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9.2: Wave Equations for Source-Free and Lossless Regions
Electromagnetic waves are solutions to a set of coupled differential simultaneous equations – namely, Maxwell’s Equations. The
general solution to these equations includes constants whose values are determined by the applicable electromagnetic boundary
conditions. However, this direct approach can be difficult and is often not necessary. In unbounded homogeneous regions that are
“source free” (containing no charges or currents), a simpler approach is possible. In this section, we reduce Maxwell’s Equations to
wave equations that apply to the electric and magnetic fields in this simpler category of scenarios. Before reading further, the
reader should consider a review of Section 1.3 (noting in particular Equation 1.3.1) and Section 3.6 (wave equations for voltage and
current on a transmission line). This section seeks to develop the analogous equations for electric and magnetic waves.

We can get the job done using the differential “point” phasor form of Maxwell’s Equations, developed in Section 9.1. Here they
are:

In a source-free region, there is no net charge and no current, hence  and  in the present analysis. The above equations
become

Next, we recall that  and that  is a real-valued constant for a medium that is homogeneous, isotropic, and linear (Section
2.8). Similarly,  and  is a real-valued constant. Thus, under these conditions, it is sufficient to consider either  or 
and either  or . The choice is arbitrary, but in engineering applications it is customary to use  and . Eliminating the now-
redundant quantities  and , the above equations become

It is important to note that requiring the region of interest to be source-free precludes the possibility of loss in the medium. To see
this, let’s first be clear about what we mean by “loss.” For an electromagnetic wave, loss is observed as a reduction in the
magnitude of the electric and magnetic field with increasing distance. This reduction is due to the dissipation of power in the
medium. This occurs when the conductivity  is greater than zero because Ohm’s Law for Electromagnetics ( ; Section 6.3)
requires that power in the electric field be transferred into conduction current, and is thereby lost to the wave (Section 6.6). When
we required  to be zero above, we precluded this possibility; that is, we implicitly specified . The fact that the constitutive
parameters  and  appear in Equations  – , but  does not, is further evidence of this.

Equations –  are Maxwell’s Equations for a region comprised of isotropic, homogeneous, and source-free material.
Because there can be no conduction current in a source-free region, these equations apply only to material that is lossless (i.e.,
having negligible ).
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D̃ B̃

∇ ⋅ = 0Ẽ (9.2.1)
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Before moving on, one additional disclosure is appropriate. It turns out that there actually is a way to use Equations –  for
regions in which loss is significant. This requires a redefinition of  as a complex-valued quantity. We shall not consider this
technique in this section. We mention this simply because one should be aware that if permittivity appears as a complex-valued
quantity, then the imaginary part represents loss.

To derive the wave equations we begin with the MFE, Equation . Taking the curl of both sides of the equation we obtain

On the right we can eliminate  using Equation :

On the left side of Equation , we apply the vector identity

which in this case is

We may eliminate the first term on the right using Equation , yielding

Substituting these results back into Equation  and rearranging terms we have

This is the wave equation for . Note that it is a homogeneous (in the mathematical sense of the word) differential equation, which
is expected since we have derived it for a source-free region.

It is common to make the following definition

so that Equation  may be written

Why go the the trouble of defining ? One reason is that  conveniently captures the contribution of the frequency, permittivity,
and permeability all in one constant. Another reason is to emphasize the connection to the parameter  appearing in transmission
line theory (see Section 3.8 for a reminder). It should be clear that  is a phase propagation constant, having units of 1/m (or
rad/m, if you prefer), and indicates the rate at which the phase of the propagating wave progresses with distance.

The wave equation for  is obtained using essentially the same procedure, which is left as an exercise for the reader. It should be
clear from the duality apparent in Equations -  that the result will be very similar. One finds:

Equations  and  are the wave equations for  and , respectively, for a region comprised of isotropic,
homogeneous, lossless, and source-free material.

Looking ahead, note that  and  are solutions to the same homogeneous differential equation. Consequently,  and  cannot be
different by more than a constant factor and a direction. In fact, we can also determine something about the factor simply by
examining the units involved: Since  has units of V/m and  has units of A/m, this factor will be expressible in units of the ratio
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of V/m to A/m, which is . This indicates that the factor will be an impedance. This factor is known as the wave impedance and
will be addressed in Section 9.5. This impedance is analogous the characteristic impedance of a transmission line (Section 3.7).

Additional Reading:

“Wave Equation” on Wikipedia.
“Electromagnetic Wave Equation” on Wikipedia.
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