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11.12: Two-body Scattering

Two moving bodies, that are interacting via a central force, scatter when the force is repulsive, or when an attractive system is
unbound. Two-body scattering of bodies is encountered extensively in the fields of astronomy, atomic, nuclear, and particle
physics. The probability of such scattering is most conveniently expressed in terms of scattering cross sections defined below.
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Figure 11.12.1: Scattering probability for an incident beam of cross sectional area A by a target body of cross sectional area .

The concept of scattering cross section for two-body scattering is most easily described for the total two-body cross section. The
probability P that a beam of np incident point particles/second, distributed over a cross sectional area Apg, will hit a single solid
object, having a cross sectional area ¢, is given by the ratio of the areas as illustrated in Figure 11.12.1 That is,

g
P=— 11.12.1
T (11.12.1)
where it is assumed that Ap >> o. For a spherical target body of radius =, the cross section o = 7r%. The scattering probability P
is proportional to the cross section ¢ which is the cross section of the target body perpendicular to the beam; thus ¢ has the units of

darea.

Since the incident beam of np incident point particles/second, has a cross sectional area Apg, then it will have an areal density [
given by

np

1=

beam particles/m? /s (11.12.2)

The number of beam particles scattered per second Ng by this single target scatterer equals

Ng=Pnp=—TIAp=ol (11.12.3)
Ap

Thus the cross section for scattering by this single target body is

N, icl
oo Vs _ Scattered particles/s (11.12.4)

I incident beam/ m? /s

Realistically one will have many target scatterers in the target and the total scattering probability increases proportionally to the
number of target scatterers. That is, for a target comprising an areal density of 77 target bodies per unit area of the incident beam,
then the number scattered will increase proportional to the target areal density ny. That is, there will be ny Ap scattering bodies
that interact with the beam assuming that the target has a larger area than the beam. Thus the total number scattered per second Ng
by a target that comprises multiple scatterers is

Ns =0 nrAp = onpnr (11.12.5)

Ap
Note that this is independent of the cross sectional area of the beam assuming that the target area is larger than that of the beam.
That is, the number scattered per second is proportional to the cross section ¢ times the product of the number of incident particles
per second, 7, and the areal density of target scatterers, 7. Typical cross sections encountered in astrophysics are o ~ 10'4m?,
in atomic physics: o ~ 1072%m?, and in nuclear physics; o ~ 10~28m? = barns. >

N. B., the above proof assumed that the target size is larger than the cross sectional area of the incident beam. If the size of the
target is smaller than the beam, then np is replaced by the areal density/s of the beam np and nr is replaced by the number of
target particles nr and the cross-sectional size of the target cancels.
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Differential two-body scattering cross section
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Figure 11.12.2: The equivalent one-body problem for scattering of a reduced mass y by a force centre in the centre of mass system.

The differential two-body scattering cross section gives much more detailed information of the scattering force than does the total
cross section because of the correlation between the impact parameter and the scattering angle. That is, a measurement of the
number of beam particles scattered into a given solid angle as a function of scattering angles 6, ¢ probes the radial form of the
scattering force.

The differential cross section for scattering of an incident beam by a single target body into a solid angle d{) at scattering angles
0, ¢ is defined to be

do __1dNs(6,9)
d_Q(9¢) =T g (11.12.6)

where the right-hand side is the ratio of the number scattered per target nucleus into solid angle d€2(6, ¢), to the incident beam
intensity I particles/m?/s.

Similar reasoning used to derive Equation 11.12.41leads to the number of beam particles scattered into a solid angle df? for np
beam particles incident upon a target with areal density 77 is

dN (6 d
Nsdgl’_‘f’) = sy 52 (66) (11.12.7)

Consider the equivalent one-body system for scattering of one body by a scattering force center in the center of mass. As shown in
figures (11.8.2)and 11.12.2 the perpendicular distance between the center of force of the two body system and trajectory of the
incoming body at infinite distance is called the impact parameter b. For a central force the scattering system has cylindrical
symmetry, therefore the solid angle dQ(0¢)=sinfdfd¢ can be integrated over the azimuthal angle ¢ to give
dQ(0) = 2w sin6d6.

For the inverse-square, two-body, central force there is a one-to-one correspondence between impact parameter b and scattering
angle 6 for a given bombarding energy. In this case, assuming conservation of flux means that the incident beam particles passing
through the impact-parameter annulus between b and b + db must equal the the number passing between the corresponding angles
6 and 6+ df. That is, for an incident beam flux of I particles/m? /s the number of particles per second passing through the

annulus is
do _ .
I27b |db| :27rd—QIs1n9|d0\ (11.12.8)
The modulus is used to ensure that the number of particles is always positive. Thus
do b |db
— = — 11.12.
dQ  sinf ’ df ( 9)

Impact parameter dependence on scattering angle

If the function b = f(0, E.,,) is known, then it is possible to evaluate ‘%’ which can be used in Equation 11.12.8to calculate the
differential cross section. A simple and important case to consider is two-body elastic scattering for the inverse-square law force
such as the Coulomb or gravitational forces. To avoid confusion in the following discussion, the center-of-mass scattering angle
will be called 6, while the angle used to define the hyperbolic orbits in the discussion of trajectories for the inverse square law, will
be called .
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In chapter 11.8 the equivalent one-body representation gave that the radial distance for a trajectory for the inverse square law is

given by
1 k
= =B tecosy (11.12.10)
r 12
Note that closest approach occurs when 1) = 0 while for 7 — oo the bracket must equal zero, that is
1
cosz/)oo::t‘—‘ (11.12.11)
€

The polar angle v is measured with respect to the symmetry axis of the two-body system which is along the line of distance of
closest approach as shown in Figure (11.8.2). The geometry and symmetry show that the scattering angle 6 is related to the
trajectory angle 9., by

0=m—2¢ (11.12.12)
Equation (11.7.1)gives that
+ld
/ ! (11.12.13)
Pmin 12
\/ 2/LT2)
Since
2 =v’p? =b*2uE,, (11.12.14)
then the scattering angle can be written as.
*© bd
- / r (11.12.15)
‘min 2
o f£-)

Letu = %, then

/ (11.12.16)
Tmin \/ b2u2)
For the repulsive inverse square law
k
U=——=—ku (11.12.17)
r
where k is taken to be positive for a repulsive force. Thus the scattering angle relation becomes
(11.12.18)
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Figure 11.12.3: Impact parameter dependence on scattering angle for Rutherford scattering.
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The solution of this equation is given by equation (11.8.12)to be

u:%:—'t;—f[l +ecosy] (11.12.19)
where the eccentricity
€= 1+M (11.12.20)
pk?
For 7 — 0o, u = 0 then, as shown previously,
‘—’:cosz/)oo—cos F;Q :sing (11.12.21)

Therefore

2E.mb o 0
= 62—1 :COtE (11.12.22)

that is, the impact parameter b is given by the relation

LA (11.12.23)

b= 2Ecmco >

Thus, for an inverse-square law force, the two-body scattering has a one-to-one correspondence between impact parameter b and
scattering angle 6 as shown schematically in Figure 11.12.3

Figure 11.12.4: Classical trajectories for scattering to a given angle by the repulsive Coulomb field plus the attractive nuclear field

for three different impact parameters. Path 1 is pure Coulomb. Paths 2 and 3 include Coulomb plus nuclear interactions. The dashed

parts of trajectories 2 and 3 correspond to only the Coulomb force acting, i.e. zero nuclear force
If k is negative, which corresponds to an attractive inverse square law, then one gets the same relation between impact parameter
and scattering angle except that the sign of the impact parameter b is opposite. This means that the hyperbolic trajectory has an
interior rather than exterior focus. That is, the trajectory partially orbits around the center of force rather than being repelled away.

k 1
min — 1 11.12.24
" 2Ecm ( + sing ) ( )
Note that for 8 = 180° then
k
Een = = U(Tmin) (11.12.25)
Tmin

which is what you would expect from equating the incident kinetic energy to the potential energy at the distance of closest
approach.

For scattering of two nuclei by the repulsive Coulomb force, if the impact parameter becomes small enough, the attractive nuclear
force also acts leading to impact-parameter dependent effective potentials illustrated in Figure 11.12.4 Trajectory 1 does not
overlap the nuclear force and thus is pure Coulomb. Trajectory 2 interacts at the periphery of the nuclear potential and the
trajectory deviates from pure Coulomb shown dashed. Trajectory 3 passes through the interior of the nuclear potential. These three
trajectories all can lead to the same scattering angle and thus there no longer is a one-to-one correspondence between scattering
angle and impact parameter.
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Rutherford scattering

Two models of the nucleus evolved in the 1900’s, the Rutherford model assumed electrons orbiting around a small nucleus like
planets around the sun, while J.J. Thomson’s ”plum-pudding” model assumed the electrons were embedded in a uniform sphere of
positive charge the size of the atom. When Rutherford derived his classical formula in 1911 he realized that it can be used to
determine the size of the nucleus since the electric field obeys the inverse square law only when outside of the charged spherical
nucleus. Inside a uniform sphere of charge the electric field is E ocr and thus the scattering cross section will not obey the
Rutherford relation for distances of closest approach that are less than the radius of the sphere of negative charge. Observation of
the angle beyond which the Rutherford formula breaks down immediately determines the radius of the nucleus.

do  1( k \* 1
— == —= 11.12.2
a4 <2Ecm > sin g ( 6)

This cross section assumes elastic scattering by a repulsive two-body inverse-square central force. For scattering of nuclei in the
Coulomb potential, the constant k is given to be

Z,Zre?

11.12.27
4dre, ( )

The cross section, scattering angle and E,, of Equation 11.12.26are evaluated in the center-of-mass coordinate system, whereas
usually two-body elastic scattering data involve scattering of the projectiles by a stationary target as discussed in chapter 11.13.

Gieger and Marsden performed scattering of 7.7 MeV « particles from a thin gold foil and proved that the differential scattering
cross section obeyed the Rutherford formula back to angles corresponding to a distance of closest approach of 10~!4m which is
much smaller that the 1071%m size of the atom. This validated the Rutherford model of the atom and immediately led to the Bohr
model of the atom which played such a crucial role in the development of quantum mechanics. Bohr showed that the agreement
with the Rutherford formula implies the Coulomb field obeys the inverse square law to small distances. This work was performed
at Manchester University, England between 1908 and 1913. It is fortunate that the classical result is identical to the quantal cross
section for scattering, otherwise the development of modern physics could have been delayed for many years.

Scattering of very heavy ions, such as 2°Pb, can electromagnetically excite target nuclei. For the Coulomb force the impact
parameter b and the distance of closest approach, 7y, are directly related to the scattering angle 6 by Equation 11.12.23 Thus
observing the angle of the scattered projectile unambiguously determines the hyperbolic trajectory and thus the electromagnetic
impulse given to the colliding nuclei. This process, called Coulomb excitation, uses the measured angular distribution of the
scattered ions for inelastic excitation of the nuclei to precisely and unambiguously determine the Coulomb excitation cross section
as a function of impact parameter. This unambiguously determines the shape of the nuclear charge distribution.

Example 11.12.1: Two-body scattering by an inverse cubic force

k

Assume two-body scattering by a potential U = i where k£ > 0. This corresponds to a repulsive two-body force F =

2k A
5T

Insert this force into Binet’s differential orbit, equation (11.5.5), gives

d*u 2ku
dTﬂ +u (1 +l—2) =0

The solution is of the form u = A sin(wi + ) where A and § are constants of integration, [ = pre), and

2ku
2 __
w = <1+l—2)

Initially r = co, u = 0, and therefore 8 = 0. Also at 7 = oo, E = ui2 , that s [fo| = % Then
dr . dr 1 l du l
F=—t=——=——— = —A—wcos(wy)
dy dy pr? p dip %

The initial energy gives that A = % v/ 2uE. Hence the orbit equation is

\2uE

u=—= sin(wip)
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The above trajectory has a distance of closest approach, ry;,, when i, = 2—’; . Moreover, due to the symmetry of the orbit,
the scattering angle 6 is given by
1
(9271'—2’(/)0 =T 1——
w

9 U\ 2 k\ 2
12— (142 " (142
T <+ l2> (+b2E)

This gives that the impact parameter b is related to scattering angle by

Since I? = p2b%r2, = 20°pE then

b2 _ k (71-_0)2

 E (2r—0)6

This impact parameter relation can be used in Equation 11.12.8to give the differential cross section

do b ‘@ k. m(r—0)
dQ  sind|dd|  Esind (27 — g)%62

These orbits are called Cotes spirals.

3The term "barn" was chosen because nuclear physicists joked that the cross sections for neutron scattering by nuclei were as large
as a barn door.

This page titled 11.12: Two-body Scattering is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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