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2.1: Vector Addition in Two Dimensions

A long measuring stick rests against a wall in a physics laboratory with its 200-cm end at the floor. A ladybug lands on the
100-cm mark and crawls randomly along the stick. It first walks 15 cm toward the floor, then it walks 56 cm toward the wall,
then it walks 3 cm toward the floor again. Then, after a brief stop, it continues for 25 cm toward the floor and then, again, it
crawls up 19 cm toward the wall before coming to a complete rest (Figure ). Find the vector of its total displacement and
its final resting position on the stick.

Strategy

If we choose the direction along the stick toward the floor as the direction of unit vector , then the direction toward the floor
is  and the direction toward the wall is . The ladybug makes a total of five displacements:

The total displacement  is the resultant of all its displacement vectors.

Figure : Five displacements of the ladybug. Note that in this schematic drawing, magnitudes of displacements are not
drawn to scale. (credit: modification of work by “Persian Poet Gal”/Wikimedia Commons)

Solution
The resultant of all the displacement vectors is

In this calculation, we use the distributive law given by Equation 2.2.9. The result reads that the total displacement vector
points away from the 100-cm mark (initial landing site) toward the end of the meter stick that touches the wall. The end that
touches the wall is marked 0 cm, so the final position of the ladybug is at the (100 – 32) cm = 68-cm mark.

A cave diver enters a long underwater tunnel. When her displacement with respect to the entry point is 20 m, she accidentally
drops her camera, but she doesn’t notice it missing until she is some 6 m farther into the tunnel. She swims back 10 m but
cannot find the camera, so she decides to end the dive. How far from the entry point is she? Taking the positive direction out of
the tunnel, what is her displacement vector relative to the entry point?
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= (3 cm)(+ ),û
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Algebra of Vectors in Two Dimensions
When vectors lie in a plane—that is, when they are in two dimensions—they can be multiplied by scalars, added to other vectors,
or subtracted from other vectors in accordance with the general laws expressed by Equation 2.2.1, Equation 2..2.2, Equation 2.2.7,
and Equation 2.2.8. However, the addition rule for two vectors in a plane becomes more complicated than the rule for vector
addition in one dimension. We have to use the laws of geometry to construct resultant vectors, followed by trigonometry to find
vector magnitudes and directions. This geometric approach is commonly used in navigation (Figure ). In this section, we need
to have at hand two rulers, a triangle, a protractor, a pencil, and an eraser for drawing vectors to scale by geometric constructions.

Figure : In navigation, the laws of geometry are used to draw resultant displacements on nautical maps.

For a geometric construction of the sum of two vectors in a plane, we follow the parallelogram rule. Suppose two vectors  and 
 are at the arbitrary positions shown in Figure . Translate either one of them in parallel to the beginning of the other vector,

so that after the translation, both vectors have their origins at the same point. Now, at the end of vector  we draw a line parallel to
vector  and at the end of vector  we draw a line parallel to vector  (the dashed lines in Figure ). In this way, we obtain a
parallelogram. From the origin of the two vectors we draw a diagonal that is the resultant  of the two vectors:  =  +  (Figure 

). The other diagonal of this parallelogram is the vector difference of the two vectors  =  − , as shown in Figure .
Notice that the end of the difference vector is placed at the end of vector .

Figure : The parallelogram rule for the addition of two vectors. Make the parallel translation of each vector to a point where
their origins (marked by the dot) coincide and construct a parallelogram with two sides on the vectors and the other two sides
(indicated by dashed lines) parallel to the vectors. (a) Draw the resultant vector  along the diagonal of the parallelogram from the
common point to the opposite corner. Length R of the resultant vector is not equal to the sum of the magnitudes of the two vectors.
(b) Draw the difference vector  =  −  along the diagonal connecting the ends of the vectors. Place the origin of vector  at
the end of vector  and the end (arrowhead) of vector  at the end of vector . Length D of the difference vector is not equal to
the difference of magnitudes of the two vectors.

It follows from the parallelogram rule that neither the magnitude of the resultant vector nor the magnitude of the difference vector
can be expressed as a simple sum or difference of magnitudes A and B, because the length of a diagonal cannot be expressed as a
simple sum of side lengths. When using a geometric construction to find magnitudes | | and | |, we have to use trigonometry laws
for triangles, which may lead to complicated algebra. There are two ways to circumvent this algebraic complexity. One way is to
use the method of components, which we examine in the next section. The other way is to draw the vectors to scale, as is done in
navigation, and read approximate vector lengths and angles (directions) from the graphs. In this section we examine the second
approach.

If we need to add three or more vectors, we repeat the parallelogram rule for the pairs of vectors until we find the resultant of all of
the resultants. For three vectors, for example, we first find the resultant of vector 1 and vector 2, and then we find the resultant of
this resultant and vector 3. The order in which we select the pairs of vectors does not matter because the operation of vector
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addition is commutative and associative (see Equation 2.2.7 and Equation 2.2.8). Before we state a general rule that follows from
repetitive applications of the parallelogram rule, let’s look at the following example.

Suppose you plan a vacation trip in Florida. Departing from Tallahassee, the state capital, you plan to visit your uncle Joe in
Jacksonville, see your cousin Vinny in Daytona Beach, stop for a little fun in Orlando, see a circus performance in Tampa, and visit
the University of Florida in Gainesville. Your route may be represented by five displacement vectors , , , , and , which
are indicated by the red vectors in Figure . What is your total displacement when you reach Gainesville? The total
displacement is the vector sum of all five displacement vectors, which may be found by using the parallelogram rule four times.
Alternatively, recall that the displacement vector has its beginning at the initial position (Tallahassee) and its end at the final
position (Gainesville), so the total displacement vector can be drawn directly as an arrow connecting Tallahassee with Gainesville
(see the green vector in Figure ). When we use the parallelogram rule four times, the resultant  we obtain is exactly this
green vector connecting Tallahassee with Gainesville:  =  +  +  +  + .

Figure : When we use the parallelogram rule four times, we obtain the resultant vector  =  +  +  +  + , which is the
green vector connecting Tallahassee with Gainesville.

Drawing the resultant vector of many vectors can be generalized by using the following tail-to-head geometric construction.
Suppose we want to draw the resultant vector  of four vectors , , , and  (Figure ). We select any one of the vectors
as the first vector and make a parallel translation of a second vector to a position where the origin (“tail”) of the second vector
coincides with the end (“head”) of the first vector. Then, we select a third vector and make a parallel translation of the third vector
to a position where the origin of the third vector coincides with the end of the second vector. We repeat this procedure until all the
vectors are in a head-to-tail arrangement like the one shown in Figure . We draw the resultant vector  by connecting the
origin (“tail”) of the first vector with the end (“head”) of the last vector. The end of the resultant vector is at the end of the last
vector. Because the addition of vectors is associative and commutative, we obtain the same resultant vector regardless of which
vector we choose to be first, second, third, or fourth in this construction.

Figure : Tail-to-head method for drawing the resultant vector  =  +  +  + . (a) Four vectors of different magnitudes
and directions. (b) Vectors in (a) are translated to new positions where the origin (“tail”) of one vector is at the end (“head”) of
another vector. The resultant vector is drawn from the origin (“tail”) of the first vector to the end (“head”) of the last vector in this
arrangement.
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The three displacement vectors , , and  in Figure  are specified by their magnitudes A = 10.0, B = 7.0, and C = 8.0,
respectively, and by their respective direction angles with the horizontal direction  = 35°,  = −110°, and  = 30°. The
physical units of the magnitudes are centimeters. Choose a convenient scale and use a ruler and a protractor to find the
following vector sums: (a)  =  + , (b)  =  − , and (c)  =  −  + .

Figure : Vectors used in Example  and in the Exercise feature that follows.

Strategy

In geometric construction, to find a vector means to find its magnitude and its direction angle with the horizontal direction. The
strategy is to draw to scale the vectors that appear on the right-hand side of the equation and construct the resultant vector.
Then, use a ruler and a protractor to read the magnitude of the resultant and the direction angle. For parts (a) and (b) we use the
parallelogram rule. For (c) we use the tail-to-head method.

Solution
For parts (a) and (b), we attach the origin of vector  to the origin of vector , as shown in Figure , and construct a
parallelogram. The shorter diagonal of this parallelogram is the sum  + . The longer of the diagonals is the difference  − 

. We use a ruler to measure the lengths of the diagonals, and a protractor to measure the angles with the horizontal. For the
resultant , we obtain R = 5.8 cm and  ≈ 0°. For the difference , we obtain D = 16.2 cm and  = 49.3°, which are shown
in Figure .

Figure : Using the parallelogram rule to solve (a) (finding the resultant, red) and (b) (finding the difference, blue).

For (c), we can start with vector −3  and draw the remaining vectors tail-to-head as shown in Figure . In vector addition,
the order in which we draw the vectors is unimportant, but drawing the vectors to scale is very important. Next, we draw vector

 from the origin of the first vector to the end of the last vector and place the arrowhead at the end of . We use a ruler to
measure the length of , and find that its magnitude is S = 36.9 cm. We use a protractor and find that its direction angle is  =
52.9°. This solution is shown in Figure .
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Figure : Using the tail-to-head method to solve (c) (finding vector , green).

Using the three displacement vectors , , and  in Figure , choose a convenient scale, and use a ruler and a protractor
to find vector  given by the vector equation  =  +  − .

Observe the addition of vectors in a plane by visiting this vector calculator and this PhET simulation.

This page titled 2.1: Vector Addition in Two Dimensions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

2.3: Scalars and Vectors (Part 2) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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