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5.6: Euler’s Integral Equation

An integral form of the Euler differential equation can be written which is useful for cases when the function f does not depend

explicitly on the independent variable z, that is, when = 0. Note that
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Combining these two equations gives
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The last two terms can be rewritten as
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which vanishes when the Euler equation is satisfied. Therefore the above equation simplifies to
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This integral form of Euler’s equation is especially useful when % =0, that is, when f does not depend explicitly on the
independent variable x. Then the first integral of Equation 5.6.5is a constant, i.e.

0
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This is Euler’s integral variational equation. Note that the shortest distance between two points, the minimum surface of rotation,

. . . 0, . Lo
and the brachistochrone, described earlier, all are examples where é =0 and thus the integral form of Euler’s equation is useful
for solving these cases.
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