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10.4: Rayleigh’s Dissipation Function
As mentioned above, nonconservative systems involving viscous or frictional dissipation, typically result from weak thermal
interactions with many nearby atoms, making it impractical to include a complete set of active degrees of freedom. In addition,
dissipative systems usually involve complicated dependences on the velocity and surface properties that are best handled by
including the dissipative drag force explicitly as a generalized drag force in the Euler-Lagrange equations. The drag force can have
any functional dependence on velocity, position, or time.

Note that since the drag force is dissipative the dominant component of the drag force must point in the opposite direction to the
velocity vector.

In  Lord Rayleigh showed that if a dissipative force  depends linearly on velocity, it can be expressed in terms of a scalar
potential functional of the generalized coordinates called the Rayleigh dissipation function . The Rayleigh dissipation
function is an elegant way to include linear velocity-dependent dissipative forces in both Lagrangian and Hamiltonian mechanics,
as is illustrated below for both Lagrangian and Hamiltonian mechanics.

Generalized dissipative forces for linear velocity dependence
Consider  equations of motion for the  degrees of freedom, and assume that the dissipation depends linearly on velocity. Then,
allowing all possible cross coupling of the equations of motion for  the equations of motion can be written in the form

Multiplying Equation  by , take the time integral, and sum over , gives the following energy equation

The right-hand term is the total energy supplied to the system by the external generalized forces  at the time . The first time-
integral term on the left-hand side is the total kinetic energy, while the third time-integral term equals the potential energy. The
second integral term on the left is defined to equal  where Rayeigh’s dissipation function  is defined as

and the summations are over all  particles of the system. This definition allows for complicated cross-coupling effects between
the  particles.

The particle-particle coupling effects usually can be neglected allowing use of the simpler definition that includes only the diagonal
terms. Then the diagonal form of the Rayleigh dissipation function simplifies to

Therefore the frictional force in the  direction depends linearly on velocity , that is

In general, the dissipative force is the velocity gradient of the Rayleigh dissipation function,

The physical significance of the Rayleigh dissipation function is illustrated by calculating the work done by one particle  against
friction, which is
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Therefore

which is the rate of energy (power) loss due to the dissipative forces involved. The same relation is obtained after summing over all
the particles involved.

Transforming the frictional force into generalized coordinates requires equation 

Note that the derivative with respect to  equals

Using equations  and , the  component of the generalized frictional force  is given by

Equation  provides an elegant expression for the generalized dissipative force  in terms of the Rayleigh’s scalar
dissipation potential .

Generalized dissipative forces for nonlinear velocity dependence
The above discussion of the Rayleigh dissipation function was restricted to the special case of linear velocity-dependent
dissipation. Virga[Vir15] proposed that the scope of the classical Rayleigh-Lagrange formalism can be extended to include
nonlinear velocity dependent dissipation by assuming that the nonconservative dissipative forces are defined by

where the generalized Rayleigh dissipation function  satisfies the general Lagrange mechanics relation

This generalized Rayleigh’s dissipation function eliminates the prior restriction to linear dissipation processes, which greatly
expands the range of validity for using Rayleigh’s dissipation function.

Lagrange equations of motion
Linear dissipative forces can be directly, and elegantly, included in Lagrangian mechanics by using Rayleigh’s dissipation function
as a generalized force . Inserting Rayleigh dissipation function  in the generalized Lagrange equations of motion 

 gives

where  corresponds to the generalized forces remaining after removal of the generalized linear, velocity-dependent, frictional

force .

The holonomic forces of constraint are absorbed into the Lagrange multiplier term.

Hamiltonian mechanics
If the nonconservative forces depend linearly on velocity, and are derivable from Rayleigh’s dissipation function according to
Equation , then using the definition of generalized momentum gives
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∂ ṙi

∂q̇ j

∑
i=1

n

∇vi q̇
∂ ṙi
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Thus Hamilton’s equations become

The Rayleigh dissipation function  provides an elegant and convenient way to account for dissipative forces in both
Lagrangian and Hamiltonian mechanics.

Consider the two identical, linearly damped, coupled oscillators (damping constant ) shown in the figure.

Figure : Harmonically-driven, linearly-damped, coupled linear oscillators.

A periodic force  is applied to the left-hand mass . The kinetic energy of the system is

The potential energy is

Thus the Lagrangian equals

Since the damping is linear, it is possible to use the Rayleigh dissipation function

The applied generalized forces are

Use the Euler-Lagrange equations  to derive the equations of motion

gives

These two coupled equations can be decoupled and simplified by making a transformation to normal coordinates,  where
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Thus

Insert these into the equations of motion gives

Add and subtract these two equations gives the following two decoupled equations

Define . Then the two independent equations of motion become

This solution is a superposition of two independent, linearly-damped, driven normal modes  and  that have different
natural frequencies  and . For weak damping these two driven normal modes each undergo damped oscillatory motion

with the  and  normal modes exhibiting resonances at  and 

The mathematical equations governing the behavior of mechanical systems and  electrical circuits have a close similarity.
Thus variational methods can be used to derive the analogous behavior for electrical circuits. For example, for a system of 
separate circuits, the magnetic flux through circuit  due to electrical current  flowing in circuit  is given by

where  is the mutual inductance. The diagonal term  corresponds to the self inductance of circuit . The net
magnetic flux  through circuit  due to all  circuits, is the sum

Thus the total magnetic energy which is analogous to kinetic energy  is given by summing over all  circuits to be

Similarly the electrical energy  stored in the mutual capacitance  between the  circuits, which is analogous to
potential energy,  is given by

Thus the standard Lagrangian for this electric system is given by

Assuming that Ohm’s Law is obeyed, that is, the dissipation force depends linearly on velocity, then the Rayleigh dissipation
function can be written in the form
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Example : Kirchhoff’s Rules for Electrical Circuits10.4.2
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where  is the resistance matrix. Thus the dissipation force, expressed in volts, is given by

Inserting equations , , and  into Equation , plus making the assumption that an additional generalized electrical
force  volts is acting on circuit  then the Euler-Lagrange equations give the following equations of motion.

This is a generalized version of Kirchhoff’s loop rule which can be seen by considering the case where the diagonal term 
is the only non-zero term. Then

This sum of the voltages is identical to the usual expression for Kirchhoff’s loop rule. This example illustrates the power of
variational methods when applied to fields beyond classical mechanics.

This page titled 10.4: Rayleigh’s Dissipation Function is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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