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19.9: Appendix - Vector Integral Calculus
Field equations, such as for electromagnetic and gravitational fields, require both line integrals, and surface integrals, of vector
fields to evaluate potential, flux and circulation. These require use of the gradient, the Divergence Theorem and Stokes Theorem
which are discussed in the following sections.

Line integral of the gradient of a scalar field
The change  in a scalar field for an infinitessimal step  along a path can be written as

since the gradient of , that is, , is the rate of change of  with . Discussions of gravitational and electrostatic potential
show that the line integral between points  and  is given in terms of the del operator by

This relates the difference in values of a scalar field at two points to the line integral of the dot product of the gradient with the
element of the line integral.

Divergence Theorem

Flux of a vector field for Gaussian surface

Figure : A volume V enclosed by a closed surface S is cut into two pieces at the surface . This gives V  enclosed by S
and V  enclosed by S .

Consider the flux  of a vector field  for a closed surface, usually called a Gaussian surface,  shown in Figure .

If the enclosed volume is cut in to two pieces enclosed by surfaces  and . The flux through the
surface  common to both  and  are equal and in the same direction. Then the net flux through the sum of  and  is
given by

since the contributions of the common surface  cancel in that the flux out of  is equal and opposite to the flux into  over the
surface . That is, independent of how many times the volume enclosed by  is subdivided, the net flux for the sum of all the
Gaussian surfaces enclosing these subdivisions of the volume, still equals .

Consider that the volume enclosed by  is subdivided into  subdivisions where , then even though  as 
, the sum over surfaces of all the infinitessimal volumes remains unchanged
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Thus we can take the limit of a sum of an infinite number of infinitessimal volumes as is needed to obtain a differential form. The
surface integral for each infinitessimal volume will equal zero which is not useful, that is  as . However,
the flux per unit volume has a finite value as . This ratio is called the divergence of the vector field;

where  is the infinitessimal volume enclosed by surface . The divergence of the vector field is a scalar quantity.

Thus the sum of flux over all infinitessimal subdivisions of the volume enclosed by a closed surface  equals

In the limit , , this becomes the integral;

This is called the Divergence Theorem or Gauss’s Theorem. To avoid confusion with Gauss’s law in electrostatics, it will be
referred to as the Divergence theorem.

Divergence in Cartesian Coordinates

Figure : Computation of flux out of an infinitessimal rectangular box, , , .

Consider the special case of an infinitessimal rectangular box, size  shown in Figure . Consider the net flux for
the  component  entering the surface  at location .

The net flux of the  component out of the surface at  is

Thus the net flux out of the box due to the z component of F is

Adding the similar  and  components for  gives

This gives that the divergence of the vector field  is
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since . But the right hand side of the equation equals the scalar product , that is,

The divergence is a scalar quantity. The physical meaning of the divergence is that it gives the net flux per unit volume flowing out
of an infinitessimal volume. A positive divergence corresponds to a net outflow of flux from the infinitessimal volume at any
location while a negative divergence implies a net inflow of flux to this infinitessimal volume.

It was shown that for an infinitessimal rectangular box

Integrating over the finite volume enclosed by the surface  gives

This is another way of expressing the Divergence theorem

The divergence theorem, developed by Gauss, is of considerable importance, it relates the surface integral of a vector field, that is,
the outgoing flux, to a volume integral of  over the enclosed volume.

As an example of the usefulness of this relation, consider the Gauss’s law for the flux in Maxwell’s equations.

Gauss’ Law for the electric field

But the divergence relation gives that

Combining these gives

This is true independent of the shape of the surface or enclosed volume, leading to the differential form of Maxwell’s first law,
that is Gauss’s law for the electric field.

The differential form of Gauss’s law relates  to the charge density  at that same location. This is much easier to evaluate
than a surface and volume integral required using the integral form of Gauss’s law.

Gauss’s law for magnetism
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Using the divergence theorem gives that

This is true independent of the shape of the Gaussian surface leading to the differential form of Gauss’s law for 

That is, the local value of the divergence of  is zero everywhere.

Buoyancy in fluids provides an example of the use of flux in physics. Consider a fluid of density  in a gravitational field 
 where the  axis points in the opposite direction to the gravitational force. Pressure equals force per unit area

and is a scalar quantity. For a conservative fluid system, in static equilibrium, the net work done per unit area for an
infinitessimal displacement  is zero. The net pressure force per unit area is the difference 
while the net change in gravitational potential energy is . Thus energy conservation gives

which can be expanded as

Integrating the net forces normal to the surface over any closed surface enclosing an empty volume, inside the fluid, gives a net
buoyancy force on this volume that simplifies using the Divergence theorem

Using equations  leads to the net buoyancy force

The right hand side of this equation equals minus the weight of the displaced fluid. That is, the buoyancy force equals the
weight of the fluid displaced by the empty volume. Note that this proof applies both to compressible fluids, where the density
depends on pressure, as well as to incompressible fluids where the density is constant. It also applies to situations where local
gravity  is position dependent. If an object of mass  is completely submerged then the net force on the object is 

. If the object floats on the surface of a fluid then the buoyancy force must be calculated
separately for the volume under the fluid surface and the upper volume above the fluid surface. The buoyancy due to displaced
air usually is negligible since the density of air is about  times that of fluids such as water.

Stokes Theorem

The curl

Maxwell’s laws relate the circulation of the field around a closed loop to the rate of change of flux through the surface bounded by
the closed loop. It is possible to write these integral equations in a differential form as follows.

Consider the line integral around a closed loop  shown in Figure .

If this area is subdivided into two areas enclosed by loops  and , then the sum of the line integrals is the same
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because the contributions along the common boundary cancel since they are taken in opposite directions if  and  both are
taken in the same direction. Note that the line integral, and corresponding enclosed area,

are vector quantities related by the right-hand rule and this must be taken into account when subdividing the area. Thus the area can
be subdivided into an infinite number of pieces for which

where  is the infinitessimal area bounded by the closed sub-loop  and  is the normal component of this area pointing
along the  direction which is the direction along which the line integral points.

Figure : The circulation around a path is equal to the sum of the circulations around subareas made by subdividing the area.

The component of the curl of the vector function along the direction  is defined to be

Thus the line integral can be written as

The product , that is, this is true independent of the direction of the infinitessimal loop. Thus the above relation leads to
Stokes Theorem

This relates the line integral to a surface integral over a surface bounded by the loop.

Curl in cartesian coordinates

Consider the infinitessimal rectangle  pointing in the  direction shown in Figure .
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Figure : Circulation around an infinitessimal rectangle  in the z direction.

The line integral, taken in a right-handed way around  gives

Thus since  the  component of the curl is given by

The same argument for the component of the curl in the  direction is given by

Similarly the same argument for the component of the curl in the  direction is given by

Thus combining the three components of the curl gives

Note that cross-product of the del operator with the vector  is

which is identical to the right hand side of the relation for the curl in cartesian coordinates. That is;

Therefore Stokes Theorem can be rewritten as

The physics meaning of the curl is that it is the circulation, or rotation, for an infinitessimal loop at any location. The word curl is
German for rotation.
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∂Fx

∂z

∂Fz

∂x
(19.9.25)

x

(curlF) ⋅ =( − )î
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As an example of the use of the curl, consider Faraday’s Law

Using Stokes Theorem gives

These two relations are independent of the shape of the closed loop, thus we obtain Faraday’s Law in the differential form

A differential form of the Ampère-Maxwell law also can be obtained from

Using Stokes Theorem

Again this is independent of the shape of the loop and thus we obtain Ampère-Maxwell law in differential form

The differential forms of Maxwell’s circulation relations are easier to apply than the integral equations because the differential
form relates the curl to the time derivatives at the same specific location.

Potential formulations of curl-free and divergence-free fields
Interesting consequences result from the Divergence theorem and Stokes Theorem for vector fields that are either curl-free or
divergence-free. In particular two theorems result from the second derivatives of a vector field.

Theorem 1 - Curl-free (irrotational) fields:

For curl-free fields

everywhere. This is automatically obeyed if the vector field is expressed as the gradient of a scalar field

since

That is, any curl-free vector field can be expressed in terms of the gradient of a scalar field.

The scalar field  is not unique, that is, any constant  can be added to  since , that is, the addition of the constant 
does not change the gradient. This independence to addition of a number to the scalar potential is called a gauge invariance
discussed in chapter , for which

That is, this gauge-invariant transformation does not change the observable . The electrostatic field  and the gravitation field 
are examples of irrotational fields that can be expressed as the gradient of scalar potentials.

Example : Maxwell's circulation equations19.9.3
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Theorem 2 - Divergence-free (solenoidal) fields:

For divergence-free fields

everywhere. This is automatically obeyed if the field  is expressed in terms of the curl of a vector field  such that

since . That is, any divergence-free vector field can be written as the curl of a related vector field.

As discussed in chapter , the vector potential  is not unique in that a gauge transformation can be made by adding the
gradient of any scalar field, that is, the gauge transformation  gives

This gauge invariance for transformation to the vector potential  does not change the observable vector field . The magnetic
field  is an example of a solenoidal field that can be expressed in terms of the curl of a vector potential .

Electromagnetic interactions are encountered frequently in classical mechanics so it is useful to discuss the use of potential
formulations of electrodynamics.

For electrostatics, Maxwell’s equations give that

Therefore theorem 1 states that it is possible to express this static electric field as the gradient of the scalar electric potential ,
where

For electrodynamics, Maxwell’s equations give that

Assume that the magnetic field can be expressed in the terms of the vector potential , then the above equation
becomes

Theorem 1 gives that this curl-less field can be expressed as the gradient of a scalar field, here taken to be the electric potential 
.

that is

Gauss’ law states that

which can be rewritten as

Similarly insertion of the vector potential  in Ampère’s Law gives

∇ ⋅ F = 0 (19.9.35)
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G′ F

B A
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Using the vector identity  allows the above equation to be rewritten as

The use of the scalar potential  and vector potential  leads to two coupled equations  and . These coupled equations can
be transformed into two uncoupled equations by exploiting the freedom to make a gauge transformation for the vector potential
such that the middle brackets in both equations  and  are zero. That is, choosing the Lorentz gauge

simplifies equations  and  to be

The virtue of using the Lorentz gauge, rather than the Coulomb gauge , is that it separates the equations for the
scalar and vector potentials. Moreover, these two equations are the wave equations for these two potential fields corresponding
to a velocity . This example illustrates the power of using the concept of potentials in describing vector fields.
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