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10.5: Dissipative Lagrangians
The prior discussion of nonconservative systems mentioned the following three ways to incorporate dissipative processes into
Lagrangian or Hamiltonian mechanics.

1. Expand the number of degrees of freedom to include all the active dissipative active degrees of freedom as well as the
conservative ones.

2. Use generalized forces to incorporate dissipative processes.
3. Add dissipative terms to the Lagrangian or Hamiltonian to mimic dissipation.

The following illustrates the use of dissipative Lagrangians.

Bateman pointed out that an isolated dissipative system is physically incomplete, that is, a complete system must comprise at least
two coupled subsystems where energy is transferred from a dissipating subsystem to an absorbing subsystem. A complete system
should comprise both the dissipating and absorbing systems to ensure that the total system Lagrangian and Hamiltonian are
conserved, as is assumed in conventional Lagrangian and Hamiltonian mechanics. Both Bateman and Dekker have illustrated that
the equations of motion for a linearly-damped, free, one-dimensional harmonic oscillator are derivable using the Hamilton
variational principle via introduction of a fictitious complementary subsystem that mimics dissipative processes. The following
example illustrate that deriving the equations of motion for the linearly-damped, linear oscillator may be handled by three
alternative equivalent non-standard Lagrangians that assume either: (1) a multidimensional system, (2) explicit time dependent
Lagrangians and Hamiltonians, or (3) complex non-standard Lagrangians.

Three toy dynamical models have been used to describe the linearly-damped, linear oscillator employing very different non-
standard Lagrangians to generate the required Hamiltonians, and to derive the correct equations of motion.

1: Dual-component Lagrangian: 

Bateman proposed a dual system comprising a mass  subject to two coupled one-dimensional variables  where  is the
observed variable and  is the mirror variable for the subsystem that absorbs the energy dissipated by the subsystem .

Assume a non-standard Lagrangian of the form

where  is the damping coefficient. Minimizing by variation of the auxiliary variable , that is, , leads to the
uncoupled equation of motion for 

Similarly minimizing by variation of the primary variable  that is  leads to the uncoupled equation of motion for 

Note that equation of motion , which was obtained by variation of the auxiliary variable  corresponds to that for the usual
free, linearly-damped, one-dimensional harmonic oscillator for the  variable which dissipates energy as is discussed in
chapter . The equation of motion  is obtained by variation of the primary variable  and corresponds to a free linear, one-
dimensional, oscillator for the  variable that is absorbing the energy dissipated by the dissipating  system.

The generalized momenta,

can be used to derive the corresponding Hamiltonian

Example : The linearly-damped, linear oscillator10.5.1

LDual

m (x, y) x

y x

= [ − [y −x ] − xy]LDual

m

2
ẋẏ
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Note that this Hamiltonian is time independent, and thus is conserved for this complete dual-variable system. Using Hamilton’s
equations of motion gives the same two uncoupled equations of motion as obtained using the Lagrangian, i.e.  and .

2: Time-dependent Lagrangian: 

The complementary subsystem of the above dual-component Lagrangian, that is added to the primary dissipative subsystem, is
the adjoint to the equations for the primary subsystem of interest. In some cases, a set of the solutions of the complementary
equations can be expressed in terms of the solutions of the primary subsystem allowing the equations of motion to be expressed
solely in terms of the variables of the primary subsystem. Inspection of the solutions of the damped harmonic oscillator,
presented in chapter , implies that  and  must be related by the function

Therefore Bateman proposed a time-dependent, non-standard Lagrangian  of the form

This Lagrangian  corresponds to a harmonic oscillator for which the mass is accreting exponentially with
time in order to mimic the exponential energy dissipation. Use of this Lagrangian in the Euler-Lagrange equations gives the
solution

If the factor outside of the bracket is non-zero, then the equation in the bracket must be zero. The expression in the bracket is
the required equation of motion for the linearly-damped linear oscillator. This Lagrangian generates a generalized momentum
of

and the Hamiltonian is

The Hamiltonian is time dependent as expected. This leads to Hamilton’s equations of motion

Take the total time derivative of equation  and use equation  to substitute for  gives

If the term  is non-zero, then the term in brackets is zero. The term in the bracket is the usual equation of motion for the
linearly-damped harmonic oscillator.

3: Complex Lagrangian: 

Dekker proposed use of complex dynamical variables for solving the linearly-damped harmonic oscillator. It exploits the fact
that, in principle, each second order differential equation can be expressed in terms of a set of first-order differential equations.
This feature is the essential difference between Lagrangian and Hamiltonian mechanics. Let  be complex and assume it can be
expressed in the form of a real variable  as
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Substituting this complex variable into the relation

leads to the second-order equation for the real variable  of

This is the desired equation of motion for the linearly-damped harmonic oscillator. This result also can be shown by taking the
time derivative of Equation  and taking only the real part, i.e.

This feature is exploited using the following Lagrangian

where . The Lagrangian  is real for a conservative system and complex for a dissipative system.
Using the Lagrange-Euler equation for variation of , that is, , gives Equation  which leads to the required
equation of motion .

The canonical conjugate momenta are given by

The above Lagrangian plus canonically conjugate momenta lead to the complimentary Hamiltonians

These Hamiltonians give Hamilton equations of motion that lead to the correct equations of motion for  and 

The above examples have shown that three very different, non-standard, Lagrangians, plus their corresponding Hamiltonians, all
lead to the correct equation of motion for the linearly-damped harmonic oscillator. This illustrates the power of using non-standard
Lagrangians to describe dissipative motion in classical mechanics. However, postulating non-standard Lagrangians to produce the
required equations of motion appears to be of questionable usefulness. A fundamental approach is needed to build a firm
foundation upon which non-standard Lagrangian mechanics can be based. Non-standard Lagrangian mechanics remains an active,
albeit narrow, frontier of classical mechanics

This page titled 10.5: Dissipative Lagrangians is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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