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5.9: Lagrange multipliers for Holonomic Constraints

Algebraic equations of constraint

The Lagrange multiplier technique provides a powerful, and elegant, way to handle holonomic constraints using Euler’s equations .
The general method of Lagrange multipliers for  variables, with  constraints, is best introduced using Bernoulli’s ingenious
exploitation of virtual infinitessimal displacements, which Lagrange signified by the symbol . The term "virtual" refers to an
intentional variation of the generalized coordinates  in order to elucidate the local sensitivity of a function  to variation
of the variable. Contrary to the usual infinitessimal interval in differential calculus, where an actual displacement  occurs during
a time , a virtual displacement is imagined to be an instantaneous, infinitessimal, displacement of a coordinate, not an actual
displacement, in order to elucidate the local dependence of  on the coordinate. The local dependence of any functional  to
virtual displacements of all  coordinates, is given by taking the partial differentials of .

The function  is stationary, that is an extremum, if Equation  equals zero. The extremum of the functional , given by
equation ( ), can be expressed in a compact form using the virtual displacement formalism as

The auxiliary conditions, due to the  holonomic algebraic constraints for the  variables , can be expressed by the  equations

where  and  with . The variational problem for the  holonomic constraint equations also can be
written in terms of  differential equations where 

Since equations  and  both equal zero, the  equations  can be multiplied by arbitrary undetermined factors  and
added to equations  to give.

Note that this is not trivial in that although the sum of the constraint equations for each is zero; the individual terms of the sum
are not zero.

Insert equations  plus  into , and collect all  terms, gives

Note that all the  are free independent variations and thus the terms in the brackets, which are the coefficients of each ,
individually must equal zero. For each of the  values of , the corresponding bracket implies

This is equivalent to what would be obtained from the variational principle

Equation  is equivalent to a variational problem for finding the stationary value of 
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where  is defined to be

The solution to Equation  can be found using Euler’s differential equation ( ) of variational calculus. At the extremum 
 corresponds to following contours of constant  which are in the surface that is perpendicular to the gradients of the

terms in . The Lagrange multiplier constants are required because, although these gradients are parallel at the extremum, the
magnitudes of the gradients are not equal.

The beauty of the Lagrange multipliers approach is that the auxiliary conditions do not have to be handled explicitly, since they are
handled automatically as  additional free variables during solution of Euler’s equations for a variational problem with 
unknowns fit to  equations. That is, the  variables  are determined by the variational procedure using the  variational
equations

simultaneously with the  variables  which are determined by the  variational equations

Equation  usually is expressed as

The elegance of Lagrange multipliers is that a single variational approach allows simultaneous determination of all 
unknowns. Chapter  shows that the forces of constraint are given directly by the  terms.

The powerful, and generally applicable, Lagrange multiplier technique is illustrated by considering the case of only two
dependent variables,  and  with the function  and with one holonomic equation of
constraint coupling these two dependent variables. The extremum is given by requiring

with the constraint expressed by the auxiliary condition

Note that the variations  and  are no longer independent because of the constraint equation, thus the the two terms in the
brackets of Equation  are not separately equal to zero at the extremum. However, differentiating the constraint Equation 
gives

No  term applies because, for the independent variable,   Introduce the neighboring paths by adding the auxiliary
functions
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Example : Two dependent variables coupled by one holonomic constraint5.9.1
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Insert the differentials of equations  and  , into  gives

implying that

Equation  can be rewritten as

Equation  now contains only a single arbitrary function  that is not restricted by the constraint. Thus the bracket in the
integrand of Equation  must equal zero for the extremum. That is

Now the left-hand side of this equation is only a function of  and  with respect to  and  while the right-hand side is a
function of  and  with respect to  and  Because both sides are functions of  then each side can be set equal to a function

 Thus the above equations can be written as

The complete solution of the three unknown functions.  and  is obtained by solving the two equations, , plus
the equation of constraint . The Lagrange multiplier  is related to the force of constraint. This example of two variables
coupled by one holonomic constraint conforms with the general relation for many variables and constraints given by Equation 

.

Integral equations of constraint
The constraint equation also can be given in an integral form which is used frequently for isoperimetric problems . Consider a one
dependent-variable isoperimetric problem, for finding the curve  such that the functional has an extremum, and the curve 

 satisfies boundary conditions such that  and . That is

is an extremum such that the fixed length  of the perimeter satisfies the integral constraint

Analogous to  these two functionals can be combined requiring that

That is, it is an extremum for both  and the Lagrange multiplier . This effectively involves finding the extremum path for the
function  where both  and  are the minimized variables. Therefore the curve  must
satisfy the differential equation
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subject to the boundary conditions   and .

One isoperimetric problem is the catenary which is the shape a uniform rope or chain of fixed length  that minimizes the
gravitational potential energy. Let the rope have a uniform mass per unit length of  kg/m

Figure : The catenary

The gravitational potential energy is

The constraint is that the length be a constant 

Thus the function is  while the integral constraint sets 

These need to be inserted into the Euler Equation  by defining

Note that this case is one where  and  is a constant; also defining  then  Therefore the Euler’s
equations can be written in the integral form

Inserting the relation  gives

where  is an arbitrary constant. This simplifies to

The integral of this is

where  and  are arbitrary constants fixed by the locations of the two fixed ends of the rope.
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A famous constrained isoperimetric legend is that of Dido, first Queen of Carthage. Legend says that, when Dido landed in
North Africa, she persuaded the local chief to sell her as much land as an oxhide could contain. She cut an oxhide into narrow
strips and joined them to make a continuous thread more than four kilometers in length which was sufficient to enclose the
land adjoining the coast on which Carthage was built. Her problem was to enclose the maximum area for a given perimeter. Let
us assume that the coast line is straight and the ends of the thread are at  on the coast line. The enclosed area is given by

The constraint equation is that the total perimeter equals .

Thus we have that the functional  and . Then  and 

 Insert these into the Euler-Lagrange Equation  gives

That is

Integrate with respect to  gives

where  is a constant of integration. This can be rearranged to give

The integral of this is

Rearranging this gives

This is the equation of a circle centered at . Setting the bounds to be  to  gives that  and the circle
radius is  Thus the length of the thread must be . Assuming that  then  and Queen Dido could
buy an area of 

This textbook uses the symbol  to designate a generalized coordinate, and  to designate the corresponding first derivative with
respect to the independent variable, in order to differentiate the spatial coordinates from the more powerful generalized coordinates.
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Example : The Queen Dido problem5.9.3
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