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6.7: Applications to unconstrained systems
Although most dynamical systems involve constrained motion, it is useful to consider examples of systems subject to conservative
forces with no constraints . For no constraints, the Lagrange-Euler equations  simplify to  where  and
the transformation to generalized coordinates is of no consequence.

The Lagrangian in cartesian coordinates is  Then

Insert these in the Lagrange equation gives

Thus

That is, this shows that the linear momentum is conserved if  is a constant, that is, no forces apply. Note that momentum
conservation has been derived without any direct reference to forces.

Figure : Motion in a gravitational field

Consider the motion is in the  plane. The kinetic energy  while the potential energy is 

where  Thus

Using the Lagrange equation for the  coordinate gives

(6.6.1) L = 0Λj j= 1, 2, . .n,

Example : Motion of a free particle, 6.7.1 U = 0
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= = = 0
∂L

∂y

∂L

∂z

LΛx = −
d

dt

∂L

∂ẋ
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Example : Motion in a uniform gravitational field6.7.2
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Thus the horizontal momentum  is conserved and  The  coordinate gives

Thus the Lagrangian produces the same results as derived using Newton’s Laws of Motion.

The importance of selecting the most convenient generalized coordinates is nicely illustrated by trying to solve this problem
using polar coordinates  where  is radial distance and  the elevation angle from the  axis as shown in the adjacent
figure. Then

Thus

 for the  coordinate

 for the  coordinate

These equations written in polar coordinates are more complicated than the result expressed in Cartesian coordinates. This is
because the potential energy depends directly on the  coordinate, whereas it is a function of both  This illustrates the
freedom for using different generalized coordinates, plus the importance of choosing a sensible set of generalized coordinates.

Consider a mass  moving under the influence of a spherically-symmetric, conservative, attractive, inverse-square force. The
potential then is

It is natural to express the Lagrangian in spherical coordinates for this system. That is,

 for the  coordinate gives
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Example : Central forces6.7.3
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where the  term comes from the centripetal acceleration.

 for the  coordinate gives

This implies that the derivative of the angular momentum about the  axis,  and thus  is a constant
of motion.

 for the  coordinate gives

That is,

Note that  is a constant of motion if  and only the radial coordinate is influenced by the radial form of the central
potential.
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