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13.20: Torque-free rotation of an inertially-symmetric rigid rotor

Euler's equations of motion

There are many situations where one has rigid-body motion free of external torques, that is, N = 0. The tumbling motion of a
jugglers baton, a diver, a rotating galaxy, or a frisbee, are examples of rigid-body rotation. For torque-free rotation, the body will
rotate about the center of mass, and thus the inertia tensor with respect to the center of mass is required. An inertially-symmetric
rigid body has two identical principal moments of inertia with I; = I, # I3, and provides a simple example that illustrates the
underlying motion. The force-free Euler equations for the symmetric body in the body-fixed principal axis system are given by

(I — I3)wows — [Hw; =0 (13.20.1)
(Is — I )wswy — Lws =0 (13.20.2)
Iw; =0 (13.20.3)
where I) = I, and N =0 apply.
3

Figure 13.20.1: The force-free symmetric top angular velocity w precesses on a conical trajectory about the body-fixed symmetry
axis 3.

Note that for torque-free motion of an inertially symmetric body Equation 13.20.3 implies that ws =0, i.e. w3 is a constant of
motion and thus is a cyclic variable for the symmetric rigid body.

Equations 13.20.1and 13.20.2can be written as two coupled equations
w1 +Quwy =0 (13204)
dJ2—Qw1 =0 (13205)

where the precession angular velocity €2 = 1/) with respect to the body-fixed frame is defined to be

Q= (Mw3> (13.20.6)
I
Combining the time derivatives of equations 13.20.4and 13.20.5leads to two uncoupled equations
01 +Q%w; =0 (13.20.7)
W9 +Q%wy =0 (13.20.8)

These are the differential equations for a harmonic oscillator with solutions
w1 = AcosQt (13.20.9)
we = AsinQt (13.20.10)

These equations describe a vector A rotating in a circle of radius A about an axis perpendicular to €3, that is, rotating in the
€1 — €5 plane with angular frequency = —1). Note that
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w?+wl = A? (13.20.11)

which is a constant. In addition ws is constant, therefore the magnitude of the total angular velocity

lw| =4/ w} +w?+wl = constant (13.20.12)

The motion of the torque-free symmetric body is that the angular velocity w precesses around the symmetry axis €3 of the body at
an angle o with a constant precession frequency 2 with respect to the body-fixed frame as shown in Figure 13.20.1 Thus, to an
observer on the body, w traces out a cone around the body-fixed symmetry axis. Note from 13.20.6that the vectors (e and w3€s
are parallel when (2 is positive, that is, I3 > I (oblate shape) and antiparallel if Is < I (prolate shape).

For the system considered, the orientation of the angular momentum vector L must be stationary in the space-fixed inertial frame
since the system is torque free, that is, LL is a constant of motion. Also we have that the projection of the angular momentum on the
body-fixed symmetry axis is a constant of motion, that is, it is a cyclic variable. Thus
LI
Ly = Lw; = —=2 0 (13.20.13)
(Is — 1)

Understanding the relation between the angular momentum and angular velocity is facilitated by considering another constant of
motion for the torque-free symmetric rotor, namely the rotational kinetic energy.

1
Trot = Sw: L = constant (13.20.14)

Since L is a constant for torque-free motion, and also the magnitude of w was shown to be constant, therefore the angle between
these two vectors must be a constant to ensure that also Trq; = %w -L = constant. That is, w precesses around L at a constant
angle (§ — a) such that the projection of w onto L is constant. Note that

WXe3 =wye —wiey (13.20.15)
and, for a symmetric rotor,
L-w Xazflwlan—IlecUQ =0 (132016)

since I; = I, for the symmetric rotor. Because L - w x €3 =0 for a symmetric top then L, w and €3 are coplanar.

Figure 13.20.2shows the geometry of the motion for both oblate and prolate axially-deformed bodies. To an observer in the space-
fixed inertial frame, the angular velocity w traces out a cone that precesses with angular velocity €2 around the space fixed L axis
called the space cone. For convenience, Figure 13.20.2assumes that L and the space-fixed inertial frame z axis are colinear. The
angular velocity w also traces out the body cone as it precesses about the body-fixed €3 axis. Since L, w and €3 are coplanar, then
the w vector is at the intersection of the space and body cones as the body cone rolls around the space cone. That is, the space and
body cones have one generatrix in common which coincides with w. As shown in Figure 13.20.23 for a needle the body cone

appears to roll without slipping on the outside of the space cone at the precessional velocity of {2 = —w. By contrast, as shown in
Figure 13.20.2afor an oblate (disc-shaped) symmetric top the space cone rolls inside the body cone and the precession 2 is faster
than w.

Since no external torques are acting for torque-free motion, then the magnitude and direction of the total angular momentum are
conserved. The description of the motion is simplified if L is taken to be along the space-fixed z axis, then the Euler angle 6 is the
angle between the body-fixed basis vector €3 and space-fixed basis vector z. If at some instant in the body frame, it is assumed that
€, is aligned in the plane of L, w and €3, then

L; =0 Ly=Lsin Ls=Lcosf (13.20.17)
If « is the angle between the angular velocity w and the body-fixed €3 axis, then at the same instant

w1 =0 wy=wsina ws3=wcosa (13.20.18)
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Figure 13.20.2: Torque-free rotation of symmetric tops; (a) circular flat disk, (b) circular rod. The space-fixed and body-fixed
cones are shown by fine lines. The space-fixed axis system is designated by the unit vectors (X,¥,2) and the body-fixed principal

axis system by unit vectors (1,2, 3).
The components of the angular momentum also can be derived from L =1-w to give
L1 :Ilwl =0 Lz :I2w2 :Ilwsina L3 :I3w3 :I3wCOSOé (132019)

Equations 13.20.17and 13.20.19give two relations for the ratio i—z, that is,

L, _ 5
I, =tanf = T tana (13.20.20)

For a prolate spheroid I; > I3 therefore § > o while €2 and w3 have opposite signs.
For a oblate spheroid I; < I3 therefore o > 6 while 2 and w3 have the same sign.

The sense of precession can be understood if the body cone rolls without slipping on the outside of the space cone with €2 in the
opposite orientation to w for the prolate case, while for the oblate case the space cone rolls inside the body cone with 2 and w
oriented in similar directions. Note from 13.20.20that @ =0 if @ =0, that is L, w and the 3 axis are aligned corresponding to a
principal axis. Similarly, # = 90° if &« =90°, then again L and w are aligned corresponding to them being principal axes.

Lagrangian mechanics has been used to calculate the motion with respect to the body-fixed principal axis system. However, the
motion needs to be known relative to the space-fixed inertial frame where the motion is observed. This transformation can be done
using the following relation

dé3> (dé3> . .
— == +twxeé3=wxe; (13.20.21)
( dt space dt body

since the unit vector €j is stationary in the body-fixed frame. The vector product of w x €3 and €3 gives

- des . -
eg X | — =e3 Xw Xes
dt ),
space

= (ég . é3)w — (é3 w)é3 = w 7u)3é3

therefore
- de -
w=e3x [ 2] ey (13.20.22)
dt space

The angular momentum equals L = {I} - w . Since &3 x ( o

) is perpendicular to the €3 axis, then for the case with I; = I,
space

. [ de .
L= 1,85 x (ﬂ) + Lwses (13.20.23)
space

dt
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Thus the angular momentum for a torque-free symmetric rigid rotor comprises two components, one being the perpendicular
component that precesses around €3, and the other is Ls.

In the space-fixed frame assume that the z axis is colinear with L. Then taking the scalar product of €3 and L, using Equation
13.20.17gives

Ly =é;-L (13.20.24)
O de Ao
= I1€3 ez X <ﬁ> +Igw3e3 - €3 (132025)
dt space

The first term on the right is zero and thus Equation 13.20.25and 13.20.17give
L3 = I3ws = Lcos6 (13.20.26)

The time dependence of the rotation of the body-fixed symmetry axis with respect to the space-fixed axis system can be obtained
by taking the vector product €3 x L using Equation 13.20.23and using equation B.24 to expand the triple vector product,

. . . de .
esxL =Ies3x | e3x (ﬁ) + I3wszes X €3 (132027)
dt space
deé dé
=I l<e3(—3> )é3—(é3-é3)<—3) +0
dt space dt space
since (€3 x €3) =0 . Moreover (é3-€3) =1, and &3 - (dd—é;) =0, since they are perpendicular, then
space
des L .
ka4 = — 13.20.28
( dt )Space I e ( )

This equation shows that the body-fixed symmetry axis €3 precesses around the L, where L is a constant of motion for torque-free
rotation. The true rotational angular velocity w in the space-fixed frame, given by equations 13.20.22 can be evaluated using
Equation 13.20.28 Remembering that it was assumed that L is in the z direction, that is, L = Lz, then

. ( des ) .
W =e3 X | —/— +wses
dt space

=L ey (EE5Y) 6
_Il 3 3 13 3

L LI
= 24+ Leosa ( L ) é; (13.20.29)
L 113

That is, the symmetry axis of the axially-symmetric rigid rotor makes an angle 6 to the angular momentum vector Lz and precesses
around Lz with a constant angular velocity f—l while the axial spin of the rigid body has a constant value 1_L3 Thus, in the
precessing frame, the rigid body appears to rotate about its fixed symmetry axis with a constant angular velocity

L L LI . . . . -
% - % = Lcosa ( }1 133> . The precession of the symmetry axis looks like a wobble superimposed on the spinning
motion about the body-fixed symmetry axis. The angular precession rate in the space-fixed frame can be deduced by using the fact
that

$sinf = wsina (13.20.30)

Then using Equation 13.20.20allows Equation 13.20.30to be written as

14 ((%)2 - 1) cos? a] (13.20.31)

which gives the precession rate about the space-fixed axis in terms of the angular velocity w. Note that the precession rate ¢ > w if

b=w

% > 1, that is, for oblate shapes, and ¢> <w if % < 1, that is, for prolate shapes.
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Lagrange equations of motion

It is interesting to compare the equations of motion for torque-free rotation of an inertially-symmetric rigid rotor derived using
Lagrange mechanics with that derived previously using Euler’s equations based on Newtonian mechanics. Assume that the
principal moments about the fixed point of the symmetric top are I; = I # I3 and that the kinetic energy equals the rotational
kinetic energy, that is, it is assumed that the translational kinetic energy T},,,s = 0. Then the kinetic energy is given by

1 1 1
T=3 ZIiwf = S h(wi +wj) + 5 5w} (13.20.32)
Equations (13.14.1 — 13.14.3)for the body-fixed frame give
. . 2. . .
w% = (qS sinfsin + 0 cos1/)) = ¢2 sin® fsin® 1) + 2¢0 sinfsin v cos + 02 cos® 1 (13.20.33)
. . 2. . .
ws = <¢ sinfcosy — 6 sim/)) = ¢2 sin? 0 cos® 1 — 240 sinfsinp cos Y +02 sin® ¢ (13.20.34)
Therefore
Wt =¢ sin?0+0 (13.20.35)
and
. .\ 2
W = ($cos6+1) (13.20.36)
Therefore the kinetic energy is
1 . .2 1 . N
=51 (¢2 sin? 0+ 6 )+513 (¢cos0+¢) (13.20.37)
Since the system is torque free, the scalar potential energy U can be assumed to be zero, and then the Lagrangian equals
1 2, .2 1 . A 2
L=3T, (¢ sin? 0+ 6 )+§I3 (¢cos€+1/1) (13.20.38)
The angular momentum about the space-fixed z axis py is conjugate to ¢. From Lagrange’s equations
oL
), = — =0 13.20.39
Py o ( )

that is, the angular momentum about the space-fixed z axis, py is a constant of motion given by

0L

Py = % = (I sin® 0+ I5 cos® 0)¢ + Ish cosd = constant. (13.20.40)
Similarly, the angular momentum about the body-fixed 3 axis is conjugate to 1. From Lagrange’s equations
. OL
=—=0 13.20.41
Py Y ( )
that is, py is a constant of motion given by
OL : .
Dy = % =1 ((,bcos@—i—d)) = I3ws = constant (13.20.42)
The above two relations derived from the Lagrangian can be solved to give the precession angular velocity ¢> about the space-fixed
Z axis
. — py cosf
¢ = Lo _PeO87 (13.20.43)
I, sin? 6

and the spin about the body-fixed 3 axis 1 which is given by
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. — py cosf) cosd
=P (P~ pycosb)cos (13.20.44)

I3 I, sin? 0

Since ps and py, are constants of motion, then the precessional angular velocity ¢ about the space-fixed z axis, and the spin
angular velocity v, which is the spin frequency about the body-fixed 3 axis, are constants that depend directly on I, I3. and 6.

There is one additional constant of motion available if no dissipative forces act on the system, that is, energy conservation which
implies that the total energy

_ 1 -2 9 .9 1 . N\ 2
E—h (¢ sin?0+0 )+§I3 (¢cos0+1/1) (13.20.45)

will be a constant of motion. But the second term on the right-hand side also is a constant of motion since py and I3 both are
constants, that is

2

1 s 1 . N2 Py
5[3w3 = 5]3 ((;Scos@—i—z/)) =T " constant (13.20.46)

Thus energy conservation implies that the first term on the right-hand side also must be a constant given by

2
1 1 22 -2 p
S} +3) = 21 (¢ sin640") = B~ == = constant (13.20.47)
3
These results are identical to those given in equations 13.20.11and 13.20.12which were derived using Euler’s equations. These
results illustrate that the underlying physics of the torque-free rigid rotor is more easily extracted using Lagrangian mechanics
rather than using the Euler-angle approach of Newtonian mechanics.

Example 13.20.1: Precession rate for torque-free rotating symmetric rigid rotor

Table 13.20.1lists the precession and spin angular velocities, in the space-fixed frame, for torque-free rotation of three extreme
symmetric-top geometries spinning with constant angular momentum w when the motion is slightly perturbed such that w is at
a small angle « to the symmetry axis. Note that this assumes the perpendicular axis theorem, equation (13.9.1) which states
that for a thin laminae I; + I, = I3 giving, for a thin circular disk, I; = I» and thus I3 = 21; .

Table 13.20.1: Precession and spin rates for torque-free axial rotation of symmetric rigid rotors

Rigid-body symmetric shape Principal moment ratio % Precession rate ¢) Spin rate 1p
Symmetric needle 0 0 w
Sphere 1 w 0
Thin circular disk 2 2w —w

The precession angular velocity in the space frame ranges between 0 to 2w depending on whether the body-fixed spin angular
velocity is aligned or anti-aligned with the rotational frequency w. For an extreme prolate spheroid ;—‘: =0, the body-fixed spin

angular velocity {2 = —w3 which cancels the angular velocity w of the rotating frame resulting in a zero precession angular

velocity of the body-fixed €3 axis around the space-fixed frame. The spin = 0 in the body-fixed frame for the rigid sphere
L
I

spheroids and thin disks, such as a frisbee, f—f = 2 making the body-fixed precession angular velocity {2 = +w which adds to

=1, and thus the precession rate of the body-fixed é3 axis of the sphere around the space-fixed frame equals w. For oblate

the angular velocity w and increases the precession rate up to 2w as seen in the space-fixed frame. This illustrates that the spin
angular velocity can add constructively or destructively with the angular velocity w.?

’In his autobiography Surely You’re Joking Mr Feynman, he wrote " I was in the [Cornell] cafeteria and some guy, fooling around,
throws a plate in the air. As the plate went up in the air I saw it wobble, and noticed that the red medallion of Cornell on the plate
going around. It was pretty obvious to me that the medallion went around faster than the wobbling. I started to figure out the
motion of the rotating plate. I discovered that when the angle is very slight, the medallion rotates twice as fast as the wobble rate. It
came out of a very complicated equation!". The quoted ratio (2 : 1) is incorrect, it should be (1 : 2). Benjamin Chao in Physics
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Today of February 1989 speculated that Feynman’s error in inverting the factor of two might be "in keeping with the spirit of the
author and the book, another practical joke meant for those who do physics without experimenting". He pointed out that this story
occurred on page 157 of a book of length 314 pages (1 : 2). Observe the dependence of the ratio of wobble to rotation angular

velocities on the tilt angle 6.

This page titled 13.20: Torque-free rotation of an inertially-symmetric rigid rotor is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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