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16.3: The Lagrangian density formulation for continuous systems

One spatial dimension

In general the Lagrangian density can be a function of , and . It is of interest that Hamilton’s principle leads to a
set of partial differential equations of motion, based on the Lagrangian density, that are analogous to the Lagrange equations of
motion for discrete systems. When deriving the Lagrangian equations of motion in terms of the Lagrangian density using
Hamilton’s principle, the notation is simplified if the system is limited to one spatial coordinate . In addition, it is convenient to
use the compact notation where the spatial derivative is written  and the time derivative is , and the one-

dimensional Lagrangian density is assumed to be a function . The appearance of the derivative  as an
argument of the Lagrange density is a consequence of the continuous dependence of  on . In principle, higher-order derivatives
could occur but they do not arise in most problems of physical interest.

Assuming that the one spatial dimension is , then Hamilton’s principle of least action can be expressed in terms of the Lagrangian
density as

Following the same approach used in chapter , it is assumed that the stationary path for the action integral is described by the
function . Define a neighboring function using a parametric representation  such that when , the extremum
function  yields the stationary action integral .

Assume that an infinitessimal fraction  of a neighboring function  is added to the extremum path . That is, assume

where it is assumed that both the extremum function  and the auxiliary function  are well behaved functions of  and 
, with continuous first derivatives, and that  at  and  because, for all possible paths, the function 

 must be identical with  at the end points of the path, i.e. .

A parametric family of curves , as a function of the admixture coefficient , is described by the function

Then Hamilton’s principle requires that the action integral be a stationary function value for , that is,  is independent of 
which is satisfied if

Equations , ,and  give the partial differentials

Integration by parts in both the  and  terms in Equation , plus using the fact that  at both end
points, yields
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Therefore Hamilton’s principle, Equation  becomes

Since the auxiliary function  is arbitrary, then the integrand term in the square brackets of Equation  must equal zero.
That is,

Equation  gives the equations of motion in terms of the Lagrangian density that has been derived based on Hamilton’s
principle.

Three spatial dimensions
Equation  expresses the Lagrangian as an integral of the Lagrangian density over a single continuous index  where
the Lagrangian density is a function . The derivation of the Lagrangian equations of motion in terms of the
Lagrangian density for three spatial dimensions involves the straightforward addition of the , and  coordinates. That is, in three
dimensions the vector displacement is expressed by the vector  and the Lagrangian density is related to the Lagrangian
by integration over three dimensions. That is, they are related by the equation

where, in cartesian coordinates, the volume element . The Lagrangian density is a function 
where the one field quantity  has been extended to a spatial vector  and the spatial derivatives  have been
transformed into . Applying the method used for the one-dimensional spatial system, to the three-dimensional system, leads
to the following set of equations of motion

where the  spatial derivatives have been written explicitly for clarity.

Note that the equations of motion, Equation , treat the spatial and time coordinates symmetrically. This symmetry between
space and time is unchanged by multiplying the spatial and time coordinate by arbitrary numerical factors. This suggests the
possibility of introducing a four-dimensional coordinate system

where the parameter  is freely chosen. Using this 4-dimensional formalism allows Equation  to be written more compactly
as

As discussed in chapter , relativistic mechanics treats time and space symmetrically, that is, a four-dimensional vector 
 can be used that treats time and the three spatial dimensions symmetrically and equally. This four-dimensional space-

time formulation allows the first four terms in Equation  to be condensed into a single term which illustrates the symmetry
underlying Equation . If the Lagrangian density is Lorentz invariant, and if , then Equation  is covariant.
Thus the Lagrangian density formulation is ideally suited to the development of relativistically covariant descriptions of fields.
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