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We now consider values of  that arise for commonly-encountered terminations.

Matched Load ( ). In this case, the termination may be a device with impedance , or the termination may be another
transmission line having the same characteristic impedance. When ,  and there is no reflection.

Open Circuit. An “open circuit” is the absence of a termination. This condition implies , and subsequently .
Since the current reflection coefficient is , the reflected current wave is  out of phase with the incident current wave,
making the total current at the open circuit equal to zero, as expected.

Short Circuit. “Short circuit” means , and subsequently . In this case, the phase of  is , and therefore, the
potential of the reflected wave cancels the potential of the incident wave at the open circuit, making the total potential equal to
zero, as it must be. Since the current reflection coefficient is  in this case, the reflected current wave is in phase with the
incident current wave, and the magnitude of the total current at the short circuit non-zero as expected.
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Purely Reactive Load. A purely reactive load, including that presented by a capacitor or inductor, has  where  is
reactance. In particular, an inductor is represented by  and a capacitor is represented by . We find

The numerator and denominator have the same magnitude, so . Let  be the phase of the denominator ( ). Then,
the phase of the numerator is . Subsequently, the phase of  is . Thus, we see that the phase of  is no
longer limited to be  or , but can be any value in between. The phase of reflected wave is subsequently shifted by this
amount.

Other Terminations. Any other termination, including series and parallel combinations of any number of devices, can be
expressed as a value of  which is, in general, complex-valued. The associated value of  is limited to the range 0 to 1. To see
this, note:

Note that the smallest possible value of  occurs when the numerator is zero; i.e., when . Therefore, the smallest value
of  is zero. The largest possible value of  occurs when  (i.e., an open circuit) or when  (a short
circuit); the result in either case is . Thus,
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