
19.6.1 https://phys.libretexts.org/@go/page/9689

19.6: Appendix - Tensor Algebra

Tensors

Mathematically scalars and vectors are the first two members of a hierarchy of entities, called tensors, that behave under
coordinate transformations as described in appendix . The use of the tensor notation provides a compact and elegant way to
handle transformations in physics.

A scalar is a rank 0 tensor with one component, that is invariant under change of the coordinate system.

A vector is a rank 1 tensor which has three components, that transform under rotation according to matrix relation

where  is the rotation matrix. Equation  can be written in the suffix form as

The above definitions of scalars and vectors can be subsumed into a class of entities called tensors of rank  that have 
components. A scalar is a tensor of rank , with only  component, whereas a vector has rank , that is, the vector 
has one suffix  and  components.

A second-order tensor  has rank  with two suffixes, that is, it has  components that transform under rotation as

For second-order tensors, the transformation formula given by Equation  can be written more compactly using matrices.
Thus the second-order tensor can be written as a  matrix

The rotational transformation given in Equation  can be written in the form

where  are the matrix elements of the transposed matrix . The summations in  can be expressed in both the tensor and
conventional matrix form as the matrix product

Equation  defines the rotational properties of a spherical tensor.

Tensor products

Tensor outer product

Tensor products feature prominently when using tensors to represent transformations. A second-order tensor  can be formed by
using the tensor product, also called outer product, of two vectors  and  which, written in suffix form, is

In component form the matrix elements of this matrix are given by
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This second-order tensor product has a rank , that is, it equals the sum of the ranks of the two vectors. Equation  is
called a dyad since it was derived by taking the dyadic product of two vectors. In general, multiplication, or division, of two vectors
leads to second-order tensors. Note that this second-order tensor product completes the triad of tensors possible taking the product
of two vectors. That is, the scalar product , has rank , the vector product , rank  and the tensor product 
has rank  .

Higher-order tensors can be created by taking more complicated tensor products. For example, a rank-3 tensor can be created by
taking the tensor outer product of the rank-2 tensor  and a vector  which, for a dyadic tensor, can be written as the tensor
product of three vectors. That is,

In summary, the rank of the tensor product equals the sum of the ranks of the tensors included in the tensor product.

Tensor Inner Product

The lowest rank tensor product, which is called the inner product, is obtained by taking the tensor product of two tensors for the
special case where one index is repeated, and taking the sum over this repeated index. Summing over this repeated index, which is
called contraction, removes the two indices for which the index is repeated, resulting in a tensor that has rank  equal to the sum of
the ranks minus 2 for one contraction. That is, the product tensor has rank .

The simplest example is the inner product of two vectors which has rank , that is, it is the scalar product that
equals the trace of the inner product matrix, and this inner product is commutative.

An especially important case is the inner product of a rank-2 dyad , given by Equation , with a vector , that is, the
inner product . Written in component form, the inner product is

The scalar product  is a scalar number, and thus the inner-product tensor is the vector  renormalized by the magnitude of the
scalar product . That is, it has a rank . Thus the inner product of this rank-2 tensor with a vector gives a
vector. The inner product of a rank-2 tensor with a rank-1 tensor is used in this book for handling the rotation matrix, the inertia
tensor for rigid-body rotation, and for the stress and the strain tensors used to describe elasticity in solids.

The displacement gradient tensor provides an example of the use of the matrix representation to manipulate tensors. Let 
 be a vector field expressed in a cartesian basis. The definition of the gradient  gives that

Calculating the components of  in terms of  gives

Using index notation this can be written as

The second-rank gradient tensor  can be represented in the matrix form as
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Then the vector  can be expressed compactly as the inner product of  and , that is

Tensor Properties
In principle one must distinguish between a  square matrix, and the tensor component representations of a rank-2 tensor.
However, as illustrated by the previous discussion, for orthogonal transformations, the tensor components of the second rank tensor
transform identically with the matrix components. Thus functionally, the matrix formulation and tensor representations are
identical. As a consequence, all the terminology and operations used in matrix mechanics are equally applicable to the tensor
representation.

The tensor representation of the rotation matrix provides the simplest example of the equivalence of the matrix and tensor
representations of transformations. Appendix  showed that the unitary rotation matrix , acting on a vector  transforms it to
the vector  that is rotated with respect to . That is, the transformation is

where

Appendix  showed that the rotation matrix  requires 9 components to fully specify the transformation from the initial 3-
component vector  to the rotated vector . The rotation tensor is a dyad as well as being unitary and dimensionless. Note that
Equation  is an example of the inner product of a rank−2 rotation tensor acting on a vector leading to a another vector that
is rotated with respect to the first vector.

In general, rank-2 tensors have dimensions and are not unitary. For example, the angular velocity vector  and the angular
momentum vector  are related by the inner product of the inertia tensor  and . That is

The inertia tensor has dimensions of  and relates two very different vector observables. The stress tensor and the
strain tensor, discussed in chapter , provide another example of second-order tensors that are used to transform one vector
observable to another vector observable analogous to the case of the rotation matrix or the inertia tensor.

Note that pseudo-tensors can be used to make a rotational transformation plus a change in the sign. That is, they lead to a parity
inversion.

The tensor notation is used extensively in physics since it provides a powerful, elegant, and compact representation for describing
transformations.

Contravariant and covariant tensors
In general the configuration space used to specify a dynamical system is not a Euclidean space in that there may not be a system of
coordinates for which the distance between any two neighboring points can be represented by the sum of the squares of the
coordinate differentials. For example, a set of cartesian coordinate does not exist for the two-dimension motion of a single particle
constrained to the curved surface of a fixed sphere. Such curved spaces need to be represented in terms of Riemannian geometry
rather than Euclidean geometry. Curved configuration spaces occur in some branches of physics such as Einstein’s General Theory
of Relativity.
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Tensors have transformation properties that can be either contravariant or covariant. Consider a set of generalized coordinates 
that are a function of the coordinates . Then infinitessimal changes  will lead to infinitessimal changes  where

Contravariant components of a tensor transform according to the relation

Equation  relates the contravariant components in the unprimed and primed frames.

Derivatives of a scalar function , such as

That is, covariant components of the tensor transform according to the relation

It is important to differentiate between contravariant and covariant vectors. The superscript/subscript convention for distinguishing
between these two flavours of tensors is given in table 

denotes a contravariant vector

denotes a covariant vector

Table : Einstein notation for tensors.

In linear algebra one can map from one coordinate system to another as illustrated in appendix . That is, the tensor  can be
expressed as components with respect to either the unprimed or primed coordinate frames

For a −dimensional manifold the unit basis column vectors  transform according to the transformation matrix 

Since the tensor  is independent of the coordinate basis, the components of  must have the opposite transform

This normal vector  is called a “contravariant vector” because it transforms contrary to the basis column vector transformation.

The inverse of Equation  gives that the column vector element

Consider the case of a gradient with respect to the coordinate  in both the unprimed and primed bases. Using the chain rule for the
partial derivative then the component of the gradient in the primed frame can be expanded as

That is, the gradient transforms as

That is, a gradient transforms as a covariant vector, like the unit vectors, whereas a vector  is contravariant under
transformation.
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′
2x

′
2 ê
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Normally the basis is orthonormal, , and thus there is no difference between contravariant and covariant vectors.
However, for curved coordinate systems, such as non-Euclidean geometry in the General Theory of Relativity, the covariant and
contravariant vectors behave differently.

The Einstein convention is extended to apply to matrices by writing the elements of the matrix  as  while the elements of the
transposed matrix  are written as . The matrix product for  with a contravariant vector  is written as

where the summation over  effectively cancels the identical superscript and subscript .

Similarly a covariant vector, such as a gradient, is written as,

Again the summation cancels the  superscript and subscript. The Kronecker delta symbol is written as

Generalized inner product

The generalized definition of an inner product is

where  is a unitary matrix called a covariant metric. The covariant metric transforms a contravariant to a covariant tensor. For
example the matrix element of a covariant tensor  can be written as

By association of the covariant metric with either of the vectors in the inner product gives

Similarly it can be defined in terms of an orthogonal contravariant metric  where

Then

Association of the contravariant metric with one of the vectors in the inner product gives the inner product

For most situations in this book the metric  is diagonal and unitary.

Transformation Properties of Observables

In physics, observables can be represented by spherical tensors which specify the angular momentum and parity characteristics of
the observable, and the tensor rank is independent of the time dependence. The transformation properties of these tensors, coupled
with their time-reversal invariance, specify the fundamental characteristics of the observables.

Table  summarizes the transformation properties under rotation, spatial inversion and time reversal for observables
encountered in classical mechanics and electrodynamics. Note that observables can be scalar, vector, pseudovector, or second-order
tensors, under rotation, and even or odd under either space inversion or time inversion. For example, in classical mechanics the
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inertia tensor  relates the angular velocity vector  to the angular momentum vector  by taking the inner product . In
general  is not diagonal and thus the angular momentum is not parallel to the angular velocity . A similar example in
electrodynamics is the dielectric tensor  which relates the displacement field  to the electric field  by . For
anisotropic crystal media  is not diagonal leading to the electric field vectors  and  not being parallel.

As discussed in chapter , Noether’s Theorem states that symmetries of the transformation properties lead to important
conservation laws. The behavior of classical systems under rotation relates to the conservation of angular momentum, the behavior
under spatial inversion relates to parity conservation, and time-reversal invariance relates to conservation of energy. That is,
conservative forces conserve energy and are time-reversal invariant.

Physical Observable  
Rotation (Tensor

rank)
Space inversion Time reversal Name

1) Classical
Mechanics

     

Mass density 0 Even Even Scalar

Kinetic energy 0 Even Even Scalar

Potential energy 0 Even Even Scalar

Lagrangian 0 Even Even Scalar

Hamiltonian 0 Even Even Scalar

Gravitational
potential

0 Even Even Scalar

Coordinate 1 Odd Even Vector

Velocity 1 Odd Odd Vector

Momentum 1 Odd Odd Vector

Angular momentum 1 Even Odd Pseudovector

Force 1 Odd Even Vector

Torque 1 Even Even Pseudovector

Gravitational field 1 Odd Even Vector

Inertia tensor 2 Even Even Tensor

Elasticity stress
tensor

2 Even Even Tensor

      

2)
Electromagnetism

     

Charge density 0 Even Even Scalar

Current density 1 Odd Odd Vector

Electric field 1 Odd Even Vector

Polarization 1 Odd Even Vector

Displacement 1 Odd Even Vector

Magnetic  field 1 Even Odd Pseudovector

Table : Transformation properties of scalar, vector, pseudovector, and tensor observables under rotation, spatial inversion, and time
reversal
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Physical Observable  
Rotation (Tensor

rank)
Space inversion Time reversal Name

Magnetization 1 Even Odd Pseudovector

Magnetic  field 1 Even Odd Pseudovector

Poynting vector 1 Odd Odd Vector

Dielectric tensor 2 Even Even Tensor

Maxwell stress
tensor

2 Even Even Tensor
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