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16.4: The Hamiltonian density formulation for continuous systems
Chapter  illustrated, in general terms, how field theory can be expressed in a Lagrangian formulation via use of the Lagrange
density. It is equally possible to obtain a Hamiltonian formulation for continuous systems analogous to that obtained for discrete
systems. As summarized in chapter , the Hamiltonian and Hamilton’s canonical equations of motion are related directly to the
Lagrangian by use of a Legendre transformation. The Hamiltonian is defined as being

The generalized momentum is defined to be

Equation  allows the Hamiltonian  to be written in terms of the conjugate momenta as

where the Lagrangian has been partitioned into the terms for each of the individual coordinates, that is, 
.

In the limit that the coordinates  are continuous, then the summation in Equation  can be transformed into a volume
integral over the Lagrangian density . In addition, a momentum density can be represented by the vector field  where

Then the obvious definition of the Hamiltonian density  is

where the Hamiltonian density is defined to be

Unfortunately the Hamiltonian density formulation does not treat space and time symmetrically making it more difficult to develop
relativistically covariant descriptions of fields. Hamilton’s principle can be used to derive the Hamilton equations of motion in
terms of the Hamiltonian density analogous to the approach used to derive the Lagrangian density equations of motion. As
described in Classical Mechanics  edition by Goldstein, the resultant Hamilton equations of motion for one dimension are

Note that Equation  differs from that for discontinuous systems.
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