero then the velocity  reduces to the partial time derivatives of , , and . That is,

Similarly the acceleration is given by

Curvilinear coordinate systems

There are many examples in physics where the symmetry of the problem makes it more convenient to solve motion at a point  using non-cartesian curvilinear
coordinate systems. For example, problems having spherical symmetry are most conveniently handled using a spherical coordinate system  with the origin at the
center of spherical symmetry. Such problems occur frequently in electrostatics and gravitation; e.g. solutions of the atom, or planetary systems. Note that a cartesian
coordinate system still is required to define the origin plus the polar and azimuthal angles . Using spherical coordinates for a spherically symmetry system allows the
problem to be factored into a cyclic angular part, the solution which involves spherical harmonics that are common to all such spherically-symmetric problems, plus a one-
dimensional radial part that contains the specifics of the particular spherically-symmetric potential. Similarly, for problems involving cylindrical symmetry, it is much more
convenient to use a cylindrical coordinate system . Again it is necessary to use a cartesian coordinate system to define the origin and angle . Motion in a plane
can be handled using two dimensional polar coordinates.

Curvilinear coordinate systems introduce a complication in that the unit vectors are time dependent in contrast to cartesian coordinate system where the unit vectors 
 are independent and constant in time. The introduction of this time dependence warrants further discussion.

Each of the three axes  in curvilinear coordinate systems can be expressed in cartesian coordinates  as surfaces of constant  given by the function

where , , or . An element of length  perpendicular to the surface  is the distance between the surfaces  and  which can be expressed as

where  is a function of . In cartesian coordinates , , and  are all unity. The unit-length vectors , , , are perpendicular to the respective , , 
surfaces, and are oriented to have increasing indices such that . The correspondence of the curvilinear coordinates, unit vectors, and transform coefficients to
cartesian, polar, cylindrical and spherical coordinates is given in Table .

Curvilinear

Cartesian 1 1 1

Polar 1

Cylindrical 1 1

Spherical 1

Table : Curvilinear coordinates

The differential distance and volume elements are given by

These are evaluated below for polar, cylindrical, and spherical coordinates.

Two-dimensional polar coordinates 

The complication and implications of time-dependent unit vectors are best illustrated by considering twodimensional polar coordinates which is the simplest curvilinear
coordinate system. Polar coordinates are a special case of cylindrical coordinates, when  is held fixed, or a special case of spherical coordinate system, when  is held
fixed.

Consider the motion of a point  as it moves along a curve  such that in the time interval  it moves from  to  as shown in Figure . The two-
dimensional polar coordinates have unit vectors , which are orthogonal and change from , to , in the time . Note that for these polar coordinates the

(x, y, z)

( , , )î ĵ k̂
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qi (x, y, z) qi

= (x, y, z)qi fi (19.4.5)

i = 1 2 3 dsi qi qi +dqi qi

d = dsi hi qi (19.4.6)

hi ( , , )q1 q2 q3 h1 h2 h3 q̂ 1 q̂ 2 q̂ 3 q1 q2 q3

× =q̂1 q̂2 q̂3

19.4.1

q1 q2 q3 q̂1 q̂2 q̂3 h1 h2 h3

x y z î ĵ k̂
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angle unit vector  is taken to be tangential to the rotation since this is the direction of motion of a point on the circumference at radius .

The net changes shown in figure of Table  are

since the unit vector  is a constant with . Note that the infinitessimal  is perpendicular to the unit vector , that is,  points in the tangential direction .

Similarly, the infinitessimal

which is perpendicular to the tangential  unit vector and therefore points in the direction . The minus sign causes  to be directed in the opposite direction to .

The net distance element  is given by

This agrees with the prediction obtained using Table .

The time derivatives of the unit vectors are given by equations  and  to be,

Note that the time derivatives of unit vectors are perpendicular to the corresponding unit vector, and the unit vectors are coupled.

Consider that the velocity  is expressed as

The velocity is resolved into a radial component  and an angular, transverse, component .

Similarly the acceleration is given by

where the  term is the effective centripetal acceleration while the  term is called the Coriolis term. For the case when , then the first bracket in 
is the centripetal acceleration while the second bracket is the tangential acceleration.

This discussion has shown that in contrast to the time independence of the cartesian unit basis vectors, the unit basis vectors for curvilinear coordinates are time dependent
which leads to components of the velocity and acceleration involving coupled coordinates.

Coordinates

Distance element

Area element

Unit vectors

Time derivatives of unit vectors

Velocity

Kinetic energy

Acceleration

Table : Differential relations plus a diagram of the unit vectors for 2-dimensional polar coordinates.
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ṙ

2
r2 θ̇

2

a = ( − r ) +(r + 2 )r̈ θ̇
2

r̂ θ̈ ṙ θ̇ θ̂

19.4.2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9687?pdf


19.4.3 https://phys.libretexts.org/@go/page/9687

Figure : Diagram for Table .

Cylindrical Coordinates 

The three-dimensional cylindrical coordinates  are obtained by adding the motion along the symmetry axis  to the case for polar coordinates. The unit basis
vectors are shown in Table  where the angular unit vector  is taken to be tangential corresponding to the direction a point on the circumference would move. The
distance and volume elements, the cartesian coordinate components of the cylindrical unit basis vectors, and the unit vector time derivatives are shown in Table . The
time dependence of the unit vectors is used to derive the acceleration. As for the two-dimensional polar coordinates, the  and  direction components of the acceleration
for cylindrical coordinates are coupled functions of , , , , and .

Coordinates

Distance element

Volume element

Unit vectors

Time derivatives of unit vectors

Velocity

Kinetic energy

Acceleration

Table : Differential relations plus a diagram of the unit vectors for cylindrical coordinates.

Figure : Diagram for Table .

Spherical Coordinates 

The three dimensional spherical coordinates, can be treated the same way as for cylindrical coordinates. The unit basis vectors are shown in Table  where the angular
unit vectors  and  are taken to be tangential corresponding to the direction a point on the circumference moves for a positive rotation angle.
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dv = ρdρdϕdz

= cosϕ + sinϕρ̂ î ĵ
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19.4.3

19.4.2 19.4.3

(r,θ,ϕ)

19.4.4

θ̂ ϕ̂

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9687?pdf


19.4.4 https://phys.libretexts.org/@go/page/9687

Coordinates

Distance element

Volume element

Unit vectors

Time derivatives of unit vectors

Velocity

Kinetic energy

Acceleration

Table : Differential relations plus a diagram of the unit vectors for spherical coordinates.

Figure : Diagram for Table .

The distance and volume elements, the cartesian coordinate components of the spherical unit basis vectors, and the unit vector time derivatives are shown in the table given
in Figure . The time dependence of the unit vectors is used to derive the acceleration. As for the case of cylindrical coordinates, the , , and  components of the
acceleration involve coupling of the coordinates and their time derivatives.

It is important to note that the angular unit vectors  and  are taken to be tangential to the circles of rotation. However, for discussion of angular velocity of angular
momentum it is more convenient to use the axes of rotation defined by  and  for specifying the vector properties which is perpendicular to the unit vectors 
and . Be careful not to confuse the unit vectors  and  with those used for the angular velocities  and .

Frenet-Serret coordinates
The cartesian, polar, cylindrical, or spherical curvilinear coordinate systems, all are orthogonal coordinate systems that are fixed in space. There are situations where it is
more convenient to use the Frenet-Serret coordinates which comprise an orthogonal coordinate system that is fixed to the particle that is moving along a continuous,
differentiable, trajectory in three-dimensional Euclidean space. Let  represent a monotonically increasing arc-length along the trajectory of the particle motion as a
function of time . The Frenet-Serret coordinates, shown in Figure , are the three instantaneous orthogonal unit vectors , , and  where the tangent unit vector  is
the instantaneous tangent to the curve, the normal unit vector  is in the plane of curvature of the trajectory pointing towards the center of the instantaneous radius of
curvature and is perpendicular to the tangent unit vector , while the binormal unit vector is  which is the perpendicular to the plane of curvature and is mutually
perpendicular to the other two Frenet-Serrat unit vectors. The Frenet-Serret unit vectors are defined by the relations

The curvature  where  is the radius of curvature and  is the torsion that can be either positive or negative. For increasing , a non-zero curvature  implies that the

triad of unit vectors rotate in a right-handed sense about . If the torsion  is positive (negative) the triad of unit vectors rotates in right (left) handed sense about .

Distance element

Table : The differential relations plus a diagram of the corresponding unit vectors for the Frenet-Serret coordinate system.
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= cos θ cosϕ + cos θ sinϕ − sin θθ̂ î ĵ k̂
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Unit vectors

Time derivatives of unit vectors

Velocity

Acceleration

Figure : Diagram for Table .

The above equations also can be rewritten in the form using a new unit rotation vector  where

Then equations −  are transformed to

In general the Frenet-Serret unit vectors are time dependent. If the curvature  then the curve is a straight line and  and  are not well defined. If the torsion is zero
then the trajectory lies in a plane. Note that a helix has constant curvature and constant torsion.

The rate of change of a general vector field  along the trajectory can be written as

The Frenet-Serret coordinates are used in the life sciences to describe the motion of a moving organism in a viscous medium. The Frenet-Serret coordinates also have
applications to General Relativity.

Problems
1. The goal of this problem is to help you understand the origin of the equations that relate two different coordinate systems. Refer to diagrams for cylindrical and spherical
coordinates as your teaching assistant explains how to arrive at expressions for , , and  in terms of , , and  and how to derive expressions for the velocity and
acceleration vectors in cylindrical coordinates. Now try to relate spherical and rectangular coordinate systems. Your group should derive expressions relating the
coordinates of the two systems, expressions relating the unit vectors and their time derivatives of the two systems, and finally, expressions for the velocity and acceleration
in spherical coordinates.
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