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4.4: Limit Cycles

Poincaré-Bendixson theorem

Coupled first-order differential equations in two dimensions of the form

occur frequently in physics. The state-space paths do not cross for such two-dimensional autonomous systems, where an
autonomous system is not explicitly dependent on time.

The Poincaré-Bendixson theorem states that, state-space, and phase-space, can have three possible paths:

1. closed paths, like the elliptical paths for the undamped harmonic oscillator,
2. terminate at an equilibrium point as , like the point attractor for a damped harmonic oscillator,
3. tend to a limit cycle as .

The limit cycle is unusual in that the periodic motion tends asymptotically to the limit-cycle attractor independent of whether the
initial values are inside or outside the limit cycle. The balance of dissipative forces and driving forces often leads to limit-cycle
attractors, especially in biological applications. Identification of limit-cycle attractors, as well as the trajectories of the motion
towards these limit-cycle attractors, is more complicated than for point attractors.

Figure : The Poincaré-Bendixson theorem allows the following three scenarios for two-dimensional autonomous systems. (1)
Closed paths as illustrated by the undamped harmonic oscillator. (2) Terminate at an equilibrium point as , as illustrated by
the damped harmonic oscillator, and (3) Tend to a limit cycle as  as illustrated by the van der Pol oscillator.

van der Pol damped harmonic oscillator
The van der Pol damped harmonic oscillator illustrates a non-linear equation that leads to a well-studied, limit-cycle attractor
that has important applications in diverse fields. The van der Pol oscillator has an equation of motion given by

The non-linear  damping term is unusual in that the sign changes when  leading to positive damping for 
and negative damping for  To simplify Equation , assume that the term  that is, .

This equation was studied extensively during the 1920’s and 1930’s by the Dutch engineer, Balthazar van der Pol, for describing
electronic circuits that incorporate feedback. The form of the solution can be simplified by defining a variable  Then the
second-order Equation  can be expressed as two coupled first-order equations.

It is advantageous to transform the  state space to polar coordinates by setting

and using the fact that . Therefore
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Similarly for the angle coordinate

Figure : Solutions of the van der Pol system for  top row and  bottom row, assuming that . The left
column shows the time dependence . The right column shows the corresponding  state space plots. Upper: Weak
nonlinearity, ; At large times the solution tends to one limit cycle for initial values inside or outside the limit cycle
attractor. The amplitude  for two initial conditions approaches an approximately harmonic oscillation. Lower: Strong
nonlinearity, ; Solutions approach a common limit cycle attractor for initial values inside or outside the limit cycle attractor
while the amplitude  approaches a common approximate square-wave oscillation.

Multiply Equation  by  and  by  and subtract gives

Equations  and  allow the van der Pol equations of motion to be written in polar coordinates

The non-linear terms on the right-hand side of equations -  have a complicated form.

Weak non-linearity: 

In the limit that , equations ,  correspond to a circular state-space trajectory similar to the harmonic oscillator.
That is, the solution is of the form
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where  and  are arbitrary parameters. For weak non-linearity,  the angular Equation  has a rotational frequency
that is unity since the  term changes sign twice per period, in addition to the small value of . For  and 
the radial Equation  has a sign of the  term that is positive and thus the radius increases monotonically to
unity. For  the bracket is predominantly negative resulting in a spiral decrease in the radius. Thus, for very weak non-
linearity, this radial behavior results in the amplitude spiralling to a well defined limit-cycle attractor value of  as illustrated
by the state-space plots in Figure  for cases where the initial condition is inside or external to the circular attractor. The final
amplitude for different initial conditions also approach the same asymptotic behavior.

Dominant non-linearity: 

For the case where the non-linearity is dominant, that is , then as shown in Figure , the system approaches a well
defined attractor, but in this case it has a significantly skewed shape in state-space, while the amplitude approximates a square
wave. The solution remains close to  until  and then it relaxes quickly to  with  This is
followed by the mirror image. This behavior is called a relaxed vibration in that a tension builds up slowly then dissipates by a
sudden relaxation process. The seesaw is an extreme example of a relaxation oscillator where the seesaw angle switches
spontaneously from one solution to the other when the difference in their moment arms changes sign.

The study of feedback in electronic circuits was the stimulus for study of this equation by van der Pol. However, Lord Rayleigh
first identified such relaxation oscillator behavior in  during studies of vibrations of a stringed instrument excited by a bow, or
the squeaking of a brake drum. In his discussion of non-linear effects in acoustics, he derived the equation

Differentiation of Rayleigh’s Equation  gives

Using the substitution of

leads to the relations

Substituting these relations into Equation  gives

Multiplying by  and rearranging leads to the van der Pol equation

The rhythm of a heartbeat driven by a pacemaker is an important application where the self-stabilization of the attractor is a
desirable characteristic to stabilize an irregular heartbeat; the medical term is arrhythmia. The mechanism that leads to
synchronization of the many pacemaker cells in the heart and human body due to the influence of an implanted pacemaker is
discussed in chapter . Another biological application of limit cycles is the time variation of animal populations.

In summary the non-linear damping of the van der Pol oscillator leads to a self-stabilized, single limit-cycle attractor that is
insensitive to the initial conditions. The van der Pol oscillator has many important applications such as bowed musical instruments,
electrical circuits, and human anatomy as mentioned above. The van der Pol oscillator illustrates the complicated manifestations of
the motion that can be exhibited by non-linear systems.

This page titled 4.4: Limit Cycles is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via
source content that was edited to the style and standards of the LibreTexts platform.
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