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5.2: Vector Cross Product

The Vector Products of Two Vectors (the Cross Product)

Vector multiplication of two vectors yields a vector product.

The vector product of two vectors  and  is denoted by  ×  and is often referred to as a cross product. The vector product
is a vector that has its direction perpendicular to both vectors  and . In other words, vector  ×  is perpendicular to the
plane that contains vectors  and , as shown in Figure . The magnitude of the vector product is defined as

where angle , between the two vectors, is measured from vector  (first vector in the product) to vector  (second vector in
the product), as indicated in Figure , and is between 0° and 180°.

According to Equation , the vector product vanishes for pairs of vectors that are either parallel (  = 0°) or antiparallel (  =
180°) because sin 0° = sin 180° = 0.

Figure : The vector product of two vectors is drawn in three-dimensional space. (a) The vector product  is a vector
perpendicular to the plane that contains vectors  and . Small squares drawn in perspective mark right angles between  and ,
and between  and  so that if  and  lie on the floor, vector  points vertically upward to the ceiling. (b) The vector product 

 is a vector antiparallel to vector .

On the line perpendicular to the plane that contains vectors  and  there are two alternative directions—either up or down, as
shown in Figure —and the direction of the vector product may be either one of them. In the standard right-handed orientation,
where the angle between vectors is measured counterclockwise from the first vector, vector  points upward, as seen in
Figure (a). If we reverse the order of multiplication, so that now  comes first in the product, then vector  must point
downward, as seen in Figure (b). This means that vectors  and  are antiparallel to each other and that vector
multiplication is not commutative but anticommutative. The anticommutative property means the vector product reverses the
sign when the order of multiplication is reversed:

The corkscrew right-hand rule is a common mnemonic used to determine the direction of the vector product. As shown in Figure 
, a corkscrew is placed in a direction perpendicular to the plane that contains vectors  and , and its handle is turned in the

direction from the first to the second vector in the product. The direction of the cross product is given by the progression of the
corkscrew.

 Vector Product (Cross Product)

A ⃗  B⃗  A ⃗  B⃗ 

A ⃗  B⃗  A ⃗  B⃗ 

A ⃗  B⃗  5.2.1

| × | = AB sinφ,A ⃗  B⃗  (5.2.1)

φ A ⃗  B⃗ 

5.2.1

5.2.1 φ φ

5.2.1 ×A ⃗  B⃗ 

A ⃗  B⃗  A ⃗  C ⃗ 

B⃗  C ⃗  A ⃗  B⃗  B⃗ 

×B⃗  A ⃗  ×A ⃗  B⃗ 

A ⃗  B⃗ 

5.2.1

×A ⃗  B⃗ 

5.2.1 B⃗  ×B⃗  A ⃗ 

5.2.1 ×A ⃗  B⃗  ×B⃗  A ⃗ 

× = − × .A ⃗  B⃗  B⃗  A ⃗  (5.2.2)

5.2.2 A ⃗  B⃗ 
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Figure : The corkscrew right-hand rule can be used to determine the direction of the cross product . Place a corkscrew
in the direction perpendicular to the plane that contains vectors  and , and turn it in the direction from the first to the second
vector in the product. The direction of the cross product is given by the progression of the corkscrew. (a) Upward movement means
the cross-product vector points up. (b) Downward movement means the cross-product vector points downward.

The mechanical advantage that a familiar tool called a wrench provides (Figure ) depends on magnitude F of the applied
force, on its direction with respect to the wrench handle, and on how far from the nut this force is applied. The distance R from
the nut to the point where force vector  is attached is called the lever arm and is represented by the radial vector . The
physical vector quantity that makes the nut turn is called torque (denoted by ), and it is the vector product of the lever arm
with the force: .

To loosen a rusty nut, a 20.00-N force is applied to the wrench handle at angle  = 40° and at a distance of 0.25 m from the
nut, as shown in Figure (a). Find the magnitude and direction of the torque applied to the nut. What would the magnitude
and direction of the torque be if the force were applied at angle  = 45°, as shown in Figure (b)? For what value of angle 

 does the torque have the largest magnitude?

Figure : A wrench provides grip and mechanical advantage in applying torque to turn a nut. (a) Turn counterclockwise to
loosen the nut. (b) Turn clockwise to tighten the nut.

Strategy

We adopt the frame of reference shown in Figure , where vectors  and  lie in the xy-plane and the origin is at the
position of the nut. The radial direction along vector  (pointing away from the origin) is the reference direction for measuring
the angle  because  is the first vector in the vector product  = . Vector  must lie along the z-axis because this is the
axis that is perpendicular to the xy-plane, where both  and  lie. To compute the magnitude , we use Equation . To
find the direction of , we use the corkscrew right-hand rule (Figure ).

Solution
For the situation in (a), the corkscrew rule gives the direction of  in the positive direction of the z-axis. Physically, it
means the torque vector  points out of the page, perpendicular to the wrench handle. We identify F = 20.00 N and R = 0.25 m,
and compute the magnitude using Equation :

5.2.2 ×A ⃗  B⃗ 

A ⃗  B⃗ 

 Example : The Torque of a Force5.2.1

5.2.3

F ⃗  R⃗ 

τ ⃗ 

= ×τ ⃗  R⃗  F ⃗ 

φ

5.2.3

φ 5.2.3

φ

5.2.3

5.2.3 R⃗  F ⃗ 

R⃗ 

φ R⃗  τ ⃗  ×R⃗  F ⃗  τ ⃗ 

R⃗  F ⃗  τ 5.2.1

τ ⃗  5.2.2

×R⃗  F ⃗ 

τ ⃗ 

5.2.1

τ = | × | = RF sinφ = (0.25 m)(20.00 N) sin = 3.21 N ⋅ m.R⃗  F ⃗  40o (5.2.3)
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For the situation in (b), the corkscrew rule gives the direction of  in the negative direction of the z-axis. Physically, it
means the vector  points into the page, perpendicular to the wrench handle. The magnitude of this torque is

The torque has the largest value when sin  = 1, which happens when  = 90°. Physically, it means the wrench is most
effective—giving us the best mechanical advantage—when we apply the force perpendicular to the wrench handle. For the
situation in this example, this best-torque value is  = RF = (0.25 m)(20.00 N) = 5.00 N • m.

Significance
When solving mechanics problems, we often do not need to use the corkscrew rule at all, as we’ll see now in the following
equivalent solution. Notice that once we have identified that vector  lies along the z-axis, we can write this vector in
terms of the unit vector  of the z-axis:

In this equation, the number that multiplies  is the scalar z-component of the vector . In the computation of this
component, care must be taken that the angle  is measured counterclockwise from  (first vector) to  (second vector)
Following this principle for the angles, we obtain RF sin (+ 40°) = + 3.2 N • m for the situation in (a), and we obtain RF sin
(−45°) = −3.5 N • m for the situation in (b). In the latter case, the angle is negative because the graph in Figure  indicates
the angle is measured clockwise; but, the same result is obtained when this angle is measured counterclockwise because +(360°
− 45°) = + 315° and sin (+ 315°) = sin (−45°). In this way, we obtain the solution without reference to the corkscrew rule. For
the situation in (a), the solution is  = + 3.2 N • m ; for the situation in (b), the solution is  = −3.5 N • m .

For the vectors given in Figure 2.3.6, find the vector products  and .

Similar to the dot product (Equation 2.8.10), the cross product has the following distributive property:

The distributive property is applied frequently when vectors are expressed in their component forms, in terms of unit vectors of
Cartesian axes. When we apply the definition of the cross product, Equation , to unit vectors , , and  that define the
positive x-, y-, and z-directions in space, we find that

All other cross products of these three unit vectors must be vectors of unit magnitudes because , , and  are orthogonal. For
example, for the pair  and , the magnitude is | | = ij sin 90° = (1)(1)(1) = 1. The direction of the vector product  must
be orthogonal to the xy-plane, which means it must be along the z-axis. The only unit vectors along the z-axis are −  or + . By the
corkscrew rule, the direction of vector  must be parallel to the positive z-axis. Therefore, the result of the multiplication 
is identical to + . We can repeat similar reasoning for the remaining pairs of unit vectors. The results of these multiplications are

Notice that in Equation , the three unit vectors , , and  appear in the cyclic order shown in a diagram in Figure (a).
The cyclic order means that in the product formula,  follows  and comes before , or  follows  and comes before , or 
follows  and comes before . The cross product of two different unit vectors is always a third unit vector. When two unit vectors
in the cross product appear in the cyclic order, the result of such a multiplication is the remaining unit vector, as illustrated in
Figure (b). When unit vectors in the cross product appear in a different order, the result is a unit vector that is antiparallel to
the remaining unit vector (i.e., the result is with the minus sign, as shown by the examples in Figure (c) and Figure (d).

×R⃗  F ⃗ 

τ ⃗ 

τ = | × | = RF sinφ = (0.25 m)(20.00 N) sin = 3.53 N ⋅ m.R⃗  F ⃗  45o (5.2.4)

φ φ

τbest

×R⃗  F ⃗ 

k̂

× = RF sinφ .R⃗  F ⃗  k̂ (5.2.5)

k̂ ×R⃗  F ⃗ 

φ R⃗  F ⃗ 

5.2.3

×R⃗  F ⃗  k̂ ×R⃗  F ⃗  k̂

 Exercise 2.15

×A ⃗  B⃗  ×C ⃗  F ⃗ 

×( + ) = × + × .A ⃗  B⃗  C ⃗  A ⃗  B⃗  A ⃗  C ⃗  (5.2.6)

5.2.1 î ĵ k̂

× = × = × = 0.î î ĵ ĵ k̂ k̂ (5.2.7)

î ĵ k̂

î ĵ ×î ĵ ×î ĵ

k̂ k̂

×î ĵ ×î ĵ

k̂

⎧

⎩
⎨
⎪

⎪

× = + ,î ĵ k̂

× = + ,ĵ k̂ î

× = + .k̂ î ĵ

(5.2.8)

5.2.8 î ĵ k̂ 5.2.4

î k̂ ĵ k̂ ĵ î ĵ

î k̂

5.2.4

5.2.4 5.2.4
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In practice, when the task is to find cross products of vectors that are given in vector component form, this rule for the cross-
multiplication of unit vectors is very useful.

Figure : (a) The diagram of the cyclic order of the unit vectors of the axes. (b) The only cross products where the unit vectors
appear in the cyclic order. These products have the positive sign. (c, d) Two examples of cross products where the unit vectors do
not appear in the cyclic order. These products have the negative sign.

Suppose we want to find the cross product  for vectors = A + A  + A  and  = B  + B  + B . We can use the
distributive property (Equation ), the anticommutative property (Equation ), and the results in Equation  and
Equation  for unit vectors to perform the following algebra:

When performing algebraic operations involving the cross product, be very careful about keeping the correct order of
multiplication because the cross product is anticommutative. The last two steps that we still have to do to complete our task are,
first, grouping the terms that contain a common unit vector and, second, factoring. In this way we obtain the following very useful
expression for the computation of the cross product:

In this expression, the scalar components of the cross-product vector are

When finding the cross product, in practice, we can use either Equation  or Equation , depending on which one of them
seems to be less complex computationally. They both lead to the same final result. One way to make sure if the final result is
correct is to use them both.

When moving in a magnetic field, some particles may experience a magnetic force. Without going into details—a detailed
study of magnetic phenomena comes in later chapters—let’s acknowledge that the magnetic field  is a vector, the magnetic
force  is a vector, and the velocity  of the particle is a vector. The magnetic force vector is proportional to the vector product

5.2.4

×A ⃗  B⃗  A ⃗ 
x î y ĵ z k̂ B⃗ 

x î y ĵ z k̂

5.2.6 5.2.2 5.2.7

5.2.8

×A ⃗  B⃗  = ( + + ) ×( + + )Ax î Ay ĵ Az k̂ Bx î By ĵ Bz k̂

= ×( + + ) + ×( + + ) + ×( + + )Ax î Bx î By ĵ Bz k̂ Ay ĵ Bx î By ĵ Bz k̂ Az k̂ Bx î By ĵ Bz k̂

= × + × + ×AxBx î î AxBy î ĵ AzBz î k̂

+ × + × + ×AyBx ĵ î AyBy ĵ ĵ AyBz ĵ k̂

+ × + × + ×AzBx k̂ î AzBy k̂ ĵ AzBz k̂ k̂

= (0) + (+ ) + (− )AxBx AxBy k̂ AxBz ĵ

+ (− ) + (0) + (+ )AyBx k̂ AyBy AyBz î

+ (+ ) + (− ) + (0).AzBx ĵ AzBy î AzBz

= × = ( − ) +( − ) +( − ) .C ⃗  A ⃗  B⃗  AyBz AzBy î AzBx AxBz ĵ AxBy AyBx k̂ (5.2.9)

⎧

⎩
⎨
⎪

⎪

= − ,Cx AyBz AzBy

= − ,Cy AzBx AxBz

= − .Cz AxBy AyBx

(5.2.10)

5.2.1 5.2.9

 Example : A Particle in a Magnetic Field5.2.2

B⃗ 

F ⃗  u⃗ 
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of the velocity vector with the magnetic field vector, which we express as  = . In this equation, a constant  takes care
of the consistency in physical units, so we can omit physical units on vectors  and . In this example, let’s assume the
constant  is positive. A particle moving in space with velocity vector  = −5.0  − 2.0 + 3.5  enters a region with a
magnetic field and experiences a magnetic force. Find the magnetic force  on this particle at the entry point to the region
where the magnetic field vector is (a)  = 7.2  −  − 2.4  and (b)  = 4.5 . In each case, find magnitude F of the magnetic
force and angle  the force vector  makes with the given magnetic field vector .

Strategy

First, we want to find the vector product , because then we can determine the magnetic force using  = .

Magnitude F can be found either by using components, F = , or by computing the magnitude | |

directly using Equation . In the latter approach, we would have to find the angle between vectors  and . When we have
, the general method for finding the direction angle  involves the computation of the scalar product  and substitution

into Equation 2.8.13. To compute the vector product we can either use Equation  or compute the product directly,
whichever way is simpler.

Solution
The components of the velocity vector are u  = −5.0, u  = −2.0, and u  = 3.5. (a) The components of the magnetic field vector
are B  = 7.2, B  = −1.0, and B  = −2.4. Substituting them into Equation  gives the scalar components of vector 

:

Thus, the magnetic force is  = (8.3  + 13.2  + 19.4 ) and its magnitude is

To compute angle , we may need to find the magnitude of the magnetic field vector

and the scalar product :

Now, substituting into Equation 2.8.13 gives angle :

Hence, the magnetic force vector is perpendicular to the magnetic field vector. (We could have saved some time if we had
computed the scalar product earlier.)

(b) Because vector  = 4.5  has only one component, we can perform the algebra quickly and find the vector product
directly:

The magnitude of the magnetic force is

Because the scalar product is

F ⃗  ζ ×u⃗  B⃗  ζ

u⃗  B⃗ 

ζ u⃗  î ĵ k̂

F ⃗ 

B⃗  î ĵ k̂ B⃗  k̂

θ F ⃗  B⃗ 

×u⃗  B⃗  F ⃗  ζ ×u⃗  B⃗ 

+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ ×u⃗  B⃗ 

5.2.1 u⃗  B⃗ 

F ⃗  θ ⋅F ⃗  B⃗ 

5.2.9

x y z

x y z 5.2.10

= ζ ×F ⃗  u⃗  B⃗ 

⎧

⎩
⎨
⎪

⎪

= ζ( − ) = ζ[(−2.0)(−2.4) −(3.5)(−1.0)] = 8.3ζFx uyBz uzBy

= ζ( − ) = ζ[(3.5)(7.2) −(−5.0)(−2.4)] = 13.2ζFy uzBx uxBz

= ζ( − ) = ζ[(−5.0)(−1.0) −(−2.0)(7.2)] = 19.4ζFz uxBy uyBx

(5.2.11)

F ⃗  ζ î ĵ k̂

F = = ζ = 24.9ζ.+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ (8.3 +(13.2 +(19.4)2 )2 )2

− −−−−−−−−−−−−−−−−−−−
√ (5.2.12)

θ

B = = = 7.6,+ +B2
x B2

y B2
z

− −−−−−−−−−−
√ (7.2 +(−1.0 +(−2.4)2 )2 )2

− −−−−−−−−−−−−−−−−−−−−
√ (5.2.13)

⋅F ⃗  B⃗ 

⋅ = + + = (8.3ζ)(7.2) +(13.2ζ)(−1.0) +(19.4ζ)(−2.4) =.F ⃗  B⃗  FxBx FyBy FzBz (5.2.14)

θ

cos θ = = = 0 ⇒ θ = .
⋅F ⃗  B⃗ 

F B

0

(18.2ζ)(7.6)
90o (5.2.15)

B⃗  k̂

F ⃗  = ζ × = ζ(−5.0 −2.0 +3.5 ) ×(4.5 )u⃗  B⃗  î ĵ k̂ k̂

= ζ[(−5.0)(4.5) × +(−2.0)(4.5) × +(3.5)(4.5) × ]î k̂ ĵ k̂ k̂ k̂

= ζ[−22.5(− ) −9.0(+ ) +0] = ζ(−9.0 +22.5 ).ĵ î î ĵ

F = = ζ = 24.2ζ.+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ (−9.0 +(22.5 +(0.0)2 )2 )2

− −−−−−−−−−−−−−−−−−−−
√ (5.2.16)
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the magnetic force vector  is perpendicular to the magnetic field vector .

Significance
Even without actually computing the scalar product, we can predict that the magnetic force vector must always be
perpendicular to the magnetic field vector because of the way this vector is constructed. Namely, the magnetic force vector is
the vector product  =  and, by the definition of the vector product (see Figure ), vector  must be perpendicular
to both vectors  and .

Given two vectors  and  = 3  − , find (a) , (b) | |, (c) the angle between  and , and (d) the
angle between  and vector .

In conclusion to this section, we want to stress that “dot product” and “cross product” are entirely different mathematical objects
that have different meanings. The dot product is a scalar; the cross product is a vector. Later chapters use the terms dot product
and scalar product interchangeably. Similarly, the terms cross product and vector product are used interchangeably.
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⋅ = + + = (−9.0ζ)(90) +(22.5ζ)(0) +(0)(4.5) = 0,F ⃗  B⃗  FxBx FyBy FzBz (5.2.17)

F ⃗  B⃗ 

F ⃗  ζ ×u⃗  B⃗  5.2.1 F ⃗ 

u⃗  B⃗ 

 Exercise 2.16

= − +A ⃗  î ĵ B⃗  î ĵ ×A ⃗  B⃗  ×(A ⃗  B⃗  A ⃗  B⃗ 

×A ⃗  B⃗  = +C ⃗  î k̂
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