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11.12: Two-body Scattering
Two moving bodies, that are interacting via a central force, scatter when the force is repulsive, or when an attractive system is
unbound. Two-body scattering of bodies is encountered extensively in the fields of astronomy, atomic, nuclear, and particle
physics. The probability of such scattering is most conveniently expressed in terms of scattering cross sections defined below.

Total two-body scattering cross section

Figure : Scattering probability for an incident beam of cross sectional area A by a target body of cross sectional area .

The concept of scattering cross section for two-body scattering is most easily described for the total two-body cross section. The
probability  that a beam of  incident point particles/second, distributed over a cross sectional area  will hit a single solid
object, having a cross sectional area  is given by the ratio of the areas as illustrated in Figure . That is,

where it is assumed that  For a spherical target body of radius , the cross section  The scattering probability 
is proportional to the cross section  which is the cross section of the target body perpendicular to the beam; thus  has the units of
area.

Since the incident beam of  incident point particles/second, has a cross sectional area , then it will have an areal density 
given by

The number of beam particles scattered per second  by this single target scatterer equals

Thus the cross section for scattering by this single target body is

Realistically one will have many target scatterers in the target and the total scattering probability increases proportionally to the
number of target scatterers. That is, for a target comprising an areal density of  target bodies per unit area of the incident beam,
then the number scattered will increase proportional to the target areal density  That is, there will be  scattering bodies
that interact with the beam assuming that the target has a larger area than the beam. Thus the total number scattered per second 
by a target that comprises multiple scatterers is

Note that this is independent of the cross sectional area of the beam assuming that the target area is larger than that of the beam.
That is, the number scattered per second is proportional to the cross section  times the product of the number of incident particles
per second,  and the areal density of target scatterers, . Typical cross sections encountered in astrophysics are ,
in atomic physics: , and in nuclear physics; 

N. B., the above proof assumed that the target size is larger than the cross sectional area of the incident beam. If the size of the
target is smaller than the beam, then  is replaced by the areal density/s of the beam  and  is replaced by the number of
target particles  and the cross-sectional size of the target cancels.
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Differential two-body scattering cross section

Figure : The equivalent one-body problem for scattering of a reduced mass  by a force centre in the centre of mass system.

The differential two-body scattering cross section gives much more detailed information of the scattering force than does the total
cross section because of the correlation between the impact parameter and the scattering angle. That is, a measurement of the
number of beam particles scattered into a given solid angle as a function of scattering angles  probes the radial form of the
scattering force.

The differential cross section for scattering of an incident beam by a single target body into a solid angle  at scattering angles 
 is defined to be

where the right-hand side is the ratio of the number scattered per target nucleus into solid angle  to the incident beam
intensity  .

Similar reasoning used to derive Equation  leads to the number of beam particles scattered into a solid angle  for 
beam particles incident upon a target with areal density  is

Consider the equivalent one-body system for scattering of one body by a scattering force center in the center of mass. As shown in
figures  and , the perpendicular distance between the center of force of the two body system and trajectory of the
incoming body at infinite distance is called the impact parameter . For a central force the scattering system has cylindrical
symmetry, therefore the solid angle  can be integrated over the azimuthal angle  to give 

For the inverse-square, two-body, central force there is a one-to-one correspondence between impact parameter  and scattering
angle  for a given bombarding energy. In this case, assuming conservation of flux means that the incident beam particles passing
through the impact-parameter annulus between  and  must equal the the number passing between the corresponding angles 

 and  That is, for an incident beam flux of   the number of particles per second passing through the
annulus is

The modulus is used to ensure that the number of particles is always positive. Thus

Impact parameter dependence on scattering angle

If the function  is known, then it is possible to evaluate  which can be used in Equation  to calculate the
differential cross section. A simple and important case to consider is two-body elastic scattering for the inverse-square law force
such as the Coulomb or gravitational forces. To avoid confusion in the following discussion, the center-of-mass scattering angle
will be called  while the angle used to define the hyperbolic orbits in the discussion of trajectories for the inverse square law, will
be called .
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In chapter  the equivalent one-body representation gave that the radial distance for a trajectory for the inverse square law is
given by

Note that closest approach occurs when  while for  the bracket must equal zero, that is

The polar angle  is measured with respect to the symmetry axis of the two-body system which is along the line of distance of
closest approach as shown in Figure . The geometry and symmetry show that the scattering angle  is related to the
trajectory angle  by

Equation  gives that

Since

then the scattering angle can be written as.

Let , then

For the repulsive inverse square law

where  is taken to be positive for a repulsive force. Thus the scattering angle relation becomes

Figure : Impact parameter dependence on scattering angle for Rutherford scattering.
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The solution of this equation is given by equation  to be

where the eccentricity

For   then, as shown previously,

Therefore

that is, the impact parameter  is given by the relation

Thus, for an inverse-square law force, the two-body scattering has a one-to-one correspondence between impact parameter  and
scattering angle  as shown schematically in Figure .

Figure : Classical trajectories for scattering to a given angle by the repulsive Coulomb field plus the attractive nuclear field
for three different impact parameters. Path 1 is pure Coulomb. Paths 2 and 3 include Coulomb plus nuclear interactions. The dashed
parts of trajectories 2 and 3 correspond to only the Coulomb force acting, i.e. zero nuclear force

If  is negative, which corresponds to an attractive inverse square law, then one gets the same relation between impact parameter
and scattering angle except that the sign of the impact parameter  is opposite. This means that the hyperbolic trajectory has an
interior rather than exterior focus. That is, the trajectory partially orbits around the center of force rather than being repelled away.

Note that for  then

which is what you would expect from equating the incident kinetic energy to the potential energy at the distance of closest
approach.

For scattering of two nuclei by the repulsive Coulomb force, if the impact parameter becomes small enough, the attractive nuclear
force also acts leading to impact-parameter dependent effective potentials illustrated in Figure . Trajectory  does not
overlap the nuclear force and thus is pure Coulomb. Trajectory  interacts at the periphery of the nuclear potential and the
trajectory deviates from pure Coulomb shown dashed. Trajectory  passes through the interior of the nuclear potential. These three
trajectories all can lead to the same scattering angle and thus there no longer is a one-to-one correspondence between scattering
angle and impact parameter.
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Rutherford scattering
Two models of the nucleus evolved in the ’s, the Rutherford model assumed electrons orbiting around a small nucleus like
planets around the sun, while J.J. Thomson’s ”plum-pudding” model assumed the electrons were embedded in a uniform sphere of
positive charge the size of the atom. When Rutherford derived his classical formula in  he realized that it can be used to
determine the size of the nucleus since the electric field obeys the inverse square law only when outside of the charged spherical
nucleus. Inside a uniform sphere of charge the electric field is  and thus the scattering cross section will not obey the
Rutherford relation for distances of closest approach that are less than the radius of the sphere of negative charge. Observation of
the angle beyond which the Rutherford formula breaks down immediately determines the radius of the nucleus.

This cross section assumes elastic scattering by a repulsive two-body inverse-square central force. For scattering of nuclei in the
Coulomb potential, the constant  is given to be

The cross section, scattering angle and  of Equation  are evaluated in the center-of-mass coordinate system, whereas
usually two-body elastic scattering data involve scattering of the projectiles by a stationary target as discussed in chapter 

Gieger and Marsden performed scattering of  MeV  particles from a thin gold foil and proved that the differential scattering
cross section obeyed the Rutherford formula back to angles corresponding to a distance of closest approach of  which is
much smaller that the  size of the atom. This validated the Rutherford model of the atom and immediately led to the Bohr
model of the atom which played such a crucial role in the development of quantum mechanics. Bohr showed that the agreement
with the Rutherford formula implies the Coulomb field obeys the inverse square law to small distances. This work was performed
at Manchester University, England between  and . It is fortunate that the classical result is identical to the quantal cross
section for scattering, otherwise the development of modern physics could have been delayed for many years.

Scattering of very heavy ions, such as Pb, can electromagnetically excite target nuclei. For the Coulomb force the impact
parameter  and the distance of closest approach,  are directly related to the scattering angle  by Equation . Thus
observing the angle of the scattered projectile unambiguously determines the hyperbolic trajectory and thus the electromagnetic
impulse given to the colliding nuclei. This process, called Coulomb excitation, uses the measured angular distribution of the
scattered ions for inelastic excitation of the nuclei to precisely and unambiguously determine the Coulomb excitation cross section
as a function of impact parameter. This unambiguously determines the shape of the nuclear charge distribution.

Assume two-body scattering by a potential  where . This corresponds to a repulsive two-body force .
Insert this force into Binet’s differential orbit, equation , gives

The solution is of the form  where  and  are constants of integration,  and

Initially ,  and therefore . Also at , , that is . Then

The initial energy gives that  Hence the orbit equation is
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Example : Two-body scattering by an inverse cubic force11.12.1
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The above trajectory has a distance of closest approach, , when . Moreover, due to the symmetry of the orbit,
the scattering angle  is given by

Since  then

This gives that the impact parameter  is related to scattering angle by

This impact parameter relation can be used in Equation  to give the differential cross section

These orbits are called Cotes spirals.

The term "barn" was chosen because nuclear physicists joked that the cross sections for neutron scattering by nuclei were as large
as a barn door.

This page titled 11.12: Two-body Scattering is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
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