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7.10: Hamiltonian Invariance
Chapters  addressed two important and independent features of the Hamiltonian regarding:  when  is conserved, and )
when  equals the total mechanical energy. These important results are summarized below with a discussion of the assumptions
made in deriving the Hamiltonian, as well as the implications.

a) Conservation of generalized energy
The generalized energy theorem  was given as

Note that when

then Equation  reduces to

Also, when

and if the Lagrangian is not an explicit function of time, then the Hamiltonian is a constant of motion. That is,  is conserved if,
and only if, the Lagrangian, and consequently the Hamiltonian, are not explicit functions of time, and if the external forces are zero.

b) The generalized energy and total energy

If the following two requirements are satisfied

1. The kinetic energy has a homogeneous quadratic dependence on the generalized velocities, that is, the transformation to

generalized coordinates is independent of time, 

2. The potential energy is not velocity dependent, thus the terms 

Then equation  implies that the Hamiltonian equals the total mechanical energy, that is,

Expressed in words, the generalized energy (Hamiltonian) equals the total energy if the constraints are time independent and the
potential energy is velocity independent. This is equivalent to stating that, if the constraints, or generalized coordinates, for the
system are time independent, then .

The four combinations of the above two independent conditions, assuming that the external forces term in Equation  is zero,
are summarized in table .

Hamiltonian Constraints and coordinate transformation Constraints and coordinate transformation

Time behavior Time independent Time dependent

 conserved,  conserved, 

 not conserved,  not conserved, 

Table : Hamiltonian and total energy
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Note the following general facts regarding the Lagrangian and the Hamiltonian.

1. the Lagrangian is indefinite with respect to addition of a constant to the scalar potential,
2. the Lagrangian is indefinite with respect to addition of a constant velocity,
3. there is no unique choice of generalized coordinates.
4. the Hamiltonian is a scalar function that is derived from the Lagrangian scalar function.
5. the generalized momentum is derived from the Lagrangian.

These facts, plus the ability to recognize the conditions under which  is conserved, and when  can greatly facilitate
solving problems as shown by the following two examples.

Consider a linear harmonic oscillator located on a cart that is moving with constant velocity  in the  direction (Figure 
). Let the laboratory frame be the unprimed frame, and the cart frame be designated the primed frame. Assume that 
 at  Then

Figure : Harmonic oscillator on cart moving at uniform velocity .

The harmonic oscillator will have a potential energy of

Laboratory frame:

The Lagrangian is

Lagrange equation  gives the equation of motion to be

The definition of generalized momentum gives

The Hamiltonian is

H H = E,

Example : Linear harmonix oscillator on a cart moving at constant velocity7.10.1
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U = k = k
1

2
x′2 1

2
(x− t)v0

2

L(x, , t) = − kẋ
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The Hamiltonian is the sum of the kinetic and potential energies and equals the total energy of the system, but it is not

conserved since  and  are both explicit functions of time, that is . Physically this is understood in

that energy must flow into and out of the external constraint keeping the cart moving uniformly at a constant velocity 
against the reaction to the oscillating mass. That is, assuming a uniform velocity for the moving cart constitutes a time-
dependent constraint on the mass, and the force of constraint does work in actual displacement of the complete system. If the
constraint did not exist, then the cart momentum would oscillate such that the total momentum of cart plus spring system is
conserved.

Cart frame:

Transform the Lagrangian to the primed coordinates in the moving frame of reference, which also is an inertial frame. Then the
Lagrangian  in terms of the moving cart frame coordinates, is

The Lagrange equation of motion  gives the equation of motion to be

where  is the displacement of the mass with respect to the cart. This implies that an observer on the cart will observe simple
harmonic motion as is to be expected from the principle of equivalence in Galilean relativity.

The definition of the generalized momentum gives the linear momentum in the primed frame coordinates to be

The cart-frame Hamiltonian also can be expressed in terms of the coordinates in the moving frame to be

Note that the Lagrangian and Hamiltonian expressed in terms of the coordinates in the cart frame of reference are not explicitly
time dependent, therefore  is conserved. However, the cart-frame Hamiltonian does not equal the total energy since the
coordinate transformation is time dependent. Actually the first two terms in the above Hamiltonian are the energy of the
harmonic oscillator in the cart frame. This example shows that the Hamiltonians differ when expressed in terms of either the
laboratory or cart frames of reference

Consider a mass subject to a central isotropic radial force  as shown in Figure . Compare the Hamiltonian  in the
fixed frame of reference , with the Hamiltonian  in a frame of reference  that is rotating about the center of the force
with constant angular velocity .

Figure : Mass subject to radial force
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ẋ′ v0

H( , , t) = −L = + k −x′ p′ ẋ′ ∂L
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Restrict this case to rotation about one axis so that only two polar coordinates  and  need to be considered. The
transformations are

Also

Fixed frame of reference :

Since the Lagrangian is not explicitly time dependent, then the Hamiltonian is conserved. For this fixed-frame Hamiltonian the
generalized momenta are

The Hamiltonian equals

The Hamiltonian in the fixed frame is conserved and equals the total energy, that is .

Rotating frame of reference 

The above inertial fixed-frame Lagrangian can be written in terms of the primed (non-inertial rotating frame) coordinates as

The generalized momenta derived from this Lagrangian are

The Hamiltonian expressed in terms of the non-inertial rotating frame coordinates is

Note that  is time independent and therefore is conserved, but  because the generalized
coordinates are time dependent. In addition,  is conserved since

The simple plane pendulum in a uniform gravitational field  is an example that illustrates Hamiltonian invariance.
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Example : The plane pendulum7.10.3
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Figure : The plane pendulum constrained to oscillate in a vertical plane in a uniform gravitational field.

There is only one generalized coordinate,  and the Lagrangian for this system is

The momentum conjugate to  is

which is the angular momentum about the pivot point.

Using the Lagrange-Euler equation this gives that

Note that the angular momentum  is not a constant of motion since it explicitly depends on .

The Hamiltonian is

Note that the Lagrangian and Hamiltonian are not explicit functions of time, therefore they are conserved. Also the potential is
velocity independent and there is no coordinate transformation, thus the Hamiltonian equals the total energy  which is a
constant of motion.

It is important to correctly account for constraint forces when using Noether’s theorem for constrained systems. Noether’s
theorem assumes the variables are independent. This is illustrated by considering the example of a solid cylinder rolling in a
fixed cylindrical bowl. Assume that a uniform cylinder of radius  and mass  is constrained to roll without slipping on the
inner surface of the lower half of a hollow cylinder of radius . The motion is constrained to ensure that the axes of both
cylinders remain parallel and .
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Example : Oscillating cylinder in a cylindrical bowl7.10.4
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Figure 

The generalized coordinates are taken to be the angles  and  which are measured with respect to a fixed vertical axis. Then
the kinetic energy and potential energy are

where  is the mass of the small cylinder and where  at the lowest position of the sphere. The moment of inertia of a

uniform cylinder is .

The Lagrangian is

Since the solid cylinder rotates without slipping inside the cylindrical shell, then the equation of constraint is

Using the Lagrangian, plus the one equation of constraint, requires one Lagrange multiplier. Then the Lagrange equations of
motion for  and  are

Substitute the Lagrangian and the equation of constraint gives two equations of motion

The lower equation of motion gives that

Substitute this into the equation of constraint gives

Substitute this into the first equation of motion gives the equation of motion for  to be

that is

The torque acting on the small cylinder due to the frictional force is
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Thus the frictional force is

Noether’s theorem can be used to ascertain if the angular momentum  is a constant of motion. The derivative of the
Lagrangian

and thus the Lagrange equations tells us that . Therefore  is not a constant of motion.

The Lagrangian is not an explicit function of  which would suggest that  is a constant of motion. But this is incorrect

because the constraint equation  couples  and , that is, they are not independent variables, and thus  and 

are coupled by the constraint equation. As a result  is not a constant of motion because it is directly coupled to 
 which is not a constant of motion. Thus neither  nor  are constants of motion. This illustrates that

one must account carefully for equations of constraint, and the concomitant constraint forces, when applying Noether’s
theorem which tacitly assumes independent variables.

The Hamiltonian can be derived using the generalized momenta

Then the Hamiltonian is given by

Note that the transformation to generalized coordinates is time independent and the potential is not velocity dependent, thus the

Hamiltonian also equals the total energy. Also the Hamiltonian is conserved since .
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