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14.6: General Analytic Theory for Coupled Linear Oscillators
The discussion of a coupled double-oscillator system in Section  has shown that it is possible to select symmetric and
antisymmetric normal modes that are independent and each have characteristic frequencies. The normal coordinates for these two
normal modes correspond to linear superpositions of the spatial amplitudes of the two oscillators and can be obtained by a rotation
into the appropriate normal coordinate system. Extension of this to systems comprising  coupled linear oscillators, requires
development of a general analytic theory, that is capable of finding the normal modes and their eigenvalues and eigenvectors. As
illustrated for the double oscillator, the solution of many coupled linear oscillators is a classic eigenvalue problem where one has to
rotate to the principal axis system to project out the normal modes. The following discussion presents a general approach to the
problem of finding the normal coordinates for a system of  coupled linear oscillators.

Consider a conservative system of  coupled oscillators, described in terms of generalized coordinates  and  with subscript 
 for a system with  degrees of freedom. The coupled oscillators are assumed to have a stable equilibrium with

generalized coordinates  at equilibrium. In addition, it is assumed that the oscillation amplitudes are sufficiently small to ensure
that the system is linear.

For the equilibrium position , the Lagrange equations must satisfy

Every non-zero term of the form  in Lagrange’s equations must contain at least either  or  which are zero at equilibrium;

thus all such terms vanish at equilibrium. At equilibrium

where the subscript  designates at equilibrium.

Kinetic energy tensor T
In chapter  it was shown that, in terms of fixed rectangular coordinates, the kinetic energy for  bodies, with  generalized
coordinates, is expressed as

Expressing these in terms of generalized coordinates  where , then the generalized velocities are
given by

As discussed in chapter , if the system is scleronomic then the partial derivative

Thus the kinetic energy, Equation , of a scleronomic system can be written as a homogeneous quadratic function of the
generalized velocities

where the components of the kinetic energy tensor  are
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2
α,i (14.6.3)

= ( , t)xα,i xα,i qj j= 1, 2, . . .n
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Note that if the velocities  correspond to translational velocity, then the kinetic energy tensor  corresponds to an effective mass
tensor, whereas if the velocities correspond to angular rotational velocities, then the kinetic energy tensor  corresponds to the
inertia tensor.

It is possible to make an expansion of the  about the equilibrium values of the form

Only the first-order term will be kept since the second and higher terms are of the same order as the higher order terms ignored in

the Taylor expansion of the potential. Thus, at the equilibrium point, assume that  where .

Potential energy tensor V
Equations  plus  imply that

where .

Make a Taylor expansion about equilibrium for the potential energy, assuming for simplicity that the coordinates have been
translated to ensure that  at equilibrium. This gives

The linear term is zero since  at the equilibrium point, and without loss of generality, the potential can be measured

with respect to . Assume that the amplitudes are small, then the expansion can be restricted to the quadratic term, corresponding
to the simple linear oscillator potential

That is

where the components of the potential energy tensor  are defined as

Note that the order of differentiation is unimportant and thus the quantity  is symmetric

The motion of the system has been specified for small oscillations around the equilibrium position and it has been shown that 
 has a minimum value at equilibrium which is taken to be zero for convenience.

In conclusion, equations  and  give

where the components of the kinetic energy tensor  and potential energy tensor  are
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Note that  and  may have different units, but all the terms in the summations for both  and , have units of energy. The 
and  values are evaluated at the equilibrium point, and thus both  and  are  arrays of values evaluated at the
equilibrium location.

Equations of motion
Both the kinetic energy and potential energy terms are products of the coordinates leading to a set of coupled equations that are
complicated to solve. The problem is greatly simplified by selecting a set of normal coordinates for which both  and  are
diagonal, then the coupling terms disappear. Thus a coordinate transformation must be found that simultaneously diagonalizes 
and  in order to obtain a set of normal coordinates.

The kinetic energy  is only a function of generalized velocities  while the conservative potential energy is only a function of the
generalized coordinates . Thus the Lagrange equations

reduce to

But

and

Thus the Lagrange equations reduce to the following set of equations of motion,

For each , where , there exists a set of  second-order linear homogeneous differential equations with constant
coefficients. Since the system is oscillatory, it is natural to try a solution of the form

Assuming that the system is conservative, then this implies that  is real, since an imaginary term for  would lead to an
exponential damping term. The arbitrary constants are the real amplitude  and the phase . Substitution of this trial solution for
each  leads to a set of equations

where the common factor  has been removed. Equation  corresponds to a set of  linear homogeneous algebraic
equations that the  amplitudes must satisfy for each . For a non-trivial solution to exist, the determinant of the coefficients must
vanish, that is
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where the symmetry  has been included. This is the standard eigenvalue problem for which the above determinant gives
the secular equation or the characteristic equation. It is an equation of degree  in . The  roots of this equation are  where 

 are the characteristic frequencies or eigenfrequencies of the normal modes.

Substitution of  into Equation  determines the ratio  for this solution which defines the
components of the -dimensional eigenvector . That is, solution of the secular equations have determined the eigenvalues and
eigenvectors of the  solutions of the coupled-channel system.

Superposition
The equations of motion  are linear equations that satisfy superposition. Thus the most general solution 

 can be a superposition of the  eigenvectors , that is

Only the real part of  is meaningful, that is,

Thus the most general solution of these linear equations involves a sum over the eigenvectors of the system which are cosine
functions of the corresponding eigenfrequencies.

Eigenfunction Orthonormality
It can be shown that the eigenvectors are orthogonal. In addition, the above procedure only determines ratios of amplitudes, thus
there is an indeterminacy that can be used to normalize the . Thus the eigenvectors form an orthonormal set. Orthonormality of
the eigenfunctions for the rank 3 inertia tensor was illustrated in chapter . Similar arguments apply that allow extending
orthonormality to higher rank cases such that for -body coupled oscillators.

The eigenfunction orthogonality for  coupled oscillators can be proved by writing Equation  for both the  root and the
 root. That is,

Multiply Equation  by  and sum over . Similarly multiply Equation  by  and sum over . These summations
lead to

Note that the left-hand sides of these two equations are identical. Thus taking the difference between these equations gives

Note that if , that is, assuming that the eigenfrequencies are not degenerate, then to ensure that Equation  is
zero requires that
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This shows that the eigenfunctions are orthogonal. If the eigenfrequencies are degenerate, i.e. , then, with no loss of
generality, the axes  and  can be chosen to be orthogonal.

The eigenfunction normalization can be chosen freely since only ratios of the eigenfunction components  are determined when
 is used in Equation . The kinetic energy, given by Equation  must be positive, or zero for the case of a static

system. That is

Use the time derivative of Equation  to determine  and insert into Equation  gives that the kinetic energy is

For the diagonal term 

Since the term in the square brackets must be positive, then

Since this sum must be a positive number, and the magnitude of the amplitudes can be chosen freely, then it is possible to
normalize the eigenfunction amplitudes to unity. That is, choose that

The orthogonality equation,  and the normalization Equation  can be combined into a single orthonormalization
equation

This has shown that the eigenvectors form an orthonormal set.

Since the  component of the  eigenvector is , then the  eigenvector can be written in the form

where  are the unit vectors for the generalized coordinates.

Normal coordinates
The above general solution of the coupled-oscillator problem is best expressed in terms of the normal coordinates which are
independent. It is more transparent if the superposition of the normal modes are written in the form

where the complex factor  includes the arbitrary scale factor to allow for arbitrary amplitudes  as well as the fact that the
amplitudes  have been normalized and the phase factor  has been chosen.
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then Equation  can be written as

Equation  can be expressed schematically as the matrix multiplication

The  are the normal coordinates which can be expressed in the form

Each normal mode  corresponds to a single eigenfrequency,  which satisfies the linear oscillator equation

Contributors and Attributions
Douglas Cline (University of Rochester)

This page titled 14.6: General Analytic Theory for Coupled Linear Oscillators is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

14.6.42

(t) = (t)qj ∑
r

n

ajrηr (14.6.44)

14.6.44

q = {a}⋅η (14.6.45)

(t)ηr

η= {a q}−1 (14.6.46)

ηr ωr

+ = 0η̈r ω2
rηr (14.6.47)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9640?pdf
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://www.pas.rochester.edu/
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/14%3A_Coupled_Linear_Oscillators/14.06%3A_General_Analytic_Theory_for_Coupled_Linear_Oscillators
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.pas.rochester.edu/~cline/Cline_home.htm
http://classicalmechanics.lib.rochester.edu/

