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11.3: Angular Momentum

Angular momentum 

The notation used for the angular momentum vector is  where the magnitude is designated by  . Be careful not to confuse
the angular momentum vector  with the Lagrangian  Note that the angular momentum for two-body rotation about the center
of mass with angular velocity  is identical when evaluated in either the laboratory or equivalent two-body representation. That is,
using equations  and 

The center-of-mass Lagrangian leads to the following two general properties regarding the angular momentum vector .

1) The motion lies entirely in a plane perpendicular to the fixed direction of the total angular momentum vector. This is because

that is, the radius vector is in the plane perpendicular to the total angular momentum vector. Thus, it is possible to express the
Lagrangian in polar coordinates,  rather than spherical coordinates. In polar coordinates the center-of-mass Lagrangian
becomes

2) If the potential is spherically symmetric, then the polar angle  is cyclic and therefore Noether’s theorem gives that the angular
momentum  is a constant of motion. That is, since  then the Lagrange equations imply that

where the vectors  and  imply that Equation  refers to three independent equations corresponding to the three
components of these vectors. Thus the angular momentum  conjugate to  is a constant of motion. The generalized momentum

 is a first integral of the motion which equals

where the magnitude of the angular momentum , and the direction  both are constants of motion.

Figure : Area swept out by the radius vector in the time dt.
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A simple geometric interpretation of Equation  is illustrated in Figure . The radius vector sweeps out an area  in
time  where

and the vector  is perpendicular to the  plane. The rate of change of area is

But the angular momentum is

Thus the conservation of angular momentum implies that the areal velocity  also is a constant of motion. This fact is called
Kepler’s second law of planetary motion which he deduced in  based on Tycho Brahe’s  years of observational records of
the motion of Mars. Kepler’s second law implies that a planet moves fastest when closest to the sun and slowest when farthest from
the sun. Note that Kepler’s second law is a statement of the conservation of angular momentum which is independent of the radial
form of the central potential.

This page titled 11.3: Angular Momentum is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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