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9.4: Uniform Plane Waves - Derivation
Section 9.2 showed how Maxwell’s Equations could be reduced to a pair of phasor-domain “wave equations,” namely:

where , assuming unbounded homogeneous, isotropic, lossless, and source-free media. In this section, we solve these
equations for the special case of a uniform plane wave. A uniform plane wave is one for which both  and  have constant
magnitude and phase in a specified plane. Despite being a special case, the solution turns out to be broadly applicable, appearing as
a common building block in many practical and theoretical problems in unguided propagation (as explained in Section 9.3), as well
as in more than a few transmission line and waveguide problems.

To begin, let us assume that the plane over which  and  have constant magnitude and phase is a plane of constant . First, note
that we may make this assumption with no loss of generality. For example, we could alternatively select a plane of constant ,
solve the problem, and then simply exchange variables to get a solution for planes of constant  (or ).  Furthermore, the solution
for any planar orientation not corresponding to a plane of constant , , or  may be similarly obtained by a rotation of coordinates,
since the physics of the problem does not depend on the orientation of this plane – if it does, then the medium is not isotropic!

We may express the constraint that the magnitude and phase of  and  are constant over a plane that is perpendicular to the 
axis as follows:

Let us identify the Cartesian components of each of these fields as follows:

Now Equation  may be interpreted in detail for  as follows:

and for  as follows:

The wave equation for  (Equation  written explicitly in Cartesian coordinates is

Decomposing this equation into separate equations for each of the three coordinates, we obtain the following:
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Applying the constraints of Equations  and , we note that many of the terms in Equations –  are zero. We are
left with:

Now we will show that Equation  also implies that  must be zero. To show this, we use Ampere’s Law for a source-free
region (Section 9.2):

and take the dot product with  on both sides:

Again applying the constraints of Equation , the left side of Equation  must be zero; therefore, . The exact same
procedure applied to  (using the Maxwell-Faraday Equation; also given in Section 9.2) reveals that  is also zero.  Here is
what we have found:

If a wave is uniform over a plane, then the electric and magnetic field vectors must lie in this plane.

This conclusion is a direct consequence of the fact that Maxwell’s Equations require the electric field to be proportional to the curl
of the magnetic field and vice-versa.

The general solution to Equation  is:

where  and  are complex-valued constants. The values of these constants are determined by boundary conditions – possibly
sources – outside the region of interest. Since in this section we are limiting our scope to source-free and homogeneous regions, we
may for the moment consider the values of  and  to be arbitrary, since any values will satisfy the associated wave equation.

Similarly we have for :

where  and  are again arbitrary constants. Summarizing, we have found

where  and  are given by Equations  and , respectively.

Note that Equations  and  are essentially the same equations encountered in the study of waves in lossless transmission
lines; for a reminder, see Section 3.6. Specifically, factors containing  describe propagation in the  direction, whereas
factors containing  describe propagation in the  direction. We conclude:

If a wave is uniform over a plane, then possible directions of propagation are the two directions perpendicular to the plane.

Since we previously established that the electric and magnetic field vectors must lie in the plane, we also conclude:

The direction of propagation is perpendicular to the electric and magnetic field vectors.
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+ = 0
∂2

∂z2
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This conclusion turns out to be generally true; i.e., it is not limited to uniform plane waves. Although we will not provide a rigorous
proof of this, one way to see that this is true is to imagine that any type of wave can be interpreted as the sum (formally, a linear
combination) of uniform plane waves, so perpendicular orientation of the field vectors with respect to the direction of propagation
is inescapable.

The same procedure yields the uniform plane wave solution to the wave equation for , which is

where

and where , ,  and  are arbitrary constants. Note that the solution is essentially the same as that for , with the sole
difference being that the arbitrary constants may apparently have different values.

To this point, we have seen no particular relationship between the electric and magnetic fields, and it may appear that the electric
and magnetic fields are independent of each other. However, Maxwell’s Equations – specifically, the two curl equations – make it
clear that there must be a relationship between these fields. Subsequently the arbitrary constants in the solutions for  and  must
also be related. In fact, there are two considerations here:

The magnitude and phase of  must be related to the magnitude and phase of . Since both fields are solutions to the same
differential (wave) equation, they may differ by no more than a multiplicative constant. Since the units of  and  are V/m and
A/m respectively, this constant must be expressible in units of V/m divided by A/m; i.e., in units of , an impedance.
The direction of  must be related to direction of .

Let us now address these considerations. Consider an electric field that points in one of the cardinal directions – let’s say  – and
make the definition  for notational convenience. Then the electric field intensity may be written as follows:

Again, there is no loss of generality here since the coordinate system could be rotated in such a way that any uniform plane could
be described in this way.

We may now determine  from  using the Maxwell-Faraday Equation (Section 9.2):

Solving this equation for , we find:

Now let us apply the curl operator. The complete expression for the curl operator in Cartesian coordinates is given in Section B2.
Here let us consider one component at a time, starting with the  component:

Since , the above expression is zero and subsequently . Next, the  component:

Here , so we have simply

H̃

= +H̃ x̂H̃ x ŷH̃ y
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∇ × = −jωμẼ H̃

H̃

= =H̃
∇ × Ẽ
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It is not necessary to repeat this procedure for , since we know in advance that  must be perpendicular to the direction of
propagation and subsequently . Returning to Equation , we obtain:

Note that  points in the  direction. So, as expected, both  and  are perpendicular to the direction of propagation. However,
we have now found a more specific relationship:  and  are perpendicular to each other. Just as , we see that 
points in the direction of propagation. This is illustrated in Figure . Summarizing:

, , and the direction of propagation  are mutually perpendicular.

 Figure : Relationship between the electric field direction, magnetic field direction, and
direction of propagation

Now let us resolve the question of the factor relating  and . The factor is now seen to be  in Equation , which can
be simplified as follows:

The factor  appearing above has units of  is known variously as the wave impedance or the intrinsic impedance of the
medium. Assigning this quantity the symbol “ ,” we have:

The ratio of the electric field intensity to the magnetic field intensity is the wave impedance  (Equation ; units of ). In
lossless media,  is determined by the ratio of permeability of the medium to the permittivity of the medium.

The wave impedance in free space, assigned the symbol , is

Wrapping up our solution, we find that if  is as given by Equation , then
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1. By the way, this is a highly-recommended exercise for the student.↩
2. Showing this is a highly-recommended exercise for the reader.↩
3. The reader is encouraged to confirm that these are solutions by substitution into the associated wave equation.↩
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