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14.7: Two-body coupled oscillator systems
The two-body coupled oscillator is the simplest coupled-oscillator system that illustrates the general features of coupled oscillators.
The following four examples involve parallel and series couplings of two linear oscillators or two plane pendula.

The coupled double-oscillator problem, Figure  discussed in chapter , can be used to demonstrate that the general
analytic theory gives the same solution as obtained by direct solution of the equations of motion in chapter .

1) The first stage is to determine the potential and kinetic energies using an appropriate set of generalized coordinates, which
here are  and . The potential energy is

while the kinetic energy is given by

2) The second stage is to evaluate the potential energy  and kinetic energy  tensors. The potential energy tensor  is
nondiagonal since  gives

That is, the potential energy tensor  is

Similarly, the kinetic energy is given by

Since  and  then the kinetic energy tensor  is

Note that for this case, the kinetic energy tensor  equals the mass tensor, which is diagonal, whereas the potential energy
tensor equals the spring constant tensor, which is nondiagonal.

3) The third stage is to use the potential energy  and kinetic energy  tensors to evaluate the secular determinant using
equations 

The expansion of this secular determinant yields

That is

Solving for  gives
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ẋ2

1
1

2
ẋ2
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The solutions are

which is the same as derived previously, (equations ).

4) The fourth step is to insert either one of these eigenfrequencies into the secular equation

Consider the secular equation  for 

Then for the first eigenfrequency , that is, , 

which simplifies to

Similarly, for the other eigenfrequency , that is, , 

which simplifies to

5) The final stage is to write the general coordinates in terms of the normal coordinates . Thus

and

Adding or subtracting gives that the normal modes are

Thus the symmetric normal mode  corresponds to an oscillation of the center-of-mass with the lower frequency .

This frequency is the same as for one single mass on a spring of spring constant  which is as expected since they vibrate in

unison and thus the coupling spring force does not act. The antisymmetric mode  has the higher frequency 

since the restoring force includes both the main spring plus the coupling spring.

The above example illustrates that the general analytic theory for coupled linear oscillators gives the same answer as obtained in
chapter  using Newton’s equations of motion. However, the general analytic theory is a more powerful technique for solving
complicated coupled oscillator systems. Thus the general analytic theory will be used for solving all the following coupled
oscillator problems.
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Figure : Two equal masses series-coupled by two equal springs.

Consider the series-coupled system shown in the figure.

1) The first stage is to determine the potential and kinetic energies using an appropriate set of generalized coordinates, which
here are  and . The potential energy is

while the kinetic energy is given by

2) The second stage is to evaluate the potential energy  and mass  tensors. The potential energy tensor  is nondiagonal
since  gives

That is, the potential energy tensor  is

Similarly, since the kinetic energy is given by

then  and . Thus the kinetic energy tensor  is

Note that for this case the kinetic energy tensor is diagonal whereas the potential energy tensor is nondiagonal.

3) The third stage is to use the potential energy  and kinetic energy  tensors to evaluate the secular determinant using
equation 

The expansion of this secular determinant yields

That is

Example : Two equal masses series-coupled by two equal springs14.7.2
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The solutions are

4) The fourth step is to insert these eigenfrequencies into the secular equation 

Consider  in the above equation

Then for eigenfrequency , that is, , 

Similarly, for , 

5) The final stage is to write the general coordinates in terms of the normal coordinates .

Thus

and

Adding or subtracting gives that the normal modes are

Thus the symmetric normal mode has the lower frequency . The antisymmetric mode has the frequency 

 since both springs provide the restoring force. This case is interesting in that for both normal modes, the

amplitudes for the motion of the two masses are different.
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Figure : Two parallel-coupled plane pendula.

Consider the coupled double pendulum system shown in the adjacent figure, which comprises two parallel plane pendula
weakly coupled by a spring. The angles  and  are chosen to be the generalized coordinates and the potential energy is
chosen to be zero at equilibrium. Then the kinetic energy is

As discussed in chapter , it is necessary to make the small-angle approximation in order to make the equations of motion for
the simple pendulum linear and solvable analytically. That is,

assuming the small angle approximation  and .

The second stage is to evaluate the kinetic energy  and potential energy  tensors

Note that for this case the kinetic energy tensor is diagonal whereas the potential energy tensor is nondiagonal.

The third stage is to evaluate the secular determinant

which gives the characteristic equation

or

The two solutions are

The fourth step is to insert these eigenfrequencies into equation 

Consider 

Then for the first eigenfrequency, , the subscripts are , 
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which simplifies to

Similarly, for , 

which simplifies to

The final stage is to write the general coordinates in terms of the normal coordinates

and

Adding or subtracting these equations gives that the normal modes are

As for the case of the double oscillator discussed in example , the symmetric normal mode corresponds to an oscillation

of the center-of-mass, with zero relative motion of the two pendula, which has the lower frequency . This frequency

is the same as for one independent pendulum as expected since they vibrate in unison and thus the only restoring force is
gravity. The antisymmetric mode corresponds to relative motion of the two pendula with stationary center-of-mass and has the

frequency  since the restoring force includes both the coupling spring and gravity.

This example introduces the role of degeneracy which occurs in this system if the coupling of the pendula is zero, that is, 

, leading to both frequencies being equal, i.e. . When , then both  and  are diagonal and

thus in the  space the two pendula are independent normal modes. However, the symmetric and asymmetric normal
modes, as derived above, are equally good normal modes. In fact, since the modes are degenerate, any linear combination of
the motion of the independent pendula are equally good normal modes and thus one can use any set of orthogonal normal
modes to describe the motion.

Figure : Two series-coupled plane pendula.

The double-pendula system comprises one plane pendulum attached to the end of another plane pendulum both oscillating in
the same plane. The kinetic and potential energies for this system are given in example  to be
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a) Small-amplitude linear regime
Use of the small-angle approximation makes this system linear and solvable analytically. That is,  and  become

Thus the kinetic energy and potential energy tensors are

Note that  is nondiagonal, whereas  is diagonal which is opposite to the case of the two parallel-coupled plane pendula.

 
Figure

: Normal modes for two series-coupled plane pendula.

The solution of this case is simpler if it is assumed that  and . Then

where  which is the frequency of a single pendulum.

The next stage is to evaluate the secular determinant

The eigenvalues are

As shown in the adjacent figure, the normal modes for this system are

The second mass has a  larger amplitude that is in phase for solution 1 and out of phase for solution 2.
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b) Large amplitude chaotic regime
Stachowiak and Okada [Sta05] used computer simulations to numerically analyze the behavior of this system with increase in
the oscillation amplitudes. Poincaré sections, bifurcation diagrams, and Lyapunov exponents all confirm that this system
evolves from regular normal-mode oscillatory behavior in the linear regime at low energy, to chaotic behavior at high
excitation energies where non-linearity dominates. This behavior is analogous to that of the driven, linearly-damped, harmonic
pendulum described in chapter 
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