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13.20: Torque-free rotation of an inertially-symmetric rigid rotor

Euler's equations of motion

There are many situations where one has rigid-body motion free of external torques, that is, . The tumbling motion of a
jugglers baton, a diver, a rotating galaxy, or a frisbee, are examples of rigid-body rotation. For torque-free rotation, the body will
rotate about the center of mass, and thus the inertia tensor with respect to the center of mass is required. An inertially-symmetric
rigid body has two identical principal moments of inertia with , and provides a simple example that illustrates the
underlying motion. The force-free Euler equations for the symmetric body in the body-fixed principal axis system are given by

where  and  apply.

Figure : The force-free symmetric top angular velocity  precesses on a conical trajectory about the body-fixed symmetry
axis .

Note that for torque-free motion of an inertially symmetric body Equation  implies that , i.e.  is a constant of
motion and thus is a cyclic variable for the symmetric rigid body.

Equations  and  can be written as two coupled equations

where the precession angular velocity  with respect to the body-fixed frame is defined to be

Combining the time derivatives of equations  and  leads to two uncoupled equations

These are the differential equations for a harmonic oscillator with solutions

These equations describe a vector  rotating in a circle of radius  about an axis perpendicular to , that is, rotating in the 
 plane with angular frequency . Note that
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which is a constant. In addition  is constant, therefore the magnitude of the total angular velocity

The motion of the torque-free symmetric body is that the angular velocity  precesses around the symmetry axis  of the body at
an angle  with a constant precession frequency  with respect to the body-fixed frame as shown in Figure . Thus, to an
observer on the body,  traces out a cone around the body-fixed symmetry axis. Note from  that the vectors  and 
are parallel when  is positive, that is,  (oblate shape) and antiparallel if  (prolate shape).

For the system considered, the orientation of the angular momentum vector  must be stationary in the space-fixed inertial frame
since the system is torque free, that is,  is a constant of motion. Also we have that the projection of the angular momentum on the
body-fixed symmetry axis is a constant of motion, that is, it is a cyclic variable. Thus

Understanding the relation between the angular momentum and angular velocity is facilitated by considering another constant of
motion for the torque-free symmetric rotor, namely the rotational kinetic energy.

Since  is a constant for torque-free motion, and also the magnitude of  was shown to be constant, therefore the angle between
these two vectors must be a constant to ensure that also  constant. That is,  precesses around  at a constant
angle  such that the projection of  onto  is constant. Note that

and, for a symmetric rotor,

since  for the symmetric rotor. Because  for a symmetric top then ,  and  are coplanar.

Figure  shows the geometry of the motion for both oblate and prolate axially-deformed bodies. To an observer in the space-
fixed inertial frame, the angular velocity  traces out a cone that precesses with angular velocity  around the space fixed  axis
called the space cone. For convenience, Figure  assumes that  and the space-fixed inertial frame  axis are colinear. The
angular velocity  also traces out the body cone as it precesses about the body-fixed  axis. Since ,  and  are coplanar, then
the  vector is at the intersection of the space and body cones as the body cone rolls around the space cone. That is, the space and
body cones have one generatrix in common which coincides with . As shown in Figure , for a needle the body cone
appears to roll without slipping on the outside of the space cone at the precessional velocity of . By contrast, as shown in
Figure  for an oblate (disc-shaped) symmetric top the space cone rolls inside the body cone and the precession  is faster
than .

Since no external torques are acting for torque-free motion, then the magnitude and direction of the total angular momentum are
conserved. The description of the motion is simplified if  is taken to be along the space-fixed  axis, then the Euler angle  is the
angle between the body-fixed basis vector  and space-fixed basis vector . If at some instant in the body frame, it is assumed that

 is aligned in the plane of ,  and , then

If  is the angle between the angular velocity  and the body-fixed  axis, then at the same instant
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Figure : Torque-free rotation of symmetric tops; (a) circular flat disk, (b) circular rod. The space-fixed and body-fixed
cones are shown by fine lines. The space-fixed axis system is designated by the unit vectors  and the body-fixed principal
axis system by unit vectors .

The components of the angular momentum also can be derived from  to give

Equations  and  give two relations for the ratio , that is,

For a prolate spheroid  therefore  while  and  have opposite signs.

For a oblate spheroid  therefore  while  and  have the same sign.

The sense of precession can be understood if the body cone rolls without slipping on the outside of the space cone with  in the
opposite orientation to  for the prolate case, while for the oblate case the space cone rolls inside the body cone with  and 
oriented in similar directions. Note from  that  if , that is ,  and the  axis are aligned corresponding to a
principal axis. Similarly,  if , then again  and  are aligned corresponding to them being principal axes.

Lagrangian mechanics has been used to calculate the motion with respect to the body-fixed principal axis system. However, the
motion needs to be known relative to the space-fixed inertial frame where the motion is observed. This transformation can be done
using the following relation

since the unit vector  is stationary in the body-fixed frame. The vector product of  and  gives

therefore

The angular momentum equals . Since  is perpendicular to the  axis, then for the case with ,
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ê3 ω × ê3 ê3
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dê3

dt space

ω3ê3 (13.20.22)

L = {I} ⋅ ω ×ê3 ( )dê3
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Thus the angular momentum for a torque-free symmetric rigid rotor comprises two components, one being the perpendicular
component that precesses around , and the other is .

In the space-fixed frame assume that the  axis is colinear with . Then taking the scalar product of  and , using Equation 
 gives

The first term on the right is zero and thus Equation  and  give

The time dependence of the rotation of the body-fixed symmetry axis with respect to the space-fixed axis system can be obtained
by taking the vector product  using Equation  and using equation  to expand the triple vector product,

since . Moreover , and , since they are perpendicular, then

This equation shows that the body-fixed symmetry axis  precesses around the , where  is a constant of motion for torque-free
rotation. The true rotational angular velocity  in the space-fixed frame, given by equations , can be evaluated using
Equation . Remembering that it was assumed that  is in the  direction, that is, , then

That is, the symmetry axis of the axially-symmetric rigid rotor makes an angle  to the angular momentum vector  and precesses
around  with a constant angular velocity  while the axial spin of the rigid body has a constant value . Thus, in the
precessing frame, the rigid body appears to rotate about its fixed symmetry axis with a constant angular velocity 

. The precession of the symmetry axis looks like a wobble superimposed on the spinning

motion about the body-fixed symmetry axis. The angular precession rate in the space-fixed frame can be deduced by using the fact
that

Then using Equation  allows Equation  to be written as

which gives the precession rate about the space-fixed axis in terms of the angular velocity . Note that the precession rate  if
, that is, for oblate shapes, and  if , that is, for prolate shapes.
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ω3ê3

= ×( × ) +( )
L

I1
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Lagrange equations of motion
It is interesting to compare the equations of motion for torque-free rotation of an inertially-symmetric rigid rotor derived using
Lagrange mechanics with that derived previously using Euler’s equations based on Newtonian mechanics. Assume that the
principal moments about the fixed point of the symmetric top are  and that the kinetic energy equals the rotational
kinetic energy, that is, it is assumed that the translational kinetic energy . Then the kinetic energy is given by

Equations  for the body-fixed frame give

Therefore

and

Therefore the kinetic energy is

Since the system is torque free, the scalar potential energy  can be assumed to be zero, and then the Lagrangian equals

The angular momentum about the space-fixed  axis  is conjugate to . From Lagrange’s equations

that is, the angular momentum about the space-fixed  axis,  is a constant of motion given by

Similarly, the angular momentum about the body-fixed  axis is conjugate to . From Lagrange’s equations

that is,  is a constant of motion given by

The above two relations derived from the Lagrangian can be solved to give the precession angular velocity  about the space-fixed
 axis

and the spin about the body-fixed  axis  which is given by
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Since  and  are constants of motion, then the precessional angular velocity  about the space-fixed  axis, and the spin
angular velocity , which is the spin frequency about the body-fixed  axis, are constants that depend directly on , . and .

There is one additional constant of motion available if no dissipative forces act on the system, that is, energy conservation which
implies that the total energy

will be a constant of motion. But the second term on the right-hand side also is a constant of motion since  and  both are
constants, that is

Thus energy conservation implies that the first term on the right-hand side also must be a constant given by

These results are identical to those given in equations  and  which were derived using Euler’s equations. These
results illustrate that the underlying physics of the torque-free rigid rotor is more easily extracted using Lagrangian mechanics
rather than using the Euler-angle approach of Newtonian mechanics.

Table  lists the precession and spin angular velocities, in the space-fixed frame, for torque-free rotation of three extreme
symmetric-top geometries spinning with constant angular momentum  when the motion is slightly perturbed such that  is at
a small angle  to the symmetry axis. Note that this assumes the perpendicular axis theorem, equation  which states
that for a thin laminae  giving, for a thin circular disk,  and thus .

Rigid-body symmetric shape Principal moment ratio Precession rate Spin rate 

Symmetric needle 0 0

Sphere 1 0

Thin circular disk 2

Table : Precession and spin rates for torque-free axial rotation of symmetric rigid rotors

The precession angular velocity in the space frame ranges between 0 to  depending on whether the body-fixed spin angular
velocity is aligned or anti-aligned with the rotational frequency . For an extreme prolate spheroid , the body-fixed spin
angular velocity  which cancels the angular velocity  of the rotating frame resulting in a zero precession angular
velocity of the body-fixed  axis around the space-fixed frame. The spin  in the body-fixed frame for the rigid sphere 

, and thus the precession rate of the body-fixed  axis of the sphere around the space-fixed frame equals . For oblate

spheroids and thin disks, such as a frisbee,  making the body-fixed precession angular velocity  which adds to
the angular velocity  and increases the precession rate up to  as seen in the space-fixed frame. This illustrates that the spin
angular velocity can add constructively or destructively with the angular velocity .

In his autobiography Surely You’re Joking Mr Feynman, he wrote " I was in the [Cornell] cafeteria and some guy, fooling around,
throws a plate in the air. As the plate went up in the air I saw it wobble, and noticed that the red medallion of Cornell on the plate
going around. It was pretty obvious to me that the medallion went around faster than the wobbling. I started to figure out the
motion of the rotating plate. I discovered that when the angle is very slight, the medallion rotates twice as fast as the wobble rate. It
came out of a very complicated equation!". The quoted ratio  is incorrect, it should be . Benjamin Chao in Physics
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Example : Precession rate for torque-free rotating symmetric rigid rotor13.20.1
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Today of February 1989 speculated that Feynman’s error in inverting the factor of two might be "in keeping with the spirit of the
author and the book, another practical joke meant for those who do physics without experimenting". He pointed out that this story
occurred on page 157 of a book of length 314 pages . Observe the dependence of the ratio of wobble to rotation angular
velocities on the tilt angle .

This page titled 13.20: Torque-free rotation of an inertially-symmetric rigid rotor is shared under a CC BY-NC-SA 4.0 license and was authored,
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