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21.16: Attenuation in Coaxial Cable

In this section, we consider the issue of attenuation in coaxial transmission line. Recall that attenuation can be interpreted in the
context of the “lumped element” equivalent circuit transmission line model as the contributions of the resistance per unit length R’
and conductance per unit length G’. In this model, R’ represents the physical resistance in the inner and outer conductors, whereas
G’ represents loss due to current flowing directly between the conductors through the spacer material.

The parameters used to describe the relevant features of coaxial cable are shown in Figure 21.16.1 In this figure, a and b are the
radii of the inner and outer conductors, respectively. o;. and o, are the conductivities (SI base units of S/m) of the inner and outer
conductors, respectively. Conductors are assumed to be non-magnetic; i.e., having permeability p equal to the free space value py.
The spacer material is assumed to be a lossy dielectric having relative permittivity €, and conductivity o.
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UOC Figure 21.16.1 Parameters defining the design of a coaxial cable.

Resistance per unit length

The resistance per unit length is the sum of the resistances of the inner and outer conductor per unit length. The resistance per unit
length of the inner conductor is determined by ¢;. and the effective cross-sectional area through which the current flows. The latter
is equal to the circumference 27a times the skin depth §;. of the inner conductor, so:
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This expression is only valid for ;. < a because otherwise the cross-sectional area through which the current flows is not well-
modeled as a thin ring near the surface of the conductor. Similarly, we find the resistance per unit length of the outer conductor is

1
R~ ————— forf,. <t
% (27h - 8,¢) e o
where §,. is the skin depth of the outer conductor and ¢ is the thickness of the outer conductor. Therefore, the total resistance per
unit length is

R =R, +Rj

1 1
~ (21.16.1)
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Recall that skin depth depends on conductivity. Specifically:

dic = 4/2/wpoic (21.16.2)
Soe = 1/2/whi0 e (21.16.3)

Expanding Equation 21.16.1to show explicitly the dependence on conductivity, we find:

R ~ 1 [ 1 " 1 :|
27{'«/2/(«)[1,0 a,/0Cic b\/o'oc
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At this point it is convenient to identify two particular cases for the design of the cable. In the first case, “Case I,” we assume
Ooc > 0 . Since b > a, we have in this case

R~ i )
21 2/(,«)/1,0 a,/0jc

L1 (Case-) (21.16.4)
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In the second case, “Case II,” we assume o,. = 0;. . In this case, we have

R ~ 1 [ 1 n 1 :|
27’!’«/2/0.)[1,0 a4/0ic b\/a'ic
! [l + l] (Case-~1I) (21.16.5)
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A simpler way to deal with these two cases is to represent them both using the single expression

1 1 C
Rr—m | =4+ —
270;.0;c [a + b ]

where C =0 in Case I and C =1 in Case II.

Conductance per unit length
The conductance per unit length of coaxial cable is simply that of the associated coaxial structure at DC; i.e.,

- 2wog
 In(b/a)
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Unlike resistance, the conductance is independent of frequency, at least to the extent that o is independent of frequency.

Attenuation

The attenuation of voltage and current waves as they propagate along the cable is represented by the factor e”**, where z is

distance traversed along the cable. It is possible to find an expression for a in terms of the material and geometry parameters using:

7é\/(R’+J’wL’)(G’+J’w0’) =a+jB (21.16.6)
where L’ and C’ are the inductance per unit length and capacitance per unit length, respectively. These are given by
L= %m (b/a)

and

2Teg€,

In(b/a)
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In principle we could solve Equation 21.16.6for a. However, this course of action is quite tedious, and a simpler approximate
approach facilitates some additional insights. In this approach, we define parameters ap associated with R’ and o associated with
G’ such that

e ORrZp—0GZ — o—(artag)z — p—0z

which indicates

Next we postulate

O(R%KR— (21167)
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where Zj is the characteristic impedance

1 b

Zy ~ Uik In— (low loss) (21.16.8)
2w \J&  a

and where K, is a unitless constant to be determined. The justification for Equation 21.16.7is as follows: First, a«g must increase

monotonically with increasing R'. Second, R’ must be divided by an impedance in order to obtain the correct units of 1/m. Using

similar reasoning, we postulate

ag %KgG/ZO (21169)

where K¢ is a unitless constant to be determined. The following example demonstrates the validity of Equations 21.16.7 and
21.16.9 and will reveal the values of K and K.

v/ Example 21.16.1: Attenuation constant for RG-59

RG-59 is a popular form of coaxial cable having the parameters a 2 0.292 mm, b2 1.855 mm, o;, = 2.28 x 10’ S/m,
0s 225.9x10° S/m, and €, =£ 2.25. The conductivity o,. of the outer conductor is difficult to quantify because it consists of
a braid of thin metal strands. However, o, > 0;. , S0 we may assume Case I; i.e., o, > 0., and subsequently C' = 0.
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** Figure 21.16.2 Comparison of o = Re{v} to ag, ag, and ag + ag
for Kr = Kg = 1/2 . The result for o has been multiplied by 1.01; otherwise the curves would be too close to tell apart.
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Figure 21.16.2shows the components aig and ag computed for the particular choice K = K¢ = 1/2. The figure also shows
ag +ag, along with a computed using Equation 21.16.6 We find that the agreement between these values is very good,
which is compelling evidence that the ansatz is valid and Kr = K¢ =1/2.

Note that there is nothing to indicate that the results demonstrated in the example are not generally true. Thus, we come to the
following conclusion:

The attenuation constant & ~ ag +ag where ag = R'/2Zy and ag = G'Zy/2.

Minimizing attenuation

Let us now consider if there are design choices which minimize the attenuation of coaxial cable. Since & = ag + ag , we may
consider ap and o independently. Let us first consider aq:

1
aag = EGIZO
1 270, 1 n

o nb/a) 27 \/aln(b/a)
o Os
-3 (21.16.10)
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It is clear from this result that o is minimized by minimizing o5/ ,/€,. Interestingly the physical dimensions a and b have no
discernible effect on a. Now we consider ag:

a R

T 22,

_ 1 (1/276ic0ic) [1/a+C/b]
2 (1/27) (mo/ /&) In(b/a)
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21060 In(b/a)
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(21.16.11)

Now making the substitution §;; = y/2/wpg0;. in order to make the dependences on the constitutive parameters explicit, we find:

an— 1 Wko€r [1/a+C/b)
"T2v2m\ o In(b/a)

Here we see that ap is minimized by minimizing €, /c;.. It’s not surprising to see that we should maximize o;.. However, it’s a
little surprising that we should minimize €,. Furthermore, this is in contrast to aig, which is minimized by maximizing e, . Clearly
there is a tradeoff to be made here. To determine the parameters of this tradeoff, first note that the result depends on frequency:
Since ar dominates over o at sufficiently high frequency (as demonstrated in Figure 21.16.2), it seems we should minimize ¢, if
the intended frequency of operation is sufficiently high; otherwise the optimum value is frequency-dependent. However, o may
vary as a function of ¢,, so a general conclusion about optimum values of o, and €, is not appropriate.

However, we also see that ag — unlike a — depends on a and b. This implies the existence of a generally-optimum geometry. To
find this geometry, we minimize g by taking the derivative with respect to a, setting the result equal to zero, and solving for a

and/or b. Here we go:
1 1 C/b
9 n= e, 0 [1/a+C/Y (21.16.12)
da 2v2-m oic  Oa In(b/a)

This derivative is worked out in an addendum at the end of this section. Using the result from the addendum, the right side of
Equation 21.16.12can be written as follows:

1 W €r -1 1/a+C/b
2/2-m \/—:' la2 In(b/a) * aln®(b/a)

In order for dag/Oa = 0, the factor in the square brackets above must be equal to zero. After a few steps of algebra, we find:

In(b/a) =1+ b/%

(21.16.13)

In Case I (0, > 0. ), C =0 so:
b/a=e222.72 (Casel)

In Case II (64c = 04 ), C = 1. The resulting equation can be solved by plotting the function, or by a few iterations of trial and
error; either way one quickly finds

b/a=3.59 (Casell)
Summarizing, we have found that « is minimized by choosing the ratio of the outer and inner radii to be somewhere between 2.72
and 3.59, with the precise value depending on the relative conductivity of the inner and outer conductors.
Substituting these values of b/a into Equation 21.16.8 we obtain:
59.9 Q 76.6 Q
Zy = to (21.16.14)
NG NG

as the range of impedances of coaxial cable corresponding to physical designs that minimize attenuation.
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Equation 21.16.14gives the range of characteristic impedances that minimize attenuation for coaxial transmission lines. The
precise value within this range depends on the ratio of the conductivity of the outer conductor to that of the inner conductor.

Since €, > 1, the impedance that minimizes attenuation is less for dielectric-filled cables than it is for air-filled cables. For
example, let us once again consider the RG-59 from Example 21.16.1 In that case, €, = 2.25 and C' = 0, indicating Zy =~ 39.9 Q
is optimum for attenuation. The actual characteristic impedance of Zj is about 75 €2, so clearly RG-59 is not optimized for
attenuation. This is simply because other considerations apply, including power handling capability (addressed in Section 7.4) and
the convenience of standard values (addressed in Section 7.5).

Addendum: Derivative of a® In(b/a)

Evaluation of Equation 21.16.12requires finding the derivative of a? In(b/a) with respect to a. Using the chain rule, we find:

sl ()] =5 m(7)

+a? [iln(éﬂ (21.16.15)

Oa a
Note
0
Baa =2a
and
0 b 0
%ln(z> = %[ln(b) —ln(a)]
0
= —%ln(a)
1
=—= (21.16.16)
So:
9 [a2 ln(2>] =[2a] ln(2> +a° [—l]
Oa a a a
= 2aln(s> —a (21.16.17)

This result is substituted for a In(b/a) in Equation 21.16.12to obtain Equation 21.16.13
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