
8.9.1 https://phys.libretexts.org/@go/page/97180

8.9: Displacement Current and Ampere’s Law
In this section, we generalize Ampere’s Law, previously encountered as a principle of magnetostatics in Sections 7.4 and 7.9.
Ampere’s Law states that the current  flowing through closed path  is equal to the line integral of the magnetic field intensity 

 along . That is:

We shall now demonstrate that this equation is unreliable if the current is not steady; i.e., not DC.

First, consider the situation shown in Figure . Here, a current  flows in the wire, subsequently generating a magnetic field 
that circulates around the wire (Section 7.5). When we perform the integration in Ampere’s Law along any path  enclosing the
wire, the result is , as expected. In this case, Ampere’s Law is working even when  is time-varying.

 Figure : Ampere's Law applied to a continuous line of current (modified; C. Burks)

Now consider the situation shown in Figure , in which we have introduced a parallel-plate capacitor. In the DC case, this
situation is simple. No current flows, so there is no magnetic field and Ampere’s Law is trivially true. In the AC case, the current 
can be non-zero, but we must be clear about the physical origin of this current. What is happening is that for one half of a period, a
source elsewhere in the circuit is moving positive charge to one side of the capacitor and negative charge to the other side. For the
other half-period, the source is exchanging the charge, so that negative charge appears on the previously positively-charged side
and vice-versa. Note that at no point is current flowing directly from one side of the capacitor to the other; instead, all current must
flow through the circuit in order to arrive at the other plate. Even though there is no current between the plates, there is current in
the wire, and therefore there is also a magnetic field associated with that current.

 Figure : Ampere's Law applied to a parallel plate capacitor (modified; C. Burks)

Now we are ready to shine a light on the problem. Recall that from Stokes’ Theorem, the line integral over  is mathematically
equivalent to an integral over any open surface  that is bounded by . Two such surfaces are shown in Figure  and Figure 

, indicated as  and . In the wire-only scenario of Figure , the choice of  clearly doesn’t matter; any valid surface
intersects current equal to . Similarly in the scenario of Figure , everything seems fine if we choose . If, on the other
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hand, we select  in the parallel-plate capacitor case, then we have a problem. There is no current flowing through , so the right
side of Equation  is zero even though the left side is potentially non-zero. So, it appears that something necessary for the time-
varying case is missing from Equation .

To resolve the problem, we postulate an additional term in Ampere’s Law that is non-zero in the above scenario. Specifically, we
propose:

where  is the enclosed current (formerly identified as ) and  is the proposed new term. If we are to accept this postulate,
then here is a list of things we know about :

 has units of current (A).
 in the DC case and is potentially non-zero in the AC case. This implies that  is the time derivative of some other

quantity.
 must be somehow related to the electric field.

How do we know  must be related to the electric field? This is because the Maxwell-Faraday Equation tells us that spatial
derivatives of  are related to time derivatives of ; i.e.,  and  are coupled in the time-varying (here, AC) case. This coupling
between  and  must also be at work here, but we have not yet seen  play a role. This is pretty strong evidence that  depends
on the electric field.

Without further ado, here’s :

where  is the electric flux density (units of C/m ) and is equal to  as usual, and  is the same open surface associated with 
in Ampere’s Law. Note that this expression meets our expectations: It is determined by the electric field, it is zero when the electric
field is constant (i.e., not time varying), and has units of current.

The quantity  is commonly known as displacement current. It should be noted that this name is a bit misleading, since  is not a
current in the conventional sense. Certainly, it is not a conduction current – conduction current is represented by , and there is no
current conducted through an ideal capacitor. It is not unreasonable to think of  as current in a more general sense, for the
following reason. At one instant, charge is distributed one way and at another, it is distributed in another way. If you define current
as a time variation in the charge distribution relative to  – regardless of the path taken by the charge – then  is a current.
However, this distinction is a bit philosophical, so it may be less confusing to interpret “displacement current” instead as a separate
electromagnetic quantity that just happens to have units of current.

Now we are able to write the general form of Ampere’s Law that applies even when sources are time-varying. Here it is:

As is the case in the Maxwell-Faraday Equation, most of the utility of Ampere’s Law is unleashed when expressed in differential
form. To obtain this form the first step is to write  as an integral of over ; this is simply (see Section 6.2):

where  is the volume current density (units of A/m ). So now we have

We can transform the left side of the above equation into a integral over  using Stokes’ Theorem. We obtain
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The surface  on both sides is the same, and we have not constrained  in any way.  can be any mathematically-valid open
surface anywhere in space, having any size and any orientation. The only way the above expression can be universally true under
these conditions is if the integrands on each side are equal at every point in space. Therefore:

which is Ampere’s Law in differential form.

What does Equation  mean? Recall that the curl of  is a way to describe the direction and rate of change of  with position.
Therefore, this equation constrains spatial derivatives of  to be simply related to  and the time derivative of  (displacement
current). Said plainly:

The differential form of the general (time-varying) form of Ampere’s Law (Equation ) relates the change in the magnetic
field with position to the change in the electric field with time, plus current.

As is the case in the Maxwell-Faraday Equation, we see that electric and magnetic fields become coupled at each point in space
when sources are time-varying.
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