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3.9: Waveform Analysis

Harmonic decomposition

As described in appendix , when superposition applies, then a Fourier series decomposition of the form  can be made of
any periodic function where

or the more general Fourier Transform can be made for an aperiodic function where

Any linear system that is subject to the forcing function  has an output that can be expressed as a linear superposition of the
solutions of the individual harmonic components of the forcing function. Fourier analysis of periodic waveforms in terms of
harmonic trigonometric functions plays a key role in describing oscillatory motion in classical mechanics and signal processing for
linear systems. Fourier’s theorem states that any arbitrary forcing function  can be decomposed into a sum of harmonic terms.
As a consequence two equivalent representations can be used to describe signals and waves; the first is in the time domain which
describes the time dependence of the signal. The second is in the frequency domain which describes the frequency decomposition
of the signal. Fourier analysis relates these equivalent representations.

Figure : The time and frequency representations of a system exhibiting beats.

For example, the superposition of two equal intensity harmonic oscillators in the time domain is given by

The free linearly-damped linear oscillator
The response of the free, linearly-damped, linear oscillator is one of the most frequently encountered waveforms in science and
thus it is useful to investigate the Fourier transform of this waveform. The damped waveform for the underdamped case, shown in
figure (3.5.1) is given by equation (3.5.12), that is

where  and where  is the angular frequency of the underdamped system. The Fourier transform is given by

which is complex and has the famous Lorentz form.
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Figure : The intensity  and Fourier transform  of the free linearly-underdamped harmonic oscillator with 
 and damping .

The intensity of the wave gives

Note that since the average over  of , then the average over the  term gives the intensity 
which has a mean lifetime for the decay of . The  distribution has the classic Lorentzian shape, shown in Figure 

, which has a full width at half-maximum, FWHM, equal to . Note that  is complex and thus one also can determine the
phase shift  which is given by the ratio of the imaginary to real parts of Equation , i.e. .

The mean lifetime of the exponential decay of the intensity can be determined either by measuring  from the time dependence, or
measuring the FWHM  of the Fourier transform . In nuclear and atomic physics excited levels decay by photon
emission with the wave form of the free linearly-damped, linear oscillator. Typically the mean lifetime  usually can be measured
when  whereas for shorter lifetimes the radiation width  becomes sufficiently large to be measured. Thus the two
experimental approaches are complementary.

Damped linear oscillator subject to an arbitrary periodic force
Fourier’s theorem states that any arbitrary forcing function  can be decomposed into a sum of harmonic terms. Consider the
response of a damped linear oscillator to an arbitrary periodic force.

For each harmonic term  the response of a linearly-damped linear oscillator to the forcing function  is
given by equation (3.6.18-3.6.20) to be

The amplitude is obtained by substituting into Equation  the derived values  from the Fourier analysis.

Frequently it is desired to isolate instrumentation from the influence of horizontal and vertical external vibrations that exist in
its environment. One arrangement to achieve this isolation is to mount a heavy base of mass  on weak springs of spring
constant  plus weak damping. The response of this system is given by Equation  which exhibits a resonance at the
angular frequency  associated with each resonant frequency  of the system. For each resonant frequency
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the system amplifies the vibrational amplitude for angular frequencies close to resonance that is, below , while it
attenuates the vibration roughly by a factor of  at higher frequencies. To avoid the amplification near the resonance it is
necessary to make  very much smaller than the frequency range of the vibrational spectrum and have a moderately high 
value. This is achieved by use a very heavy base and weak spring constant so that  is very small. A typical table may have
the resonance frequency at 0.5  which is well below typical perturbing vibrational frequencies, and thus the table attenuates
the vibration by 99% at 5  and even more attenuation for higher frequency perturbations. This principle is used extensively
in design of vibration-isolation tables for optics or microbalance equipment.

Figure : Seismic isolation of an optical bench.
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