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19.9: Appendix - Vector Integral Calculus

Field equations, such as for electromagnetic and gravitational fields, require both line integrals, and surface integrals, of vector
fields to evaluate potential, flux and circulation. These require use of the gradient, the Divergence Theorem and Stokes Theorem
which are discussed in the following sections.

Line integral of the gradient of a scalar field

The change AV in a scalar field for an infinitessimal step dl along a path can be written as
AV =(VV)-dl (19.9.1)

since the gradient of V, that is, V'V, is the rate of change of V with dl. Discussions of gravitational and electrostatic potential
show that the line integral between points a and b is given in terms of the del operator by

Vi V. _/b(vv).dl (19.9.2)

This relates the difference in values of a scalar field at two points to the line integral of the dot product of the gradient with the
element of the line integral.

Divergence Theorem

Flux of a vector field for Gaussian surface

cut

Figure 19.9.1: A volume V enclosed by a closed surface S is cut into two pieces at the surface Sy,. This gives V; enclosed by S;
and V; enclosed by Ss.

Consider the flux ® of a vector field F for a closed surface, usually called a Gaussian surface, S shown in Figure 19.9.1
®— 7{ F.dS (19.9.3)
S

If the enclosed volume is cut in to two pieces enclosed by surfaces S; =S, + Sa and Sz =Sy + Sgp - The flux through the
surface S, common to both S; and Sy are equal and in the same direction. Then the net flux through the sum of S; and S is
given by

]{F.ds+]f F-dS:fF.ds (19.9.4)
Sl Sz S

since the contributions of the common surface Sy, cancel in that the flux out of S; is equal and opposite to the flux into S5 over the
surface S,p. That is, independent of how many times the volume enclosed by S is subdivided, the net flux for the sum of all the
Gaussian surfaces enclosing these subdivisions of the volume, still equals §S F.ds.

Consider that the volume enclosed by S is subdivided into /N subdivisions where N — oo, then even though fs F-dS—0 as
N — o0, the sum over surfaces of all the infinitessimal volumes remains unchanged

N—oo
@:?{F-dszZ?{F-ds (19.9.5)
S '3 i
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Thus we can take the limit of a sum of an infinite number of infinitessimal volumes as is needed to obtain a differential form. The
surface integral for each infinitessimal volume will equal zero which is not useful, that is fsv F-dS —0 as N — oco. However,

the flux per unit volume has a finite value as N — oco. This ratio is called the divergence of the vector field;

fs- F-dS
divF = Limap g ———— 19.9.6
iv M A0 Ar ( )
where A7; is the infinitessimal volume enclosed by surface S;. The divergence of the vector field is a scalar quantity.
Thus the sum of flux over all infinitessimal subdivisions of the volume enclosed by a closed surface S equals
N—o0 fS F.dS N—oo
®=¢ F-dS = = Ar = divF AT; 19.9.7
A 100
In the limit N — oo, A71; — 0, this becomes the integral;
¢ = % F.dS = divFdr (19.9.8)
S Enclosed volume

This is called the Divergence Theorem or Gauss’s Theorem. To avoid confusion with Gauss’s law in electrostatics, it will be
referred to as the Divergence theorem.

Divergence in Cartesian Coordinates

X,¥.Z e Ay
f

X

Figure 19.9.2: Computation of flux out of an infinitessimal rectangular box, Az, Ay, Az.

Consider the special case of an infinitessimal rectangular box, size Az, Ay, Az shown in Figure 19.9.2 Consider the net flux for
the z component F, entering the surface Az Ay at location (z, y, 2).

n Az OF, Ay OF,
APY = <FZ—|— 5 on + 5 oy ) AzAy (19.9.9)
The net flux of the z component out of the surface at z+ Az is
OF, Ax OF, Ay 0F,
AP = F,+A =2 ) AzA 19.9.1
? (Z+ z3z+2 8x+2 By)wy (19.9.10)

Thus the net flux out of the box due to the z component of F is
out n 6FZ
AP, = AP — ADY = EAmAyAz (19.9.11)

Adding the similar z and y components for AP gives

oF, OF, OF,
A‘I’—(%w—y* 5

) Az AyAz (19.9.12)

This gives that the divergence of the vector field F is
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§5¥-dS  /pp, OF, OF
divF = Lima,, l = : ? = 19.9.13
v AT AT; ( ox + Oy + 0z ( )
since AT = Az AyAz. But the right hand side of the equation equals the scalar product V - F', that s,
divF =V -F (19.9.14)

The divergence is a scalar quantity. The physical meaning of the divergence is that it gives the net flux per unit volume flowing out
of an infinitessimal volume. A positive divergence corresponds to a net outflow of flux from the infinitessimal volume at any
location while a negative divergence implies a net inflow of flux to this infinitessimal volume.

It was shown that for an infinitessimal rectangular box

0F, OF, 0F,
A= ( Oz +8_y+ 0z

) AzAyAz=V -FAr (19.9.15)

Integrating over the finite volume enclosed by the surface S gives

o :?{F.ds _ / V.Fdr (19.9.16)
S

Enclosed
volume

This is another way of expressing the Divergence theorem

@ :]{F~dS = / divFdr (19.9.17)
S

Enclosed
volume

The divergence theorem, developed by Gauss, is of considerable importance, it relates the surface integral of a vector field, that is,
the outgoing flux, to a volume integral of V - F' over the enclosed volume.

Example 19.9.1: Maxwell's Flux Equations

As an example of the usefulness of this relation, consider the Gauss’s law for the flux in Maxwell’s equations.
Gauss’ Law for the electric field

1
by = E.-dS=— pdt
Closed surface €0 Jenclosed volume

But the divergence relation gives that

@EZ?{E-dsz V -Edr
S Enclosed volume

Combining these gives
1

f E-dS= V. .Edr=— pdt
Closed surface Enclosed volume €0 Jenclosed volume

This is true independent of the shape of the surface or enclosed volume, leading to the differential form of Maxwell’s first law,
that is Gauss’s law for the electric field.

v.E=L
€0

The differential form of Gauss’s law relates V - E to the charge density p at that same location. This is much easier to evaluate
than a surface and volume integral required using the integral form of Gauss’s law.

Gauss’s law for magnetism

dp = ?{ B-dS=0
Closed surface

19.9.3 https://phys.libretexts.org/@go/page/32464



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/32464?pdf

LibreTextsw

Using the divergence theorem gives that

@B:f{ B-dS:/ V- -Bdr=0
Closed surface Enclosed volume

This is true independent of the shape of the Gaussian surface leading to the differential form of Gauss’s law for B
V-B=0

That is, the local value of the divergence of B is zero everywhere.

Example 19.9.2: Buoyancy forces in fluids

Buoyancy in fluids provides an example of the use of flux in physics. Consider a fluid of density p(z) in a gravitational field
g(2) = —g(2)2 where the z axis points in the opposite direction to the gravitational force. Pressure equals force per unit area
and is a scalar quantity. For a conservative fluid system, in static equilibrium, the net work done per unit area for an
infinitessimal displacement dr is zero. The net pressure force per unit area is the difference P(r+dr) — P(r) =V P-dr
while the net change in gravitational potential energy is p(z)g(z) - dr . Thus energy conservation gives

[VP +p(2)g(z)] - dr =0

which can be expanded as

& 2ele) (4)
P dP
Ty

Integrating the net forces normal to the surface over any closed surface enclosing an empty volume, inside the fluid, gives a net
buoyancy force on this volume that simplifies using the Divergence theorem

f{F-dS:deé-dS:?{PdS:/ (d_P+£+d_P>dT
Enclosed vol dz dy dz

Using equations A leads to the net buoyancy force

dP
?{F -dS = / —dr = —/ p(2)g(z)dr
Enclosed vol dz Enclosed vol

The right hand side of this equation equals minus the weight of the displaced fluid. That is, the buoyancy force equals the
weight of the fluid displaced by the empty volume. Note that this proof applies both to compressible fluids, where the density
depends on pressure, as well as to incompressible fluids where the density is constant. It also applies to situations where local
gravity g is position dependent. If an object of mass M is completely submerged then the net force on the object is
Mg — [ osedvor P(2)9(2)dT . If the object floats on the surface of a fluid then the buoyancy force must be calculated
separately for the volume under the fluid surface and the upper volume above the fluid surface. The buoyancy due to displaced
air usually is negligible since the density of air is about 10~ times that of fluids such as water.

Stokes Theorem

The curl

Maxwell’s laws relate the circulation of the field around a closed loop to the rate of change of flux through the surface bounded by
the closed loop. It is possible to write these integral equations in a differential form as follows.

Consider the line integral around a closed loop C' shown in Figure 19.9.3

If this area is subdivided into two areas enclosed by loops C and C5, then the sum of the line integrals is the same

](F-cu:]{ F-d1+?f F-dl (19.9.18)
C C1 C2
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because the contributions along the common boundary cancel since they are taken in opposite directions if C; and Cs both are
taken in the same direction. Note that the line integral, and corresponding enclosed area,

are vector quantities related by the right-hand rule and this must be taken into account when subdividing the area. Thus the area can
be subdivided into an infinite number of pieces for which

Fa=S 4 F.a Nﬁm—faF'dlAs
dl— Cdl— : 6 19.9.19
f; 2 7{ : 2 a5 a ASR (19:9:19)

i
where AS; is the infinitessimal area bounded by the closed sub-loop C; and AS; - 1 is the normal component of this area pointing
along the 1 direction which is the direction along which the line integral points.

Figure 19.9.3: The circulation around a path is equal to the sum of the circulations around subareas made by subdividing the area.

The component of the curl of the vector function along the direction 1 is defined to be

R Nowo § F-dl
(curlF)-n = Limag o _ (19.9.20)
Thus the line integral can be written as
C; ~
F.dl= ———AS; - 19.9.21
?{C Z AS;-n o ( )

_ / [(curlF) - 7]dS; -

The product n-n = 1, that is, this is true independent of the direction of the infinitessimal loop. Thus the above relation leads to
Stokes Theorem

]f F~dl:/ (curlF)- dS (19.9.22)
C Area bounded by C

This relates the line integral to a surface integral over a surface bounded by the loop.

Curl in cartesian coordinates

Consider the infinitessimal rectangle Az Ay pointing in the k direction shown in Figure 19.9.4
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Figure 19.9.4: Circulation around an infinitessimal rectangle Az Ay in the z direction.

The line integral, taken in a right-handed way around k gives

OF, OF, OF, §F,
F.-dl=F,A F,+—Az | — | F, “Ay | —F,Ay=|——-—2) AzA 19.9.23
%c x$+<y+3w $> (”By y) yy<3$ By)wy ( )
Thus since Az Ay = AS, the z component of the curl is given by
~ $F-dl /oF, oF
curlF) k= ——— = 2 - —= 19.9.24
( ) AS;-n ( Oz Oy ) ( )
The same argument for the component of the curl in the y direction is given by
s OF, OF,
lF)-j= — 19.9.2
(curlF)-j <3z (9m> (19.9.25)
Similarly the same argument for the component of the curl in the x direction is given by
2 OF, OF,
(curlF)-i= (—Z——y> (19.9.26)
Oy 0z
Thus combining the three components of the curl gives
OF, OF,\ . oF, OF,\ ; 0F, OF,\ ~
IF = —— )i - j —_— k 19.9.27
eur (ay Bz>1+(8z 5x)']+(8w 3y ( )
Note that cross-product of the del operator with the vector F is
i j k
| 2 2o
V xF =| % o (19.9.28)
F, F, F,
which is identical to the right hand side of the relation for the curl in cartesian coordinates. That is;
%
V xF =curlF (19.9.29)

Therefore Stokes Theorem can be rewritten as

]{ F-dl:/ (curlF)-dS :/ (V x F)-dS (19.9.30)
C Area bounded by C Area bounded by C

The physics meaning of the curl is that it is the circulation, or rotation, for an infinitessimal loop at any location. The word curl is
German for rotation.
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Example 19.9.3: Maxwell's circulation equations

As an example of the use of the curl, consider Faraday’s Law

/ E.-dl=- / oB] -0S
Closed loop C surface bounded by C ot

Using Stokes Theorem gives

fEmz/ (V xE)-dS
C Surface bounded by C

These two relations are independent of the shape of the closed loop, thus we obtain Faraday’s Law in the differential form

B
ot

A differential form of the Ampére-Maxwell law also can be obtained from

(VXE)=—

OE
/ Bdi—p [ (+e0s). ds
Closed loop C Bounded by C ot

Using Stokes Theorem

(%Rﬂ:/ (V x B)-dS
C Surface bounded by C

Again this is independent of the shape of the loop and thus we obtain Ampére-Maxwell law in differential form

. OE
V xB = poj +Hogo 5

The differential forms of Maxwell’s circulation relations are easier to apply than the integral equations because the differential
form relates the curl to the time derivatives at the same specific location.

Potential formulations of curl-free and divergence-free fields

Interesting consequences result from the Divergence theorem and Stokes Theorem for vector fields that are either curl-free or
divergence-free. In particular two theorems result from the second derivatives of a vector field.

Theorem 1 - Curl-free (irrotational) fields:

For curl-free fields

VxF=0 (19.9.31)
everywhere. This is automatically obeyed if the vector field is expressed as the gradient of a scalar field
F=V¢ (19.9.32)
since
V x(Vg)=0 (19.9.33)

That is, any curl-free vector field can be expressed in terms of the gradient of a scalar field.

The scalar field ¢ is not unique, that is, any constant c can be added to ¢ since Va = 0, that is, the addition of the constant
does not change the gradient. This independence to addition of a number to the scalar potential is called a gauge invariance
discussed in chapter 13.2, for which

F=V¢=V(p+a)=V¢ (19.9.34)

That is, this gauge-invariant transformation does not change the observable F'. The electrostatic field E and the gravitation field g
are examples of irrotational fields that can be expressed as the gradient of scalar potentials.
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Theorem 2 - Divergence-free (solenoidal) fields:
For divergence-free fields
V-F=0 (19.9.35)
everywhere. This is automatically obeyed if the field F' is expressed in terms of the curl of a vector field G such that
F=VxG (19.9.36)
since V -V x G =0 . That is, any divergence-free vector field can be written as the curl of a related vector field.

As discussed in chapter 13.2, the vector potential G is not unique in that a gauge transformation can be made by adding the
gradient of any scalar field, that is, the gauge transformation G’ = G + V¢ gives

F=VxG =Vx(G+Vep)=VxG. (19.9.37)

This gauge invariance for transformation to the vector potential G’ does not change the observable vector field F. The magnetic
field B is an example of a solenoidal field that can be expressed in terms of the curl of a vector potential A.

Example 19.9.4: Electromagnetic fields

Electromagnetic interactions are encountered frequently in classical mechanics so it is useful to discuss the use of potential
formulations of electrodynamics.

For electrostatics, Maxwell’s equations give that

VxE=0
Therefore theorem 1 states that it is possible to express this static electric field as the gradient of the scalar electric potential V,
where
E=-VV
For electrodynamics, Maxwell’s equations give that
0B
VXE)+—=0
(V B+
Assume that the magnetic field can be expressed in the terms of the vector potential B =V x A , then the above equation
becomes
0A
VxE+——)=0
®+5)
Theorem 1 gives that this curl-less field can be expressed as the gradient of a scalar field, here taken to be the electric potential
V.
0A
E+—)==-VV
®+2)
that is
0A
E=—(VV+4—
(VV+25)
Gauss’ law states that
vE=L
€0
which can be rewritten as
oV -A) »
V-E=-VYy-————-L X
T o (X)

Similarly insertion of the vector potential A in Ampére’s Law gives

@ 0 a @ 19.9.8 https://phys.libretexts.org/@go/page/32464



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/32464?pdf

LibreTextsm

. OE . ov 0’A
VxB:Vx(VxA):,uOJ—i-,ugsoE=,u0_]—,u060V (—)—,U(]So( )

ot ot?
Using the vector identity V x (V x A) =V (V- A)— V2?4 allows the above equation to be rewritten as
0’A ov c
(VzA—lJo&o ( gy )) -V (V'A+N080 (E)) = —pod (Y)

The use of the scalar potential V' and vector potential A leads to two coupled equations X and Y. These coupled equations can
be transformed into two uncoupled equations by exploiting the freedom to make a gauge transformation for the vector potential
such that the middle brackets in both equations X and Y are zero. That is, choosing the Lorentz gauge

ov
VA =—ppep (W)

simplifies equations X and Y to be

2
VZV—;L[)&(]B—V = —ﬁ

ot? €0
%A )
V2A—M0€o ( o2 > = —HoJ

The virtue of using the Lorentz gauge, rather than the Coulomb gauge V - A =0, is that it separates the equations for the

scalar and vector potentials. Moreover, these two equations are the wave equations for these two potential fields corresponding

to a velocity ¢ = \/;% . This example illustrates the power of using the concept of potentials in describing vector fields.

This page titled 19.9: Appendix - Vector Integral Calculus is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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