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13.24: The Rolling Wheel
As discussed in chapter , the rolling wheel is a non-holonomic system that is simple in principle, but in practice the solution can
be complicated, as illustrated by the Tippe Top. Chapter  discussed the motion of a symmetric top rotating about a fixed point
on the symmetry axis when subject to a torque. The rolling wheel involves rotation of a symmetric rigid body that is subject to
torques. However, the point of contact of the wheel with a static plane is on the periphery of the wheel, and friction at the point of
contact is assumed to ensure zero slip. Note that friction is necessary to ensure that the rotating object rolls without slipping, but the
frictional force does no work for pure rolling of an undeformable rigid wheel.

The coordinate system employed is shown in Figure . For simplicity it is better to use a moving coordinate frame 
that is fixed to the orientation of the wheel with the origin at the center of mass of the wheel, but this moving reference frame does
not include the angular velocity  of the disk about the  axis. That is, the moving  frame has angular velocities

The frame fixed in the rotating wheel must include the additional angular velocity of the disk  about the  axis, that is

where  designates the angular velocity of the rotating disk, while  designates the rotation of the moving frame .

The principle moments of inertia of a thin circular disk are related by the perpendicular axis theorem (chapter )

Since  for a uniform disk, therefore .

Equation  can be used to relate the vector forces  in the space-fixed frame to the rate of change of momenta in the
moving frame .

This leads to the following relations for the three components in the moving frame

where  are the reactive forces acting shown in Figure .
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= =Ω1 ω1 θ̇

= = sinθΩ2 ω2 ϕ̇

= + = cosθ+Ω3 ω3 ψ̇ ϕ̇ ψ̇

(13.24.2)

Ω ω (1, 2, 3)

13.9

+ =I1 I2 I3

=I1 I2 = 2I3 I1

(12.3.10) F

(1, 2, 3)
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Figure : Uniform disk rolling on a horizontal plane as viewed in the (a) fixed frame, and (b) rolling disk frame. The space-
fixed axis system is , while the moving reference frame  is centered at the center of mass of the disk with the 
axes in the plane of the disk. The disk is rotating with a uniform angular velocity  about the  axis and rolling in the direction that
is at an angle  relative to the  axis.

Similarly, the torques  in the space-fixed frame can be related to the rate of change of angular momentum by

where . This leads to the following relations for the three torque equations in the moving frame

The rolling constraints are

where . Combining equations , ,  gives

These are the torque equations about the point of contact .

Introduction of equations  and  into Equation  expresses the equations of motion in terms of the Euler angles
to be

Equations  are non-linear, and a closed-form solution is possible only for limited cases such as when .

Note that the above equations of motion also can be derived using Lagrangian mechanics knowing that
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The differential equations of constraint can be derived from equations  to be

Use of generalized forces plus the Lagrange-Euler equations  can be used to derive the equations of motion and solve for
the components of the constraint force , , and .

A circular wheel rolling in a vertical plane at high angular velocity initially rolls in a straight line and remains vertical.
However, below a certain angular velocity, gyroscopic forces become weaker and the wheel will tip sideways and veer rapidly
from the initial direction. It is interesting to estimate the minimum angular velocity of the disk such that it does not start to tip
over sideways.

Note that equations  are satisfied for ,  and  constant. Assume a small disturbance causes the tilt
angle to be  where  is small and that  is non-zero but small, that is  and  are small. Keeping only terms
to first order in the third of equations , and integrating gives

The first two of equations  become

Integrating Equation  gives

Inserting  into  gives

Equation  has a stable oscillatory solution when the square bracket in positive, that is,

which gives the minimum angular velocity required for stable rolling motion. For angular velocity less than the minimum, the
square bracket in Equation  is negative leading to an exponentially decaying and divergent solution. For a uniform disk the
perpendicular axis theorem gives  for which Equation  gives

Therefore the critical linear velocity of the wheel is

The bicycle wheel provides a common example of the tipping of a rolling wheel. For the typical   radius of a bicycle
wheel, this gives a critical velocity of    .
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Example : Tipping stability of a rolling wheel13.24.1
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The stability of the bicycle is sensitive to the castor and other aspects of the steering geometry of the front wheel, in addition to the
gyroscopic effects. Excellent articles on this sub ject have been written by D.E.H. Jones Physics Today 23(4) (1970) 34, and also by
J. Lowell & H.D. McKell, American Journal of Physics 50 (1982) 1106.

This page titled 13.24: The Rolling Wheel is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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