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3.22: Single-Reactance Matching
An impedance matching structure can be designed using a section of transmission line combined with a discrete reactance, such as
a capacitor or an inductor. In the strategy presented here, the transmission line is used to transform the real part of the load
impedance or admittance to the desired value, and then the reactance is used to modify the imaginary part to the desired value.
(Note the difference between this approach and the quarter-wave technique described in Section 3.19. In that approach, the first
transmission line is used to zero the imaginary part.) There are two versions of this strategy, which we will now consider separately.

The first version is shown in Figure . The purpose of the transmission line is to transform the load impedance  into a new
impedance  for which Re{ }  Re{ }. This can be done by solving the equation (from Section 3.15)

for , using a numerical search, or using the Smith chart.  The characteristic impedance  and phase propagation constant  of the
transmission line are independent variables and can be selected for convenience. Normally, the smallest value of  that satisfies
Equation  is desired. This value will be  because the real part of  spans all possible values every  .

 Figure : Single-reactance matching with a series reactance.

After matching the real component of the impedance in this manner, the imaginary component of  may then be transformed to
the desired value (Im{ }) by attaching a reactance  in series with the transmission line input, yielding .
Therefore, we choose

The sign of  determines whether this reactance is a capacitor ( ) or inductor ( ), and the value of this component is
determined from  and the design frequency.

Design a match consisting of a transmission line in series with a single capacitor or inductor that matches a source impedance
of  to a load impedance of  at 1.5 GHz. The characteristic impedance and phase velocity of the
transmission line are  and  respectively.

Solution
From the problem statement:  and  are the source and load impedances respectively at

 GHz. The characteristic impedance and phase velocity of the transmission line are  and 
respectively.

The reflection coefficient  (i.e.,  with respect to the characteristic impedance of the transmission line) is

The length  of the primary line (that is, the one that connects the two ports of the matching structure) is determined using the
equation:
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where here . So a more-specific form of the equation that can be solved for  (as a step toward
finding ) is:

By trial and error (or using the Smith chart if you prefer) we find  rad for the primary line, yielding 
 for the input impedance after attaching the primary line.

We may now solve for  as follows: Since  (Section 3.8), we find

Therefore   7.8 mm.

The impedance of the series reactance should be  to cancel the imaginary part of . Since the sign of this
impedance is negative, it must be a capacitor. The reactance of a capacitor is , so it must be true that

Thus, we find the series reactance is a capacitor of value .

The second version of the single-reactance strategy is shown in Figure . The difference in this scheme is that the reactance is
attached in parallel. In this case, it is easier to work the problem using admittance (i.e., reciprocal impedance) as opposed to
impedance; this is because the admittance of parallel reactances is simply the sum of the associated admittances; i.e.,

where , , and  is the discrete parallel susceptance; i.e., the imaginary part of the discrete parallel
admittance.

 Figure : Single-reactance matching with a parallel reactance

So, the procedure is as follows. The transmission line is used to transform  into a new admittance  for which Re{ }  Re{
}. First, we note that

where  is characteristic admittance. Again, the characteristic impedance  and phase propagation constant  of the
transmission line are independent variables and can be selected for convenience. In the present problem, we aim to solve the
equation

for the smallest value of , using a numerical search or using the Smith chart. After matching the real component of the admittances
in this manner, the imaginary component of the resulting admittance may then be transformed to the desired value by attaching the
susceptance  in parallel with the transmission line input. Since we desire  in parallel with  to be , the desired value is
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The sign of  determines whether this is a capacitor ( ) or inductor ( ), and the value of this component is
determined from  and the design frequency.

In the following example, we address the same problem raised in Example , now using the parallel reactance approach:

Design a match consisting of a transmission line in parallel with a single capacitor or inductor that matches a source impedance
of  to a load impedance of  at 1.5 GHz. The characteristic impedance and phase velocity of the
transmission line are  and  respectively.

Solution
From the problem statement:  and  are the source and load impedances respectively at

 GHz. The characteristic impedance and phase velocity of the transmission line are  and 
respectively.

The reflection coefficient  (i.e.,  with respect to the characteristic impedance of the transmission line) is

The length  of the primary line (that is, the one that connects the two ports of the matching structure) is the solution to:

where here  mho and  mho. So the equation to be solved for  (as a step
toward finding ) is:

By trial and error (or the Smith chart) we find  rad for the primary line, yielding  mho for
the input admittance after attaching the primary line.

We may now solve for  as follows: Since  (Section 3.8), we find

Therefore,   2.4 mm.

The admittance of the parallel reactance should be  mho to cancel the imaginary part of . The associated
impedance is . Since the sign of this impedance is negative, it must be a capacitor. The reactance of a
capacitor is , so it must be true that

Thus, we find the parallel reactance is a capacitor of value .

Comparing this result to the result from the series reactance method (Example ), we see that the necessary length of
transmission line is much shorter, which is normally a compelling advantage. The tradeoff is that the parallel capacitance is much
smaller and an accurate value may be more difficult to achieve.

1. For more about the Smith chart, see “Additional Reading” at the end of this section.↩
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