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8.5: Applications of Hamiltonian Dynamics

The equations of motion of a system can be derived using the Hamiltonian coupled with Hamilton’s equations of motion, that is,
equations (8.3.11 —8.3.13)

Formally the Hamiltonian is constructed from the Lagrangian. That is

1. Select a set of independent generalized coordinates g;
2. Partition the active forces.
3. Construct the Lagrangian L(g;, §;,t)

4. Derive the conjugate generalized momenta via p; = %
5. Knowing L, ¢, p; derive H =) p;g; — L

) . OH(a,pst) m g1 EXC
6. Derive g = - andp; = B +> )‘ka_% +Q7 .

This procedure appears to be unnecessarily complicated compared to just using the Lagrangian plus Lagrangian mechanics to
derive the equations of motion. Fortunately the above lengthy procedure often can be bypassed for conservative systems. That is, if
the following conditions are satisfied;

i. L=T(q)—U(q) , thatis, U (q) is independent of the velocity q.
ii. the generalized coordinates are time independent.

then it is possible to use the fact that
H=T+U=E.

The following five examples illustrate the use of Hamiltonian mechanics to derive the equations of motion.

Example 8.5.1: Motion in a uniform gravitational field

Consider a mass m in a uniform gravitational field acting in the —z direction. The Lagrangian for this simple case is

L= lm (i2 +9? +Z2) —mgz

2
Th : __ 0L __ . __ 0L __ . _ oL __ 0 . . .
erefore the generalized momenta are p, = T =M, Py = pr =My, pp=gr =mi. The corresponding Hamiltonian
His
H= > pid;—L=po&+pyy+p:2 —L
i
2 2 2 2 2 2 2 2 2
D 1 D 1 D
— p—z-l-—y-l-p—z——(p—z-l-—y—i-&)+mgz:—(p—z+—y+p—z)+mgz
m m m 2\m m m 2 m m

Note that the Lagrangian is not explicitly time dependent, thus the Hamiltonian is a constant of motion.

Hamilton’s equations give that

&= B 5, =H _p
Op, m ¥ fz
. OH_p 0
v= op, m Py = oy
O0H p, . OH
= 3_pz = m —p.= oz =mg
Combining these gives that # = 0, 4 =0, Z = —g . Note that the linear momenta p, and p, are constants of motion whereas

the rate of change of p, is given by the gravitational force mg. Note also that H =T + U for this conservative system.
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Example 8.5.2: One-dimensional harmonic oscillator

Consider a mass m subject to a linear restoring force with spring constant k. The Lagrangian L =T — U equals

1 1
L= Emwz — 5]6.’152
Therefore the generalized momentum is
oL .
P =g =M

The Hamiltonian H is
H=) pg;-L=pi—L
i

Do 1p2 1, 1p2 1
m 2m 2 T, T

Note that the Lagrangian is not explicitly time dependent, thus the Hamiltonian will be a constant of motion. Hamilton’s
equations give that

._O0H p;
Tr = T —
op, m
or
Pr =M
In addition
L _0H _oU_
Pe =5z = Bz
Combining these gives that
k
Z+—z=0
m

which is the equation of motion for the harmonic oscillator.

Example 8.5.3: Plane pendulum

The plane pendulum, in a uniform gravitational field g, is an interesting system to consider. There is only one generalized
coordinate, § and the Lagrangian for this system is

1 5.2
L:Eml 0 +mglcosf

The momentum conjugate to 6 is
OL .
po=—7= mi*
00
which is the angular momentum about the pivot point.
The Hamiltonian is

2

. . 1 . P
H:Z_pi‘h —L=pyb —L= §m120 —mglcosf = s
7

—mglcosf

Hamilton’s equations of motion give
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OH
Py = —%—0 = —mglsinf

Note that the Lagrangian and Hamiltonian are not explicit functions of time, therefore they are conserved. Also the potential is
velocity independent and there is no coordinate transformation, thus the Hamiltonian equals the total energy, that is

2

b
H=—-° —mglcos@=F
2ml?
where F is a constant of motion. Note that the angular momentum py is not a constant of motion since p, explicitly depends

on 6.
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Figure 8.5.1: Phase-space diagrams for the plane pendulum. The separatrix (bold line) separates the oscillatory solutions from

the rolling solutions. The upper (a) shows one complete cycle while the lower (b) shows two complete cycles.
The solutions for the plane pendulum on a (6, pp) phase diagram, shown in the adjacent figure, illustrate the motion. The upper
phase-space plot shows the range (8 = £, py) . Note that the § = +7 and — correspond to the same physical point, that is
the phase diagram should be rolled into a cylinder connected along the dashed lines. The lower phase space plot shows two
cycles for 6 to better illustrate the cyclic nature of the phase diagram. The corresponding state-space diagram is shown in
Figure 3.4.2. The trajectories are ellipses for low energy —mgl < E < mgl corresponding to oscillations of the pendulum
about @ = 0. The center of the ellipse (0, 0) is a stable equilibrium point for the oscillation. However, there is a phase change
to rotational motion about the horizontal axis when | E| > mgl, that is, the pendulum swings around a circle continuously, i.e.
it rotates continuously in one direction about the horizontal axis. The phase change occurs at £ =mgl. and is designated by
the separatrix trajectory.

The plot of py versus 6 for the plane pendulum is better presented on a cylindrical phase space representation since 6 is a
cyclic variable that cycles around the cylinder, whereas py oscillates equally about zero having both positive and negative
values. When wrapped around a cylinder then the unstable and stable equilibrium points will be at diametrically opposite
locations on the surface of the cylinder at pg =0. For small oscillations about equilibrium, also called librations, the
correlation between py and 6 is given by the clockwise closed ellipses wrapped on the cylindrical surface, whereas for energies
| E| > mgl the positive py corresponds to counterclockwise rotations while the negative py corresponds to clockwise rotations.
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Example 8.5.4: Hooke's law force constrained to the surface of a cylinder

z

P

Figure 8.5.2: Mass attracted to origin by force proportional to distance from origin with the motion constrained to the surface
of a cylinder.

Consider the case where a mass m is attracted by a force directed toward the origin and proportional to the distance from the
origin. Determine the Hamiltonian if the mass is constrained to move on the surface of a cylinder defined by

2 +y? = R?
It is natural to transform this problem to cylindrical coordinates p, z, 8. Since the force is just Hooke’s law
F=—kr

the potential is the same as for the harmonic oscillator, that is
1 1
U= 51@7'2 = 51{:(;)2 +22)

This is independent of 8, and thus 8 is cyclic.

0L .

The system is conservative, and the transformation from rectangular to cylindrical coordinates does not depend explicitly on
time. Therefore the Hamiltonian is conserved and equals the total energy. That is

p‘ﬁ p2 1
H=S pig;,— L= KR +22)=E
§i pidi o Ty g RE )

The equations of motion then are given by the canonical equations

a 8H o 5 8H o Do
Rals T =0 0= opy mR2 (<)
. OH . OH p,
Pz = 0z = ke Z_apz T m @
Equation 777 and ¢ imply that
Py = 8—L = mR%6 = constant
00

Thus the angular momentum about the axis of the cylinder is conserved, that is, it is a cyclic variable.

Combining equations b and d implies that
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k
Z4+—2z=0
m

This is the equation for simple harmonic motion with angular frequency w = 4/ % . The symmetries imply that this problem

has the same solutions for the z coordinate as the harmonic oscillator, while the 6 coordinate moves with constant angular
velocity.

Example 8.5.5: Electron motion in a cylindrical magnetron

A magnetron comprises a hot cylindrical wire cathode that emits electrons and is at a high negative voltage. It is surrounded by
a larger diameter concentric cylindrical anode at ground potential. A uniform magnetic field runs parallel to the cylindrical axis
of the magnetron. The electron beam excites a multiple set of microwave cavities located around the circumference of the
cylindrical wall of the anode. The magnetron was invented in England during World War 2 to generate microwaves required
for the development of radar.

Consider a non-relativistic electron of mass m and charge —e in a cylindrical magnetron moving between the central cathode
wire, of radius a at a negative electric potential —¢y, and a concentric cylindrical anode conductor of radius R which has zero
electric potential. There is a uniform constant magnetic field B parallel to the cylindrical axis of the magnetron.

Using SI units and cylindrical coordinates (r,#6,z) aligned with the axis of the magnetron, the electromagnetic force
Lagrangian, given in chapter 6.10, equals

L:%miz—i—e(q&—i‘-A)

The electric and vector potentials for the magnetron geometry are

Thus expressed in cylindrical coordinates the Lagrangian equals

1 .2 1 g
=—m (7"2 +7%6 +é2) +ep— 563”‘20

2
The generalized momenta are
oL
r = — =mr
P or
OL 9n 1 2
po = — =mr°0 ——eBr
96 2
0L
= - =mz
bz GE

Note that the vector potential A contributes an additional term to the angular momentum py.

Using the above generalized momenta leads to the Hamiltonian
H= et +peb +p.z— L
1 -2 1 .
= Em (7‘*2—&—7"20 —|—22> —ep+ 5637‘20

2 2 2
Dr 1 1 9 Dz
= + + —eBr + —e
2m  2mr? (pa 2 ) 2m ¢

1 2
p%+<p—:+§e3r) +p2| —ep

1
2m

Note that the Hamiltonian is not an explicit function of time, therefore it is a constant of motion which equals the total energy.
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2
1
=— P2+ B0 ZeBr +pi| —ep=E
2m r 2
Since p, = — g—g, and if H is not an explicit function of ¢;, then p, = 0, that is, p; is a constant of motion. Thus p, and p, are

constants of motion.

Consider the initial conditions r =a,7 =6 =2 =0 . Then

L -1 1
Py = 8— =mrif — 56BT2 = —5(3Ba2
00
P = 0
1 1 2 In(5
H= o p%+<&+—eBr) +p2| +ego (f) = edy
m ro 2 In($)

Note that at » = R, then p, is given by the last equation since the Hamiltonian equals a constant e¢q. That is, assuming that
a << R then

Pt = 2medy (3 eBR)?

2 2m¢0
B —
‘"R \/ e

(), = (B~ B) (5eR)

Define a critical magnetic field by

then

Note that if B < B, then p, is real at » = R. However, if B > B, then p, is imaginary at r = R implying that there must be a
maximum orbit radius 7y for the electron where ry < R. That is, the electron trajectories are confined spatially to coaxial
cylindrical orbits concentric with the magnetron electromagnetic fields. These closed electron trajectories excite the microwave
cavities located in the nearby outer cylindrical wall of the anode.

This page titled 8.5: Applications of Hamiltonian Dynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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