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3.E: Linear Oscillators (Exercises)
1. Consider a simple harmonic oscillator consisting of a mass  attached to a spring of spring constant . For this oscillator 

.

a. Find an expression for .
b. Eliminate  between  and  to arrive at one equation similar to that for an ellipse.
c. Rewrite the equation in part (b) in terms of , and the total energy .
d. Give a rough sketch of the phase space diagram (  versus ) for this oscillator. Also, on the same set of axes, sketch the phase

space diagram for a similar oscillator with a total energy that is larger than the first oscillator.
e. What direction are the paths that you have sketched? Explain your answer.
f. Would different trajectories for the same oscillator ever cross paths? Why or why not?

2. Consider a damped, driven oscillator consisting of a mass  attached to a spring of spring constant .

a. What is the equation of motion for this system?
b. Solve the equation in part (a). The solution consists of two parts, the complementary solution and the particular solution. When

might it be possible to safely neglect one part of the solution?
c. What is the difference between amplitude resonance and kinetic energy resonance?
d. How might phase space diagrams look for this type of oscillator? What variables would affect the diagram?

3. A particle of mass  is subject to the following force

where  is a constant.

a. Determine the points when the particle is in equilibrium.
b. Which of these points is stable and which are unstable?
c. Is the motion bounded or unbounded?

4. A very long cylindrical shell has a mass density that depends upon the radial distance such that , where  is a constant.
The inner radius of the shell is  and the outer radius is .

a. Determine the direction and the magnitude of the gravitational field for all regions of space.
b. If the gravitational potential is zero at the origin, what is the difference between the gravitational potential at  and ?

5. A mass  is constrained to move along one dimension. Two identical springs are attached to the mass, one on each side, and
each spring is in turn attached to a wall. Both springs have the same spring constant .

a. Determine the frequency of the oscillation, assuming no damping.
b. Now consider damping. It is observed that after  oscillations, the amplitude of the oscillation has dropped to one-half of its

initial value. Find an expression for the damping constant.
c. How long does it take for the amplitude to decrease to one-quarter of its initial value?

6. Discuss the motion of a continuous string when plucked at one third of the length of the string. That is, the initial condition is 

, and 

7. When a particular driving force is applied to a stretched string it is observed that the string vibration in purely of the 
harmonic. Find the driving force.

8. Consider the two-mass system pivoted at its vertex where . It undergoes oscillations of the angle  with respect to the
vertical in the plane of the triangle.
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t x(t) (t)ẋ
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a. Determine the angular frequency of small oscillations.
b. Use your result from part (a) to show  for .

c. Show that your result from part (a) agrees with  where  is the equilibrium angle and  is the moment of inertia.
d. Assume the system has energy . Setup an integral that determines the period of oscillation.

9. An unusual pendulum is made by fixing a string to a horizontal cylinder of radius , wrapping the string several times around
the cylinder, and then tying a mass  to the loose end. In equilibrium the mass hangs a distance  vertically below the edge of the
cylinder. Find the potential energy if the pendulum has swung to an angle  from the vertical. Show that for small angles, it can be
written in the Hooke’s Law form . Comment of the value of .

10. Consider the two-dimensional anisotropic oscillator with motion with  and .

a. Prove that if the ratio of the frequencies is rational (that is,  where  and  are integers) then the motion is periodic.
What is the period?

b. Prove that if the same ratio is irrational, the motion never repeats itself.

11. A simple pendulum consists of a mass  suspended from a fixed point by a weight-less, extensionless rod of length .

a. Obtain the equation of motion, and in the approximation , show that the natural frequency is , where  is the

gravitational field strength.
b. Discuss the motion in the event that the motion takes place in a viscous medium with retarding force .

12. Derive the expression for the State Space paths of the plane pendulum if the total energy is  . Note that this is just the
case of a particle moving in a periodic potential . Sketch the State Space diagram for both   and 

 .

13. Consider the motion of a driven linearly-damped harmonic oscillator after the transient solution has died out, and suppose that
it is being driven close to resonance, .

a. Show that the oscillator’s total energy is .
b. Show that the energy  dissipated during one cycle by the damping force  is 

14. Two masses  and  slide freely on a horizontal frictionless rail and are connected by a spring whose force constant is k.
Find the frequency of oscillatory motion for this system.

15. A particle of mass  moves under the influence of a resistive force proportional to velocity and a potential , that is .

where  and 

a. Find the points of stable and unstable equilibrium.
b. Find the solution of the equations of motion for small oscillations around the stable equilibrium points
c. Show that as  the particle approaches one of the stable equilibrium points for most choices of initial conditions. What are

the exceptions? (Hint: You can prove this without finding the solutions explicitly.)
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