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7.12: Inductance

Current creates a magnetic field, which subsequently exerts force on other current-bearing structures. For example, the current in
each winding of a coil exerts a force on every other winding of the coil. If the windings are fixed in place, then this force is unable
to do work (i.e., move the windings), so instead the coil stores potential energy. This potential energy can be released by turning off
the external source. When this happens, charge continues to flow, but is now propelled by the magnetic force. The potential energy
that was stored in the coil is converted to kinetic energy and subsequently used to redistribute the charge until no current flows. At
this point, the inductor has expended its stored energy. To restore energy, the external source must be turned back on, restoring the
flow of charge and thereby restoring the magnetic field.

Now recall that the magnetic field is essentially defined in terms of the force associated with this potential energy; i.e.,
F = gqv x B where q is the charge of a particle comprising the current, v is the velocity of the particle, and B is magnetic flux
density. So, rather than thinking of the potential energy of the system as being associated with the magnetic force applied to
current, it is equally valid to think of the potential energy as being stored in the magnetic field associated with the current
distribution. The energy stored in the magnetic field depends on the geometry of the current-bearing structure and the permeability
of the intervening material because the magnetic field depends on these parameters.

The relationship between current applied to a structure and the energy stored in the associated magnetic field is what we mean by
inductance. We may fairly summarize this insight as follows:

Inductance is the ability of a structure to store energy in a magnetic field.

The inductance of a structure depends on the geometry of its current-bearing structures and the permeability of the intervening
medium.

Note that inductance does not depend on current, which we view as either a stimulus or response from this point of view. The
corresponding response or stimulus, respectively, is the magnetic flux associated with this current. This leads to the following
definition:

®
L= 7 (single linkage) (7.12.1)

where ® (units of Wb) is magnetic flux, I (units of A) is the current responsible for this flux, and L (units of H) is the associated
inductance. (The “single linkage” caveat will be explained below.) In other words, a device with high inductance generates a large
magnetic flux in response to a given current, and therefore stores more energy for a given current than a device with lower
inductance.

To use Equation 7.12.1 we must carefully define what we mean by “magnetic flux” in this case. Generally, magnetic flux is
magnetic flux density (again, B, units of Wb/m?) integrated over a specified surface S, so
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where ds is the differential surface area vector, with direction normal to S. However, this leaves unanswered the following
questions: Which S, and which of the two possible normal directions of ds? For a meaningful answer, S must uniquely associate
the magnetic flux to the associated current. Such an association exists if we require the current to form a closed loop. This is shown
in Figure 7.12.1 Here C is the closed loop along which the current flows, S is a surface bounded by C, and the direction of ds is
defined according to the right-hand rule of Stokes’ Theorem. Note that C can be a closed loop of any shape; i.e., not just circular,
and not restricted to lying in a plane. Further note that S used in the calculation of ® can be any surface bounded by C. This is
because magnetic field lines form closed loops such that any one magnetic field line intersects any open surface bounded by C
exactly once. Such an intersection is sometimes called a “linkage.” So there we have it — we require the current I to form a closed
loop, we measure the magnetic flux through this loop using the sign convention of the right-hand rule, and the ratio is the
inductance.
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Figure 7.12.1 Association between a closed loop of current and the associated magnetic
flux. (© CC BY SA 4.0; K. Kikkeri)

Many structures consist of multiple such loops — the coil is of course one of these. In a coil, each winding carries the same current,
and the magnetic fields of the windings add to create a magnetic field, which grows in proportion to the winding density (Section
7.6). The magnetic flux density inside a coil is proportional to the number of windings, IV, so the flux ® in Equation 7.12.1should
properly be indicated as IN®. Another way to look at this is that we are counting the number of times the same current is able to
generate a unique set of magnetic field lines that intersect S.

Summarizing, our complete definition for inductance is

No
L= a (identical linkages) (7.12.2)

An engineering definition of inductance is Equation 7.12.2 with the magnetic flux defined to be that associated with a single
closed loop of current with sign convention as indicated in Figure 7.12.1, and N defined to be the number of times the same
current [ is able to create that flux.

What happens if the loops have different shapes? For example, what if the coil is not a cylinder, but rather cone-shaped? (Yes, there
is such a thing — see “Additional Reading” at the end of this section.) In this case, one needs a better way to determine the factor
N ® since the flux associated with each loop of current will be different. However, this is beyond the scope of this section.

An inductor is a device that is designed to exhibit a specified inductance. We can now make the connection to the concept of the
inductor as it appears in elementary circuit theory. First, we rewrite Equation 7.12.2as follows:

N®
I=—
L
Taking the derivative of both sides of this equation with respect to time, we obtain:
d N d
— == 12,
dit L dt (7.12.3)

Now we need to reach beyond the realm of magnetostatics for just a moment. Section 8.3 (“Faraday’s Law”) shows that the change
in ® associated with a change in current results in the creation of an electrical potential equal to —Nd® /dt realized over the loop
C. In other words, the terminal voltage V' is +Nd® /dt, with the change of sign intended to keep the result consistent with the sign
convention relating current and voltage in passive devices. Therefore, d® /dt in Equation 7.12.3 is equal to V/N. Making the
substitution we find:

d

=L —
v dt

I (7.12.4)

This is the expected relationship from elementary circuit theory.

Another circuit theory concept related to inductance is mutual inductance. Whereas inductance relates changes in current to
instantaneous voltage in the same device (Equation 7.12.4), mutual inductance relates changes in current in one device to
instantaneous voltage in a different device. This can occur when the two devices are coupled (“linked”) by the same magnetic field.
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For example, transformers (Section 8.5) typically consist of separate coils that are linked by the same magnetic field lines. The
voltage across one coil may be computed as the time-derivative of current on the other coil times the mutual inductance.

Let us conclude this section by taking a moment to dispel a common misconception about inductance. The misconception pertains
to the following question. If the current does not form a closed loop, what is the inductance? For example, engineers sometimes
refer to the inductance of a pin or lead of an electronic component. A pin or lead is not a closed loop, so the formal definition of
inductance given above — ratio of magnetic flux to current — does not apply. The broader definition of inductance — the ability to
store energy in a magnetic field — does apply, but this is not what is meant by “pin inductance” or “lead inductance.” What is
actually meant is the imaginary part of the impedance of the pin or lead — i.e., the reactance — expressed as an equivalent
inductance. In other words, the reactance of an inductive device is positive, so any device that also exhibits a positive reactance can
be viewed from a circuit theory perspective as an equivalent inductance. This is not referring to the storage of energy in a magnetic
field; it merely means that the device can be modeled as an inductor in a circuit diagram. In the case of “pin inductance,” the culprit
is not actually inductance, but rather skin effect (see “Additional References” at the end of this section). Summarizing:

Inductance implies positive reactance, but positive reactance does not imply the physical mechanism of inductance.

This page titled 7.12: Inductance is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Steven W. Ellingson
(Virginia Tech Libraries' Open Education Initiative) .
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