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6.9: Applications involving Non-holonomic Constraints
In general, non-holonomic constraints can be handled by use of generalized forces  in the Lagrange-Euler equations 

. The following examples, , involve one-sided constraints which exhibit holonomic behavior for restricted
ranges of the constraint surface in coordinate space, and this range is case specific. When the forces of constraint press the object
against the constraint surface, then the system is holonomic, but the holonomic range of coordinate space is limited to situations
where the constraint forces are positive. When the constraint force is negative, the object flies free from the constraint surface. In
addition, when the frictional force  where  is the static coefficient of friction, then the object slides negating
any rolling constraint that assumes static friction.

Consider a mass starts from rest at the top of a frictionless fixed spherical shell of radius . The questions are what is the force
of constraint and determine the angle  at which the mass leaves the surface of the spherical shell. The coordinates  shown
are the obvious generalized coordinates to use.

Figure : Mass  sliding on frictionless cylinder of radius .

The constraint will not apply if the force of constraint does not hold the mass against the surface of the spherical shell, that is, it
is only holonomic in a restricted domain.

This Lagrangian is applicable irrespective of whether the constraint is obeyed, where the constraint is given by

For the restricted domain where this system is holonomic, it can be solved using generalized coordinates, generalized forces,
Lagrange multipliers, or Newtonian mechanics as illustrated below.

Minimal generalized coordinates:
The minimal number of generalized coordinates reduces the system to one coordinate , which does not determine the
constraint force that is needed to know if the constraint applies. Thus this approach is not useful for solving this partially-
holonomic system.

Generalized forces:

Note that  when , that is 

Lagrange multipliers:

The Lagrange equation for  gives  since  Thus
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assuming that  at 

Note that  when , that is 

Both of the above methods give identical results and give that the force of constraint is negative when  Assuming
that the surface cannot hold the mass against the surface, then the mass will fly off the spherical shell when  and the
system reduces to an unconstrained object falling freely in a uniform gravitational field, which is holonomic, that is 

 Then the equations of motion  and  reduce to

Energy conservation:

This occurs when . This is an unusual case where the Newtonian approach is the simplest.

This is a similar problem to the prior one with the added complication of rolling which is assumed to move in a vertical plane
making it holonomic. Here we would like to determine the forces of constraint to see when the solid sphere flies off the
spherical shell and when the friction is insufficient to stop the rolling sphere from slipping.

Figure : Disk of mass , radius , rolling on a cylindrical surface of radius .

The best generalized coordinates are the distance of the center of the sphere from the center of the spherical shell,  and  It
is important to note that  is measured with respect to the vertical, not the time-dependent vector . That is, the direction of the
radius  is  which is time dependent and thus is not a useful reference to use to define the angle . Let us assume that the
sphere is uniform with a moment of inertia of  If the tangential frictional force  is less than the limiting value 

, with  then the sphere will roll without slipping on the surface of the cylinder and both constraints apply.
Under these conditions the system is holonomic and the solution is solved using Lagrange multipliers and the equations of
constraint are the following:

1. The center of the sphere follows the surface of the cylinder

2. The sphere rolls without slipping

The kinetic energy is  and the potential energy is  Thus the Lagrangian is
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Example : Rolling solid sphere on a spherical shell6.9.2
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ṙ2 r2 θ̇

2 1

2
ϕ̇

2

m +2mr −mgr sinθ = − (R+a)r2 θ̈ ṙ θ̇ λ2 (b)
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 gives

For larger angles  is negative implying that the solid sphere will fly off the surface of the spherical shell.

The sphere will leave the surface of the cylinder when  that is,  This is a significantly larger angle than
obtained for the similar problem where the mass is sliding on a frictionless cylinder because the energy stored in rotation
implies that the linear velocity of the mass is lower at a given angle  for the case of a rolling sphere.

It is in the negative direction because of the direction chosen for  The required coefficient of friction  is given by the ratio
of the frictional force to the normal force, that is

For  the disk starts to slip when  Note that the sphere starts slipping before it flies off the cylinder since a
normal force is required to support a frictional force and the difference depends on the coefficient of friction. The no-slipping
constraint is not satisfied once the sphere starts slipping and the frictional force should equal  Thus for the angles
beyond  the problem needs to be solved with the rolling constraint changed to a sliding non-conservative frictional
force. This is best handled by including the frictional force and normal forces as generalized forces. Fortunately this will be a
small correction. The friction will slightly change the exact angle at which the normal force becomes zero and the system
transitions to free motion of the sphere in a gravitational field.

when  is positive.

which gives

Similarly  gives

These can be solved by substituting the relation . The sphere flies off the spherical shell when  leading to
free motion discussed in example . The problem of a solid uniform sphere rolling inside a hollow sphere can be solved
the same way.

Assume that a small body of mass  is balanced on a rolling wheel of mass  and radius  as shown in the figure. The wheel
rolls in a vertical plane without slipping on a horizontal surface. This example illustrates that it is possible to use
simultaneously a mixture of holonomic constraints, partially-holonomic constraints, and generalized forces.
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Example : Solid sphere rolling plus slipping on a spherical shell6.9.3
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Example : Small body held by friction on the periphery of a rolling wheel6.9.4
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Figure : Small body of mass  held by friction on the periphery of a rolling wheel of mass  and radius .

Assume that at  the wheel touches the floor at  with the mass perched at the top of the wheel at . Let the
frictional force acting on the mass  be  and the reaction force of the periphery of the wheel on the mass be . Let  be the
angular velocity of the wheel, and  the horizontal velocity of the center of the wheel. The polar coordinates  of the mass 
are taken with  measured from the center of the wheel with  measured with respect to the vertical. Thus the cartesian
coordinates of the small mass  are  with respect to the origin at .

Thus the Lagrangian is

The equations of constraints are:

1) The wheel rolls without slipping on the ground plane leading to a holonomic constraint:

2) The mass  is touching the periphery of the wheel, that is, the normal force  This is a one-sided restricted
holonomic constraint.

3) The mass  does not slip on the wheel if the frictional force  . When this restricted holonomic constraint is
satisfied, then

The rolling constraint is holonomic, and can be accounted for using one Lagrange multiplier  plus the differential constraint
equations

This last equation can be derived by Newtonian mechanics from consideration of the forces acting.

The above equations of motion can be used to calculate the motion for the following conditions.

a) Mass not slipping:

This occurs if  which also implies that  That is a situation where the system is holonomic with  
  which can be solved using the generalized coordinate approach with only one independent coordinate which

can be taken to be .

b) Mass slipping:

Here the no-slip constraint is violated and thus one has to explicitly include the generalized forces  and assume that
sliding friction is given by 
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c) Reaction force  is negative:

Here the mass is not subject to any constraints and it is in free fall.

The above example illustrates the flexibility provided by Lagrangian mechanics that allows simultaneous use of Lagrange
multipliers, generalized forces, and scalar potential to handle combinations of several holonomic and nonholonomic constraints for
a complicated problem.

This problem is solved in detail in example 3.19 of "Classical Mechanics and Relativity". by Muller-Kirsten .

This page titled 6.9: Applications involving Non-holonomic Constraints is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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