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21.16: Attenuation in Coaxial Cable
In this section, we consider the issue of attenuation in coaxial transmission line. Recall that attenuation can be interpreted in the
context of the “lumped element” equivalent circuit transmission line model as the contributions of the resistance per unit length 
and conductance per unit length . In this model,  represents the physical resistance in the inner and outer conductors, whereas 

 represents loss due to current flowing directly between the conductors through the spacer material.

The parameters used to describe the relevant features of coaxial cable are shown in Figure . In this figure,  and  are the
radii of the inner and outer conductors, respectively.  and  are the conductivities (SI base units of S/m) of the inner and outer
conductors, respectively. Conductors are assumed to be non-magnetic; i.e., having permeability  equal to the free space value .
The spacer material is assumed to be a lossy dielectric having relative permittivity  and conductivity .

 Figure : Parameters defining the design of a coaxial cable.

Resistance per unit length
The resistance per unit length is the sum of the resistances of the inner and outer conductor per unit length. The resistance per unit
length of the inner conductor is determined by  and the effective cross-sectional area through which the current flows. The latter
is equal to the circumference  times the skin depth  of the inner conductor, so:

This expression is only valid for  because otherwise the cross-sectional area through which the current flows is not well-
modeled as a thin ring near the surface of the conductor. Similarly, we find the resistance per unit length of the outer conductor is

where  is the skin depth of the outer conductor and  is the thickness of the outer conductor. Therefore, the total resistance per
unit length is

Recall that skin depth depends on conductivity. Specifically:

Expanding Equation  to show explicitly the dependence on conductivity, we find:

R′

G′ R′

G′

21.16.1 a b

σic σoc

μ μ0

ϵr σs

21.16.1

σic

2πa δic

≈    for  ≪ aR′
ic

1

(2πa ⋅ )δic σic

δic

≪ aδic

≈    for  ≪ tR′
oc

1

(2πb ⋅ )δoc σoc

δoc

δoc t

R′ = +R′
ic R′

oc

≈ +
1

(2πa ⋅ )δic σic

1

(2πb ⋅ )δoc σoc

(21.16.1)

δic

δoc

= 2/ωμσic

− −−−−−−
√

= 2/ωμσoc

− −−−−−−
√

(21.16.2)

(21.16.3)

21.16.1

≈ [ + ]R′ 1

2π 2/ωμ0
− −−−−

√

1

a σic
−−−

√

1

b σoc
−−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/100730?pdf
https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/21%3A_Electrical_Transmission_Lines/21.16%3A_Attenuation_in_Coaxial_Cable


21.16.2 https://phys.libretexts.org/@go/page/100730

At this point it is convenient to identify two particular cases for the design of the cable. In the first case, “Case I,” we assume 
. Since , we have in this case

In the second case, “Case II,” we assume . In this case, we have

A simpler way to deal with these two cases is to represent them both using the single expression

where  in Case I and  in Case II.

Conductance per unit length

The conductance per unit length of coaxial cable is simply that of the associated coaxial structure at DC; i.e.,

Unlike resistance, the conductance is independent of frequency, at least to the extent that  is independent of frequency.

Attenuation
The attenuation of voltage and current waves as they propagate along the cable is represented by the factor , where  is
distance traversed along the cable. It is possible to find an expression for  in terms of the material and geometry parameters using:

where  and  are the inductance per unit length and capacitance per unit length, respectively. These are given by

and

In principle we could solve Equation  for . However, this course of action is quite tedious, and a simpler approximate
approach facilitates some additional insights. In this approach, we define parameters  associated with  and  associated with
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where  is the characteristic impedance

and where  is a unitless constant to be determined. The justification for Equation  is as follows: First,  must increase
monotonically with increasing . Second,  must be divided by an impedance in order to obtain the correct units of 1/m. Using
similar reasoning, we postulate

where  is a unitless constant to be determined. The following example demonstrates the validity of Equations  and 
, and will reveal the values of  and .

RG-59 is a popular form of coaxial cable having the parameters mm,  mm,  S/m, 
 S/m, and . The conductivity  of the outer conductor is difficult to quantify because it consists of

a braid of thin metal strands. However, , so we may assume Case I; i.e., , and subsequently .

 Figure : Comparison of  to , , and 
for . The result for  has been multiplied by 1.01; otherwise the curves would be too close to tell apart.

Figure  shows the components  and  computed for the particular choice . The figure also shows
, along with  computed using Equation . We find that the agreement between these values is very good,

which is compelling evidence that the ansatz is valid and .

Note that there is nothing to indicate that the results demonstrated in the example are not generally true. Thus, we come to the
following conclusion:

The attenuation constant  where  and .

Minimizing attenuation

Let us now consider if there are design choices which minimize the attenuation of coaxial cable. Since , we may
consider  and  independently. Let us first consider :
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It is clear from this result that  is minimized by minimizing . Interestingly the physical dimensions  and  have no
discernible effect on . Now we consider :

Now making the substitution  in order to make the dependences on the constitutive parameters explicit, we find:

Here we see that  is minimized by minimizing . It’s not surprising to see that we should maximize . However, it’s a
little surprising that we should minimize . Furthermore, this is in contrast to , which is minimized by maximizing . Clearly
there is a tradeoff to be made here. To determine the parameters of this tradeoff, first note that the result depends on frequency:
Since  dominates over  at sufficiently high frequency (as demonstrated in Figure ), it seems we should minimize  if
the intended frequency of operation is sufficiently high; otherwise the optimum value is frequency-dependent. However,  may
vary as a function of , so a general conclusion about optimum values of  and  is not appropriate.

However, we also see that  – unlike  – depends on  and . This implies the existence of a generally-optimum geometry. To
find this geometry, we minimize  by taking the derivative with respect to , setting the result equal to zero, and solving for 
and/or . Here we go:

This derivative is worked out in an addendum at the end of this section. Using the result from the addendum, the right side of
Equation  can be written as follows:

In order for , the factor in the square brackets above must be equal to zero. After a few steps of algebra, we find:

In Case I ( ),  so:

In Case II ( ), . The resulting equation can be solved by plotting the function, or by a few iterations of trial and
error; either way one quickly finds

Summarizing, we have found that  is minimized by choosing the ratio of the outer and inner radii to be somewhere between 
and , with the precise value depending on the relative conductivity of the inner and outer conductors.

Substituting these values of  into Equation , we obtain:

as the range of impedances of coaxial cable corresponding to physical designs that minimize attenuation.
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Equation  gives the range of characteristic impedances that minimize attenuation for coaxial transmission lines. The
precise value within this range depends on the ratio of the conductivity of the outer conductor to that of the inner conductor.

Since , the impedance that minimizes attenuation is less for dielectric-filled cables than it is for air-filled cables. For
example, let us once again consider the RG-59 from Example . In that case,  and , indicating 
is optimum for attenuation. The actual characteristic impedance of  is about , so clearly RG-59 is not optimized for
attenuation. This is simply because other considerations apply, including power handling capability (addressed in Section 7.4) and
the convenience of standard values (addressed in Section 7.5).

Addendum: Derivative of 

Evaluation of Equation  requires finding the derivative of  with respect to . Using the chain rule, we find:

Note

and

So:

This result is substituted for  in Equation  to obtain Equation .
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