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6.3: Lagrange Equations from d’Alembert’s Principle

d’Alembert’s Principle of virtual work

The Principle of Virtual Work provides a basis for a rigorous derivation of Lagrangian mechanics. Bernoulli introduced the concept
of virtual infinitessimal displacement of a system mentioned in chapter . This refers to a change in the configuration of the
system as a result of any arbitrary infinitessimal instantaneous change of the coordinates  that is consistent with the forces and
constraints imposed on the system at the instant . Lagrange’s symbol  is used to designate a virtual displacement which is called
"virtual" to imply that there is no change in time , i.e. . This distinguishes it from an actual displacement  of body 
during a time interval  when the forces and constraints may change.

Suppose that the system of  particles is in equilibrium, that is, the total force on each particle  is zero. The virtual work done by
the force  moving a distance  is given by the dot product . For equilibrium, the sum of all these products for the 
bodies also must be zero

Decomposing the force  on particle  into applied forces  and constraint forces  gives

The second term in Equation  can be ignored if the virtual work due to the constraint forces is zero. This is rigorously true for
rigid bodies and is valid for any forces of constraint where the constraint forces are perpendicular to the constraint surface and the
virtual displacement is tangent to this surface. Thus if the constraint forces do no work, then  reduces to

This relation is the Bernoulli’s Principle of Static Virtual Work and is used to solve problems in statics.

Bernoulli introduced dynamics by using Newton’s Law to related force and momentum.

Equation  can be rewritten as

In 1742, d’Alembert developed the Principle of Dynamic Virtual Work in the form

Using equations  plus  gives

For the special case where the forces of constraint are zero, then Equation  reduces to d’Alembert’s Principle

d’Alembert’s Principle, by a stroke of genius, cleverly transforms the principle of virtual work from the realm of statics to
dynamics. Application of virtual work to statics primarily leads to algebraic equations between the forces, whereas d’Alembert’s
principle applied to dynamics leads to differential equations.
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Transformation to generalized coordinates
In classical mechanical systems the coordinates  usually are not independent due to the forces of constraint and the constraint-
force energy contributes to Equation . These problems can be eliminated by expressing d’Alembert’s Principle in terms of
virtual displacements of  independent generalized coordinates of the system for which the constraint force term 

. Then the individual variational coefficients  are independent and  can be equated to zero
for each value of .

The transformation of the -body system to  independent generalized coordinates  can be expressed as

Assuming  independent coordinates, then the velocity  can be written in terms of general coordinates  using the chain rule for
partial differentiation.

The arbitrary virtual displacement  can be related to the virtual displacement of the generalized coordinate  by

Note that by definition, a virtual displacement considers only displacements of the coordinates, and no time variation  is
involved.

The above transformations can be used to express d’Alembert’s dynamical principle of virtual work in generalized coordinates.
Thus the first term in d’Alembert’s Dynamical Principle,  becomes

where  are called components of the generalized force,  defined as

Note that just as the generalized coordinates  need not have the dimensions of length, so the  do not necessarily have the
dimensions of force, but the product  must have the dimensions of work. For example,  could be torque and  could be
the corresponding infinitessimal rotation angle.

The second term in d’Alembert’s Principle  can be transformed using Equation 

The right-hand side of  can be rewritten as

Note that Equation  gives that

therefore the first right-hand term in  can be written as
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i ṗi qi

i

N n qk

= ( , , … , , t)ri ri q1 q2 q3 qn (6.3.9)

n vi qk

≡ = +vi

dri

dt
∑
j

n ∂ri

∂qj
q̇ j

∂ri

∂t
(6.3.10)

δri δqj

δ = δri ∑
j

n ∂ri

∂qj
qj (6.3.11)

δt

6.3.8

⋅ δ = ⋅ δ = δ∑
i

n

FA
i ri ∑

i,j

n

FA
i

∂ri

∂qj
qj ∑

j

n

Qj qj (6.3.12)

Qj
1

≡ ⋅Qj ∑
i

n

FA
i

∂ri

∂qj
(6.3.13)

qj Qj

δQj qj Qj δqj

6.3.8 6.3.11

⋅ δ = ⋅ δ =( ⋅ ) δ∑
i

n
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The second right-hand term in  can be rewritten by interchanging the order of the differentiation with respect to  and 

Substituting  and  into  gives

Inserting  and  into d’Alembert’s Principle  leads to the relation

The  term can be identified with the system kinetic energy . Thus d’Alembert Principle reduces to the relation

For cartesian coordinates  is a function only of velocities  and thus the term  However, as discussed in appendix

, for curvilinear coordinates  due to the curvature of the coordinates as is illustrated for polar coordinates where 

.

where . That is, this leads to  Euler-Lagrange equations of motion for the generalized forces . As discussed in
chapter  when  holonomic constraint forces apply, it is possible to reduce the system to  independent generalized
coordinates for which Equation  applies.

In  Leibniz proposed minimizing the time integral of his “vis viva", which equals  That is,

The variational Equation  accomplishes the minimization of Equation . It is remarkable that Leibniz anticipated the
basic variational concept prior to the birth of the developers of Lagrangian mechanics, i.e., d’Alembert, Euler, Lagrange, and
Hamilton.

Lagrangian

The handling of both conservative and non-conservative generalized forces  is best achieved by assuming that the generalized
force  can be partitioned into a conservative velocity-independent term, that can be expressed in terms of the

gradient of a scalar potential,  plus an excluded generalized force  which contains the non-conservative, velocity-
dependent, and all the constraint forces not explicitly included in the potential . That is,

Inserting  into , and assuming that the potential  is velocity independent, allows  to be rewritten as

The standard definition of the Lagrangian is

then  can be written as
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Note that if all the generalized coordinates are independent, then the square bracket terms are zero for each value of , which leads
to the general Euler-Lagrange equations of motion.

where .

Chapter  will show that the holonomic constraint forces can be factored out of the generalized force term  which
simplifies derivation of the equations of motion using Lagrangian mechanics. The general Euler-Lagrange equations of motion are
used extensively in classical mechanics because conservative forces play a ubiquitous role in classical mechanics.

This proof, plus the notation, conform with that used by Goldstein [Go50] and by other texts on classical mechanics.

This page titled 6.3: Lagrange Equations from d’Alembert’s Principle is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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