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6.5: Constrained Systems

The motion for systems subject to constraints is difficult to calculate using Newtonian mechanics because all the unknown
constraint forces must be included explicitly with the active forces in order to determine the equations of motion. Lagrangian
mechanics avoids these difficulties by allowing selection of independent generalized coordinates that incorporate the correlated
motion induced by the constraint forces. This allows the constraint forces acting on the system to be ignored by reducing the
system to a minimal set of generalized coordinates. The holonomic constraint forces can be determined using the Lagrange
multiplier approach, or all constraint forces can be determined by including them as generalized forces, as described below.

Choice of generalized coordinates

As discussed in chapter 5.8, the flexibility and freedom for selection of generalized coordinates is a considerable advantage of
Lagrangian mechanics when handling constrained systems. The generalized coordinates can be any set of independent variables
that completely specify the scalar action functional, equation (6.4.1). The generalized coordinates are not required to be orthogonal
as is required when using the vectorial Newtonian approach. The secret to using generalized coordinates is to select coordinates
that are perpendicular to the constraint forces so that the constraint forces do no work. Moreover, if the constraints are rigid, then
the constraint forces do no work in the direction of the constraint force. As a consequence, the constraint forces do not contribute to
the action integral and thus the .7 £ -dr; term in equation (6.3.2) can be omitted from the action integral. Generalized
coordinates allow reducing the number of unknowns from n to s =n —m when the system has m holonomic constraints. In
addition, generalized coordinates facilitate using both the Lagrange multipliers, and the generalized forces, approaches for
determining the constraint forces.

Minimal set of generalized coordinates

The set of n generalized coordinates ¢; are used to describe the motion of the system. No restrictions have been placed on the
nature of the constraints other than they are workless for a virtual displacement. If the m constraints are holonomic, then it is
possible to find sets of s =n —m independent generalized coordinates g; that contain the m constraint conditions implicitly in
the transformation equations
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For the case of s =n —m unknowns, any virtual displacement dq; is independent of dqy, therefore the only way for (6.3.27)to
hold is for the term in brackets to vanish for each value of j, that is
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where j=1,2,3,.. s. These are the Lagrange equations for the minimal set of s independent generalized coordinates.

If all the generalized forces are conservative plus velocity independent, and are included in the potential U, and QfX =0, then
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This is Euler’s differential equation, derived earlier using the calculus of variations. Thus d’ Alembert’s Principle leads to a solution

6.5.2 simplifies to

that minimizes the action integral § ftiz Ldt =0 as stated by Hamilton’s Principle.

Lagrange multipliers approach

Equation (6.3.27) sums over all n coordinates for N particles, providing n equations of motion. If the m constraints are
holonomic they can be expressed by m algebraic equations of constraint
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where k=1, 2,3, ... m.Kinematic constraints can be expressed in terms of the infinitessimal displacements of the form
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where k=1,2,3,...m,j=1,2,3,...n, and where the aq and are functions of the generalized coordinates g;, described

by the vector q, that are derived from the equations of constraint. As discussed in chapter 5.7, if 6.5.5 represents the total
differential of a function, then it can be integrated to give a holonomic relation of the form of Equation 6.5.4. However, if 6.5.5 is

agk

not the total differential, then it can be integrated only after having solved the full problem. If =0 then the k*» constraint is

scleronomic.
The discussion of Lagrange multipliers in chapter 5.9.1, showed that, for virtual displacements dg;, the correlation of the
generalized coordinates, due to the constraint forces, can be taken into account by multiplying 6.5.5 by unknown Lagrange

multipliers A, and summing over all m constraints. Generalized forces can be partitioned into a Lagrange multiplier term plus a
remainder force. That is

QFX = ;Aka—q’;(q, t)+QEXC (6.5.6)

since by definition ¢ = 0 for virtual displacements.

Chapter 5.9.1 showed that holonomic forces of constraint can be taken into account by introducing the Lagrange undetermined
multipliers approach, which is equivalent to defining an extended Lagrangian L' (q, q, A,t) where
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Finding the extremum for the extended Lagrangian L'(q, q, A,t) using (6.4.2) gives
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where QfX ¢

is the remaining part of the generalized force @); after subtracting both the part of the force absorbed in the potential
energy U, which is buried in the Lagrangian L, as well as the holonomic constraint forces which are included in the Lagrange
multiplier terms » 7" | A %(q, t). The m Lagrange multipliers A, can be chosen arbitrarily in 6.5.8. Utilizing the free choice of
the m Lagrange multipliers A; allows them to be determined in such a way that the coefficients of the first /m infinitessimals, i.e.
the square brackets vanish. Therefore the expression in the square bracket must vanish for each value of 1 <j<m . Thus it

follows that
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when j=1,2,..m. Thus 6.5.8reduces to a sum over the remaining coordinates betweenm +1 <j<n
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In Equation 6.5.10 the s =n —m infinitessimals dq; can be chosen freely since the s=n—m degrees of freedom are
independent. Therefore the expression in the square bracket must vanish for each value of m +1 < 5 <n . Thus it follows that
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where j=m+1,m+2,..n. Combining equations 6.5.9and 6.5.11then gives the important general relation that for 1 < j<n
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To summarize, the Lagrange multiplier approach 6.5.12 automatically solves the n equations plus the m holonomic equations of
constraint, which determines the n +m unknowns, that is, the n coordinates plus the m forces of constraint. The beauty of the
Lagrange multipliers is that all n variables, plus the m constraint forces, are found simultaneously by using the calculus of
variations to determine the extremum for the expanded Lagrangian L'(q, q, A,t) .
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Generalized forces approach
The two right-hand terms in 6.5.12 can be understood to be those forces acting on the system that are not absorbed into the scalar
. . s s 2] .
potential U component of the Lagrangian L. The Lagrange multiplier terms > ;-1 Ag aiq’f (a,t) account for the holonomic forces of
]

constraint that are not included in the conservative potential or in the generalized forces QfXC. The generalized force
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is the sum of the components in the g; direction for all external forces that have not been taken into account by the scalar potential
or the Lagrange multipliers. Thus the non-conservative generalized force Q;‘JX € contains non-holonomic constraint forces,
including dissipative forces such as drag or friction, that are not included in U, or used in the Lagrange multiplier terms to account
for the holonomic constraint forces.

The concept of generalized forces is illustrated by the case of spherical coordinate systems. The attached table gives the
displacement elements dg;, (taken from table C'4) and the generalized force for the three coordinates. Note that (); has the
dimensions of force and @);. dg; has the units of energy. By contrast equation (6.3.13) gives that Qy = Fypr and Q4 = Fyr which
have the dimensions of torque. However, Q¢d6 and Q4d¢ both have the dimensions of energy as is required in equation (6.3.13).
This illustrates that the units used for generalized forces depend on the units of the corresponding generalized coordinate.

Unit vectors oq; Q; Q; - bg;
r rdr 8 F.dr
6 frdo 6 Fyr Fyrdf
é ¢rsinfds Q‘Z;Fqﬁ?" sinf Fyrsinfd¢
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