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8.5: Applications of Hamiltonian Dynamics
The equations of motion of a system can be derived using the Hamiltonian coupled with Hamilton’s equations of motion, that is,
equations .

Formally the Hamiltonian is constructed from the Lagrangian. That is

1. Select a set of independent generalized coordinates 
2. Partition the active forces.
3. Construct the Lagrangian 
4. Derive the conjugate generalized momenta via 
5. Knowing  derive 

6. Derive  and 

This procedure appears to be unnecessarily complicated compared to just using the Lagrangian plus Lagrangian mechanics to
derive the equations of motion. Fortunately the above lengthy procedure often can be bypassed for conservative systems. That is, if
the following conditions are satisfied;

i. , that is,  is independent of the velocity .
ii. the generalized coordinates are time independent.

then it is possible to use the fact that

The following five examples illustrate the use of Hamiltonian mechanics to derive the equations of motion.

Consider a mass  in a uniform gravitational field acting in the  direction. The Lagrangian for this simple case is

Therefore the generalized momenta are   . The corresponding Hamiltonian 

 is

Note that the Lagrangian is not explicitly time dependent, thus the Hamiltonian is a constant of motion.

Hamilton’s equations give that

Combining these gives that  . Note that the linear momenta  and  are constants of motion whereas
the rate of change of  is given by the gravitational force . Note also that  for this conservative system.

(8.3.11−8.3.13)
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Example : Motion in a uniform gravitational field8.5.1
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ẏ = = mpz

∂L

∂ż
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Consider a mass  subject to a linear restoring force with spring constant  The Lagrangian  equals

Therefore the generalized momentum is

The Hamiltonian  is

Note that the Lagrangian is not explicitly time dependent, thus the Hamiltonian will be a constant of motion. Hamilton’s
equations give that

or

In addition

Combining these gives that

which is the equation of motion for the harmonic oscillator.

The plane pendulum, in a uniform gravitational field  is an interesting system to consider. There is only one generalized
coordinate,  and the Lagrangian for this system is

The momentum conjugate to  is

which is the angular momentum about the pivot point.

The Hamiltonian is

Hamilton’s equations of motion give

Example : One-dimensional harmonic oscillator8.5.2
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= − + k = + k
pxpx

m

1

2

p2
x

m

1

2
x2 1

2

p2
x

m

1

2
x2

= =ẋ
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Example : Plane pendulum8.5.3
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Note that the Lagrangian and Hamiltonian are not explicit functions of time, therefore they are conserved. Also the potential is
velocity independent and there is no coordinate transformation, thus the Hamiltonian equals the total energy, that is

where  is a constant of motion. Note that the angular momentum  is not a constant of motion since  explicitly depends
on .

Figure : Phase-space diagrams for the plane pendulum. The separatrix (bold line) separates the oscillatory solutions from
the rolling solutions. The upper (a) shows one complete cycle while the lower (b) shows two complete cycles.

The solutions for the plane pendulum on a  phase diagram, shown in the adjacent figure, illustrate the motion. The upper
phase-space plot shows the range . Note that the  and  correspond to the same physical point, that is
the phase diagram should be rolled into a cylinder connected along the dashed lines. The lower phase space plot shows two
cycles for  to better illustrate the cyclic nature of the phase diagram. The corresponding state-space diagram is shown in
Figure . The trajectories are ellipses for low energy  corresponding to oscillations of the pendulum
about . The center of the ellipse  is a stable equilibrium point for the oscillation. However, there is a phase change
to rotational motion about the horizontal axis when , that is, the pendulum swings around a circle continuously, i.e.
it rotates continuously in one direction about the horizontal axis. The phase change occurs at  and is designated by
the separatrix trajectory.

The plot of  versus  for the plane pendulum is better presented on a cylindrical phase space representation since  is a
cyclic variable that cycles around the cylinder, whereas  oscillates equally about zero having both positive and negative
values. When wrapped around a cylinder then the unstable and stable equilibrium points will be at diametrically opposite
locations on the surface of the cylinder at . For small oscillations about equilibrium, also called librations, the
correlation between  and  is given by the clockwise closed ellipses wrapped on the cylindrical surface, whereas for energies

 the positive  corresponds to counterclockwise rotations while the negative  corresponds to clockwise rotations.
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Figure : Mass attracted to origin by force proportional to distance from origin with the motion constrained to the surface
of a cylinder.

Consider the case where a mass  is attracted by a force directed toward the origin and proportional to the distance from the
origin. Determine the Hamiltonian if the mass is constrained to move on the surface of a cylinder defined by

It is natural to transform this problem to cylindrical coordinates . Since the force is just Hooke’s law

the potential is the same as for the harmonic oscillator, that is

This is independent of  and thus  is cyclic.

The system is conservative, and the transformation from rectangular to cylindrical coordinates does not depend explicitly on
time. Therefore the Hamiltonian is conserved and equals the total energy. That is

The equations of motion then are given by the canonical equations

Equation  and  imply that

Thus the angular momentum about the axis of the cylinder is conserved, that is, it is a cyclic variable.

Combining equations  and  implies that

Example : Hooke's law force constrained to the surface of a cylinder8.5.4

8.5.2
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∂ż
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This is the equation for simple harmonic motion with angular frequency . The symmetries imply that this problem

has the same solutions for the  coordinate as the harmonic oscillator, while the  coordinate moves with constant angular
velocity.

A magnetron comprises a hot cylindrical wire cathode that emits electrons and is at a high negative voltage. It is surrounded by
a larger diameter concentric cylindrical anode at ground potential. A uniform magnetic field runs parallel to the cylindrical axis
of the magnetron. The electron beam excites a multiple set of microwave cavities located around the circumference of the
cylindrical wall of the anode. The magnetron was invented in England during World War 2 to generate microwaves required
for the development of radar.

Consider a non-relativistic electron of mass  and charge  in a cylindrical magnetron moving between the central cathode
wire, of radius  at a negative electric potential , and a concentric cylindrical anode conductor of radius  which has zero
electric potential. There is a uniform constant magnetic field  parallel to the cylindrical axis of the magnetron.

Using SI units and cylindrical coordinates  aligned with the axis of the magnetron, the electromagnetic force
Lagrangian, given in chapter  equals

The electric and vector potentials for the magnetron geometry are

Thus expressed in cylindrical coordinates the Lagrangian equals

The generalized momenta are

Note that the vector potential  contributes an additional term to the angular momentum .

Using the above generalized momenta leads to the Hamiltonian

Note that the Hamiltonian is not an explicit function of time, therefore it is a constant of motion which equals the total energy.
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Example : Electron motion in a cylindrical magnetron8.5.5
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∂ṙ
ṙ
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Since  and if  is not an explicit function of  then  that is,  is a constant of motion. Thus  and  are

constants of motion.

Consider the initial conditions . Then

Note that at  then  is given by the last equation since the Hamiltonian equals a constant . That is, assuming that 
 then

Define a critical magnetic field by

then

Note that if  then  is real at . However, if  then  is imaginary at  implying that there must be a
maximum orbit radius  for the electron where . That is, the electron trajectories are confined spatially to coaxial
cylindrical orbits concentric with the magnetron electromagnetic fields. These closed electron trajectories excite the microwave
cavities located in the nearby outer cylindrical wall of the anode.

This page titled 8.5: Applications of Hamiltonian Dynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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