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15.3: Canonical Transformations in Hamiltonian Mechanics
Hamiltonian mechanics is an especially elegant and powerful way to derive the equations of motion for complicated systems.
Unfortunately, integrating the equations of motion to derive a solution can be a challenge. Hamilton recognized this difficulty, so he
proposed using generating functions to make canonical transformations which transform the equations into a known soluble form.
Jacobi, a contemporary mathematician, recognized the importance of Hamilton’s pioneering developments in Hamiltonian
mechanics, and therefore he developed a sophisticated mathematical framework for exploiting the generating function formalism in
order to make the canonical transformations required to solve Hamilton’s equations of motion.

In the Lagrange formulation, transforming coordinates  to cyclic generalized coordinates , simplifies finding the
Euler-Lagrange equations of motion. For the Hamiltonian formulation, the concept of coordinate transformations is extended to
include simultaneous canonical transformation of both the spatial coordinates  and the conjugate momenta  from  to 

, where both of the canonical variables are treated equally in the transformation. Compared to Lagrangian mechanics,
Hamiltonian mechanics has twice as many variables which is an asset, rather than a liability, since it widens the realm of possible
canonical transformations.

Hamiltonian mechanics has the advantage that generating functions can be exploited to make canonical transformations to find
solutions, which avoids having to use direct integration. Canonical transformations are the foundation of Hamiltonian mechanics;
they underlie Hamilton-Jacobi theory and action-angle variable theory, both of which are powerful means for exploiting
Hamiltonian mechanics to solve problems in physics and engineering. The concept underlying canonical transformations is that, if
the equations of motion are simplified by using a new set of generalized variables , compared to using the original set of
variables , then an advantage has been gained. The solution, expressed in terms of the generalized variables , can be
transformed back to express the solution in terms of the original coordinates, .

Only a specialized subset of transformations will be considered, namely canonical transformations that preserve the canonical
form of Hamilton’s equations of motion. That is, given that the original set of variables  satisfy Hamilton’s equations

for some Hamiltonian , then the transformation to coordinates  is canonical if, and only if,
there exists a function  such that the  and  are still governed by Hamilton’s equations. That is,

where  plays the role of the Hamiltonian for the new variables. Note that  may be very different from the old
Hamiltonian . The invariance of the Poisson bracket to canonical transformations, chapter , provides a powerful test
that the transformation is canonical.

Hamilton’s Principle of least action, discussed in chapter , states that

Similarly, applying Hamilton’s Principle of least action to the new Lagrangian  gives

The discussion of gauge-invariant Lagrangians, chapter , showed that  and  can be related by the total time derivative of a
generating function  where

The generating function  can be any well-behaved function with continuous second derivatives of both the old and new canonical
variables , , ,  and . Thus the integrands of  and  are related by
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where  is a possible scale transformation. A scale transformation, such as changing units, is trivial, and will be assumed to be
absorbed into the coordinates, making . Assuming that  is called an extended canonical transformation.

Generating functions

The generating function  has to be chosen such that the transformation from the initial variables  to the final variables 
 is a canonical transformation. The chosen generating function contributes to  only if it is a function of the old plus

new variables. The four possible types of generating functions of the first kind, are , , , and 
. These four generating functions lead to relatively simple canonical transformations, are shown below.

Type 1: :

The total time derivative of the generating function  is given by

Insert Equation  into Equation , and assume that the trivial scale factor , then

Assume that the generating function  determines the canonical variables  and  to be

then the terms in each square bracket cancel, leading to the required canonical transformation

Type 2: :

The total time derivative of the generating function  is given by

Insert this into Equation , and assume that the trivial scale factor , then

Assume that the generating function  determines the canonical variables  and  to be

then the terms in brackets cancel, leading to the required transformation

Type 3: :

The total time derivative of the generating function  is given by

Insert this into Equation , and assume that the trivial scale factor , then
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Assume that the generating function  determines the canonical variables  and  to be

then the terms in brackets cancel, leading to the required transformation

Type 4: :

The total time derivative of the generating function  is given by

Insert this into Equation , and assume that the trivial scale factor , then

Assume that the generating function  determines the canonical variables  and  to be

then the terms in brackets cancel, leading to the required transformation

Note that the last three generating functions require the inclusion of additional bilinear products of , , ,  in order for the terms
to cancel to give the required result. The addition of the bilinear terms, ensures that the resultant generating function  is the same
using any of the four generating functions , , , . Frequently the  generating function is the most convenient.
The four possible generating functions of the first kind, given above, are related by Legendre transformations. A canonical
transformation does not have to conform to only one of the four generating functions  for all the degrees of freedom, they can be
a mixture of different flavors for the different degrees of freedom. The properties of the generating functions are summarized in
table .

Table : Canonical transformation generating functions

Generating function Generating function derivatives Trivial special examples

The partial derivatives of the generating functions  determine the corresponding conjugate variables not explicitly included in the
generating function . Note that, for the first trivial example , the old momenta become the new coordinates, ,
and vice versa, . This illustrates that it is better to name them “conjugate variables” rather than “momenta” and
“coordinates”.

In summary, Jacobi has developed a mathematical framework for finding the generating function  required to make a canonical
transformation to a new Hamiltonian , that has a known solution. That is,
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When  is a constant, then a solution has been obtained. The inverse transformation for this solution 
 now can be used to express the final solution in terms of the original variables of the system.

Note the special case when , then Equation  has been reduced to the Hamilton-Jacobi relation 

In this case, the generating function  determines the action functional  required to solve the Hamilton-Jacobi equation 
). Since Equation  has transformed the Hamiltonian , for which , then

the solution  for the Hamiltonian  is obtained easily. This approach underlies Hamilton-Jacobi theory
presented in chapter .

Applications of Canonical Transformations
The canonical transformation procedure may appear unnecessarily complicated for solving the examples given in this book, but it
is essential for solving the complicated systems that occur in nature. For example, canonical transformations can be used to
transform time-dependent, (non-autonomous) Hamiltonians to time-independent, (autonomous) Hamiltonians for which the
solutions are known. Example  describes such a system. Canonical transformations provide a remarkably powerful approach
for solving the equations of motion in Hamiltonian mechanics, especially when using the Hamilton-Jacobi approach discussed in
chapter .

The identity transformation  satisfies  if the following relations are satisfied , 

, . Note that the new and old coordinates are identical, hence  generates the identity
transformation .

Consider the point transformation  where  is some function of . This transformation satisfies 

 if the following relations are satisfied , , . Point transformations
correspond to point-to-point transformations of coordinates.

The identity transformation  satisfies  if the following relations are satisfied , 

,  That is, the coordinates and momenta have been interchanged.

Consider an infinitessimal point canonical transformation, that is infinitesimally close to a point identity.

satisfies  if the following relations are satisfied

Thus the infinitessimal changes in  and  are given by
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Thus  is the generator of the infinitessimal canonical transformation.

The classic one-dimensional harmonic oscillator provides an example of the use of canonical transformations. Consider the
Hamiltonian where  then

This form of the Hamiltonian is a sum of two squares suggesting a canonical transformation for which  is cyclic in a new
coordinate. A guess for a canonical transformation is of the form  which is of the  type where 

equals . Using  gives

Solving for the coordinates  yields

Inserting these into  gives

which implies that  is a cyclic coordinate.

The Hamiltonian is conservative, since it does not explicitly depend on time, and it equals the total energy since the
transformation to generalized coordinates is time independent. Thus

Since

then

Substituting  into  gives the well known solution of the one-dimensional harmonic oscillator
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Example : 1-D harmonic oscillator via a cononical transformation15.3.5
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