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15.2: Poisson bracket Representation of Hamiltonian Mechanics

Poisson Brackets

Poisson brackets were developed by Poisson, who was a student of Lagrange. Hamilton’s canonical equations of motion describe
the time evolution of the canonical variables (g, p) in phase space. Jacobi showed that the framework of Hamiltonian mechanics
can be restated in terms of the elegant and powerful Poisson bracket formalism. The Poisson bracket representation of Hamiltonian
mechanics provides a direct link between classical mechanics and quantum mechanics.

The Poisson bracket of any two continuous functions of generalized coordinates F'(p, ¢) and G(p, q), is defined to be
OF 0G OF 0G
F,G},, = _—— 15.2.1
{7, Cla 21: (3%' op;  Op; 5%) ( )
Note that the above definition of the Poisson bracket, written using the common brace notation, leads to the following identity,
antisymmetry, linearity, Leibniz rules, and Jacobi Identity.

{F,F} =0 (15.2.2)
{F,G} =—{G, F} (15.2.3)
{G,F+Y} ={G,F}+{G,Y} (15.2.4)
{G,FY} ={G,F}Y+F{G,Y} (15.2.5)

0 ={F,{G,Y}}+{G {Y,F}} +{Y{F,G}} (15.2.6)

where G, H, and Y are functions of the canonical variables plus time. Jacobi’s identity; 15.2.6 states that the sum of the cyclic
permutation of the double Poisson brackets of three functions is zero. Jacobi’s identity plays a useful role in Hamiltonian
mechanics as will be shown.

Fundamental Poisson Brackets

The Poisson brackets of the canonical variables themselves are called the fundamental Poisson brackets. They are

Oqy. 0 Oqy. O
e - 5 (G52 - 52.02) - Siw0-0)-0 g

Opr, O Opy. O
(ool =) (ai;a—g—a%fa—’;) = 37(0- 65— 8- 0) =0 (15.2.8)

Oqi. 0 Oqr. O
o5 (R 222 S i-00-5 s

In summary, the fundamental Poisson brackets equal

{@ @ty =0 (15.2.10)
{Prspi}yp =0 (15.2.11)
{aw, i} = D1 th }op = 0w (15.2.12)

Note that the Poisson bracket is antisymmetric under interchange in p and g. It is interesting that the only non-zero fundamental
Poisson bracket is for conjugate variables where k =1, that is

{ar, Pr}pg =1 (15.2.13)

Poisson bracket invariance to canonical transformations

The Poisson brackets are invariant under a canonical transformation from one set of canonical variables (g, px) to a new set of
canonical variables (Qy, P;) where Qr — Qx(q,p) and P, — Pi(q,p). This is shown by transforming Equation 15.2.1 to the
new variables by the following derivation
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OF 0G OF 0G

F,G}y = — A a 15.2.14

1. Glo z]: <3qj dp;  Op; 5qj> ( )

S R ) (15.2.15)

o \0q; \9Qy Op;  OP; Op; Op; \0Qr 9q;  OP; 0g;
The terms can be rearranged to give
oG oG
{F,G}yp = zk: (TQk{F, Qi + 6_Pk{F’ Pk}qp> (15.2.16)

Let F = @} and replace G by F, and use the fact that the fundamental Poisson brackets {Q, Q;}sp =0 and {Q%, Pj}qp = 0,
then Equation 15.2.14reduces to

OF OF OF
{Qk, F}g = ; (@{Qka@j} +6_Pj{Qkan}> =2 a—Pjéjk (15.2.17)
That is
oF
F, Qe =55 (15.2.18)
Similarly
OF OF
{Ps; Flop :; <er{Pkan}qp+a_Pj{Pk7Pj}qp) (15.2.19)
leading to
OF
{F, Pi}yp = 20, (15.2.20)

Substituting equations 15.2.18and 15.2.20into Equation 15.2.16gives

OF 0G OF 0G
{F, G}qp —; (TQka—Pk —6—1__’kTQk) ={F, G}Qp (15.2.21)

Thus the canonical variable subscripts (g, p) and (@, P) can be ignored since the Poisson bracket is invariant to any canonical
transformation of canonical variables. The counter argument is that if the Poisson bracket is independent of the transformation, then
the transformation is canonical.

Example 15.2.1: Check that a transformation is canonical

The independence of Poisson brackets to canonical transformations can be used to test if a transformation is canonical. Assume
that the transformation equations between two sets of coordinates are given by

Q :ln(l +q§ cosp) P=2 (1 +q% cosp) qé sinp

Evaluating the Poisson brackets gives {Q, Q} =0, { P, P} = 0 while

(o.py_ 220P 9P 0@
’ "~ 0q Op Oq Op
L 1
_L L
cos . 1 1 . . .
=t 21 - [_qsm2p+(1+qécosl’)q;COSP]"‘q?L—p[COSP-i-(l-i-q;cosp)q =1
1+4q> cosp 1+gq> cosp

Therefore if g, p are canonical with a Poisson bracket {g, p} = 1, then so are @, P since {Q, P} =1 ={q,p}.

Since it has been shown that this transformation is canonical, it is possible to go further and determine the function that
generates this transformation. Solving the transformation equations for ¢ and p give
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q= (eQ — 1) ? sec’p P =2¢e° (eQ — 1) tanp
Since the transformation is canonical, there exists a generating function F3(Q, p) such that

OF3 OF3

=5 T=mg
The transformation function F3(Q, p) can be obtained using

OF: OF:
AR (Q:p) = 50 dQ+ 75"

=—d [(eQ — 1) 2] tanp — (eQ — 1) 2dtanp =—d [(eQ = 1) 2 tanp]

dp = —PdQ — qdp

This then gives that the required generating function is

Fy(Q,p) = (2 1) tanp

This example illustrates how to determine a useful generating function and prove that the transformation is canonical.

Correspondence of the Commutator and the Poisson Bracket

In classical mechanics there is a formal correspondence between the Poisson bracket and the commutator. This can be shown by
deriving the Poisson Bracket of four functions taken in two pairs. The derivation requires deriving the two possible Poisson
Brackets involving three functions.

OF, 6F2> oG (6F1 8F2> aG]
FF,G} = —Rh+F— ) —-(=—F”+F—2) — 15.2.22
thif, 6} zj:[(aqj *" Vg ) op; \op 0 Op ) 0g ( )
= {F,,G}F, + F,{F,,G} (15.2.23)
{F, Gng} = {F, Gl}GQ —|—G1{F, Gz} (15224)

These two Poisson Brackets for three functions can be used to derive the Poisson Bracket of four functions, taken in pairs. This can
be accomplished two ways using either Equation 15.2.230r 15.2.24
{F]FQ, G1G2} = {Fl, G1G2}F2 +F1{F2, Gng} (15.2.25)
=[{F1,G1}Gy +G1{F1, G2 }|Fa + Fi [{ F, G1}G2 + G1{ F3, G2 }]
={F1,G1}G2Fy + G1{F1,Ga} F> + Fi{F2, G1}Ga + F1G1{ F», G2 }

The alternative approach gives
{F1F2, Gng} = {F]FQ, G1}G2 +G1{F1F2, GQ} (15.2.26)
={F1,G1}F,Gs+ Fi{F>,G1}G2 + G1{F1, G2} F» + G1 Fi { F», G2}

These two alternate derivations give different relations for the same Poisson Bracket. Equating the alternative equations 15.2.25
and 15.2.26gives that

{F1,G1}(F2G2 — GoFy) = (F1Gy — G1 F1){ F», G2}
This can be factored into separate relations, the left-hand side for body 1, and the right-hand side for body 2.

F1Gy— G F; F,Gy — G5 F:
e -Gik) _ (G —Goly) _ (15.2.27)
{F1,G1} {F2,Ga}
Since the left-hand ratio holds for F, G; independent of F5, G2, and vise versa, then they must equal a constant A that does not
depend on F, Gy, does not depend on F, G5, and A must commute with (F;G; —G1F}) . That is, A must be a constant number

independent of these variables.

0F, 0G1 OF 8G1) (15.2.28)

(F1G1 7G1F1) :)\{Fl,Gl} E)\Z (W%Wﬁ

15.2.3 https://phys.libretexts.org/@go/page/9650



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9650?pdf

LibreTextsw

Equation 15.2.28is an especially important result which states that to within a multiplicative constant number X, there is a one-to-
one correspondence between the Poisson Bracket and the commutator of two independent functions. An important implication is
that if two functions, F; G}, have a Poisson Bracket that is zero, then the commutator of the two functions also must be zero, that is,
F; and G}, commute.

Consider the special case where the variables F; and Gy correspond to the fundamental canonical variables, (gx, p;). Then the
commutators of the fundamental canonical variables are given by

@1 — Pk = Mg, p1} = Ad (15.2.29)
@@ —aqk = Mgk, at =0 (15.2.30)
prpL— PPk = Mpr,pi} =0 (15.2.31)

In 1925, Paul Dirac, a 23-year old graduate student at Bristol, recognized that the formal correspondence between the Poisson
bracket in classical mechanics, and the corresponding commutator, provides a logical and consistent way to bridge the chasm
between the Hamiltonian formulation of classical mechanics, and quantum mechanics. He realized that making the assumption that
the constant A = ik, leads to Heisenberg’s fundamental commutation relations in quantum mechanics, as is discussed in chapter
18.3.1 Assuming that A =4¢h provides a logical and consistent way that builds quantization directly into classical mechanics,
rather than using ad-hoc, case-dependent, hypotheses as was used by the older quantum theory of Bohr.

Observables in Hamiltonian mechanics

Poisson brackets, and the corresponding commutation relations, are especially useful for elucidating which observables are
constants of motion, and whether any two observables can be measured simultaneously and exactly. The properties of any
observable are determined by the following two criteria.

Time dependence:

The total time differential of a function G(g;, p;, t) is defined by

dG 0G oG oG
—_— =—+ —q; +—D; 15.2.32
oY (Fodit5:) (15.2.32)
Hamilton’s canonical equations give that

0H
j, =— 15.2.33
9= o ( )

H
P, :76— (15.2.34)

g

Substituting these in the above relation gives

G 9G Z(BGBH oG 8H>

0q; Op;  Op; 0Og;

dt ot

i
that is
dG  0G
at ot
This important equation states that the total time derivative of any function G(g, p,t) can be expressed in terms of the partial time
derivative plus the Poisson bracket of G(g, p, t) with the Hamiltonian.

+{G, H} (15.2.35)

Any observable G(p, g, t) will be a constant of motion if % =0, and thus Equation 15.2.35gives

oG
) +{G,H} =0 (If G is a constant of motion)
That is, it is a constant of motion when
0G
_675 ={H,G} (15.2.36)
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Moreover, this can be extended further to the statement that if the constant of motion G is not explicitly time dependent then
{G,H}=0 (15.2.37)

The Poisson bracket with the Hamiltonian is zero for a constant of motion G that is not explicitly time dependent. Often it is more

useful to turn this statement around with the statement that if {G, H} =0, and % =0, then ‘fi—f =0, implying that G is a

constant of motion.
Independence
Consider two observables F'(p, g,t) and G(p, g,t). The independence of these two observables is determined by the Poisson
bracket
{F,G}=—{G,F} (15.2.38)

If this Poisson bracket is zero, that is, if the two observables F'(p, g, t) and G(p, g, t) commute, then their values are independent
and can be measured independently. However, if the Poisson bracket { F', G} # 0, that is F(p, g, t) and G(p, g, t) do not commute,
then F' and G are correlated since interchanging the order of the Poisson bracket changes the sign which implies that the measured
value for F' depends on whether G is simultaneously measured.

A useful property of Poisson brackets is that if F' and G both are constants of motion, then the double Poisson bracket
{H,{F,G}} = 0. This can be proved using Jacobi’s identity

{F){GaH}}+{G7{H7F}}+{Ha {FaG}}:O (15‘2'39)
If {G,H} =0and {F,H} =0, then {H,{F, G}} =0, that is, the Poisson bracket { ', G} commutes with H. Note that if F' and
OF __ 0G

G do not depend explicitly on time, that is 5 = 5 =0, then combining equations 15.2.35and 15.2.39 leads to Poisson’s
Theorem that relates the total time derivatives.

d dF dG

ar _ 4G _

This implies that if F' and G are invariants, that is T a

0, then the Poisson bracket { F', G} is an invariant if F' and G are
not explicitly time dependent.

Example 15.2.2: Angular momentum

Angular momentum, L, provides an example of the use of Poisson brackets to elucidate which observables can be determined
simultaneously. Consider that the Hamiltonian is time independent with a spherically symmetric potential U (r). Then it is best
to treat such a spherically symmetric potential using spherical coordinates since the Hamiltonian is independent of both 6 and
@.

The Poisson Brackets in classical mechanics can be used to tell us if two observables will commute. Since U(r) is time
independent, then the Hamiltonian in spherical coordinates is

1 (., » v}
H:T—i-U:%(pr—I-r—Q-i-m) +U(r)
Evaluate the Poisson bracket using the above Hamiltonian gives
{p¢a H} =0

. . .. . . op dp . . .
Since py is not an explicit function of time, ﬁ =0, then d—: =0, that is, the angular momentum about the z axis L, = py is
a constant of motion.

The Poisson bracket of the total angular momentum L? commutes with the Hamiltonian, that is

2
Py
LY HY={p2+—2 Hb=0
{ } {pe sin® 0 }
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. p2
Since the total angular momentum L2 = pg + = ﬁ 5
s1n’

Note that Noether’s theorem gives that both the angular momenta L? and L, are constants of motion. Also since the Poisson

is not explicitly time dependent, then it also must be a constant of motion.

brackets are
{L,,H}=0
{L*,H} =0
then Jacobi’s identity, Equation 15.2.6 can be used to imply that
{H.{L* L.}} =0

That is, the Poisson bracket {L?, L.} is a constant of motion. Note that if L?> and L, commute, that is, {L?, L,} =0, then
they can be measured simultaneously with unlimited accuracy, and this also satisfies that { L%, L, } commutes with H.

The (z,y, z) components of the angular momentum L are given by

n n
Lo =) (rxP)e =) (uipzi —#ipy,)
=1 =1
n n
Ly=) (rxp)y= Z(zipz,i —TiPsi)
=1 =1

n

L.=) (rxp).= Z(mipy,i — YiPzi)

i=1 i=1

3

Evaluate the Poisson bracket

Tz =3 [(2 L, OL, OL,\ (0L, 8L, L, L,\ (8L, 0L, oL, OL,
zy Ly “— oz; 8pz,i 8pz,i ox; Ay; 6py7i 8py’i o 0z; 6pz,i 3pz,i 0z;

=D _[(0) +(0) + (@ipyi — yipei)] = L

Similarly, Poisson brackets for L, L, L, are

{LI’Ly} =L,
{LyaLz} =L,
{Lz’Lx} =L,

where z, y, and z are taken in a right-handed cyclic order. This usually is written in the form
{Li, L;} = €iju L

where the Levi-Civita density €;;; equals zero if two of the ¢jk indices are identical, otherwise it is +1 for a cyclic permutation
of ¢, j, k, and —1 for a non-cyclic permutation.

Note that since these Poisson brackets are nonzero, the components of the angular momentum L, Ly, L, do not commute and
thus simultaneously they cannot be measured precisely. Thus we see that although L? and L; are simultaneous constants of
motion, where the subscript ¢ can be either z, y, or z, only one component L; can be measured simultaneously with L2. This
behavior is exhibited by rigid-body rotation where the body precesses around one component of the total angular momentum,
L., such that the total angular momentum, L?, plus the component along one axis, L, are constants of motion. Then
L2+ L?=L%—L? isconstant but not the individual L, or L,,.

Hamilton’s equations of motion

An especially important application of Poisson brackets is that Hamilton’s canonical equations of motion can be expressed directly
in the Poisson bracket form. The Poisson bracket representation of Hamiltonian mechanics has important implications to quantum
mechanics as will be described in chapter 18.
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In Equation 15.2.35assume that G is a fundamental coordinate, that is, G = g, . Since g, is not explicitly time dependent, then
dax _ gk
dt ot

_o4 (%B_H_%a_ﬂ)
7~ \0q; Op;  Op; Og;

+{ar, H} (15.2.41)

OH OH
=3 (g 05 )

O0H
= (15.2.42)
Opx,
That is
0H
i =A{ax, H} = — 15.2.43
Similarly consider the fundamental canonical momentum G = py,. Since it is not explicitly time dependent, then
dpr  Op
—_ == H 15.2.44
@ o e H} ( )
Oqr. OH Oqi, OH
ey (ﬂ O _>
— \ 0q; Op;  Op;i Og;
OH OH
-3 (o e G
i apl 6‘11
O0H
= (15.2.45)
Ogy,
That is
) O0H
P =1pw, H} = 5~ (15.2.46)
dk
Thus, it is seen that the Poisson bracket form of the equations of motion includes the Hamilton equations of motion. That is,
. O0H
= H}=— 15.2.47
a5, ={a, H} oo ( )
. O0H
pr={ps, H} = —5— (15.2.48)
dk

The above shows that the full structure of Hamilton’s equations of motion can be expressed directly in terms of Poisson brackets.

The elegant formulation of Poisson brackets has the same form in all canonical coordinates as the Hamiltonian formulation.
However, the normal Hamilton canonical equations in classical mechanics assume implicitly that one can specify the exact position
and momentum of a particle simultaneously at any point in time which is applicable only to classical mechanics variables that are
continuous functions of the coordinates, and not to quantized systems. The important feature of the Poisson Bracket representation
of Hamilton’s equations is that it generalizes Hamilton’s equations into a form 15.2.47 15.2.48 where the Poisson bracket is
equally consistent with both classical and quantum mechanics in that it allows for non-commuting canonical variables and
Heisenberg’s Uncertainty Principle. Thus the generalization of Hamilton’s equations, via use of the Poisson brackets, provides one
of the most powerful analytic tools applicable to both classical and quantal dynamics. It played a pivotal role in derivation of
quantum theory as described in chapter 18.

Example 15.2.3: Lorentz force in electromagnetism

Consider a charge ¢, and mass m, in a constant electromagnetic fields with scalar potential ¢ and vector potential A. Chapter
6.10 showed that the Lagrangian for electromagnetism can be written as
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The generalized momentum then is given by

oL 2
P=—--=mx+qA
ox
Thus the Hamiltonian can be written as
—_agA)?
H=(p-x)-L= lo=chy +q%®
2m
The Hamilton equations of motion give
. (p—qA)
= H =
k= {x, H} = ——

and

Define the magnetic field to be

B=Vx A
and the electric field to be
E=-V&-— 3_A
ot

then the Lorentz force can be written as

Example 15.2.4: Wavemotion

g7 A
Assume that one is dealing with traveling waves of the form ¥ = AeX(7 %=~ for a one-dimensional conservative system of
many identical coupled linear oscillators. Then evaluating the following Poisson brackets gives

{p:, H} =0
{z,H} =0
{w,H} =0
{t,H} =0
Thus p,, x, w, and ¢ are constants of motion. However,
{pz,z} #0
{w,t} #0

Thus one cannot simultaneously measure the conjugate variables (p,z) or (w,t). This is the Uncertainty Principle that is
manifest by all forms of wave motion in classical and quantal mechanics as discussed in chapter 3.11.

Example 15.2.5: Two-dimensional, anisotropic, linear oscillator

Consider a mass m bound by an anisotropic, two-dimensional, linear oscillator potential. As discussed in chapter 11, the
motion can be described as lying entirely in the  — y plane that is perpendicular to the angular momentum J. It is interesting
to derive the equations of motion for this system using the Poisson bracket representation of Hamiltonian mechanics.

The kinetic energy is given by
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.. 1 . .
T(&,9)=5m (2% +9°)

The linear binding is reproduced assuming a quadratic scalar potential energy of the form
1
Ulz,y) = Ek (3:2 +y2) +nzy

where 7 is the anharmonic strength that coupled the modes of the isotropic linear oscillator.

a) NORMAL MODES

As discussed in chapter 14, a transformation to the normal modes of the system is given by using variables (o, 3) where

a—T(w+y) andﬁ——(:c y), that is

1
r=—=(a+p) y=
V2 f
Express the kinetic and potential energies in terms of the new coordinates gives

T(;t,y):im [(a+8)2+ (a—B)Z] - %m (a2+52)

U= 7k [(@+8) +(@— 6] + 57 (e ) = 5 (k+m)a’ + 5 (k)

—(@=p)

Note that the coordinate transformation makes the Lagrangian separable, that is

:ém(duff) ~(k+n)ad+= (k m)B% =L+ Ls

where

1 5,01 9, 1 21 9
Lo = ymd® - 5 (k+ma’Ly =smf’ = 3 (k—n)p

This shows that that the transformation has separated the system into two normal modes that are harmonic oscillators with
angular frequencies

k k-
Y Bt R . i
m m

Note that the non-isotropic harmonic oscillator reduces to the isotropic linear oscillator when 7 = 0.

b) HAMILTONIAN

The canonical momenta are given by

oL .

o = T =M
i Oa

(')L .

p =mf
2= 5

The definition of the Hamiltonian gives

. 1 1 1
H =pé —L:—(Z 2) Z(k+n)a?+=(k—n)p>
Pali+ppf 5 (Pa +P5) + 5 (k+n)a” + = (k—n)p
Note that this can be factored as
H=H,+Hg

where
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Using the Poisson Bracket expression for the time dependence, Equation 15.2.35 and using the fact that the Hamiltonian is not

explicitly time dependent, that is, %{ =0, gives
dH, OH,
dta - 6ta +{Ha, H} =0+{Hq, Ho + Hg} = {Ha,, Hg}

__ OH, 0Hg 0H, 0Hs 0H, 0Hg 0OH, 0Hg B

~ 0 Opa | 08 5 Opa Oa  Ops OB

. dH, L N L
Similarly d—tﬁ = 0. This implies that the Hamiltonians for both normal modes, H, and Hg, are time-independent constants of
motion which are equal to the total energy for each mode.

¢) ANGULAR MOMENTUM

The angular momentum for motion in the a3 plane is perpendicular to the a3 plane with a magnitude of

J= m(apﬂ - /Bpoz)
The time dependence of the angular momentum is given by

A DT o o, 0T O 0J 0H 07 0H oI oH
dt ot T Badpy  Op. O BB dps  Opg OB
= ppPo +mkBa +mnBo —papg —mkaf +mnpa = 2mnBa

Note that if n =0, then the two eigenfrequencies, are degenerate, w, = wg, that is, the system reduces to the isotropic

harmonic oscillator in the a8 plane that was discussed in chapter 11.9. In addition, % =0 for n =0, that is, the angular

momentum J in the a3 plane is a constant of motion when 77 = 0.
d) SYMMETRY TENSOR
The symmetry tensor was defined in chapter 11.9.3to be

bip;
A—
Aij— 5

where 7 and j can correspond to either « or 5. The symmetry tensor defines the orientation of the major axis of the elliptical
orbit for the two-dimensional, isotropic, linear oscillator as described in chapter 11.9.

1
+ 5]6213@:12]

The isotropic oscillator has been shown to have two normal modes that are degenerate, therefore o and 8 are equally good
normal modes. The Hamiltonian showed that, for = 0, the Hamiltonian gives that the total energy is conserved, as well as the
energies for each of the two normal modes which are.

2
_Pa 1, o
E,= o + > ko
2
Py 1,
Eg=—+—k
6= om 2%
Consider the matrix element
_pip; 1
A;j = om ar 5’61'@11]
where 4, j each can represent « or 3. Then for each matrix element
! ! ! / ! !
a0 +{Ay, H} =0+ O%; OH O%4; OH  O%; OH O4; 0H _
dt ot Oa Op, Op, Oa 0B Opg Ops OB

That is, each matrix element A’12, commutes with the Hamiltonian

{A,,H} =0

17
Thus the Poisson Brackets representation of Hamiltonian mechanics has been used to prove that the symmetry tensor

DPiDj q q q q . . .
Agj = 2—WZ + %kxia:j is a constant of motion for the isotropic harmonic oscillator. That is, all the elements A/, A%ﬁ, and
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Al 5 of the symmetric tensor A’ commute with the Hamiltonian.

Note that the three constants of motion, L, A’ and H, for the isotropic, two-dimensional, linear oscillator, form a closed
algebra under the Poisson Bracket formalism.

Example 15.2.6: The eccentricity vector

Chapter 11.8.4showed that Hamilton’s eccentricity vector for the inverse square-law attractive force,
A = (p x L)+ (ukt)

is a constant of motion that specifies the major axis of the elliptical orbit. The eccentricity vector for the inverse-square-law
force can be investigated using Poisson Brackets as was done for the symmetry tensor above. It can be shown that

{Li, A;} = €iji A

p’  k
{4i, A} =2 (ﬁ + ;) €iji L (a)
Note that the bracket on the right-hand side of Equation a equals the Hamiltonian H for the inverse square-law attractive force,
and thus the Poisson bracket equals

2k
{Ai, AJ} =-2 <§—’u + 7) fijkLk = _2H€ijkLk

For the Hamiltonian H it can be shown that the Poisson bracket
{H,A}=0

That is, the eccentricity vector commutes with the Hamiltonian and thus it is a constant of motion. Previously this result was
obtained directly using the equations of motion as given in equation 11.8.36 Note that the three constants of motion, L, A and
H form a closed algebra under the Poisson Bracket formalism similar to the triad of constants of motion, L, A" and H that
occur for the two-dimensional, isotropic linear oscillator described above. Examples 15.2.5 and 15.2.6 illustrate that the
Poisson Brackets representation of Hamiltonian mechanics is a powerful probe of the underlying physics, as well as confirming
the results obtained directly from the equations of motion as described in chapter 11.8 and 11.9.

Liouville's Theorem

Liouvilles Theorem illustrates an application of Poisson Brackets to Hamiltonian phase space that has important implications for
statistical physics. The trajectory of a single particle in phase space is completely determined by the equations of motion if the
initial conditions are known. However, many-body systems have so many degrees of freedom it becomes impractical to solve all
the equations of motion of the many bodies. An example is a statistical ensemble in a gas, a plasma, or a beam of particles. Usually
it is not possible to specify the exact point in phase space for such complicated systems. However, it is possible to define an
ensemble of points in phase space that encompasses all possible trajectories for the complicated system. That is, the statistical
distribution of particles in phase space can be specified.
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»>(,
Figure 15.2.1: Infinitessimal element of area in phase space

Consider a density p of representative points in (g, p) phase space. The number N of systems in the volume element dv is
N = pdv (15.2.49)

where it is assumed that the infinitessimal volume element dv=dq;,dqs....dqs,dp1,dps....dps contains many possible
systems so that p can be considered a continuous distribution. For the conjugate variables (g;, p;) shown in Figure 15.2.1, the
number of representative points moving across the left-hand edge into the area per unit time is

04 ;dp; (15.2.50)

The number of representative points flowing out of the area along the right-hand edge is
.0
pdi+ 5~ (pdi)da | dpi (15.2.51)

Hence the net increase in p in the infinitessimal rectangular element dg;dp; due to flow in the horizontal direction is

0 .
~3 (pd;)dg;dp; (15.2.52)
qi
Similarly, the net gain due to flow in the vertical direction is
0 .
*Tm(Ppi)dpidqz‘ (15.2.53)
Thus the total increase in the element dg;dp; per unit time is therefore
O 06+ (o) | dpidas (15.2.54)
aql pql 6]% ppz pl ql A

Assume that the total number of points must be conserved, then the total increase in the number of points inside the element dg;dp;
must equal the net changes in p on the infinitessimal surface element per unit time. That is

dp
( Bt) dg;dp; (15.2.55)

Thus summing over all possible values of ¢ gives
6 o, .
— —(op,)| =0 15.2.56
+§j [ 5 (Pi:) + 5 (ppi)] (15.2.56)

or

i

+Z [ql— Thig, ] PZ [31)1 'Z} =0 (15.2.57)

Inserting Hamilton’s canonical equations into both brackets and differentiating the last bracket results in
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Op OH Jp O0H 0p 92H O2H -
ot 2> [01% dg;  Ogi 81%] +pZ[ :0g; =0 (15.2.58)

i

The two terms in the last bracket cancel and thus

— L {pH = (15.2.59)

- d
However, this just equals d—’: , therefore

dp  Op

dt ot
This is called Liouville’s theorem which states that the rate of change of density of representative points vanishes, that is, the
density of points is a constant in the Hamiltonian phase space along a specific trajectory. Liouville’s theorem means that the system
acts like an incompressible fluid that moves such as to occupy an equal volume in phase space at every instant, even though the
shape of the phase-space volume may change, that is, the phase-space density of the fluid remains constant. Equation 15.2.60is
another illustration of the basic Poisson bracket relation 15.2.35and the usefulness of Poisson brackets in physics.

+{p,H} =0 (15.2.60)

Liouville’s theorem is crucially important to statistical mechanics of ensembles where the exact knowledge of the system is
unknown, only statistical averages are known. An example is in focussing of beams of charged particles by beam handling systems.
At a focus of the beam, the transverse width in « is minimized, while the width in p, is largest since the beam is converging to the
focus, whereas a parallel beam has maximum width z and minimum spreading width p,. However, the product zp, remains
constant throughout the focussing system. For a two dimensional beam, this applies equally for the y and p, coordinates, etc. It is
obvious that the final beam quality for any beam transport system is ultimately limited by the emittance of the source of the beam,
that is, the initial area of the phase space distribution. Note that Liouville’s theorem only applies to Hamiltonian ¢; —p; phase
space, not to z — = Lagrangian state space. As a consequence, Hamiltonian dynamics, rather than Lagrange dynamics, is used to
discuss ensembles in statistical physics.

Note that Liouville’s theorem is applicable only for conservative systems, that is, where Hamilton’s equations of motion apply. For

dissipative systems the phase space volume shrinks with time rather than being a constant of the motion.

This page titled 15.2: Poisson bracket Representation of Hamiltonian Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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