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4.3: Cylindrical Coordinates

Cartesian coordinates (Section 4.1) are not convenient in certain cases. One of these is when the problem has cylindrical symmetry.
For example, in the Cartesian coordinate system, the cross-section of a cylinder concentric with the z-axis requires two coordinates
to describe: z and y. However, this cross section can be described using a single parameter — namely the radius — which is p in the
cylindrical coordinate system. This results in a dramatic simplification of the mathematics in some applications.

The cylindrical system is defined with respect to the Cartesian system in Figure 4.3.1. In lieu of z and y, the cylindrical system
uses p, the distance measured from the closest point on the z axis, and ¢, the angle measured in a plane of constant z, beginning at
the 4z axis (¢ = 0) with ¢ increasing toward the +y direction.
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X Figure 4.3.1 Cylindrical coordinate system and associated basis vectors. (CC BY SA 4.0; K.
Kikkeri).

The basis vectors in the cylindrical system are p, ¢, and z. As in the Cartesian system, the dot product of like basis vectors is equal
to one, and the dot product of unlike basis vectors is equal to zero. The cross products of basis vectors are as follows:

px=12
$xz=p
Zxp=¢

A useful diagram that summarizes these relationships is shown in Figure 4.3.2.
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\—j Figure 4.3.2 Cross products among basis vectors in the cylindrical system. (See Figure 4.1.10 for
instructions on the use of this diagram.) (CC BY SA 4.0; K. Kikkeri).

The cylindrical system is usually less useful than the Cartesian system for identifying absolute and relative positions. This is
because the basis directions depend on position. For example, p is directed radially outward from the z axis, so p = %X for locations

along the z-axis but p =¥ for locations along the y axis. Similarly, the direction ¢ varies as a function of position. To overcome
this awkwardness, it is common to set up a problem in cylindrical coordinates in order to exploit cylindrical symmetry, but at some
point to convert to Cartesian coordinates. Here are the conversions:

T =pcos¢
y=psing

and z is identical in both systems. The conversion from Cartesian to cylindrical is as follows:
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¢ = arctan(y, =)

where arctan is the four-quadrant inverse tangent function; i.e., arctan(y/x) in the first quadrant (z > 0, y > 0), but possibly
requiring an adjustment for the other quadrants because the signs of both z and y are individually significant.

Similarly, it is often necessary to represent basis vectors of the cylindrical system in terms of Cartesian basis vectors and vice-
versa. Conversion of basis vectors is straightforward using dot products to determine the components of the basis vectors in the
new system. For example, X in terms of the basis vectors of the cylindrical system is

£=p(p-%)+6 (%) +2(2-%)

The last term is of course zero since z-x = 0 . Calculation of the remaining terms requires dot products between basis vectors in
the two systems, which are summarized in Table 4.3.1. Using this table, we find

X =pcos¢—dsing
y= ﬁsinqb—w-q;cosqb
and of course z requires no conversion. Going from Cartesian to cylindrical, we find
p=%Xcosp+ysing
qAﬁ = —Xsin¢p+ycos¢o

Table 4.3.1: Dot products between basis vectors in the cylindrical and Cartesian coordinate systems.
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p o) z
ble cos ¢ —sing 0
y sin ¢ cos ¢ 0
Z 0 0 1

Integration Over Length

A differential-length segment of a curve in the cylindrical system is described in general as

dl= pdp+ ppdd+2 dz

Note that the contribution of the ¢ coordinate to differential length is pd¢, not simply d¢. This is because ¢ is an angle, not a
distance. To see why the associated distance is pd¢, consider the following. The circumference of a circle of radius p is 2mwp. If
only a fraction of the circumference is traversed, the associated arclength is the circumference scaled by ¢ /2, where ¢ is the angle
formed by the traversed circumference. Therefore, the distance is 27p - ¢/2m = p¢, and the differential distance is pd¢.

As always, the integral of a vector field A (r) over a curve C is

/A-dl
c

To demonstrate the cylindrical system, let us calculate the integral of A (r) = qAS when C is a circle of radius pg in the z =0 plane,

as shown in Figure 4.3.3. In this example, dl = ¢A$ po d¢ since p=pg and z=0 are both constant along C. Subsequently,
A -dl = pyd¢ and the above integral is

27
/ po dé = 2mpg
0

i.e., this is a calculation of circumference.
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Figure 4.3.3 Example in cylindrical coordinates: The circumference of a circle. (CC BY
SA 4.0; K. Kikkeri).

Note that the cylindrical system is an appropriate choice for the preceding example because the problem can be expressed with the
minimum number of varying coordinates in the cylindrical system. If we had attempted this problem in the Cartesian system, we
would find that both  and y vary over C, and in a relatively complex way.

Integration Over Area

Now we ask the question, what is the integral of some vector field A over a circular surface S in the z=0 plane having radius pg?
This is shown in Figure Figure 4.3.4 The differential surface vector in this case is

ds =12 (dp) (pdp) =2z p dp d¢ (4.3.1)

v X

Figure 4.3.4 Example in cylindrical coordinates: The area of a circle. (CC BY SA 4.0; K.
Kikkeri).

The quantities in parentheses of Equation 4.3.1 are the radial and angular dimensions, respectively. The direction of ds indicates
the direction of positive flux — see the discussion in Section 4.2 for an explanation. In general, the integral over a surface is

/A-ds
S

To demonstrate, let’s consider A = z; in this case A - ds = p dp d¢ and the integral becomes

/0p0/02wpdpd¢ - (/Op°pdp) (/027rd¢> (43.2)

- (%pg) (27) (4.3.3)
S (4.3.4)

which we recognize as the area of the circle, as expected. The corresponding calculation in the Cartesian system is quite difficult in
comparison.
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Whereas the previous example considered a planar surface, we might consider instead a curved surface. Here we go. What is the
integral of a vector field A = p over a cylindrical surface S concentric with the z axis having radius py and extending from
2z =2 to z= zy ? This is shown in Figure 4.3.5.
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X Figure 4.3.5 Example in cylindrical coordinates: The area of the curved surface of a
cylinder. (CC BY SA 4.0; K. Kikkeri).

The differential surface vector in this case is

ds = p (pod¢) (dz) = ppo de dz

/SA-ds :/0%/: po dordz (4.3.5)
0 < /0 2ﬂd¢>> ( / dz) (4.3.6)

=27pg (22 —21) (4.3.7)

The integral is

which is the area of S, as expected. Once again, the corresponding calculation in the Cartesian system is quite difficult in
comparison.
Integration Over Volume
The differential volume element in the cylindrical system is
dv = dp (pd¢) dz = pdpd¢p dz

For example, if A(r) =1 and the volume V is a cylinder bounded by p < pg and 2; < z < 23 , then

/VA(r) dv:/opo/oh/;zpdpdqﬁdz (4.3.8)
() (4

=np (22 —21) (4.3.10)
i.e., area times length, which is volume.

Once again, the procedure above is clearly more complicated than is necessary if we are interested only in computing volume.
However, if the integrand is not constant-valued then we are no longer simply computing volume. In this case, the formalism is
appropriate and possibly necessary.
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