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5.2: Euler’s Differential Equation
The calculus of variations, presented here, underlies the powerful variational approaches that were developed for classical
mechanics. Variational calculus, developed for classical mechanics, now has become an essential approach to many other
disciplines in science, engineering, economics, and medicine.

For the special case of one dimension, the calculus of variations reduces to varying the function  such that the scalar functional
 is an extremum, that is, it is a maximum or minimum, where.

Here  is the independent variable,  the dependent variable, plus its first derivative . The quantity 
has some given dependence on  and  The calculus of variations involves varying the function  until a stationary value of

 is found, which is presumed to be an extremum. This means that if a function  gives a minimum value for the scalar
functional , then any neighboring function, no matter how close to  must increase . For all paths, the integral  is taken
between two fixed points,  and . Possible paths between the initial and final points are illustrated in Figure .
Relative to any neighboring path, the functional  must have a stationary value which is presumed to be the correct extremum
path.

Define a neighboring function using a parametric representation  such that for ,  is the function
that yields the extremum for . Assume that an infinitesimally small fraction  of the neighboring function  is added to the
extremum path . That is, assume

where it is assumed that the extremum function  and the auxiliary function  are well behaved functions of  with
continuous first derivatives, and where  vanishes at  and  because, for all possible paths, the function  must be
identical with  at the end points of the path, i.e. . The situation is depicted in Figure . It is possible to
express any such parametric family of curves  as a function of 

The condition that the integral has a stationary (extremum) value is that  be independent of  to first order along the path. That is,
the extremum value occurs for ( ) where

for all functions  This is illustrated on the right side of Figure .

Applying condition  to Equation , and since  is independent of  then

Since the limits of integration are fixed, the differential operation affects only the integrand. From equations ,

and

Consider the second term in the integrand
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Figure : The left shows the extremum  and neighboring paths  between  and  that
minimizes the function . The right shows the dependence of  as a function of the admixture
coefficient  for a maximum (upper) or a minimum (lower) at .

Integrate by parts

gives

Note that the first term on the right-hand side is zero since by definition  at  and  Thus

Thus Equation  reduces to

The function  will be an extremum if it is stationary at . That is,

This integral now appears to be independent of  However, the functions  and  occurring in the derivatives are functions of .

Since  must vanish for a stationary value, and because  is an arbitrary function subject to the conditions stated , then

the above integrand must be zero. This derivation that the integrand must be zero leads to Euler’s differential equation

where  and  are the original functions, independent of . The basis of the calculus of variations is that the function  that
satisfies Euler’s equation is an stationary function. Note that the stationary value could be either a maximum or a minimum value.
When Euler’s equation is applied to mechanical systems using the Lagrangian as the functional, then Euler’s differential equation is
called the Euler-Lagrange equation.
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