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14.6: General Analytic Theory for Coupled Linear Oscillators

The discussion of a coupled double-oscillator system in Section 14.5 has shown that it is possible to select symmetric and
antisymmetric normal modes that are independent and each have characteristic frequencies. The normal coordinates for these two
normal modes correspond to linear superpositions of the spatial amplitudes of the two oscillators and can be obtained by a rotation
into the appropriate normal coordinate system. Extension of this to systems comprising n coupled linear oscillators, requires
development of a general analytic theory, that is capable of finding the normal modes and their eigenvalues and eigenvectors. As
illustrated for the double oscillator, the solution of many coupled linear oscillators is a classic eigenvalue problem where one has to
rotate to the principal axis system to project out the normal modes. The following discussion presents a general approach to the
problem of finding the normal coordinates for a system of n coupled linear oscillators.

Consider a conservative system of n coupled oscillators, described in terms of generalized coordinates g and ¢ with subscript
k=1,2,3,...,nfor a system with n degrees of freedom. The coupled oscillators are assumed to have a stable equilibrium with
generalized coordinates gy at equilibrium. In addition, it is assumed that the oscillation amplitudes are sufficiently small to ensure
that the system is linear.

For the equilibrium position g3, = g0 , the Lagrange equations must satisfy

q, =0 (14.6.1)
4, =0
Every non-zero term of the form % z’?TL in Lagrange’s equations must contain at least either ¢, or ¢; which are zero at equilibrium;
k

thus all such terms vanish at equilibrium. At equilibrium

(38),- (), (3,

where the subscript 0 designates at equilibrium.

Kinetic energy tensor T

In chapter 7.6 it was shown that, in terms of fixed rectangular coordinates, the kinetic energy for N bodies, with n generalized
coordinates, is expressed as

N 3

1
T=3 3 mai?, (14.6.3)
a=1 i=1
Expressing these in terms of generalized coordinates z, ; = wa,i(qj, t) where j=1,2,...n, then the generalized velocities are
given by
. n Bma,i . 6.’Ea,i
T :Z quqﬁw (14.6.4)
j=1

As discussed in chapter 7.6, if the system is scleronomic then the partial derivative

Bmavi
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Thus the kinetic energy, Equation 14.6.3 of a scleronomic system can be written as a homogeneous quadratic function of the
generalized velocities

—0 (14.6.5)
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gk
where the components of the kinetic energy tensor T are
N 3. 0xq; O%0
T, = § E @t Tt 14.6.7
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Note that if the velocities ¢ correspond to translational velocity, then the kinetic energy tensor T corresponds to an effective mass
tensor, whereas if the velocities correspond to angular rotational velocities, then the kinetic energy tensor T corresponds to the
inertia tensor.

It is possible to make an expansion of the T}, about the equilibrium values of the form
0T,
Tin(q1, 25 - - qn) :Tjk(QiO)JFZ ( 8qu

1

) Qt .. (14.6.8)
0

Only the first-order term will be kept since the second and higher terms are of the same order as the higher order terms ignored in

the Taylor expansion of the potential. Thus, at the equilibrium point, assume that (%) 0= 0 where k=1,2,3,...n.
k

Potential energy tensor V
Equations 14.6.2plus 14.6.8imply that

(%)0 =0 (14.6.9)

Make a Taylor expansion about equilibrium for the potential energy, assuming for simplicity that the coordinates have been
translated to ensure that g5 = 0 at equilibrium. This gives

where k=1,2,3,...n.

ou 1 o*U
U(q1,92,--qn) =Up + (—> r+ (—> giqk+- - 14.6.10
( ) ; aqk 0 2% 3(1,6(119 0 J ( )
U
Ogy,
with respect to Uj. Assume that the amplitudes are small, then the expansion can be restricted to the quadratic term, corresponding
to the simple linear oscillator potential

The linear term is zero since ( ) =0 at the equilibrium point, and without loss of generality, the potential can be measured
0

1 0%U 1
Ulgi, @,--q0) —Uo=U'(q1,q2,..q,) = = — ) gam==> Vig; 14.6.11
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That is

1

U'(q1,42,-- ) = ) Zijquk (14.6.12)
ok
where the components of the potential energy tensor V are defined as
02U’

V= < ) 14.6.13
J aqjaqk 0 ( )

Note that the order of differentiation is unimportant and thus the quantity Vj;, is symmetric
Vi = Vij (14.6.14)

The motion of the system has been specified for small oscillations around the equilibrium position and it has been shown that
U'(q1, g2, - - - ¢ ) has a minimum value at equilibrium which is taken to be zero for convenience.

In conclusion, equations 14.6.6and 14.6.12give

1 .
T— 5 ]Zij’“qjq’“ (14.6.15)
1 n
U — 5 Z Vied;a (14.6.16)
i,k

where the components of the kinetic energy tensor T and potential energy tensor V are
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Vi = (quaqk )0 (14.6.18)

Note that g; and g may have different units, but all the terms in the summations for both 7" and U’, have units of energy. The Vj
and T}, values are evaluated at the equilibrium point, and thus both Vj;, and T} are n xn arrays of values evaluated at the
equilibrium location.

Equations of motion

Both the kinetic energy and potential energy terms are products of the coordinates leading to a set of coupled equations that are
complicated to solve. The problem is greatly simplified by selecting a set of normal coordinates for which both 7" and U are
diagonal, then the coupling terms disappear. Thus a coordinate transformation must be found that simultaneously diagonalizes T,
and Vj;, in order to obtain a set of normal coordinates.

The kinetic energy T is only a function of generalized velocities q;, while the conservative potential energy is only a function of the
generalized coordinates q. Thus the Lagrange equations

8L d 0L

= _ - = _ 14.6.19
bg. @ 9qy (14.6.19)
reduce to
oUu d oT
— +—7—=0 14.6.20
Oqi T 0q;, ( )
But
oUu -
e =Y Vig (14.6.21)
qk 7
and
oT = .
E :ZTjkqj (14.6.22)
J
Thus the Lagrange equations reduce to the following set of equations of motion,
Z(‘Gk%#‘ﬂ'k@) =0 (14.6.23)

J

For each k, where 1 <k <n, there exists a set of n second-order linear homogeneous differential equations with constant
coefficients. Since the system is oscillatory, it is natural to try a solution of the form

q;(t) = a;e@t=9 (14.6.24)

Assuming that the system is conservative, then this implies that w is real, since an imaginary term for w would lead to an
exponential damping term. The arbitrary constants are the real amplitude a; and the phase d. Substitution of this trial solution for
each k leads to a set of equations

2
> (Vik —w*Tj)a; =0 (14.6.25)
J
where the common factor /“*~9) has been removed. Equation 14.6.25 corresponds to a set of n linear homogeneous algebraic
equations that the a; amplitudes must satisfy for each k. For a non-trivial solution to exist, the determinant of the coefficients must

vanish, that is
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1=0 (14.6.26)
Vis—w?Tiy  Vos—w?Thy Vi3 —w?Tss

where the symmetry Vj, = V3,; has been included. This is the standard eigenvalue problem for which the above determinant gives
the secular equation or the characteristic equation. It is an equation of degree n in w?. The n roots of this equation are w? where
w, are the characteristic frequencies or eigenfrequencies of the normal modes.

Substitution of w? into Equation 14.6.26 determines the ratio aj,:a2,:a3,:...:a,, for this solution which defines the
components of the n-dimensional eigenvector a,. That is, solution of the secular equations have determined the eigenvalues and
eigenvectors of the n solutions of the coupled-channel system.

Superposition

The equations of motion > j(ijqj +Tnd j) =0 are linear equations that satisfy superposition. Thus the most general solution
g;(t) can be a superposition of the n eigenvectors a;,, that is

g;i(t) = Z ajelwrt=o) (14.6.27)
T
Only the real part of g;(¢) is meaningful, that is,
g;j(t) = Re Z ajel@rt=o) = Z ajr cos(wyt — d,) (14.6.28)
T T

Thus the most general solution of these linear equations involves a sum over the eigenvectors of the system which are cosine
functions of the corresponding eigenfrequencies.

Eigenfunction Orthonormality

It can be shown that the eigenvectors are orthogonal. In addition, the above procedure only determines ratios of amplitudes, thus
there is an indeterminacy that can be used to normalize the aj.. Thus the eigenvectors form an orthonormal set. Orthonormality of
the eigenfunctions for the rank 3 inertia tensor was illustrated in chapter 13.10.2 Similar arguments apply that allow extending
orthonormality to higher rank cases such that for n-body coupled oscillators.

The eigenfunction orthogonality for n coupled oscillators can be proved by writing Equation 14.6.25for both the st root and the
rth root. That is,

> Vikaks =w? Y Tjras (14.6.29)
J J
D Viap =wi Y Tiaj (14.6.30)
J J
Multiply Equation 14.6.29by a;, and sum over k. Similarly multiply Equation 14.6.30by ays and sum over k. These summations
lead to
Z Vikajrags = w? Z Tk Qs (14.6.31)
ik jk
> Viajrars =wi Y Tigajrans (14.6.32)
ik ik
Note that the left-hand sides of these two equations are identical. Thus taking the difference between these equations gives
(w? —w?) > Tiajar, =0 (14.6.33)
jk

Note that if (w? —w?) # 0, that is, assuming that the eigenfrequencies are not degenerate, then to ensure that Equation 14.6.33is
zero requires that
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Zl’jkajraks =0 r#s (14.6.34)
ik
This shows that the eigenfunctions are orthogonal. If the eigenfrequencies are degenerate, i.e. w? = w?, then, with no loss of
generality, the axes r and s can be chosen to be orthogonal.

The eigenfunction normalization can be chosen freely since only ratios of the eigenfunction components a;, are determined when
w, is used in Equation 14.6.25 The kinetic energy, given by Equation 14.6.6 must be positive, or zero for the case of a static
system. That is

n

1 ..
T= 3 Tjkq;q9r >0 (14.6.35)
k

Js
Use the time derivative of Equation 14.6.28to determine ¢, and insert into Equation 14.6.35gives that the kinetic energy is
1 « P
T= 3 Z Tinq ;qr = 3 Z T Z wyws@jr €08(wyt — 0y )ags cos(wst —ds) (14.6.36)
gk i,k

Js 78
For the diagonal term r = s
1< 1<
T=35 Tidjdr= |5 D whicos’(wt—5,)| Y Tiajar >0 (14.6.37)
gk T gk
Since the term in the square brackets must be positive, then

> Tiajrar >0 (14.6.38)
gk

Since this sum must be a positive number, and the magnitude of the amplitudes can be chosen freely, then it is possible to
normalize the eigenfunction amplitudes to unity. That is, choose that

Y Tpajar, =1 (14.6.39)
3.k

The orthogonality equation, 14.6.34 and the normalization Equation 14.6.39 can be combined into a single orthonormalization
equation

ZT’jkajraks = érs (14640)
J.k

This has shown that the eigenvectors form an orthonormal set.

Since the 5 component of the r* eigenvector is ajr, then the i eigenvector can be written in the form
a, = Z ajpe; (14.6.41)
J
where €; are the unit vectors for the generalized coordinates.

Normal coordinates

The above general solution of the coupled-oscillator problem is best expressed in terms of the normal coordinates which are
independent. It is more transparent if the superposition of the normal modes are written in the form

n
gi(t) = Brajre™! (14.6.42)

where the complex factor 3, includes the arbitrary scale factor to allow for arbitrary amplitudes g; as well as the fact that the
amplitudes a - have been normalized and the phase factor §, has been chosen.

Define

0 (t) = Brert (14.6.43)
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then Equation 14.6.42can be written as

gi(t) = apm(t) (14.6.44)
T
Equation 14.6.44can be expressed schematically as the matrix multiplication
q=1{a}n (14.6.45)
The 7,.(t) are the normal coordinates which can be expressed in the form
n={a}"!q (14.6.46)

Each normal mode 7, corresponds to a single eigenfrequency, w, which satisfies the linear oscillator equation

i, +win, =0 (14.6.47)
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