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19.7: Appendix - Aspects of Multivariate Calculus
Multivariate calculus provides the framework for handling systems having many variables associated with each of several bodies. It
is assumed that the reader has studied linear differential equations plus multivariate calculus and thus has been exposed to the
calculus used in classical mechanics. Chapter  of this book introduced variational calculus which covers several important aspects
of multivariate calculus such as Euler’s variational calculus and Lagrange multipliers. This appendix provides a brief review of a
selection of other aspects of multivariate calculus that feature prominently in classical mechanics.

Partial Differentiation
The extension of the derivative to multivariate calculus involves use of partial derivatives. The partial derivative with respect to the
variable  of a multivariate function  involves taking the normal one-variable derivative with respect to 
assuming that the other  variables are held constant. That is,

where it will be assumed that the function  is a continuously-differentiable function to  order, then all partial derivatives of
that order or less are independent of the order in which they are performed. That is,

The chain rule for partial differentiation gives that

The total differential of a multivariate function  is

This can be extended to higher-order derivatives using the operator formalism

Linear Operators
The linear operator notation provides a powerful, elegant, and compact way to express, and apply, the equations of multivariate
calculus; it is used extensively in mathematics and physics. The linear operators typically comprise partial derivatives that act on
scalar, vector, or tensor fields. Table  lists a few elementary examples of the use of linear operators in this textbook. The first
four linear operators involve the widely used del operator  to generate the gradient, divergence and curl as described in
appendices  and . The fifth and sixth linear operators act on the Lagrangian in Lagrangian mechanics applications. The
final two linear operators act on the wavefunction for wave mechanics.

Name Partial derivative Field Action

Gradient Scalar potential 

Divergence Vector field 

Curl Vector field 

Table : Examples of linear operators used in this textbook.
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Name Partial derivative Field Action

Laplacian Scalar potential 

Euler-Lagrange Scalar Lagrangian 

Canonical momentum Scalar Lagrangian 

Canonical momentum Wavefunction 

Hamiltonian Wavefunction 

There are three ways of expressing operations such as addition, multiplication, transposition or inversion of operations that are
completely equivalent because they all are based on the same principles of linear algebra. For example, a transformation  acting
on a vector  can produce the vector . The simplest way to express this transformation is in terms of components

Another way is to use matrix mechanics where the  matrix  transforms the column vector  to the column vector ,
that is,

The third approach is to assume an operator  acts on the vector 

In classical mechanics, and quantum mechanics, these three equivalent approaches are used and exploited extensively and
interchangeably. In particular the rules of matrix manipulation, that are given in appendix , are synonymous, and equivalent to,
those that apply for operator manipulation. If the operator is complex then the operator properties are summarized as follows.

The generalization of the transpose for complex operators is the Hermitian conjugate 

Note also that

The generalization of a symmetric matrix is Hermitian, that is,  is equal to its Hermitian conjugate

For a real matrix the complex conjugation has no effect so the matrix is real and symmetric.

The generalization of orthogonal is unitary for which the operator is unitary if it is non-singular and

which implies

Transformation Jacobian
The Jacobian determinant, which is usually called the Jacobian, is used extensively in mechanics for both rotational and
translational coordinate transformations. The Jacobian determinant is defined as being the ratio of the -dimensional volume
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element  in one coordinate system, to the volume element  in the second coordinate system. That is

Transformation of integrals

Consider a coordinate transformation for the integral of the function  to the integral of a function 
where . The coordinate transformation of the integral equation can be expressed in terms of the Jacobian 

Transformation of differential equations

The differential cross sections for scattering can be defined either by the number of a definite kind of particle/per event, going into
the volume element in momentum space , or by the number going into the solid angle element having momentum
between  and . That is, the first definition can be written as a differential equation

As shown in table , , that is, the Jacobian equals . Thus Equation  can be
written as

The differential cross section is defined by

where the  factor is absorbed into the cross section and the solid angle term is factored out

Properties of the Jacobian

In classical mechanics the Jacobian often is extended from 3 dimensions to -dimensional transformations. The Jacobian is unity
for unitary transformations such as rotations and linear translations which implies that the volume element is preserved. It will be
shown that this also is true for a certain class of transformations in classical mechanics that are called canonical transformations.
The Jacobian transforms the local density to be correct for any scale transformations such as transforming linear dimensions from
centimeters to inches.

Consider the transform in the three-dimensional integral  under transformation from cartesian
coordinates  to spherical coordinates . The transformation is governed by the geometric relations 

. For this transformation the Jacobian determinant equals
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Thus the three-dimensional volume integral transforms to

which is the well-known volume integral in spherical coordinates.

Legendre transformation

Hamiltonian mechanics can be derived directly from Lagrange mechanics by considering the Legendre transformation between the
conjugate variables  and . Such a derivation is of considerable importance in that it shows that Hamiltonian
mechanics is based on the same variational principles as those used to derive Lagrangian mechanics; that is d’Alembert’s Principle
or Hamilton’s Principle. The general problem of converting Lagrange’s equations into the Hamiltonian form hinges on the
inversion of equation  that defines the generalized momentum . This inversion is simplified by the fact that  is the
first partial derivative of the Lagrangian  which is a scalar function.

Consider transformations between two functions  and  where  and  are the active variables related by the
functional form

and where  designates passive variables and  is the first-order derivative of , i.e. the gradient, with respect
to the components of the vector . The Legendre transform states that the inverse formula can always be written in the form

where the function  is related to  by the symmetric relation

and where the scalar product .

Furthermore the derivatives with respect to all the passive variables  are related by

The relationship between the functions  and  is symmetrical and each is said to be the Legendre transform of the
other.

Exercises
1. Below you will find a set of integrals. Your teaching assistant will divide you into groups and each group will be assigned one
integral to work on. Once your group has solved the integral, write the solution on the board in the space provided by the teaching
assistant.

(a) 

(b) 

(c)  where  and  is the sphere .

(d)  where  and  is the surface defined by the paraboloid , where .
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