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13.21: Torque-free rotation of an asymmetric rigid rotor
The Euler equations of motion for the case of torque-free rotation of an asymmetric (triaxial) rigid rotor about the center of mass,
with principal moments of inertia , lead to more complicated motion than for the symmetric rigid rotor.  The general
features of the motion of the asymmetric rotor can be deduced using the conservation of angular momentum and rotational kinetic
energy.

Figure : Rotation of an asymmetric rigid rotor. The dark lines correspond to contours of constant total rotational kinetic
energy T, which has an ellipsoidal shape, projected onto the angular momentum L sphere in the body-fixed frame.

Assuming that the external torques are zero then the Euler equations of motion can be written as

Since  for , then Equation  gives

Multiply the first equation by , the second by  and the third by  and sum, which gives

The bracket is equivalent to  which implies that the total rotational angular momentum  is a constant of
motion as expected for this torque-free system, even though the individual components  may vary. That is

Note that equation  is the equation of a sphere of radius .

Multiply the first equation of  by , the second by , and the third by , and sum gives

Divide  by  gives . This implies that the total rotational kinetic energy , given by

is a constant of motion as expected when there are no external torques and zero energy dissipation. Note that  is the
equation of an ellipsoid.

Equations  and  both must be satisfied by the rotational motion for any value of the total angular momentum  and
kinetic energy . Fig  shows a graphical representation of the intersection of the  sphere and  ellipsoid as seen in the

≠ ≠I1 I2 I3
3

13.21.1

= ( − )I1ω̇1 I2 I3 ω2ω3

= ( − )I2ω̇2 I3 I1 ω3ω1

= ( − )I3ω̇3 I1 I2 ω1ω2

(13.21.1)

=Li Iiωi i = 1, 2, 3 13.21.1

= ( − )I2I3L̇1 I2 I3 L2L3

= ( − )I1I3L̇2 I3 I1 L3L1

= ( − )I1I2L̇3 I1 I2 L1L2

(13.21.2)

I1L1 I2L2 I3L3

( + + ) = 0I1I2I3 L1L̇1 L2L̇2 L3L̇3 (13.21.3)

( + + ) = 0d

dt
L

2
1 L

2
2 L

2
3 L

, ,L1 L2 L3

+ + =L2
1 L2

2 L2
3 L

2 (13.21.4)

13.21.4 L

13.21.2 L1 L2 L3

+ + = 0I2I3L1L̇1 I1I3L2L̇2 I1I2L3L̇3 (13.21.5)

13.21.5 I1I2I3 ( + + ) = 0d

dt

L
2
1

2I1

L
2
2

2I2

L
2
3

2I3
T

+ + = T
L2

1

2I1

L2
2

2I2

L2
3

2I3
(13.21.6)

13.21.6

13.21.4 13.21.6 L

T 13.21.1 L T

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/30808?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/13%3A_Rigid-body_Rotation/13.21%3A_Torque-free_rotation_of_an_asymmetric_rigid_rotor


13.21.2 https://phys.libretexts.org/@go/page/30808

body-fixed frame. The angular momentum vector  must follow the constant-energy contours given by where the -ellipsoids
intersect the -sphere, shown for the case where . Note that the precession of the angular momentum vector 
follows a trajectory that has closed paths that circle around the principal axis with the smallest , that is, , or the principal axis
with the maximum , that is, . However, the angular momentum vector does not have a stable minimum for precession around
the intermediate principal moment of inertia axis . In addition to the precession, the angular momentum vector  executes
nutation, that is a nodding of the angle . For any fixed value of , the kinetic energy has upper and lower bounds given by

Thus, for a given value of , when , the orientation of  in the body-fixed frame is either  or 
, that is, aligned with the  axis along which the principal moment of inertia is largest. For slightly higher kinetic energy

the trajectory of  follows closed paths precessing around . When the kinetic energy  the angular momentum vector 
follows either of the two thin-line trajectories each of which are a separatrix. These do not have closed orbits around  and they
separate the closed solutions around either  or . For higher kinetic energy the precessing angular momentum vector follows
closed trajectories around  and becomes fully aligned with  at the upper-bound kinetic energy.

Note that for the special case when , then the asymmetric rigid rotor equals the symmetric rigid rotor for which the
solutions of Euler’s equations were solved exactly in chapter . For the symmetric rigid rotor the -ellipsoid becomes a
spheroid aligned with the symmetry axis and thus the intersections with the -sphere lead to circular paths around the  body-
fixed principal axis, while the separatrix circles the equator corresponding to the  axis separating clockwise and anticlockwise
precession about . This discussion shows that energy, plus angular momentum conservation, provide the general features of the
solution for the torque-free symmetric top that are in agreement with those derived using Euler’s equations of motion.

Similar discussions of the freely-rotating asymmetric top are given by Landau and Lifshitz [La60] and by Gregory [Gr06].

This page titled 13.21: Torque-free rotation of an asymmetric rigid rotor is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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