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14.8: Three-body coupled linear oscillator systems
Chapter  discussed parallel and series arrangements of two coupled oscillators. Extending from two to three coupled linear
oscillators introduces interesting new characteristics of coupled oscillator systems. For more than two coupled oscillators, coupled
oscillator systems separate into two classifications depending on whether each oscillator is coupled to the remaining 
oscillators, or when the coupling is only to the nearest neighbors as illustrated below.

Figure : Three plane pendula with complete linear coupling.

Consider three identical pendula with mass  and length , suspended from a common support that yields slightly to
pendulum motion leading to a coupling between all three pendula as illustrated in the adjacent figure. Assume that the motion
of the three pendula all are in the same plane. This case is analogous to the piano where three strings in the treble section are
coupled by the slightly-yielding common bridge plus sounding board leading to coupling between each of the three coupled
oscillators. This case illustrates the important concept of degeneracy.

The generalized coordinates are the angles , , and . Assume that the support yields such that the actual deflection angle
for pendulum 1 is

where the coupling coefficient  is small and involves all the pendula, not just the nearest neighbors. Assume that the same
coupling relation exists for the other angle coordinates. The gravitational potential energy of each pendulum is given by

assuming the small angle approximation. Ignoring terms of order  gives that the potential energy

The kinetic energy evaluated at the equilibrium location is

The next stage is to evaluate the  and  tensors

The third stage is to evaluate the secular determinant which can be written as
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Expanding and factoring gives

The roots are

This case results in two degenerate eigenfrequencies,  while  is the lowest eigenfrequency.

The eigenvectors can be determined by substitution of the eigenfrequencies into

Consider the lowest eigenfrequency , i.e. , for , and substitute for  gives

while for , 

Solving these gives

Assuming that the eigenfunction is normalized to unity

then for the third eigenvector 

This solution corresponds to all three pendula oscillating in phase with the same amplitude, that is, a coherent oscillation.

Derivation of the eigenfunctions for the other two eigenfrequencies is complicated because of the degeneracy , there
are only five independent equations to specify the six unknowns for the eigenvectors  and . That is, the eigenvectors can
be chosen freely as long as the orthogonality and normalization are satisfied. For example, setting , to remove the
indeterminacy, results in the  matrix

and thus the solution is given by

The normal modes are obtained by taking the inverse matrix  and using . Note that since  is real
and orthogonal, then  equals the transpose of . That is;
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The normal mode  has eigenfrequency

and eigenvector

This corresponds to the in-phase oscillation of all three pendula.

The other two degenerate solutions are

with eigenvalues

These two degenerate normal modes correspond to two pendula oscillating out of phase with the same amplitude, or two
oscillating in phase with the same amplitude and the third out of phase with twice the amplitude. An important result of this toy
model is that the most symmetric mode  is pushed far from all the other modes. Note that for this example, the coherent
mode  corresponds to the center-of-mass oscillation with no relative motion between the three pendula. This is in contrast to
the eigenvectors  and  which both correspond to relative motion of the pendula such that there is zero center-of-mass
motion. This mean-field coupling behavior is exhibited by collective motion in nuclei as discussed in example .

Figure : Three plane pendula with nearest-neighbour coupling.

There is a large and important class of coupled oscillators where the coupling is only between nearest neighbors; a crystalline
lattice is a classic example. A toy model for such a system is the case of three identical pendula coupled by two identical
springs, where only the nearest neighbors are coupled as shown in the adjacent figure. Assume the identical pendula are of
length  and mass . As in the last example, the kinetic energy evaluated at the equilibrium location is

The gravitational potential energy of each pendulum equals  thus

while the potential energy in the springs is given by
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Example : Three plane pendula; nearest-neighbor coupling14.8.2
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Thus the total potential energy is given by

The Lagrangian then becomes

Using this in the Euler-Lagrange equations gives the equations of motion

The general analytic approach requires the  and  energy tensors given by

Note that in contrast to the prior case of three fully-coupled pendula, for the nearest neighbor case the potential energy tensor 
 is non-zero only on the diagonal and  components parallel to the diagonal.

The third stage is to evaluate the secular determinant of the  matrix, that is

This results in the characteristic equation

which results in the three non-degenerate eigenfrequencies for the normal modes.
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Figure : Normal modes of three plane pendula with nearest-neighbour coupling.

The normal modes are similar to the prior case of complete linear coupling, as shown in the adjacent figure.

 This lowest mode  involves the three pendula oscillating in phase such that the springs are not stretched or

compressed thus the period of this coherent oscillation is the same as an independent pendulum of mass  and length . That
is

. This second mode  has the central mass stationary with the outer pendula oscillating with the same

amplitude and out of phase. That is

. This third mode  involves the outer pendula in phase with the same amplitude while the central pendulum

oscillating with angle . That is

Similar to the prior case of three completely-coupled pendula, the coherent normal mode  corresponds to an oscillation of
the center-of-mass with no relative motion, while  and  correspond to relative motion of the pendula with stationary center
of mass motion. In contrast to the prior example of complete coupling, for nearest neighbor coupling the two higher lying
solutions are not degenerate. That is, the nearest neighbor coupling solutions differ from when all masses are linearly coupled.
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It is interesting to note that this example combines two coupling mechanisms that can be used to predict the solutions for two
extreme cases by switching off one of these coupling mechanisms. Switching off the coupling springs, by setting , makes

all three normal frequencies degenerate with . This corresponds to three independent identical pendula

each with frequency . Also the three linear combinations  also have this same frequency, in particular 

corresponds to an in-phase oscillation of the three pendula. The three uncoupled pendula are independent and any combination
the three modes is allowed since the three frequencies are degenerate.

The other extreme is to let , that is switch off the gravitational field or let , then the only coupling is due to the
two springs. This results in  because there is no restoring force acting on the coherent motion of the three in-phase
coupled oscillators; as a result, oscillatory motion cannot be sustained since it corresponds to the center of mass oscillation
with no external forces acting which is spurious. That is, this spurious solution corresponds to constant linear translation.

Figure : System of three bodies coupled by six springs.

Consider the completely-coupled mechanical system shown in the adjacent figure.

1) The first stage is to determine the potential and kinetic energies using an appropriate set of generalized coordinates, which
here are  and . The potential energy is the sum of the potential energies for each of the six springs

while the kinetic energy is given by

2) The second stage is to evaluate the potential energy  and kinetic energy  tensors.

Note that for this case the kinetic energy tensor is diagonal whereas the potential energy tensor is nondiagonal and corresponds
to complete coupling of the three coordinates.

3) The third stage is to use the potential  and kinetic  energy tensors to evaluate the secular determinant giving

The expansion of this secular determinant yields

The solution for this complete-coupled system has two degenerate eigenvalues.
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4) The fourth step is to insert these eigenfrequencies into the secular equation

to determine the coefficients .

5) The final stage is to write the general coordinates in terms of the normal coordinates.

The result is that the angular frequency  corresponds to a normal mode for which the three masses oscillate in phase

corresponding to a center-of-mass oscillation with no relative motion of the masses.

For this coherent motion only one spring per mass is stretched resulting in the same frequency as one mass on a spring. The
other two solutions correspond to the three masses oscillating out of phase which implies all three springs are stretched and
thus the angular frequency is higher. Since the two eigenvalues  are degenerate then there are only five

independent equations to specify the six unknowns for the degenerate eigenvalues. Thus it is possible to select a combination
of the eigenvectors  and  such that the combination is orthogonal to . Choose  to removes the indeterminacy.
Then adding or subtracting gives that the normal modes are

These two degenerate normal modes correspond to relative motion of the masses with stationary center-of-mass.
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