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19.10: Appendix - Waveform analysis

Harmonic Waveform Decomposition

Any linear system that is subject to a time-dependent forcing function , can be expressed as a linear superposition of
frequency-dependent solutions of the individual harmonic decomposition  of the forcing function. Similarly, any linear system
subject to a spatially-dependent forcing function  can be expressed as a linear superposition of the wavenumber-dependent
solutions of the individual harmonic decomposition  of the forcing function. Fourier analysis provides the mathematical
procedure for the transformation between the periodic waveforms and the harmonic content, that is, , or 

. Fourier’s theorem states that any arbitrary forcing function  can be decomposed into a sum of harmonic
terms. For example for a time-dependent periodic forcing function the decomposition can be a cosine series of the form

where  is the lowest (fundamental) frequency solution. For an aperiodic function a cosine decomposition can be of the form

Either of the complementary functions , or  are equivalent representations of the harmonic content that
can be used to describe signals and waves. The following two sections give an introduction to Fourier analysis.

Periodic systems and the Fourier series

Discrete solutions occur for systems when periodic boundary conditions exist. The response of periodic systems can be described
in either the time versus angular frequency domains, or equivalently, the spatial coordinate  versus the corresponding wave
number . For periodic systems this decomposition leads to the Fourier series where a generalized phase coordinate  can be used
to represent either the time or spatial coordinates, that is, with  or  respectively. The Fourier series relates the two
representations of the discrete wave solutions for such periodic systems.

Fourier’s theorem states that for a general periodic system any arbitrary forcing function  can be decomposed into a sum of
sinusoidal or cosinusoidal terms. The summation can be represented by three equivalent series expansions given below, where 

 or , and where  are the fundamental angular frequency and fundamental wave number respectively.

where  is an integer, and  are phase shifts fit to the initial conditions.

The normal modes of a discrete system form a complete set of solutions that satisfy the following orthogonality relation

where  is the Kronecker delta symbol defined in equation . Orthogonality can be used to determine the coefficients for
equations  to be
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Similarly the coefficients for  and  are related to the above coefficients by

Instead of the simple trigonometric form used in equations (  − ) the cosine and sine functions can be expanded into
the exponential form where

then Equation  becomes

where  is any integer and, from the orthogonality, the Fourier coefficients are given by

These coefficients are related to the cosine plus sine series amplitudes by

These results show that the coefficients of the exponential series are in general complex, and that they occur in conjugate pairs (that
is, the imaginary part of a coefficient  is equal but opposite in sign to that for the coefficient ). Although the introduction of
complex coefficients may appear unusual, it should be remembered that the real part of a pair of coefficients denotes the magnitude
of the cosine wave of the relevant frequency, and that the imaginary part denotes the magnitude of the sine wave. If a particular pair
of coefficients  and  are real, then the component at the frequency  is simply a cosine; if  and  are purely
imaginary, the component is just a sine; and if, as is the general case,  and  are complex, both cosine and a sine terms are
present.

The use of the exponential form of the Fourier series gives rise to the notion of ‘negative frequency’. Of course, 
is a wave of a single frequency  radians/second, and may be represented by a single line of height  in a normal spectral
diagram. However, using the exponential form of the Fourier series results in both positive and negative  components.

The coexistence of both negative and positive angular frequencies  can be understood by consideration of the Argand diagram
where the real component is plotted along the -axis and the imaginary component along the -axis. The function 
represents a vector of length  that rotates with an angular velocity  in a positive direction, that is counterclockwise, whereas, 

 represents the vector rotating in a negative direction, that is clockwise. Thus the sum of the two rotating vectors, according
to equations , leads to cancellation of the opposite components on the imaginary  axis and addition of the two 
real components on the  axis. Subtraction leads to cancellation of the real  components and addition of the imaginary  axis
components.

Aperiodic systems and the Fourier Transform

The Fourier transform (also called the Fourier integral) does for the non-repetitive signal waveform what the Fourier series does for
the repetitive signal. It was shown that the line spectrum of a recurrent periodic pulse waveform is modified as the pulse duration
decreases, assuming the period of the waveform (and hence its fundamental component) remains unchanged. Suppose now that the
duration of the pulses remain fixed but the separation between them increases, giving rise to an increasing period. In the limit, only
a single rectangular pulse remains, its neighbors having moved away on either side towards . In this case, the fundamental
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frequency  tends towards zero and the harmonics become extremely closely spaced and of vanishingly small amplitudes, that is,
the system approximates a continuous spectrum.

Mathematically, this situation may be expressed by modifications to the exponential form of the Fourier series already derived. Let
the phase factor  in Equation  then

where  is the period of the periodic force. Let , , and take the limit for , then Equation  can
be written as

Similarly making the same limit for  then  and Equation  becomes

Equation  shows how a non-repetitive time-domain wave form is related to its continuous spectrum. These are known as
Fourier integrals or Fourier transforms. They are of central importance for signal processing. For convenience the transforms often
are written in the operator formalism using the  symbol in the form

It is very important to grasp the significance of these two equations. The first tells us that the Fourier transform of the waveform 
 is continuously distributed in the frequency range between , whereas the second shows how, in effect, the waveform

may be synthesized from an infinite set of exponential functions of the form , each weighted by the relevant value of . It
is crucial to realize that this transformation can go either way equally, that is, from  to  or vice versa.

Consider a single isolated square pulse of width  that is described by the rectangular function  defined as

That is, assume that the amplitude of the pulse is unity between . Then the Fourier transform

which is an unnormalized  function. Note that the width of the pulse  leads to a frequency envelope that has
the first zeros at . Thus the product of these widths  which is independent of the width of the pulse,
that is  which is an example of the uncertainty principle which is applicable to all forms of wave motion.

The Dirac delta function, , is a pulse of extremely short duration and unit area at  and is zero at all other times.
That is,
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The Dirac function, which is sometimes referred to as the impulse function, has many important applications to physics and
signal processing. For example, a shell shot from a gun is given a mechanical impulse imparting a certain momentum to the
shell in a very short time. Other things being equal, one is interested only in the impulse imparted to the shell, that is, the time
integral of the force accelerating the shell in the gun, rather than the details of the time dependence of the force. Since the force
acts for a very short time the Dirac delta function can be employed in such problems.

As described in section  and appendix J, the Dirac delta function is employed in signal processing when signals are
sampled for short time intervals. The Fourier transform of the delta function is needed for discussion of sampling of signals

Since  essentially is constant over the infinitesimal time duration of the  function, and the time integral of the 
function is unity, thus the term  has unit magnitude for any value of  and has a phase shift of  radians. For 

 the phase shift is zero and thus the Fourier transform of a Dirac  function is . That is, this is a uniform
white spectrum for all values of .

Time-sampled waveform analysis
An alternative approach for unloosing periodic signals, that is complementary to the Fourier analysis harmonic decomposition, is
time-sampled (discrete-sample) waveform analysis where the signal amplitude is measured repetitively at regular time intervals in a
time-ordered sequence, that is, a sequence of samples of the instantaneous delta-function amplitudes is recorded. Typically an
amplitude-to-digital converter is used to digitize the amplitude for each measured sample and the digital numbers are recorded; this
process is called digital signal processing.

The general principles are best explained by first considering the response of a linear system to a step function impulse, followed
by a square impulse, and leading to the response of a -function impulsive driving force.

Figure : Response of a underdamped linear oscillator with , and  to the following impulsive force. (a) Step
function force  for  and  for . (b) Square-wave force where  for  for , and 
at other times. (c) Delta-function impulse .

Delta-function impulse response

Consider the damped oscillator equation

and assume that a step function is applied at time . That is;

where  is a constant. The initial conditions are that .

The transient or complementary solution is the solution of the linearly-damped harmonic oscillator

This is independent of the driving force and the solution is given in the chapter  discussion of the linearly-damped harmonic
oscillator.
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The particular, steady-state, solution is easy to obtain just by inspection since the force is a constant, that is, the particular solution
is

Taking the sum of the transient and particular solutions, using the initial conditions, gives the final solution to be

where . This functional form is shown in Figure . Note that the amplitude of the transient response

equals  at  to cancel the particular solution when it jumps to . The oscillatory behavior then is just that of the transient
response.

A square impulse can be generated by the superposition of two opposite-sign stepfunctions separated by a time  as shown in
Figure .

The square impulse can be taken to the limit where the width  is negligibly small relative to the response times of the system. It
can be shown that letting , but keeping the magnitude of the total impulse  finite for the impulse at time , leads to
the solution for the -function impulse occurring at 

This response to a delta function impulse is shown in Figure  for the case where . An example is the response when
the hammer strikes a piano string at .

Figure : Decomposition of the function  into a time-ordered sequence
of -function samples.

Green’s function waveform decomposition

The response of the linearly-damped linear oscillator to an delta function impulse, that has been expressed above, can be used to
exploit the powerful Green’s technique for decomposition of any general forcing function. That is, if the driven system is linear,
then the principle of superposition is applicable and allowing expression of the inhomogeneous part of the differential equation as
the sum of individual delta functions. That is;

As illustrated in Figure  discrete-time waveform analysis involves repeatedly sampling the instantaneous amplitude in a
regular and repetitive sequence of -function impulses. Since the superposition principle applies for this linear system then the
waveform can be described by a sum of an ordered series of deltafunction impulses where  is the time of an impulse. Integrating
over all the -function responses that have occurred at time , that is prior to the time of interest , leads to
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The Green’s function  is defined by

Superposition allows the summed response of the system to be written in an integral form

which gives the final time dependence of the forced system. This repetitive time-sampling approach avoids the need of using
Fourier analysis. Note that the Green’s function  includes implicitly the frequency of the free undamped linear oscillator 

, the free damped linear oscillator , as well as the damping coefficient . Access to the combination of fast

microcomputers coupled to fast digital sampling techniques has made digital signal sampling the pre-eminent technique for signal
recording of audio, video, and detector signal processing.

References
The only asymmetry in the Fourier transform relations comes from the  factor originating from the fact that by convention
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 in both relations rather than using the  factor in Equation  and unity in Equation .
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