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5.7: Constrained Variational Systems
Imposing a constraint on a variational system implies:

1. The N constrained coordinates y; (x) are correlated which violates the assumption made in chapter 5.5 that the IV variables are
independent.

2. Constrained motion implies that constraint forces must be acting to account for the correlation of the variables. These constraint
forces must be taken into account in the equations of motion.

Figure 5.7.1: A disk rolling down an inclined plane.

For example, for a disk rolling down an inclined plane without slipping, there are three coordinates z [perpendicular to the wedge],
Yy, [Along the surface of the wedge], and the rotation angle & shown in Figure 5.7.1. The constraint forces, F; N, lead to the
correlation of the variables such that x = R, while y = R#. Basically there is only one independent variable, which can be either y
or 6. The use of only one independent variable essentially buries the constraint forces under the rug, which is fine if you only need
to know the equation of motion. If you need to determine the forces of constraint then it is necessary to include all coordinates
explicitly in the equations of motion as discussed below.

Holonomic constraints

Most systems involve restrictions or constraints that couple the coordinates. For example, the y; (z) may be confined to a surface in
coordinate space. The constraints mean that the coordinates y; () are not independent, but are related by equations of constraint. A
constraint is called holonomic if the equations of constraint can be expressed in the form of an algebraic equation that directly and
unambiguously specifies the shape of the surface of constraint. A non-holonemic constraint does not provide an algebraic relation
between the correlated coordinates. In addition to the holonomy of the constraints, the equations of constraint also can be grouped
into the following three classifications depending on whether they are algebraic, differential, or integral. These three classifications
for the constraints exhibit different holonomy relating the coupled coordinates. Fortunately the solution of constrained systems is
greatly simplified if the equations of constraint are holonomic.

Geometric (algebraic) equations of constraint

Geometric constraints can be expressed in the form of algebraic relations that directly specify the shape of the surface of constraint
in coordinate space qi,qo, - - . G}, - - @n-

gk(q17q27"qj7"qn;t):0 (571)

where j=1,2,3,...n. There can be m such equations of constraint where 0 <k <m . An example of such a geometric
constraint is when the motion is confined to the surface of a sphere of radius R in coordinate space which can be written in the
form g=x22+y2+22—R2=0. Such algebraic constraint equations are called Holonomic which allows use of generalized
coordinates as well as Lagrange multipliers to handle both the constraint forces and the correlation of the coordinates.

Kinematic (differential) equations of constraint

The m constraint equations also can be expressed in terms of the infinitessimal displacements of the form
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where k=1,2,3,...m,j=1,2,3,...n. If Equation 5.7.2 represents the total differential of a function then it can be integrated
to give a holonomic relation of the form of Equation 5.7.1. However, if Equation 5.7.2 is not the total differential, then it is non-
holonomic and can be integrated only after having solved the full problem.
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An example of differential constraint equations is for a wheel rolling on a plane without slipping which is non-holonomic and more
complicated than might be expected. The wheel moving on a plane has five degrees of freedom since the height z is fixed. That is,
the motion of the center of mass requires two coordinates (z, y) plus there are three angles (¢, 8, %) where ¢ is the rotation angle
for the wheel, @ is the pivot angle of the axis, and %) is the tilt angle of the wheel. If the wheel slides then all five degrees of
freedom are active. If the axis of rotation of the wheel is horizontal, that is, the tilt angle 1) =0 is constant, then this kinematic
system leads to three differential constraint equations The wheel can roll with angular velocity ¢, as well as pivot which
corresponds to a change in #. Combining these leads to two differential equations of constraint

dr —asinfd¢ =0 dy+acosfdep =0 (5.7.3)

These constraints are insufficient to provide finite relations between all the coordinates. That is, the constraints cannot be reduced
by integration to the form of Equation 5.7.1 because there is no functional relation between ¢ and the other three variables, x, y, 6.
Many rolling trajectories are possible between any two points of contact on the plane that are related to different pivot angles. That
is, the point of contact of the disk could pivot plus roll in a circle returning to the same point where z, y, 6 are unchanged whereas
the value of ¢ depends on the circumference of the circle. As a consequence the rolling constraint is non-holonomic except for the
case where the disk rolls in a straight line and remains vertical.

Isoperimetric (integral) equations of constraint

Equations of constraint also can be expressed in terms of direct integrals. This situation is encountered for isoperimetric problems,
such as finding the maximum volume bounded by a surface of fixed area, or the shape of a hanging rope of fixed length. Integral
constraints occur in economics when minimizing some cost algorithm subject to a fixed total cost constraint.

A simple example of an isoperimetric problem involves finding the curve y = y(x) such that the functional has an extremum
where the curve y(x) satisfies boundary conditions such that y(z1) = a and y(z2) = b, that is

x2
F(y) =/ fy,y'sz)dz (5.7.4)
T
is an extremum such that the perimeter also is constrained to satisfy
x2
G(y) :/ 9(y,y';z)dz =1 (5.7.5)
Ty

where [ is a fixed length. This integral constraint is geometric and holonomic. Another example is finding the minimum surface
area of a closed surface subject to the enclosed volume being the constraint.

Properties of the constraint equations

Holonomic constraints

Geometric constraints can be expressed in the form of an algebraic equation that directly specifies the shape of the surface of
constraint

91,92, Y3, -.-52) =0 (5.7.6)

Such a system is called holonomic since there is a direct relation between the coupled variables. An example of such a holonomic
geometric constraint is if the motion is confined to the surface of a sphere of radius R which can be written in the form

g=2+y?+22—R?*=0 (5.7.7)

Non-holonomic constraints

There are many classifications of non-holonomic constraints that exist if Equation 5.7.6 is not satisfied. The algebraic approach is
difficult to handle when the constraint is an inequality, such as the requirement that the location is restricted to lie inside a spherical
shell of radius R which can be expressed as

g=2*+y*+2°—R*<0 (5.7.8)

This non-holonomic constrained system has a one-sided constraint. Systems usually are non-holonomic if the constraint is
kinematic as discussed above.
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Partial Holonomic constraints

Partial-holonomic constraints are holonomic for a restricted range of the constraint surface in coordinate space, and this range can
be case specific. This can occur if the constraint force is one-sided and perpendicular to the path. An example is the pendulum with
the mass attached to the fulcrum by a flexible string that provides tension but not compression. Then the pendulum length is
constant only if the tension in the string is positive. Thus the pendulum will be holonomic if the gravitational plus centrifugal
forces are such that the tension in the string is positive, but the system becomes non-hononomic if the tension is negative as can
happen when the pendulum rotates to an upright angle where the centrifugal force outwards is insufficient to compensate for the
vertical downward component of the gravitational force. There are many other examples where the motion of an object is
holonomic when the object is pressed against the constraint surface, such as the surface of the Earth, but is unconstrained if the
object leaves the surface.

Time dependence

A constraint is called scleronomic if the constraint is not explicitly time dependent. This ignores the time dependence contained
within the solution of the equations of motion. Fortunately a major fraction of systems are scleronomic. The constraint is called
rheonomic if the constraint is explicitly time dependent. An example of a rheonomic system is where the size or shape of the
surface of constraint is explicitly time dependent such as a deflating pneumatic tire.

Energy Conservation

The solution depends on whether the constraint is conservative or dissipative, that is, if friction or drag are acting. The system will
be conservative if there are no drag forces, and the constraint forces are perpendicular to the trajectory of the path such as the
motion of a charged particle in a magnetic field. Forces of constraint can result from sliding of two solid surfaces, rolling of solid
objects, fluid flow in a liquid or gas, or result from electromagnetic forces. Energy dissipation can result from friction, drag in a
fluid or gas, or finite resistance of electric conductors leading to dissipation of induced electric currents in a conductor, e.g. eddy
currents.

A rolling constraint is unusual in that friction between the rolling bodies is necessary to maintain rolling. A disk on a frictionless
inclined plane will conserve it’s angular momentum since there is no torque acting if the rolling contact is frictionless, that is, the
disk will just slide. If the friction is sufficient to stop sliding, then the bodies will roll and not slide. A perfect rolling body does not
dissipate energy since no work is done at the instantaneous point of contact where both bodies are in zero relative motion and the
force is perpendicular to the motion. In real life, a rolling wheel can involve a very small energy dissipation due to deformation at
the point of contact coupled with non-elastic properties of the material used to make the wheel and the plane surface. For example,
a pneumatic tire can heat up and expand due to flexing of the tire.

Treatment of constraint forces in variational calculus

There are three major approaches to handle constraint forces in variational calculus. All three of them exploit the tremendous
freedom and flexibility available when using generalized coordinates. The (1) generalized coordinate approach, described in
chapter 5.8, exploits the correlation of the n coordinates due to the m constraint forces to reduce the dimension of the equations of
motion to s =n—m degrees of freedom. This approach embeds the m constraint forces, into the choice of generalized
coordinates and does not determine the constraint forces, (2) Lagrange multiplier approach, described in chapter 5.9, exploits
generalized coordinates but includes the m constraint forces into the Euler equations to determine both the constraint forces in
addition to the n equations of motion. (3) Generalized forces approach, described in chapter 6.7.3,introduces constraint and other
forces explicitly.
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