
14.10.1 https://phys.libretexts.org/@go/page/14257

14.10: Discrete Lattice Chain
Crystalline lattices and linear molecules are important classes of coupled oscillator systems where nearest neighbor interactions
dominate. A crystalline lattice comprises thousands of coupled oscillators in a three dimensional matrix with atomic spacing of a
few . Even though a full description of the dynamics of crystalline lattices demands a quantal treatment, a classical
treatment is of interest since classical mechanics underlies many features of the motion of atoms in a crystalline lattice. The linear
discrete lattice chain is the simplest example of many-body coupled oscillator systems that can illuminate the physics underlying a
range of interesting phenomena in solid-state physics. As illustrated in example , the linear approximation usually is
applicable for small-amplitude displacements of nearest-neighbor interacting systems which greatly simplifies treatment of the
lattice chain. The linear discrete lattice chain involves three independent polarization modes, one longitudinal mode, plus two
perpendicular transverse modes. The  degrees of freedom for the  atoms, on a discrete linear lattice chain, are partitioned with 

 degrees of freedom for each of the three polarization modes. These three polarization modes each have  normal modes, or 
travelling waves, and exhibit quantization, dispersion, and can have a complex wave number.

Longitudinal Motion
The equations of motion for longitudinal modes of the lattice chain can be derived by considering a linear chain of  identical
masses, of mass , separated by a uniform spacing  as shown in Figure . Assume that the  masses are coupled by 
springs, with spring constant , where both ends of the chain are fixed, that is, the displacements  and velocities 

. The force required to stretch a length  of the chain a longitudinal displacements,  for mass , is .
Thus the potential energy for stretching the spring for segment  is . The total potential and kinetic
energies are

Figure : Portion of a lattice chain of identical masses  connected by identical springs of spring constant . The
displacement of the  mass from the equilibrium position is  assumed to be positive to the right.

Since  the kinetic energy and Lagrangian can be extended to , that is, the Lagrangian can be written as

Using this Lagrangian in the Lagrange-Euler equations gives the following second-order equation of motion for longitudinal
oscillations

where  and where
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Figure : Transverse motion of a linear discrete lattice chain

The equations of motion for transverse motion on a linear discrete lattice chain, illustrated in Figure , can be derived by
considering the displacements  of the  mass for  identical masses, with mass , separated by equal spacings  and assuming

that the tension in the string is . Assuming that the transverse deflections  are small, then the  to  spring is

stretched to a length

Thus the incremental stretching is

The work done against the tension  is  per segment. Thus the total potential energy is

where  and  are identically zero.

The kinetic energy is

Since , the kinetic energy and Lagrangian summations can be extended to , that is

Using this Lagrangian in the Lagrange Euler equations gives the following second-order equation of motion for transverse
oscillations

where  and

The normal modes for the transverse modes comprise standing waves that satisfy the same boundary conditions as for the
longitudinal modes. The  equations of motion for longitudinal motion, Equation , or transverse motion, Equation 

, are identical in form. The major difference is that  for the transverse normal modes  differs from that for

the longitudinal modes which is . Thus the following discussion of the normal modes on a discrete lattice chain is

identical in form for both transverse and longitudinal waves.
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Normal modes
The normal modes of the  equations of motion on the discrete lattice chain, are either longitudinal or transverse standing waves
that satisfy the boundary conditions at the extreme ends of the lattice chain. The solutions can be given by assuming that the 
identical masses on the chain oscillate with a common frequency . Then the displacement amplitude for the  mass can be
written in the form

where the amplitude  can be complex. Substitution into the preceding  equations of motion, , , yields the
following recursion relation

where . Note that the boundary conditions,  and  require that .

The above recursion relation corresponds to a system of  homogeneous algebraic equations with  unknowns . A
non-trivial solution is given by setting the determinant of its coefficients equal to zero

This secular determinant corresponds to the special case of nearest neighbor interactions with the kinetic energy tensor  being
diagonal and the potential energy tensor  involving coupling only to adjacent masses. The secular determinant is of order  and
thus determines exactly  eigen frequencies  for each polarization mode.

For large , the solution of this problem is more efficiently obtained by using a recursion relation approach, rather than solving the
above secular determinant. The trick is to assume that the phase differences  between the motion of adjacent masses all are
identical for a given polarization. Then the amplitude for the  mass for the  frequency mode  is of the form

Insert the above into the recursion relation  gives

which reduces to

that is

where .

Now it is necessary to determine the phase angle  which can be done by applying the boundary conditions for standing waves on
the lattice chain. These boundary conditions for stationary modes require that the ends of the lattice chain are nodes, that is 

. Using the fact that only the real part of  has physical meaning, leads to the amplitude for the  mass for
the  mode to be

The boundary condition  requires that the phase . That is

where .
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The boundary condition for , gives

Therefore

where . That is

where  is the total length of the discrete lattice chain.

The  eigen frequencies for a given polarization are given by

where the corresponding wavenumber  is given by

This implies that the normal modes are quantized with half-wavelengths .

Figure : Plots of the maximal vibrational amplitudes  for the  frequency sinusoidal mode, versus distance along the
chain, for transverse normal modes of a vibrating discrete lattice with . Only  are distinct modes because 

 is a null mode. Note that the modes with  shown dashed, duplicate the locations of the mass
displacement given by the lower-order modes.

Combining equations  and  gives the maximum amplitudes for the eigenvectors to be

For  independent linear oscillators there are only  independent normal modes, that is, for  the sine function in
Equation  must be zero. Beyond  the equations do not describe physically new situations. This is illustrated by
Figure  which shows the transverse modes of a lattice chain with . There are only  independent normal modes
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of this system since  corresponds to a null mode with all . Also note that the solutions for ,
shown dashed, replicate the mass locations of modes with , that is, the modes with  are replicas of the lower-order
modes.

Note that  has a maximum value  since the sine function cannot exceed unity. This leads to a maximum frequency 
, called the cut-off frequency, which occurs when . That is, the null-mode occurs when  for which

Equation  equals zero. The range of  quantized normal modes that can occur is intuitive. That is, the longest half-

wavelength  equals the total length of the discrete lattice chain. The shortest half-wavelength  is
set by the lattice spacing. Thus the discrete wavenumbers of the normal modes, for each polarization, range from  to  where 

 is an integer.

Assuming real , the normal coordinate  and corresponding frequency  are,

Equations  and  give the angular frequency and displacement. Note that superposition applies since this system is
linear. Therefore the most general solution for each polarization can be any superposition of the form

Travelling waves
Travelling waves are equally good solutions of the equations of motion ,  as are the normal modes. Travelling
waves on the one-dimensional lattice chain will be of the form

where the distance along the chain , that is, it is quantized in units of the cell spacing , with  being an integer. The
positive sign in the exponent corresponds to a wave travelling in the  direction while the negative sign corresponds to a wave
travelling in the  direction. The velocity of a fixed phase of the travelling wave must satisfy that  is a constant. This will
occur if the phase velocity of the wave is given by

The wave has a frequency  and wavelength , thus the phase velocity .

Inserting the travelling wave  into the transverse equation of motion  for the discrete lattice chain gives

where . That is

The phase  is determined by the Born-von Karman periodic boundary condition that assumes that the chain is duplicated
indefinitely on either side of . Thus, for  discrete masses,  must satisfy the condition that . That is

That is

Note that the periodic boundary condition gives  discrete modes for wavenumbers between
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Thus Equation  becomes

Equation  is a dispersion relation that is identical to Equation  derived during the discussion of the normal modes
of the lattice chain. This confirms that the travelling waves on the lattice chain are equally good solutions as the normal standing-
wave modes. Clearly, superposition of the standing-wave normal modes can lead to travelling waves and vice versa.

Dispersion

Figure : Plot of the dispersion curve (  versus ) for a monoatomic linear lattice chain subject to only nearest neighbor
interactions. The first Brillouin zone is the segment between  which covers all independent solutions.

The lattice chain is an interesting example of a dispersive system in that  is a function of . Figure  shows a plot of the
dispersion curve (  versus ) for a monoatomic linear lattice chain subject to only nearest neighbor interactions. Note that 
depends linearly on  for small  and that  at the boundaries of the first Brillouin zone.

The lattice chain has a phase velocity for the  wave given by

while the group velocity is

Note that in the limit when , the phase velocity and group velocity are identical, that is, .

Complex wavenumber

The maximum allowed frequency, which is called the cut-off frequency, , occurs when , that is, . That is,
the minimum half-wavelength equals the spacing  between the discrete masses. At the cut-off frequency, the phase velocity is 

 and the group velocity .

It is interesting to note that  can exceed the cut-off frequency  if  is assumed to be complex, that is, if

Then

To ensure that  is real, the imaginary term must be zero, that is
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that is, , and the dispersion relation between  and  for  becomes

which increases with . Thus, when  then the amplitude of the wave is of the form

which corresponds to a spatially damped oscillatory wave with phase velocity

and damping factor .

There are many examples in physics where the wavenumber is complex as exhibited by the discrete lattice chain for . Other
examples are electromagnetic waves in conductors or plasma (example ), matter waves tunnelling through a potential barrier,
or standing waves on musical instruments which have a complex wavenumber  due to damping.

This simple toy model of the discrete linear lattice chain has illustrated that classical mechanics explains many features of the
many-body nearest-neighbor coupled linear oscillator system, including normal modes, standing and travelling waves, cut-off
frequency dispersion, and complex wavenumber. These phenomena feature prominently in applications of the quantal discrete
coupled-oscillator system to solid-state physics.

This page titled 14.10: Discrete Lattice Chain is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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