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19.8: Appendix - Vector Differential Calculus

This appendix reviews vector differential calculus which is used extensively in both classical mechanics and electromagnetism.

Scalar differential operators

Scalar field
Differential operators like time (%) do not change the rotational properties of scalars or proper vectors. A scalar operator j—s
acting on a scalar field ¢(xyz), in a rotated coordinated frame ¢'(z'y’2’) is unchanged.
d¢'  do
—_— == 19.8.1
ds ds ( )
Vector field
Similarly for a proper vector field
dA! dA;
P N Wi 19.8.2
ds Z T ds ( )

That is, differentiation of scalar or vector fields with respect to a scalar operator does not change the rotational behavior. In

particular, the scalar differentials of vectors continue to obey the rules of ordinary proper vectors. The scalar operator % is used for

calculation of velocity or acceleration.

Vector differential operators in cartesian coordinates

Vector differential operators, such as the gradient operator, are important in physics. The action of vector operators differ along
different orthogonal axes.

Scalar field

Consider a continuous, single-valued scalar function ¢(z;, z;, xx). Since

¢ =9 (19.8.3)
then the partial differential with respect to one component x; of the vector x’ gives
6@23’ (9(,25 8wj
— = —_— 19.8.4
0z} ;8:@ Oz} (19.8.4)
The inverse rotation gives that
Ti=Y Ay, (19.8.5)
k
Therefore
6$j 83};@
a7 = )\kj_ = )\kj(sik = >\ij (1986)
o =M
Thus
o¢ 0¢
— = Aij— 19.8.7
oz, zj: Y oz; ( )

That is the vector derivative acting of a scalar field transforms like a proper vector.

Define the gradient, or V operator, as

0
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where ‘e; is the unit vector along the z; axis. In cartesian coordinates, the del vector operator is,

;0 0 =~0
V= 16—m+3 9 +k6z (19.8.9)

The gradient was applied to the gravitational and electrostatic potential to derive the corresponding field. For example, for
electrostatics it was shown that the gradient of the scalar electrostatic potential field V' can be written in cartesian coordinates as

E=-VV (19.8.10)

Note that the gradient of a scalar field produces a vector field. You are familiar with this if you are a skier in that the gravitational
force pulls you down the line of steepest descent for the ski slope.

Vector field

Another possible operation for the del operator is the scalar product with a vector. Using the definition of a scalar product in
cartesian coordinates gives
04, . 04, 0A, 04, O0A, 0OA,

V-A=i-i P +J-Ja—y+k-k %~ on + By + 52 (19.8.11)

This scalar derivative of a vector field is called the divergence. Note that the scalar product produces a scalar field which is
invariant to rotation of the coordinate axes.

The vector product of the del operator with another vector, is called the curl which is used extensively in physics. It can be written
in the determinant form

i j k
VxA=|Z& & & (19.8.12)
A, A, A,

By contrast to the scalar product, both the gradient of a scalar field, and the vector product, are vector fields for which the
components along the coordinate axes transform in a specific manner, such as to keep the length of the vector constant, as the
coordinate frame is rotated. The gradient, scalar and vector products with the V' operator are the first order derivatives of fields
that occur most frequently in physics.

Second derivatives of fields also are used. Let us consider some possible combinations of the product of two del operators.
1) V-(VV)=VV

The scalar product of two del operators is a scalar under rotation. Evaluating the scalar product in cartesian coordinates gives

(i% +ja% +E%) ~ (EZ—ZH%—Z +§%—Z) = Z‘:+Z¥+ZZ (19.8.13)
This also can be obtained without confusion by writing this product as;
V- (VV)=V.VV=(V-V)V (19.8.14)
where the scalar product of the del operator is a scalar, called the Laplacian V2, given by
V-V:VZE:—:Q-F;—;—Faa_; (19.8.15)
The Laplacian operator is encountered frequently in physics.
2)Vx(VV)=0
Note that the vector product of two identical vectors
AxA=0 (19.8.16)
Therefore
V x(VV)=0 (19.8.17)

@ 0 g @ 19.8.2 https://phys.libretexts.org/@go/page/32463


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/32463?pdf

LibreTextsm

This can be confirmed by evaluating the separate components along each axis.
3) V-(VXxA)=0
This is zero because the cross-product is perpendicular to V x A and thus the dot product is zero.
HVX(VXA)=V.(V-A)—-V3IA
The identity

Ax(BxC)=B(A-C)-(A-B)C (19.8.18)
can be used to give

Vx(VXxA)=V-(V-A)-V?A (19.8.19)
since V-V =V2,
There are pitfalls in the discussion of second derivatives in that it is assumed that both del operators operate on the same variable,

otherwise the results are different.

Vector differential operators in curvilinear coordinates

As discussed in Appendix 19.3 there are many situations where the symmetries make it more convenient to use orthogonal
curvilinear coordinate systems rather than cartesian coordinates. Thus it is necessary to extend vector derivatives from cartesian to
curvilinear coordinates. Table 19.3.1can be used for expressing vector derivatives in curvilinear coordinate systems.

Gradient
The gradient in curvilinear coordinates is

18fA 1 of . 1 9f .

v L+ — —
f= hy 5q1 ha O0g» Bgy hs Ogs B

(19.8.20)

where the coefficients h; are listed in table 19.3.1 For cylindrical coordinates this becomes

o, 10f, Of,
V=3Pt 55,2 55t (19.8.21)

In spherical coordinates

8f. 10f 4 1 of .

Vf= B +—%0+m%¢ (19.8.22)
Divergence
The divergence can be expressed as
VoA =12 (Aihohg) + 2 (Aahshi) + 2 (Aghahs) (19.8.23)
hihyhs | O 9g; g3
In cylindrical coordinates the divergence is
V-AZ%%(PAp)‘F%a;: a;; = %"’- a;)” +%8;: + 8;2 (19.8.24)

In spherical coordinates the divergence is

V-A=— Slme : = (A Sm9)+%(Aersm0)+%(A r) (19.8.25)
Curl
) hladl hzaflz h36513
VxXA=toel W W (19.8.26)

h1A1 thg h3A3
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In cylindrical coordinates the curl is

. p pp 2
d d d
V xA = ; % 05 02 (19.8.27)
A, pA, A,
In spherical coordinates the curl is
Fr6  rsinfp
__ 1 la 9
V x A = g | W %0 (19.8.28)
A, rpAy rsinfA,

Laplacian
Taking the divergence of the gradient of a scalar gives

1 0 ( hohs Of 0 ( hshy Of 0 ( hihy Of
iy ovowg L [ (00} () 0 (b 01Y] 0,
! ! hihaohs [ 0gi \ h1 Oqi O0ga \ hy Ogo O0gz \ hs Ogs ( )

The Laplacian of a scalar function f in cylindrical coordinates is

190 0 1 02 0?
sz:——(p—f) +——f+—f (19.8.30)
pOp\' Op p? Op? 022
The Laplacian of a scalar function f in spherical coordinates is
10 of 1 o (. ,Of 1 9%f
grp L0 (20F) _( 9_) N or 19.8.31
! r2 Or (r 87“) 2sing 96 " 00 r2sin@ Op? ( )

The gradient, divergence, curl and Laplacian are used extensively in curvilinear coordinate systems when dealing with vector fields
in Newtonian mechanics, electromagnetism, and fluid flow.
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