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8.6: Routhian Reduction
Noether’s theorem states that if the coordinate  is cyclic, and if the Lagrange multiplier plus generalized force contributions for
the  coordinates are zero, then the canonical momentum of the cyclic variable,  is a constant of motion as is discussed in
chapter . Therefore, both  are constants of motion for cyclic variables, and these constant  coordinates can be
factored out of the Hamiltonian . This reduces the number of degrees of freedom included in the Hamiltonian. For this
reason, cyclic variables are called ignorable variables in Hamiltonian mechanics. This advantage does not apply to the 
variables used in Lagrangian mechanics since  is not a constant of motion for a cyclic coordinate. The ability to eliminate the
cyclic variables as unknowns in the Hamiltonian is a valuable advantage of Hamiltonian mechanics that is exploited extensively for
solving problems, as is described in chapter .

It is advantageous to have the ability to exploit both the Lagrangian and Hamiltonian formulations simultaneously when handling
systems that involve a mixture of cyclic and non-cyclic coordinates. The equations of motion for each independent generalized
coordinate can be derived independently of the remaining generalized coordinates. Thus it is possible to select either the
Hamiltonian or the Lagrangian formulations for each generalized coordinate, independent of what is used for the other generalized
coordinates. Routh devised an elegant, and useful, hybrid technique that separates the cyclic and non-cyclic generalized coordinates
in order to simultaneously exploit the differing advantages of both the Hamiltonian and Lagrangian formulations of classical
mechanics. The Routhian reduction approach partitions the  kinetic energy term in the Hamiltonian into a cyclic group,
plus a non-cyclic group, i.e.

Routh’s clever idea was to define a new function, called the Routhian , that include only one of the two partitions of the kinetic
energy terms. This makes the Routhian a Hamiltonian for the coordinates for which the kinetic energy terms are included, while the
Routhian acts like a negative Lagrangian for the coordinates where the kinetic energy term is omitted. This book defines two
Routhians.

The first, Routhian, called  includes the kinetic energy terms only for the cyclic variables, and behaves like a Hamiltonian
for the cyclic variables, and behaves like a Lagrangian for the non-cyclic variables. The second Routhian, called 
includes the kinetic energy terms for only the non-cyclic variables, and behaves like a Hamiltonian for the non-cyclic variables, and
behaves like a negative Lagrangian for the cyclic variables. These two Routhians complement each other in that they make the
Routhian either a Hamiltonian for the cyclic variables, or the converse where the Routhian is a Hamiltonian for the non-cyclic
variables. The Routhians use  to denote those coordinates for which the Routhian behaves like a Lagrangian, and  for
those coordinates where the Routhian behaves like a Hamiltonian. For uniformity, it is assumed that the degrees of freedom
between  are non-cyclic, while those between  are ignorable cyclic coordinates.

The Routhian is a hybrid of Lagrangian and Hamiltonian mechanics. Some textbooks minimize discussion of the Routhian on the
grounds that this hybrid approach is not fundamental. However, the Routhian is used extensively in engineering in order to derive
the equations of motion for rotating systems. In addition it is used when dealing with rotating nuclei in nuclear physics, rotating
molecules in molecular physics, and rotating galaxies in astrophysics. The Routhian reduction technique provides a powerful way
to calculate the intrinsic properties for a rotating system in the rotating frame of reference. The Routhian approach is included in
this textbook because it plays an important role in practical applications of rotating systems, plus it nicely illustrates the relative
advantages of the Lagrangian and Hamiltonian formulations in mechanics.

R  - Routhian is a Hamiltonian for the cyclic variables

The cyclic Routhian  is defined assuming that the variables between  are non-cyclic, where , while the 
 variables between  are ignorable cyclic coordinates. The cyclic Routhian  expresses the cyclic coordinates
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in terms of  which are required for use by Hamilton’s equations, while the non-cyclic variables are expressed in terms of 
 for use by the Lagrange equations. That is, the cyclic Routhian  is defined to be

where the summation  is over only the  cyclic variables . Note that the Lagrangian can be split into the
cyclic and the non-cyclic parts

The first two terms on the right can be combined to give the Hamiltonian  for only the  cyclic variables, 
, that is

The Routhian  also can be written in an alternate form

which is expressed as the complete Hamiltonian minus the kinetic energy term for the noncyclic coordinates. The Routhian 
behaves like a Hamiltonian for the  cyclic coordinates and behaves like a negative Lagrangian for all the 
noncyclic coordinates  Thus the equations of motion for the  non-cyclic variables are given using Lagrange’s
equations of motion, while the Routhian behaves like a Hamiltonian  for the  ignorable cyclic variables 

Ignoring both the Lagrange multiplier and generalized forces, then the partitioned equations of motion for the non-cyclic and cyclic
generalized coordinates are given in Table .

Table : Equations of motion for the Routhian 

Lagrange equations Hamilton equations

Coordinates Noncyclic: Cyclic: 

Equations of motion

Thus there are  cyclic (ignorable) coordinates  which obey Hamilton’s equations of motion, while the the
first  non-cyclic (non-ignorable) coordinates  for  obey Lagrange equations. The
solution for the cyclic variables is trivial since they are constants of motion and thus the Routhian  has reduced the number
of equations of motion that must be solved from  to the  non-cyclic variables  This Routhian provides an especially
useful way to reduce the number of equations of motion for rotating systems.

Note that there are several definitions used to define the Routhian, for example some books define this Routhian as being the
negative of the definition used here so that it corresponds to a positive Lagrangian. However, this sign usually cancels when
deriving the equations of motion, thus the sign convention is unimportant if a consistent sign convention is used.

R  - Routhian is a Hamiltonian for the non-cyclic variables

The non-cyclic Routhian  complements . Again the generalized coordinates between  are assumed to be
non-cyclic, while those between  are ignorable cyclic coordinates. However, the expression in terms of  and 
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 are interchanged, that is, the cyclic variables are expressed in terms of  and the non-cyclic variables are expressed in
terms of  which is opposite of what was used for .

It can be written in a frequently used form

This Routhian behaves like a Hamiltonian for the  non-cyclic variables which are expressed in terms of  and  appropriate for a
Hamiltonian. This Routhian writes the  cyclic coordinates in terms of , and  appropriate for a Lagrangian, which are treated
assuming the Routhian  is a negative Lagrangian for these cyclic variables as summarized in table .

Table : Equations of motion for the Routhian 

Hamilton equations Lagrange equations

Coordinates Noncyclic: Cyclic: 

Equations of motion

This non-cyclic Routhian  is especially useful since it equals the Hamiltonian for the non-cyclic variables, that is, the
kinetic energy for motion of the cyclic variables has been removed. Note that since the cyclic variables are constants of motion,
then  is a constant of motion if  is a constant of motion. However,  does not equal the total energy since the
coordinate transformation is time dependent, that is,  corresponds to the energy of the non-cyclic parts of the motion. For
example, when used to describe rotational motion,  corresponds to the energy in the non-inertial rotating body-fixed
frame of reference. This is especially useful in treating rotating systems such as rotating galaxies, rotating machinery, molecules, or
rotating strongly-deformed nuclei as discussed in chapter 

The Lagrangian and Hamiltonian are the fundamental algebraic approaches to classical mechanics. The Routhian reduction method
is a valuable hybrid technique that exploits a trick to reduce the number of variables that have to be solved for complicated
problems encountered in science and engineering. The Routhian  provides the most useful approach for solving the
equations of motion for rotating molecules, deformed nuclei, or astrophysical objects in that it gives the Hamiltonian in the non-
inertial body-fixed rotating frame of reference ignoring the rotational energy of the frame. By contrast, the cyclic Routhian 
is especially useful to exploit Lagrangian mechanics for solving problems in rigid-body rotation such as the Tippe Top described in
example .

Note that the Lagrangian, Hamiltonian, plus both the  and  Routhian’s, all are scalars under rotation, that is, they
are rotationally invariant. However, they may be expressed in terms of the coordinates in either the stationary or a rotating frame.
The major difference is that the Routhian includes only subsets of the kinetic energy term . The relative merits of using
Lagrangian, Hamiltonian, and both the  and  Routhian reduction methods, are illustrated by the following
examples.
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Figure : Spherical pendulum

The spherical pendulum provides a simple test case for comparison of the use of Lagrangian mechanics, Hamiltonian
mechanics, and both approaches to Routhian reduction. The Lagrangian mechanics solution of the spherical pendulum is
described in example . The solution using Hamiltonian mechanics is given in this example followed by solutions using
both of the Routhian reduction approaches.

Consider the equations of motion of a spherical pendulum of mass  and length . The generalized coordinates are  since
the length is fixed at  The kinetic energy is

The potential energy  giving that

The generalized momenta are

Since the system is conservative, and the transformation from rectangular to spherical coordinates does not depend explicitly
on time, then the Hamiltonian is conserved and equals the total energy. The generalized momenta allow the Hamiltonian to be
written as

The equations of motion are

Take the time derivative of Equation  and use  to substitute for  gives that

Example : Spherical pendulum using Hamiltonian mechanics8.6.1
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Note that Equation  shows that  is a cyclic coordinate. Thus

that is the angular momentum about the vertical axis is conserved. Note that although  is a constant of motion, 
is a function of  and thus in general it is not conserved. There are various solutions depending on the initial conditions. If 

 then the pendulum is just the simple pendulum discussed previously that can oscillate, or rotate in the  direction. The
opposite extreme is where  where the pendulum rotates in the  direction with constant . In general the motion is a
complicated coupling of the  and  motions.

The Lagrangian for the spherical pendulum is

Note that the Lagrangian is independent of , therefore  is an ignorable variable with

Therefore  is a constant of motion equal to

The Routhian  equals

The Routhian  behaves like a Hamiltonian for  and like a Lagrangian  for . Use of
Hamilton’s canonical equations for  give

These two equations show that  is a constant of motion given by

Note that the Hamiltonian only includes the kinetic energy for the  motion which is a constant of motion, but this energy does
not equal the total energy. This solution is what is predicted by Noether’s theorem due to the symmetry of the Lagrangian
about the vertical  axis.

Since  behaves like a Lagrangian for  then the Lagrange equation for  is

where the negative sign of the Lagrangian in  cancels. This leads to
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=

=

−Lpϕϕ̇

−[ m + m θ +mgb cosθ−m θ ]
1

2
b2 θ̇

2 1

2
b2 sin2 ϕ̇

2
b2 sin2 ϕ̇

2

− m + +mgb cosθ
1

2
b2 θ̇

2 1

2

p2
ϕ

m θb2 sin2
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that is

This result is identical to the one obtained using Lagrangian mechanics in example  and Hamiltonian mechanics given in
example . The Routhian  simplified the problem to one degree of freedom  by absorbing into the Hamiltonian the
ignorable cyclic  coordinate and its conserved conjugate momentum . Note that the central term in Equation  is the
centrifugal term which is due to rotation about the vertical axis. This term is zero for plane pendulum motion when .

For a rotational system the Routhian  also can be used to project out the Hamiltonian for the active
variables in the rotating body-fixed frame of reference. Consider the spherical pendulum where the rotating frame is rotating
with angular velocity . The Lagrangian for the spherical pendulum is

Note that the Lagrangian is independent of , therefore  is an ignorable variable with

Therefore  is a constant of motion equal to

The total Hamiltonian is given by

The Routhian for the rotating frame of reference  is given by Equation , that is

This behaves like a negative Lagrangian for  and a Hamiltonian for . The conjugate momenta are

that is,  is a constant of motion.

Hamilton’s equations of motion give
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1

2
b2 θ̇

2 1

2
b2 sin2 ϕ̇

2

ϕ ϕ

= = − = 0ṗϕ
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Equation  gives that

Inserting this into Equation  gives

which is identical to the equation of motion  derived using . The Hamiltonian in the rotating frame is a constant of
motion given by , but it does not include the total energy.

Note that these examples show that both forms of the Routhian, as well as the complete Lagrangian formalism, shown in
example , and complete Hamiltonian formalism, shown in example , all give the same equations of motion. This
illustrates that the Lagrangian, Hamiltonian, and Routhian mechanics all give the same equations of motion and this applies
both in the static inertial frame as well as a rotating frame since the Lagrangian, Hamiltonian and Routhian all are scalars under
rotation, that is, they are rotationally invariant.

The Lagrangian for a single particle of mass  moving in a vertical plane and subject to a central inverse square central force,
is specified by two generalized coordinates,  and 

The ignorable coordinate is  since it is cyclic. Let the constant conjugate momentum be denoted by . Then

the corresponding cyclic Routhian is

This Routhian is the equivalent one-dimensional potential  minus the kinetic energy of radial motion.

Applying Hamilton’s equation to the cyclic coordinate  gives

implying a solution

where the angular momentum  is a constant.

The Lagrange-Euler equation can be applied to the non-cyclic coordinate 

where the negative sign of  cancels. This leads to the radial solution

where  which is a constant of motion in the centrifugal term. Thus the problem has been reduced to a one-dimensional
problem in radius  that is in a rotating frame of reference.
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Example : Single particle moving in a vertical plane under the influence of an inverse-square central force8.6.4
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∂ṙ

∂Rcyclic

∂r

Rcyclic

m − + = 0r̈
p2
θ

mr3

k

r2

= lpθ
r

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9612?pdf


8.6.8 https://phys.libretexts.org/@go/page/9612

This page titled 8.6: Routhian Reduction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9612?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/08%3A_Hamiltonian_Mechanics/8.06%3A_Routhian_Reduction
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/

