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6.8: Applications to systems involving holonomic constraints
The equations of motion that result from the Lagrange-Euler algebraic approach are the same as those given by Newtonian
mechanics. The solution of these equations of motion can be obtained mathematically using the chosen initial conditions. The
following simple example of a disk rolling on an inclined plane, is useful for comparing the merits of the Newtonian method with
Lagrange mechanics employing either minimal generalized coordinates, the Lagrange multipliers, or the generalized forces
approaches.

Figure : Disk rolling without slipping on an inclined plane.

Rolling constraint gives

a) Newton’s laws of motion

The moment of inertia of a uniform solid circular disk is 

which is smaller than the gravitational force along the plane which is 

b) Lagrange equations with a minimal set of generalized coordinates

Again if  then

The solution for the  coordinate is trivial. This answer is identical to that obtained using Newton’s laws of motion. Note that
no forces have been determined using the single generalized coordinate.

c) Lagrange equation with Lagrange multipliers

and the torque is

Example : Disk rolling on an inclined plane6.8.1
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d) Lagrange equation using a generalized force

The Euler-Lagrange equations are:

The four methods for handling the equations of constraint all are equivalent and result in the same equations of motion. The
scalar Lagrangian mechanics is able to calculate the vector forces acting in a direct and simple way. The Newton’s law
approach is more intuitive for this simple case and the ease and power of the Lagrangian approach is not apparent for this
simple system.

The following series of examples will gradually increase in complexity, and will illustrate the power, elegance, plus superiority of
the Lagrangian approach compared with the Newtonian approach.

Figure : Two connected masses on frictionless inclined planes

The Lagrangian then gives that

Therefore

Note that the system acts as though the inertial mass is  while the driving force comes from the difference of the
forces. The acceleration is zero if
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Example : Two connected masses on frictionless inclined planes6.8.2
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Note that this problem has been solved without any reference to the force in the rope or the normal constraint forces on the
inclined planes.

Figure : A block sliding on a frictionless movable inclined plane.

The Lagrangian is

Consider the Lagrange-Euler equation for the  coordinate,  which gives

which states that  is a constant of motion. This constant of motion is just the total linear momentum of
the complete system in the  direction. That is, conservation of the linear momentum is satisfied automatically by the
Lagrangian approach. The Newtonian approach also predicts conservation of the linear momentum since there are no external
horizontal forces,

Consider the Lagrange-Euler equation for the  coordinate,  which gives

This example illustrates the flexibility of being able to use non-orthogonal displacement vectors to specify the scalar
Lagrangian energy. Newtonian mechanics would require more thought to solve this problem.

Assume initial conditions are  Choose the independent coordinates  and  as
generalized coordinates plus the holonomic constraint . Then the Lagrangian is

Figure : Solid sphere rolling without slipping on an inclined plane on a frictionless horizontal floor.

Example : Block sliding on a movable frictionless inclined plane6.8.3
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Example : Sphere rolling without slipping down an inclined plane on a frictionless floor6.8.4
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Note that these equations predict conservation of linear momentum for the block plus sphere.

Figure : Mass sliding on a rotating straight frictionless rod.

Thus the angular momentum is constant

The Lagrange equation for  gives

The  equation states that the angular momentum is conserved for this case which is what we expect since there are no
external torques acting on the system. The  equation states that the centrifugal acceleration is  These equations of
motion were derived without reference to the forces between the rod and mass.

Figure : Spherical pendulum

giving that

This is just the angular momentum  for the pendulum rotating in the  direction. Automatically the Lagrange approach
shows that the angular momentum  is a conserved quantity. This is what is expected from Newton’s Laws of Motion since
there are no external torques applied about this vertical axis.
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Example : Mass sliding on a rotating straight frictionless rod.6.8.5
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Example : Spherical pendulum6.8.6
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The equation of motion for  can be simplified to

There are many possible solutions depending on the initial conditions. The pendulum can just oscillate in the  direction, or
rotate in the  direction or some combination of these. Note that if  is zero, then the equation reduces to the simple harmonic
pendulum, while the other extreme is when  for which the motion is that of a conical pendulum that rotates at a constant
angle  to the vertical axis.

Figure : Mass constrained to slide on the inside of a frictionless paraboloid.

with a gravitational potential energy of 

This system is holonomic, scleronomic, and conservative. Choose cylindrical coordinates  with respect to the vertical
axis of the paraboloid to be the generalized coordinates.

The Lagrange multiplier approach will be used to determine the forces of constraint.

For 

For 

Thus the angular momentum  is conserved, that is, it is a constant of motion.

The above four equations of motion can be used to determine 

Assuming that  then equation  for  and  gives

which is the usual centripetal force. These relations also give that the initial angular velocity required for such a stable
trajectory with height  is
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Example : Mass constrained to move on the inside of a frictionless paraboloid6.8.7
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Figure : Mass , hanging from a rope that is connected to , which slides on a frictionless plane.

Two masses  and  are connected by a string of length . Mass  is on a horizontal frictionless table and it is assumed
that mass  moves in a vertical plane. This is another problem involving holonomic constrained motion. The constraints are:

1)  moves in the horizontal plane

2)  moves in the vertical plane

3)  Therefore 

Thus the Lagrange equations are 

that is

This last equation is a statement of the conservation of angular momentum. These three differential equations of motion can be
solved for known initial conditions.

Figure : Two identical masses  constrained to slide on a moving rod of mass . The masses are attached to the center
of the rod by identical springs each having a spring constant .

Consider two identical masses  constrained to move along the axis of a thin straight rod, of mass  and length  which is
free to both translate and rotate. Two identical springs link the two masses to the central point of the rod. Consider only
motions of the system for which the extended lengths of the two springs are equal and opposite such that the two masses always
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Example : Mass on a frictionless plane connected to a plane pendulum6.8.8
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Example : Two connected masses constrained to slide along a moving rod6.8.9
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are equal distances from the center of the rod keeping the center of mass at the center of the rod. Find the equations of motion
for this system.

Use a fixed cartesian coordinate system  and a moving frame with the origin  at the center of the rod with its
cartesian coordinates  being parallel to the fixed coordinate frame as shown in the figure. Let  be the
spherical coordinates of a point referring to the center of the moving  frame as shown in the figure. Then the two
masses  have spherical coordinates  and  in the moving-rod fixed frame. The frictionless constraints are
holonomic.

Using Lagrange’s equations  for the generalized coordinates gives.

The first three equations show that the three components of the linear momentum of the center of mass are constants of motion.
The fourth equation shows that the component of the angular momentum about the  axis is a constant of motion. Since the 
axis has been arbitrarily chosen then the total angular momentum must be conserved. The fifth and sixth equations give the
radial and angular equations of motion of the oscillating masses .

This page titled 6.8: Applications to systems involving holonomic constraints is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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