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6.5: Constrained Systems
The motion for systems subject to constraints is difficult to calculate using Newtonian mechanics because all the unknown
constraint forces must be included explicitly with the active forces in order to determine the equations of motion. Lagrangian
mechanics avoids these difficulties by allowing selection of independent generalized coordinates that incorporate the correlated
motion induced by the constraint forces. This allows the constraint forces acting on the system to be ignored by reducing the
system to a minimal set of generalized coordinates. The holonomic constraint forces can be determined using the Lagrange
multiplier approach, or all constraint forces can be determined by including them as generalized forces, as described below.

Choice of generalized coordinates
As discussed in chapter , the flexibility and freedom for selection of generalized coordinates is a considerable advantage of
Lagrangian mechanics when handling constrained systems. The generalized coordinates can be any set of independent variables
that completely specify the scalar action functional, equation . The generalized coordinates are not required to be orthogonal
as is required when using the vectorial Newtonian approach. The secret to using generalized coordinates is to select coordinates
that are perpendicular to the constraint forces so that the constraint forces do no work. Moreover, if the constraints are rigid, then
the constraint forces do no work in the direction of the constraint force. As a consequence, the constraint forces do not contribute to
the action integral and thus the  term in equation  can be omitted from the action integral. Generalized
coordinates allow reducing the number of unknowns from  to  when the system has  holonomic constraints. In
addition, generalized coordinates facilitate using both the Lagrange multipliers, and the generalized forces, approaches for
determining the constraint forces.

Minimal set of generalized coordinates
The set of  generalized coordinates  are used to describe the motion of the system. No restrictions have been placed on the
nature of the constraints other than they are workless for a virtual displacement. If the  constraints are holonomic, then it is
possible to find sets of  independent generalized coordinates  that contain the  constraint conditions implicitly in
the transformation equations

For the case of  unknowns, any virtual displacement  is independent of , therefore the only way for  to
hold is for the term in brackets to vanish for each value of , that is

where   These are the Lagrange equations for the minimal set of  independent generalized coordinates.

If all the generalized forces are conservative plus velocity independent, and are included in the potential  and , then 
 simplifies to

This is Euler’s differential equation, derived earlier using the calculus of variations. Thus d’Alembert’s Principle leads to a solution
that minimizes the action integral  as stated by Hamilton’s Principle.

Lagrange multipliers approach
Equation  sums over all  coordinates for  particles, providing  equations of motion. If the  constraints are
holonomic they can be expressed by  algebraic equations of constraint

where  Kinematic constraints can be expressed in terms of the infinitessimal displacements of the form
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where , , and where the , and  are functions of the generalized coordinates , described

by the vector  that are derived from the equations of constraint. As discussed in chapter , if  represents the total
differential of a function, then it can be integrated to give a holonomic relation of the form of Equation . However, if  is
not the total differential, then it can be integrated only after having solved the full problem. If  then the  constraint is
scleronomic.

The discussion of Lagrange multipliers in chapter , showed that, for virtual displacements  the correlation of the
generalized coordinates, due to the constraint forces, can be taken into account by multiplying  by unknown Lagrange
multipliers  and summing over all  constraints. Generalized forces can be partitioned into a Lagrange multiplier term plus a
remainder force. That is

since by definition  for virtual displacements.

Chapter  showed that holonomic forces of constraint can be taken into account by introducing the Lagrange undetermined
multipliers approach, which is equivalent to defining an extended Lagrangian  where

Finding the extremum for the extended Lagrangian  using  gives

where  is the remaining part of the generalized force  after subtracting both the part of the force absorbed in the potential
energy , which is buried in the Lagrangian , as well as the holonomic constraint forces which are included in the Lagrange
multiplier terms . The  Lagrange multipliers  can be chosen arbitrarily in . Utilizing the free choice of

the  Lagrange multipliers  allows them to be determined in such a way that the coefficients of the first  infinitessimals, i.e.
the square brackets vanish. Therefore the expression in the square bracket must vanish for each value of . Thus it
follows that

when  Thus  reduces to a sum over the remaining coordinates between 

In Equation  the  infinitessimals  can be chosen freely since the  degrees of freedom are
independent. Therefore the expression in the square bracket must vanish for each value of . Thus it follows that

where  Combining equations  and  then gives the important general relation that for 

To summarize, the Lagrange multiplier approach  automatically solves the  equations plus the  holonomic equations of
constraint, which determines the  unknowns, that is, the  coordinates plus the  forces of constraint. The beauty of the
Lagrange multipliers is that all  variables, plus the  constraint forces, are found simultaneously by using the calculus of
variations to determine the extremum for the expanded Lagrangian .
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Generalized forces approach
The two right-hand terms in  can be understood to be those forces acting on the system that are not absorbed into the scalar

potential  component of the Lagrangian . The Lagrange multiplier terms  account for the holonomic forces of

constraint that are not included in the conservative potential or in the generalized forces . The generalized force

is the sum of the components in the  direction for all external forces that have not been taken into account by the scalar potential
or the Lagrange multipliers. Thus the non-conservative generalized force  contains non-holonomic constraint forces,
including dissipative forces such as drag or friction, that are not included in  or used in the Lagrange multiplier terms to account
for the holonomic constraint forces.

The concept of generalized forces is illustrated by the case of spherical coordinate systems. The attached table gives the
displacement elements , (taken from table ) and the generalized force for the three coordinates. Note that  has the
dimensions of force and  has the units of energy. By contrast equation  gives that  and  which
have the dimensions of torque. However,  and  both have the dimensions of energy as is required in equation .
This illustrates that the units used for generalized forces depend on the units of the corresponding generalized coordinate.
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