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14.7: Two-body coupled oscillator systems

The two-body coupled oscillator is the simplest coupled-oscillator system that illustrates the general features of coupled oscillators.
The following four examples involve parallel and series couplings of two linear oscillators or two plane pendula.

Example 14.7.1: Two coupled linear oscillators

The coupled double-oscillator problem, Figure 14.2.1 discussed in chapter 14.2, can be used to demonstrate that the general
analytic theory gives the same solution as obtained by direct solution of the equations of motion in chapter 14.2.

1) The first stage is to determine the potential and kinetic energies using an appropriate set of generalized coordinates, which

here are z; and x5. The potential energy is
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2) The second stage is to evaluate the potential energy V and kinetic energy T' tensors. The potential energy tensor V is

nondiagonal since Vj;, gives
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That is, the potential energy tensor V is

Similarly, the kinetic energy is given by

1 . 1 . 1 ..

Since 711 =T33 =m and 112 = T5; = 0 then the kinetic energy tensor T is

m 0
T
0 m
Note that for this case, the kinetic energy tensor 7' equals the mass tensor, which is diagonal, whereas the potential energy
tensor equals the spring constant tensor, which is nondiagonal.

3) The third stage is to use the potential energy V' and kinetic energy T tensors to evaluate the secular determinant using
equations (14.6.26)
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The expansion of this secular determinant yields
(k+K —mw?)? —£?=0
That is
(k+K —mw?) =+«

Solving for w, gives
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which is the same as derived previously, (equations (14.2.7 — 14.2.9)).

The solutions are

w1 =

4) The fourth step is to insert either one of these eigenfrequencies into the secular equation

> (Vi —wiTi)az =0
j

Consider the secular equation a for k =1
(k+K —w2M)ay, —K'ag, =0
Then for the first eigenfrequency wy, thatis, k=1,r=1
(k+K —Kk—2K)ay —K'ag =0
which simplifies to
Qjr =011 = —a21
Similarly, for the other eigenfrequency ws, thatis, k=1, r =2
(k+K —K)aa —K'azga =0
which simplifies to
Qjr = a12 = a22
5) The final stage is to write the general coordinates in terms of the normal coordinates 7, (t) = B, . Thus
T1 = a1 +aene = a7 +azen2
and
Tz = Q2171 + G2272 = —a1171 + Q2272

Adding or subtracting gives that the normal modes are

1
m=g- (z1 —x2)
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Thus the symmetric normal mode 7 corresponds to an oscillation of the center-of-mass with the lower frequency wy = /.

This frequency is the same as for one single mass on a spring of spring constant x which is as expected since they vibrate in

g g o g g g _ k2K
unison and thus the coupling spring force does not act. The antisymmetric mode 7, has the higher frequency w; = /=~

since the restoring force includes both the main spring plus the coupling spring.

The above example illustrates that the general analytic theory for coupled linear oscillators gives the same answer as obtained in
chapter 14.2 using Newton’s equations of motion. However, the general analytic theory is a more powerful technique for solving
complicated coupled oscillator systems. Thus the general analytic theory will be used for solving all the following coupled
oscillator problems.
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Example 14.7.2: Two equal masses series-coupled by two equal springs

Figure 14.7.1: Two equal masses series-coupled by two equal springs.

Consider the series-coupled system shown in the figure.

1) The first stage is to determine the potential and kinetic energies using an appropriate set of generalized coordinates, which
here are ; and z2. The potential energy is

2 2
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while the kinetic energy is given by
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2) The second stage is to evaluate the potential energy V' and mass 7' tensors. The potential energy tensor V is nondiagonal
since Vj;, gives
o0*U
Vo= (L) 2
8ql 3(11 0

82U
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That is, the potential energy tensor V is

Similarly, since the kinetic energy is given by
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then 117 = T59 = m and 179 = T5; = 0. Thus the kinetic energy tensor 1" is

m 0
T
0 m
Note that for this case the kinetic energy tensor is diagonal whereas the potential energy tensor is nondiagonal.

3) The third stage is to use the potential energy V' and kinetic energy 1" tensors to evaluate the secular determinant using
equation (14.6.26)

2

‘ 2K —mw —K
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The expansion of this secular determinant yields
(26 —mw?)(k —mw?) —Kk* =0

That is
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The solutions are

3=
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4) The fourth step is to insert these eigenfrequencies into the secular equation (14.6.25)
> (Vie—wiTj)aj =0
J
Consider k£ =1 in the above equation
(26 —wZM)ay, — kag, =0
Then for eigenfrequency wy, thatis, k=1,r=1

VvV5—1
5011 = —az21

Similarly, fork=1,r=2

V541

Q12 = Az
2

5) The final stage is to write the general coordinates in terms of the normal coordinates 7, (t) = §,e™rt .

Thus

2(122

VB+1

1 = a1 +a12m2 = anm + N2

and
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Adding or subtracting gives that the normal modes are

M( (7

e a22\/_ (wl " (

m=

. -1 . .
Thus the symmetric normal mode has the lower frequency ws = \/52 1/ 7= . The antisymmetric mode has the frequency
wp = @« /= since both springs provide the restoring force. This case is interesting in that for both normal modes, the

amplitudes for the motion of the two masses are different.

Example 14.7.3: Two parallel-coupled plane pendula
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Figure 14.7.2: Two parallel-coupled plane pendula.

Consider the coupled double pendulum system shown in the adjacent figure, which comprises two parallel plane pendula
weakly coupled by a spring. The angles 8; and 6, are chosen to be the generalized coordinates and the potential energy is
chosen to be zero at equilibrium. Then the kinetic energy is

T= %m(bél)2 + %m(bé}z)2

As discussed in chapter 3, it is necessary to make the small-angle approximation in order to make the equations of motion for
the simple pendulum linear and solvable analytically. That is,

U =mgb(1—cosf;)+mgb(1—cosby)+ %n(bsin@l —bsin6,) >

kb2

~ m_gﬂ)(0%+eg)+7

2
5 (61 —62)

assuming the small angle approximation sinf ~ 6 and (1 —cos6;) = 02—2 .

The second stage is to evaluate the kinetic energy 7" and potential energy V' tensors

2 2 72
T:{mb 0 } V:{mgb—i—nb kb }
0 mb? —kb? mgb + kb?

Note that for this case the kinetic energy tensor is diagonal whereas the potential energy tensor is nondiagonal.
The third stage is to evaluate the secular determinant

mgb + kb? — w?mb? —kb?

=0
—kb? mgb + kb? — w?mb?

which gives the characteristic equation
(mgb + kb* —w*mb*)? = (kb?)?
or
mg+ kb —w?mb = £kb
The two solutions are

g g 2K
1=y @t

m
The fourth step is to insert these eigenfrequencies into equation (14.6.25)

> (Vi —wTi)ase =0

J

w

Consider k =1
(mgb + kb® —wimb?)ay, — kb*az, =0

Then for the first eigenfrequency, ws, the subscriptsare k=1, r =1

(mgb+ FLb2 — %mb2) ajl — nb2a21 =0
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which simplifies to
a1l = a1

Similarly, fork=1,r =2

2
(mgb—i—f@b2 — (% + E’i) b2) a12 — kb2ags =0

which simplifies to
a1z = —as2
The final stage is to write the general coordinates in terms of the normal coordinates
61 = anm +aime = anm — axne
and
b2 = az1m +aeme = a11m + azame

Adding or subtracting these equations gives that the normal modes are

1 1
m=—>_>01+6) m=
2a11 2a22

(02 —61)

As for the case of the double oscillator discussed in example 14.7.1, the symmetric normal mode corresponds to an oscillation
of the center-of-mass, with zero relative motion of the two pendula, which has the lower frequency w; = \/% . This frequency

is the same as for one independent pendulum as expected since they vibrate in unison and thus the only restoring force is
gravity. The antisymmetric mode corresponds to relative motion of the two pendula with stationary center-of-mass and has the

frequency wy = (% + 2n—”") since the restoring force includes both the coupling spring and gravity.

This example introduces the role of degeneracy which occurs in this system if the coupling of the pendula is zero, that is,
x = 0, leading to both frequencies being equal, i.e. w; = wq = \/% . When k =0, then both {T'} and {V'} are diagonal and
thus in the (01, 6;) space the two pendula are independent normal modes. However, the symmetric and asymmetric normal
modes, as derived above, are equally good normal modes. In fact, since the modes are degenerate, any linear combination of

the motion of the independent pendula are equally good normal modes and thus one can use any set of orthogonal normal
modes to describe the motion.

Example 14.7.4: The series-coupled double plane pendula

Labs

Ly,

m,
Figure 14.7.3: Two series-coupled plane pendula.

The double-pendula system comprises one plane pendulum attached to the end of another plane pendulum both oscillating in
the same plane. The kinetic and potential energies for this system are given in example 6.12.1to be

1 -2 P 1 -2
T = §(m1 +ma) L3¢y +maLi Ly g cos(¢p1 — d2) + §m2L§¢2
U = (mq+my) gLy (1 —cos¢y)+magLs (1 —cosgs)
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a) Small-amplitude linear regime

Use of the small-angle approximation makes this system linear and solvable analytically. That is, 7" and U become

1 1
U = §(m1 +m2) ng(,ZS% + §ngL2¢g

1 .9 o o 1 .9
T = §(m1 +my) L2¢) +maLi Loy g + §m2L§¢2

Thus the kinetic energy and potential energy tensors are

T — { (m1 +m2)L% maLq Lo } vV — { (m1 +m2)gL1 0 }

mo L1 L2 mo Lg 0 ngLz

Note that T is nondiagonal, whereas V is diagonal which is opposite to the case of the two parallel-coupled plane pendula.

¢2 = \/2¢|

Figure
14.7.4
: Normal modes for two series-coupled plane pendula.

The solution of this case is simpler if it is assumed that L; = Ly = L and m; =ms =m . Then

2w 0
T-mr2{? ' y_l*0 0
1 1 0 wp

where wy = 4/ % which is the frequency of a single pendulum.

The next stage is to evaluate the secular determinant

The eigenvalues are
=@V o =@+ V2)ed
As shown in the adjacent figure, the normal modes for this system are

1 o5 1 ®2
m= E(@ +$) ne = %((ﬁl _ﬁ

The second mass has a /2 larger amplitude that is in phase for solution 1 and out of phase for solution 2.

)
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b) Large amplitude chaotic regime

Stachowiak and Okada [Sta05] used computer simulations to numerically analyze the behavior of this system with increase in
the oscillation amplitudes. Poincaré sections, bifurcation diagrams, and Lyapunov exponents all confirm that this system
evolves from regular normal-mode oscillatory behavior in the linear regime at low energy, to chaotic behavior at high
excitation energies where non-linearity dominates. This behavior is analogous to that of the driven, linearly-damped, harmonic

pendulum described in chapter 3.5

This page titled 14.7: Two-body coupled oscillator systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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