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9.2: Hamilton's Principle of Stationary Action
Hamilton’s crowning achievement was his use of the general form of Hamilton’s principle of stationary action , equation ,
to derive both Lagrangian mechanics, and Hamiltonian mechanics. Consider the action  for the extremum path of a system in
configuration space, that is, along path  for  coordinates  at initial time  to  at a final time  as
shown in Figure .

Figure : Extremum path A, plus the neighboring path B, shown in configuration space.

Then the action  is given by

As used in chapter  a family of neighboring paths is defined by adding an infinitessimal fraction  of a continuous, well-
behaved neighboring function  where  for the extremum path. That is,

In contrast to the variational case discussed when deriving Lagrangian mechanics, the variational path used here does not assume
that the functions  vanish at the end points. Assume that the neighboring path  has an action  where

Expanding the integrand of  in Equation  gives that, relative to the extremum path , the incremental change in action is

The second term in the integral can be integrated by parts since  leading to

Note that Equation  includes contributions from the entire path of the integral as well as the variations at the ends of the curve
and the  terms. Equation  leads to the following two pioneering principles of least action in variational mechanics that were
developed by Hamilton.
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Stationary-action principle in Lagrangian mechanics
Derivation of Lagrangian mechanics in chapter  was based on the extremum path for neighboring paths between two given
locations  and  that the system occupies at the initial and final times  and  respectively. For this special case, where
the end points do not vary, that is, when , and , then the least action  for the stationary
path  reduces to

For independent generalized coordinates , the integrand in brackets vanishes leading to the Euler-Lagrange equations.
Conversely, if the Euler-Lagrange equations in  are satisfied, then,  that is, the path is stationary. This leads to the
statement that the path in configuration space between two configurations  and  that the system occupies at times  and 

 respectively, is that for which the action  is stationary. This is a statement of Hamilton’s Principle.

Stationary-action principle in Hamiltonian mechanics

Hamilton used the general variation of the least-action path to derive the basic equations of Hamiltonian mechanics. For the general
path, the integral term in Equation  vanishes because the Euler-Lagrange equations are obeyed for the stationary path. Thus
the only remaining non-zero contributions are due to the end point terms, which can be written by defining the total variation of
each end point to be

where  and  are evaluated at  and . Then Equation  reduces to

Since the generalized momentum , then Equation  can be expressed in terms of the Hamiltonian and generalized

momentum as

Equation  contains Hamilton’s Principle of Least-action. Equation  gives an alternative relation of the generalized
momentum  that is expressed in terms of the action functional . Note that equations  and  were derived directly
without invoking reference to the Lagrangian.

Integrating the action , Equation , between the end points gives the action for the path between  and , that is, 
 to be

The stationary path is obtained by using the variational principle

The integrand,  in this modified Hamilton’s principle, can be used in the  Euler-Lagrange equations for 
 to give
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Similarly, the other  Euler-Lagrange equations give

Thus Hamilton’s principle of least-action leads to Hamilton’s equations of motion, that is equations  and .

The total time derivative of the action , which is a function of the coordinates and time, is

But the total time derivative of Equation  equals

Combining equations  and  gives the Hamilton-Jacobi equation which is discussed in chapter .

In summary, Hamilton’s principle of least action leads directly to Hamilton’s equations of motion ,  plus the Hamilton-
Jacobi Equation . Note that the above discussion has derived both Hamilton’s Principle , and Hamilton’s equations of
motion , , directly from Hamilton’s variational concept of stationary action, , without explicitly invoking the
Lagrangian.

Abbreviated action
Hamilton’s Action Principle determines completely the path of the motion and the position on the path as a function of time. If the
Lagrangian and the Hamiltonian are time independent, that is, conservative, then  and Equation  equals

The  term in Equation , is called the abbreviated action which is defined as

The abbreviated action can be simplified assuming use of the standard Lagrangian  with a velocity-independent
potential , then equation  gives.

Abbreviated action provides for use of a simplified form of the principle of least action that is based on the kinetic energy, and not
potential energy. For conservative systems it determines the path of the motion, but not the time dependence of the motion.
Consider virtual motions where the path satisfies energy conservation, and where the end points are held fixed, that is  but
allow for a variation  in the final time. Then using the Hamilton-Jacobi equation, 

However, Equation  gives that

Therefore

That is, the abbreviated action has a minimum with respect to all paths that satisfy the conservation of energy which can be written
as
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Equation  is called the Maupertuis’ least-action principle which he proposed in  based on Fermat’s Principle in optics.
Credit for the formulation of least action commonly is given to Maupertuis; however, the Maupertuis principle is similar to the use
of least action applied to the "vis viva", as was proposed by Leibniz four decades earlier. Maupertuis used teleological arguments ,
rather than scientific rigor, because of his limited mathematical capabilities. In  Euler provided a scientifically rigorous
argument, presented above, that underlies the Maupertuis principle. Euler derived the correct variational relation for the abbreviated
action to be

Hamilton’s use of the principle of least action to derive both Lagrangian and Hamiltonian mechanics is a remarkable
accomplishment. It underlies both Lagrangian and Hamiltonian mechanics and confirmed the conjecture of Maupertuis.

Hamilton’s Principle applied using initial boundary conditions
Galley[Gal13] identified a subtle inconsistency in the applications of Hamilton’s Principle of Stationary Action to both Lagrangian
and Hamiltonian mechanics. The inconsistency involves the fact that Hamilton’s Principle is defined as the action integral between
the initial time  and the final time  as boundary conditions, that is, it is assumed to be time symmetric. However, most
applications in Lagrangian and Hamiltonian mechanics assume that the action integral is evaluated based on the initial values as
the boundary conditions, rather than the initial  and final times . That is, typical applications require use of a time-asymmetric
version of Hamilton’s principle. Galley proposed a framework for transforming Hamilton’s Principle to a time-asymmetric form in
order to handle problems where the boundary conditions are based on using only the initial values at the initial time , rather than
the initial plus final times  that is assumed in the time-symmetric definition of the action in Hamilton’s Principle.

Figure : The left schematic shows paths between the initial  and final  times for conservative mechanics. The solid
line designates the path for which the action is stationary, while the dashed lines represent the varied paths. The right schematic
shows the paths applied to the doubled degrees of freedom with two initial boundary conditions, that is,  and  plus
assuming that both paths are identical at their intersection and that they intersect at the same final time, that is, .

The following describes the framework proposed by Galley for transforming Hamilton’s Principle to a time-asymmetric form. Let 
 and  designate sets of  generalized coordinates, plus their velocities, where  and  are the fundamental variables assumed in

the definition of the Lagrangian used by Hamilton’s Principle. As illustrated schematically in Figure , Galley proposed
doubling the number of degrees of freedom for the system considered, that is, let  and . In addition he
defines two identical variational paths  and  where path  is the time reverse of path . That is, path  starts at the initial time ,
and ends at , whereas path  starts at  and ends at . That is, he assumes that  and  specify the two paths in the space of the
doubled degrees of freedom that are identical, and that they intersect at the final time . The arrows shown on the paths in Figure 

 designate the assumed direction of the time integration along these paths.

For the doubled system of degrees of freedom, the total action for the sum of the two paths is given by the time integral of the
doubled variables,  which can be written as

The above relation assumes that the doubled variables  and  are decoupled from each other. More generally one
can assume that the two sets of variables are coupled by some arbitrary function . Then the action can be
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written as

The effective Lagrangian for this doubled system then can be defined as

and the action can be written as

The coupling term  for the doubled system of degrees of freedom must satisfy the following two properties.

(a) If it can be expressed as the difference of two scalar potentials, , then it can be absorbed into
the potential term for each of the doubled variables in the Lagrangian. This implies that  and there is no reason to double
the number of degrees of freedom because the system is conservative. Thus  describes generalized forces that are not derivable
from potential energy, that is, conservative.

(b) A second property of the coupling term  is that it must be antisymmetric under interchange of the arbitrary
labels . That is,

Therefore the antisymmetric function  vanishes when .

The variational condition requires that the action  has a well defined stationary point for the doubled system. This is
achieved by parametrizing both coordinate paths as

where  are the coordinates for which the action is stationary,  and where  are arbitrary functions of time
denoting virtual displacements of the paths. The doubled system has two independent paths connecting the two initial boundary
conditions at , and it requires that these paths intersect at . The variational system for the two intersecting paths requires
specifying four conditions, two per path. Two of the four conditions are determined by requiring that at  the initial boundary
conditions satisfies that . The remaining two conditions are derived by requiring that the variation of the action 

 satisfies

The canonical momenta  conjugate to the doubled coordinates  are defined using the nonconservative Lagrangian  to be

where the superscript  designates the solution based on the initial conditions. Note that the conjugate momentum 

while the  term is part of the total momentum due to the nonconservative interaction. Similarly the momentum for

the second path is

The last term in Equation , that is, the term  results from integration by parts, which will vanish if

The equality condition at the intersection of the two paths at  requires that
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Therefore equations  and  imply that

Therefore equations  and  constitute the equality condition that must be satisfied when the two paths intersect at .
The equality condition ensures that the boundary term for integration by parts in Equation  will vanish for arbitrary
variations provided that the two unspecified paths agree at the final time . Similarly the conjugate momenta  must
agree, but otherwise are unspecified. As a consequence, the equality condition ensures that the variational principle is consistent
with the final state at  not being specified. That is, the equations of motion are only specified by the initial boundary conditions
of the time-asymmetric action for the doubled system.

More physics insight is provided by using a more convenient parametrization of the coordinates in terms of their average and
difference. That is, let

Then the physical limit is

That is, the average history is the relevant physical history, while the difference coordinate simply vanishes. For these coordinates,
the nonconservative Lagrangian is  and the equality conditions reduce to

which implies that the physically relevant average  quantities are not specified at the final time  in order to have a well-
defined variational principle.

The canonical momenta are given by

The equations of motion can be written as.

Equation  is identically zero for the  subscript, while, in the physical limit (PL), the negative subscript gives that

Substituting for the Lagrangian  gives that

where  is a generalized nonconservative force derived from .

Note that Equation  can be derived equally well by taking the direct functional derivative with respect to , that is,
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The above time-asymmetric formalism applies Hamilton’s action principle to systems that involve initial boundary conditions
while the second path corresponds to the final boundary conditions. This framework, proposed recently by Galley, provides a
remarkable advance for the handling of nonconservative action in Lagrangian and Hamiltonian mechanics.  This formalism
directly incorporates the variational principle for initial boundary conditions and causal dynamics that are usually required for
applications of Lagrangian and Hamiltonian mechanics. Currently, there is limited exploitation of this new formalism because there
has been insufficient time for it to become well known, for full recognition of its importance, and for the development and
publication of applications. Chapter  discusses an application of this formalism to nonconservative systems in classical
mechanics.

This topic goes beyond the planned scope of this book. It is recommended that the reader refer to the work of Galley, Tsang, and
Stein[Gal13, Gal14] for further discussion plus examples of applying this formalism to nonconservative systems in classical
mechanics, electromagnetic radiation, RLC circuits, fluid dynamics, and field theory.

This page titled 9.2: Hamilton's Principle of Stationary Action is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
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