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16.5: Linear Elastic Solids

Elasticity is a property of matter where the atomic forces in matter act to restore the shape of a solid when distorted due to the
application of external forces. A perfectly elastic material returns to its original shape if the external force producing the
deformation is removed. Materials are elastic when the external forces do not exceed the elastic limit. Above the elastic limit,
solids can exhibit plastic flow and concomitant heat dissipation. Such non-elastic behavior in solids occurs when they are subject to
strong external forces.

The discussion of linear systems, in chapters 3 and 14, focussed on one dimensional systems, such as the linear chain, where the
transverse rigidity of the chain was ignored. An extension of the one-dimensional linear chain to two-dimensional membranes, such
as a drum skin, is straightforward if the membrane is thin enough so that the rigidity of the membrane can be ignored. Elasticity for
three-dimensional solids requires accounting for the strong elastic forces exerted against any change in shape in addition to elastic
forces opposing change in volume. The stiffness of solids to changes in shape, or volume, is best represented using the concepts of
stress and strain.

Forces in matter can be divided into two classes;

1. body forces, such as gravity, which act on each volume element, and
2. surface forces which are the forces that act on both sides of any infinitessimal surface element inside the solid.

Surface forces can have components along the normal to the infinitessimal surface, as well as shear components in the plane of the
surface element. Typically solids are elastic to both normal and shear components of the surface forces whereas shear forces in
liquids and gases lead to fluid flow plus viscous forces due to energy dissipation. As described below, the forces acting on an
infinitessimal surface element are best expressed in terms of the stress tensor, while the relative distortion of the shape, or volume,
of the body are best expressed in terms of the strain tensor. The moduli of elasticity relate the ratio of the corresponding stress and
strain tensors. The moduli of elasticity are constant in linear elastic solids and thus the stress is proportional to the strain providing
that the strains do not exceed the elastic limit.

Stress tensor

Consider an infinitessimal surface area dA of an arbitrary closed volume element dV inside the medium. The surface area element
is defined as a vector dA = ndA where 1 is the outward normal to the closed surface that encloses the volume element. Assume
that dF is the force element exerted by the outside on the material inside the volume element. The stress tensor T is defined as the
ratio of dF and dA where the force vector dF is given by the inner product of the stress tensor T and the surface element vector
dA. That s,

dF =T-dA (16.5.1)

Since both dF' and dA are vectors, then Equation 16.5.1 implies that the stress tensor must be a second-rank tensor as described in
appendix 19.5, that is, the stress tensor is analogous to the rotation matrix or the inertia tensor. Note that if dF and idA are
colinear, then the stress tensor T reduces to the conventional pressure P. The general stress tensor equals the momentum flux
density and has the dimensions of pressure.

Strain tensor

Forces applied to a solid body can lead to translational, or rotational acceleration, in addition to changing the shape or volume of
the body. Elastic forces do not act when an overall displacement £ of an infinitessimal volume occurs, such as is involved in
translational or rotational motion. Elastic forces act to oppose position-dependent differences in the displacement vector &, that is,
the strain depends on the tensor product V ® £ . For an elastic medium, the strain depends only on the applied stress and not on the
prior loading history.

Consider that the matter at the location r is subject to an elastic displacement £, and similarly at a displaced location
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r'=r+), a—j dz; where x; are cartesian coordinates. The net relative displacement between r and r’ is given by
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Thus the strain tensor o is a rank-2 tensor defined as the ratio of the strain vector £ and the infinitessimal area vector dA..
d¢ =0o-dA (16.5.6)
where the component form of the rank -2 strain tensor is

de o dg d

1 dzy dxa d_w&
_lla,  d,  ag
-l & £ (16.5.7)

d&  dg  dg
dzx dxo dzs

The potential-energy density for linear elastic forces is quadratic in the strain components. That is, it is of the form

1
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where Cj;p; is a rank-4 tensor. No preferential directions remain for a homogeneous isotropic elastic body which allows for two
contractions, thereby reducing the potential energy density to the inner product

1
U:;EDik(aikV (16.5.9)

Moduli of elasticity

The modulus of elasticity of a body is defined to be the slope of the stress-strain curve and thus, in principle, it is a complicated
rank-4 tensor that characterizes the elastic properties of a material. Thus the general theory of elasticity is complicated because the
elastic properties depend on the orientation of the microscopic composition of the elastic matter. The theory simplifies considerably
for homogeneous, isotropic linear materials below the elastic limit, where the strain is proportional to the applied stress. That is, the
modulus of elasticity then reduces by contractions to a constant scalar value that depends on the properties of the matter involved.

The potential energy density for homogeneous, isotropic, linear material, Equation 16.5.9, can be separated into diagonal and off-
diagonal components of the strain tensor. That is,

U:% AZ(Uﬁ)Mzu;(aik)z (16.5.10)

The diagonal first term is the dilation term which corresponds to changes in the volume with no changes in shape. The off-diagonal
second term involves the shear terms that correspond to changes of the shape of the body that also changes the volume. The
constants A and p are Lamé’s moduli of elasticity which are positive. The various moduli of elasticity, corresponding to different
distortions in the shape and volume of any solid body, can be derived from L.amé’s moduli for the material.

The components of the elastic forces can be derived from the gradient of the elastic potential energy, Equation 16.5.10by use of
Gauss’ law plus vector differential calculus. The components of the elastic force, derived from the strain tensor o, can be
associated with the corresponding components of the stress tensor T. Thus, for homogeneous isotropic linear materials, the
components of the stress tensor are related to the strain tensor by the relation
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where it has been assumed that o;; = o; . The two moduli of elasticity A and p are material-dependent constants. Equation 16.5.11
can be written in tensor notation as

T = Mtr(o)l+2uc (16.5.12)
where tr(c) is the trace of the strain tensor and [ is the identity matrix.
Equation 16.5.12can be inverted to give the strain tensor components in terms of the stress tensor components.
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The various moduli of elasticity relate combinations of different stress and strain tensor components. The following five elastic
moduli are used frequently to describe elasticity in homogeneous isotropic media, and all are related to Lamé’s two moduli of
elasticity.

1) Young’s modulus E describes tensile elasticity which is axial stiffness of the length of a body to deformation along the axis of
the applied tensile force.

T p(3A+2p)
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2) Bulk modulus B = % defines the relative dilation or compression of a bodies volume to pressure applied uniformly in all
directions.
2
B:’\+§'“ (16.5.15)

The bulk modulus is an extension of Young’s modulus to three dimensions and typically is larger than E. The inverse of the bulk
modulus is called the compressibility of the material.

3) Shear modulus G describes the shear stiffness of a body to volume-preserving shear deformations. The shear strain o becomes a
deformation angle given by the ratio of the displacement along the axis of the shear force and the perpendicular moment arm. The
shear modulus G equals Lamé’s constant . That is,

G=p (16.5.16)

4) Poisson’s ratio v is the negative ratio of the transverse to axial strain. It is a measure of the volume conserving tendency of a
body to contract in the directions perpendicular to the axis along which it is stretched. In terms of Lamé’s constants, Poisson’s ratio
equals

A
V= ——
2(A+p)
Note that for a stable, isotropic elastic material, Poisson’s ratio is bounded between —1.0 < v < 0.5 to ensure that the B, p and A

moduli have positive values. At the incompressible limit, » = 0.5, and the bulk modulus and L.ame parameter A are infinite, that is,
the compressibility is zero. Typical solids have Poisson’s ratios of v =~ 0.05 if hard and v = 0.25 if soft.

(16.5.17)

The stiffness of elastic solids in terms of the elastic moduli of solids can be complicated due to the geometry and composition of
solid bodies. Often it is more convenient to express the stiffness in terms of the spring constant x where
_dr
 dz

The spring constant is inversely proportional to the length of the spring because the strain of the material is defined to be the
fractional deformation, not the absolute deformation.

K (16.5.18)
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16.5.4 Equations of motion in a uniform elastic media

The divergence theorem (H.8) relates the volume integral of the divergence of T to the vector force density F acting on the closed
surface.

F:f{T-dAz/V-TdT:/de (16.5.19)

That is, the inner product of the del operator, V, and the rank-2 stress tensor T, give the vector force density f. This force acting

2
on the enclosed mass f pdr, for the closed volume, leads to an acceleration Zt—f. Thus

02
F=¢T dA= [V Tdr=¢p_zdr (16.5.20)

Use Equation 16.5.12to relate the stress tensor T to the moduli of elasticity gives
pazgi - Z 0%¢; 9%¢i
ot r
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where ¢ = 1,2, 3. In general this equation is difficult to solve. However, for the simple case of a plane wave in the ¢ = 1 direction,
the problem reduces to the following three equations

(A +p) (16.5.21)
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Equation 16.5.22 corresponds to a longitudinal wave travelling with velocity v= 1/—:)‘;2”j . Equations 16.5.23 16.5.24
correspond to two perpendicular transverse waves travelling with velocity v= \/g . This illustrates the important fact that

longitudinal waves travel faster than transverse waves in an elastic solid. Seismic waves in the Earth, generated by earthquakes,
exhibit this property. Note that shearing stresses do not exist in ideal liquids and gases since they cannot maintain shear forces and
thus p=0.

This page titled 16.5: Linear Elastic Solids is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
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