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4.3: Cylindrical Coordinates
Cartesian coordinates (Section 4.1) are not convenient in certain cases. One of these is when the problem has cylindrical symmetry.
For example, in the Cartesian coordinate system, the cross-section of a cylinder concentric with the -axis requires two coordinates
to describe:  and . However, this cross section can be described using a single parameter – namely the radius – which is  in the
cylindrical coordinate system. This results in a dramatic simplification of the mathematics in some applications.

The cylindrical system is defined with respect to the Cartesian system in Figure . In lieu of  and , the cylindrical system
uses , the distance measured from the closest point on the  axis, and , the angle measured in a plane of constant , beginning at
the  axis ( ) with  increasing toward the  direction.

 Figure : Cylindrical coordinate system and associated basis vectors. (CC BY SA 4.0; K.
Kikkeri).

The basis vectors in the cylindrical system are , , and . As in the Cartesian system, the dot product of like basis vectors is equal
to one, and the dot product of unlike basis vectors is equal to zero. The cross products of basis vectors are as follows:

A useful diagram that summarizes these relationships is shown in Figure .

 Figure : Cross products among basis vectors in the cylindrical system. (See Figure 4.1.10 for
instructions on the use of this diagram.) (CC BY SA 4.0; K. Kikkeri).

The cylindrical system is usually less useful than the Cartesian system for identifying absolute and relative positions. This is
because the basis directions depend on position. For example,  is directed radially outward from the  axis, so  for locations
along the -axis but  for locations along the  axis. Similarly, the direction  varies as a function of position. To overcome
this awkwardness, it is common to set up a problem in cylindrical coordinates in order to exploit cylindrical symmetry, but at some
point to convert to Cartesian coordinates. Here are the conversions:

and  is identical in both systems. The conversion from Cartesian to cylindrical is as follows:
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x =ρ̂ ŷ y ϕ̂

x = ρ cosϕ

y = ρ sinϕ

z

ρ = +x2 y2
− −−−−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/97113?pdf
https://phys.libretexts.org/Courses/Berea_College/Electromagnetics_I/04%3A_Vector_Analysis/4.03%3A_Cylindrical_Coordinates
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


4.3.2 https://phys.libretexts.org/@go/page/97113

where  is the four-quadrant inverse tangent function; i.e.,  in the first quadrant ( , ), but possibly
requiring an adjustment for the other quadrants because the signs of both  and  are individually significant.

Similarly, it is often necessary to represent basis vectors of the cylindrical system in terms of Cartesian basis vectors and vice-
versa. Conversion of basis vectors is straightforward using dot products to determine the components of the basis vectors in the
new system. For example,  in terms of the basis vectors of the cylindrical system is

The last term is of course zero since . Calculation of the remaining terms requires dot products between basis vectors in
the two systems, which are summarized in Table . Using this table, we find

and of course  requires no conversion. Going from Cartesian to cylindrical, we find

Table : Dot products between basis vectors in the cylindrical and Cartesian coordinate systems.
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Integration Over Length
A differential-length segment of a curve in the cylindrical system is described in general as

Note that the contribution of the  coordinate to differential length is , not simply . This is because  is an angle, not a
distance. To see why the associated distance is , consider the following. The circumference of a circle of radius  is . If
only a fraction of the circumference is traversed, the associated arclength is the circumference scaled by , where  is the angle
formed by the traversed circumference. Therefore, the distance is , and the differential distance is .

As always, the integral of a vector field  over a curve  is

To demonstrate the cylindrical system, let us calculate the integral of  when  is a circle of radius  in the  plane,
as shown in Figure . In this example,  since  and  are both constant along . Subsequently, 

 and the above integral is

i.e., this is a calculation of circumference.
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 Figure : Example in cylindrical coordinates: The circumference of a circle. (CC BY
SA 4.0; K. Kikkeri).

Note that the cylindrical system is an appropriate choice for the preceding example because the problem can be expressed with the
minimum number of varying coordinates in the cylindrical system. If we had attempted this problem in the Cartesian system, we
would find that both  and  vary over , and in a relatively complex way.

Integration Over Area
Now we ask the question, what is the integral of some vector field  over a circular surface  in the  plane having radius ?
This is shown in Figure Figure . The differential surface vector in this case is

 Figure : Example in cylindrical coordinates: The area of a circle. (CC BY SA 4.0; K.
Kikkeri).

The quantities in parentheses of Equation  are the radial and angular dimensions, respectively. The direction of  indicates
the direction of positive flux – see the discussion in Section 4.2 for an explanation. In general, the integral over a surface is

To demonstrate, let’s consider ; in this case  and the integral becomes

which we recognize as the area of the circle, as expected. The corresponding calculation in the Cartesian system is quite difficult in
comparison.
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Whereas the previous example considered a planar surface, we might consider instead a curved surface. Here we go. What is the
integral of a vector field  over a cylindrical surface  concentric with the  axis having radius  and extending from 

 to ? This is shown in Figure .

 Figure : Example in cylindrical coordinates: The area of the curved surface of a
cylinder. (CC BY SA 4.0; K. Kikkeri).

The differential surface vector in this case is

The integral is

which is the area of , as expected. Once again, the corresponding calculation in the Cartesian system is quite difficult in
comparison.

Integration Over Volume
The differential volume element in the cylindrical system is

For example, if  and the volume  is a cylinder bounded by  and , then

i.e., area times length, which is volume.

Once again, the procedure above is clearly more complicated than is necessary if we are interested only in computing volume.
However, if the integrand is not constant-valued then we are no longer simply computing volume. In this case, the formalism is
appropriate and possibly necessary.
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