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8.S: Hamiltonian Mechanics (Summary)

Hamilton’s equations of motion

Inserting the generalized momentum into Jacobi’s generalized energy relation was used to define the Hamiltonian function to be

The Legendre transform of the Lagrange-Euler equations, led to Hamilton’s equations of motion.

The generalized energy equation  gives the time dependence

where

The  are treated as independent canonical variables. Lagrange was the first to derive the canonical equations but he did not
recognize them as a basic set of equations of motion. Hamilton derived the canonical equations of motion from his fundamental
variational principle and made them the basis for a far-reaching theory of dynamics. Hamilton’s equations give  first-order
differential equations for  for each of the  degrees of freedom. Lagrange’s equations give  second-order differential
equations for the variables 

Routhian reduction technique

The Routhian reduction technique is a hybrid of Lagrangian and Hamiltonian mechanics that exploits the advantages of both
approaches for solving problems involving cyclic variables. It is especially useful for solving motion in rotating systems in science
and engineering. Two Routhians are used frequently for solving the equations of motion of rotating systems. Assuming that the
variables between  are non-cyclic, while the  variables between  are ignorable cyclic coordinates, then
the two Routhians are:

The Routhian  is a negative Lagrangian for the non-cyclic variables between , where  and is a
Hamiltonian for the  cyclic variables between . Since the cyclic variables are constants of the Hamiltonian, their
solution is trivial, and the number of variables included in the Lagrangian is reduced from  to . The Routhian  is
useful for solving some problems in classical mechanics. The Routhian  is a Hamiltonian for the non-cyclic variables
between , and is a negative Lagrangian for the  cyclic variables between . Since the cyclic variables are
constants of motion, the Routhian  also is a constant of motion but it does not equal the total energy since the coordinate
transformation is time dependent. The Routhian  is especially valuable for solving rotating many-body systems such as
galaxies, molecules, or nuclei, since the Routhian  is the Hamiltonian in the rotating body-fixed coordinate frame.

Variable mass systems:

Two examples of heavy flexible chains falling in a uniform gravitational field were used to illustrate how variable mass systems
can be handled using Lagrangian and Hamiltonian mechanics. The falling-mass system is conservative assuming that both the
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donor plus the receptor body systems are included.

Comparison of Lagrangian and Hamiltonian mechanics
Lagrangian and the Hamiltonian dynamics are two powerful and related variational algebraic formulations of mechanics that are
based on Hamilton’s action principle. They can be applied to any conservative degrees of freedom as discussed in chapters , ,
and . Lagrangian and Hamiltonian mechanics both concentrate solely on active forces and can ignore internal forces. They can
handle many-body systems and allow convenient generalized coordinates of choice. This ability is impractical or impossible using
Newtonian mechanics. Thus it is natural to compare the relative advantages of these two algebraic formalisms in order to decide
which should be used for a specific problem.

For a system with  generalized coordinates, plus  constraint forces that are not required to be known, then the Lagrangian
approach, using a minimal set of generalized coordinates, reduces to only  second-order differential equations and
unknowns compared to the Newtonian approach where there are  unknowns. Alternatively, use of Lagrange multipliers
allows determination of the constraint forces resulting in  second order equations and unknowns. The Lagrangian potential
function is limited to conservative forces, Lagrange multipliers can be used to handle holonomic forces of constraint, while
generalized forces can be used to handle non-conservative and non-holonomic forces. The advantage of the Lagrange equations of
motion is that they can deal with any type of force, conservative or non-conservative, and they directly determine ,  rather than 

 which then requires relating  to .

For a system with  generalized coordinates, the Hamiltonian approach determines  first-order differential equations which are
easier to solve than second-order equations. However, the  solutions must be combined to determine the equations of motion.
The Hamiltonian approach is superior to the Lagrange approach in its ability to obtain an analytical solution of the integrals of the
motion. Hamiltonian dynamics also has a means of determining the unknown variables for which the solution assumes a soluble
form. Important applications of Hamiltonian mechanics are to quantum mechanics and statistical mechanics, where quantum
analogs of  and  can be used to relate to the fundamental variables of Hamiltonian mechanics. This does not apply for the
variables  and  of Lagrangian mechanics. The Hamiltonian approach is especially powerful when the system has  cyclic
variables, then the  conjugate momenta  are constants. Thus the  conjugate variables  can be factored out of the
Hamiltonian, which reduces the number of conjugate variables required to . This is not possible using the Lagrangian
approach since, even though the  coordinates  can be factored out, the velocities  still must be included, thus the  conjugate
variables must be included. The Lagrange approach is advantageous for obtaining a numerical solution of systems in classical
mechanics. However, Hamiltonian mechanics expresses the variables in terms of the fundamental canonical variables  which
provides a more fundamental insight into the underlying physics.
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