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7.2: Generalized Momentum

Consider a holonomic system of N masses under the influence of conservative forces that depend on position g; but not velocity
q ;» that is, the potential is velocity independent. Then for the  coordinate of particle ¢ for N particles
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Thus for a holonomic, conservative, velocity-independent potential we have
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which is the  component of the linear momentum for the i particle.

This result suggests an obvious extension of the concept of momentum to generalized coordinates. The generalized momentum
associated with the coordinate g; is defined to be
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Note that p; also is called the conjugate momentum or canonical momentum to g; where g;, p; are conjugate, or canonical,
variables. Remember that the linear momentum p; is the first-order time integral given by equation (2.4.1). If g; is not a spatial
coordinate, then p; is the generalized momentum, not the kinematic linear momentum. For example, if g; is an angle, then p; will
be angular momentum. That is, the generalized momentum may differ from the usual linear or angular momentum since the
definition 7.2.3 is more general than the usual p, =ma definition of linear momentum in classical mechanics. This is illustrated
by the case of a moving charged particles m;, e; in an electromagnetic field. Chapter 6 showed that electromagnetic forces on a
charge e; can be described in terms of a scalar potential U; where
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Thus the Lagrangian for the electromagnetic force can be written as
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The generalized momentum to the coordinate x; for charge e;, and mass m;, is given by the above Lagrangian
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Note that this includes both the mechanical linear momentum plus the correct electromagnetic momentum. The fact that the
electromagnetic field carries momentum should not be a surprise since electromagnetic waves also carry energy as is illustrated by
the transmission of radiant energy from the sun.

Example 7.2.1: Feynman’s angular-momentum paradox

Feynman posed the following paradox [Fey84]. A circular insulating disk, mounted on frictionless bearings, has a circular ring
of total charge ¢ uniformly distributed around the perimeter of the circular disk at the radius R. A superconducting long
solenoid of radius s, where s < R, is fixed to the disk and is mounted coaxial with the bearings. The moment of inertia of the
system about the rotation axis is I. Initially the disk plus superconducting solenoid are stationary with a steady current
producing a uniform magnetic field By inside the solenoid. Assume that a rise in temperature of the solenoid destroys the
superconductivity leading to a rapid dissipation of the electric current and resultant magnetic field. Assume that the system is
free to rotate, no other forces or torques are acting on the system, and that the charge carriers in the solenoid have zero mass
and thus do not contribute to the angular momentum. Does the system rotate when the current in the solenoid stops?

@ 0 g @ 7.2.1 https://phys.libretexts.org/@go/page/9601


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9601?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/07%3A_Symmetries_Invariance_and_the_Hamiltonian/7.02%3A_Generalized_Momentum

LibreTextsw

SUPERCONDUCTING
COIL

Uniform surface
charge q

Figure 7.2.1

Initially the system is stationary with zero mechanical angular momentum. Faraday’s Law states that, when the magnetic field
dissipates from By to zero, there will be a torque N acting on the circumferential charge ¢ at radius R due to the change in
magnetic flux ®.
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Since % < 0, this torque leads to an angular impulse which will equal the final mechanical angular momentum.
C
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The initial angular momentum in the electromagnetic field can be derived using Equation 7.2.6, plus Stoke’s theorem
(Appendix 19.8.3) . Equation 2.12.56gives that the final angular momentum equals the angular impulse
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where ® = § Aydl = [B-dS is the initial total magnetic flux through the solenoid. Thus the total initial angular momentum
is given by
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Since the final electromagnetic field is zero the final total angular momentum is given by

TOTAL MECH
Lfinal = final +0= qR@

Note that the total angular momentum is conserved. That is, initially all the angular momentum is stored in the electromagnetic
field, whereas the final angular momentum is all mechanical. This explains the paradox that the mechanical angular
momentum is not conserved, only the total angular momentum of the system is conserved, that is, the sum of the mechanical
and electromagnetic angular momenta.
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