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15.5: Action-angle Variables

Canonical transformation

Systems possessing periodic solutions are a ubiquitous feature in physics. The periodic motion can be either an oscillation, for
which the trajectory in phase space is a closed loop (libration), or rolling (rotational) motion as discussed in chapter 3.4. For many
problems involving periodic motion, the interest often lies in the frequencies of motion rather than the detailed shape of the
trajectories in phase space. The action-angle variable approach uses a canonical transformation to action and angle variables which
provide a powerful, and elegant method to exploit Hamiltonian mechanics. In particular, it can determine the frequencies of periodic
motion without having to calculate the exact trajectories for the motion. This method was introduced by the French astronomer Ch.
E. Delaunay(1816 — 1872) for applications to orbits in celestial mechanics, but it has equally important applications beyond celestial
mechanics such as to bound solutions of the atom in quantum mechanics.

The action-angle method replaces the momenta in the Hamilton-Jacobi procedure by the action phase integral for the closed loop
(libration) trajectory in phase space defined by

Ji Efpiin (15.5.1)

where for each cyclic variable the integral is taken over one complete period of oscillation. The cyclic variable I; is called the
action variable where

1 1

ILi=—J, = o fpid(b' (15.5.2)

The canonical variable to the action variable I is the angle variable ¢b. Note that the name “action variable” is used to differentiate I
from the action functional S = f Ldt which has the same units; i.e. angular momentum.

The general principle underlying the use of action-angle variables is illustrated by considering one body, of mass m, subject to a
one-dimensional bound conservative potential energy U(g). The Hamiltonian is given by

Hp.0)= 2+ U(a) (1553

This bound system has a (g, p) phase space contour for each energy H = E .

p(q, B) = £, /2m(E—U(q)) (15.5.4)

For an oscillatory system the two-valued momentum of Equation 15.5.4is non-trivial to handle. By contrast, the area J = § pdg of
the closed loop in phase space is a single-valued scalar quantity that depends on E and U(q). Moreover, Liouville’s theorem states
that the area of the closed contour in phase space J = f pdq is invariant to canonical transformations. These facts suggest the use of
a new pair of conjugate variables, (¢, I), where I(E) uniquely labels the trajectory, and corresponding area, of a closed loop in
phase space for each value of E, and the single-valued function ¢ is a corresponding angle that specifies the exact point along the
phase-space contour as illustrated in Fig 15.5.1

For simplicity consider the linear harmonic oscillator where

1
Ug) = Emuﬁq2 (15.5.5)
Then the Hamiltonian, 15.5.3 equals
2
D 1
H(p,q) = o T Emuﬂq2 (15.5.6)
Hamilton’s equations of motion give that
O0H
p=—— = —mw’q (15.5.7)
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The solution of equations 15.5.7and 15.5.8is of the form
q=C cos(w(t —tp)) (15.5.9)
p = —mwC'sinw(t —tp) (15.5.10)

where C, and t( are integration constants. For the harmonic oscillator, equations 15.5.9 and 15.5.10 correspond to the usual
elliptical contours in phase space, as illustrated in Figure 15.5.1

B

i)
Figure 15.5.1: The potential energy V'(q), (upper) and corresponding phase space (p,q) (middle)
for the harmonic oscillator at four equally spaced total energies E. The corresponding action-
angles (I¢) resulting from a canonical transformation of this system are shown in the lower
plot.

The action-angle canonical transformation involves making the transform

(¢,p) = (¢, 1) (15.5.11)

where I is defined by Equation 15.5.2 and the angle ¢ being the corresponding canonical angle. The logical approach to this
canonical transformation for the harmonic oscillator is to define g and p in terms of ¢ and I

q:’/2—1c05¢ (15.5.12)
mw

p:1/2mlwsin¢ (15.5.13)

Note that the Poisson bracket is unity

[, P)(p,n =1
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which implies that the above transformation is canonical, and thus the phase space area I(E) = i §pdq is conserved.

For this canonical transformation the transformed Hamiltonian H(¢, I) is

_1 2t Lt 2L o2
H(p,I)= - (2mwI)sin” ¢ + 5 MW" ——cos ¢ =wl (15.5.14)
Note that this Hamiltonian is a constant that is independent of the angle ¢, and thus Hamilton’s equations of motion give
I =———FT"—=0 15.5.15
5 (15.5.15)
= e—— ]. . -].
¢ oI w (15.5.16)
Thus we have mapped the harmonic oscillator to new coordinates (¢, I') where
H(p, I E
I= M =— (15.5.17)
w w
¢ =w(t—ty) (15.5.18)

That is, the phase space has been mapped from ellipses, with area proportional to E in the (g, p) phase space, to a cylindrical (¢, I)
phase space where I = % are constant values that are independent of the angle, while ¢ increases linearly with time. Thus the
variables (g, p) are periodic with modulus A¢ = 2.

a(¢+2m,I)=q(¢,1) (15.5.19)
p(¢+2m, 1) =p(¢,I) (15.5.20)

The period 7 of the periodic oscillatory motion is given simply by A¢ = 27 = wr which is the well known result for the harmonic
oscillator. Note that the action-angle variable canonical transformation has determined the frequency of the periodic motion without
solving the detailed trajectory of the motion.

The above example of the harmonic oscillator has shown that, for integrable periodic systems, it is possible to identify a canonical
transformation to (¢, I') such that the Hamiltonian is independent of the angle ¢ which specifies the instantaneous location on the
constant energy contour I. If the phase space contour is a separatrix, then it divides phase space into invariant regions containing
phase-space contours with differing behavior. The action-angle variables are not useful for separatrix contours. For rolling motion,
the system rotates with continuously increasing, or decreasing angle, and there is no natural boundary for the action angle variable
since the phase space trajectory is continuous and not closed. However, the action-angle approach still is valid if the motion
involves periodic as well as rolling motion.

The example of the one-dimensional, one-body, harmonic oscillator can be expanded to the more general case for many bodies in
three dimensions. This is illustrated by considering multiple periodic systems for which the Hamiltonian is conservative and where
the equations of the canonical transformation are separable. The generalized momenta then can be written as

_ OWi(gi; a1, 9, .. )

i 15.5.21

l 0g; ( )
for which each p; is a function of g; and the n integration constants a;

Di :Pi(Qi’al,OQ,uan) (15522)

The momentum p;(g;, @1, @z, .. a,,) represents the trajectory of the system in the (g;,p;) phase space that is characterized by
Hamilton’s characteristic function W (g, J). Combining equations 15.5.1, 15.5.21gives

J; zf 8Wi(qi;a5;,a2’ - 'a")dqi (15.5.23)

Since g; is merely a variable of integration, each active action variable J; is a function of the n constants of integration in the
Hamilton-Jacobi equation. Because of the independence of the separable-variable pairs (g;,p;), the J; form n independent
functions of the «;, and hence are suitable for use as a new set of constant momenta. Thus the characteristic function W can be
written as
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W(gL, . @uiJis - Jn) =Y Wil Ji, - Jn) (15.5.24)
J
while the Hamiltonian is only a function of the momenta H(Jy, . ... J,)

The generalized coordinate, conjugate to J, is known as the angle variable ¢; which is defined by the transformation equation

W s OWi(gy5 J1,. - Jn)
%= 55 => Y (15.5.25)

J=1

The corresponding equation of motion for ¢ is given by

. OH(J
¢, = W) =27w; (J1,...Jn) (15.5.26)
0J;
where w; (J) are constant functions of the action variables J; with a solution
¢i = 27wt + B; (15.5.27)

that is, they are linear functions of time. The constants w; can be identified with the frequencies of the multiple periodic motions.

The action-angle variables appear to be no different than a particular set of transformed coordinates. Their merit appears when the
physical interpretation is assigned to w;. Consider the change d¢; as the g; are changed infinitesimally

0op; W
o = —0q; = ———0q; 15.5.28
9= 0g; Z 0J;0q; ( )
The derivative with respect to g; vanishes except for the W; component of W. Thus Equation 15.5.28reduces to
0
56: = 5 > pi(aj, J)da; (15.5.29)
v
Therefore, the total change in ¢, as the system goes through one complete cycle is
0
Agi=)" 5% ?{pj(qj, J)dg; = 218 (15.5.30)
J
where % is outside the integral since the J; are constants for cyclic motion. Thus A¢; = 27 = w;7; where 7; is the period for one
cycle of oscillation, where the angular frequency wj is given by
i 1
Dy== (15.5.31)
2T T;

Thus the frequency v associated with the periodic motion is the reciprocal of the period 7. The secret here is that the derivative of
H with respect to the action variable J given by Equation 15.5.26directly determines the frequency of the periodic motion without
the need to solve the complete equations of motion. Note that multiple periodic motion can be represented by a Fourier expansion of
the form

Z Z Z aly | €T ettt in) (15.5.32)

J1=—00 jy=—00

Although the action-angle approach to Hamilton-Jacobi theory does not produce complete equations of motion, it does provide the
frequency decomposition that often is the physics of interest. The reason that the powerful action-angle variable approach has been
introduced here is that it is used extensively in celestial mechanics. The action-angle concept also played a key role in the
development of quantum mechanics, in that Sommerfeld recognized that Bohr’s ad hoc assumption that angular momentum is
quantized, could be expressed in terms of quantization of the angle variable as is mentioned in chapter 18.

Adiabatic invariance of the action variables

When the Hamiltonian depends on time it can be quite difficult to solve for the motion because it is difficult to find constants of
motion for time-dependent systems. However, if the time dependence is sufficiently slow, that is, if the motion is adiabatic, then
there exist dynamical variables that are almost constant which can be used to solve for the motion. In particular, such approximate
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constants are the familiar action-angle integrals. The adiabatic invariance of the action variables played an important role in the
development of quantum mechanics during the 1911 Solvay Conference. This was a time when physicists were grappling with the
concepts of quantum mechanics. Einstein used the following classical mechanics example of adiabatic invariance, applied to the
simple pendulum, in order to illustrate the concept of adiabatic invariance of the action. This example demonstrates the power of
using action-angle variables.

Example 15.5.1: Adiabatic invariance for the simple pendulum

Consider that the pendulum is made up of a point mass M suspended from a pivot by a light string of length L that is swinging
freely in a vertical plane. Derive the dependence of the amplitude of the oscillations #, assuming 6 is small, if the string is very
slowly shortened by a factor of 2, that is, assume that the change in length during one period of the oscillation is very small. The
tension in the string 7" is given by

242
T=Mg<cos@>+<ML i >

L
Let the pendulum angle be oscillatory
0 =6y cos(wt + )

Then the average mean square amplitude and velocity over one period are

6
(6%) = ([60 cos(wt +po)]?) = 5
. w?6?
<02> = ([~Buwsin(ut + o)) = =
Since, for the simple pendulum, w? = % , then the tension in the string
6? o2 6?
T = Mg(1— u)+ML<1=) )= Mg(1+-2)

2 4
Assuming that 6 is a small angle, and that the change in length —AL is very small during one period 7, then the work done is

2
AW =TAL = —MgAL — MgZO AL (a)

while the change in internal oscillator energy is

A(—MgLcosby) =A

o5 1 1
—MgL(1— ?0)] =-—MgAL+ EMgA(LO%) =—-MgAL+ §M90(2)AL + MgL6y A6, (b)

The work done must balance the increment in internal energy therefore

302AL
=0

LOyAby +
or
LE2AIn(B,L7) =0
Therefore it follows that
(GOL%) = constant (c)
or
0y o L7%

Thus shortening the length of the pendulum string from L to 5 adiabatically corresponds to the amplitude increasing by a
factor 1.68.
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Consider the action-angle integral for one closed period 7 = 27” for this problem

J:fmw

= ?{Mﬁé-édt

:MLZ(éz)z—:

=M L203w
3
= 7Mg*62L% = constant
where that last step is due to Equation c.

The above example shows that the action integral J = constant , that is, it is invariant to an adiabatic change. In retrospect this
result is as expected in that the action integral should be minimized.

This page titled 15.5: Action-angle Variables is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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