LibreTextsw

15.4: Hamilton-Jacobi Theory

Hamilton used the Principle of Least Action to derive the Hamilton-Jacobi relation (chapter 15.3)

H(q,p,t)—l—%s =0 (15.4.1)

where q, p refer to the 1 <4 <n variables g;, p; and S(g;(¢1),t1, g;j(2), t2) is the action functional. Integration of this first-order
partial differential equation is non trivial which is a major handicap for practical exploitation of the Hamilton-Jacobi equation. This
stimulated Jacobi to develop the mathematical framework for canonical transformation that are required to solve the Hamilton-
Jacobi equation. Jacobi’s approach is to exploit generating functions for making a canonical transformation to a new Hamiltonian
H(Q, P, t) that equals zero.

H(Q,P,t) :H(q,p,t)+% =0 (15.4.2)

The generating function for solving the Hamilton-Jacobi equation then equals the action functional S.

The Hamilton-Jacobi theory is based on selecting a canonical transformation to new coordinates (Q, P, t) all of which are either
constant, or the @); are cyclic, which implies that the corresponding momenta P; are constants. In either case, a solution to the
equations of motion is obtained. A remarkable feature of Hamilton-Jacobi theory is that the canonical transformation is completely
characterized by a single generating function, S. The canonical equations likewise are characterized by a single Hamiltonian
function, H. Moreover, the generating function S, and Hamiltonian function H, are linked together by Equation 15.4.1. The
underlying goal of Hamilton-Jacobi theory is to transform the Hamiltonian to a known form such that the canonical equations
become directly integrable. Since this transformation depends on a single scalar function, the problem is reduced to solving a single
partial differential equation.

Time-dependent Hamiltonian

Jacobi's complete integral S(q;, P;,t)

The principle underlying Jacobi’s approach to Hamilton-Jacobi theory is to provide a recipe for finding the generating function
F = S needed to transform the Hamiltonian H(q, p,t) to the new Hamiltonian H(Q, P, ¢) using Equation 15.4.2. When the
derivatives of the transformed Hamiltonian H(Q, P, t) are zero, then the equations of motion become

oH

Q; = ot 0 (15.4.3)
. OoH
P; =~ %0, =0 (15.4.4)

and thus ; and P; are constants of motion. The new Hamiltonian A must be related to the original Hamiltonian H by a canonical
transformation for which

H(Q,P,t)=H(q,p,t) (15.4.5)

ot
Equations 15.4.3and 15.4.4 are automatically satisfied if the new Hamiltonian 7 = 0 since then Equation 15.4.5 gives that the

generating function S satisfies Equation 15.4.2

Any of the four types of generating function can be used. Jacobi chose the type 2 generating function as being the most useful for
many practical cases, that is, S(g;, P;, t) which is called Jacobi’s complete integral.

For generating functions F) and F5 the generalized momenta are derived from the action by the derivative
08
Og;

Use this generalized momentum to replace p; in the Hamiltonian H, given in Equation 15.4.5 leads to the Hamilton-Jacobi
equation expressed in terms of the action S.

Di (15.4.6)
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H(qb-..qn;a—ql,...,%;t)—i—E—O (15.4.7)

The Hamilton-Jacobi equation, 15.4.7, can be written more compactly using tensors g and VS to designate (g1, ..q,) and
g—i, cey g—:l respectively. That is

H(q,VS,t)—i-g—f =0 (15.4.8)

Equation 15.4.8is a first-order partial differential equation in 4 1 variables which are the old spatial coordinates g; plus time ¢.
The new momenta P; have not been specified except that they are constants since H = 0.

Assume the existence of a solution of 15.4.8of the form S(g;, P;,t) = S(q1, - - gn; @1, . . 0415 t) where the generalized momenta
P, =aj,as,....a plust are the n + 1 independent constants of integration in the transformed frame. One constant of integration
is irrelevant to the solution since only partial derivatives of S(g;, P;, ) with respect to ¢; and ¢ are involved. Thus, if S is a
solution of the first-order partial differential equation, then so is S+ o where « is a constant. Thus it can be assumed that one of
the n+1 constants of integration is just an additive constant which can be ignored leading effectively to a solution

S(gi, P;,t) = S(qu,--- .. Qn; QLy e - ap;t) (15.4.9)

where none of the n independent constants are solely additive. Such generating function solutions are called complete solutions of
the first-order partial differential equations since all constants of integration are known.

It is possible to assume that the n generalized momenta, P; are constants c;, where the o; are the constants. This allows the
generalized momentum to be written as

95(q, a, t)
=5 15.4.10
P o ( )
Similarly, Hamilton’s equations of motion give the conjugate coordinate Q = 3, where 3; are constants. That is
0S(q, o, t
Qi=pi _Paat) (15.4.11)
Bai

The above procedure has determined the complete set of 2n constants (Q = 3,P = &) . It is possible to invert the canonical
transformation to express the above solution, which is expressed in terms of Q; =f8; and P; =«;, back to the original
coordinates, that is, g; = g;(a, 8, t) and momenta p; = p;(a, 8, t) which is the required solution.

Hamilton’s principle function S (q;,t;q,t0)

Hamilton’s approach to solving the Hamilton-Jacobi Equation 15.4.8is to seek a canonical transformation from variables (p, q) at
time ¢, to a new set of constant quantities, which may be the initial values (qg, p,) at time ¢ = 0. Hamilton’s principle function

S (gi, t; got,) is the generating function for this canonical transformation from the variables (q, p) at time t to the initial variables
(qy, Py) at time ¢q. Hamilton’s principle function Sg(g;, t; g.t,) is directly related to Jacobi’s complete integral S(g;, P;,t).

Note that Sy is the generating function of a canonical transformation from the present time (q, p,t) variables to the initial
(dg, Pos to), whereas Jacobi’s S is the generating function of a canonical transformation from the present (q, p, t) variables to the
constant variables (Q = 3, P = &) . For the Hamilton approach, the canonical transformation can be accomplished in two steps
using S by first transforming from (q, p, ) at time ¢, to (3, a), then transforming from (8, &) to (qg, Py, to)- That is, this two-
step process corresponds to

Su(q,t;q,t,) = S(q, a, t) — S(qy, o, tp) (15.4.12)
Hamilton’s principle function Sk (q, t; q,t,) is related to Jacobi’s complete integral S(q, e, ), and it will not be discussed further
in this book.
Time-independent Hamiltonian

Frequently the Hamiltonian does not explicitly depend on time. For the standard Lagrangian with time-independent constraints and
transformation, then H(q, p,t) = E which is the total energy. For this case, the Hamilton-Jacobi equation simplifies to give

% H(a,p,1) = —B(e) (15.4.13)
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The integration of the time dependence is trivial, and thus the action integral for a time-independent Hamiltonian equals
S(q,a,t) =W(q,a) — E(a)t (15.4.14)

That is, the action integral has separated into a time independent term W (q, &) which is called Hamilton’s characteristic
function plus a time-dependent term —F(ex)t. Thus using equations 15.4.1( 15.4.14gives that the generalized momentum is

_ OW(q,o)

= (15.4.15)

The physical significance of Hamilton’s characteristic function W (q, a) can be understood by taking the total time derivative

aw oW ( q
e szqz
i
Taking the time integral then gives

- /Zpiq'idt = /Zpidqi (15.4.16)

Note that this equals the abbreviated action described in chapter 9.2.3, that is W(q, ) = Sp(q, ).

Inserting the action S(q, ) into the Hamilton-Jacobi equation (15.2.1) gives

oW(q,a)
dq

This is called the time-independent Hamilton-Jacobi equation. Usually it is convenient to have E equal the total energy.
However, sometimes it is more convenient to exclude the &% energy F(cay) in the set, in which case E = E(az, az,...ar—1);
the Routhian exploits this feature.

H(q; )=E(a) (15.4.17)

The equations of the canonical transformation expressed in terms of W(q, o) are

W (q, ) 0FE(a) W (q, )
i = Bi + t=
0q; Oy Oa;

(15.4.18)

These equations show that Hamilton’s characteristic function W(q, a) is itself the generating function of a time-independent
canonical transformation from the old variables (g, p) to a set of new variables

OE(ax)
Oa;

Table 15.4.1summarizes the time-dependent and time-independent forms of the Hamilton-Jacobi equation.

Qi=Bi+——=t P =u (15.4.19)

Table 15.4.1: Hamilton-Jacobi formulations

Hamiltonian Time dependent H(q, p, t) Time independent H(g, p)
Transformed Hamiltonian H=0 H is cyclic
Canonical transformed variables All QiPi are constants of motion All P; are constants of motion
Q = =0, therefore Q; = ; Ql = Z;f = v; , therefore Q; = v;t + S;
Transformed equations of motion . oH
Pi = = 0, therefore P, = o; P, = —— =0, therefore P, = o;
8Q1 0Q;
Generating function Jacobi’s complete integral S(q, P, t) Characteristic Function W(q, P)
A . " a8 ow ow
Hamilton-Jacobi equation H(ql)"'qn;a_ql7"'7 . )+ =0 H(Qh---‘]n;a—(h,---, 3q")=E
p =25 p =2
i = X i =
Transformation equations asaq’ oW %ai
Qz:(’)_al:ﬂz Qi_()a —vzt+ﬂz
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Separation of variables

Exploitation of the Hamilton-Jacobi theory requires finding a suitable action function S. When the Hamiltonian is time
independent, then Equation 15.4.14shows that the time dependence of the action integral separates out from the dependence on the
spatial variables. For many systems, the Hamilton’s characteristic function W (q, P) separates into a simple sum of terms each of
which is a function of a single variable. That is,

W(q, &) = Wi(q1) + Wa(gz) +- - Wa(ga) (15.4.20)
where each function in the summation on the right depends only on a single variable. Then Equation 15.4.13reduces to
H(Qla---Qn;a_Wa---;a_W):E (15.4.21)
oq 0qn

where FE is the constant denoting the total energy.
Hamilton’s characteristic function W (q, P) can be used with equations 15.4.14 15.4.15 15.4.3 15.4.4, and 15.4.5to derive

_oWae) _ oW(e)

; % ; 3P, (15.4.22)
- OH . OH

Q= = 0 P, = 20, ~ 0 (15.4.23)

H:HJF%:HfE:O (15.4.24)

which has reduced the problem to a simple sum of one-dimensional first-order differential equations.

If the " variable is cyclic, then the Hamiltonian is not a function of ¢; and the #** term in Hamilton’s characteristic function equals
W; = a;q; which separates out from the summation in Equation 15.4.20 That is, all cyclic variables can be factored out of
W (q, @) which greatly simplifies solution of the Hamilton-Jacobi equation. As a consequence, the ability of the Hamilton-Jacobi
method to make a canonical transformation to separate the system into many cyclic or independent variables, which can be solved
trivially, is a remarkably powerful way for solving the equations of motion in Hamiltonian mechanics.

Example 15.4.1: Free particle

Consider the motion of a free particle of mass m in a force-free region. Then Equation 15.4.5reduces to

oS oS oS

Gn—s ., — )+ — =
q’aql’ ’6qn )+at 0

H(qla"

Since no forces act, and the momentum p = V S, thus the Hamilton-Jacobi equation reduces to

1 oS
—V284+—=0 A
2m + ot (A)

The Hamiltonian is time independent, thus Equation 15.4.14applies
S(q,t) =W(q,a) — E(a)t

Since the Hamiltonian does not explicitly depend on the coordinates (z, y, z), then the coordinates are cyclic and separation of
the variables, 15.4.2(} gives that the action

S=a-r—Et (B)
For Equation B to be a solution of Equation A requires that
1
= %oﬁ (©)
Therefore
S=a-r— ioc2t (D)
2m
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Since

Q-aS:r—gt
m

the equation of motion and the conjugate momentum are given by
. o
r=Q+—t p=VS=a
m

Thus the Hamilton-Jacobi relation has given both the equation of motion and the linear momentum p.

Example 15.4.2: Point particle in a uniform gravitational field

The Hamiltonian is

1
255@%w%w%+mw

Since the system is conservative, then the Hamilton-Jacobi equation can be written in terms of Hamilton’s characteristic

function W
E_ L BW ? + 8_W ? _|_ a_W ?
- Oz Oy 0z

+mgz
Assuming that the variables can be separated W = X (z) + Y (y) + Z(2) leads to
0X(z)
Dz = O =0y
_%e _

Py By y

8Z 5

p: = \/ 2m(E —mgz) —az —a;

Thus by integration the total W equals

x y z
W:/ amdw—i—/ aydy—i—/ (\/2m(E—mgz)—a§—a32,)dz
Zo Yo 20

Therefore using 15.4.19gives

mdz

/Z
2 \/2m(E—mgz) —a2—al

ﬂz:t_tOZ

azdz

Lﬂ \/2mE mgz) a%—ai

Bz = constant = (z — z)

/ oydz
2 \/ZmE mgz) ai—ag

If o, yo, 2o is the position of the particle at time ¢ = ¢y then 8, = 8, =0, and from 15.4.19
Qg
—zo=(—=)(t—t
T — X ( m ) ( 0)
a
Y—yo = (—y) (t—to)
m

By = constant = (y — o)

0020

https://phys.libretexts.org/@go/page/9652


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9652?pdf

LibreTextsm

\/ 2m(E —mgz) — a2 — o

1
P t—ty)— =gt —to)?
z—2p - (t—to) 2g( 0)

This corresponds to a parabola as should be expected for this trivial example.

Example 15.4.3: One-dimensional harmonic oscillator

As discussed in example 15.3.5the Hamiltonian for the one-dimensional harmonic oscillator can be written as

1
H= %(p2+m2w2q ):E

assuming it is conservative and where w = 4/ % .

Hamilton’s characteristic function W can be used where

ow

pi:a_q,-

Inserting the generalized momentum p; into the Hamiltonian gives

%<|:a—q:| +m-wq =F

o Mg
=+2mE 1-—
W =+2m /dq\/ o

Integration of this equation gives

That is
mw?q?
S=v2mE [ dg,/1— —FEt
2F
Note that

Bl H0) /2_m/d_q_t
otV E /1 miq
1] a
2E

This can be integrated to give

; 1 . mw? po
= —arcsin
w g 2F 0

2E
q= > sinw(t —1o)
mw

This is the familiar solution of the undamped harmonic oscillator.

Example 15.4.4: The central force problem

The problem of a particle acted upon by a central force occurs frequently in physics. Consider the mass m acted upon by a
time-independent central potential energy U(r). The Hamiltonian is time independent and can be written in spherical
coordinates as

That is
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1 1 1
H=_——(p+5p;+ :
2m<p sze 72 sin

The time-independent Hamilton-Jacobi equation is conservative, thus

i (a_W>2+l(a_W)2+ 1 (a_W)2 +U(r)—
2m or r2 \ 00 r2sin®9 \ 9¢ -
Try a separable solution for Hamilton’s characteristic function W of the form
W =R(r)+0(0) +®(¢)
The Hamilton-Jacobi equation then becomes
or r2 \ 00 r2sin 0 \ 0¢

This can be rearranged into the form

2mr? sin® 6 { L
2m

() 23] ers) ()

The left-hand side is independent of ¢» whereas the right-hand side is independent of 7 and . Both sides must equal a constant

which is set to equal — L2, that is
dR\* 1 [00\° L
— — — ——— E
<8T) +7’2<3‘9> ]+U(r)+2mr2sin20

0e\>
— ) =1I2
9¢

The equation in 7 and  can be rearranged in the form

1 [8R\? 00\? L2
omr? | — | — Ur)—E|=—|[ = z
mr l2m(37“) * (T) ] l(39> +sin20]

The left-hand side is independent of 6 and the right-hand side is independent of  so both must equal a constant which is set to

be —L2
1 [(OR\? L?
—(—) +U(r)+ =E

1

2m \ Or

00\? L2
ZZY =2 2
(39) sin® 0

The variables now are completely separated and, by rearrangement plus integration, one obtains

12
r):1/2m/\/E—U(r)— v, dr
2
:/1/L2— L; df
sin” 0

Substituting these into W = R(r) + ©(0) + ®(¢) gives

W\/_/\/EU

L2 / e
dr+/ L2— =2 _d9+L,
r2 sin® 0 ¢
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Hamilton’s characteristic function W is the generating function from coordinates (7,6, ¢, p,,pg, ps) to new coordinates,
which are cyclic, and new momenta that are constant and taken to be the separation constants E, L, L,.

2
2mr?

pTzf’a—Vf:m\/E—U(r)—

ow L2
=—=,|[?- =
po 00 sin’ 0
_9w _
= 9 =

Similarly, using 15.4.22gives the new coordinates F, L, L,

e M R
) ¢l 2 E-U(r)— £
2mpr?
oW d —L Lde
ﬂL:a_L:‘/%/ / — (2 2>+/ /
E—U(r)—%Ln—rz mr 2 L
sin? 0
ow do —L
Pr. = OL, _/ 2 (2mr2> T
12—
sin” 0

These equations lead to the elliptical, parabolic, or hyperbolic orbits discussed in chapter 11.

v L,

Example 15.4.5: Linearly-damped, one-dimensional, harmonic oscillator

A canonical treatment of the linearly-damped harmonic oscillator provides an example that combines use of non-standard
Lagrangian and Hamiltonians, a canonical transformation to an autonomous system, and use of Hamilton-Jacobi theory to
solve this transformed system. It shows that Hamilton-Jacobi theory can be used to determine directly the solutions for the
linearly-damped harmonic oscillator.

Non-standard Hamiltonian:
In chapter 3.5, the equation of motion for the linearly-damped, one-dimensional, harmonic oscillator was given to be

?[q +T'§ +wiqg) =0 (a)

Example 10.5.1 showed that three non-standard Lagrangians give equation of motion o when used with the standard Euler-
Lagrange variational equations. One of these was the Bateman[Bat31] time-dependent Lagrangian

g m g
Lo(q,,t) = e (d? ~whe?] (b)

This Lagrangian gave the generalized momentum to be

or:
p= E =mge' (©
which was used with equation (15.1.3)to derive the Hamiltonian
p’ 1
HQ(qapat) =plj —LQ(q,(j,t) :efrt%"FEmw%quFt (d)

Note that both the Lagrangian and Hamiltonian are explicitly time dependent and thus they are not conserved quantities. This is
as expected for this dissipative system.
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Hamilton-Jacobi theory:

The form of the non-autonomous Hamiltonian d suggests use of the generating function for a canonical transformation to an
autonomous Hamiltonian, for which H is a constant of motion.

S(g, P,t) = F>(q, P,t) = gPe® =QP (@)
Then the canonical transformation gives
08
= 8_q = Pe% (e)
oS S
e — 2
ap 1

Insert this canonical transformation into the above Hamiltonian leads to the transformed Hamiltonian that is autonomous.

2
muwy

2

_ OF, P> T
H(Q, P,t) = Hy(q,p, 1) + 5 = 5~ + 5 QP+

That is, the transformed Hamiltonian (@, P, t) is not explicitly time dependent, and thus is conserved. Expressed in the
original canonical variables (g, p), the transformed Hamiltonian H(Q, P, t)

Q’ (f)

2 T mw?
H(Q, P,t) = 2p—me Tey S+ Toq2e“

is a constant of motion which was not readily apparent when using the original Hamiltonian. This unexpected result illustrates
the usefulness of canonical transformations for solving dissipative systems. The Hamilton-Jacobi theory now can be used to
solve the equations of motion for the transformed variables (@, P) plus the transformed Hamiltonian H(Q, P,t). The
derivative of the generating function
os
0Q
Use Equation g to substitute for P in the Hamiltonian H(Q, P, t) (Equation f), then the Hamilton-Jacobi method gives
1 (8S\> T _8S muwi , 8S
el o= % — =0
2m(6Q) 290 T2 ¢ T

This equation is separable as described in 15.4.20and thus let

P (2)

S(Q,0,1) = W(Q,a) ~at

where « is a separation constant. Then

1 [ 0W)? oW mw}
— ([ =22 rQ—— Y = h
[2m(8Q)+Q8Q+ 7 @ | =@ ®)
To simplify the equations define the variable x as
z = /Mm@ (1)
then Equation h can be written as
oW \? ow .,
—_— Ax—— —B)= j
<8:1:>+ T +(z )=0 ()

where A = w% and B = Zw—‘z . Assume initial conditions g(0) = gp and ¢ (0) =0

For this case the separation constant & > 0, therefore B > 0. Note that Equation j is a simple second-order algebraic relation,
the solution of which is
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ow ar
Bz - 2 4B

1_(§)7x2 )

The choice of the sign is irrelevant for this case and thus the positive sign is chosen. There are three possible cases for the
solution depending on whether the square-root term is real, zero, or imaginary.

A
Case 1: 4+ <1, thatis, me <1
Define C = [1 — (%)2] Then Equation k can be integrated to give
S=—at——+/,/ —C%2?)dz 1)
and
oS

ﬂ:fi’_:_ +_/,/ B—C*%z?)

This integral gives

sin”* (%) =Cuwy(t+B)=wt+d

ey )

Transforming back to the original variable g gives

where

q(t) =Ge™ 5 sin(wt + 4) (n)

where G and ¢ are given by the initial conditions. Equation m is identical to the solution for the underdamped linearly-damped
linear oscillator given previously in equation (3.5.12).

LA f r _
CaseZ.?—l,thatls,m—l

In this case C = 1/ [1 - (%)2] =0 and thus Equation k simplifies to

2
S:—at—ATx—i-z\/E

and
oS T
P9~ VB
Therefore the solution is
a(t) =e 5 (F +Gt) (0)

where F' and G are constants given by the initial conditions. This is the solution for the critically-damped linearly-damped,
linear oscillator given previously in equation (3.5.15).

Case 3: —>1 that is, =— >1

Define a real constant D where D = [(%)2 —1] =iC, then

S——at——+/,/ (B+D*s?)

15.4.10 https://phys.libretexts.org/@go/page/9652
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Then
oS 1 / dz
f=—=-t+— [ ——
O wy /(B+D??)

This last integral gives

sinh (%) =Duwy(t+8) =wt+d

where

A\ 2
w=wyC =wy ( ) -1
2mwg

Then the original variable gives
q(t) = Ge~ sinh(wt + )

This is the classic solution of the overdamped linearly-damped, linear harmonic oscillator given previously in equation
(3.5.14). The canonical transformation from a non-autonomous to an autonomous system allowed use of Hamiltonian
mechanics to solve the damped oscillator problem.

Note that this example used Bateman’s non-standard Lagrangian, and corresponding Hamiltonian, for handling a dissipative
linear oscillator system where the dissipation depends linearly on velocity. This nonstandard Lagrangian led to the correct
equations of motion and solutions when applied using either the time-dependent Lagrangian, or time-dependent Hamiltonian,
and these solutions agree with those given in chapter 3.5 which were derived using Newtonian mechanics.

Visual representation of the action function S.

Figure 15.4.1: Surfaces of constant action integral S (dashed lines) and the corresponding particle momenta (solid lines) with
arrows showing the direction.

The important role of the action integral S can be illuminated by considering the case of a single point mass m moving in a time
independent potential U (7). Then the action reduces to

S(g,a,t) =W (q,a) — Et (15.4.25)
Letgi =x,q2 = ¥y,q3 = 2,P1 = Pz, P2 = Py, P3 = P, . The momentum components are given by
oW (q, @)
= 15.4.26
which corresponds to
p=VW=VS (15.4.27)

That is, the time-independent Hamilton-Jacobi equation is
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1
%|VW|2 +U(r)=E (15.4.28)

This implies that the particle momentum is given by the gradient of Hamilton’s characteristic function and is perpendicular to
surfaces of constant W as illustrated in Figure 15.4.1 The constant W surfaces are time dependent as given by Equation 15.4.14
Thus, if at time ¢ =0 the equi-action surface Sy(g,t) =Wy(g, P;) =0, then at t =1 the same surface Sy(g,t) =0 now
coincides with the Sy (g, t) = E surface etc. That is, the equi-action surfaces move through space separately from the motion of the
single point mass.

The above pictorial representation is analogous to the situation for motion of a wavefront for electromagnetic waves in optics, or

matter waves in quantum physics where the wave equation separates into the form ¢ = ¢oe% = ¢gpeilkr—wt)  Hamilton’s goal was
to create a unified theory for optics that was equally applicable to particle motion in classical mechanics. Thus the optical-
mechanical analogy of the Hamilton-Jacobi theory has culminated in a universal theory that describes wave-particle duality; this
was a Holy Grail of classical mechanics since Newton’s time. It played an important role in development of the Schrodinger
representation of quantum mechanics.

Advantages of Hamilton-Jacobi theory

Initially, only a few scientists, like Jacobi, recognized the advantages of Hamiltonian mechanics. In 1843 Jacobi made some
brilliant mathematical developments in Hamilton-Jacobi theory that greatly enhanced exploitation of Hamiltonian mechanics.
Hamilton-Jacobi theory now serves as a foundation for contemporary physics, such as quantum and statistical mechanics. A major
advantage of Hamilton-Jacobi theory, compared to other formulations of analytic mechanics, is that it provides a single, first-order
partial differential equation for the action S, which is a function of the n generalized coordinates q and time ¢. The generalized
momenta no longer appear explicitly in the Hamiltonian in equations 15.4.7, 15.4.& Note that the generalized momentum do not
explicitly appear in the equivalent Euler-Lagrange equations of Lagrangian mechanics, but these comprise a system of n second-
order, partial differential equations for the time evolution of the generalized coordinate g. Hamilton’s equations of motion are a
system of 2n first-order equations for the time evolution of the generalized coordinates and their conjugate momenta.

An important advantage of the Hamilton-Jacobi theory is that it provides a formulation of classical mechanics in which motion of a
particle can be represented by a wave. In this sense, the Hamilton-Jacobi equation fulfilled a long-held goal of theoretical physics,
that dates back to Johann Bernoulli, of finding an analogy between the propagation of light and the motion of a particle. This goal
motivated Hamilton to develop Hamiltonian mechanics. A consequence of this wave-particle analogy is that the Hamilton-Jacobi
formalism featured prominently in the derivation of the Schrédinger equation during the development of quantum-wave mechanics.

This page titled 15.4: Hamilton-Jacobi Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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