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15.3: Canonical Transformations in Hamiltonian Mechanics

Hamiltonian mechanics is an especially elegant and powerful way to derive the equations of motion for complicated systems.
Unfortunately, integrating the equations of motion to derive a solution can be a challenge. Hamilton recognized this difficulty, so he
proposed using generating functions to make canonical transformations which transform the equations into a known soluble form.
Jacobi, a contemporary mathematician, recognized the importance of Hamilton’s pioneering developments in Hamiltonian
mechanics, and therefore he developed a sophisticated mathematical framework for exploiting the generating function formalism in
order to make the canonical transformations required to solve Hamilton’s equations of motion.

In the Lagrange formulation, transforming coordinates (g;, ¢,) to cyclic generalized coordinates (Q;, Q;), simplifies finding the
Euler-Lagrange equations of motion. For the Hamiltonian formulation, the concept of coordinate transformations is extended to
include simultaneous canonical transformation of both the spatial coordinates ¢; and the conjugate momenta p; from (g;,p;) to
(Q:, P;), where both of the canonical variables are treated equally in the transformation. Compared to Lagrangian mechanics,
Hamiltonian mechanics has twice as many variables which is an asset, rather than a liability, since it widens the realm of possible
canonical transformations.

Hamiltonian mechanics has the advantage that generating functions can be exploited to make canonical transformations to find
solutions, which avoids having to use direct integration. Canonical transformations are the foundation of Hamiltonian mechanics;
they underlie Hamilton-Jacobi theory and action-angle variable theory, both of which are powerful means for exploiting
Hamiltonian mechanics to solve problems in physics and engineering. The concept underlying canonical transformations is that, if
the equations of motion are simplified by using a new set of generalized variables (Q, P), compared to using the original set of
variables (q, p), then an advantage has been gained. The solution, expressed in terms of the generalized variables (Q, P), can be
transformed back to express the solution in terms of the original coordinates, (q, p).

Only a specialized subset of transformations will be considered, namely canonical transformations that preserve the canonical
form of Hamilton’s equations of motion. That is, given that the original set of variables (g;, p;) satisfy Hamilton’s equations
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for some Hamiltonian H(q, p,t), then the transformation to coordinates Q;(qx, px,t), P;(qx, Pk, t) is canonical if, and only if,
there exists a function H(Q, P, t) such that the P and Q are still governed by Hamilton’s equations. That is,
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where H(Q, P, t) plays the role of the Hamiltonian for the new variables. Note that H(Q, P, t) may be very different from the old
Hamiltonian H(q, p, t). The invariance of the Poisson bracket to canonical transformations, chapter 15.2, provides a powerful test
that the transformation is canonical.

(15.3.1)

Hamilton’s Principle of least action, discussed in chapter 9, states that

ta ta
65:5/ L(q,él,t)dtzé/ [p-a—H(q,p,t)]dt=0 (15.3.3)
t t

Similarly, applying Hamilton’s Principle of least action to the new Lagrangian £(Q, Q, t) gives

to . ta .
55:5l L(Q,Q,t)dtzél [P-Qf’H(Q,P,t) dt =0 (15.3.4)

The discussion of gauge-invariant Lagrangians, chapter 9.3, showed that L and £ can be related by the total time derivative of a
generating function F' where
dF
dt
The generating function F' can be any well-behaved function with continuous second derivatives of both the old and new canonical
variables p, q, P, Q and ¢. Thus the integrands of 15.3.3and 15.3.4are related by

L—L (15.3.5)
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where A is a possible scale transformation. A scale transformation, such as changing units, is trivial, and will be assumed to be
absorbed into the coordinates, making A = 1. Assuming that A % 1 is called an extended canonical transformation.

Generating functions

The generating function F' has to be chosen such that the transformation from the initial variables (q, p) to the final variables
(Q, P) is a canonical transformation. The chosen generating function contributes to 15.3.6 only if it is a function of the old plus
new variables. The four possible types of generating functions of the first kind, are Fy(q, Q,t), F»(q,P,t), F3(p, Q,t), and
Fy(p, P, t). These four generating functions lead to relatively simple canonical transformations, are shown below.

Type 1: F = Fl(q’Qat) :
The total time derivative of the generating function F' = F} (q, Q, t) is given by

dF(q7 Q7 t) a-F’1 (q7 Q? t) . aFl (q’ Q7 t) , 8F1 (qa Qa t)
— . . _— 15.3.7
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Insert Equation 15.3.7into Equation 15.3.6 and assume that the trivial scale factor A = 1, then
8-Fl (qa Q7 t) . a-Fl (q7 Q7 t) b 8F1 (qa Qa t)
——|-q—H t)y=|P+————|-Q— Pt)y+—
P 94 q—H(q,p,1) +—aq Q-H(QP,t)+—
Assume that the generating function F; determines the canonical variables p and P to be
OF t OF; t
_ l(qa Q’ ) P—_ l(qa Q? ) (1538)
oq 0Q
then the terms in each square bracket cancel, leading to the required canonical transformation
0Fi(q,Q,t
H(QP.1) = H(qp, 1) + LB DY (15.3.9)
Type 2: F = F5(q,P,t) —Q-P:
The total time derivative of the generating function F' = F5(q, P,t) — Q- P is given by
dF aFQ (qv P? t) N aFQ (q7 P7 t) . . . 6F2 (q7 P7 t)
— = . -p—P-Q-P- _ 15.3.10
= [ 9 A+ —5p p-P-Q Q] A ( )
Insert this into Equation 15.3.6 and assume that the trivial scale factor A =1, then
BFQ (q, P, t) . o . 8F2(q, P,t) . 8F2(q, P,t)
—-——F—)'q—H t)=P-Q—-P- —— Q| -P- Pt)+——
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Assume that the generating function F5 determines the canonical variables p and Q to be
8-F2 (q7 P7 t) 8F2 (q7 P7 t)
=—" = 15.3.11
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then the terms in brackets cancel, leading to the required transformation
OF3(q,P,t
#H(Q,P,t) :H(q,p,t)+% (15.3.12)
Type 3: FZFB(I’aQat) +q-p:
The total time derivative of the generating function F' = F3(p, Q,t)+q-p is given by
dF 6F3(p7Qat) . 8F3(p7Q7t) L . . 6F3(paQ7t)
—_— = . . . . _— 15.3.13
7 [ oo P+ g Q+a-pta-p|+—yp ( )

Insert this into Equation 15.3.6 and assume that the trivial scale factor A =1, then
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Assume that the generating function F3 determines the canonical variables g and P to be
aF?)(paQ?t) 6F3(paQ7 t)
= P=-——— 15.3.14
q op 2Q ( )
then the terms in brackets cancel, leading to the required transformation
OF3(p,Q,t
H(Q, P, 1) :H@,gtﬁ% (15.3.15)
Type 4: F:F4(p,P,t) +q-p—Q-P:
The total time derivative of the generating function F' = Fy(p,P,t)+q-p —Q-P is given by
dF 6F4(p,P,t) . 6F4(p,P,t) . . . d ° 6F4(p,P,t)
= . . . p—Q-P-Q-P _— 15.3.16
o [ op P+—op P+4-p+q-p—-Q Q }Jr ot ( )
Insert this into Equation 15.3.6 and assume that the trivial scale factor A =1, then
8F4(p,P’t) o 8F4(paPat) . 6F4(p7P7t)
— —F— | -p—H(q,p,t)=|——————— -P— P, t)+————
s+ 2 ia,p,n) = | R QB H(Q P - T
Assume that the generating function Fy determines the canonical variables q and Q to be
aF4(paPat) 8F4(p7P7t)
= = 15.3.17
q o0 Q 5P ( )
then the terms in brackets cancel, leading to the required transformation
OF(p,P,t
’H(Q’P’t):H((Lpat)"i_% (15318)

Note that the last three generating functions require the inclusion of additional bilinear products of ¢, p, @, P in order for the terms
to cancel to give the required result. The addition of the bilinear terms, ensures that the resultant generating function F is the same
using any of the four generating functions Fy, Fy, Fy, F. Frequently the F»(q, P,t) generating function is the most convenient.
The four possible generating functions of the first kind, given above, are related by Legendre transformations. A canonical
transformation does not have to conform to only one of the four generating functions Fj, for all the degrees of freedom, they can be
a mixture of different flavors for the different degrees of freedom. The properties of the generating functions are summarized in

table 15.3.1
Table 15.3.1: Canonical transformation generating functions
Generating function Generating function derivatives Trivial special examples
OF 9F
F=F(q,Q,t) pi=5 Bi=—50 Fi=¢Qi Qi=pi Pi=—gq

OF OF

F=F(qP,)-Q-P Pi=%5 @i=3%n F,=q¢bh Qi=a P=p
OF: IF

F=F(p,Qt)+a-p Qi:_a_pj PiI—BT;: F;=pQ;i Qi=-¢ P =-p;

IF; IF;
F=Fyp,P,t)+q-p—-Q-P G=-75, Q=74 Fy=pP Qi=pi Pi=—q

The partial derivatives of the generating functions F; determine the corresponding conjugate variables not explicitly included in the
generating function F;. Note that, for the first trivial example F} = g¢;Q;, the old momenta become the new coordinates, Q; = p; ,
and vice versa, P; = —q;. This illustrates that it is better to name them “conjugate variables” rather than “momenta” and
“coordinates”.

In summary, Jacobi has developed a mathematical framework for finding the generating function F' required to make a canonical
transformation to a new Hamiltonian #(Q, P, ¢), that has a known solution. That is,
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H(Q,P,t)=H(q,p, 1) (15.3.19)

ot
When #H(Q,P,t) is a constant, then a solution has been obtained. The inverse transformation for this solution
Q(t), P(t) — q(t), p(t) now can be used to express the final solution in terms of the original variables of the system.

Note the special case when H(Q, P,t) =0, then Equation 15.3.19has been reduced to the Hamilton-Jacobi relation 15.3.20

H(q,p,t)+ %S =0 (15.3.20)

In this case, the generating function F' determines the action functional S required to solve the Hamilton-Jacobi equation
(15.4.23). Since Equation 15.3.19has transformed the Hamiltonian H(q, p,t) — H(Q, P,t), for which H(Q,P,t) =0, then
the solution Q(¢t), P(¢) for the Hamiltonian H(Q, P,t) =0 is obtained easily. This approach underlies Hamilton-Jacobi theory
presented in chapter 15.4.

Applications of Canonical Transformations

The canonical transformation procedure may appear unnecessarily complicated for solving the examples given in this book, but it
is essential for solving the complicated systems that occur in nature. For example, canonical transformations can be used to
transform time-dependent, (non-autonomous) Hamiltonians to time-independent, (autonomous) Hamiltonians for which the
solutions are known. Example 15.6.2describes such a system. Canonical transformations provide a remarkably powerful approach
for solving the equations of motion in Hamiltonian mechanics, especially when using the Hamilton-Jacobi approach discussed in
chapter 15.4.

Example 15.3.1: The identity canonical transformation

The identity transformation Fh(q,P)=q-P satisfies 15.3.19 if the following relations are satisfied p; = Z—Z‘_" =P,

Qi = % =g¢q;, H=H. Note that the new and old coordinates are identical, hence Fy = q;P; generates the identity
transformation ¢; = Q;, p; = P; .

Example 15.3.2: The point canonical transformation

Consider the point transformation F>(q-P) = f(q,t)- P where f(q,t) is some function of q. This transformation satisfies

15.3.19 if the following relations are satisfied Q; = g% =fig), pi = ?9% = %;m , H = H. Point transformations

correspond to point-to-point transformations of coordinates.

Example 15.3.3: The exchange canonical transformation

The identity transformation F}(q, Q) =q-Q satisfies 15.3.19 if the following relations are satisfied p; = aa% =Q;,

; = —— = —q; , 1 = H That is, the coordinates and momenta have been interchanged.

Example 15.3.4: Infinitessimal point canonical transformation

Consider an infinitessimal point canonical transformation, that is infinitesimally close to a point identity.
F2(q'P’ t) =q- P+6G(q’ P’t)

satisfies 15.3.19if the following relations are satisfied

_ 3F2 _ aG(qa Pa t)

OF, 8G(q, P, )

)y = —— = B —_—
P 0g; e 0gi

Thus the infinitessimal changes in g; and p; are given by
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a(;(qa Pa t) 6G(q, Pa t) 2
0gi(q, P, t) =Qi—qi = = )
9i(q,pP,t) =Qi —qi=¢ 9P “ on; +O(e”)

8G(q, P, t 8G(q, P, t

opi(a, p,t) =P, —pi = —¢ (gq, ). (gp, ) +0(€%)

Thus G(q, P, t) is the generator of the infinitessimal canonical transformation.

Example 15.3.5: 1-D harmonic oscillator via a cononical transformation

The classic one-dimensional harmonic oscillator provides an example of the use of canonical transformations. Consider the
Hamiltonian where w? = £ then

2 2
p kq 1 5 2, 2 2
H = —_— _——
om T2 T P T
This form of the Hamiltonian is a sum of two squares suggesting a canonical transformation for which H is cyclic in a new

coordinate. A guess for a canonical transformation is of the form p = mwgqcot @ which is of the F;(q, Q) type where F}
2
equals F(q, Q) = %cot Q. Using 15.3.8gives

OF;
p= 1(q7Q) :quCOtQ
0g;
p_ OF@Q) _m w
oQ 2 sin?Q

Solving for the coordinates (p, q) yields

1=/ == sinQ (a)

p=VZmaPcosQ (b)
Inserting these into H gives

H = wP(cos® Q +sin® Q) = wP
which implies that @ is a cyclic coordinate.

The Hamiltonian is conservative, since it does not explicitly depend on time, and it equals the total energy since the
transformation to generalized coordinates is time independent. Thus

H=FE=wP
Since

. OH

=% ¢
then

Q=ut+g

Substituting @) into a gives the well known solution of the one-dimensional harmonic oscillator

q=/ 2E2 sin(wt + ¢)
mw
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