
13.11.1 https://phys.libretexts.org/@go/page/14183

13.11: Angular Momentum and Angular Velocity Vectors
The angular momentum is a primary observable for rotation. As discussed in chapter , the angular momentum  is compactly
and elegantly written in matrix form using the tensor algebra relation

where  is the angular velocity,  the inertia tensor, and  the corresponding angular momentum.

Two important consequences of Equation  are that:

The angular momentum  and angular velocity  are not necessarily colinear.
In general the Principal axis system of the rotating rigid body is not aligned with either the angular momentum or angular
velocity vectors.

An exception to these statements occurs when the angular velocity  is aligned along a principal axes for which the inertia tensor is
diagonal, i.e. , and then both  and  point along this principal axis. In general the angular momentum  and angular
velocity  precess around each other. An important special case is for torque-free systems where Noether’s theorem implies that
the angular momentum vector  is conserved both in magnitude and amplitude. In this case, the angular velocity , and the
Principal axis system, both precesses around the angular momentum vector . That is, the body appears to tumble with respect to
the laboratory fixed frame. Understanding rigid-body rotation requires care not to confuse the body-fixed Principal axis coordinate
frame, used to determine the inertia tensor, and the fixed laboratory frame where the motion is observed.

It is illustrative to use the inertia tensors of a uniform cube to compute the angular momentum for any applied angular velocity
vector  using Equation . If the angular velocity is along the  axis, then using the inertia tensor for a solid cube,
derived earlier, in Equation  gives the angular momentum to be

This shows that  and  are colinear and thus the  axis is a principal axis. By symmetry, the  and  body fixed axis also
must be principal axes.

Consider that the body is rotated about a diagonal of the cube for which the center of mass will be on the rotation axis. Then

the angular velocity vector is written as  where the components of  with the angular

velocity magnitude .
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Example : Rotation about the center of mass of a solid cube13.11.1
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Note that  and  again are colinear showing it also is a principal axis. Moreover, the magnitude of  is identical for
orientations of the rotation axes  passing through the center of mass when centered on either one face, or the diagonal, of the
cube implying that the principal moments of inertia about these axes are identical. This illustrates the important property that,
when the three principal moments of inertia are identical, then any orientation of the coordinate system is an equally good
principal axis system. That is, this corresponds to the spherical top where all orientations are principal axes, not just along the
obvious symmetry axes.

Let us repeat the above exercise for rotation about one corner of the cube. Consider that the angular velocity is along the 
axis. Then example  gives the angular momentum to be

The angular momentum is far from being aligned with the axis , that is, it is not a principal axis.

Consider that the body is rotated with the angular velocity aligned along a diagonal of the cube through the center of mass on

this axis. Then the angular velocity is written as  where the components of  ensuring that

the magnitude equals .

This is a principal axis since  and  again are colinear and the angular momentum is the same as for any axis through the
center of mass of a uniform solid cube due to the high symmetry of the cube. If the angular velocity is perpendicular to the
diagonal of the cube, then, for either of these perpendicular axes, the relation between  and  is given by
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Example : Rotation about the corner of the cube13.11.2
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Note that this must be a principal axis for rotation about a corner of the cube since  and  are colinear. The angular
momentum is the same for both possible orientations of  that are perpendicular to the diagonal through the center of mass.
Diagonalizing the inertia tensor in example  also gave the above result with the symmetry axis along the diagonal of
the cube.

This example illustrates that it is not necessary to diagonalize the inertia tensor matrix to obtain the principal axes. The corner
of the cube has three mutually perpendicular principal axes independent of the choice of a body-fixed coordinate frame. The
advantage of the principal axis coordinate frame is that the inertia tensor is diagonal making evaluation of the angular
momentum trivial. That is, there is no physics associated with the orientation chosen for the body-fixed coordinate frame, this
frame only determines the ratio of the components of the inertia tensor along the chosen coordinates. Note that, if a body has
an obvious symmetry, then intuition is a powerful way to identify the principal axis frame.

This page titled 13.11: Angular Momentum and Angular Velocity Vectors is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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