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3.23: Single-Stub Matching
In Section 3.22, we considered impedance matching schemes consisting of a transmission line combined with a reactance which is
placed either in series or in parallel with the transmission line. In many problems, the required discrete reactance is not practical
because it is not a standard value, or because of non-ideal behavior at the desired frequency (see Section 3.21 for more about this),
or because one might simply wish to avoid the cost and logistical issues associated with an additional component. Whatever the
reason, a possible solution is to replace the discrete reactance with a transmission line “stub” – that is, a transmission line which has
been open- or short-circuited. Section 3.16 explains how a stub can replace a discrete reactance. Figure  shows a practical
implementation of this idea implemented in microstrip. This section explains the theory, and we’ll return to this implementation at
the end of the section.

 Figure : A practical implementation of a singlestub impedance match using
microstrip transmission line. Here, the stub is open-circuited. (CC BY SA 3.0; Spinningspark)

Figure  shows the scheme. This scheme is usually implemented using the parallel reactance approach, as depicted in the
figure. Although a series reactance scheme is also possible in principle, it is usually not as convenient. This is because most
transmission lines use one of their two conductors as a local datum; e.g., the ground plane of a printed circuit board for microstrip
line is tied to ground, and the outer conductor (“shield”) of a coaxial cable is usually tied to ground. This is contrast to a discrete
reactance (such as a capacitor or inductor), which does not require that either of its terminals be tied to ground. This issue is
avoided in the parallel-attached stub because the parallel-attached stub and the transmission line to which it is attached both have
one terminal at ground.

 Figure : Single-stub matching

The single-stub matching procedure is essentially the same as the single parallel reactance method, except the parallel reactance is
implemented using a short- or open-circuited stub as opposed a discrete inductor or capacitor. Since parallel reactance matching is
most easily done using admittances, [admittance] it is useful to express  and  (input
impedance of an open- and short-circuited stub, respectively, from Section 3.16) in terms of susceptance:

As in the main line, the characteristic impedance  is an independent variable and is chosen for convenience.

A final question is when should you use a short-circuited stub, and when should you use an open-circuited stub? Given no other
basis for selection, the termination that yields the shortest stub is chosen. An example of an “other basis for selection” that
frequently comes up is whether DC might be present on the line. If DC is present with the signal of interest, then a short circuit
termination without some kind of remediation to prevent a short circuit for DC would certainly be a bad idea.
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In the following example we address the same problem raised in Section 3.22 (Examples 3.22.1 and 3.22.2), now using the single-
stub approach:

Design a single-stub match that matches a source impedance of  to a load impedance of . Use transmission
lines having characteristic impedances of  throughout, and leave your answer in terms of wavelengths.

Solution
From the problem statement:  and  are the source and load impedances respectively. 

 is the characteristic impedance of the transmission lines to be used. The reflection coefficient  (i.e.,  with
respect to the characteristic impedance of the transmission line) is

The length  of the primary line (that is, the one that connects the two ports of the matching structure) is the solution to the
equation (from Section 3.22):

where here  mho and  mho. Also note

where  is the wavelength in the transmission line. So the equation to be solved for  is:

By trial and error (or using the Smith chart; see “Additional Reading” at the end of this section) we find for the primary line 
, yielding  mho for the input admittance after attaching the primary line.

We now seek the shortest stub having an input admittance of  mho to cancel the imaginary part of . For an
open-circuited stub, we need

The smallest value of  for which this is true is . For a short-circuited stub, we need

The smallest positive value of  for which this is true is ; i.e., much longer. Therefore, we choose the open-circuited
stub with . Note the stub is attached in parallel at the source end of the primary line.

Single-stub matching is a very common method for impedance matching using microstrip lines at frequences in the UHF band
(300-3000 MHz) and above. In Figure , the top (visible) traces comprise one conductor, whereas the ground plane
(underneath, so not visible) comprises the other conductor. The end of the stub is not connected to the ground plane, so the
termination is an open circuit. A short circuit termination is accomplished by connecting the end of the stub to the ground plane
using a via; that is, a plated-through that electrically connects the top and bottom layers.

This page titled 3.23: Single-Stub Matching is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Steven W.
Ellingson (Virginia Tech Libraries' Open Education Initiative) .
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 Example : Single stub matching.3.23.1
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