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19.6: Appendix - Tensor Algebra

Tensors

Mathematically scalars and vectors are the first two members of a hierarchy of entities, called tensors, that behave under
coordinate transformations as described in appendix 19.4. The use of the tensor notation provides a compact and elegant way to
handle transformations in physics.

A scalar is a rank 0 tensor with one component, that is invariant under change of the coordinate system.

$(z'y'2') = d(xyz) (19.6.1)
A vector is a rank 1 tensor which has three components, that transform under rotation according to matrix relation
xX =A-x (19.6.2)

where A is the rotation matrix. Equation 19.6.2 can be written in the suffix form as
3
T =Y Az (19.6.3)
j=1

The above definitions of scalars and vectors can be subsumed into a class of entities called tensors of rank n that have 3"
components. A scalar is a tensor of rank » = 0, with only 30=1 component, whereas a vector has rank » = 1, that is, the vector x
has one suffix i and 3! = 3 components.

A second-order tensor T;; has rank r» = 2 with two suffixes, that is, it has 32=9 components that transform under rotation as
3 3
Tl/] ZZZ)\ik)\lekl (19.6.4)
k=1 I=1

For second-order tensors, the transformation formula given by Equation 19.6.4 can be written more compactly using matrices.
Thus the second-order tensor can be written as a 3 X 3 matrix

Ty T2 Tis
T = T21 T22 T23 (1965)
T3 T32 T33

The rotational transformation given in Equation 19.6.4 can be written in the form
3 3 3 3
T
T = Z Z)\ikaz Aji = Z ZAikal Nj (19.6.6)
=1 \ k=1 =1 \ k=1
where )\17;. are the matrix elements of the transposed matrix AT. The summations in 19.6.6 can be expressed in both the tensor and
conventional matrix form as the matrix product

T =X-T AT (19.6.7)

Equation 19.6.7defines the rotational properties of a spherical tensor.

Tensor products

Tensor outer product

Tensor products feature prominently when using tensors to represent transformations. A second-order tensor T can be formed by
using the tensor product, also called outer product, of two vectors a and b which, written in suffix form, is

a1b1 a1b2 a1b3
T=a®b= G,le 0,2b2 a2b3 (1968)
a3b1 a3b2 a3b3

In component form the matrix elements of this matrix are given by
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T;j = a;b; (19.6.9)

This second-order tensor product has a rank » = 2, that is, it equals the sum of the ranks of the two vectors. Equation 19.6.8 is
called a dyad since it was derived by taking the dyadic product of two vectors. In general, multiplication, or division, of two vectors
leads to second-order tensors. Note that this second-order tensor product completes the triad of tensors possible taking the product
of two vectors. That is, the scalar product a- b, has rank 7 = 0, the vector product a X b, rank 7 =1 and the tensor product a® b
has rank! r = 2.

Higher-order tensors can be created by taking more complicated tensor products. For example, a rank-3 tensor can be created by
taking the tensor outer product of the rank-2 tensor T;; and a vector ¢, which, for a dyadic tensor, can be written as the tensor
product of three vectors. That is,

Tz‘jk = T,-jck = aibjck (19.6.10)

In summary, the rank of the tensor product equals the sum of the ranks of the tensors included in the tensor product.

Tensor Inner Product

The lowest rank tensor product, which is called the inner product, is obtained by taking the tensor product of two tensors for the
special case where one index is repeated, and taking the sum over this repeated index. Summing over this repeated index, which is
called contraction, removes the two indices for which the index is repeated, resulting in a tensor that has rank  equal to the sum of
the ranks minus 2 for one contraction. That is, the product tensor has rank 7 =7r; +7r9 —2 .

The simplest example is the inner product of two vectors which has rank r =1+1—2 =0 , that is, it is the scalar product that
equals the trace of the inner product matrix, and this inner product is commutative.

An especially important case is the inner product of a rank-2 dyad a®b , given by Equation 19.6.8 with a vector c, that is, the
inner product T =a®Db - ¢ . Written in component form, the inner product is

3
Zaibicj: Zaz ; (a-b)c; (19.6.11)

The scalar product a- b is a scalar number, and thus the inner-product tensor is the vector ¢ renormalized by the magnitude of the
scalar product a-b. That is, it has a rank r =2 +1 —2 =1 . Thus the inner product of this rank-2 tensor with a vector gives a
vector. The inner product of a rank-2 tensor with a rank-1 tensor is used in this book for handling the rotation matrix, the inertia
tensor for rigid-body rotation, and for the stress and the strain tensors used to describe elasticity in solids.

Example 19.6.1: Displacement gradient tensor

The displacement gradient tensor provides an example of the use of the matrix representation to manipulate tensors. Let
@(z1, 2, z3) be a vector field expressed in a cartesian basis. The definition of the gradient G = V ¢ gives that

dp=G dx
Calculating the components of d¢ in terms of x gives

9¢, 5¢> 0¢1

d¢1_8xd 82dacﬁ—agd
0 0 0
d ¢2 _ ¢2 T QL 2 ¢2 o L, 2, ¢2 d.’133
J,‘ Oz L2 Oz T3
O3 O3 O3
dos = —dx1 + ——dzy + —dz
= o B T G
Using index notation this can be written as
0
do; = oz, dx;

The second-rank gradient tensor G can be represented in the matrix form as
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Then the vector ¢ can be expressed compactly as the inner product of G and x, that is

dp=G-dx

Tensor Properties

In principle one must distinguish between a 3 x 3 square matrix, and the tensor component representations of a rank-2 tensor.
However, as illustrated by the previous discussion, for orthogonal transformations, the tensor components of the second rank tensor
transform identically with the matrix components. Thus functionally, the matrix formulation and tensor representations are
identical. As a consequence, all the terminology and operations used in matrix mechanics are equally applicable to the tensor
representation.

The tensor representation of the rotation matrix provides the simplest example of the equivalence of the matrix and tensor
representations of transformations. Appendix 19.4.2showed that the unitary rotation matrix A, acting on a vector x transforms it to
the vector x’ that is rotated with respect to x. That is, the transformation is

x=X-x (19.6.12)
where
/ al A al A Al A
ml T el - e el - €9 el N e3
r_ / _ I PV al o~ al o~
x = | x=| x A=]| &,-€ €5-€ &y-e;3 (19.6.13)
! T ~l ~ ~l ~ ~l -~
Zq 3 €3;-€e; €3-€y e3-e€3

Appendix 19.4.2 showed that the rotation matrix A requires 9 components to fully specify the transformation from the initial 3-
component vector X to the rotated vector x’. The rotation tensor is a dyad as well as being unitary and dimensionless. Note that
Equation 19.6.12is an example of the inner product of a rank—2 rotation tensor acting on a vector leading to a another vector that
is rotated with respect to the first vector.

In general, rank-2 tensors have dimensions and are not unitary. For example, the angular velocity vector w and the angular
momentum vector L are related by the inner product of the inertia tensor {I} and w. That is

L={I} w (19.6.14)

The inertia tensor has dimensions of mass x length? and relates two very different vector observables. The stress tensor and the
strain tensor, discussed in chapter 15, provide another example of second-order tensors that are used to transform one vector
observable to another vector observable analogous to the case of the rotation matrix or the inertia tensor.

Note that pseudo-tensors can be used to make a rotational transformation plus a change in the sign. That is, they lead to a parity
inversion.

The tensor notation is used extensively in physics since it provides a powerful, elegant, and compact representation for describing
transformations.

Contravariant and covariant tensors

In general the configuration space used to specify a dynamical system is not a Euclidean space in that there may not be a system of
coordinates for which the distance between any two neighboring points can be represented by the sum of the squares of the
coordinate differentials. For example, a set of cartesian coordinate does not exist for the two-dimension motion of a single particle
constrained to the curved surface of a fixed sphere. Such curved spaces need to be represented in terms of Riemannian geometry
rather than Euclidean geometry. Curved configuration spaces occur in some branches of physics such as Einstein’s General Theory
of Relativity.
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Tensors have transformation properties that can be either contravariant or covariant. Consider a set of generalized coordinates ¢’
that are a function of the coordinates ¢. Then infinitessimal changes dqg™ will lead to infinitessimal changes dq'™ where

n 6q/’rL
dg" => B dq™ (19.6.15)

Contravariant components of a tensor transform according to the relation
aqln
A=) =)™ 19.6.16
; 8qm ( )

Equation 19.6.16relates the contravariant components in the unprimed and primed frames.

Derivatives of a scalar function ¢, such as

0 0 Og™ Og™
X, = 99 = 09 09 =3 94 \m (19.6.17)
6qn — aqm aqn — 6qn
That is, covariant components of the tensor transform according to the relation
8 m
gzzai,\m (19.6.18)
m 04"

It is important to differentiate between contravariant and covariant vectors. The superscript/subscript convention for distinguishing
between these two flavours of tensors is given in table 19.6.1

Table 19.6.1: Einstein notation for tensors.
zt denotes a contravariant vector

Ly, denotes a covariant vector

In linear algebra one can map from one coordinate system to another as illustrated in appendix 19.4. That is, the tensor x can be
expressed as components with respect to either the unprimed or primed coordinate frames

x = &7} + &5} + &5z} = 6171 + 8222 + €373 (19.6.19)
For a n—dimensional manifold the unit basis column vectors € transform according to the transformation matrix A
e'=X-é (19.6.20)
Since the tensor x is independent of the coordinate basis, the components of x must have the opposite transform
=) x (19.6.21)
This normal vector x is called a “contravariant vector” because it transforms contrary to the basis column vector transformation.

The inverse of Equation 19.6.21gives that the column vector element

Ty =Y Al (19.6.22)

Consider the case of a gradient with respect to the coordinate x in both the unprimed and primed bases. Using the chain rule for the
partial derivative then the component of the gradient in the primed frame can be expanded as

of > of oz, of of
[— — = —_— = —
(Vf),u - 6%& - — amu amh - — axy Ayué‘p,u )\py 6$# (19623)
That is, the gradient transforms as
V'f=X-Vf (19.6.24)

That is, a gradient transforms as a covariant vector, like the unit vectors, whereas a vector x is contravariant under
transformation.
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L _N\T . . . .
Normally the basis is orthonormal, ()\ 1) = A, and thus there is no difference between contravariant and covariant vectors.
However, for curved coordinate systems, such as non-Euclidean geometry in the General Theory of Relativity, the covariant and
contravariant vectors behave differently.

The Einstein convention is extended to apply to matrices by writing the elements of the matrix A as A, while the elements of the
transposed matrix A ! are written as AY,. The matrix product for A with a contravariant vector X is written as

XM= "AUX" (19.6.25)

where the summation over v effectively cancels the identical superscript and subscript v.

Similarly a covariant vector, such as a gradient, is written as,

(V= (A1) (V=3 (41, (19.6.26)

v v

Again the summation cancels the v superscript and subscript. The Kronecker delta symbol is written as

> oaxY=x* (19.6.27)
Generalized inner product
The generalized definition of an inner product is
S=> guX'Y"” (19.6.28)
na

where g, is a unitary matrix called a covariant metric. The covariant metric transforms a contravariant to a covariant tensor. For
example the matrix element of a covariant tensor X,, can be written as

XI/ :ZQMVXH (19629)
m
By association of the covariant metric with either of the vectors in the inner product gives
S=YguX'Y'=> X,Y'=> X", (19.6.30)
pv v h
Similarly it can be defined in terms of an orthogonal contravariant metric gv where
S=> g"X,Y, (19.6.31)
pnv
Then
X' =Y ¢"X, (19.6.32)
"

Association of the contravariant metric with one of the vectors in the inner product gives the inner product
S=>"g"X,Y, =) XY, =) X, ¥Y* (19.6.33)
[z v p
For most situations in this book the metric g,,,, is diagonal and unitary.

Transformation Properties of Observables

In physics, observables can be represented by spherical tensors which specify the angular momentum and parity characteristics of
the observable, and the tensor rank is independent of the time dependence. The transformation properties of these tensors, coupled
with their time-reversal invariance, specify the fundamental characteristics of the observables.

Table 19.6.2 summarizes the transformation properties under rotation, spatial inversion and time reversal for observables
encountered in classical mechanics and electrodynamics. Note that observables can be scalar, vector, pseudovector, or second-order
tensors, under rotation, and even or odd under either space inversion or time inversion. For example, in classical mechanics the
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inertia tensor I relates the angular velocity vector w to the angular momentum vector L by taking the inner product L=1-w . In
general I is not diagonal and thus the angular momentum is not parallel to the angular velocity w. A similar example in
electrodynamics is the dielectric tensor K which relates the displacement field D to the electric field E by D =K -E. For
anisotropic crystal media K is not diagonal leading to the electric field vectors E and D not being parallel.

As discussed in chapter 7, Noether’s Theorem states that symmetries of the transformation properties lead to important
conservation laws. The behavior of classical systems under rotation relates to the conservation of angular momentum, the behavior
under spatial inversion relates to parity conservation, and time-reversal invariance relates to conservation of energy. That is,
conservative forces conserve energy and are time-reversal invariant.

Table 19.6.2: Transformation properties of scalar, vector, pseudovector, and tensor observables under rotation, spatial inversion, and time

reversal®
Physical Observable Rotatirc;?ﬂ({")fensor Space inversion Time reversal Name
1) Classical
Mechanics
Mass density p 0 Even Even Scalar
Kinetic energy p2 /2m 0 Even Even Scalar
Potential energy U(r) 0 Even Even Scalar
Lagrangian L 0 Even Even Scalar
Hamiltonian H 0 Even Even Scalar
Gr;:s;ittii?;al 1) 0 Even Even Scalar
Coordinate r 1 Odd Even Vector
Velocity v 1 Odd Odd Vector
Momentum o) 1 Odd Odd Vector
Angular momentum L=rxp 1 Even Odd Pseudovector
Force F 1 Odd Even Vector
Torque N=rxF 1 Even Even Pseudovector
Gravitational field g 1 Odd Even Vector
Inertia tensor I 2 Even Even Tensor
Elasttiecriltsi):tress T 2 Even Even Tensor
2)
Electromagnetism
Charge density p 0 Even Even Scalar
Current density j 1 Odd Odd Vector
Electric field E 1 Odd Even Vector
Polarization P 1 Odd Even Vector
Displacement D 1 Odd Even Vector
Magnetic B field B 1 Even Odd Pseudovector
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Rotation (Tensor

Physical Observable K Space inversion Time reversal Name
ran
Magnetization M 1 Even Odd Pseudovector
Magnetic H field H 1 Even Odd Pseudovector
Poynting vector S=ExH 1 Odd Odd Vector
Dielectric tensor K 2 Even Even Tensor
M 11 st
axwell stress T 2 Even Even Tensor
tensor
References

1The common convention is to denote the scalar product as a- b, the vector product as a x b, and tensor productasa®b .

2Based on table 6.1 in "Classical Electrodynamics" gnd edition, by J.D. Jackson [Jac75]
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