
12.9.1 https://phys.libretexts.org/@go/page/14140

12.9: Routhian Reduction for Rotating Systems
The Routhian reduction technique, that was introduced in chapter , is a hybrid variational approach. It was devised by Routh to handle
the cyclic and non-cyclic variables separately in order to simultaneously exploit the differing advantages of the Hamiltonian and
Lagrangian formulations. The Routhian reduction technique is a powerful method for handling rotating systems ranging from galaxies to
molecules, or deformed nuclei, as well as rotating machinery in engineering. A valuable feature of the Hamiltonian formulation is that it
allows elimination of cyclic variables which reduces the number of degrees of freedom to be handled. As a consequence, cyclic variables
are called ignorable variables in Hamiltonian mechanics. The Lagrangian, the Hamiltonian and the Routhian all are scalars under rotation
and thus are invariant to rotation of the frame of reference. Note that often there are only two cyclic variables for a rotating system, that
is,  and the corresponding canonical total angular momentum .

As mentioned in chapter , there are two possible Routhians that are useful for handling rotation frames of reference. For rotating
systems the cyclic Routhian  simplifies to

This Routhian behaves like a Hamiltonian for the ignorable cyclic coordinates . Simultaneously it behaves like a negative Lagrangian
 for all the other coordinates.

The non-cyclic Routhian  complements  in that it is defined as

This non-cyclic Routhian behaves like a Hamiltonian for all the non-cyclic variables and behaves like a negative Lagrangian for the two
cyclic variables . Since the cyclic variables are constants of motion, then  is a constant of motion that equals the energy in
the rotating frame if  is a constant of motion. However,  does not equal the total energy since the coordinate transformation is
time dependent, that is, the Routhian  corresponds to the energy of the non-cyclic parts of the motion.

For example, the Routhian  for a system that is being cranked about the  axis at some fixed angular frequency , with
corresponding total angular momentum , can be written as

Note that  is a constant of motion if , which is the case when the system is being cranked at a constant angular
frequency. However the Hamiltonian in the rotating frame  is given by  since the coordinate
transformation is time dependent. The canonical Hamilton equations for the fourth and fifth terms in the bracket can be identified with the
Coriolis force , while the last term in the bracket is identified with the centrifugal force. That is, define

where the gradient of  gives the usual centrifugal force.

The Routhian reduction method is used extensively in science and engineering to describe rotational motion of rigid bodies, molecules,
deformed nuclei, and astrophysical objects. The cyclic variables describe the rotation of the frame and thus the Routhian 

 corresponds to the Hamiltonian for the non-cyclic variables in the rotating frame.
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Figure : Cranked plane pendulum that is cranked around the vertical axis with angular velocity .

The cranked plane pendulum, which is also called the rotating plane pendulum, comprises a plane pendulum that is cranked around a
vertical axis at a constant angular velocity  as determined by some external drive mechanism. The parameters are illustrated in
the adjacent figure. The cranked pendulum nicely illustrates the advantages of working in a non-inertial rotating frame for a driven
rotating system. Although the cranked plane pendulum looks similar to the spherical pendulum, there is one very important
difference; for the spherical pendulum  is a constant of motion and thus the angular velocity varies with , i.e. 

, whereas for the cranked plane pendulum, the constant of motion is  and thus the angular momentum varies with
, i.e. . For the cranked plane pendulum, the energy must flow into and out of the cranking drive system that is

providing the constraint force to satisfy the equation of constraint

The easiest way to solve the equations of motion for the cranked plane pendulum is to use generalized coordinates to absorb the
equation of constraint and applied constraint torque. This is done by incorporating the  constraint explicitly in the Lagrangian
or Hamiltonian and solving for just  in the rotating frame.

Assuming that , and using generalized coordinates to absorb the cranking constraint forces, then the Lagrangian for the
cranked pendulum can be written as.

The momentum conjugate to  is

Consider the Routhian  which acts as a Hamiltonian  in the rotating frame

Note that if  is constant, then  is a constant of motion for rotation about the  axis since it is independent of . Also 

 thus the energy in the rotating non-inertial frame of the pendulum  is a constant
of motion, but it does not equal the total energy since the rotating coordinate transformation is time dependent. The driver that cranks
the system at a constant  provides or absorbs the energy  as  changes in order to maintain a constant .

The Routhian  can be used to derive the equations of motion using Hamiltonian mechanics.

Since , then the equation of motion is
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Assuming that , then Equation  leads to linear harmonic oscillator solutions about a minimum at  if the term in

brackets is positive. That is, when the bracket  then equation  corresponds to a harmonic oscillator with

angular velocity  given by

The adjacent figure shows the phase-space diagrams for a plane pendulum rotating about a vertical axis at angular velocity  for (a) 

 and (b) . The upper phase plot shows small  when the square bracket of Equation  is positive and the the phase

space trajectories are ellipses around the stable equilibrium point . As  increases the bracket becomes smaller and changes sign
when . For larger  the bracket is negative leading to hyperbolic phase space trajectories around the 
equilibrium point, that is, an unstable equilibrium point. However, new stable equilibrium points now occur at angles 

 where . That is, the equilibrium point  undergoes bifurcation as illustrated in the lower figure.
These new equilibrium points are stable as illustrated by the elliptical trajectories around these points. It is interesting that these new
equilibrium points  move to larger angles given by  beyond the bifurcation point at . For low energy the
mass oscillates about the minimum at  whereas the motion becomes more complicated for higher energy. The bifurcation
corresponds to symmetry breaking since, under spatial reflection, the equilibrium point is unchanged at low rotational frequencies but
it transforms from  to  once the solution bifurcates, that is, the symmetry is broken. Also chaos can occur at the separatrix
that separates the bifurcation. Note that either the Lagrange multiplier approach, or the generalized force approach, can be used to
determine the applied torque required to ensure a constant  for the cranked pendulum.

Figure : Phase-space diagrams for the plane pendulum cranked at angular velocity  about a vertical axis. Figure  is for
 while  is for .

Consider the rotation of axially-symmetric, prolate-deformed nucleus. Many nuclei have a prolate spheroidal shape, (the shape of a
rugby ball) and they rotate perpendicular to the symmetry axis. In the non-inertial body-fixed frame, pairs of nucleons, each with
angular momentum , are bound in orbits with the projection of the angular momentum along the symmetry axis being conserved
with value , which is a cyclic variable. Since the nucleus is of dimensions  , quantization is important and the
quantized binding energies of the individual nucleons are separated by spacings  .
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Example : Nucleon orbits in deformed nuclei12.9.2
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Figure : Schematic diagram for the strong coupling of a nucleon to the deformation axis. The projection of  on the symmetry
axis is , and the projection of  is . For axial symmetry Noether’s theroem gives that the projection of the angular momentum 
on the symmetry axis is a conserved quantity.

The Lagrangian and Hamiltonian are scalars and can be evaluated in any coordinate frame of reference. It is most useful to calculate
the Hamiltonian for a deformed body in the non-inertial rotating body-fixed frame of reference. The bodyfixed Hamiltonian
corresponds to the Routhian 

where it is assumed that the deformed nucleus has the symmetry axis along the  direction and rotates about the  axis. Since the
Routhian is for a non-inertial rotating frame of reference it does not include the total energy but, if the shape is constant in time, then 

 and the corresponding body-fixed Hamiltonian are conserved and the energy levels for the nucleons bound in the
spheroidal potential well can be calculated using a conventional quantum mechanical model.

For a prolate spheroidal deformed potential well, the nucleon orbits that have the angular momentum nearly aligned to the symmetry
axis correspond to nucleon trajectories that are restricted to the narrowest part of the spheroid, whereas trajectories with the angular
momentum vector close to perpendicular to the symmetry axis have trajectories that probe the largest radii of the spheroid. The
Heisenberg Uncertainty Principle, mentioned in chapter , describes how orbits restricted to the smallest dimension will have
the highest linear momentum, and corresponding kinetic energy, and vise versa for the larger sized orbits. Thus the binding energy of
different nucleon trajectories in the spheroidal potential well depends on the angle between the angular momentum vector and the
symmetry axis of the spheroid as well as the deformation of the spheroid. A quantal nuclear model Hamiltonian is solved for assumed
spheroidal-shaped potential wells. The corresponding orbits each have angular momenta  for which the projection of the angular
momentum along the symmetry axis  is conserved, but the projection of  in the laboratory frame  is not conserved since the
potential well is not spherically symmetric. However, the total Hamiltonian is spherically symmetric in the laboratory frame, which is
satisfied by allowing the deformed spheroidal potential well to rotate freely in the laboratory frame, and then , , and  all are
conserved quantities. The attractive residual nucleon-nucleon pairing interaction results in pairs of nucleons being bound in time-
reversed orbits , that is, with resultant total spin zero, in this spheroidal nuclear potential. Excitation of an even-even nucleus
can break one pair and then the total projection of the angular momentum along the symmetry axis is , depending on
whether the projections are parallel or antiparallel. More excitation energy can break several pairs and the projections continue to be
additive. The binding energies calculated in the spheroidal potential well must be added to the rotational energy  to get
the total energy, where  is the moment of inertia. Nuclear structure measurements are in good agreement with the predictions of
nuclear structure calculations that employ the Routhian approach.

For clarity sections  to  of this chapter adopted a naming convention that uses unprimed coordinates with the subscript 
for the inertial frame of reference, primed coordinates with the subscript  for the translating coordinates, and double-primed
coordinates with the subscript  for the translating plus rotating frame. For brevity the subsequent discussion omits the redundant
subscripts , ,  since the single and double prime superscripts completely define the moving and rotating frames of reference.

This page titled 12.9: Routhian Reduction for Rotating Systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
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