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17.4: Relativistic Kinematics

Velocity Transformations

Consider the two parallel coordinate frames with the primed frame moving at a velocity  along the  axis as shown in Figure 
. Velocities of an object measured in both frames are defined to be

Using the Lorentz transformations ,  between the two frames moving with relative velocity  along the  axis,
gives that the velocity along the  axis is

Similarly we get the velocities along the perpendicular  and  axes to be

When  these velocity transformations become the usual Galilean relations for velocity addition. Do not confuse  and 

with ; that is,  and  are the velocities of some object measured in the unprimed and primed frames of reference respectively,
whereas  is the relative velocity of the origin of one frame with respect to the origin of the other frame.

Momentum
Using the classical definition of momentum, that is , the linear momentum is not conserved using the above relativistic
velocity transformations if the mass  is a scalar quantity. This problem originates from the fact that both  and  have non-trivial

transformations and thus  is frame dependent.

Linear momentum conservation can be retained by redefining momentum in a form that is identical in all frames of reference, that
is by referring to the proper time  as measured in the rest frame of the moving object. Therefore we define relativistic linear
momentum as

But we know the time dilation relation

Note that the  in this relation refers to the velocity  between the moving object and the frame; this is quite different from the 

 which refers to the transformation between the two frames of reference. Thus the new relativistic definition of

momentum is
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The relativistic definition of linear momentum is the same as the classical definition with the rest mass  replaced by the
relativistic mass .

Center of momentum coordinate system

The classical relations for handling the kinematics of colliding objects, carry over to special relativity when the relativistic
definition of linear momentum, Equation , is assumed. That is, one can continue to apply conservation of linear momentum.
However, there is one important conceptual difference for relativistic dynamics in that the center of mass no longer is a meaningful
concept due to the interrelation of mass and energy. However, this problem is eliminated by considering the center of momentum
coordinate system which, as in the non-relativistic case, is the frame where the total linear momentum of the system is zero. Using
the concept of center of momentum incorporates the formalism of classical non-relativistic kinematics.

Force

Newton’s second law  is covariant under a Galilean transformation. In special relativity this definition also applies using

the relativistic definition of momentum . The fact that the relativistic momentum  is conserved in the force-free situation, leads
naturally to using the definition of force to be

Then the relativistic momentum is conserved if .

Energy
The classical definition of work done is defined by

Assume , let  and insert the relativistic force relation in Equation , gives

Integrate by parts, followed by algebraic manipulation, gives

Define the rest energy 

and total relativistic energy 
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then Equation  can be written as

This is the famous Einstein relativistic energy that relates the equivalence of mass and energy. The total relativistic energy  is a
conserved quantity in nature. It is an extension of the conservation of energy and manifestations of the equivalence of energy and
mass occur extensively in the real world.

In nuclear physics we often convert mass to energy and back again to mass. For example, gamma rays with energies greater than 
 , which are pure electromagnetic energy, can be converted to an electron plus positron both of which have rest mass.

The positron can then annihilate a different electron in another atom resulting in emission of two   gamma rays in back to
back directions to conserve linear momentum. A dramatic example of Einstein’s equation is a nuclear reactor. One gram of
material, the mass of a paper clip, provides  joules. This is the daily output of a   nuclear power station or
the explosive power of the Nagasaki or Hiroshima bombs.

As the velocity of a particle  approaches , then  and the relativistic mass  both approach infinity. This means that the force
needed to accelerate the mass also approaches infinity, and thus no particle can exceed the velocity of light. The energy continues
to increase not by increasing the velocity but by increase of the relativistic mass. Although the relativistic relation for kinetic
energy is quite different from the Newtonian relation, the Newtonian form is obtained for the case of  in that

An especially useful relativistic relation that can be derived from the above is

This is useful because it provides a simple relation between total energy of a particle and its relativistic linear momentum plus rest
energy.

Consider a rocket, having initial mass , is accelerated in a straight line in free space by exhausting propellant at a constant
speed  relative to the rocket. Let  be the speed of the rocket relative to it’s initial rest frame , when its rest mass has
decreased to . At this instant the rocket is at rest in the inertial frame . At a proper time  the rest mass is 
and it has acquired a velocity increment  relative to  and propellant of rest mass  has been expelled with velocity 
relative to . At proper time  in  the rest mass is . At the time , energy conservation requires that

At the same instant, conservation of linear momentum requires

To first order these two equations simplify to

Therefore
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Example : Rocket Propulsion17.4.1
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The velocity increment  in frame  can be transformed back to frame  using equation , that is

Equations  and  yield a differential equation for  of

Integrate the left-hand side between  and  and the right-hand side between  and  gives

This reduces to

When  this equation reduces to the non-relativistic answer given in equation .

Note that, until recently, the rest mass was denoted by  and the relativistic mass was referred to as . Modern texts denote the
rest mass by  and the relativistic mass by . This book follows the modern nomenclature for rest mass to avoid confusion.

This page titled 17.4: Relativistic Kinematics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas
Cline via source content that was edited to the style and standards of the LibreTexts platform.
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