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15.6: Canonical Perturbation Theory
Most examples in classical mechanics discussed so far have been capable of exact solutions. In real life, the majority of problems
cannot be solved exactly. For example, in celestial mechanics the two-body Kepler problem can be solved exactly, but solution of
the three-body problem is intractable. Typical systems in celestial mechanics are never as simple as the two-body Kepler system
because of the influence of additional bodies. Fortunately in most cases the influence of additional bodies is sufficiently small to
allow use of perturbation theory. That is, the restricted three-body approximation can be employed for which the system is reduced
to considering it as an exactly solvable two-body problem, subject to a small perturbation to this solvable two-body system. Note
that even though the change in the Hamiltonian due to the perturbing term may be small, the impact on the motion can be
especially large near a resonance.

Consider the Hamiltonian, subject to a time-dependent perturbation, is written as

where  designates the unperturbed Hamiltonian and  designates the perturbing term. For the unperturbed
system the Hamilton-Jacobi equation is given by

where  is the generating function for the canonical transformation . The perturbed  remains a
canonical transformation, but the transformed Hamiltonian . That is,

The equations of motion satisfied by the transformed variables now are

These equations remain as difficult to solve as the full Hamiltonian. However, the perturbation technique assumes that  is
small, and that one can neglect the change of  over the perturbing interval. Therefore, to a first approximation, the
unperturbed values of  and  can be used in equations . A detailed explanation of canonical perturbation theory is
presented in chapter  of Goldstein[Go50].

(a) Consider first the Hamilton-Jacobi equation for the generating function  for the case of a single free particle
subject to the Hamiltonian . Find the canonical transformation  and  where  and  are the
transformed coordinate and momentum respectively.

The Hamilton-Jacobi equation

Using  in the Hamiltonian  gives

Since  does not depend on  explicitly, then the two terms on the left hand side of the equation can be set equal to 
respectively, where  is at most a function of . Then the generating function is

Set  then the generating function can be written as
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Example : Harmonic oscillator perturbation15.6.1

S(q, α, t)

H = 1
2

p2 q = q(β, α) p = p(β, α) β α

+H(q, p, t) = 0
∂S

∂t

p = ∂S

∂q
H = 1

2
p2

+ = 0
∂S

∂t

1

2
( )

∂S

∂q

2

H q, t −γ, γ

γ p

S = q −γt2γ
−−

√

α = 2γ
−−√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9654?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/15%3A_Advanced_Hamiltonian_Mechanics/15.06%3A_Canonical_Perturbation_Theory


15.6.2 https://phys.libretexts.org/@go/page/9654

The constant  can be identified with the new momentum . Then the transformation equations become

That is

which corresponds to motion with a uniform velocity  in the  system.

(b) Consider that the Hamiltonian is perturbed by addition of potential  which corresponds to the harmonic oscillator.
Then

Consider the transformed Hamiltonian

Hamilton’s equations of motion

give that

These two equations can be solved to give

which is the equation of a harmonic oscillator showing that  is harmonic of the form  where  are
constants of motion. Thus

The transformation equations then give

Hence the solution for the perturbed system is harmonic, which is to be expected since the potential has a quadratic
dependence of position.

Use of canonical perturbation theory in celestial mechanics has been exploited by Professor Alice Quillen and her group. They
combine use of action-angle variables and Hamilton-Jacobi theory to investigate the role of Lindblad resonance to planetary
motion, and also for stellar motion in galaxies. A Lindblad resonance is an orbital resonance in which the orbital period of a
celestial body is a simple multiple of some forcing frequency. Even for very weak perturbing forces, such resonance behavior
can lead to orbit capture and chaotic motion.

For planetary motion the planet masses are about  that of the central star, so the perturbations to Kepler orbits are small.
However, Lindblad resonance for planetary motion led to Saturn’s rings which result from perturbations produced by the
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moons of Saturn that skulpt and clear dust rings. Stellar orbits in disk galaxies are perturbed a few percent by non axially-
symmetric galactic features such as spiral arms or bars. Lindblad resonances perturb stellar motion and drive spiral density
waves at distances from the center of a galactic disk where the natural frequency of the radial component of a star’s orbital
velocity is close to the frequency of the fluctuations in the gravitational field due to passage through spiral arms or bars. If a
stars orbital speed around a galactic center is greater than that of the part of a spiral arm through which it is traversing, then an
inner Lindblad resonance occurs which speeds up the star’s orbital speed moving the orbit outwards. If the orbital speed is less
than that of a spiral arm, an inner Lindblad resonance occurs causing inward movement of the orbit.
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