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15.2: Poisson bracket Representation of Hamiltonian Mechanics

Poisson Brackets

Poisson brackets were developed by Poisson, who was a student of Lagrange. Hamilton’s canonical equations of motion describe
the time evolution of the canonical variables  in phase space. Jacobi showed that the framework of Hamiltonian mechanics
can be restated in terms of the elegant and powerful Poisson bracket formalism. The Poisson bracket representation of Hamiltonian
mechanics provides a direct link between classical mechanics and quantum mechanics.

The Poisson bracket of any two continuous functions of generalized coordinates  and , is defined to be

Note that the above definition of the Poisson bracket, written using the common brace notation, leads to the following identity,
antisymmetry, linearity, Leibniz rules, and Jacobi Identity.

where , , and  are functions of the canonical variables plus time. Jacobi’s identity;  states that the sum of the cyclic
permutation of the double Poisson brackets of three functions is zero. Jacobi’s identity plays a useful role in Hamiltonian
mechanics as will be shown.

Fundamental Poisson Brackets
The Poisson brackets of the canonical variables themselves are called the fundamental Poisson brackets. They are

In summary, the fundamental Poisson brackets equal

Note that the Poisson bracket is antisymmetric under interchange in  and . It is interesting that the only non-zero fundamental
Poisson bracket is for conjugate variables where , that is

Poisson bracket invariance to canonical transformations
The Poisson brackets are invariant under a canonical transformation from one set of canonical variables  to a new set of
canonical variables  where  and . This is shown by transforming Equation  to the
new variables by the following derivation
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The terms can be rearranged to give

Let  and replace  by , and use the fact that the fundamental Poisson brackets  and ,
then Equation  reduces to

That is

Similarly

leading to

Substituting equations  and  into Equation  gives

Thus the canonical variable subscripts  and  can be ignored since the Poisson bracket is invariant to any canonical
transformation of canonical variables. The counter argument is that if the Poisson bracket is independent of the transformation, then
the transformation is canonical.

The independence of Poisson brackets to canonical transformations can be used to test if a transformation is canonical. Assume
that the transformation equations between two sets of coordinates are given by

Evaluating the Poisson brackets gives ,  while

Therefore if  are canonical with a Poisson bracket , then so are  since .

Since it has been shown that this transformation is canonical, it is possible to go further and determine the function that
generates this transformation. Solving the transformation equations for  and  give
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Example : Check that a transformation is canonical15.2.1
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Since the transformation is canonical, there exists a generating function  such that

The transformation function  can be obtained using

This then gives that the required generating function is

This example illustrates how to determine a useful generating function and prove that the transformation is canonical.

Correspondence of the Commutator and the Poisson Bracket

In classical mechanics there is a formal correspondence between the Poisson bracket and the commutator. This can be shown by
deriving the Poisson Bracket of four functions taken in two pairs. The derivation requires deriving the two possible Poisson
Brackets involving three functions.

These two Poisson Brackets for three functions can be used to derive the Poisson Bracket of four functions, taken in pairs. This can
be accomplished two ways using either Equation  or .

The alternative approach gives

These two alternate derivations give different relations for the same Poisson Bracket. Equating the alternative equations 
and  gives that

This can be factored into separate relations, the left-hand side for body 1, and the right-hand side for body 2.

Since the left-hand ratio holds for  independent of , and vise versa, then they must equal a constant  that does not
depend on , does not depend on , and  must commute with . That is,  must be a constant number
independent of these variables.
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Equation  is an especially important result which states that to within a multiplicative constant number , there is a one-to-
one correspondence between the Poisson Bracket and the commutator of two independent functions. An important implication is
that if two functions,  have a Poisson Bracket that is zero, then the commutator of the two functions also must be zero, that is, 

 and  commute.

Consider the special case where the variables  and  correspond to the fundamental canonical variables, . Then the
commutators of the fundamental canonical variables are given by

In 1925, Paul Dirac, a 23-year old graduate student at Bristol, recognized that the formal correspondence between the Poisson
bracket in classical mechanics, and the corresponding commutator, provides a logical and consistent way to bridge the chasm
between the Hamiltonian formulation of classical mechanics, and quantum mechanics. He realized that making the assumption that
the constant , leads to Heisenberg’s fundamental commutation relations in quantum mechanics, as is discussed in chapter 

. Assuming that  provides a logical and consistent way that builds quantization directly into classical mechanics,
rather than using ad-hoc, case-dependent, hypotheses as was used by the older quantum theory of Bohr.

Observables in Hamiltonian mechanics

Poisson brackets, and the corresponding commutation relations, are especially useful for elucidating which observables are
constants of motion, and whether any two observables can be measured simultaneously and exactly. The properties of any
observable are determined by the following two criteria.

Time dependence:

The total time differential of a function  is defined by

Hamilton’s canonical equations give that

Substituting these in the above relation gives

that is

This important equation states that the total time derivative of any function  can be expressed in terms of the partial time
derivative plus the Poisson bracket of  with the Hamiltonian.

Any observable  will be a constant of motion if , and thus Equation  gives

That is, it is a constant of motion when
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= −ṗ i
∂H

∂qi
(15.2.34)

= + ( − )
dG

dt

∂G

∂t
∑
i

∂G

∂qi

∂H

∂pi

∂G

∂pi

∂H

∂qi

= +{G,H}
dG

dt

∂G

∂t
(15.2.35)
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Moreover, this can be extended further to the statement that if the constant of motion  is not explicitly time dependent then

The Poisson bracket with the Hamiltonian is zero for a constant of motion  that is not explicitly time dependent. Often it is more
useful to turn this statement around with the statement that if , and , then , implying that  is a
constant of motion.

Independence

Consider two observables  and . The independence of these two observables is determined by the Poisson
bracket

If this Poisson bracket is zero, that is, if the two observables  and  commute, then their values are independent
and can be measured independently. However, if the Poisson bracket , that is  and  do not commute,
then  and  are correlated since interchanging the order of the Poisson bracket changes the sign which implies that the measured
value for  depends on whether  is simultaneously measured.

A useful property of Poisson brackets is that if  and  both are constants of motion, then the double Poisson bracket 
. This can be proved using Jacobi’s identity

If  and , then , that is, the Poisson bracket  commutes with . Note that if  and
 do not depend explicitly on time, that is , then combining equations  and  leads to Poisson’s

Theorem that relates the total time derivatives.

This implies that if  and  are invariants, that is , then the Poisson bracket  is an invariant if  and  are
not explicitly time dependent.

Angular momentum, , provides an example of the use of Poisson brackets to elucidate which observables can be determined
simultaneously. Consider that the Hamiltonian is time independent with a spherically symmetric potential . Then it is best
to treat such a spherically symmetric potential using spherical coordinates since the Hamiltonian is independent of both  and 

.

The Poisson Brackets in classical mechanics can be used to tell us if two observables will commute. Since  is time
independent, then the Hamiltonian in spherical coordinates is

Evaluate the Poisson bracket using the above Hamiltonian gives

Since  is not an explicit function of time, , then , that is, the angular momentum about the  axis  is
a constant of motion.

The Poisson bracket of the total angular momentum  commutes with the Hamiltonian, that is

G

{G,H} = 0 (15.2.37)
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G
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{F ,G} = −{G,F} (15.2.38)
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{F ,G} ≠ 0 F (p, q, t) G(p, q, t)

F G

F G

F G

{H, {F ,G}} = 0

{F , {G,H}} +{G, {H,F}} +{H, {F ,G}} = 0 (15.2.39)

{G,H} = 0 {F ,H} = 0 {H, {F ,G}} = 0 {F ,G} H F

G = = 0∂F
∂t

∂G
∂t

15.2.35 15.2.39

{F ,G} ={ ,G}+{F , }
d

dt

dF

dt

dG

dt
(15.2.40)

F G = = 0dF

dt

dG

dt
{F ,G} F G

Example : Angular momentum15.2.2
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2m
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θ
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Since the total angular momentum  is not explicitly time dependent, then it also must be a constant of motion.
Note that Noether’s theorem gives that both the angular momenta  and  are constants of motion. Also since the Poisson
brackets are

then Jacobi’s identity, Equation , can be used to imply that

That is, the Poisson bracket  is a constant of motion. Note that if  and  commute, that is, , then
they can be measured simultaneously with unlimited accuracy, and this also satisfies that  commutes with .

The  components of the angular momentum  are given by

Evaluate the Poisson bracket

Similarly, Poisson brackets for  are

where , , and  are taken in a right-handed cyclic order. This usually is written in the form

where the Levi-Civita density  equals zero if two of the  indices are identical, otherwise it is +1 for a cyclic permutation
of , and −1 for a non-cyclic permutation.

Note that since these Poisson brackets are nonzero, the components of the angular momentum  do not commute and
thus simultaneously they cannot be measured precisely. Thus we see that although  and  are simultaneous constants of
motion, where the subscript  can be either , , or , only one component  can be measured simultaneously with . This
behavior is exhibited by rigid-body rotation where the body precesses around one component of the total angular momentum, 

, such that the total angular momentum, , plus the component along one axis,  are constants of motion. Then 
 is constant but not the individual  or .

Hamilton’s equations of motion
An especially important application of Poisson brackets is that Hamilton’s canonical equations of motion can be expressed directly
in the Poisson bracket form. The Poisson bracket representation of Hamiltonian mechanics has important implications to quantum
mechanics as will be described in chapter .
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In Equation  assume that  is a fundamental coordinate, that is, . Since  is not explicitly time dependent, then

That is

Similarly consider the fundamental canonical momentum . Since it is not explicitly time dependent, then

That is

Thus, it is seen that the Poisson bracket form of the equations of motion includes the Hamilton equations of motion. That is,

The above shows that the full structure of Hamilton’s equations of motion can be expressed directly in terms of Poisson brackets.

The elegant formulation of Poisson brackets has the same form in all canonical coordinates as the Hamiltonian formulation.
However, the normal Hamilton canonical equations in classical mechanics assume implicitly that one can specify the exact position
and momentum of a particle simultaneously at any point in time which is applicable only to classical mechanics variables that are
continuous functions of the coordinates, and not to quantized systems. The important feature of the Poisson Bracket representation
of Hamilton’s equations is that it generalizes Hamilton’s equations into a form ,  where the Poisson bracket is
equally consistent with both classical and quantum mechanics in that it allows for non-commuting canonical variables and
Heisenberg’s Uncertainty Principle. Thus the generalization of Hamilton’s equations, via use of the Poisson brackets, provides one
of the most powerful analytic tools applicable to both classical and quantal dynamics. It played a pivotal role in derivation of
quantum theory as described in chapter .

Consider a charge , and mass , in a constant electromagnetic fields with scalar potential  and vector potential . Chapter 
 showed that the Lagrangian for electromagnetism can be written as

15.2.35 G G≡ ,qk qk

dqk

dt
= +{ ,H}

∂qk
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= 0 + ( − )∑
i

∂qk
∂qi
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= ( −0 ⋅ )∑
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δik
∂H
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∂qi

=
∂H

∂pk

(15.2.41)

(15.2.42)

= { ,H} =q̇ k qk
∂H

∂pk
(15.2.43)

G≡ pk

dpk

dt
= +{ ,H}

∂pk
∂t

pk

= 0 + ( − )∑
i

∂qk
∂qi

∂H

∂pi

∂qk
∂pi

∂H

∂qi

= (0 − ⋅ )∑
i
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∂pi
δik

∂H

∂qi

=
∂H

∂qk

(15.2.44)

(15.2.45)

= { ,H} =ṗk pk
∂H

∂qk
(15.2.46)

= { ,H} =q̇ k qk
∂H

∂pk
(15.2.47)

= { ,H} = −ṗk pk
∂H

∂qk
(15.2.48)

15.2.47 15.2.48

18

Example : Lorentz force in electromagnetism15.2.3
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The generalized momentum then is given by

Thus the Hamiltonian can be written as

The Hamilton equations of motion give

and

Define the magnetic field to be

and the electric field to be

then the Lorentz force can be written as

Assume that one is dealing with traveling waves of the form  for a one-dimensional conservative system of
many identical coupled linear oscillators. Then evaluating the following Poisson brackets gives

Thus , , , and  are constants of motion. However,

Thus one cannot simultaneously measure the conjugate variables  or . This is the Uncertainty Principle that is
manifest by all forms of wave motion in classical and quantal mechanics as discussed in chapter .

Consider a mass  bound by an anisotropic, two-dimensional, linear oscillator potential. As discussed in chapter , the
motion can be described as lying entirely in the  plane that is perpendicular to the angular momentum . It is interesting
to derive the equations of motion for this system using the Poisson bracket representation of Hamiltonian mechanics.

The kinetic energy is given by

L = m ⋅ −q(Φ −A ⋅ )
1

2
ẋ ẋ ẋ

p = = m +qA
∂L

∂ẋ
ẋ

H = (p ⋅ ) −L = +qΦẋ
(p −qA)2

2m

= {x,H} =ẋ
(p −qA)

m

= {p,H} = −q∇Φ + (p −qA) ×(∇ ×A)ṗ
q

m

B ≡ ∇ ×A

E = −∇Φ −
∂A

∂t

F = = q(E + ×B)ṗ ẋ

Example : Wavemotion15.2.4

Ψ = Aei( x −ωt)
1
m px

{ ,H} = 0px

{x,H} = 0

{ω,H} = 0

{t,H} = 0

px x ω t

{ , x} ≠ 0px

{ω, t} ≠ 0

( x)px (ω, t)
3.11

Example : Two-dimensional, anisotropic, linear oscillator15.2.5
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The linear binding is reproduced assuming a quadratic scalar potential energy of the form

where  is the anharmonic strength that coupled the modes of the isotropic linear oscillator.

a) NORMAL MODES

As discussed in chapter , a transformation to the normal modes of the system is given by using variables  where 
 and , that is

Express the kinetic and potential energies in terms of the new coordinates gives

Note that the coordinate transformation makes the Lagrangian separable, that is

where

This shows that that the transformation has separated the system into two normal modes that are harmonic oscillators with
angular frequencies

Note that the non-isotropic harmonic oscillator reduces to the isotropic linear oscillator when .

b) HAMILTONIAN

The canonical momenta are given by

The definition of the Hamiltonian gives

Note that this can be factored as

where

T ( , ) = m ( + )ẋ ẏ
1

2
ẋ2 ẏ2

U(x, y) = k ( + )+ηxy
1

2
x2 y2
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14 (α, β)
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2√
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1

4
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2
α2 β2 1

2
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2
β2
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Using the Poisson Bracket expression for the time dependence, Equation , and using the fact that the Hamiltonian is not
explicitly time dependent, that is, , gives

Similarly . This implies that the Hamiltonians for both normal modes,  and , are time-independent constants of
motion which are equal to the total energy for each mode.

c) ANGULAR MOMENTUM

The angular momentum for motion in the  plane is perpendicular to the  plane with a magnitude of

The time dependence of the angular momentum is given by

Note that if , then the two eigenfrequencies, are degenerate, , that is, the system reduces to the isotropic
harmonic oscillator in the  plane that was discussed in chapter . In addition,  for , that is, the angular
momentum  in the  plane is a constant of motion when .

d) SYMMETRY TENSOR

The symmetry tensor was defined in chapter  to be

where  and  can correspond to either  or . The symmetry tensor defines the orientation of the major axis of the elliptical
orbit for the two-dimensional, isotropic, linear oscillator as described in chapter .

The isotropic oscillator has been shown to have two normal modes that are degenerate, therefore  and  are equally good
normal modes. The Hamiltonian showed that, for , the Hamiltonian gives that the total energy is conserved, as well as the
energies for each of the two normal modes which are.

Consider the matrix element

where  each can represent  or . Then for each matrix element

That is, each matrix element , commutes with the Hamiltonian

Thus the Poisson Brackets representation of Hamiltonian mechanics has been used to prove that the symmetry tensor 
 is a constant of motion for the isotropic harmonic oscillator. That is, all the elements , , and 

15.2.35
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 of the symmetric tensor  commute with the Hamiltonian.

Note that the three constants of motion, ,  and , for the isotropic, two-dimensional, linear oscillator, form a closed
algebra under the Poisson Bracket formalism.

Chapter  showed that Hamilton’s eccentricity vector for the inverse square-law attractive force,

is a constant of motion that specifies the major axis of the elliptical orbit. The eccentricity vector for the inverse-square-law
force can be investigated using Poisson Brackets as was done for the symmetry tensor above. It can be shown that

Note that the bracket on the right-hand side of Equation  equals the Hamiltonian  for the inverse square-law attractive force,
and thus the Poisson bracket equals

For the Hamiltonian  it can be shown that the Poisson bracket

That is, the eccentricity vector commutes with the Hamiltonian and thus it is a constant of motion. Previously this result was
obtained directly using the equations of motion as given in equation . Note that the three constants of motion, ,  and

 form a closed algebra under the Poisson Bracket formalism similar to the triad of constants of motion, ,  and  that
occur for the two-dimensional, isotropic linear oscillator described above. Examples  and  illustrate that the
Poisson Brackets representation of Hamiltonian mechanics is a powerful probe of the underlying physics, as well as confirming
the results obtained directly from the equations of motion as described in chapter  and .

Liouville's Theorem
Liouvilles Theorem illustrates an application of Poisson Brackets to Hamiltonian phase space that has important implications for
statistical physics. The trajectory of a single particle in phase space is completely determined by the equations of motion if the
initial conditions are known. However, many-body systems have so many degrees of freedom it becomes impractical to solve all
the equations of motion of the many bodies. An example is a statistical ensemble in a gas, a plasma, or a beam of particles. Usually
it is not possible to specify the exact point in phase space for such complicated systems. However, it is possible to define an
ensemble of points in phase space that encompasses all possible trajectories for the complicated system. That is, the statistical
distribution of particles in phase space can be specified.

A′
αβ A

′

L A′ H

Example : The eccentricity vector15.2.6
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Figure : Infinitessimal element of area in phase space

Consider a density  of representative points in  phase space. The number  of systems in the volume element  is

where it is assumed that the infinitessimal volume element  contains many possible
systems so that  can be considered a continuous distribution. For the conjugate variables  shown in Figure , the
number of representative points moving across the left-hand edge into the area per unit time is

The number of representative points flowing out of the area along the right-hand edge is

Hence the net increase in  in the infinitessimal rectangular element  due to flow in the horizontal direction is

Similarly, the net gain due to flow in the vertical direction is

Thus the total increase in the element  per unit time is therefore

Assume that the total number of points must be conserved, then the total increase in the number of points inside the element 
must equal the net changes in  on the infinitessimal surface element per unit time. That is

Thus summing over all possible values of  gives

or

Inserting Hamilton’s canonical equations into both brackets and differentiating the last bracket results in

15.2.1

ρ (q, p) N dv

N = ρdv (15.2.49)

dv= d , d . . . . d , d , d . . . . dq1 q2 qs p1 p2 ps
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The two terms in the last bracket cancel and thus

However, this just equals , therefore

This is called Liouville’s theorem which states that the rate of change of density of representative points vanishes, that is, the
density of points is a constant in the Hamiltonian phase space along a specific trajectory. Liouville’s theorem means that the system
acts like an incompressible fluid that moves such as to occupy an equal volume in phase space at every instant, even though the
shape of the phase-space volume may change, that is, the phase-space density of the fluid remains constant. Equation  is
another illustration of the basic Poisson bracket relation  and the usefulness of Poisson brackets in physics.

Liouville’s theorem is crucially important to statistical mechanics of ensembles where the exact knowledge of the system is
unknown, only statistical averages are known. An example is in focussing of beams of charged particles by beam handling systems.
At a focus of the beam, the transverse width in  is minimized, while the width in  is largest since the beam is converging to the
focus, whereas a parallel beam has maximum width  and minimum spreading width . However, the product  remains
constant throughout the focussing system. For a two dimensional beam, this applies equally for the  and  coordinates, etc. It is
obvious that the final beam quality for any beam transport system is ultimately limited by the emittance of the source of the beam,
that is, the initial area of the phase space distribution. Note that Liouville’s theorem only applies to Hamiltonian  phase
space, not to  Lagrangian state space. As a consequence, Hamiltonian dynamics, rather than Lagrange dynamics, is used to
discuss ensembles in statistical physics.

Note that Liouville’s theorem is applicable only for conservative systems, that is, where Hamilton’s equations of motion apply. For
dissipative systems the phase space volume shrinks with time rather than being a constant of the motion.

This page titled 15.2: Poisson bracket Representation of Hamiltonian Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.
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