
13.23.1 https://phys.libretexts.org/@go/page/30810

13.23: Symmetric rigid rotor subject to torque about a fixed point
The motion of a symmetric top rotating in a gravitational field, with one point at a fixed location, is encountered frequently in
rotational motion. Examples are the gyroscope and a child’s spinning top. Rotation of a rigid rotor subject to torque about a fixed
point, is a case where it is necessary to take the inertia tensor with respect to the fixed point in the body, and not at the center of
mass.

Figure : Symmetric top spinning about one fixed point.

Consider the geometry, shown in Figure , where the symmetric top of mass  is spinning about a fixed tip that is displaced
by a distance  from the center of mass. The tip of the top is assumed to be at the origin of both the space-fixed frame  and
the body-fixed frame . Assume that the translational velocity is zero and let the principal moments about the fixed point of
the symmetric top be .

The Lagrange equations of motion can be derived assuming that the kinetic energy equals the rotational kinetic energy, that is, it is
assumed that the translational kinetic energy . Then the kinetic energy of an inertially-symmetric rigid rotor can be
derived for the torque-free symmetric top as given in equation  to be

Since the potential energy is  then the Lagrangian equals

The angular momentum about the space-fixed  axis  is conjugate to . From Lagrange’s equations

that is,  is a constant of motion given by the generalized momentum

where  is the angular momentum projection along the space-fixed  axis.

Similarly, the angular momentum about the body-fixed 3 axis is conjugate to . From Lagrange’s equations,

that is,  is a constant of motion given by the generalized momentum
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where  is the angular momentum projection along the body-fixed 3 axis. The above two relations can be solved to give the
precessional angular velocity  about the space-fixed  axis

and the spin angular velocity  about the body-fixed  axis

Since  and  are constants of motion, i.e. , then these rotational angular velocities depend on only , . and .

Figure : Effective potential diagram for a spinning symmetric top as a function of theta.
There is one further constant of motion available if no frictional forces act on the system, that is, energy conservation. This implies
that the total energy

will be a constant of motion. But the middle term on the right-hand side also is a constant of motion

Thus energy conservation can be rewritten by defining an energy  where

This can be written as

which can be expressed as

where  is an effective potential
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The effective potential  is shown in Figure . It is clear that the motion of a symmetric top with effective energy  is
confined to angles . Note that the above result also is obtained if the Routhian is used, rather than the Lagrangian, as
mentioned in chapter , and defined by equation . That is, the Routhian can be written as

The Routhian  acts like a Hamiltonian for the  and  variables which are constants of motion, and
thus are ignorable variables. The Routhian acts as the negative Lagrangian for the remaining variable , with rotational kinetic

energy  and effective potential energy 

The equation of motion describing the system in the rotating frame is given by one Lagrange equation

The negative sign of the Routhian cancels out when used in the Lagrange equation. Thus, in the rotating frame of reference, the
system is reduced to a single degree of freedom, the nutation angle , with effective energy  given by equations  - 

.

Figure : Nutational motion of the body-fixed symmetry axis projected onto the space-fixed unit sphere. The three case are
(a)  never vanishes, (b)  at  (c)  changes sign between  and ,

The motion of the symmetric top is simplest at the minimum value of the effective potential curve, where , at which the
nutation  is restricted to a single value . The motion is a steady precession at a fixed angle of inclination, that is, the
“sleeping top”. Solving for  gives that

If , then to ensure that the solution is real requires a minimum value of the angular momentum on the body-fixed axis of 
. If  then there is no minimum angular momentum projection on the body-fixed axis. There are two

possible solutions to the quadratic relation corresponding to either a slow or fast precessional frequency. Usually the slow
precession is observed.

For the general case, where , the nutation angle  between the space-fixed and body-fixed 3 axes varies in the range 
. This axis exhibits a nodding variation which is called nutation. Figure  shows the projection of the body-

fixed symmetry axis on the unit sphere in the space-fixed frame. Note that the observed nutation behavior depends on the relative
sizes of  and . For certain values, the precession  changes sign between the two limiting values of  producing a
looping motion as shown in Figure . Another condition is where the precession is zero for  producing a cusp at  as
illustrated in Figure . This behavior can be demonstrated using the gyroscope or the symmetric top.

V (θ) ≡ +Mgh cosθ = +Mgh cosθ
( − cosθpϕ pψ )2

2 θI1 sin2

( − cosθSz B3 )2

2 θI1 sin2
(13.23.15)

V (θ) 13.23.2 E ′

< θ <θ1 θ2

8.7 (8.6.8)

R(θ, , = + −L = H(ϕ, ,ψ, ) −L(θ,θ̇ pϕpψ)cyclic ϕ̇pϕ ψ̇pψ pϕ pψ θ̇)noncyclic

= − + + +Mgh cosθ
1

2
I1 θ̇

2 ( − cosθpϕ pψ )2

2 θI1 sin2

p2
ψ

2I3

(13.23.16)

R(θ, ,θ̇ pϕpψ)cyclic (ϕ, )pϕ (ψ, )pψ
θ

1
2
I1 θ̇

2
Veff

= + +Mgh cosθ = V (θ) +Veff
( − cosθpϕ pψ )2

2 θI1 sin2

p2
ψ

I3

p2
ψ

I3

( ) − = 0
d

dt

∂Rcyclic

∂θ̇

∂Rcyclic

∂θ

θ E ′ 13.23.13

13.23.15

13.23.3

ϕ̇ = 0ϕ̇ θ = θ2 ϕ̇ θ1 θ2

=E ′ Vmin

θ θ = θ0

( = 0dV

dθ
)θ=θ0

− cosθ = 1 ±pϕ pψ
pψ sin2 θ0

2 cosθ0

⎡

⎣
1 −

4Mgh cosI1 θ0

p2
ψ

− −−−−−−−−−−−−−−

√
⎤

⎦
(13.23.17)

<θ0
π
2

≥ 4Mgh cosp2
ψ

I1 θ0 >θ0
π
2

>E ′
1 Vmin θ

< θ <θ1 θ2 13.23.3

pϕ cosθpψ ϕ̇ θ

13.23.3c θ2 θ2

13.23.3b

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/30810?pdf


13.23.4 https://phys.libretexts.org/@go/page/30810

Figure : Jack comprises six bodies of mass  at each end of orthogonal arms of length 

The game “Jacks” is played using metal Jacks, each of which comprises six equal masses  at the opposite ends of orthogonal
axes of length . Consider one jack spinning around the body-fixed 3−axis with the lower mass at a fixed point on the ground,
and with a steady precession around the space-fixed vertical axis  with angle  as shown. Assume that the body-fixed axes
align with the arms of the jack.

The principal moments of inertia about one mass is given by the parallel axis theorem to be 
and .

In the rotating body-fixed frame the torque due to gravity has components

and the components of the angular velocity are

Using Euler’s equations  for the above components of  and  in the body-fixed frame, gives

Equation  relates the spin about the 3 axis, the precession, and the angle to the vertical , that is

where  is the spin and  is the precession angular velocity.

If the spin axis is nearly vertical,  and thus  and . Multiply Equation     and using
the equations of the components of  gives

The bracket must be positive to have stable sinusoidal oscillations. That is, the spin angular velocity  required for the jack to
spin about a stable vertical axis is given by.
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This example illustrates the conditions required for stable rotation of any axially-symmetric top.

Figure : The geometry of the Tippe Top of radius  spinning on a horizontal surface with slipping friction acting
between the top and the horizontal plane. The center of mass is a distance  from the center of the spherical section along the
axis of symmetry of the top.

The Tippe Top comprises a section of a sphere, to which a short cylindrical rod is mounted on the planar section, as illustrated.
When the Tippe Top is spun on a horizontal surface this top exhibits the perverse behavior of transitioning from rotation with
the spherical head resting on the horizontal surface, to flipping over such that it rotates resting on its elongated cylindrical rod.
The orientation of angular momentum remains roughly vertical as expected from conservation of angular momentum. This
implies that the rotation with respect to the body-fixed axes must invert as the top inverts. The center of mass is raised when
the top inverts; the additional potential energy is provided by a reduction in the rotational kinetic energy.

The Tippe Top behavior was first discovered in the 1890’s but adequate solutions of the equations of motion have only been
developed since the 1950’s. Since the top precesses around the vertical axis, the point of contact is not on the symmetry axis of
the top. Sliding friction between the surface of the spinning top and the horizontal surface provides a torque that causes the
precession of the top to increase and eventually flip up onto the cylindrical peg. The Tippe Top is typical of many phenomena
in physics where the underlying physics principle can be recognized but a detailed and rigorous solution can be complicated.

The system has five degrees of freedom,  which specify the location on the horizontal plane, plus the three Euler angles 
. The paper by Cohen[Coh77] explains the motion in terms of Euler angles using the laboratory to body-fixed

transformation relation. It shows that friction plays a pivotal role in the motion contrary to some earlier claims. Ciocci and
Langerock[Cio07] used the Routhian  to reduce the number of degrees of freedom from 5 to 2, namely  which is the tilt
angle, and  which is the orientation of the tilt. This Routhian  is a Lagrangian in two dimension that was used to
derive the equations of motion via the Lagrange Euler equation

where the  are generalized torques about the 2 angles that take into account the sliding frictional forces. This
sophisticated Routhian reduction approach provides an exhaustive and refined solution for the Tippe Top and confirms that
sliding friction plays a key role in the unusual behavior of the Tippe Top.
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