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17.6: Lorentz-Invariant Formulation of Lagrangian Mechanics

Parametric Formulation

The Lagrangian and Hamiltonian formalisms in classical mechanics are based on the Newtonian concept of absolute time  which
serves as the system evolution parameter in Hamilton’s Principle. This approach violates the Special Theory of Relativity. The
extended Lagrangian and Hamiltonian formalism is a parametric approach, pioneered by Lanczos[La49], that introduces a system
evolution parameter  that serves as the independent variable in the action integral, and all the space-time variables  are
dependent on the evolution parameter . This extended Lagrangian and Hamiltonian formalism renders it to a form that is
compatible with the Special Theory of Relativity. The importance of the Lorentz-invariant extended formulation of Lagrangian and
Hamiltonian mechanics has been recognized for decades.[La49, Go50, Sy60] Recently there has been a resurgence of interest in the
extended Lagrangian and Hamiltonian formalism stimulated by the papers of Struckmeier[Str05, Str08] and this formalism has
featured prominently in recent textbooks by Johns[Jo05] and Greiner[Gr10]. This parametric approach develops manifestly-
covariant Lagrangian and Hamiltonian formalisms that treat equally all  space-time canonical variables. It provides a
plausible manifestly-covariant Lagrangian for the one-body system, but serious problems exist extending this to the -body
system when . Generalizing the Lagrangian and Hamiltonian formalisms into the domain of the Special Theory of Relativity
is of fundamental importance to physics, while the parametric approach gives insight into the philosophy underlying use of
variational methods in classical mechanics.

In conventional Lagrangian mechanics, the equations of motion for the  generalized coordinates are derived by minimizing the
action integral, that is, Hamilton’s Principle.

where  denotes the conventional Lagrangian. This approach implicitly assumes the Newtonian concept of absolute
time  which is chosen to be the independent variable that characterizes the evolution parameter of the system. The actual path 

 the system follows is defined by the extremum of the action integral  which leads to the corresponding Euler-
Lagrange equations. This assumption is contrary to the Theory of Relativity which requires that the space and time variables be
treated equally, that is, the Lagrangian formalism must be covariant.

Extended Lagrangian
Lanczos[La49] proposed making the Lagrangian covariant by introducing a general evolution parameter , and treating the time as
a dependent variable  on an equal footing with the configuration space variables . That is, the time becomes a dependent
variable  similar to the spatial variables  where . The dynamical system then is described as motion
confined to a hypersurface within an extended space where the value of the extended Hamiltonian and the evolution parameter 
constitute an additional pair of canonically conjugate variables in the extended space. That is, the canonical momentum ,
corresponding to , is  similar to the momentum-energy four vector, equation .

An extended Lagrangian  can be defined which can be written compactly as  where the
index  denotes the entire range of space-time variables.

This extended Lagrangian can be used in an extended action functional  to give an extended version of Hamilton’s
Principle

The conventional action , and extended action , address alternate characterizations of the same underlying physical system, and
thus the action principle implies that  must hold simultaneously. That is,

As discussed in chapter , there is a continuous spectrum of equivalent gauge-invariant Lagrangians for which the Euler-
Lagrange equations lead to identical equations of motion. Equation  is satisfied if the conventional and extended Lagrangians
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are related by

where  is a continuous function of  and  that has continuous second derivatives. It is acceptable to assume that 

, then the extended and conventional Lagrangians have a unique relation requiring no simultaneous transformation of
the dynamical variables. That is, assume

Note that the time derivative of  can be expressed in terms of the  derivatives by

Thus, for a conventional Lagrangian with  variables, the corresponding extended Lagrangian is a function of  variables
while the conventional and extended Lagrangians are related using equations , and .

The derivatives of the relation between the extended and conventional Lagrangians lead to

where  since the  time derivatives are written explicitly in equations , .

Equations  — , summed over the extended range  of time and spatial dynamical variables, imply

Equation  can be written in the form

If the extended Lagrangian  is homogeneous to first order in the  variables , then Euler’s theorem on
homogeneous functions trivially implies the relation given in Equation . Struckmeier[Str08] identified a subtle but
important point that if  is not homogeneous in , then Equation  is not an identity but is an implicit equation that is
always satisfied as the system evolves according to the solution of the extended Euler-Lagrange equations. Then Equation  is
satisfied without it being a homogeneous form in the  velocities . This introduces a new class of non-homogeneous
Lagrangians. The relativistic free particle, discussed in example , is a case of a non-homogeneous extended Lagrangian.

Extended generalized momenta

The generalized momentum is defined by
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Assume that the definitions of the extended Lagrangian , and the extended Hamiltonian , are related by a Legendre
transformation, and are based on variational principles, analogous to the relation that exists between the conventional Lagrangian 
and Hamiltonian . The Legendre transformation requires defining the extended generalized (canonical) momentum-energy four

vector . The momentum components of the momentum-energy four vector  are given by
the  components using Equation .

The  component of the momentum-energy four vector can be derived by recognizing that the right-hand side of Equation 
 is equal to . That is, the corresponding generalized momentum , that is conjugate to , is given by

Extended Lagrange equations of motion

By direct analogy with the non-relativistic action integral , the extremum for the relativistic action integral  is
obtained using the Euler-Lagrange equations derived from Equation  where the independent variable is . This implies that
for 

where the extended generalized force  shown on the right-hand side of Equation , accounts for all forces not included
in the potential energy term in the Lagrangian. The extended generalized force  can be factored into two terms as discussed in
chapter , equation . The Lagrange multiplier term includes  holonomic constraint forces where the 
holonomic constraints, which do no work, are expressed in terms of the  algebraic equations of holonomic constraint . The 

 term includes the remaining constraint forces and generalized forces that are not included in the Lagrange multiplier term or
the potential energy term of the Lagrangian.

For the case where , since , then Equation  reduces to

These Euler-Lagrange equations of motion ,  determine the  generalized coordinates , plus 
 in terms of the independent variable .

If the holonomic equations of constraint are time independent, that is  and if , then the  term of the Euler-
Lagrange equations simplifies to

One interpretation is to select  to be primary. Then  is derived from  using Equation  and  must satisfy the identity
given by Equation  while the Euler-Lagrange equations containing  yield an identity which implies that  does not
provide an equation of motion in terms of . Conversely, if  is chosen to be primary, then  is no longer a homogeneous
function and Equation  serves as a constraint on the motion that can be used to deduce , while  yields a non-trivial
equation of motion in terms of . In both cases the occurrence of a constraint surface results from the fact that the extended
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space has  variables to describe  degrees of freedom, that is, one more degree of freedom than required for the actual
system.

The standard Lagrangian  is not Lorentz invariant. The extended Lagrangian  introduces the
independent variable  which treats both the space variables  and time variable  equally. This can be achieved
by defining the non-standard Lagrangian

The constant third term in the bracket is included to ensure that the extended Lagrangian converges to the standard Lagrangian
in the limit .

Note that the extended Lagrangian  is not homogeneous to first order in the velocities  as is required. Equation 
must be used to ensure that Equation  is homogeneous. That is, it must satisfy the constraint relation

Inserting  into the extended Lagrangian  yields that the square bracket in Equation  must equal 2. Thus

The constraint Equation  implies that

Using Equation  gives that the relativistic Lagrangian is

Equation  is the conventional relativistic Lagrangian derived by assuming that the system evolution parameter  is
transformed to be along the world line , where the invariant length  replaces the proper time interval

The definition of the generalized (canonical) momentum

leads to the relativistic expression for momentum given in equation .

The relativistic Lagrangian is an important example of a non-standard Lagrangian. Equation  does not equal the difference
between the kinetic and potential energies, that is, the relativistic expression for kinetic energy is given by  to be

The non-standard relativistic Lagrangian  can be used with the Euler-Lagrange equations to derive the second-order equations
of motion for both relativistic and non-relativistic problems within the Special Theory of Relativity.
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A charged particle moving at relativistic speed in an external electromagnetic field provides an example of the use of the
relativistic Lagrangian.

In the discussion of classical mechanics it was shown that the velocity-dependent Lorentz force can be absorbed into the scalar
electric potential  plus the vector magnetic potential . That is, the potential energy is given by equation  to be 

. Including this in the Lagrangian, , gives

The three spatial partial derivatives can be written in vector notation as

and the generalized momentum is given by

which is identical to the non-relativistic answer given by equation 7.6. That is, it includes the momentum of the
electromagnetic field plus the classical linear momentum of the moving particle.

The total time derivative of the generalized momentum is

where the last term is given by the chain rule

Using equations , ,  in the Euler-Lagrange equation gives

Collecting terms and using the well-known vector-product identity, plus the definition , gives

If we adopt the definition that the relativistic canonical momentum is  then the left hand side is the relativistic force
while the right-hand side is the well-known Lorentz force of electromagnetism. Thus the extended Lagrangian formulation
correctly reproduces the well-known Lorentz force for a charged particle moving in an electromagnetic field.

Chapters  and  reproduce the Struckmeier presentation.[Str08]

These formula involve total and partial derivatives with respect to both time,  and parameter . For clarity, the derivatives are
written out in full because Lanczos[La49] and Johns[Jo05] use the opposite convention for the dot and prime superscripts as
abbreviations for the differentials with respect to  and . The blackboard bold format is used to designate the extended versions of
the action , Lagrangian  and Hamiltonian .

Example : Relativistic particle in an external elctromagnetic field17.6.2
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