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16.6: Electromagnetic Field Theory

Maxwell stress tensor

Analytical formulations for continuous systems, developed for describing elasticity, are generally applicable when applied to other
fields, such as the electromagnetic field. The use of the Maxwell’s stress tensor , to describe momentum in the electromagnetic
field, is an important example of the application of continuum mechanics in field theory.

The Lorentz force can be written as

where the force density  is defined to be

Maxwell’s equations

can be used to eliminate the charge and current densities in Equation 

Vector calculus gives that

while Faraday’s law gives

Equation  allows Equation  to be rewritten as

Equation  can be inserted into Equation . In addition, a term  can be added since  which
allows equation 16.60 to be written in the symmetric form

Using the vector identity

Let , then

That is

Similarly
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∇(A ⋅ B) = A ×(∇ ×B) +B ×(∇ ×A) +(A ⋅ ∇)B +(B ⋅ ∇)A (16.6.10)

A = B = E

∇( ) = 2E ×(∇ ×E) +2(E ⋅ ∇)EE2 (16.6.11)
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Inserting equations  and  into Equation  gives

This complicated formula can be simplified by defining the rank-2 Maxwell stress tensor  which has components

The inner product of the del operator and the Maxwell stress tensor is a vector with  components of

The above definition of the Maxwell stress tensor, plus the Poynting vector , allows the force density Equation 
 to be written in the form

The divergence theorem allows the total force, acting of the volume , to be written in the form

Note that, if the Poynting vector is time independent, then the second term in Equation  is zero and the Maxwell stress
tensor  is the force per unit area, (stress) acting on the surface. The fact that  is a rank-2 tensor is apparent since the stress
represents the ratio of the force-density vector  and the infinitessimal area vector , which do not necessarily point in the same
directions.

Momentum in the electromagnetic field
Chapter  showed that the electromagnetic field carries a linear momentum  where  is the charge on a body and  is the
electromagnetic vector potential. It is useful to use the Maxwell stress tensor to express the momentum density directly in terms of
the electric and magnetic fields.

Newton’s law of motion can be used to write equation Equation  as

where  is the total mechanical linear momentum of the volume . Equation  implies that the electromagnetic field carries
a linear momentum

The  term in Equation  is the momentum per unit time flowing into the closed surface. In field theory it can be
useful to describe the behavior in terms of the momentum flux density . Thus the momentum flux density  in the
electromagnetic field is

Then Equation  implies that the total momentum flux density  is related to Maxwell’s stress tensor by

B ×(∇ ×B) = ∇( ) −(B ⋅ ∇)B
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p τ 16.6.20
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∮ T ⋅ da 16.6.20
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16.6.20 π = +πmech πfield

( + ) = ∇ ⋅ T
∂

∂t
πmech πfield (16.6.23)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9661?pdf


16.6.3 https://phys.libretexts.org/@go/page/9661

That is, like the elasticity stress tensor, the divergence of Maxwell’s stress tensor  equals the rate of change of the total
momentum density, that is,  is the momentum flux density.

This discussion of the Maxwell stress tensor and its relation to momentum in the electromagnetic field illustrates the role that
analytical formulations of classical mechanics can play in field theory
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