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5.1: The Cross Product

Calculate the cross product of two given vectors.
Use determinants to calculate a cross product.
Find a vector orthogonal to two given vectors.
Determine areas by using the cross product.

Imagine a mechanic turning a wrench to tighten a bolt. The mechanic applies a force at the end of the wrench. This creates rotation,
or torque, which tightens the bolt. We can use vectors to represent the force applied by the mechanic, and the distance (radius) from
the bolt to the end of the wrench. Then, we can represent torque by a vector oriented along the axis of rotation. Note that the torque
vector is orthogonal to both the force vector and the radius vector.

In this section, we develop an operation called the cross product, which allows us to find a vector orthogonal to two given vectors.
Calculating torque is an important application of cross products, and we examine torque in more detail later in the section.

The Cross Product and Its Properties

The dot product is a multiplication of two vectors that results in a scalar. In this section, we introduce a product of two vectors that
generates a third vector orthogonal to the first two. Consider how we might find such a vector. Let  and 

 be nonzero vectors. We want to find a vector  orthogonal to both  and —that is, we want to
find  such that  and . Therefore, ,  and  must satisfy

If we multiply the top equation by  and the bottom equation by  and subtract, we can eliminate the variable , which gives

If we select

we get a possible solution vector. Substituting these values back into the original equations (Equations  and ) gives

That is, vector

is orthogonal to both  and . Unfortunately, this formula is complicated and difficult to remember, so determinant notation can be
used to simplify the process.

Determinants and the Cross Product

Using the formula in Equation  to find the cross product is difficult to remember. Fortunately, we have an alternative. We can
calculate the cross product of two vectors usingdeterminant notation. Using determinants to evaluate a cross product is easier
because there is fundamentally just a simple pattern to remember, rather than a complicated formula.

A  determinant is defined by

For example,
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A  determinant is defined in terms of  determinants as follows:

Equation  is referred to as the expansion of the determinant along the first row. Notice that the multipliers of each of the 
determinants on the right side of this expression are the entries in the first row of the  determinant. Furthermore, each of the 

 determinants contains the entries from the  determinant that would remain if you crossed out the row and column
containing the multiplier.

Thus, for the first term on the right,  is the multiplier, and the  determinant contains the entries that remain if you cross out
the first row and first column of the  determinant. Similarly, for the second term, the multiplier is , and the 
determinant contains the entries that remain if you cross out the first row and second column of the  determinant. Notice,
however, that the coefficient of the second term is negative. The third term can be calculated in similar fashion. 

Observe that the expansion of each  determinant corresponds to the components listed in Equation  when 
 and  . If the entries along the first row of the determinant are made the standard unit vectors , ,

and ,  we can obtain the determinant definition of the cross product.

The cross product  is a vector that is perpendicular to two given vectors.

Given vectors  and  the cross product is vector is defined by the formula

The cross product is more easily calculated using determinant notation:

The next few examples provide practice evaluating determinants in general.

Evaluate the determinant .
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We have
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î
∣

∣
∣
u2

v2

u3

v3

∣

∣
∣ ĵ
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Example : Using Expansion Along the First Row to Compute a  Determinant5.1.1 3 × 3
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Evaluate the determinant .

Hint

Expand along the first row. Don’t forget the second term is negative!

Answer

40

Cross Product Evaluation

Technically, determinants are defined only in terms of arrays of real numbers. However, the determinant notation provides a useful
mnemonic device for the cross product formula. Now for some practice calculating cross products.

Let  and . Find .

Solution

We set up our determinant by putting the standard unit vectors across the first row, the components of  in the second row, and
the components of  in the third row. Then, we have

Notice that this answer confirms the calculation of the cross product in Example .

Use determinant notation to find , where  and 
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∣

∣
∣
−1

4

5

−3

∣

∣
∣ ĵ
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Properties of the Cross Product

The Cross Product is a vector orthogonal to two other vectors

From the way we have developed , it should be clear that the cross product is orthogonal to both  and . However, it never
hurts to check. To show that  is orthogonal to , we calculate the dot product of  and .

In a similar manner, we can show that the cross product is also orthogonal to .

Although it may not be obvious from Equation , the direction of  is given by the right-hand rule. If we hold the right
hand out with the fingers pointing in the direction of , then curl the fingers toward vector , the thumb points in the direction of
the cross product, as shown in Figure .

 Figure : The direction of  is determined by the right-hand rule.

Notice what this means for the direction of . If we apply the right-hand rule to , we start with our fingers pointed in
the direction of , then curl our fingers toward the vector . In this case, the thumb points in the opposite direction of . (Try
it!)

Let  and . Calculate  and  and graph them.

 Figure : Are the cross products  and  in the same direction?

Solution

We have

We see that, in this case,  (Figure ). We prove this in general later in this section.
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Example : Anticommutativity of the Cross Product5.1.3
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 Figure : The cross products  and  are both orthogonal to  and , but
in opposite directions.

Suppose vectors  and  lie in the -plane (the -component of each vector is zero). Now suppose the - and -components
of  and the -component of  are all positive, whereas the -component of  is negative. Assuming the coordinate axes are
oriented in the usual positions, in which direction does  point?

Hint

Remember the right-hand rule (Figure ).

Answer

Up (the positive -direction)

Magnitude of the Cross Product

So far in this section, we have been concerned with the direction of the vector , but we have not discussed its magnitude. It
turns out there is a simple expression for the magnitude of  involving the magnitudes of  and , and the sine of the angle
between them.

Let  and  be vectors, and let  be the angle between them. Then,

Let  and  be vectors, and let  denote the angle between them. Then
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Taking square roots and noting that  for  we have the desired result:

This definition of the cross product allows us to visualize or interpret the product geometrically. It is clear, for example, that the
cross product is defined only for vectors in three dimensions, not for vectors in two dimensions. In two dimensions, it is impossible
to generate a vector simultaneously orthogonal to two nonparallel vectors.

Find the magnitude of the cross product of  and .

Solution

We have

Find the magnitude of , where  and .

Hint

Vectors  and  are orthogonal.

Answer

16

The Unit Vector Orthogonal to Two Other Vectors

The cross product is very useful for several types of calculations, including finding a vector orthogonal to two given vectors,
computing areas of triangles and parallelograms, and even determining the volume of the three-dimensional geometric shape made
of parallelograms known as a parallelepiped. The following examples illustrate these calculations.

Let  and . Find a unit vector orthogonal to both  and .
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Example : Calculating the Cross Product5.1.4

= ⟨0, 4, 0⟩u
⇀ = ⟨0, 0, −3⟩v

⇀

∥ × ∥u
⇀

v⇀ = ∥ ∥ ⋅ ∥ ∥ ⋅ sinθu
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= ⋅ ⋅ sin+ +02 42 02− −−−−−−−−−
√ + +(−302 02 )2

− −−−−−−−−−−−−
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2
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 Try It 5.1.4
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Example : Finding a Unit Vector Orthogonal to Two Given Vectors5.1.5
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The cross product  is orthogonal to both vectors  and . We can calculate it with a determinant:

Normalize this vector to find a unit vector in the same direction:

.

Thus,  is a unit vector orthogonal to  and .

Simplified, this vector becomes .

Find a unit vector orthogonal to both  and , where  and 

Hint

Normalize the cross product.

Answer

 or, simplified as 

Area of a Parallelogram

To use the cross product for calculating areas, we state and prove the following theorem.

If we locate vectors  and  such that they form adjacent sides of a parallelogram, then the area of the parallelogram is given
by  (Figure ).

 Figure : The parallelogram with adjacent sides  and  has base  and
height .

We show that the magnitude of the cross product is equal to the base times height of the parallelogram.
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∥ × ∥ = =a⇀ b
⇀

(7 +(−20 +(−5)2 )2 )2− −−−−−−−−−−−−−−−−−
√ 474−−−√

⟨ , , ⟩
7

474
−−−√

−20

474
−−−√

−5

474
−−−√

a
⇀

b
⇀

⟨ , , ⟩
7 474−−−√

474

−10 474−−−√

237

−5 474−−−√

474

 Try It 5.1.5

a
⇀

b
⇀

= ⟨4, 0, 3⟩a
⇀ = ⟨1, 1, 4⟩.b

⇀

⟨ , , ⟩
−3

194−−−√

−13

194−−−√

4

194−−−√
⟨ , , ⟩

−3 194
−−−√

194

−13 194
−−−√

194

2 194
−−−√

97

Area of a Parallelogram
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⇀

v
⇀ 5.1.5

5.1.6 u
⇀

v
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Let  and  be the vertices of a triangle (Figure ). Find its area.

 Figure : Finding the area of a triangle by using the cross product.

Solution

We have  and . The area of the

parallelogram with adjacent sides  and  is given by :

The area of  is half the area of the parallelogram or .

Find the area of the parallelogram  with vertices , , , and .

Hint

Sketch the parallelogram and identify two vectors that form adjacent sides of the parallelogram.

Answer

Key Concepts
The cross product  of two vectors  and  is a vector orthogonal to both  and . Its
length is given by  where  is the angle between  and . Its direction is given by the right-hand
rule.
The algebraic formula for calculating the cross product of two vectors,

Example : Finding the Area of a Triangle5.1.6
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 and , is

The cross product of vectors  and  is the determinant 

If vectors  and  form adjacent sides of a parallelogram, then the area of the parallelogram is given by 
The cross product can be used to identify a vector orthogonal to two given vectors or to a plane.

Key Equations
The cross product of two vectors in terms of the unit vectors

Glossary
cross product

 where  and 

determinant

a real number associated with a square matrix

vector product

the cross product of two vectors
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