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14.S: Coupled linear oscillators (Summary)
This chapter has focussed on many—body coupled linear oscillator systems which are a ubiquitous feature in nature. A summary of
the main conclusions are the following.

Normal modes
It was shown that coupled linear oscillators exhibit normal modes and normal coordinates that correspond to independent modes of
oscillation with characteristic eigenfrequencies .

General analytic theory for coupled linear oscillators
Lagrangian mechanics was used to derive the general analytic procedure for solution of the many-body coupled oscillator problem
which reduces to the conventional eigenvalue problem. A summary of the procedure for solving coupled oscillator problems is as
follows:.

1) Choose generalized coordinates  and evaluate  and .

and

where the components of the  and  tensors are

and

2) Determine the eigenvalues  using the secular determinant.

3) The eigenvectors are obtained by inserting the eigenvalues  into

4) From the initial conditions determine the complex scale factors  where

5) Determine the normal coordinates where each  is a normal mode. The normal coordinates can be expressed as

Few-body coupled oscillator systems
The general analytic theory was used to determine the solutions for parallel and series couplings of two and three linear oscillators.
The phenomena observed include degenerate and non-degenerate eigenvalues and spurious center-of-mass oscillatory modes.
There are two broad classifications for three or more coupled oscillators, that is, either complete coupling of all oscillators, or
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coupling of the nearest-neighbor oscillators. It is observed that the eigenvalue corresponding to the most coherent motion of the
coupled oscillators corresponds to the most collective motion and its eigenvalue is displaced the most in energy from the remaining
eigenvalues. For some systems this coherent collective mode corresponded to a center-of-mass motion with no internal excitation
of the other modes, while the other eigenvalues corresponded to modes with internal excitation of the oscillators such that the
center of mass is stationary. The above procedure has been applied to two classification of coupling, complete coupling of many
oscillators, and nearest neighbor coupling. Both degenerate and spurious center-of-mass modes were observed. Strong collective
shape degrees of freedom in nuclei are examples of complete coupling due to the weak residual interactions between nucleons in
the nucleus. It was seen that, for many coupled oscillators, one coherent state separates from the other states and this coherent state
carries the bulk of the collective strength.

Discrete lattice chain
Transverse and longitudinal modes of motion on the discrete lattice chain were discussed because of the important role it plays in
nature, such as in crystalline lattice structures. Both normal modes and travelling waves were discussed including the phenomena
of dispersion and cut-off frequencies. Molecules and the crystalline lattice chains are examples where nearest neighbor coupling is
manifest. It was shown that, for the −oscillator discrete lattice chain, there are only  independent longitudinal modes plus 
modes for the two transverse polarizations, and that the angular frequency  that is, a cut-off frequency exists.

Damped coupled linear oscillators

It was shown that linearly-damped coupled oscillator systems can be solved analytically using the concept of the Rayleigh
dissipation function.

Collective synchronization of coupled oscillators
The Kuramoto schematic phase model was used to illustrate how weak residual forces can cause collective synchronization of the
motion of many coupled oscillators. This is applicable to many large coupled systems such as nuclei, molecules, and biological
systems.
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