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14.2: Two Coupled Linear Oscillators
Consider the two-coupled linear oscillator, shown in Figure , which comprises two identical masses each connected to fixed
locations by identical springs having a force constant . A spring with force constant  couples the two oscillators. The
equilibrium lengths of the outer two springs are  while that of the coupling spring is . The problem is simplified by restricting the
motion to be along the line connecting the masses and assuming fixed endpoints. The small displacements of  and  are taken
to be  and  with respect to the equilibrium positions  and  respectively. The restoring force on  is 

 while the restoring force on  is . This coupled double-oscillator system exhibits
basic features of coupled linear oscillator systems.

Figure : Two coupled linear oscillators. The equilibrium spring-lengths are  for the outer springs and  for the coupling
spring. The displacement from the stable locations are given by  and . The separation between the two masses is  and the
location of the center-of-mass is .

Assuming , then the equations of motion are

Assume that the motion for these coupled equations is oscillatory with a solution of the form

where the constants  may be complex to take into account both the magnitude and phase. Substituting these possible solutions
into the equations of motion gives

Collecting terms, and cancelling the common exponential factor, gives

The existence of a non-trivial solution of these two simultaneous equations requires that the determinant of the coefficients of 
and  must vanish, that is

The expansion of this secular determinant yields

Solving for  gives

That is, there are two characteristic frequencies (or eigenfrequencies) for the system

14.2.1

κ κ′

l l′

m1 m2

x1 x2 l l + l′ m1

−κ − ( − )x1 κ′ x1 x2 m2 −κ − ( − )x2 κ′ x2 x1

14.2.1 l l′

x1 x2 r
Rcm

= = mm1 m2

m +(κ + ) − = 0ẍ1 κ′ x1 κ′x2
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(14.2.1)

=x1 B1eiωt

=x2 B2eiωt

(14.2.2)

B

−m +(κ + ) − = 0ω2B1eiωt κ′ B1eiωt κ′B2eiωt

−m +(κ + ) − = 0ω2B2eiωt κ′ B2eiωt κ′B1eiωt

(14.2.3)

(κ + −m ) − = 0κ′ ω2 B1 κ′B2

(κ + −m ) − = 0κ′ ω2 B2 κ′B1

(14.2.4)

B1

B2

= 0
∣

∣
∣

κ + −mκ′ ω2

−κ′

−κ′

κ + −mκ′ ω2

∣

∣
∣ (14.2.5)

(κ + −m − = 0κ′ ω2)2 κ′2 (14.2.6)

ω

ω =
κ + ±κ′ κ′

m

− −−−−−−−−
√ (14.2.7)

=ω1
κ +2κ′

m

− −−−−−−
√ (14.2.8)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9636?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/14%3A_Coupled_Linear_Oscillators/14.02%3A_Two_Coupled_Linear_Oscillators


14.2.2 https://phys.libretexts.org/@go/page/9636

Since superposition applies for these linear equations, then the general solution can be written as a sum of the terms that account
for the two possible values of .

Figure : Displacement of each of two coupled linear harmonic oscillators with  and  in
relative units.

Figure  shows the solutions for a case where  and , in arbitrary units, with the initial condition that , and

. The two characteristic frequencies are  and . The characteristic beats phenomenon is

exhibited where the envelope over one complete cycle of the low frequency encompasses several higher frequency oscillations.
That is, the solution is

while

The energy in the two-coupled oscillators flows back and forth between the coupled oscillators as illustrated in Figure .

A better understanding of the energy flow occurring between the two coupled oscillators is given by using a 
configuration-space plot, shown in Figure . The flow of energy occurring between the two coupled oscillators can be
represented by choosing normal-mode coordinates  and  that are rotated by  with respect to the spatial coordinates 

. These normal-mode coordinates  correspond to the two normal modes of the coupled double-oscillator system.
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