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16.4: Calculating Electric Potential of Charge Distributions

By the end of this section, you will be able to:

Calculate the potential of various continuous charge distributions

How do you calculate the electric potential of continuous charge distributions? Recall that for multiple point charges,

We may treat a continuous charge distribution as a collection of infinitesimally separated individual points. This yields the integral

for the potential at a point . Note that  is the distance from each individual point in the charge distribution to the point . As we
saw in Electric Charges and Fields, the infinitesimal charges are given by

where  is linear charge density,  is the charge per unit area, and  is the charge per unit volume.

Find the electric potential of a uniformly charged, nonconducting wire with linear density  (coulomb/meter) and length  at a
point that lies on a line that divides the wire into two equal parts.

Strategy

To set up the problem, we choose Cartesian coordinates in such a way as to exploit the symmetry in the problem as much as
possible. We place the origin at the center of the wire and orient the -axis along the wire so that the ends of the wire are at 

. The field point  is in the -plane and since the choice of axes is up to us, we choose the -axis to pass through
the field point , as shown in Figure .

Figure : We want to calculate the electric potential due to a line of charge.
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Consider a small element of the charge distribution between  and . The charge in this cell is  and the
distance from the cell to the field point  is . Therefore, the potential becomes

Significance

Note that this was simpler than the equivalent problem for electric field, due to the use of scalar quantities. Recall that we
expect the zero level of the potential to be at infinity, when we have a finite charge. To examine this, we take the limit of the
above potential as  approaches infinity; in this case, the terms inside the natural log approach one, and hence the potential
approaches zero in this limit. Note that we could have done this problem equivalently in cylindrical coordinates; the only effect
would be to substitute  for  and  for .

A ring has a uniform charge density , with units of coulomb per unit meter of arc. Find the electric potential at a point on the
axis passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a circle. We divide
the circle into infinitesimal elements shaped as arcs on the circle and use cylindrical coordinates shown in Figure .

Figure : We want to calculate the electric potential due to a ring of charge.

Solution

A general element of the arc between  and  is of length  and therefore contains a charge equal to . The
element is at a distance of  from , and therefore the potential is
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Significance

This result is expected because every element of the ring is at the same distance from point . The net potential at  is that of
the total charge placed at the common distance, .

A disk of radius  has a uniform charge density  with units of coulomb meter squared. Find the electric potential at any point
on the axis passing through the center of the disk.

Strategy

We divide the disk into ring-shaped cells, and make use of the result for a ring worked out in the previous example, then
integrate over r in addition to . This is shown in Figure .

Figure : We want to calculate the electric potential due to a disk of charge.

Solution

An infinitesimal width cell between cylindrical coordinates  and  shown in Figure  will be a ring of charges
whose electric potential  at the field point has the following expression

where

The superposition of potential of all the infinitesimal rings that make up the disk gives the net potential at point . This is
accomplished by integrating from  to :
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Significance

The basic procedure for a disk is to first integrate around  and then over . This has been demonstrated for uniform (constant)
charge density. Often, the charge density will vary with , and then the last integral will give different results.

Find the electric potential due to an infinitely long uniformly charged wire.

Strategy

Since we have already worked out the potential of a finite wire of length  in Example , we might wonder if taking 
 in our previous result will work:

However, this limit does not exist because the argument of the logarithm becomes  as , so this way of finding 
of an infinite wire does not work. The reason for this problem may be traced to the fact that the charges are not localized in
some space but continue to infinity in the direction of the wire. Hence, our (unspoken) assumption that zero potential must be
an infinite distance from the wire is no longer valid.

To avoid this difficulty in calculating limits, let us use the definition of potential by integrating over the electric field from the
previous section, and the value of the electric field from this charge configuration from the previous chapter.

Solution

We use the integral

where  is a finite distance from the line of charge, as shown in Figure .

Figure : Points of interest for calculating the potential of an infinite line of charge.

With this setup, we use  and  to obtain

Now, if we define the reference potential  at , this simplifies to
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 Example : Potential Due to an Infinite Charged Wire16.4.4
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Note that this form of the potential is quite usable; it is 0 at 1 m and is undefined at infinity, which is why we could not use the
latter as a reference.

Significance

Although calculating potential directly can be quite convenient, we just found a system for which this strategy does not work
well. In such cases, going back to the definition of potential in terms of the electric field may offer a way forward.

What is the potential on the axis of a nonuniform ring of charge, where the charge density is ?

Solution
It will be zero, as at all points on the axis, there are equal and opposite charges equidistant from the point of interest. Note that
this distribution will, in fact, have a dipole moment.

16.4: Calculating Electric Potential of Charge Distributions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Ronald Kumon & OpenStax.

7.4: Calculations of Electric Potential by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
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 Exercise 16.4.1

λ(θ) = λ cosθ
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