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8.S: Hamiltonian Mechanics (Summary)

Hamilton’s equations of motion

Inserting the generalized momentum into Jacobi’s generalized energy relation was used to define the Hamiltonian function to be

H(q,p,t)=p-4—L(q,q,1) (8.5.1)
The Legendre transform of the Lagrange-Euler equations, led to Hamilton’s equations of motion.
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The generalized energy equation (8.8.1) gives the time dependence
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The pg, g, are treated as independent canonical variables. Lagrange was the first to derive the canonical equations but he did not
recognize them as a basic set of equations of motion. Hamilton derived the canonical equations of motion from his fundamental
variational principle and made them the basis for a far-reaching theory of dynamics. Hamilton’s equations give 2s first-order
differential equations for pg, g; for each of the s degrees of freedom. Lagrange’s equations give s second-order differential
equations for the variables gy, g..

Routhian reduction technique

The Routhian reduction technique is a hybrid of Lagrangian and Hamiltonian mechanics that exploits the advantages of both
approaches for solving problems involving cyclic variables. It is especially useful for solving motion in rotating systems in science
and engineering. Two Routhians are used frequently for solving the equations of motion of rotating systems. Assuming that the
variables between 1 <+ < s are non-cyclic, while the m variables between s +1 <7 <n are ignorable cyclic coordinates, then
the two Routhians are:
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The Routhian Ry is a negative Lagrangian for the non-cyclic variables between 1 <7 <s, where s=n—m, and is a
Hamiltonian for the m cyclic variables between s+ 1 <4 <n . Since the cyclic variables are constants of the Hamiltonian, their
solution is trivial, and the number of variables included in the Lagrangian is reduced from n to s =n —m . The Routhian Ry is
useful for solving some problems in classical mechanics. The Routhian R, oneyclic is @ Hamiltonian for the non-cyclic variables
between 1 <14 < s, and is a negative Lagrangian for the m cyclic variables between s+ 1 <¢ <n . Since the cyclic variables are
constants of motion, the Routhian Ry, oncyeiic also is a constant of motion but it does not equal the total energy since the coordinate
transformation is time dependent. The Routhian R, ,ncyciic is especially valuable for solving rotating many-body systems such as
galaxies, molecules, or nuclei, since the Routhian R,oncyciic is the Hamiltonian in the rotating body-fixed coordinate frame.

Variable mass systems:

Two examples of heavy flexible chains falling in a uniform gravitational field were used to illustrate how variable mass systems
can be handled using Lagrangian and Hamiltonian mechanics. The falling-mass system is conservative assuming that both the
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donor plus the receptor body systems are included.

Comparison of Lagrangian and Hamiltonian mechanics

Lagrangian and the Hamiltonian dynamics are two powerful and related variational algebraic formulations of mechanics that are
based on Hamilton’s action principle. They can be applied to any conservative degrees of freedom as discussed in chapters 7, 9,
and 16. Lagrangian and Hamiltonian mechanics both concentrate solely on active forces and can ignore internal forces. They can
handle many-body systems and allow convenient generalized coordinates of choice. This ability is impractical or impossible using
Newtonian mechanics. Thus it is natural to compare the relative advantages of these two algebraic formalisms in order to decide
which should be used for a specific problem.

For a system with n generalized coordinates, plus m constraint forces that are not required to be known, then the Lagrangian
approach, using a minimal set of generalized coordinates, reduces to only s =n —m second-order differential equations and
unknowns compared to the Newtonian approach where there are n+m unknowns. Alternatively, use of Lagrange multipliers
allows determination of the constraint forces resulting in 7 4+ m second order equations and unknowns. The Lagrangian potential
function is limited to conservative forces, Lagrange multipliers can be used to handle holonomic forces of constraint, while
generalized forces can be used to handle non-conservative and non-holonomic forces. The advantage of the Lagrange equations of
motion is that they can deal with any type of force, conservative or non-conservative, and they directly determine g, ¢ rather than
g, p which then requires relating p to q.

For a system with n generalized coordinates, the Hamiltonian approach determines 2n first-order differential equations which are
easier to solve than second-order equations. However, the 2n solutions must be combined to determine the equations of motion.
The Hamiltonian approach is superior to the Lagrange approach in its ability to obtain an analytical solution of the integrals of the
motion. Hamiltonian dynamics also has a means of determining the unknown variables for which the solution assumes a soluble
form. Important applications of Hamiltonian mechanics are to quantum mechanics and statistical mechanics, where quantum
analogs of ¢; and p;, can be used to relate to the fundamental variables of Hamiltonian mechanics. This does not apply for the
variables ¢; and ¢; of Lagrangian mechanics. The Hamiltonian approach is especially powerful when the system has m cyclic
variables, then the m conjugate momenta p; are constants. Thus the m conjugate variables (g;, p;) can be factored out of the
Hamiltonian, which reduces the number of conjugate variables required to n —m. This is not possible using the Lagrangian
approach since, even though the m coordinates g; can be factored out, the velocities ¢; still must be included, thus the n conjugate
variables must be included. The Lagrange approach is advantageous for obtaining a numerical solution of systems in classical
mechanics. However, Hamiltonian mechanics expresses the variables in terms of the fundamental canonical variables (q, p) which
provides a more fundamental insight into the underlying physics.?

This page titled 8.5: Hamiltonian Mechanics (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated

by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/14102



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/14102?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/08%3A_Hamiltonian_Mechanics/8.S%3A_Hamiltonian_Mechanics_(Summary)
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/

