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4.1: Introduction to Nonlinear Systems and Chaos
In nature only a subset of systems have equations of motion that are linear. Contrary to the impression given by the analytic
solutions presented in undergraduate physics courses, most dynamical systems in nature exhibit non-linear behavior that leads to
complicated motion. The solutions of non-linear equations usually do not have analytic solutions, superposition does not apply, and
they predict phenomena such as attractors, discontinuous period bifurcation, extreme sensitivity to initial conditions, rolling
motion, and chaos. During the past four decades, exciting discoveries have been made in classical mechanics that are associated
with the recognition that nonlinear systems can exhibit chaos. Chaotic phenomena have been observed in most fields of science and
engineering such as, weather patterns, fluid flow, motion of planets in the solar system, epidemics, changing populations of
animals, birds and insects, and the motion of electrons in atoms. The complicated dynamical behavior predicted by non-linear
differential equations is not limited to classical mechanics, rather it is a manifestation of the mathematical properties of the
solutions of the differential equations involved, and thus is generally applicable to solutions of first or second-order non-linear
differential equations. It is important to understand that the systems discussed in this chapter follow a fully deterministic evolution
predicted by the laws of classical mechanics, the evolution for which is based on the prior history. This behavior is completely
different from a random walk where each step is based on a random process. The complicated motion of deterministic non-linear
systems stems in part from sensitivity to the initial conditions. There are many examples of turbulent and laminar flow.

The French mathematician Poincaré is credited with being the first to recognize the existence of chaos during his investigation of
the gravitational three-body problem in celestial mechanics. At the end of the nineteenth century Poincaré noticed that such
systems exhibit high sensitivity to initial conditions characteristic of chaotic motion, and the existence of nonlinearity which is
required to produce chaos. Poincaré’s work received little notice, in part it was overshadowed by the parallel development of the
Theory of Relativity and quantum mechanics at the start of the  century. In addition, solving nonlinear equations of motion is
difficult, which discouraged work on nonlinear mechanics and chaotic motion. The field blossomed during the  when
computers became sufficiently powerful to solve the nonlinear equations required to calculate the long-time histories necessary to
document the evolution of chaotic behavior.

Laplace, and many other scientists, believed in the deterministic view of nature which assumes that if the position and velocities of
all particles are known, then one can unambiguously predict the future motion using Newtonian mechanics. Researchers in many
fields of science now realize that this “clockwork universe" is invalid. That is, knowing the laws of nature can be insufficient to
predict the evolution of nonlinear systems in that the time evolution can be extremely sensitive to the initial conditions even though
they follow a completely deterministic development. There are two major classifications of nonlinear systems that lead to chaos in
nature. The first classification encompasses nondissipative Hamiltonian systems such as Poincaré’s three-body celestial mechanics
system. The other main classification involves driven, damped, non-linear oscillatory systems.

Nonlinearity and chaos is a broad and active field and thus this chapter will focus only on a few examples that illustrate the general
features of non-linear systems. Weak non-linearity is used to illustrate bifurcation and asymptotic attractor solutions for which the
system evolves independent of the initial conditions. The common sinusoidally-driven linearly-damped plane pendulum illustrates
several features characteristic of the evolution of a non-linear system from order to chaos. The impact of non-linearity on
wavepacket propagation velocities and the existence of soliton solutions is discussed. The example of the three-body problem is
discussed in chapter . The transition from laminar flow to turbulent flow is illustrated by fluid mechanics discussed in chapter 

. Analytic solutions of nonlinear systems usually are not available and thus one must resort to computer simulations. As a
consequence the present discussion focusses on the main features of the solutions for these systems and ignores how the equations
of motion are solved.
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