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2.14: Newton's Law of Gravitation
Gravitation plays a fundamental role in classical mechanics as well as being an important example of a conservative central 
force. Although you may not be familiar with the following presentation addressing the gravitational field , it is assumed that you
have met the identical discussion when addressing the electric field  in electrostatics. The only difference is that mass  replaces
charge  and gravitational field  replaces the electric field . Thus this chapter is designed to be a review of the concepts that can
be used for study of any conservative inverse-square law central fields.

In 1666 Newton formulated the Theory of Gravitation which he eventually published in the Principia in 1687. Newton’s Law of
Gravitation states that each mass particle attracts every other particle in the universe with a force that varies directly as the product
of the mass and inversely as the square of the distance between them. That is, the force on a gravitational point mass  produced
by a mass 

where  is the unit vector pointing from the gravitational mass  to the gravitational mass  as shown in Figure . Note
that the force is attractive, that is, it points toward the other mass. This is in contrast to the repulsive electrostatic force between two
similar charges. Newton’s law was verified by Cavendish using a torsion balance. The experimental value of 

The gravitational force between point particles can be extended to finite-sized bodies using the fact that the gravitational force field
satisfies the superposition principle, that is, the net force is the vector sum of the individual forces between the component point
particles. Thus the force summed over the mass distribution is

where  is the vector from the gravitational mass  to the gravitational mass  at the position .

For a continuous gravitational mass distribution , the net force on the gravitational mass  at the location  can be written
as

where  is the volume element at the point  as illustrated in Figure .

Figure : Gravitational force on mass m due to an infinitessimal volume element of the mass density distribution.

Gravitational and inertial mass

Newton's Laws use the concept of inertial mass  in relating the force  to acceleration 

and momentum  to velocity 

That is, inertial mass is the constant of proportionality relating the acceleration to the applied force.
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The concept of gravitational mass  is the constant of proportionality between the gravitational force and the amount of matter.
That is, on the surface of the earth, the gravitational force is assumed to be

where  is the gravitational field which is a position-dependent force per unit gravitational mass pointing towards the center of the
Earth. The gravitational mass is measured when an object is weighed.

Newton’s Law of Gravitation leads to the relation for the gravitational field  at the location  due to a gravitational mass
distribution at the location  as given by the integral over the gravitational mass density 

The acceleration of matter in a gravitational field relates the gravitational and inertial masses

Thus

That is, the acceleration of a body depends on the gravitational strength  and the ratio of the gravitational and inertial masses. It
has been shown experimentally that all matter is subject to the same acceleration in vacuum at a given location in a gravitational
field. That is,  is a constant common to all materials. Galileo first showed this when he dropped objects from the Tower of Pisa.
Modern experiments have shown that this is true to 5 parts in 10 .

The exact equivalence of gravitational mass and inertial mass is called the weak principle of equivalence which underlies the
General Theory of Relativity as discussed in chapter . It is convenient to use the same unit for the gravitational and inertial
masses and thus they both can be written in terms of the common mass symbol .

Therefore the subscripts  and  can be omitted in equations  and . Also the local acceleration due to gravity  can
be written as

The gravitational field  has units of N/kg in the MKS system while the acceleration  has units .

Gravitational potential energy 
Chapter  showed that a conservative field can be expressed in terms of the concept of a potential energy  which depends
on position. The potential energy difference  between two points  and , is the work done moving from  to  against a
force . That is:

In general, this line integral depends on the path taken.

Consider the gravitational field produced by the single point mass . The work done moving a mass  from  to  in this
gravitational field can be calculate along an arbitrary path shown in Figure  by assuming Newton's law of gravitation. Then
the force on  due to point mass  is:
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Figure : Work done against a force field moving from a to b.

Expressing  in spherical coordinates  gives that the path integral  from  to 
 is

since the scalar product of the unit vectors . Note that the second two terms also cancel since  since the
unit vectors are mutually orthogonal. Thus the line integral just depends only on the starting and ending radii and is independent of
the angular coordinates or the detailed path taken between  and .

Consider the Principle of Superposition for a gravitational field produced by a set of n point masses. The line integral then can be
written as

Thus the net potential energy difference is the sum of the contributions from each point mass producing the gravitational force
field. Since each component is conservative, then the total potential energy difference also must be conservative. For a conservative
force, this line integral is independent of the path taken, it depends only on the starting and ending positions,  and . That is, the
potential energy is a local function dependent only on position. The usefulness of gravitational potential energy is that, since the
gravitational force is a conservative force, it is possible to solve many problems in classical mechanics using the fact that the sum
of the kinetic energy and potential energy is a constant. Note that the gravitational field is conservative, since the potential energy
difference  is independent of the path taken. It is conservative because the force is radial and time independent, it is not due
to the  dependence of the field.

Gravitational potential 

Using  gives that the change in potential energy due to moving a mass  from  to  in a gravitational field  is:

Note that the probe mass  factors out from the integral. It is convenient to define a new quantity called gravitational potential 
where

That is; gravitational potential difference is the work that must be done, per unit mass, to move from  to  with no change in
kinetic energy. Be careful not to confuse the gravitational potential energy difference  and gravitational potential difference 

, that is,  has units of energy, Joules while  has units of Joules/Kg.

The gravitational potential is a property of the gravitational force field; it is given as minus the line integral of the gravitational
field from  to . The change in gravitational potential energy for moving a mass  from  to  is given in terms of gravitational

2.14.2

dl dl = dr +rdθ +r sinθdϕr̂ θ̂ ϕ̂ 2.14.12 ( )raθaϕa

( )rbθbϕb

ΔUa→b =

=

− F ⋅ dl = [G ( ⋅ dr+ ⋅ dθ+r sinθ ⋅ dϕ)] = G ⋅ dr∫
b

a

∫
b

a

m1m2

r2
r̂ r̂ r̂ θ̂ r̂ ϕ̂ ∫

b

a

m1m0

r2
r̂ r̂

−G [ − ]m1m0
1

rb

1

ra

⋅ = 1r̂ r̂ ⋅ = ⋅ = 0r̂ θ̂ r̂ ϕ̂

( )raθaϕa ( )rbθbϕb

Δ = − ⋅ dl = − ⋅ dl = ΔU net
a→b

∫
rb

ra

Fnet ∑
i=1

n

∫
rb

ra

Fi ∑
i=1

n

U i
a→b

(2.14.14)

ra rb

Δnet
a→b

1
r2

ϕ

F = gm0 m0 a b g

Δ = − ⋅ dlU net
a→b m0 ∫

rb

ra

gnet (2.14.15)

m0 ϕ

= = − ⋅ dlΔnet
a→b

ΔU net
a→b

m0
∫

rb

ra

gnet (2.14.16)

a b

ΔUa→b

Δϕa→b ΔU , Δϕ

a b m0 a b

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/13961?pdf


2.14.4 https://phys.libretexts.org/@go/page/13961

potential by:

Superposition and potential

Previously it was shown that the gravitational force is conservative for the superposition of many masses.

To recap, if the gravitational field

then

Thus gravitational potential is a simple additive scalar field because the Principle of Superposition applies. The gravitational
potential, between two points differing by  in height, is . Clearly, the greater  or , the greater the energy released by the
gravitational field when dropping a body through the height . The unit of gravitational potential is the 

Potential theory
The gravitational force and electrostatic force both obey the inverse square law, for which the field and corresponding potential are
related by:

for an arbitrary infinitessimal element distance  the change in electric potential  is

Using cartesian coordinates both  and  can be written as

Taking the scalar product gives:

Differential calculus expresses the change in potential  in terms of partial derivatives by:

By association,  and  imply that

Thus on each axis, the gravitational field can be written as minus the gradient of the gravitational potential. In three dimensions, the
gravitational field is minus the total gradient of potential and the gradient of the scalar function  can be written as:

In cartesian coordinates this equals

Thus the gravitational field is just the gradient of the gravitational potential, which always is perpendicular to the equipotentials.
Skiers are familiar with the concept of gravitational equipotentials and the fact that the line of steepest descent, and thus maximum
acceleration, is perpendicular to gravitational equipotentials of constant height. The advantage of using potential theory for inverse-
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square law forces is that scalar potentials replace the more complicated vector forces, which greatly simplifies calculation. Potential
theory plays a crucial role for handling both gravitational and electrostatic forces.

Curl of gravitational field
It has been shown that the gravitational field is conservative, that is  is independent of the path taken between  and 
Therefore, Equation  gives that the gravitational potential is independent of the path taken between two points  and .
Consider two possible paths between  and  as shown in Figure . The line integral from  to  via route 1 is equal and
opposite to the line integral back from  to  via route 2 if the gravitational field is conservative as shown earlier.

Figure : Circulation of the gravitational field.

A better way of expressing this is that the line integral of the gravitational field is zero around any closed path. Thus the line
integral between  and , via path 1, and returning back to , via path 2, are equal and opposite. That is, the net line integral for a
closed loop is zero.

which is a measure of the circulation of the gravitational field. The fact that the circulation equals zero corresponds to the statement
that the gravitational field is radial for a point mass.

Stokes Theorem, discussed in appendix , states that

Thus the zero circulation of the gravitational field can be rewritten as

Since this is independent of the shape of the perimeter , therefore

That is, the gravitational field is a curl-free field.

A property of any curl-free field is that it can be expressed as the gradient of a scalar potential  since

Therefore, the curl-free gravitational field can be related to a scalar potential  as

Thus  is consistent with the above definition of gravitational potential  in that the scalar product

An identical relation between the electric field and electric potential applies for the inverse-square law electrostatic field.

Reference potentials

Note that only differences in potential energy, , and gravitational potential, , are meaningful, the absolute values depend on
some arbitrarily chosen reference. However, often it is useful to measure gravitational potential with respect to a particular
arbitrarily chosen reference point  such as to sea level. Aircraft pilots are required to set their altimeters to read with respect to
sea level rather than their departure airport. This ensures that aircraft leaving from say both Rochester,   and Denver  
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, have their altimeters set to a common reference to ensure that they do not collide. The gravitational force is the gradient of the
gravitational field which only depends on differences in potential, and thus is independent of any constant reference.

Gravitational potential due to continuous distributions of charge

Suppose mass is distributed over a volume  with a density  at any point within the volume. the gravitational potential at any field
point  due to an element of mass  at the point  is given by:

This integral is over a scalar quantity. Since gravitational potential  is a scalar quantity, it is easier to compute than is the vector
gravitational field . If the scalar potential field is known, then the gravitational field is derived by taking the gradient of the
gravitational potential.

Gauss's Law for Gravitation
The flux  of the gravitational field  through a surface , as shown in Figure  is defined as

Note that there are two possible perpendicular directions that could be chosen for the surface vector . Using Newton’s law of
gravitation for a point mass  the flux through the surface  is

Note that the solid angle subtended by the surface  at an angle  to the normal from the point mass is given by

Thus the net gravitational flux equals

Figure : Flux of the gravitational field through an infinitessimal surface element dS.

Consider a closed surface where the direction of the surface vector  is defined as outwards. The net flux out of this closed
surface is given by

This is independent of where the point mass lies within the closed surface or on the shape of the closed surface. Note that the solid
angle subtended is zero if the point mass lies outside the closed surface. Thus the flux is as given by Equation  if the mass is
enclosed by the closed surface, while it is zero if the mass is outside of the closed surface.

Since the flux for a point mass is independent of the location of the mass within the volume enclosed by the closed surface, and
using the principle of superposition for the gravitational field, then for n enclosed point masses the net flux is

msl

v ρ

p dm = ρv p′

Δ = −Gϕ∞→p ∫
v

ρ( )dp′ v′

r pp′

(2.14.35)

ϕ

g

Φ g S 2.14.4

Φ ≡ g ⋅ dS∫
S

(2.14.36)

dS

m S

Φ = −Gm ∫
S

⋅ dSr̂

r2
(2.14.37)

dS θ

dΩ = =
cosθdS

r2

⋅ dSr̂

r2
(2.14.38)

Φ = −Gm dΩ∫
S

(2.14.39)

2.14.4

dS

Φ = −Gm = −Gm dΩ = −Gm4π∮
S

⋅ dSr̂

r2
∮
S

(2.14.40)

2.14.40

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/13961?pdf


2.14.7 https://phys.libretexts.org/@go/page/13961

This can be extended to continuous mass distributions, with local mass density , giving that the net flux

Gauss's Divergence Theorem was given in appendix  as

Applying the Divergence Theorem to Gauss's law gives that

or

This is true independent of the shape of the surface, thus the divergence of the gravitational field

This is a statement that the gravitational field of a point mass has a  dependence.

Using the fact that the gravitational field is conservative, this can be expressed as the gradient of the gravitational potential ,

and Gauss’s law, then becomes

which also can be written as Poisson’s equation

Knowing the mass distribution  allows determination of the potential by solving Poisson’s equation. A special case that often is
encountered is when the mass distribution is zero in a given region. Then the potential for this region can be determined by solving
Laplace’s equation with known boundary conditions.

For example, Laplace’s equation applies in the free space between the masses. It is used extensively in electrostatics to compute the
electric potential between charged conductors which themselves are equipotentials.

Condensed forms of Newton's Law of Gravitation

The above discussion has resulted in several alternative expressions of Newton’s Law of Gravitation that will be summarized here.
The most direct statement of Newton’s law is

An elegant way to express Newton’s Law of Gravitation is in terms of the flux and circulation of the gravitational field. That is
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Circulation:

The flux and circulation are better expressed in terms of the vector differential concepts of divergence and curl.

Divergence:

Curl:

Remember that the flux and divergence of the gravitational field are statements that the field between point masses has a 
dependence. The circulation and curl are statements that the field between point masses is radial.

Because the gravitational field is conservative it is possible to use the concept of the scalar potential field . This concept is
especially useful for solving some problems since the gravitational potential can be evaluated using the scalar integral

An alternate approach is to solve Poisson’s equation if the boundary values and mass distributions are known where Poisson’s
equation is:

These alternate expressions of Newton’s law of gravitation can be exploited to solve problems. The method of solution is identical
to that used in electrostatics.

Consider the simple case of the gravitational field due to a uniform sphere of matter of radius  and mass . Then the volume
mass density

The gravitational field and potential for this uniform sphere of matter can be derived three ways;

a) The field can be evaluated by directly integrating over the volume

b) The potential can be evaluated directly by integration of

and then

c) The obvious spherical symmetry can be used in conjunction with Gauss’s law to easily solve this problem.

That is: for 
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Similarly, for 

That is:

Figure : Gravitational field  and gravitational potential  of a uniformly-dense spherical mass distribution of radius .

The field inside the Earth is radial and is proportional to the distance from the center of the Earth. This is Hooke’s Law, and
thus ignoring air drag, any body dropped down a hole through the center of the Earth will undergo harmonic oscillations with

an angular frequency of . This gives a period of oscillation of 1.4 hours, which is about the length of a 

 lecture in classical mechanics, which may seem like a long time.

Clearly method (c) is much simpler to solve for this case. In general, look for a symmetry that allows identification of a surface
upon which the magnitude and direction of the field is constant. For such cases use Gauss’s law. Otherwise use methods (a) or
(b) whichever one is easiest to apply. Further examples will not be given here since they are essentially identical to those
discussed extensively in electrostatics.
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