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16.9: Summary and Implications
The goal of this chapter is to provide a glimpse into the classical mechanics of the continua which introduces the Lagrangian
density and Hamiltonian density formulations of classical mechanics.

Lagrangian density formulation

In three dimensional Lagrangian density  is related to the Lagrangian  by taking the volume integral of
the Lagrangian density.

Applying Hamilton’s Principle to the three-dimensional Lagrangian density leads to the following set of differential equations of
motion

Hamiltonian density formulation
In the limit that the coordinates  are continuous, then the Hamiltonian density can be expressed in terms of a volume integral
over the momentum density  and the Lagrangian density  where

Then the obvious definition of the Hamiltonian density  is

where the Hamiltonian density is given by

These Lagrangian and Hamiltonian density formulations are of considerable importance to field theory and fluid mechanics.

Linear elastic solids
The theory of continuous systems was applied to the case of linear elastic solids. The stress tensor  is a rank 2 tensor defined as
the ratio of the force vector  and the surface element vector . That is, the force vector is given by the inner product of the
stress tensor  and the surface element vector .

The strain tensor  also is a rank 2 tensor defined as the ratio of the strain vector  and infinitessimal area .

where the component form of the rank 2 strain tensor is

The modulus of elasticity is defined as the slope of the stress-strain curve. For linear, homogeneous, elastic matter, the potential
energy density  separates into diagonal and off-diagonal components of the strain tensor

L(q, , ∇ ⋅ q, x, y, z, t)
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L
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H

H = ∫ HdV = ∫ (π ⋅ −L)dτq̇ (16.9.4)

H = π ⋅ −Lq̇ (16.9.5)

T

dF dA

T dA

dF = T ⋅ dA (16.9.6)

σ ξ dA

dξ = σ ⋅ dA (16.9.7)
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where the constants  and  are Lamé’s moduli of elasticity which are positive. The stress tensor is related to the strain tensor by

Electromagnetic field theory
The rank 2 Maxwell stress tensor  has components

The divergence theorem allows the total electromagnetic force, acting of the volume , to be written as

The total momentum flux density is given by

where the electromagnetic field momentum density is given by the Poynting vector  as .

Ideal fluid dynamics
Mass conservation leads to the continuity equation

Euler’s hydrodynamic equation gives

where  is the scalar gravitational potential. If the flow is irrotational and time independent then

Viscous fluid dynamics
For incompressible flow the stress tensor term simplifies to . Then the Navier-Stokes equation becomes

where  is the viscosity drag term. The left-hand side of Equation  represents the rate of change of momentum per unit
volume while the right-hand side represents the summation of the forces per unit volume that are acting.

The Reynolds number is a dimensionless number that characterizes the ratio of inertial forces to viscous forces in a viscous
medium. The evolution of flow from laminar flow to turbulent flow, with increase of Reynolds number, was discussed.

The classical mechanics of continuous fields encompasses a remarkably broad range of phenomena with important applications to
laminar and turbulent fluid flow, gravitation, electromagnetism, relativity, and quantum fields.
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S = Sπfield ϵ0μ0
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∇ ⋅ T = μ v∇2
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