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3.2: Schwarzchild Metric
In General Relativity, the flatspace Minkowski metric cannot be used to describe spacetime. In fact, the metric depends (in a very
complicated way) on the exact distribution of mass and energy in its vicinity. For a perfectly spherical distribution of mass and
energy, the metric is

This metric is referred to as the Schwarzchild metric, and describes the shape of space near a spherical mass such as
(approximately) the earth or the sun, as well as the space surrounding a black hole. There are a number of subtle points you need to
understand to use this metric.

1. This is the metric for a slice of spacetime that contains the mass center. Since the mass is spherical, all slices through the mass
center are identical. The metric is expressed in polar coordinates, ( , ), with the mass center at the origin.

2. Notice that the tangential component of the metric is unchanged from the Minkowski metric, meaning there is no deformation
in that direction. However, both the temporal and radial portions are deformed by multiplicative constants, so radial lengths and
time intervals are different in different locations of space.

3. Notice that as  goes to zero, or  gets very large, the metric approaches the Minkowski (flatspace) metric.
4.  is the flatspace time, the time measured on clocks very far from the central mass, where spacetime is assumed to be flat.
5.  is the reduced circumference. There are several ways to measure your distance from an object, such as physically traveling to

the object or bouncing a signal off the object. If you tried to measure your distance from a black hole in either of these manners,
you would have a very tough time, because either you (or your signal) would never return. Therefore we need a different
method of determining radial distance. To do this, we will imagine wrapping a tape measure around the black hole, measuring
its circumference, and then dividing the circumference by . The resulting number is termed the reduced circumference, and,
in flat space, would actually equal the value of our radial distance. (It won’t equal the “real” radial distance from the black hole
because the “real” radial distance is undefined (and undefinable!).)

6. Notice that the metric diverges (becomes infinite) at . Thus a single radial step at this location is infinitely
long (and it appears that a single clock tick has no duration)! This “radius” (actually reduced circumference but we’ll be sloppy
and call it radius from now on) is termed the Schwarzchild radius and forms the event horizon of the black hole. At, or within,
this radius, events are “beyond the horizon”, meaning they are unseen and unseeable from radii greater than the Schwarzchild
radius. Basically, once you pass over the horizon, you are no longer in contact with the rest of the universe. Ever.

Using the Schwarzchild Metric: Time
How close to a black hole of 5 solar masses can you approach before your spaceship’s clock differs from time measured in flat
spacetime by no more than 1%?

Regardless of where you are in space, if you make your measurements over a small enough region of spacetime that region of
spacetime will appear locally flat, just like a straight tangent line can be drawn at any point on a smooth curve. Therefore, the ship’s
measurements are made using a standard Minkowski metric while the faraway observer must use the Schwarzchild metric since the
spaceship’s clock is far from her location.

We’ll assume your spaceship is at rest, in both frames of reference, so  and .
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Equation  plays a similar role in general relativity that the time dilation relationship plays in special relativity. It relates the
time interval measured by a “special” observer (one at rest in curved space) to another observer’s time measurements.
Mathematically, it even has a similar structure, with the term “ ” playing the role of “ ” in the time dilation formula.

Continuing with the question:

Since the event horizon is at

you are about 50 event horizons away from the black hole.

Using the Schwarzchild Metric: Length
Two astronauts are creating a (metric) football field near a 10 solar mass black hole. The reduced circumference between the two
astronauts is 100 m, and the astronauts lie along the same radial line. What is the radial separation between the astronauts as
measured by the inner astronaut, if the inner astronaut is at twice the event horizon?

Again, we’ll assume the spacetime immediately surrounding the inner astronaut is locally flat, allowing the astronaut to use the
Minkowski metric. Since the separation between the astronauts is expressed in terms of reduced circumference, this can be
incorporated into the Schwarzchild metric. Thus,

To measure the distance between two points, the location of the two points must be determined at the same time, so  in both
reference systems. Additionally, since the points lie along the same radial line, . Calling this line the x-axis allows us to set 

. Thus,

Equation  plays a similar role in general relativity that the length contraction relationship plays in special relativity. It relates
the spatial interval measured by a “special” observer (one at rest in curved space) to another observer’s spatial measurements.
Mathematically, it even has a similar structure, with the term “ ” playing the role of “ ” in the length contraction formula.

Substituting  and  into Equation  yields
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Thus, even though the two astronauts only differ by 100 m in reduced circumference, the distance between the astronauts,
measured by the inner astronaut, is 141.42 m. Thus, spacetime is stretched by a factor of 41% compared to flat spacetime. This
provides a measure of how “warped” spacetime is at this location.

Are you upset with my sloppy use of calculus in the previous example? You should be. The metrics relate differential changes in
time and space (  and ) and I just plugged in  for . Is 100 m infinitesimally small? It depends …

More carefully, I should integrate the expression for  between the two limits, from  to .

This integral is ugly for two reasons: the variable is in the denominator of a fraction that’s in the denominator of the expression, and
the integral has a bunch of constants. It’s easy to get rid of the constants by using the definition of the event horizon,

where

To solve the more difficult problem, multiply the numerator and denominator by a skillfully chosen factor:

Next, notice that the combination of terms that appears in the integral is dimensionless, meaning it has no units. It is always a very
good idea to try to simplify complicated integrals in terms of dimensionless factors.

Perform a u-substitution where u is equal to this dimensionless factor and simplify:

with

with the limits of integration

dxastronout =
100 m

1 −
1

2

− −−−−
√

= 141.42 m

(3.2.15)

(3.2.16)

dt dr 100 m dr

dxastronaut 2rhorizon 2 +100 mrhorizon

x = ∫
2 +100 mrhorizon

2rhorizon

dr

1 −
2GM

rc2

− −−−−−−−
√

(3.2.17)

x = ∫
2 +100 mrh

2rh

dr

1 −
rh

r

− −−−−−
√

(3.2.18)

=rh
2GM

c2
(3.2.19)

xastronaut = ∫
2 +100mrk

2rh

( dr
r

rh
)

1/2

( (1 −
r

rh
)

1/2
rh

r
)1/2

= ∫
2 +100mrh

2rh

dr
r

rh

−−−
√

−1
r

rh

− −−−−−
√

(3.2.20)

(3.2.21)

u

du

=
R

rh

= dr
1

rh

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/9721?pdf


3.2.4 https://phys.libretexts.org/@go/page/9721

So Equation  then becomes

Thus, the actual distance between the astronauts, measured by the inner astronaut, is 140.83 m. For this problem, 100 m is “small
enough” to be considered infinitesimally small, since the correct answer differs from the approximate answer by less than 1%. The
correct answer is less than the approximate answer because the correct answer takes into account that space is less stretched as you
move out toward the second astronaut, while the approximate answer approximates the stretching of space as being constant
between the astronauts.
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