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16.2: The Continuous Uniform Linear Chain

The Lagrangian for the discrete lattice chain, for longitudinal modes, is given by equation (14.10.3)to be
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where the n masses are attached in series to n -+ 1 identical springs of length d and spring constant . Assume that the spring has a
uniform cross-section area A and length d. Then each spring volume element A7 = Ad has a mass m, that is, the volume mass

density p = % or m = pAr. Chapter 16.5 will show that the spring constant x = % where E is Young’s modulus, A is the
cross sectional area of the chain element, and d is the length of the element. Then the spring constant can be written as kK = EdAZT .

Therefore Equation 16.2.1 can be expressed as a sum over volume elements A1 = Ad
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In the limit that n — oo and the spacing d = dx — 0, then the summation in Equation 16.2.2 can be written as a volume integral
where x = jd is the distance along the linear chain and the volume element A7 — o. Then the Lagrangian can be written as the
integral over the volume element d rather than a summation over A7. That is,
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The discrete-chain coordinate g(¢) is assumed to be a continuous function g(z, t) for the uniform chain. Thus the integral form of

the Lagrangian can be expressed as
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where the function £ is called the Lagrangian density defined by
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The variable x in the Lagrangian density is not a generalized coordinate; it only serves the role of a continuous index played
previously by the index j. For the discrete case, each value of j defined a different generalized coordinate g;. Now for each value
of « there is a continuous function g(z, t) which is a function of both position and time.

Lagrange’s equations of motion applied to the continuous Lagrangian in Equation 16.2.4 gives
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This is the familiar wave equation in one dimension for a longitudinal wave on the continuous chain with a phase velocity
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Uphase = 0

The continuous linear chain also can exhibit transverse modes which have a Lagrangian density were the Young’s modulus F is
replaced by the tension 7 in the chain, and p is replaced by the linear mass density p of the chain, leading to a phase velocity for a

transverse wave Uppgse = ﬁ .
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