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6.3: Lagrange Equations from d’Alembert’s Principle

d’Alembert’s Principle of virtual work

The Principle of Virtual Work provides a basis for a rigorous derivation of Lagrangian mechanics. Bernoulli introduced the concept
of virtual infinitessimal displacement of a system mentioned in chapter 5.9.1. This refers to a change in the configuration of the
system as a result of any arbitrary infinitessimal instantaneous change of the coordinates dr;, that is consistent with the forces and
constraints imposed on the system at the instant ¢. Lagrange’s symbol d is used to designate a virtual displacement which is called
"virtual" to imply that there is no change in time ¢, i.e. ¢ = 0. This distinguishes it from an actual displacement dr; of body
during a time interval d¢ when the forces and constraints may change.

Suppose that the system of n particles is in equilibrium, that is, the total force on each particle 7 is zero. The virtual work done by
the force F; moving a distance dr; is given by the dot product F; - dr; . For equilibrium, the sum of all these products for the NV
bodies also must be zero

N
Y F;bri =0 (6.3.1)
i
Decomposing the force F; on particle i into applied forces F/! and constraint forces fic gives

N N
ZFf'5ri+Zf¢C'5ri =0 (6.3.2)

The second term in Equation 6.3.2 can be ignored if the virtual work due to the constraint forces is zero. This is rigorously true for
rigid bodies and is valid for any forces of constraint where the constraint forces are perpendicular to the constraint surface and the
virtual displacement is tangent to this surface. Thus if the constraint forces do no work, then 6.3.2 reduces to

N
Y Ffor =0 (6.3.3)

This relation is the Bernoulli’s Principle of Static Virtual Work and is used to solve problems in statics.
Bernoulli introduced dynamics by using Newton’s Law to related force and momentum.

F,=p, (6.3.4)

(2

Equation 6.3.4 can be rewritten as
F,—p,=0 (6.3.5)
In 1742, d’ Alembert developed the Principle of Dynamic Virtual Work in the form

N

> (Fi—p;)-ori =0 (6.3.6)

7

Using equations 6.3.2 plus 6.3.6 gives

N N

Z(Ff_f)i)'éri"‘Z(fic'éri =0 (6.3.7)

% %
For the special case where the forces of constraint are zero, then Equation 6.3.7 reduces to d’Alembert’s Principle

i(Ff‘ —p;) or; =0 (6.3.8)

i
d’Alembert’s Principle, by a stroke of genius, cleverly transforms the principle of virtual work from the realm of statics to

dynamics. Application of virtual work to statics primarily leads to algebraic equations between the forces, whereas d’Alembert’s
principle applied to dynamics leads to differential equations.
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Transformation to generalized coordinates

In classical mechanical systems the coordinates dr; usually are not independent due to the forces of constraint and the constraint-
force energy contributes to Equation 6.3.7. These problems can be eliminated by expressing d’Alembert’s Principle in terms of
virtual displacements of m independent generalized coordinates q; of the system for which the constraint force term
" £C.5q; =0 . Then the individual variational coefficients dg; are independent and (F2 —p;)-dq; =0 can be equated to zero
for each value of 3.

The transformation of the /N-body system to n independent generalized coordinates g can be expressed as

ri =1i(q1,42,43- - -, qns 1) (6.3.9)

Assuming n independent coordinates, then the velocity v; can be written in terms of general coordinates g, using the chain rule for
partial differentiation.

dl’,’ n 61'1 6I‘i
L= = —G. 4+ — 6.3.10
Vit o Ej:aqjqﬁat (6.3.10)
The arbitrary virtual displacement dr; can be related to the virtual displacement of the generalized coordinate dg; by
n
or:
ori =Y ——dg; (6.3.11)
7 0

Note that by definition, a virtual displacement considers only displacements of the coordinates, and no time variation &t is
involved.

The above transformations can be used to express d’Alembert’s dynamical principle of virtual work in generalized coordinates.
Thus the first term in d’Alembert’s Dynamical Principle, 6.3.8 becomes

i ij 9q; i
where @); are called components of the generalized force,! defined as

w 61"
— A ?
Qj = E:Fz ’ 9‘]]‘

(6.3.13)

Note that just as the generalized coordinates g; need not have the dimensions of length, so the @); do not necessarily have the
dimensions of force, but the product Q;6g; must have the dimensions of work. For example, @; could be torque and dg; could be
the corresponding infinitessimal rotation angle.

The second term in d’ Alembert’s Principle 6.3.8 can be transformed using Equation 6.3.11

ipl 0Ty = imer 0Ty = (imzrz : g_;;) dq; (6.3.14)

The right-hand side of 6.3.14 can be rewritten as

- . Or; "\ (d . Or; . d [0r;
(zl:mll‘z . 8—q]> éqj —Z {_t (miri . 8_(]]) —m;T; E (8—%)}5% (6315)

K3

Note that Equation 6.3.10gives that

Ovi _ O (6.3.16)
dq j 0g;
therefore the first right-hand term in 6.3.15can be written as
d . 6I‘i d 8VZ
e g 5 - iV TN . 6-3.17
dt (mr 8qj> dt (mvz qu) ( )
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The second right-hand term in 6.3.15 can be rewritten by interchanging the order of the differentiation with respect to ¢ and g;

d (or\ v
%(3%) g (6:3.18)

Substituting 6.3.17and 6.3.18into 6.3.15gives
Zn . Zn o 61'2' ZN d 8VZ 8vi
"5‘: 7 A 6: - 73 . T~ . - Vi T~ 5 6.3.19
i P ( i mr 8qj> K i {dt (mvz 6‘13‘) v 6‘13‘} E ( )
Inserting 6.3.12and 6.3.19into d’ Alembert’s Principle 6.3.8leads to the relation
n N N
d 0 1 0 1
A - _ 02 _ —ona2 | 0. o
E (F{ —p;) - or; =— Ej {a (&jj < E Emz%)) dq; < EZ 2mlvi) QJ} dg; =0 (6.3.20)

% %

The > lmiv% term can be identified with the system kinetic energy 7". Thus d’ Alembert Principle reduces to the relation

ﬁ:[{%((g—i) —g—;}—Qj] dg; =0 (6.3.21)

For cartesian coordinates T is a function only of velocities (&, ¢, 2) and thus the term % = 0. However, as discussed in appendix
J
19.3, for curvilinear coordinates % # 0 due to the curvature of the coordinates as is illustrated for polar coordinates where
J
v=rr+760.
d (0T or
— (= )-=\V=-0, 6.3.22
{a(a;) 5} (0:3.22)

where 7 > 5> 1. That is, this leads to n Euler-Lagrange equations of motion for the generalized forces ();. As discussed in
chapter 5.8, when m holonomic constraint forces apply, it is possible to reduce the system to s =n —m independent generalized
coordinates for which Equation 6.3.8 applies.

In 1687 Leibniz proposed minimizing the time integral of his “vis viva", which equals 27". That is,

t2
5 Tdt=0 (6.3.23)

1y

The variational Equation 6.3.22 accomplishes the minimization of Equation 6.3.23. It is remarkable that Leibniz anticipated the
basic variational concept prior to the birth of the developers of Lagrangian mechanics, i.e., d’Alembert, Euler, Lagrange, and
Hamilton.

Lagrangian

The handling of both conservative and non-conservative generalized forces @; is best achieved by assuming that the generalized

force Q; =37 FZA . g—;i can be partitioned into a conservative velocity-independent term, that can be expressed in terms of the
j

gradient of a scalar potential, —VUj, plus an excluded generalized force QfX which contains the non-conservative, velocity-
dependent, and all the constraint forces not explicitly included in the potential U;. That is,

Q;= —VUj+Q]-EX (6.3.24)
Inserting 6.3.24into 6.3.21, and assuming that the potential U is velocity independent, allows 6.3.21to be rewritten as

2 H% ( 6(€3q'_jU) ) - 6(Ta;j 2 } QfX} 6g; =0 (6.3.25)

j

The standard definition of the Lagrangian is
L=T-U (6.3.26)

then 6.3.25can be written as
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N r(d /8L oL
Saler) a0 f-er]m=o (6:3.27)
J

Note that if all the generalized coordinates are independent, then the square bracket terms are zero for each value of 7, which leads
to the general Euler-Lagrange equations of motion.

d [ OL oL

— =)=\ _0EX 3.
(o) )= (6:5.28)
wheren >j5>1.

Chapter 6.5.3 will show that the holonomic constraint forces can be factored out of the generalized force term QfX which
simplifies derivation of the equations of motion using Lagrangian mechanics. The general Euler-Lagrange equations of motion are
used extensively in classical mechanics because conservative forces play a ubiquitous role in classical mechanics.

IThis proof, plus the notation, conform with that used by Goldstein [Go50] and by other texts on classical mechanics.

This page titled 6.3: Lagrange Equations from d’Alembert’s Principle is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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