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17.6: Lorentz-Invariant Formulation of Lagrangian Mechanics

Parametric Formulation

The Lagrangian and Hamiltonian formalisms in classical mechanics are based on the Newtonian concept of absolute time ¢ which
serves as the system evolution parameter in Hamilton’s Principle. This approach violates the Special Theory of Relativity. The
extended Lagrangian and Hamiltonian formalism is a parametric approach, pioneered by Lanczos[La49], that introduces a system
evolution parameter s that serves as the independent variable in the action integral, and all the space-time variables g;(s), ¢(s) are
dependent on the evolution parameter s. This extended Lagrangian and Hamiltonian formalism renders it to a form that is
compatible with the Special Theory of Relativity. The importance of the Lorentz-invariant extended formulation of Lagrangian and
Hamiltonian mechanics has been recognized for decades.[l.a49, Go50, Sy60] Recently there has been a resurgence of interest in the
extended Lagrangian and Hamiltonian formalism stimulated by the papers of Struckmeier[Str05, Str08] and this formalism has
featured prominently in recent textbooks by Johns[JoO5] and Greiner[Gr10]. This parametric approach develops manifestly-
covariant Lagrangian and Hamiltonian formalisms that treat equally all 2n+1 space-time canonical variables. It provides a
plausible manifestly-covariant Lagrangian for the one-body system, but serious problems exist extending this to the N-body
system when N > 1. Generalizing the Lagrangian and Hamiltonian formalisms into the domain of the Special Theory of Relativity
is of fundamental importance to physics, while the parametric approach gives insight into the philosophy underlying use of
variational methods in classical mechanics.'

In conventional Lagrangian mechanics, the equations of motion for the n generalized coordinates are derived by minimizing the
action integral, that is, Hamilton’s Principle.

55(a, &, 1) za/bL(q(t),q(t),t)dt ~0 (17.6.1)

where L(q(t), q(t), t) denotes the conventional Lagrangian. This approach implicitly assumes the Newtonian concept of absolute
time ¢ which is chosen to be the independent variable that characterizes the evolution parameter of the system. The actual path
[a(t), q(t)] the system follows is defined by the extremum of the action integral S(q, q, ) which leads to the corresponding Euler-
Lagrange equations. This assumption is contrary to the Theory of Relativity which requires that the space and time variables be
treated equally, that is, the Lagrangian formalism must be covariant.

Extended Lagrangian

Lanczos[La49] proposed making the Lagrangian covariant by introducing a general evolution parameter s, and treating the time as
a dependent variable £(s) on an equal footing with the configuration space variables qi(s). That is, the time becomes a dependent
variable gy (s) = ct(s) similar to the spatial variables g, (s) where 1 <y <n. The dynamical system then is described as motion
confined to a hypersurface within an extended space where the value of the extended Hamiltonian and the evolution parameter s
constitute an additional pair of canonically conjugate variables in the extended space. That is, the canonical momentum py,
corresponding to gy = ct, is pp = % similar to the momentum-energy four vector, equation (17.5.21)

An extended Lagrangian L(q(s), d?iis) ,t(s), dﬁ;)

index 0 < p <n denotes the entire range of space-time variables.

dg*(s)
ds

) where the

) can be defined which can be written compactly as L(g*(s),

This extended Lagrangian can be used in an extended action functional S(q, da t, %) to give an extended version of Hamilton’s

ds’
Principle?
dq . dt b dg"(s)
0S(q, —,t,—) =4 L(g" ds = 17.6.2
(@t 50 =6 [ Lo, Z s —o (17.6.2)

The conventional action S, and extended action S, address alternate characterizations of the same underlying physical system, and
thus the action principle implies that §S = 6S = 0 must hold simultaneously. That is,

b
5/ L(q,d—q —ds 5/ (q, %4 ,,%)d (17.6.3)

As discussed in chapter 9.3, there is a continuous spectrum of equivalent gauge-invariant Lagrangians for which the Euler-
Lagrange equations lead to identical equations of motion. Equation 17.6.3is satisfied if the conventional and extended Lagrangians
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are related by

dq  dt dq . dt dA(q,t)
L(q, —,t,—)=L(q, —,t)— + ——— 17.6.4
(4 220t 2) = L(a, )+ =2 (17.6.4)
where A(q,t) is a continuous function of q and ¢ that has continuous second derivatives. It is acceptable to assume that
% =0, then the extended and conventional Lagrangians have a unique relation requiring no simultaneous transformation of

the dynamical variables. That is, assume

dq , dt, dq . dt
L(g, 70t 22) = Lla, 5 8) —— (17.6.5)
Note that the time derivative of q can be expressed in terms of the s derivatives by
d dq/ds
da _ dao/ (17.6.6)
dt  dt/ds

Thus, for a conventional Lagrangian with n variables, the corresponding extended Lagrangian is a function of n+ 1 variables
while the conventional and extended Lagrangians are related using equations 17.6.5 and 17.6.6

The derivatives of the relation between the extended and conventional Lagrangians lead to

oL AL dt

oL  OL dt
=T (17.6.8)
r - (17.6.9)
q* q"
o(%) o(F)
n I
oL —L-Y 0L dq (17.6.10)

— —— =
o (L) o 13<qu) dt
where 1 < p <n since the 4 = 0 time derivatives are written explicitly in equations 17.6.8 17.6.10
Equations 17.6.9— 17.6.1( summed over the extended range 0 < u < n of time and spatial dynamical variables, imply
= oL ( dg" ) dt > OL  dg" dt 2 OL  dg"
— | = L— — 0~ .t — =L (17.6.11)
ga(dq”) ds ds ;3(%) dt ds ;8(%) ds
Equation 17.6.11can be written in the form

# 0 if L is not homogeneous in L'

mn d m B
L-Y ——— L G e e (17.6.12)
p=0 0 ( L ) =0if L is homogeneous in %
If the extended Lagrangian ]L(q, s 1 ¢, dt) is homogeneous to first order in the n+1 variables d—, then Euler’s theorem on

homogeneous functions trivially implies the relation given in Equation 17.6.12 Struckmeier[Str08] identified a subtle but
important point that if I is not homogeneous in %, then Equation 17.6.12is not an identity but is an implicit equation that is
always satisfied as the system evolves according to the solution of the extended Euler-Lagrange equations. Then Equation 17.6.5is
satisfied without it being a homogeneous form in the n+1 velocities %. This introduces a new class of non-homogeneous
Lagrangians. The relativistic free particle, discussed in example 17.6.1, is a case of a non-homogeneous extended Lagrangian.

Extended generalized momenta

The generalized momentum is defined by
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Assume that the definitions of the extended Lagrangian L, and the extended Hamiltonian H, are related by a Legendre
transformation, and are based on variational principles, analogous to the relation that exists between the conventional Lagrangian L
and Hamiltonian H. The Legendre transformation requires defining the extended generalized (canonical) momentum-energy four

(17.6.13)

vector P(s) = (@, p(s)) . The momentum components of the momentum-energy four vector P(s) = (@, p(s)) are given by
the 1 < p <n components using Equation 17.6.9,

_eL 8L
pu(s) = a(‘%) = a(‘%) (17.6.14)

The 4 =0 component of the momentum-energy four vector can be derived by recognizing that the right-hand side of Equation
17.6.10is equal to —H (p,, g*, t). That is, the corresponding generalized momentum py, that is conjugate to go = ct, is given by

OL 1 OL 1 7 OL  dg* H(p,,q",t
po = _ (a(dt)>:— -y —- 2 __Hpua"t) (17.6.15)
ds

dq® Z B dg* dt C
2(%) w1 o(5)
Extended Lagrange equations of motion
t, ) is
obtained using the Euler-Lagrange equations derived from Equation 17.6.2 where the independent variable is s. This implies that
for0<pu<n

By direct analogy with the non-relativistic action integral 17.6.1, the extremum for the relativistic action integral .S (q, 7o

d oL oL 0 dt

e [ el [ —,\kﬂ QExe 2 (17.6.16)

ds | 5 (dq_“) Ogqh ot Ogh ds

ds

where the extended generalized force QEX shown on the right-hand side of Equation 17.6.16 accounts for all forces not included
in the potential energy term in the Lagrangian. The extended generalized force QfX can be factored into two terms as discussed in
chapter 6, equation (6.5.12). The Lagrange multiplier term includes 1 <k <m holonomic constraint forces where the m
holonomic constraints, which do no work, are expressed in terms of the m algebraic equations of holonomic constraint g;. The
QEXC term includes the remaining constraint forces and generalized forces that are not included in the Lagrange multiplier term or
the potential energy term of the Lagrangian.

For the case where ;1 = 0, since gy = ct, then Equation 17.6.16reduces to

df oL\ oL {Ndt, g oxcda”
ds(a(%)) ot ds)\ ot ;QV ds (17.6.17)

These Euler-Lagrange equations of motion 17.6.16 17.6.17 determine the 1 <y <n generalized coordinates ¢*(s), plus
q° = ct(s) in terms of the independent variable s.

If the holonomic equations of constraint are time independent, that is — = 0 and if QEXC 0, then the 4 =0 term of the Euler-

d [ oL oL
- (_a(ﬂ) ) ~ 55 =0 (17.6.18)

ds

Lagrange equations simplifies to

One interpretation is to select L to be primary. Then L is derived from L using Equation 17.6.5and IL. must satisfy the identity
given by Equation 17.6.12 while the Euler-Lagrange equations containing % yield an identity which implies that L does not
provide an equation of motion in terms of #(s). Conversely, if L is chosen to be primary, then L is no longer a homogeneous
function and Equation 17.6.12serves as a constraint on the motion that can be used to deduce L, whlle ylelds a non-trivial
equation of motion in terms of #(s). In both cases the occurrence of a constraint surface results from the fact that the extended
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space has 2n + 2 variables to describe 2n + 1 degrees of freedom, that is, one more degree of freedom than required for the actual
system.

Example 17.6.1: Lagrangian for a relativistic free particle

The standard Lagrangian L =T —U is not Lorentz invariant. The extended Lagrangian L(q, %,t, j—i) introduces the
independent variable s which treats both the space variables g(s) and time variable gy = ct(s) equally. This can be achieved
by defining the non-standard Lagrangian

dq , dt 1 1 (dq\® [dt\’
L —t,— | ==m |=|—=) - (— ) -1
(q, ds’”’ ds) g "¢ lc2 (ds) ds (@)
The constant third term in the bracket is included to ensure that the extended Lagrangian converges to the standard Lagrangian

in the limit % —1.

Note that the extended Lagrangian « is not homogeneous to first order in the velocities % as is required. Equation 17.6.12

must be used to ensure that Equation « is homogeneous. That is, it must satisfy the constraint relation
dat\* 1 [(dq\’
— ) —=(=—) -1=0
(&) =(%) 2
Inserting [ into the extended Lagrangian « yields that the square bracket in Equation v must equal 2. Thus
1
|L| = §mc2[—2] = —mc? ()

The constraint Equation /7 implies that

L===——"=_mc*/1-p (e)

Equation ¢ is the conventional relativistic Lagrangian derived by assuming that the system evolution parameter s is
transformed to be along the world line ds, where the invariant length ds replaces the proper time interval

dt
ds = cdr = <= (€)
The definition of the generalized (canonical) momentum
= =y ©
pi = dd, =mgq; S

leads to the relativistic expression for momentum given in equation (17.4.6).

The relativistic Lagrangian is an important example of a non-standard Lagrangian. Equation o does not equal the difference
between the kinetic and potential energies, that is, the relativistic expression for kinetic energy is given by (17.4.13)to be

T = (y—1)mc’ (m)

The non-standard relativistic Lagrangian ¢ can be used with the Euler-Lagrange equations to derive the second-order equations
of motion for both relativistic and non-relativistic problems within the Special Theory of Relativity.
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Example 17.6.2: Relativistic particle in an external elctromagnetic field

A charged particle moving at relativistic speed in an external electromagnetic field provides an example of the use of the
relativistic Lagrangian.

In the discussion of classical mechanics it was shown that the velocity-dependent Lorentz force can be absorbed into the scalar
electric potential ® plus the vector magnetic potential A. That is, the potential energy is given by equation (17.3.4) to be
U =q(® — A -v) . Including this in the Lagrangian, 17.6.17 gives

2
L:__m; ~U=-mc*y/1-6*—q®+gA v

The three spatial partial derivatives can be written in vector notation as

oL
& ve+ivv-A) (a)
Or c
and the generalized momentum is given by

oL

p=—-—=7mv+gA

dv
which is identical to the non-relativistic answer given by equation 7.6. That is, it includes the momentum of the
electromagnetic field plus the classical linear momentum of the moving particle.

The total time derivative of the generalized momentum is

dp d (OL d dA
dt  dt (dv) =gty (b)
where the last term is given by the chain rule
dA 0A
E_W—’_(V.V)A (c)

Using equations a, b, c in the Euler-Lagrange equation gives
d (OL\ 0L
dt\dv/) or

d dA
—(ymv) +q— = —qV® +qV(v-A)

dt dt
Collecting terms and using the well-known vector-product identity, plus the definition B =V x A | gives
d 0A
Gmv) == 4V -5 | V(v A) - (v DA

=—q [V@—%—?] +q[vxV xA]

F =¢[E+v xB]

If we adopt the definition that the relativistic canonical momentum is p = ymuv then the left hand side is the relativistic force
while the right-hand side is the well-known Lorentz force of electromagnetism. Thus the extended Lagrangian formulation
correctly reproduces the well-known Lorentz force for a charged particle moving in an electromagnetic field.

Chapters 17.6 and 17.7 reproduce the Struckmeier presentation.[Str08]

’These formula involve total and partial derivatives with respect to both time, ¢ and parameter s. For clarity, the derivatives are
written out in full because Lanczos[La49] and Johns[JoO5] use the opposite convention for the dot and prime superscripts as
abbreviations for the differentials with respect to ¢ and s. The blackboard bold format is used to designate the extended versions of
the action S, Lagrangian I and Hamiltonian H.
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