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19.2: Appendix - Matrix Algebra

Matrices

Matrix algebra provides an elegant and powerful representation of multivariate operators, and coordinate transformations that
feature prominently in classical mechanics. For example they play a pivotal role in finding the eigenvalues and eigenfunctions for
coupled equations that occur in rigid-body rotation, and coupled oscillator systems. An understanding of the role of matrix
mechanics in classical mechanics facilitates understanding of the equally important role played by matrix mechanics in quantal
physics.

It is interesting that although determinants were used by physicists in the late  century, and the concept of matrix algebra was
developed by Arthur Cayley in England in 1855, many of these ideas were the work of Hamilton, and the discussion of matrix
algebra was buried in a more general discussion of determinants. Matrix algebra was an esoteric branch of mathematics, little
known by the physics community, until 1925 when Heisenberg proposed his innovative new quantum theory. The striking feature
of this new theory was its representation of physical quantities by sets of time-dependent complex numbers and a peculiar
multiplication rule. Max Born recognized that Heisenberg’s multiplication rule is just the standard “row times column”
multiplication rule of matrix algebra; a topic that he had encountered as a young student in a mathematics course. In 1924 Richard
Courant had just completed the first volume of the new text Methods of Mathematical Physics during which Pascual Jordan had
served as his young assistant working on matrix manipulation. Fortuitously, Jordan and Born happened to share a carriage on a
train to Hanover during which Jordan overheard Born talk about his problems trying to work with matrices. Jordan introduced
himself to Born and offered to help. This led to publication, in September 1925, of the famous Born-Jordan paper[Bor25a] that
gave the first rigorous formulation of matrix mechanics in physics. This was followed in November by the Born-Heisenberg-Jordan
sequel[Bor25b] that established a logical consistent general method for solving matrix mechanics problems plus a connection
between the mathematics of matrix mechanics and linear algebra. Matrix algebra developed into an important tool in mathematics
and physics during World War 2 and now it is an integral part of undergraduate linear algebra courses.

Most applications of matrix algebra in this book are restricted to real, symmetric, square matrices. The size of a matrix is defined
by the rank, which equals the row rank and column rank, i.e. the number of independent row vectors or column vectors in the
square matrix. It is presumed that you have studied matrices in a linear algebra course. Thus the goal of this review is to list simple
manipulation of symmetric matrices and matrix diagonalization that will be used in this course. You are referred to a linear algebra
textbook if you need further details.

Matrix definition

A matrix is a rectangular array of numbers with  rows and  columns. The notation used for an element of a matrix is 
where  designates the row and  designates the column of this matrix element in the matrix . Convention denotes a matrix  as

Matrices can be square, , or rectangular . Matrices having only one row or column are called row or column
vectors respectively, and need only a single subscript label. For example,

Matrix manipulation

Matrices are defined to obey certain rules for matrix manipulation as given below.

1) Multiplication of a matrix by a scalar  simply multiplies each matrix element by .
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2) Addition of two matrices  and  having the same rank, i.e. the number of columns, is given by

3) Multiplication of a matrix  by a matrix  is defined only if the number of columns in  equals the number of rows in . The
product matrix  is given by the matrix product

For example, if both  and  are rank three symmetric matrices then

In general, multiplication of matrices  and  is noncommutative, i.e.

In the special case when  then the matrices are said to commute.

Transposed matrix 

The transpose of a matrix  will be denoted by  and is given by interchanging rows and columns, that is

The transpose of a column vector is a row vector. Note that older texts use the symbol  for the transpose.

Identity (unity) matrix 

The identity (unity) matrix  is diagonal with diagonal elements equal to 1, that is

where the Kronecker delta symbol is defined by

Inverse matrix 

If a matrix is non-singular, that is, its determinant is non-zero, then it is possible to define an inverse matrix . A square matrix
has an inverse matrix for which the product

Orthogonal matrix

A matrix with real elements is orthogonal if

That is
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Adjoint matrix 

For a matrix with complex elements, the adjoint matrix, denoted by  is defined as the transpose of the complex conjugate

Hermitian matrix

The Hermitian conjugate of a complex matrix  is denoted as  and is defined as

Therefore

A matrix is Hermitian if it is equal to its adjoint

that is

A matrix that is both Hermitian and has real elements is a symmetric matrix since complex conjugation has no effect.

Unitary matrix

A matrix with complex elements is unitary if its inverse is equal to the adjoint matrix

which is equivalent to

A unitary matrix with real elements is an orthogonal matrix as given in Equation .

Trace of a square matrix 

The trace of a square matrix, denoted by , is defined as the sum of the diagonal matrix elements.

Inner product of column vectors

Real vectors

The generalization of the scalar (dot) product in Euclidean space is called the inner product. Exploiting the rules of matrix
multiplication requires taking the transpose of the first column vector to form a row vector which then is multiplied by the second
column vector using the conventional rules for matrix multiplication. That is, for rank  vectors

For rank  this inner product agrees with the conventional definition of the scalar product and gives a result that is a scalar.
For the special case when  then the two matrices are called orthogonal. The magnitude squared of a column vector is
given by the inner product
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Note that this is only positive.

Complex vectors

For vectors having complex matrix elements the inner product is generalized to a form that is consistent with Equation 
when the column vector matrix elements are real.

For the special case

Determinants

Definition

The determinant of a square matrix with  rows equals a single number derived using the matrix elements of the matrix. The
determinant is denoted as  or  where

where  is the permutation index which is either even or odd depending on the number of permutations required to
go from the normal order  to the sequence .

For example for  the determinant is

Properties
1. The value of a determinant , if

a. all elements of a row (column) are zero.
b. all elements of a row (column) are identical with, or multiples of, the corresponding elements of another row (column).

2. The value of a determinant is unchanged if

a. rows and columns are interchanged.
b. a linear combination of any number of rows is added to any one row.

3. The value of a determinant changes sign if two rows, or any two columns, are interchanged.
4. Transposing a square matrix does not change its determinant. 
5. If any row (column) is multiplied by a constant factor then the value of the determinant is multiplied by the same factor.
6. The determinant of a diagonal matrix equals the product of the diagonal matrix elements. That is, when  then 

7. The determinant of the identity (unity) matrix .
8. The determinant of the null matrix, for which all matrix elements are zero, 
9. A singular matrix has a determinant equal to zero.

10. If each element of any row (column) appears as the sum (difference) of two or more quantities, then the determinant can be
written as a sum (difference) of two or more determinants of the same order. For example for order ,
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11. A determinant of a matrix product equals the product of the determinants. That is, if  then 

Cofactor of a square matrix

For a square matrix having  rows the cofactor is obtained by removing the  row and the  column and then collapsing the
remaining matrix elements into a square matrix with  rows while preserving the order of the matrix elements. This is called
the complementary minor which is denoted as . The matrix elements of the cofactor square matrix  are obtained by
multiplying the determinant of the  complementary minor by the phase factor . That is

The cofactor matrix has the property that

Cofactors are used to expand the determinant of a square matrix in order to evaluate the determinant.

Inverse of a non-singular matrix

The  matrix elements of the inverse matrix  of a non-singular matrix  are given by the ratio of the cofactor  and the
determinant , that is

Equations  and  can be used to evaluate the  element of the matrix product 

This agrees with Equation  that .

The inverse of rank 2 or 3 matrices is required frequently when determining the eigen-solutions for rigidbody rotation, or coupled
oscillator, problems in classical mechanics as described in chapters  and . Therefore it is convenient to list explicitly the
inverse matrices for both rank 2 and rank 3 matrices.

Inverse for rank 2 matrices:

where the determinant of  is written explicitly in Equation .

Inverse for rank 3 matrices:

where the functions , are equal to rank 2 determinants listed in Equation .
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Reduction of a matrix to diagonal form
Solving coupled linear equations can be reduced to diagonalization of a matrix. Consider the matrix  operating on the vector 
to produce a vector , that are expressed as components with respect to the unprimed coordinate frame, i.e.

Consider that the unitary real matrix  with rank , rotates the -dimensional un-primed coordinate frame into the primed
coordinate frame such that ,  and  are transformed to ,  and  in the rotated primed coordinate frame. Then

With respect to the primed coordinate frame Equation  becomes

using the fact that the identity matrix  since the rotation matrix in  dimensions is orthogonal.

Thus we have that the rotated matrix

Let us assume that this transformed matrix is diagonal, then it can be written as the product of the unit matrix  and a vector of
scalar numbers called the characteristic roots  as

using the fact that  then gives

Let both sides of Equation  act on  which gives

or

This represents a set of  homogeneous linear algebraic equations in  unknowns  where  is a set of characteristic roots,
(eigenvalues) with corresponding eigenfunctions . Ignoring the trivial case of  being zero, then  requires that the
secular determinant of the bracket be zero, that is

The determinant can be expanded and factored into the form

where the  eigenvalues are  of the matrix .

The eigenvectors  corresponding to each eigenvalue are determined by substituting a given eigenvalue  into the relation

If all the eigenvalues are distinct, i.e. different, then this set of  equations completely determines the ratio of the components of
each eigenvector along the axes of the coordinate frame. However, when two or more eigenvalues are identical, then the reduction
to a true diagonal form is not possible and one has the freedom to select an appropriate eigenvector that is orthogonal to the
remaining axes.

In summary, the matrix can only be fully diagonalized if
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(a) all the eigenvalues are distinct,

(b) the real matrix is symmetric,

(c) it is unitary.

A frequent application of matrices in classical mechanics is for solving a system of homogeneous linear equations of the form

Making the following definitions

Then the set of linear equations can be written in a compact form using the matrices

which can be solved using Equation . Ensure that you are able to diagonalize a matrices with rank 2 and 3. You can use
Mathematica, Maple, MatLab, or other such mathematical computer programs to diagonalize larger matrices.

Consider the matrix

The secular determinant is given by 

This expands to

Thus the three eigen values are .

To find each eigenvectors we substitute the corresponding eigenvalue into Equation .

The eigenvalue  yields  and . Thus the eigen vector is . The eigenvalue  yields 

 and . Thus the eigen vector is . The eigenvalue  yields  and . Thus the eigen
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A ⋅ X = 0 (19.2.50)
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Example : Eigenvalues and eigenvectors of a real symmetric matrix19.2.1
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vector is . The orthogonality of these three eigen vectors, which correspond to three distinct eigenvalues, can

be verified.
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