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16.7: Ideal Fluid Dynamics
The distinction between a solid and a fluid is that a fluid flows under shear stress whereas the elasticity of solids oppose distortion
and flow. Shear stress in a fluid is opposed by dissipative viscous forces, which depend on velocity, as opposed to elastic solids
where the shear stress is opposed by the elastic forces which depend on the displacement. An ideal fluid is one where the viscous
forces are negligible, and thus the shear stress Lamé parameter .

Continuity Equation
Fluid dynamics requires a different philosophical approach than that used to describe the motion of an ensemble of known solid
bodies. The prior discussions of classical mechanics used, as variables, the coordinates of each member of an ensemble of particles
with known masses. This approach is not viable for fluids which involve an enormous number of individual atoms as the
fundamental bodies of the fluid. The best philosophical approach for describing fluid dynamics is to employ continuum mechanics
using definite fixed volume elements  and describe the fluid in terms of macroscopic variables of the fluid such as mass density 

, pressure , and fluid velocity .

Conservation of fluid mass requires that the rate of change of mass in a fixed volume must equal the net inflow of mass.

Using the divergence theorem  allows this to be written as

Mass conservation must hold for any arbitrary volume, therefore the continuity equation can be written in the differential form

Euler’s hydrodynamic equation

The fluid surrounding a volume  exerts a net force  that equals the surface integral of the pressure . This force can be
transformed to a volume integral of . The net force then will lead to an acceleration of the volume element. That is

Thus the force density  is given by

Note that the acceleration  in Equation  refers to the rate of change of velocity for individual atoms in the fluid, not the
rate of change of fluid velocity at a fixed point in space. These two accelerations are related by noting that, during the time , the
change in velocity  of a given fluid particle is composed of two parts, namely

1. the change during  in the velocity at a fixed point in space, and
2. the difference between the velocities at that same instant in time at two points displaced a distance  apart, where  is the

distance moved by a given fluid particle during the time .

The first part is given by  at a given point  in space. The second part equals

Thus

Divide both sides by  gives that the acceleration of the atoms in the fluid equals

μ = 0

dτ

ρ P v

ρdτ +∮ ρv ⋅ da = 0
d

dt
∫
τ

(16.7.1)

(H2)

( +∇ ⋅ (ρv)) dτ = 0∫
τ

∂ρ

∂t
(16.7.2)

+∇ ⋅ (ρv) = 0
∂ρ

∂t
(16.7.3)

τ F P

∇P

F = −∮ Pda = −∫ ∇Pdτ = ∫ ρ dτ
dv

dt
(16.7.4)

f

f = −∇P = ρ
dv

dt
(16.7.5)

dv

dt
16.7.4

dt

dv

dt

dr dr

dt

dt∂v

∂t
(x, y, z)

dx +dy +dz = (dr ⋅ ∇)v
∂v

∂x

∂v

∂y

∂v

∂z
(16.7.6)

dv = dt+(dr ⋅ ∇)v
∂v

∂t
(16.7.7)

dt

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14233?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/16%3A_Analytical_Formulations_for_Continuous_Systems/16.07%3A_Ideal_Fluid_Dynamics


16.7.2 https://phys.libretexts.org/@go/page/14233

Substitute Equation  into  gives

This is Euler’s equation for hydrodynamics. The two terms on the left represent the acceleration in the individual fluid components
while the right-hand side lists the force density producing the acceleration.

Additional forces can be added to the right-hand side. For example, the gravitational force density  can be expressed in terms of
the gravitational scalar potential  to be

Inclusion of the gravitational field force density in Euler’s equation gives

Irrotational flow and Bernoulli’s equation

Streamlined flow corresponds to irrotational flow, that is, . Since irrotational flow is curl free, the velocity streamlines
can be represented by a scalar potential field . That is

This scalar potential field  can be used to derive the vector velocity field for irrotational flow.

Note that the  term in Euler’s Equation  can be rewritten using the vector identity

Inserting Equation  into Euler’s Equation  then gives.

Potential flow corresponds to time independent irrotational flow, that is, both  and . For potential flow Equation
 reduces to

which implies that

This is the famous Bernoulli’s equation that relates the interplay of the fluid velocity, pressure and gravitational energy. Bernoulli’s
equation plays important roles in both hydrodynamics and aerodynamics.

Gas flow

Fluid dynamics applied to gases is a straightforward extension of fluid dynamics that employs standard thermodynamical concepts.
The following example illustrates the application of fluid mechanics for calculating the velocity of sound in a gas.

Propagation of acoustic waves in a gas provides an example of using the three-dimensional Lagrangian density. Only
longitudinal waves occur in a gas and the velocity is given by thermodynamics of the gas. Let the displacement of each gas
molecule be designated by the general coordinate  with corresponding velocity . Let the gas density be , then the kinetic
energy density  of an infinitessimal volume of gas  is given by
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Example : Acoustic Waves in a Gas16.7.1
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The rapid contractions and expansions of the gas in an acoustic wave occur adiabatically such that the product  is a
constant, where

Therefore the change in potential energy density  is given to second order by

Since the volume and density are related by

then the fractional change in the density  is related to the density by

This implies that the potential energy density  is given by

The mass flowing out of the volume  must equal the fractional change in density of the volume, that is

The divergence theorem gives that

Thus the density  is given by minus the divergence of 

This allows the potential energy density to be written as

Combining the kinetic energy density and the potential energy density gives the complete Lagrangian density for an acoustic
wave in a gas to be

Inserting this Lagrangian density in the corresponding equations of motion, equation , gives that

where  and  are the ambient pressure and density of the gas. This is the wave equation where the phase velocity of sound
is given by
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