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11.10: Closed-orbit Stability
Bertrand’s theorem states that the linear oscillator and the inverse-square law are the only two-body, central forces for which all
bound orbits are single-valued, and stable closed orbits. The stability of closed orbits can be illustrated by studying their response
to perturbations. For simplicity, the following discussion of stability will focus on circular orbits, but the general principles are the
same for elliptical orbits.

A circular orbit occurs whenever the attractive force just balances the effective ”centrifugal force” in the rotating frame. This can
occur for any radial functional form for the central force. The effective potential, equation  will have a stationary point
when

that is, when

This is equivalent to the statement that the net force is zero. Since the central attractive force is given by

then the stationary point occurs when

This is the so-called centrifugal force in the rotating frame. The Hamiltonian, equation , gives that

For a circular orbit  that is

A stable circular orbit is possible if both equations  and  are satisfied. Such a circular orbit will be a stable orbit at
the minimum when

Examples of stable and unstable orbits are shown in Figure .
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Figure : Stable and unstable effective central potentials. The repulsive centrifugal and the attractive potentials  are
shown dashed. The solid curve is the effective potential.

Stability of a circular orbit requires that

which can be written in terms of the central force for a stable orbit as

If the attractive central force can be expressed as a power law

then stability requires

or

Stable equivalent orbits will undergo oscillations about the stable orbit if perturbed. To first order, the restoring force on a bound
reduced mass  is given by
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To the extent that this linear restoring force dominates over higher-order terms, then a perturbation of the stable orbit will undergo
simple harmonic oscillations about the stable orbit with angular frequency

The above discussion shows that a small amplitude radial oscillation about the stable orbit with amplitude  will be of the form

The orbit will be closed if the product of the oscillation frequency  and the orbit period  is an integer value.

The fact that planetary orbits in the gravitational field are observed to be closed is strong evidence that the gravitational force field
must obey the inverse square law. Actually there are small precessions of planetary orbits due to perturbations of the gravitational
field by bodies other than the sun, and due to relativistic effects. Also the gravitational field near the earth departs slightly from the
inverse square law because the earth is not a perfect sphere, and the field does not have perfect spherical symmetry. The study of
the precession of satellites around the earth has been used to determine the oblate quadrupole and slight octupole (pear shape)
distortion of the shape of the earth.

The most famous test of the inverse square law for gravitation is the precession of the perihelion of Mercury. If the attractive force
experienced by Mercury is of the form

where  is small, then it can be shown that, for approximate circular orbitals, the perihelion will advance by a small angle  per
orbit period. That is, the precession is zero if , corresponding to an inverse square law dependence which agrees with
Bertrand’s theorem. The position of the perihelion of Mercury has been measured with great accuracy showing that, after correcting
for all known perturbations, the perihelion advances by  seconds of arc per century, that is  radians per revolution.
This corresponds to  which is small but still significant. This precession remained a puzzle for many years until 

 when Einstein predicted that one consequence of his general theory of relativity is that the planetary orbit of Mercury should
precess at  seconds of arc per century, which is in remarkable agreement with observations.

The effective potential for a linear two-body restoring force  is

At the minimum

Thus

and

which is a stable orbit. Small perturbations of such a stable circular orbit will have an angular frequency
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Note that this is twice the frequency for the planar harmonic oscillator with the same restoring coefficient. This is due to the
central repulsion, the effective potential well for this rotating oscillator example has about half the width for the corresponding
planar harmonic oscillator. Note that the kinetic energy for the rotational motion, which is  equals the potential energy 

 at the minimum as predicted by the Virial Theorem for a linear two-body restoring force.

The effective potential for an inverse square law restoring force  where  is assumed to be positive,

At the minimum

Thus

and

which is a stable orbit. Small perturbations about such a stable circular orbit will have an angular frequency

The kinetic energy for oscillations about this stable circular orbit, which is  equals half the magnitude of the potential

energy  at the minimum as predicted by the Virial Theorem.

The inverse cubic force is an interesting example to investigate the stability of the orbit equations. One solution of the inverse
cubic central force, for a reduced mass  is a spiral orbit

That this is true can be shown by inserting this orbit into the differential orbit equation.

Using a Binet transformation of the variable  to  gives
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Substituting these into the differential equation of the orbit

gives

That is

which is a central attractive inverse cubic force.

The time dependence of the spiral orbit can be derived since the angular momentum gives

This can be written as

Integrating gives

where  is a constant. But the orbit gives

Thus the radius increases or decreases as the square root of the time. That is, an attractive cubic central force does not have a
stable orbit which is what is expected since there is no minimum in the effective potential energy. Note that it is obvious that
there will be no minimum or maximum for the summation of effective potential energy since, if the force is  then the
effective potential energy is

which has no stable minimum or maximum.

An example of an application of orbit stability is the case shown in the adjacent figure. A particle of mass  moves on a
horizontal frictionless table. This mass is attached by a light string of fixed length  and rotates about a hole in the table. The
string is attached to a second equal mass  that is hanging vertically downwards with no angular motion.

=
ud2

dψ2

α2

r0
e−αψ

+u = − F ( )
ud2

dψ2

μ

l2
1

u2

1

u

+ = − F ( )
α2

r0
e−αψ 1

r0
e−αψ μ

l2
r2

0e
2αψ 1

u

F ( ) = − = −
1

u

( +1)α2 l2

μ
r−3

0 e−3αψ
( +1)α2 l2

μr3

= =ψ̇
l

μr2

l

μr2
0e

2αψ

dψ = dte2αψ l

μr2
0

= +β
e2αψ

2α

lt

μr2
0

β

= = +2αβr2 r2
0e

2αψ 2αlt

μ

F = − ,k

r3

= − + =( −k)Ueff

k

2r2

l2

2μr2

l2

μ

1

2r2

Example : Spiralling mass attached by a string to a hanging mass11.10.4
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Figure : Rotating mass  on a frictionless horizontal table connected to a suspended mass .

The equations are most conveniently expressed in cylindrical coordinates (  with the origin at the hole in the table, and 
vertically upward. The fixed length of the string requires . The potential energy is

The system is central and conservative, thus the Hamiltonian can be written as

The Lagrangian is independent of , that is,  is cyclic, thus the angular momentum  is a constant of motion.
Substituting this into the Hamiltonian equation gives

The effective potential is

which is shown in the adjacent figure. The stationary value occurs when

That is, when the angular momentum is related to the radius by

Note that  if .

Figure : Effective potential for two connected masses.

The stability of the solution is given by the second derivative
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ṙ2 r2 θ̇

2 m

2
r
. 2

θ θ m = lr2 θ̇

m + +mg(r−b) = Eṙ2 l2
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Therefore the stationary point is stable.

Note that the equation of motion for the minimum can be expressed in terms of the restoring force on the two masses

Thus the system undergoes harmonic oscillation with frequency

The solution of this system is stable and undergoes simple harmonic motion.
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