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4.5: Harmonically-driven, linearly-damped, plane pendulum
The harmonically-driven, linearly-damped, plane pendulum illustrates many of the phenomena exhibited by non-linear systems as
they evolve from ordered to chaotic motion. It illustrates the remarkable fact that determinism does not imply either regular
behavior or predictability. The well-known, harmonically-driven linearly-damped pendulum provides an ideal basis for an
introduction to non-linear dynamics .

Consider a harmonically-driven linearly-damped plane pendulum of moment of inertia  and mass  in a gravitational field that is
driven by a torque due to a force  acting at a moment arm . The damping term is  and the angular
displacement of the pendulum, relative to the vertical, is . The equation of motion of the harmonically-driven linearly-damped
simple pendulum can be written as

Note that the sinusoidal restoring force for the plane pendulum is non-linear for large angles . The natural period of the free
pendulum is

A dimensionless parameter , which is called the drive strength, is defined by

The equation of motion  can be generalized by introducing dimensionless units for both time  and relative drive frequency 
defined by

In addition, define the inverse damping factor  as

These definitions allow Equation  to be written in the dimensionless form

The behavior of the angle  for the driven damped plane pendulum depends on the drive strength  and the damping factor .
Consider the case where Equation  is evaluated assuming that the damping coefficient , and that the relative angular
frequency  which is close to resonance where chaotic phenomena are manifest. The Runge-Kutta method is used to solve
this non-linear equation of motion.

Close to Linearity
For drive strength  the amplitude is sufficiently small that  superposition applies, and the solution is identical to
that for the driven linearly-damped linear oscillator. As shown in Figure , once the transient solution dies away, the steady-
state solution asymptotically approaches one attractor that has an amplitude of  radians and a phase shift  with respect to the
driving force. The abscissa is given in units of the dimensionless time . The transient solution depends on the initial
conditions and dies away after about  periods, whereas the steady-state solution is independent of the initial conditions and has a
state-space diagram that has an elliptical shape, characteristic of the harmonic oscillator. For all initial conditions, the time
dependence and state space diagram for steady-state motion approaches a unique solution, called an "attractor", that is, the
pendulum oscillates sinusoidally with a given amplitude at the frequency of the driving force and with a constant phase shift , i.e.

This solution is identical to that for the harmonically-driven, linearly-damped, linear oscillator discussed in chapter 
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Figure : Motion of the driven damped pendulum for drive strengths of , , , and . The left
side shows the time dependence of the deflection angle  with the time axis expressed in dimensionless units . The right side
shows the corresponding state-space plots. These plots assume , , and the motion starts with .

Figure : The driven damped pendulum assuming that , , with initial conditions , . The
system exhibits period-two motion for drive strengths of  as shown by the state space diagram for cycles . For 

 the system exhibits period-four motion shown for cycles .
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Weak nonlinearity
Figure  shows that for drive strength , after the transient solution dies away, the steady-state solution settles down to
one attractor that oscillates at the drive frequency with an amplitude of slightly more than  radians for which the small angle
approximation fails. The distortion due to the non-linearity is exhibited by the non-elliptical shape of the state-space diagram.

The observed behavior can be calculated using the successive approximation method discussed in chapter . That is, close to
small angles the sine function can be approximated by replacing

in Equation  to give

As a first approximation assume that

then the small  term in Equation  contributes a term proportional to . But

That is, the nonlinearity introduces a small term proportional to . Since the right-hand side of Equation  is a
function of only  then the terms in  and  on the left hand side must contain the third harmonic  term.
Thus a better approximation to the solution is of the form

where the admixture coefficient . This successive approximation method can be repeated to add additional terms proportional
to  where  is an integer with . Thus the nonlinearity introduces progressively weaker -fold harmonics to the
solution. This successive approximation approach is viable only when the admixture coefficient  Note that these harmonics
are integer multiples of , thus the steady-state response is identical for each full period even though the state space contours
deviate from an elliptical shape.

Onset of complication
Figure  shows that for  the drive strength is sufficiently strong to cause the transient solution for the pendulum to
rotate through two complete cycles before settling down to a single steady-state attractor solution at the drive frequency. However,
this attractor solution is shifted two complete rotations relative to the initial condition. The state space diagram clearly shows the
rolling motion of the transient solution for the first two periods prior to the system settling down to a single steady-state attractor.
The successive approximation approach completely fails at this coupling strength since  oscillates through large values that are
multiples of 

Figure  shows that for drive strength  the motion evolves to a much more complicated periodic motion with a
period that is three times the period of the driving force. Moreover the amplitude exceeds  corresponding to the pendulum
oscillating over top dead center with the centroid of the motion offset by  from the initial condition. Both the state-space
diagram, and the time dependence of the motion, illustrate the complexity of this motion which depends sensitively on the
magnitude of the drive strength  in addition to the initial conditions,  and damping factor  as is shown in Figure 

Period doubling and bifurcation
For drive strength  with the initial condition  the system exhibits a regular motion with a period
that is three times the drive period. In contrast, if the initial condition is  then, as shown in Figure , the
steady-state solution has the drive frequency with no offset in , that is, it exhibits period-one oscillation. This appearance of two
separate and very different attractors for  using different initial conditions, is called bifurcation.
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An additional feature of the system response for  is that changing the initial conditions to  shows
that the amplitude of the even and odd periods of oscillation differ slightly in shape and amplitude, that is, the system really has
period-two oscillation. This period-two motion, i.e. period doubling, is clearly illustrated by the state space diagram in that,
although the motion still is dominated by period-one oscillations, the even and odd cycles are slightly displaced. Thus, for different
initial conditions, the system for  bifurcates into either of two attractors that have very different waveforms, one of which
exhibits period doubling.

The period doubling exhibited for  is followed by a second period doubling when  as shown in Figure .
With increase in drive strength this period doubling keeps increasing in binary multiples to period , , ,  etc. Numerically it
is found that the threshold for period doubling is  from two to four occurs at  etc. Feigenbaum showed
that this cascade increases with increase in drive strength according to the relation that obeys

where ,  is called a Feigenbaum number. As this cascading sequence goes to a limit  where

Rolling motion
It was shown that for  the transient solution causes the pendulum to have angle excursions exceeding , that is, the
system rolls over top dead center. For drive strengths in the range  the steady-state solution for the system
undergoes continuous rolling motion as illustrated in Figure . The time dependence for the angle exhibits a periodic
oscillatory motion superimposed upon a monotonic rolling motion, whereas the time dependence of the angular frequency 
is periodic. The state space plots for rolling motion corresponds to a chain of loops with a spacing of  between each loop. The
state space diagram for rolling motion is more compactly presented if the origin is shifted by  per revolution to keep the plot
within bounds as illustrated in Figure .

Figure : Rolling motion for the driven damped plane pendulum for . (a) The time dependence of angle  increases
by  per drive period whereas (b) the angular velocity  exhibits periodicity. (c) The state space plot for rolling motion is
shown with the origin shifted by  per revolution to keep the plot within the bounds 

Onset of chaos
When the drive strength is increased to  then the system does not approach a unique attractor as illustrated by Figure 

 which shows state space orbits for cycles . Note that these orbits do not repeat implying the onset of chaos. For
drive strengths greater than  the driven damped plane pendulum starts to exhibit chaotic behavior. The onset of chaotic
motion is illustrated by making a -dimensional plot which combines the time coordinate with the state-space coordinates as
illustrated in Figure . This plot shows  trajectories starting at different initial values in the range 
for . Some solutions are erratic in that, while trying to oscillate at the drive frequency, they never settle down to a steady
periodic motion which is characteristic of chaotic motion. Figure  illustrates the considerable sensitivity of the motion to
the initial conditions. That is, this deterministic system can exhibit either order, or chaos, dependent on miniscule differences in
initial conditions.
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Figure : Left: Space-space orbits for the driven damped pendulum with . Note that the orbits do not repeat for
cycles 25 to 200. Right: Time-state-space diagram for . The plot shows 16 trajectories starting with different initial
values in the range .

Figure : State-space plots for the harmonically-driven, linearly-damped, pendulum for driving amplitudes of  and 
. These calculations were performed using the Runge-Kutta method by E. Shah, (Private communication)

A similar approach is used by the book "Chaotic Dynamics" by Baker and Gollub[Bak96].
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