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6.2: Newtonian plausibility argument for Lagrangian mechanics
Insight into the physics underlying Lagrange mechanics is given by showing the direct relationship between Newtonian and
Lagrangian mechanics. The variational approaches to classical mechanics exploit the first-order spatial integral of the force,
equation ( ), which equals the work done between the initial and final conditions. The work done is a simple scalar quantity
that depends on the initial and final location for conservative forces. Newton’s equation of motion is

The kinetic energy is given by

It can be seen that

and

Consider that the force, acting on a mass  is arbitrarily separated into two components, one part that is conservative, and thus
can be written as the gradient of a scalar potential , plus the excluded part of the force, . The excluded part of the force 
could include non-conservative frictional forces as well as forces of constraint which may be conservative or non-conservative.
This separation allows the force to be written as

Along each of the  axes,

Equation  can be extended by transforming the cartesian coordinate  to the generalized coordinates 

Define the standard Lagrangian to be the difference between the kinetic energy and the potential energy, which can be written in
terms of the generalized coordinates  as

Assume that the potential is only a function of the generalized coordinates  that is  then

Using the above equations allows Newton’s equation of motion  to be expressed as

The excluded force  can be partitioned into a holonomic constraint force  plus any remaining excluded forces  as
given by

A comparison of equations  and  shows that the holonomic constraint forces  that are contained in the excluded
force  can be identified with the Lagrange multiplier term in equation .
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That is the Lagrange multiplier terms can be used to account for holonomic constraint forces . Thus Equation  can be
written as

where the Lagrange multiplier term accounts for holonomic constraint forces, and  includes all the remaining forces that are
not accounted for by the scalar potential , or the Lagrange multiplier terms .

For holonomic, conservative forces it is possible to absorb all the forces into the potential  plus the Lagrange multiplier term, that
is  Moreover, the use of a minimal set of generalized coordinates allows the holonomic constraint forces to be ignored
by explicitly reducing the number of coordinates from  dependent coordinates to  independent generalized
coordinates. That is, the correlations due to the constraint forces are embedded into the generalized coordinates. Then Equation 

 reduces to the basic Euler differential equations.

Note that Equation  is identical to Euler’s equation ( ), if the independent variable  is replaced by time . Thus
Newton’s equation of motion are equivalent to minimizing the action integral , that is

which is Hamilton’s Principle. Hamilton’s Principle underlies many aspects of physics as discussed in chapter , and is used as the
starting point for developing classical mechanics. Hamilton’ Principle was postulated  years after Lagrange introduced
Lagrangian mechanics.

The above plausibility argument, which is based on Newtonian mechanics, illustrates the close connection between the vectorial
Newtonian mechanics and the algebraic Lagrangian mechanics approaches to classical mechanics.
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