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5.3: Applications of Euler’s Equation

Consider the path lies in the  plane.

Figure : Shortest distance between two points in a plane.

The infinitessimal length of arc is

Then the length of the arc is

The function  is

Therefore

and

Inserting these into Euler’s equation  gives

that is

This is valid if

Therefore

Example : Shortest distance between two points5.3.1
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which is the equation of a straight line in the plane. Thus the shortest path between two points in a plane is a straight line
between these points, as is intuitively obvious. This stationary value obviously is a minimum.

This trivial example of the use of Euler’s equation to determine an extremum value has given the obvious answer. It has been
presented here because it provides a proof that a straight line is the shortest distance in a plane and illustrates the power of the
calculus of variations to determine extremum paths.

The Brachistochrone problem involves finding the path having the minimum transit time between two points. The
Brachistochrone problem stimulated the development of the calculus of variations by John Bernoulli and Euler. For simplicity,
take the case of frictionless motion in the  plane with a uniform gravitational field acting in the  direction, as shown in
the adjacent figure. The question is what constrained path will result in the minimum transit time between two points 
and 

Figure : The Bachistochrone problem involves finding the path for the minimum transit time for constrained frictionless
motion in a uniform gravitational field.

Consider that the particle of mass  starts at the origin  with zero velocity. Since the problem conserves energy
and assuming that initially  then

That is

The transit time is given by

where . Note that, in this example, the independent variable has been chosen to be  and the dependent variable is 
.

The function  of the integral is

Factor out the constant  term, which does not affect the final equation, and note that

y = ax+b

Example : Brachistochrone problem5.3.2
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Therefore Euler’s equation gives

or

That is

This may be rewritten as

Change the variable to  gives that  leading to the integral

or

The parametric equations for a cycloid passing through the origin are

which is the form of the solution found. That is, the shortest time between two points is obtained by constraining the motion of
the mass to follow a cycloid shape. Thus the mass first accelerates rapidly by falling down steeply and then follows the curve
and coasts upward at the end. The elapsed time is obtained by inserting the above parametric relations for  and  in terms of 

 into the transit time integral giving  where  and  are fixed by the end point coordinates. Thus the time to fall

from starting with zero velocity at the cusp to the minimum of the cycloid is  If  then  which

defines the shape of the cycloid and the minimum time is  If the mass starts with a non-zero initial velocity,

then the starting point is not at the cusp of the cycloid, but down a distance  such that the kinetic energy equals the potential
energy difference from the cusp.

A modern application of the Brachistochrone problem is determination of the optimum shape of the low-friction emergency
chute that passengers slide down to evacuate a burning aircraft. Bernoulli solved the problem of rapid evacuation of an aircraft
two centuries before the first flight of a powered aircraft.
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Assume that the cost of flying an aircraft at height  is  per unit distance of flight-path, where  is a positive constant.
Consider that the aircraft flies in the -plane from the point  to the point  where  corresponds to ground
level, and where the -axis points vertically upwards. Find the extremal for the problem of minimizing the total cost of the
journey.

The differential arc-length element of the flight path  can be written as

where . Thus the cost integral to be minimized is

The function of this integral is

The partial differentials required for the Euler equations are

Therefore Euler’s equation equals

This can be simplified by multiplying the radical to give

Cancelling terms gives

Separating the variables leads to

Integration gives

Using the initial condition that  gives . Similarly the final condition  implies that . Thus
Euler’s equation has determined that the optimal trajectory that minimizes the cost integral  is

This example is typical of problems encountered in economics.
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Example : Minimal travel cost5.3.3
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