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13.8: Parallel-Axis Theorem

The values of the components of the inertia tensor depend on both the location and the orientation about which the body rotates
relative to the body-fixed coordinate system. The parallel-axis theorem is valuable for relating the inertia tensor for rotation about
parallel axes passing through different points fixed with respect to the rigid body. For example, one may wish to relate the inertia
tensor through the center of mass to another location that is constrained to remain stationary, like the tip of the spinning top.

Figure 13.8.1: Transformation between two parallel body-coordinate systems, O and Q.

Consider the mass « at the location r = (x1, @3, z3) with respect to the origin of the center of mass body-fixed coordinate system O.
Transform to an arbitrary but parallel body-fixed coordinate system (), that is, the coordinate axes have the same orientation as the
center of mass coordinate system. The location of the mass a with respect to this arbitrary coordinate system is R = (X3, X2, X3) .
That is, the general vectors for the two coordinates systems are related by

R=a+r (13.8.1)

where a is the vector connecting the origins of the coordinate systems O and @ illustrated in Figure 13.8.1 The elements of the inertia
tensor with respect to axis system (), are given by equation (13.4.1)to be

N 3
Jij =Y ma l(sij (Z X;k) —Xa,iXa,j] (13.8.2)
a k

The components along the three axes for each of the two coordinate systems are related by
X;=a; +x; (1383)

Substituting these into the above inertia tensor relation gives

N 3
Jij = Zma |f5ﬁ (Z (wavk +ai)2> — (iL'a,i +a;) (iL‘a,j +a;) (13.8.4)
«a k
N 3 N 3
= Zm"‘ léij (Z :cik) —Za,iTa,j +Zma [&j (Z (2ma,kak +ai)) —(@;xqa,; +ajTq; +a;a;)
«a k a k

The first summation on the right-hand side corresponds to the elements I;; of the inertia tensor in the center-of-mass frame. Thus the
terms can be regrouped to give

N 3 N 3
— 2
Jij :Iij +Zma 5ij Zak faiaj +Zma 2(51] Zxa,kak fa,-aca,jfaj:ca,i
a k o k

However, each term in the last bracket involves a sum of the form Zlav MqTa, k- Take the coordinate system O to be with respect to the
center of mass for which

(13.8.5)

N
D mar’ =0 (13.8.6)

This also applies to each component &, that is
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N
> MaBas =0 (13.8.7)

Therefore all of the terms in the last bracket cancel leaving

N
Jij EIij"‘Z"M <5ij23:ai—aiaj> (13.8.8)
o k
But YN m, =M and 33 a? =a?, thus
Jij = Lj + M(a*5;j — a;a;) (13.8.9)
where I;; is the center-of-mass inertia tensor. This is the general form of Steiner’s parallel-axis theorem.
As an example, the moment of inertia around the X7 axis is given by
Ju =L+ M((a? +a3 +a3)di —a?) =111 + M(a3 +a3) (13.8.10)

which corresponds to the elementary statement that the difference in the moments of inertia equals the mass of the body multiplied by
the square of the distance between the parallel axes, z1, X;. Note that the minimum moment of inertia of a body is I;; which is about
the center of mass.

Example 13.8.1: Inertia Tensor of a Solid Cube Rotating about the Center of Mass

The complicated expressions for the inertia tensor can be understood using the example of a uniform solid cube with side b,
density p, and mass M = pb®, rotating about different axes. Assume that the origin of the coordinate system O is at the center of
mass with the axes perpendicular to the centers of the faces of the cube.

X; a3

0) T,

b
/Qa X,

x, b
X; b
Figure 13.8.2: Inertia tensor of a uniform solid cube of side b about the center of mass O and a corner of the cube Q). The vector a
is the vector distance between O and Q.

The components of the inertia tensor can be calculated using (13.4.2) written as an integral over the mass distribution rather than

a summation.
3
Iij :/p(r') <(le (Z .’B%) —.’I:iiltj) dVv
k

b/2 pbj2 b2
I :p/ / / .772—|—.’L‘3 drsdrodx,
—b/2 J—b/2 J—b/2

1 1
= pr5 = gsz :.[22 ZIg3

Thus

By symmetry the diagonal moments of inertia about each face are identical. Similarly the products of inertia are given by

b/2 rb/2 b/2
112 = —p/ / / $1:L‘2 dargdargdarl =0
—b/2J—b/2 J—b/2

Thus the inertia tensor is given by
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Note that this inertia tensor is diagonal implying that this is the principal axis system. In this case all three principal moments of
inertia are identical and perpendicular to the centers of the faces of the cube. This is as expected from the symmetry of the cubic
geometry.

Example 13.8.2: Inertia tensor of about a corner of a solid cube.

Direct calculation

Let one corner of the cube be the origin of the coordinate system ) and assume that the three adjacent sides of the cube lie along
the coordinate axes. The components of the inertia tensor can be calculated using (13.4.2). Thus

b b pb 9 9
I, = p/ / / (2% +22)dzsdzsdz, = —pb° = = MY
o Jo Jo 3 3

b b b 1 1
.[12 = p/ / / (x1m2)da:3dm2d:v1 = ——pb5 = ——Mb2
0 0 0 4 4

Thus, evaluating all the nine components gives

corner 1 2 ; 3
I = EMb -3 8 -3
-3 -3 8

Parallel-axis theorem

This inertia tensor also can be calculated using the parallel-axis theorem to relate the moment of inertia about the corner, to that at
the center of mass. As shown in Figure 13.8.2 the vector a has components

b
a; =—ay =ag = —

2
Applying the parallel-axis theorem gives

1 2

1
Jiu=I1+M(a® —a?) =L +M(al +a2) = EMb2 + EM"Z = gMb2
and similarly for J29 and J33. The off-diagonal terms are given by
1
J]z = .[12 —|—M(—a1a2) = _ZMbZ
Thus the inertia tensor, transposed from the center of mass, to the corner of the cube is
2 1 1
R L L T § -3 -3
_ 1 2 2 2 1 > | _ 2
Jeorner — —ZMb §Mb —ZMb _EMb -3 8 -3
—1Mb2 —%Mb2 %sz -3 -3 8

This inertia tensor about the corner of the cube, is the same as that obtained by direct integration.

Principal moments of inertia

The coordinate axis frame used for rotation about the corner of the cube is not a principal axis frame. Therefore let us diagonalize
the inertia tensor to find the principal axis frame and the principal moments of inertia about a corner. To achieve this requires
solving the secular determinant

(Emp?—1) —imp? —1mp?
—sMy? MV -1)  —MbB =0
1 1 2
—1Mmv? —iMb? (B MB*-T)
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The value of a determinant is not affected by adding or subtracting any row or column from any other row or column. Subtract
row 1 from row 2 gives

2 1 1

(EMp>—-1)  —imp? —1Mmp?
—SMY (MY -T) 0 =0
—Lmp? —impr (EMB-T)

The determinant of this matrix is straightforward to evaluate and equals

1, 1., 11, B
(6Mb I) (12Mb I)(leb I)—O

Thus the roots are

sMbB2 0 0

e =0 HMp® 0
11 2
0 0 U

The identical roots Iy = I35 = %M % imply that the principal axis associated with I;; must be a symmetry axis. The orientation
can be found by substituting /7, into the above equation

1 6 —3 —3 w11
(I} -I{I}) - w= EMb2 -3 6 3| wu|=0
-3 -3 6 w31
where the second subscript 1 attached to w; signifies that this solution corresponds to I7;. This gives
2wy —w21 —w31 =0

—wi1 +2wa; —ws3; =0
—w11 — w1 +2w3; =0

1
Solving these three equations gives the unit vector for the first principal axis for which I;; = %M b% to be &; = % 1 | . This
1

can be repeated to find the other two principal axes by substituting T2 = %M b2 . This gives for the second principal moment I59
1 -3 -3 -3 w19
{1} - {I}) w= EMb2 -3 -3 -3 wyy | =0
-3 -3 -3 w32
This results in three identical equations for the components of w but all three equations are the same, namely

w12 +was +w3y =0

This does not uniquely determine the direction of w. However, it does imply that ws corresponding to the second principal axis has
the property that

d’-el =0

that is, any direction of €5 that is perpendicular to €; is acceptable. In other words; any two orthogonal unit vectors €5 and é3 that
are perpendicular to €; are acceptable. This ambiguity exists whenever two eigenvalues are equal; the three principal axes are only
uniquely defined if all three eigenvalues are different. The same ambiguity exist when all three eigenvalues are identical as occurs
for the principal moments of inertia about the center-of-mass of a uniform solid cube. This explains why the principal moment of
inertia for the diagonal of the cube, that passes through the center of mass, has the same moment as when the principal axes pass
through the center of the faces of the cube.

This page titled 13.8: Parallel-Axis Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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