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15.4: Hamilton-Jacobi Theory
Hamilton used the Principle of Least Action to derive the Hamilton-Jacobi relation (chapter )

where  refer to the  variables  and  is the action functional. Integration of this first-order
partial differential equation is non trivial which is a major handicap for practical exploitation of the Hamilton-Jacobi equation. This
stimulated Jacobi to develop the mathematical framework for canonical transformation that are required to solve the Hamilton-
Jacobi equation. Jacobi’s approach is to exploit generating functions for making a canonical transformation to a new Hamiltonian 

 that equals zero.

The generating function for solving the Hamilton-Jacobi equation then equals the action functional .

The Hamilton-Jacobi theory is based on selecting a canonical transformation to new coordinates  all of which are either
constant, or the  are cyclic, which implies that the corresponding momenta  are constants. In either case, a solution to the
equations of motion is obtained. A remarkable feature of Hamilton-Jacobi theory is that the canonical transformation is completely
characterized by a single generating function, . The canonical equations likewise are characterized by a single Hamiltonian
function, . Moreover, the generating function , and Hamiltonian function , are linked together by Equation . The
underlying goal of Hamilton-Jacobi theory is to transform the Hamiltonian to a known form such that the canonical equations
become directly integrable. Since this transformation depends on a single scalar function, the problem is reduced to solving a single
partial differential equation.

Time-dependent Hamiltonian

Jacobi’s complete integral 

The principle underlying Jacobi’s approach to Hamilton-Jacobi theory is to provide a recipe for finding the generating function 
 needed to transform the Hamiltonian  to the new Hamiltonian  using Equation . When the

derivatives of the transformed Hamiltonian  are zero, then the equations of motion become

and thus  and  are constants of motion. The new Hamiltonian  must be related to the original Hamiltonian  by a canonical
transformation for which

Equations  and  are automatically satisfied if the new Hamiltonian  since then Equation  gives that the
generating function  satisfies Equation .

Any of the four types of generating function can be used. Jacobi chose the type 2 generating function as being the most useful for
many practical cases, that is,  which is called Jacobi’s complete integral.

For generating functions  and  the generalized momenta are derived from the action by the derivative

Use this generalized momentum to replace  in the Hamiltonian , given in Equation , leads to the Hamilton-Jacobi
equation expressed in terms of the action .
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The Hamilton-Jacobi equation, , can be written more compactly using tensors  and  to designate  and 
 respectively. That is

Equation  is a first-order partial differential equation in  variables which are the old spatial coordinates  plus time .
The new momenta  have not been specified except that they are constants since .

Assume the existence of a solution of  of the form  where the generalized momenta 
 plus  are the  independent constants of integration in the transformed frame. One constant of integration

is irrelevant to the solution since only partial derivatives of  with respect to  and  are involved. Thus, if  is a
solution of the first-order partial differential equation, then so is  where  is a constant. Thus it can be assumed that one of
the  constants of integration is just an additive constant which can be ignored leading effectively to a solution

where none of the  independent constants are solely additive. Such generating function solutions are called complete solutions of
the first-order partial differential equations since all constants of integration are known.

It is possible to assume that the  generalized momenta,  are constants , where the  are the constants. This allows the
generalized momentum to be written as

Similarly, Hamilton’s equations of motion give the conjugate coordinate , where  are constants. That is

The above procedure has determined the complete set of  constants . It is possible to invert the canonical
transformation to express the above solution, which is expressed in terms of  and , back to the original
coordinates, that is,  and momenta  which is the required solution.

Hamilton’s principle function 

Hamilton’s approach to solving the Hamilton-Jacobi Equation  is to seek a canonical transformation from variables  at
time , to a new set of constant quantities, which may be the initial values  at time . Hamilton’s principle function 

 is the generating function for this canonical transformation from the variables  at time t to the initial variables
 at time . Hamilton’s principle function  is directly related to Jacobi’s complete integral .

Note that  is the generating function of a canonical transformation from the present time  variables to the initial 
, whereas Jacobi’s  is the generating function of a canonical transformation from the present  variables to the

constant variables . For the Hamilton approach, the canonical transformation can be accomplished in two steps
using  by first transforming from  at time , to , then transforming from  to . That is, this two-
step process corresponds to

Hamilton’s principle function  is related to Jacobi’s complete integral , and it will not be discussed further
in this book.

Time-independent Hamiltonian
Frequently the Hamiltonian does not explicitly depend on time. For the standard Lagrangian with time-independent constraints and
transformation, then  which is the total energy. For this case, the Hamilton-Jacobi equation simplifies to give
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The integration of the time dependence is trivial, and thus the action integral for a time-independent Hamiltonian equals

That is, the action integral has separated into a time independent term  which is called Hamilton’s characteristic
function plus a time-dependent term . Thus using equations ,  gives that the generalized momentum is

The physical significance of Hamilton’s characteristic function  can be understood by taking the total time derivative

Taking the time integral then gives

Note that this equals the abbreviated action described in chapter , that is .

Inserting the action  into the Hamilton-Jacobi equation  gives

This is called the time-independent Hamilton-Jacobi equation. Usually it is convenient to have  equal the total energy.
However, sometimes it is more convenient to exclude the  energy  in the set, in which case ;
the Routhian exploits this feature.

The equations of the canonical transformation expressed in terms of  are

These equations show that Hamilton’s characteristic function  is itself the generating function of a time-independent
canonical transformation from the old variables  to a set of new variables

Table  summarizes the time-dependent and time-independent forms of the Hamilton-Jacobi equation.

Hamiltonian Time dependent Time independent 

Transformed Hamiltonian  is cyclic

Canonical transformed variables All  are constants of motion All  are constants of motion

Transformed equations of motion
, therefore 

, therefore 

, therefore 

, therefore 

Generating function Jacobi’s complete integral Characteristic Function 

Hamilton-Jacobi equation

Transformation equations

Table : Hamilton-Jacobi formulations
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Separation of variables
Exploitation of the Hamilton-Jacobi theory requires finding a suitable action function . When the Hamiltonian is time
independent, then Equation  shows that the time dependence of the action integral separates out from the dependence on the
spatial variables. For many systems, the Hamilton’s characteristic function  separates into a simple sum of terms each of
which is a function of a single variable. That is,

where each function in the summation on the right depends only on a single variable. Then Equation  reduces to

where  is the constant denoting the total energy.

Hamilton’s characteristic function  can be used with equations , , , , and  to derive

which has reduced the problem to a simple sum of one-dimensional first-order differential equations.

If the  variable is cyclic, then the Hamiltonian is not a function of  and the  term in Hamilton’s characteristic function equals
 which separates out from the summation in Equation . That is, all cyclic variables can be factored out of 

 which greatly simplifies solution of the Hamilton-Jacobi equation. As a consequence, the ability of the Hamilton-Jacobi
method to make a canonical transformation to separate the system into many cyclic or independent variables, which can be solved
trivially, is a remarkably powerful way for solving the equations of motion in Hamiltonian mechanics.

Consider the motion of a free particle of mass  in a force-free region. Then Equation  reduces to

Since no forces act, and the momentum , thus the Hamilton-Jacobi equation reduces to

The Hamiltonian is time independent, thus Equation  applies

Since the Hamiltonian does not explicitly depend on the coordinates , then the coordinates are cyclic and separation of
the variables, , gives that the action

For Equation  to be a solution of Equation  requires that

Therefore

S
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Since

the equation of motion and the conjugate momentum are given by

Thus the Hamilton-Jacobi relation has given both the equation of motion and the linear momentum .

The Hamiltonian is

Since the system is conservative, then the Hamilton-Jacobi equation can be written in terms of Hamilton’s characteristic
function 

Assuming that the variables can be separated  leads to

Thus by integration the total  equals

Therefore using  gives

If  is the position of the particle at time  then , and from 
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Example : Point particle in a uniform gravitational field15.4.2
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This corresponds to a parabola as should be expected for this trivial example.

As discussed in example  the Hamiltonian for the one-dimensional harmonic oscillator can be written as

assuming it is conservative and where .

Hamilton’s characteristic function  can be used where

Inserting the generalized momentum  into the Hamiltonian gives

Integration of this equation gives

That is

Note that

This can be integrated to give

That is

This is the familiar solution of the undamped harmonic oscillator.

The problem of a particle acted upon by a central force occurs frequently in physics. Consider the mass  acted upon by a
time-independent central potential energy . The Hamiltonian is time independent and can be written in spherical
coordinates as
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Example : One-dimensional harmonic oscillator15.4.3
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Example : The central force problem15.4.4
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The time-independent Hamilton-Jacobi equation is conservative, thus

Try a separable solution for Hamilton’s characteristic function  of the form

The Hamilton-Jacobi equation then becomes

This can be rearranged into the form

The left-hand side is independent of  whereas the right-hand side is independent of  and . Both sides must equal a constant
which is set to equal , that is

The equation in  and  can be rearranged in the form

The left-hand side is independent of  and the right-hand side is independent of  so both must equal a constant which is set to
be 

The variables now are completely separated and, by rearrangement plus integration, one obtains

Substituting these into  gives

H = ( + + )+U(r) = E
1

2m
p2
r

1

r2
p2
θ

1

θr2 sin2
p2
ψ

[ + + ] +U(r) = E
1

2m
( )

∂W

∂r

2 1

r2
( )

∂W

∂θ

2 1

θr2 sin2
( )

∂W

∂ϕ

2

W

W = R(r) +Θ(θ) +Φ(ϕ)

[ + + ] +U(r) = E
1

2m
( )

∂R

∂r

2
1

r2
( )

∂Θ

∂θ

2
1

θr2 sin2
( )

∂Φ

∂ϕ

2

2m θ{ [ + ] +U(r) +E} = −r2 sin2 1

2m
( )

∂R

∂r

2
1

r2
( )

∂Θ

∂θ

2

( )
∂Φ

∂ϕ

2

ϕ r θ

−L2
z

[ + ] +U(r) + = E
1

2m
( )

∂R

∂r

2
1

r2
( )

∂Θ

∂θ

2
L2
z

2m θr2 sin2

=( )
∂Φ

∂ϕ

2

L2
z

r θ

2m [ +U(r) −E] = −[ + ]r2 1

2m
( )

∂R

∂r

2

( )
∂Θ

∂θ

2 L2
z

θsin2

θ r

−L2

+U(r) + = E
1

2m
( )

∂R

∂r

2 L2

2mr2

+ =( )
∂Θ

∂θ

2 L2
z

θsin2
L2

R(r) = ∫ dr2m
−−−

√ E−U(r) −
L2

2mr2

− −−−−−−−−−−−−−

√

Θ(θ) = ∫ dθ−L2 L2
z

θsin2

− −−−−−−−−

√

Φ(ϕ) = ϕLz

W = R(r) +Θ(θ) +Φ(ϕ)

W = ∫ dr+∫ dθ+ ϕ2m
−−−

√ E−U(r) −
L2

2mr2

− −−−−−−−−−−−−−

√ −L2 L2
z

θsin2

− −−−−−−−−

√ Lz

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9652?pdf


15.4.8 https://phys.libretexts.org/@go/page/9652

Hamilton’s characteristic function  is the generating function from coordinates  to new coordinates,
which are cyclic, and new momenta that are constant and taken to be the separation constants .

Similarly, using  gives the new coordinates 

These equations lead to the elliptical, parabolic, or hyperbolic orbits discussed in chapter .

A canonical treatment of the linearly-damped harmonic oscillator provides an example that combines use of non-standard
Lagrangian and Hamiltonians, a canonical transformation to an autonomous system, and use of Hamilton-Jacobi theory to
solve this transformed system. It shows that Hamilton-Jacobi theory can be used to determine directly the solutions for the
linearly-damped harmonic oscillator.

Non-standard Hamiltonian:

In chapter , the equation of motion for the linearly-damped, one-dimensional, harmonic oscillator was given to be

Example  showed that three non-standard Lagrangians give equation of motion  when used with the standard Euler-
Lagrange variational equations. One of these was the Bateman[Bat31] time-dependent Lagrangian

This Lagrangian gave the generalized momentum to be

which was used with equation  to derive the Hamiltonian

Note that both the Lagrangian and Hamiltonian are explicitly time dependent and thus they are not conserved quantities. This is
as expected for this dissipative system.
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Example : Linearly-damped, one-dimensional, harmonic oscillator15.4.5
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Hamilton-Jacobi theory:

The form of the non-autonomous Hamiltonian  suggests use of the generating function for a canonical transformation to an
autonomous Hamiltonian, for which  is a constant of motion.

Then the canonical transformation gives

Insert this canonical transformation into the above Hamiltonian leads to the transformed Hamiltonian that is autonomous.

That is, the transformed Hamiltonian  is not explicitly time dependent, and thus is conserved. Expressed in the
original canonical variables , the transformed Hamiltonian 

is a constant of motion which was not readily apparent when using the original Hamiltonian. This unexpected result illustrates
the usefulness of canonical transformations for solving dissipative systems. The Hamilton-Jacobi theory now can be used to
solve the equations of motion for the transformed variables  plus the transformed Hamiltonian . The
derivative of the generating function

Use Equation  to substitute for  in the Hamiltonian  (Equation ), then the Hamilton-Jacobi method gives

This equation is separable as described in  and thus let

where  is a separation constant. Then

To simplify the equations define the variable x as

then Equation  can be written as

where  and . Assume initial conditions  and 

For this case the separation constant , therefore . Note that Equation  is a simple second-order algebraic relation,
the solution of which is

d
H

S(q,P , t) = (q,P , t) = qP = QPF2 e
Γt
2 (d)

p = = P
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∂q
e

Γt

2 (e)

Q = = q
∂S

∂P
e

Γt

2

H(Q,P , t) = (q, p, t) + = + QP +H2
∂F2

∂t

P 2

2m

Γ

2

mω2
0

2
Q2 (f)
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p2

2m
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2

mω2
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The choice of the sign is irrelevant for this case and thus the positive sign is chosen. There are three possible cases for the
solution depending on whether the square-root term is real, zero, or imaginary.

Case 1: , that is, 

Define  Then Equation  can be integrated to give

and

This integral gives

where

Transforming back to the original variable  gives

where  and  are given by the initial conditions. Equation  is identical to the solution for the underdamped linearly-damped
linear oscillator given previously in equation .

Case 2: , that is, 

In this case  and thus Equation  simplifies to

and

Therefore the solution is

where  and  are constants given by the initial conditions. This is the solution for the critically-damped linearly-damped,
linear oscillator given previously in equation .

Case 3: , that is, 

Define a real constant  where , then

= − ±
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2
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2

2
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⎷
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Then

This last integral gives

where

Then the original variable gives

This is the classic solution of the overdamped linearly-damped, linear harmonic oscillator given previously in equation 
      . The canonical transformation from a non-autonomous to an autonomous system allowed use of Hamiltonian

mechanics to solve the damped oscillator problem.

Note that this example used Bateman’s non-standard Lagrangian, and corresponding Hamiltonian, for handling a dissipative
linear oscillator system where the dissipation depends linearly on velocity. This nonstandard Lagrangian led to the correct
equations of motion and solutions when applied using either the time-dependent Lagrangian, or time-dependent Hamiltonian,
and these solutions agree with those given in chapter  which were derived using Newtonian mechanics.

Visual representation of the action function .

Figure : Surfaces of constant action integral S (dashed lines) and the corresponding particle momenta (solid lines) with
arrows showing the direction.

The important role of the action integral  can be illuminated by considering the case of a single point mass  moving in a time
independent potential . Then the action reduces to

Let . The momentum components are given by

which corresponds to

That is, the time-independent Hamilton-Jacobi equation is

β = = −t+ ∫
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dx
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This implies that the particle momentum is given by the gradient of Hamilton’s characteristic function and is perpendicular to
surfaces of constant  as illustrated in Figure . The constant  surfaces are time dependent as given by Equation .
Thus, if at time  the equi-action surface , then at  the same surface  now
coincides with the  surface etc. That is, the equi-action surfaces move through space separately from the motion of the
single point mass.

The above pictorial representation is analogous to the situation for motion of a wavefront for electromagnetic waves in optics, or

matter waves in quantum physics where the wave equation separates into the form . Hamilton’s goal was
to create a unified theory for optics that was equally applicable to particle motion in classical mechanics. Thus the optical-
mechanical analogy of the Hamilton-Jacobi theory has culminated in a universal theory that describes wave-particle duality; this
was a Holy Grail of classical mechanics since Newton’s time. It played an important role in development of the Schrödinger
representation of quantum mechanics.

Advantages of Hamilton-Jacobi theory

Initially, only a few scientists, like Jacobi, recognized the advantages of Hamiltonian mechanics. In 1843 Jacobi made some
brilliant mathematical developments in Hamilton-Jacobi theory that greatly enhanced exploitation of Hamiltonian mechanics.
Hamilton-Jacobi theory now serves as a foundation for contemporary physics, such as quantum and statistical mechanics. A major
advantage of Hamilton-Jacobi theory, compared to other formulations of analytic mechanics, is that it provides a single, first-order
partial differential equation for the action , which is a function of the  generalized coordinates  and time . The generalized
momenta no longer appear explicitly in the Hamiltonian in equations , . Note that the generalized momentum do not
explicitly appear in the equivalent Euler-Lagrange equations of Lagrangian mechanics, but these comprise a system of  second-
order, partial differential equations for the time evolution of the generalized coordinate . Hamilton’s equations of motion are a
system of  first-order equations for the time evolution of the generalized coordinates and their conjugate momenta.

An important advantage of the Hamilton-Jacobi theory is that it provides a formulation of classical mechanics in which motion of a
particle can be represented by a wave. In this sense, the Hamilton-Jacobi equation fulfilled a long-held goal of theoretical physics,
that dates back to Johann Bernoulli, of finding an analogy between the propagation of light and the motion of a particle. This goal
motivated Hamilton to develop Hamiltonian mechanics. A consequence of this wave-particle analogy is that the Hamilton-Jacobi
formalism featured prominently in the derivation of the Schrödinger equation during the development of quantum-wave mechanics.

This page titled 15.4: Hamilton-Jacobi Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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