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6.7: Applications to unconstrained systems

Although most dynamical systems involve constrained motion, it is useful to consider examples of systems subject to conservative
forces with no constraints . For no constraints, the Lagrange-Euler equations (6.6.1)simplify to A;L =0 where j=1,2,..n, and
the transformation to generalized coordinates is of no consequence.

Example 6.7.1: Motion of a free particle, U = 0

The Lagrangian in cartesian coordinates is L = %m(i2 +9%+2?). Then
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Insert these in the Lagrange equation gives
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Thus
Pz = ma = constant
py =my = constant
p, =mz = constant

That is, this shows that the linear momentum is conserved if U is a constant, that is, no forces apply. Note that momentum
conservation has been derived without any direct reference to forces.

Example 6.7.2: Motion in a uniform gravitational field
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Figure 6.7.1: Motion in a gravitational field

Consider the motion is in the x —y plane. The kinetic energy T = %m (:22 +y2) while the potential energy is U = mgy
where U(y =0) =0. Thus

1 2.
L= M (a:z +y2) —mgy

Using the Lagrange equation for the z coordinate gives
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Thus the horizontal momentum ma is conserved and z = 0. The y coordinate gives
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Thus the Lagrangian produces the same results as derived using Newton’s Laws of Motion.
=0
y=-9

The importance of selecting the most convenient generalized coordinates is nicely illustrated by trying to solve this problem
using polar coordinates r, f, where r is radial distance and 6 the elevation angle from the x axis as shown in the adjacent
figure. Then

=gmr +om(r
U =mgrsind

Thus
1 . 1 -\ 2
L= Emrz + Em(rﬁ) —mgrsin6
A,.L =0 for the r coordinate

7'92 —gsinf—7 =0

AyL =0 for the 6 coordinate

—grcosO—er"é —r260=0

These equations written in polar coordinates are more complicated than the result expressed in Cartesian coordinates. This is
because the potential energy depends directly on the y coordinate, whereas it is a function of both r, . This illustrates the
freedom for using different generalized coordinates, plus the importance of choosing a sensible set of generalized coordinates.

Example 6.7.3: Central forces

Consider a mass m moving under the influence of a spherically-symmetric, conservative, attractive, inverse-square force. The
potential then is

v=-
r

It is natural to express the Lagrangian in spherical coordinates for this system. That is,
1 1 21 . k
L= Emi'2—|—§m(7'0) +§m(rsin0¢)2+;

A, L =0 for the r coordinate gives
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. . k
mf —mr[02 +sin’ 0¢2] =—
7
where the mr sin® 0@32 term comes from the centripetal acceleration.
AyL =0 for the ¢ coordinate gives
d 9
= (mr2 sin? 0¢) =0

This implies that the derivative of the angular momentum about the ¢ axis, p, =0 and thus p, = mr?sin O is a constant
of motion.

Ay L = 0 for the 8 coordinate gives

d . .2
%(mr%)) —mr?sinfcosfp =0
That is,
2
. P cosf
pp = mr? sinfcos 9¢2 = ¢—3
2mr? sin” 0

Note that pg is a constant of motion if ps =0 and only the radial coordinate is influenced by the radial form of the central
potential.
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